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Abstract

Current interconnected society provides us with numerous devices communicating
with one another. Exchange of data thus become an integral part in our live. Data
become valuable commodity in today’s setting because of their usage by individual
and other interested parties. Several parties may be interested in computing a function
over their data while still want to keep the information on their own data private.

Prior research on computing function in privacy preserving way in the domain
of smart power-grid, e-metering system, wireless sensor network, and smart phone
sensing generally focus on their own application and assume a total control and the
static structure of the network. Moreover, a new paradigm in the field of decentralized
power-grid requires privacy preserving solution to be applicable without existence of
central authority. We propose two privacy preserving data aggregation protocols in
peer-to-peer network scenario where there is such central authority involved. The first
protocol utilizes additive homomorphism properties of Pailier scheme and the second
protocol utilizes secret sharing. Both of the protocol achieve privacy-preserving re-
quirement of some nodes in the network, as opposed to all nodes, that are included
in the aggregation set by a hop count parameter from the initiating node. This way,
both of the protocols require no information of overall network structure and privacy-
preserving data aggregation is achieved by being able to communicate with direct
neighbors of each node in the network only.
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1
Introduction

The best way to keep our data inaccessible is to keep them in a safe environment where
no single entity can interact with them. However this approach renders our data use-
less as data is regarded as valuable assets if we can do some operation and gain some
insight on them. Trusting other parties to handle our private data is also not the best
approach in many cases as they can misuse our data for their own best interest. De-
veloping a way to keep both our data as private as possible while still allowing other
entities to operate on them and gaining value for all interested parties is currently a
compelling topic.

In European Union (EU) privacy of one individual remains one of the important
aspect in society. Under EU regulation, personal data can only gathered legally under
a set of standard and rules [17]. Latest reform of data protection rules [40] also already
been taken into force on May 2016 and will be widely applied throughout EU in May
2018 [9]. Not only happen in the European Union, this consideration of privacy also
being addressed in Canada [7] and the United States [25]. This concern about privacy
should taken into account when designing a system that handles sensitive data while
in the same time requires a function to be computed over those mentioned data.

The simplest, albeit non-private, way to compute a function over all secret values
of all parties participating in the system is to choose a trusted entity. This trusted en-
tity collects all values from all of contributing parties and computes a function over
them, and then publish the result to every parties. If we could guarantee the privacy
and authenticity of data transmission and we could guarantee that our trusted entity
will behave as it is and not corruptible, then we already achieve our desired goal. A
problem arises when we want to change our trust model to not trust anyone, not even
trusting aforementioned trusted entity. Can we still achieve our goal in computing a
function over all of participant’s secret values without requiring them to share those
values? This kind of problem definition is what bring our interest in studying privacy
preserving data aggregation.

Privacy preserving data aggregation is one instance of Multiparty Computation
(MPC) problem (early problem of MPC studied in [48], other example applications in-
clude secure comparison in online auction [12], privacy preserving face recognition
[20], private data mining, private voting, private matchmaking [11]). We could define
parties involved in privacy preserving data aggregation as two separate types: node
and aggregator. Typically, each node holds some private value that they want to keep
as a secret while in the same time, they want to compute some function over all of other

1



2 1. Introduction

node’s value. In this case aggregator may or may not help the nodes to compute the
function. In the end of the protocol however, the aggregator and other nodes should
not have knowledge of any individual node’s secret value.

Research in privacy preserving data aggregation are conducted widely in numer-
ous fields. Each of them use it with slight modification according to special needs in
the field. However their goals are similar. They are all in need to compute certain
value while keeping individual value private. We briefly mention applications of pri-
vacy preserving data aggregation in the field of power-grid and smart meter, wireless
sensor network, and crowdsensing. Furthermore we also discuss the similarity among
them and what are the current protocols lacking.

1.1. Power-grid and Smart Meter

Current existing approach in calculating energy consumption on a neighborhood in
a power grid consists of calculation in individual household involved in them. This
mechanism plays a vital role in the power grid in order to dynamically provide and load
balance energy. However, measuring individual electricity consumption in a house-
hold is privacy intrusive. Type of electricity appliances in a house can be deduced even
by eye inspection of the power usage chart [27]. In Figure 1.1 we show an example of
electricity usage of one household, from the figure we can indeed roughly deduce that
particular house’s hourly and weekly activity just by looking at the plot of the electric-
ity usage. More advanced data mining and profiling techniques also enable long term
and detailed insight of house’s activity [26] [39]. This knowledge could reveals a pat-
tern that can be abused so that we can conclude what type of electricity appliances
are available in the household or conclude whether a household have a friend stay-
ing overnight [24]. Concern about privacy should be taken into account in designing
smart power-grid along with its smart metering mechanism. Growing energy needs
allows governments to deploy a way to maximize existing power-grid infrastructure to
include new energy resources generation and also monitor energy consumption on a
certain grid.

Ideally, according to the EU direction, private data may only be collected and pro-
cessed under a very strict conditions and only if it is necessary in order to provide
services [9]. Most of the time, parties that collect data about electricity usage in a
power-grid only need the aggregated usage of several houses only, not individual us-
age, in order for them to provide services. Dynamically allocate power to the network
and load-balancing the supply-demand are the example of services required. Several
works have been carried upon in order to address this problem by utilizing cryptogra-
phy techniques to achieve privacy while still allow required services. We study different
proposed protocols that utilize additive homomorphism and secret sharing [24], ad-
ditive homomorphism and Diffie-Helman key exchange [34] [19], differential privacy
[2], signature and commitment scheme [41], shamir threshold secret sharing [30], and
Paillier homomorphic encryption [18].

1.2. Wireless Sensor Network

Application of privacy preserving data aggregation also found its use in the field of
wireless sensor networks (WSN). WSN are type of network that consists of small de-
vices with limited computing capabilities and energy storage. These small devices in
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(a) (b)

Figure 1.1: Electricity usage of one household in (a) 24 hours and (b) 30 weeks. Using this knowledge one
can deduce the house’s activity. Taken from [1].

the WSN typically share a common goal to compute a certain value based on the read-
ing of the environment that they are installed in, for example computing temperature,
rainfall intensity, and geological activity.

Several works have been conducted for the security of WSN. Earlier works focused
on key management [21], authentication [49], and message routing [31]. More re-
cent research also address security of data transmission in WSN by utilizing identity
based signature technique [36]. A survey paper also address different type of attack
that might occurs in WSN at different layers of the network and what countermeasure
needs to be done in order to overcome different type of attacks [13].

In this thesis, we focus more on studying WSN capabilities in aggregating values
over all of the node within the network. Due to the inherent limitations that exist in
WSN, doing computation with as little cycle as possible and doing data transmission
with as little bit as possible are required features of data aggregation in WSN context.
In the general scenario, the WSN usually deployed in a publicly accessible and un-
trusted environment so that privacy also adds to the list of required feature to have,
adding more issues to the hardware limitation of WSN. An efficient of privacy preserv-
ing data aggregation using only simple mechanism by the means of addition modulo
is then explored in [6]. An extension of this mechanism is also explored in [2] by adding
differential privacy, that is making each individual entry indistinguishable from other
entries in the same networks, however it comes with the price on the accuracy of the
overall aggregation value.

1.3. Crowdsensing

Crowdsensing is a paradigm that arise from currently developed technology in our
mobile devices. These devices not only constantly does communication with exter-
nal parties but also can utilize their readily available sensors such as GPS, gyroscope,
accelerometer, etc that are embedded on them. By reading values from these sensors,
we have ability to acquire knowledge from individual’s environment.

In a recent publication [23], the authors highlight the term mobile crowdsensing.
They are type of specific devices that rely on data collection from large number of de-
vices. The authors also divide crowdsensing into two main categories based on the
involvement of the individual that own the devices, that is participatory sensing [4] or
opportunistic sensing [35]. In the participatory sensing, the user take an active role in
providing the sensor data to the system, it can be in the form of the picture or video
being taken, the review of traffic incident, or location check-in in the location based
social network. On the other hand, the opportunistic sensing rely on automatic pro-
cess and require less user intervention, for example periodically updating location of
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the user’s device.
Similar with the context of smart-meter that we already discussed earlier, sensing

data that are obtained from the device might contain sensitive information of a user.
For example it might contain user’s habit, location history, and favourite places. Send-
ing these kind of information to the outside system is privacy intrusive, even more
when the user themselves have less involvement in agreeing to participate.

Several research that specific in the field of crowdsensing to achieve privacy al-
ready been conducted. In [45] the authors work on data aggregation in privacy pre-
serving manner when the data is incomplete. The authors use bilinear mapping tech-
niques along with matrix completion algorithm to treat the incomplete data.

1.4. Similarity in Different Fields

Looking at numerous application of privacy preserving data aggregation in specific
domains, we are interested in looking for similarity and comparing each one of them.
In abstract, we can regard each protocol as an interacting parties that want to compute
aggregation value (that is, summation of each individual value), we refer them as node.
This can further be achieved with or without help of additional parties that specifically
only do calculation, we refer them as aggregator. However the overall goal of them are
the same, that is to also achieve privacy so that each individual value should not be
known by the others.

All mentioned works earlier differ in the underlying network structures, this is due
to the existence of aggregator or not in them and also due to the how each node inter-
acts with others. They also differ in the choice of cryptography primitive used, whether
they use homomorphic encryption technique and secret sharing to allow private data
aggregation, or use differential privacy to provide indistinguishability between an en-
try against each other. It is therefore interesting to contrast each of them more in this
sense.

In a dynamic scenario of network, where there might be a new node being added
or disappear in case of node or communication failure, doing data aggregation is not
a trivial work to do. Computing a certain value in the currently available or even some
of the selected node within the network is the goal. Moreover, a new challenge arise if
we consider achieving privacy in the network. Current research in handling dynamic
number of node in the network when doing privacy preserving data aggregation are
available in the context of smart meter that tolerate failures [18] [30]. However they
only work under synchronous network communication assumption. Having a proto-
col that can handle dynamic scenario of network while still maintaining privacy is the
goal of our research.

1.5. Peer-to-Peer Network

In this thesis we explore the usage of peer-to-peer network paradigm to implement pri-
vacy preserving data aggregation protocols. Peer-to-peer network is a network struc-
ture paradigm where every nodes in the network communicate with each other with-
out central authority. It differs with client-server or centralized network structure where
the existence of a server or central authority is needed in the network. Due to this
property of having no central authority that is trusted by nodes, security and privacy
are inherently important in peer-to-peer network. Several researches in the field of
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Figure 1.2: Prior works assume a total knowledge and non-dynamic structure of the network

Figure 1.3: Generally a node in the network only have knowledge of its direct connection and not the
whole network

peer-to-peer network usually focused on file-sharing [8] [42] [3], secret-sharing [47],
anonymous routing for anonymity [16], anonymous storage system [15], etc.

The inherent characteristics of the paradigm that treats every node in the network
as an independent entity makes trust delegation in peer-to-peer network not a viable
option, as every node in the network should not trust any other node. Moreover, in
peer-to-peer network paradigm generally every node in the network does not have
knowledge of the whole network structure, they only know their direct neighbor con-
nection. If every node in the peer-to-peer network have a secret value and they want to
compute certain aggregate function together without having to trust any other node,
then having a data aggregation protocol in privacy preserving way is a desired goal.
Modeling the protocol as an interaction of nodes that have various states in each pro-
tocol execution as opposed to treat the network as a whole is our focus.

Questions might arise of the need and applicability of privacy-preserving data ag-
gregation in peer-to-peer network scenario. Indeed, in most cases it is easier to have
a centralized network structure where every node report to a central authority rather
than having peer-to-peer scenario where every node could act independently. In this
section we explore one of the real-world problem that motivate us to do this research,
and why it is important to have privacy-preserving data aggregation in peer-to-peer
network scenario.

Latest advancement in the technology of power system allows a shift of paradigm
of the role of end user to not only be a consumer of power but also become a power
producer. A house that have 3kW solar panel installed produces enough energy to
power electricity consumption of the household [46]. Having more solar panel in-
stalled, or having other power generator installed means the house produces more
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electricity that they need, thus they could become power producer themselves. This
further allows a decentralized power grid network structure to be built.

Characteristic of decentralized power grid network is that the power is generated
near where the demand is [32]. This is by far different with centralized power system
that a power is generated in a central system and then distributed to the number of
consumers that are far away. This feature that states the power is generated near where
the demand is could cut the cost of electricity distribution. As a centralized power
system requires heavy investment on the infrastructure and the power are produced
by non-renewable energy sources [29].

Authors in [5] propose a framework of distributed power system where there are no
single power producer, instead several houses in a neighborhood could both become
a power producer and consumer, named a prosumer. The paper also describe a sim-
ulation model of how to organize automated trading and pricing of electricity usages
and also load balancing. The proposed framework works by separating roles and steps
into four different layers based on the process being conducted.

However, current state of research in the field of decentralized power grid lack
focus on the privacy concern of the end user. By having each of the houses in the
neighborhood could both act as power producer and power consumer, a mechanism
to both track the power being consumed in the neighborhood and ensure privacy of
each house in the neighborhood is a required feat as stipulated by the regulation.

1.6. Research Goal

We already discussed our motivation in doing research in privacy-preserving data ag-
gregation in peer-to-peer network scenario. We also showed that our research topic
has at least one real-world scenario where it could be applied on. Our focus in this the-
sis, however, is to not focus only on one specific domain of implementation. Rather, we
aim to formulate our problem definition and propose our solution in generic concept.
The underlying research question of this thesis is then as follow:

How can privacy be achieved in data aggregation of peer-to-peer network
scenario where there is no authority and each node in the network have no
knowledge of the overall network structure?

From this research question, several sub-questions arise:

1. How can data of the secret values of each of the node be aggregated in the net-
work without leaking the values themselves?

2. How does dynamic structure of the network where nodes can be added or deleted
be managed?

3. How can we achieve data aggregation in privacy preserving way with each node
knows nothing about overall network structure?

4. How can data aggregation be achieved in privacy preserving way without single
central authority?

5. What cryptographic primitive works best in term of privacy, operation time, and
message transmission’s size of the network?
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1.7. Research Contribution

To address the research question and sub-questions, in this thesis our contribution is
to present two protocols of privacy-preserving data aggregation in peer-to-peer net-
work. The first protocol utilize additive homomorphism properties of Paillier cryp-
tosystem and the second protocol utilize additive secret sharing. The second protocol
runs approximately 23 percent faster in the case of 5,000 nodes compared with the first
one in term of runtime required in order to complete one phase of aggregation step,
although it does require more assumption in the network structure (explained more in
Chapter 5).

Both of our proposed protocols require no knowledge of overall network structure,
instead a node in the network communicates only with its direct neighbors. They both
work under honest but curious security model, that is every parties in the network
assumed to execute the protocol steps honestly but they might learn more based on
the data that they obtained. Both of them also fulfill requirements of being correct and
privacy preserving.

1.8. Document Outline

The structure of this document is as follow. The first chapter discuss background and
use cases of where privacy-preserving data aggregation in peer-to-peer network sce-
nario is important. Chapter 2 explores prior existing work in the field of privacy pre-
serving data aggregation, we also study eight different protocols by focusing on their
shared similarity, not on their specific application domain. In Chapter 3 we discuss our
research methodology and the goal of our proposed protocols formally. Chapter 4 and
5 both discuss our proposed protocols in details, the first one utilizes Paillier and the
second one utilizes secret sharing. We also provide analysis of each protocol in term of
correctness, privacy-preserving, and complexity in their respective chapter. Chapter 6
discuss implementation and experimental result of both protocols. Finally, in Chapter
7 we provide discussion and future work opportunities.





2
Prior Works

The topic of privacy-preserving data aggregation has been widely studied in numerous
contexts. In this chapter, we review the latest studies in this field while focusing on key
features that are common to all of them. When giving brief review in this chapter, we
focus on underlying network model, cryptography primitives used, and some remarks
regarding advantages and disadvantages of each protocol compared with the others.

We consider each protocol as a special instance of secure multiparty computation
where there are several players that want to compute certain value together privately.
There are two types of players: node and aggregator, we use this terminology when ad-
dressing players in protocols being reviewed regardless of their specific roles in them.
Node is a type of players that provide value in the protocol and may or may not involve
in computation process. Aggregator is a type of players that obtain values from nodes
and conduct computation on them. The goal of privacy-preserving data aggregation
is to compute certain value over all values provided by nodes while maintaining the
privacy of each node value, that is individual node value should not be known either
by aggregators or other nodes.

2.1. Preliminaries

Before giving more details of each protocol reviewed, we give a brief overview of basic
preliminaries required to understand the protocols.

2.1.1. Homomorphic Encryption

We formalize our definition of an encryption scheme that is homomorphic (thus we
can refer it as homomorphic encryption) as follow.

Let ⊕ and ⊗ be binary operators operating on two operands. Let E() denote an
encryption scheme. Let m1,m2 ∈ M denote plaintexts that are sampled from message
space M satisfying a group under operation ⊕. Let c1,c2 ∈ C denote ciphertexts that
are sampled from ciphertext space C satisfying a group under operation ⊗. If we have
c1 = Ek (m1) and c2 = Ek (m2) for existing encryption key k, then E() is a homomorphic
encryption if it satisfies,

Ek (m1 ⊕m2) = c1 ⊗ c2. (2.1)

9
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Figure 2.1: An illustration of how homomorphic encryption work. Let the circle in the figure represent
two different binary operator ⊕ and ⊗ respectively, then the resulting x is equal to the resulting y.

As can be seen in Figure 2.1, any player can compute c1⊗c2 without having to know
the encryption key k of them. The resulting value will be the encryption of m1 ⊕m2.
This characteristic of encryption is suitable if we want to delegate some computation
to an untrusted player so that they will not be able to see individual messages but
they can compute on them. We sometimes refer a homomorphic encryption scheme
as additively homomorphic if ⊕ is an addition operator (for example, if we let our M
equal to Z or Zp ).

2.1.2. Pailier Encryption Scheme

Pailier encryption scheme [37] is one instance of additively homomorphic encryption.
The scheme works as follows.

Let m ∈ ZN be a plaintext, where N is a product of two large prime numbers. Let
pk be a public key in the form of a tuple containing (g , N ) where g is a generator of
order N . Let r be randomly sampled element of Z∗

N . Pailier encryption defined as:

Epk (m) = g m . r N mod N 2. (2.2)

Suppose that we have c1 = Epk (m1) and c2 = Epk (m2). Then we have

c1.c2 = g m1 .r N
1 .g m2 .r N

2 mod N 2, (2.3)

c1.c2 = g (m1+m2).(r1r2)N mod N 2, (2.4)

c1.c2 = Epk (m1 +m2), (2.5)

that shows us a multiplication of two ciphertexts will result in an encryption of an ad-
dition of two plaintexts, thus indeed Pailier scheme is additively homomorphic. The
decryption process works as explained well in [37].

2.1.3. Chinese Remainder Theorem

In [18], chinese remainder theorem described as follows. Let p1, p2, ..., pr denote rela-
tively prime positive integers, that is g cd(pi , p j ) = 1; i , j ∈ {1,2, ...,r }; i 6= j . Let a1, a2, ...,
ar be integers. The system of r congruences

x ≡ ai mod pi ; i ∈ {1,2, ...,r }, (2.6)
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has a unique solution modulo P = p1p2...pr as

x =
r∑

i=1
ai Pi yi modP, (2.7)

where Pi = P/pi and yi = P−1
i mod pi ; i ∈ {1,2, ...,r }.

2.1.4. Differential Privacy

In [2], A function F is ε-differential private, if for all data sets D1 and D2, where D1

and D2 differ only in single entry, and for all subset of possible answers S ⊆ Rang e(F ).
Formally,

P (F (D1) ∈ S) ≤ eεP (F (D2) ∈ S). (2.8)

It says that differentially private function produce indistinguishable outputs for inputs
that differ by single entry. Modification of any single entry in dataset, including dele-
tion or addition) changes the probability of any output up to multiplicative factor of
eε.

To achieve differential privacy, we can use the following mechanism. For all f :
D→Rr , we can re-construct f by adding noise that is carefully calibrated to the global
sensitivity of f such that f (D) ← f (D)+L(ε), where L(ε) is independently generated
random variable following Laplace distribution with ε parameter.

We can also notice that Lapplacian noise mentioned above is infinitely divisible,
that is

L(ε) =∑
i

(G1(i ,ε)−G2(i ,ε)), (2.9)

where G1(i ,ε) and G2(i ,ε) denotes i.i.d random variables having gamma distribution
with a certain probability density function.

2.1.5. Threshold Secret Sharing

Threshold secret sharing, or sometimes called Shamir’s secret sharing, lets us recover a
secret from n number of shares as long as d number of them contribute to it [11][30][43].
It utilizes a property of Lagrange interpolation.

For a set C ⊆ {1,2, ...,n} and a finite field Zp with p is a prime and p > n, Lagrange
polynomials λC

i (x) is defined as

λC
i (x) = ∏

t∈C \{i }

x − t

i − t
, (2.10)

and Lagrange coefficient as λC
i (0). Then, for any polynomial P (x) over Zp with degree

at most |C |−1 we have

P (x) = ∑
i∈C

P (i )λC
i (x), (2.11)

and especially

P (0) = ∑
i∈C

P (i )λC
i (0). (2.12)
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Protocol Network Structure Cryptography Primitive

Castellucia, Mikletun,
Tsudik [6]

Tree structured network,
aggregator in the root

Noise addition of k (mod
M), ciphertext is addi-
tively homomorphic

Garcia and Jacobs [24] N nodes with one aggre-
gator

Additive homomorphic
encryption and secret
sharing

Kursawe, Danezis,
Kohlweiss [34]

N nodes with one aggre-
gator

Additive secret sharing,
Diffie-Helman key ex-
change, bilinear map,
bruteforcing

Ács and Castelluccia [2] N nodes with one aggre-
gator

Differential privacy

Corrigan-Gibbs and
Boneh [10]

N nodes with M aggrega-
tors

Arithmetic circuit non-
interactive proof

Erkin [18] Even number of nodes
with one aggregator

Chinese remainder theo-
rem and Pailier

Erkin and Tsudik [19] Peer-based nodes Modified Pailier homo-
morphic encryption

Hoepman [30] Peer-based nodes Shamir threshold secret
sharing

Table 2.1: Privacy-preserving data aggregation protocols comparison

Threshold d-out-of-n secret sharing is based on this properties. Let s ∈ Zp be a
secret to be shared, we sample β1, ..βd−1 randomly from Zp and define P (x) to be ran-
domly chosen (d −1) degree secret sharing polynomial over Zp

P (x) = s +
d−1∑
i=1

βi xi , (2.13)

such that P (0) = s. We then can generate n secret shares as si = P (i ). Any k number
of such n shares can be used to reconstruct s, for k ≥ d . Let C = {c1, ..,ck } denotes a
chosen such index of secret shares. Then we have∑

i∈C
λC

i (0)si = P (0) = s. (2.14)

2.2. Privacy-Preserving Data Aggregation Protocols

In this subsection we mention related privacy-preserving data aggregation protocols
in details. A brief comparison can be found in Table 2.1.

2.2.1. Tree Structured Nodes Using Additive Homomorphism Noise

Castelluccia, Mykletun, and Tsudik proposed a protocol where the nodes are struc-
tured in a tree with an aggregator resides in the root [6]. The protocol uses a simple
addition of noise to encrypt each node value thus resulting in a simple and lightweight
operation.
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Messages are represented as integer m modulo M where M is large integer, that
is m ∈ [0, M − 1]. To encrypt a message, a node randomly choose k ∈ [0, M − 1] and
compute c, the encryption of message as

c = Ek (m, M) = m +k(mod M). (2.15)

This addition of k can be observed as adding a noise acting as a key to the message.
Decryption of ciphertext works simply as

Dk (c, M) = c −k(mod M). (2.16)

The resulting ciphertexts are additively homomorphic, we can add two of them
together and the result will be the encryption of messages addition. In other word,
for messages m1 and m2 let c1 = Ek1 (m1, M) and c2 = Ek2 (m2, M), we then have

Dksum (c1 + c2, M) = m1 +m2, (2.17)

for ksum = k1 +k2.
This characteristic of resulting ciphertext can be utilized in a tree structure. In pro-

posed protocol, we have a tree of nodes with one aggregator in its root. The leaves
of the tree are collection of nodes that provide values. Each node forward an encryp-
tion of its value to its parent, due to the nature of additively homomorphism, its parent
can then do addition over all of its received ciphertext, resulting in a new ciphertext
of encryption of all its child’s value. Since each node only have knowledge of its own
encryption key, other node cannot obtain the original value.

The root of the tree, that is the aggregator, will then obtains all ciphertext of its
children. It can then add them all together to obtain encryption of the total value of
all nodes. The only downfall of this protocol is that since it requires sum of all keys in
order to do decryption, the aggregator need to have an ability to know each of leaves’
encryption key. This can be of course can be generated easily using pseudo-random
function with each node’s id acting as a seed.

2.2.2. N Nodes With One Aggregator Using Homomorphic Encryption and Se-
cret Sharing

Garcia and Jacobs proposed a protocol where there are n number of nodes with one
aggregator. The protocol uses IND-CPA secure additive homomorphic encryption and
simple secret sharing [24]. Combination of those techniques is required so that the
aggregator and other nodes will only see random shared values or the sum of all values
on any given time in protocol runtime. The authors pick Pailier [37] as the protocol’s
encryption scheme, but we can pick any scheme as long as it satisfies Ek (m1) . Ek (m2) =
Ek (m1 +m2).

The protocol works as n nodes, denoted by P1,P2, ...,Pn , each having a value m1,m2,
...,mn and associated with publicly known public key pk1, pk2, ..., pkn respectively,
want to compute

∑n
j=1 m j . Each of Pi picks n random numbers denoted by ai , j so

that each holds

Pi : mi = ai ,1 +ai ,2 + ...+ai ,n (mod λ), (2.18)

for a large integer λ and then construct

yi , j := Epk j (ai , j ) ; j ∈ {1, ..,n} \ {i }, (2.19)
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Pi sends yi , j to the aggregator. Note that yi ,i does not exist by construction, Pi keeps
ai ,i for itself.

After receiving the encrypted values, the aggregator can compute∏
j 6=i

y j ,i = Epki (
∑
j 6=i

a j ,i ) (mod λ). (2.20)

for all i ∈ 1, ...,n. The aggregator then sends Epki (
∑

j 6=i a j ,i ) to Pi .
Each Pi of course can decrypt the encryption to obtain

∑
j 6=i a j ,i . They then can

add ai ,i that they hold themselves so that∑
j 6=i

a j ,i +ai ,i =
∑

j
a j ,i (mod λ), (2.21)

this value is then sent again to the aggregator. After receiving values from Pi aggregator
can finally compute total sum as

∑
i

∑
j

a j ,i =
n∑

j=1
m j (mod λ). (2.22)

This protocol uses a simple yet well-known Pailier scheme to achieve its goal. How-
ever, this protocol requires that all nodes behave normally in every steps of protocol
run. One node failure will fail the protocol altogether because there is no way to obtain
the final result without all nodes participating normally. It also requires that all nodes
and aggregator operates in an authenticated channel, meaning there is a guarantee
that all values sent are indeed come from the said player.

2.2.3. N Nodes With One Aggregator Using Masking and Brute-Forcing

Kursawe, Danezis, and Kohlweiss proposed an n number of nodes with one aggregator
protocol utilizing masking techniques and brute-forcing [34]. They also considered
several realization of the protocol to derive shared randomness, namely using secret
sharing, Diffie-Helmann key exchange, and bilinear map. The protocol comes with an
assumption that aggregator knows roughly the total value, in other word, aggregator
needs to know the distribution of the total value in order for this protocol to work. They
also consider two types of protocol, aggregation protocol and comparison protocol.

In aggregation protocol, each node Pi that has value mi uses masking value ki to
output noised value mi +ki . The only requirement for masking values are they have to
be generated so that the sum of them all set to zero, that is

∑
i ki = 0. The result of the

protocol then be ∑
i

(mi +ki ) =∑
i

mi , (2.23)

by summing all nodes’ noised values.
In comparison protocol, each node Pi output g mi+ki instead. The result of the pro-

tocol then be ∏
i

g mi+ki = g
∑

i (mi+ki ) = g
∑

i mi , (2.24)

by multiplying all nodes’ output, where the value of g is known by all parties involved.
This protocol called comparison protocol because the aggregator needs to know roughly
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the total sum and use this protocol to determine whether the sum of protocol is close
enough to its rough knowledge of it. Suppose that aggregator knowledge of rough total
sum is mg uess , it can compute g mg uess , g mg uess+1, g mg uess−1, ... until a match is found or
until the difference becomes too big and decide that it is an anomaly.

The core of these two protocols lies on the generation and distribution of ki so
that their sum is zero and g ki so that their product is one. The authors propose four
methods in order to generate those values, one using secret sharing, three using Diffie-
Hellman key exchange and bilinear map. In here we briefly give the summary of the
first two methods, for the two other methods are already explained well in [34].

The first method using secret sharing works by selecting subset of n nodes as lead-
ers with size p, denoted by index`1,`2, ...,`p . Note that {P`1 ,P`2 , ...,P`p } ⊂ {P1,P2, ...Pn}.
Firstly, each node P j computes p random values s j ,1, s j ,2, ..., s j ,p . They then send each
corresponding s j ,k to P`k (this also can be achieved by relaying it through aggregator
by firstly encrypt it with each leader’s public key). Each leader P`k collects n−1 shares
s j ,k , j ∈ {1, ..,n} \ {`k } and compute its own share s`k ,k such that all shares summed to
zero. Finally, all nodes add all their shares s j ,1, s j ,2, ..., s j ,p to get their main share s j .
This value can be used for ki both in aggregation and comparison protocol.

Second method uses Diffie-Helman key exchange protocol. Let ski and pki denote
secret key and public key of node Pi . Choose g so that it be a generator of Diffie-
Hellman group, note that g value is the same in all Pi s. Each Pi compute public key
as pki = g ski and distribute it to all other nodes by first certifying it. After verifying all
received value, all nodes can compute

g ki = ∏
j 6=i

pkτ( j ,i ) ski

j , (2.25)

= ∏
j 6=i

(g sk j )τ( j ,i ) ski , (2.26)

where

τ( j , i ) =
{
−1, j < i ,

1 el se.
(2.27)

We then can show that the sum of all ki s is zero∑
i

ki =
∑

i

∑
j 6=i

τ( j , i ) . sk j . ski = 0. (2.28)

2.2.4. N Nodes With One Aggregator Using Differential Privacy Noise

Ács and Castelluccia propose an n nodes protocol and one aggregator using differen-
tial privacy noise [2]. We can consider this protocol as an improvement of [6] (please
refer to 2.2.1), because this protocol use a same additively homomorphic encryption
scheme as in the latter protocol.

This protocol adds differential privacy noise in the secret value of each node be-
fore doing encryption step on them (please refer to 2.1.4). It can be noticed that since
Lapplacian noise can be divided infinitely a lot of times, they can be generated dis-
tributively by all participating nodes. Therefore all node’s secret value mi is added by
noise so that it becomes,

mi ← mi +G1(i ,ε)−G2(i ,ε). (2.29)
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When we aggregate all of them, the result will yield to∑
i

mi +L(ε), (2.30)

which is ε-differential private.
After adding Lapplacian noise to each mi value, node Pi encrypt it with additively

homomorphism scheme as described in 2.2.1 with some extension described below,
resulting in ciphertext ci . Note that the secret key needs to be known by aggregator, so
that let Ki ,Ag g denotes secret key that is known by Pi and aggregator. Then, Pi selects
` other nodes randomly so that if Pi selects P j then P j also selects Pi . They then agree
on a dummy key ri , j = (−1) .r j ,i shared between them. The encryption process then
becomes,

ci = mi +
∑

j
ri , j +Ki ,Ag g mod M , (2.31)

and each of them being sent to the aggregator. aggregator will not know individual
value because we construct the encryption to have random noise that can only be nul-
lified if it total all of them together.

After receiving all ci , the aggregator can just total them together, nullifying the ri , j

part because
∑

i
∑

j ri , j = 0. Because it knows all of Ki ,Ag g values, it can just subtract
them to retrieve final total value. Formally,∑

i
(ci −Ki ,Ag g ) =∑

i
(mi +

∑
j

ri , j +Ki ,Ag g −Ki ,Ag g ), (2.32)

=∑
i

mi +
∑

i

∑
j

ri , j , (2.33)

=∑
i

mi . (2.34)

Note that we need all nodes to be participated according to protocol in order for ag-
gregator to be able to recover final sum, therefore this protocol cannot handle node
failure.

2.2.5. N Nodes With M Aggregators Using Arithmetic Circuit Non-Interactive
Proofs

Corrigan-Gibbs and Boneh propose a protocol that consist of n number of nodes with
m number of aggregators using arithmetic circuit non-interactive proofs [10]. The ra-
tionale of needing m aggregators is to provide privacy as long as one of them is honest
and working correctly, while the correctness of the protocol can only be achieved when
all of them all honest and working correctly.

The authors provide a simplified overview of the protocol that works as follows.
Suppose we have n nodes denoted by Pi , each of them holds a value xi and want to
compute

∑
i xi . We also have m number of aggregators denoted by Ag g j . Let λ be a

prime number acting as public parameter. The protocol then works in three steps:

1. Create Shares Node Pi splits its value xi into m number of shares according to
constraint xi = ai ,1 + ai ,2 + ...+ ai ,m (mod λ). Each Pi then sends one share for
each Ag g j over an authenticated channel.
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2. Aggregate Each Ag g j holds an accumulator scalar A j initialized to zero. Upon
receiving ai , j from previous step, each of them update the accumulator as A j ←
A j +ai , j .

3. Publish Result After all Ag g j receive all shares, they publish their A j values so
that other aggregators can retrieve it. Computing

∑
j A j will yield desired result∑

i xi .

The simplified overview of the protocol provides privacy because all aggregators
learn the sum of xi while learn nothing about initial value of the nodes. We also can
notice that it does not provide robustness. A single corrupt node can render the proto-
col corrupt by submitting any random integer to the aggregators that not corresponds
to its own valid value.

The authors propose a method to achieve robustness in the protocol by using arith-
metic circuit non-interactive proofs. Notice that in the Aggregate step each aggregator
has no way of knowing whether the shares that they received is a validly generated
shares. In the proposed method, there exist a predicate V ali d() constructed using
arithmetic circuit that used to check whether given share is a valid share or not without
knowing the exact value of it. This predicate is given as public knowledge and known
by all players involved. The node’s goal is to convince the aggregator that V ali d(x) = 1
without giving any information about x. Each node needs to send a proof string to
each aggregator, and the aggregators gossips among other to conclude to accept x or
not. The protocol achieves zero knowledge property and is called secret-shared non-
interactive proofs or simply SNIP. The authors also describe on how to do data encod-
ing in the protocol and how it can be used in combination with SNIP to achieve wide
arrays of privacy-preserving data aggregation other than sum, they are explained well
in [10].

2.2.6. Even Number of Nodes With One Aggregator Using CRT and Homomor-
phic Encryption

Erkin proposed a protocol with even number of nodes with one aggregator using Chi-
nese Remainder Theorem (CRT) and homomorphic encryption, namely Pailer scheme
[18]. The reason that the protocol needs even number of nodes is because they are
paired with another unique node and form groups. Therefore the protocol can tolerate
node failures without disturbing all protocol runs, although one node failure will fail its
pair. One of the advantages of this protocol is that with a single execution of it, aggre-
gator can retrieve total consumption of the network as well as smaller groups that are
created within it according to predefined criteria.

Suppose that we have K groups denoted with Gk for k ∈ {1,2, ...,K }. Each of group
has an even number of nodes (with N is an even number denoting total number of
nodes in the network). In every group, each node denoted by Hi is paired with another
unique node inside the group. We denote each pair as Gk,`, a pair inside Gk . The
protocol works in the following steps:

1. Setup The network agrees on K prime numbers, each associated with group Gk

and denoted by pk . In each group, nodes pairs are created. Each pair of node
agree on a secret key αk,`, this can be achieved by using for example Diffie-
Hellman key exchange protocol [14]. The aggregator generates key pairs of Pailier
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scheme and publishes the public key. Because we give all primes pk as public
values, we also have P =∏

k pk . The network also agrees on h ∈Z∗
n .

2. Reporting Let tuple (g ,n) denote Pailier public key associated with aggregator.
Each Hi in Gk,`, having secret value mi , perform these steps:

(a) Hi computes

m′
i = mi Pi yi modP, (2.35)

just like defined in Chinese Remainder Theorem. Recall that Pi = P/Pk and
yi = P−1

i mod pk .

(b) Hi generates random number ri ∈Z∗
n , and then calculate modified encryp-

tion function as

Epk (m′
i ) = ci = g m′

i .r n
i .hn−αk,` modn2, (2.36)

and sends ci to aggregator.

(c) Let H j denote Hi ’s pair in Gk,` and it has secret value m j . It computes

Epk (m′
j ) = c j = g m′

j .r n
j .hn+αk,` modn2, (2.37)

similar with its pair, the only difference is in the power of h. It then sends
c j to aggregator.

3. Aggregation aggregator calculate aggregate of all input from nodes by utilizing
additive homomorphism properties.

Epk (T ) =
N∏

i=1
ci = Epk (

N∑
i=1

m′
i ). (2.38)

4. Total Computation aggregator can decryptEpk (T ) to reveal T , however this value
is not the total consumption. T needs to be processed in order to reveal the total
consumption Tk of group Gk as follows.

Tk = ∑
i∈Gk

mi = T mod pk . (2.39)

The total consumption of all groups is simply
∑

k Tk .

2.2.7. Peer-based Nodes Using Modified Homomorphic Encryption

Erkin and Tsudik propose a peer-based nodes protocol using modified homomorphic
encryption [19] where it requires no involvement of separate aggregator in order to
calculate the total sum of the values. In this protocol any node can act as aggregator
and compute the aggregation result. The protocol use a modified version of Pailier
encryption scheme to achieve its goal, taking only the additively homomomorphism
properties of the scheme. In fact, Pailier decryption key is made public knowledge in
this protocol. The authors also consider three scenarios:

• Spatial: where we calculate the total value of all nodes in one specific time in-
stant.
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• Temporal: where we calculate the total value of one node in several time period.

• Spatio-Temporal: the combination of two previous scenarios.

Recall that in Pailier, encryption is defined as

Epk (m) = g m . r n mod n2. (2.40)

The core idea of this protocol is to split modulo n of Pailer scheme into random N
shares where N denote the number of node in the network. Let ni denote the modulo
shares received by node Pi . We need to have

∑
i ni = n in this protocol. This is because

in each node the encryption will be

Epk (mi ) = g mi . r ni mod n2, (2.41)

where mi denotes the node’s secret value. After encrypting each of their secret value,
each node publishes the encryption so that each other can obtain every encryption.
Then each of them can compute∏

i
Epk (mi ) =∏

i
(g mi . r ni ) mod n2, (2.42)

=g
∑

i mi . r
∑

i ni mod n2, (2.43)

=g
∑

i mi . r n mod n2, (2.44)

=Epk (
∑

i
mi ), (2.45)

thus all nodes can decrypt it. Note that this protocol cannot handle node failure, one
corrupt node will render the protocol useless because decryption result can only be
obtained if all nodes comply with the protocol. The authors consider using other
trusted third party that in order to handle such failure to help retrieve corrupt node’s
value, the only problem if we use this approach it means we delegate our trust to an-
other party.

2.2.8. Peer-based Nodes Using Threshold Secret Sharing

Hoepman describe a peer-based nodes protocol using threshold secret sharing that
can tolerate up to d predefined failures of n-sized nodes [30]. The protocol works by
utilizing a lemma that threshold secret sharing is additive. That is if we have two ran-
domly chosen (d −1) degree polynomials P and P ′ over Zp each having secret s = P (0)
and s′ = P (0) respectively, then si + s′i is secret shares of s + s′.

The protocol works as follow. Let us decide d number of minimum surviving nodes
that we expect to behave correctly in the protocol. It is the same way of saying we let
maximum of t number of node failure, where d = n− t . Let mi denote a secret value of
node Ni . We then have these following steps in the protocol:

1. Initialize Each of surviving (non-faulty) Ni does

• Ni construct randomly chosen (d−1) degree polynomial Pi such that Pi (0) =
mi using threshold secret sharing,

• Ni sends secret shares fi , j = Pi ( j ) ; j ∈ {1, ..,n} to N j .

2. Aggregate Shares Each of surviving N j does
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• N j initialize I j =∅,

• N j adds index i from received fi , j , that is I j ← I j ∪ {i }. Note that it only
receive them if Ni from step 1 is a surviving node,

• N j computes aggregate of secret shares that it received F j =∑
i∈I j

fi , j ,

• N j publishes F j to all nodes.

3. Calculate Sum Each of surviving Ni does

• Ni initialize Ji =∅,

• Ni adds index j from received F j , that is Ji ,← Ji ∪ { j }. Note that it only
receive them if N j from step 2 is a surviving node,

• Ni compute aggregated value as F =∑
j∈Ji

λ
Ji

j F j .

Note that the protocol works correctly if we assume the network is synchronous and
that a node only fails at the beginning of the protocol. Basically what this protocol does
is to agree on a set Ji in which index of node’s share to do a Lagrange interpolation
from. One of the advantages of the protocol is that one node failures will not fail the
whole protocol as long as the number of failures is less than predefined threshold.

If we allow arbitrary failures, then it might be the case that an agreed set Ji is dif-
ferent on each node. One way to handle that case is to have a consensus between all
nodes to agree on a set to do interpolation from. The author also proposed another way
that is basically an extension of this initial protocol that is explained clearly in [30].



3
Research Methodology

Due to a numerous number of research application in the field of privacy-preserving
data aggregation, our focus in this thesis is to propose such protocols that does not
rely on specific application domain. Instead our proposed protocols are generic pro-
tocol in the sense that they could be applied to any different application domains. In
this chapter, we explain the underlying network structure where the protocol can be
applied on and the end goal of the protocols along with their assumptions, we also
explain on how we evaluate our protocol.

3.1. Protocol Requirements

In order to fully answer all of our research question and its sub-questions, there are
several requirements that needs to be achieved by our proposed protocol. Since our
focus in this research is working in a general case of not only working in one specific
application domain, we focus our requirement and protocol description in the term
of graph network where there exists several nodes that are connected to each other.
Requirements that needs to be fulfilled for the protocols thus are:

• Correct For every nodes in the network that are included in the aggregation set,
and in which all of them have their own secret value, the protocol needs to be
able to correctly compute the summation of all of those secret values at the end
of the protocol run.

• Privacy Preserving In any steps of protocol run, a secret value of a node should
only be known by the node that owns it. Note that this requirement does not
limit the knowledge of aggregation result to a particular node or some nodes,
instead the aggregation result of the protocol is regarded as public knowledge
and may or may not be known by any particular user in the network. In this
thesis, we focus on that the knowledge of aggregation result should be known by
every node that contribute in the aggregation set.

• Decentralized There is no authority that have full control in the network. The
nodes in the network should be able to act as an initiator of the protocol and
they should all conform to the protocol specification.

21
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• Direct Neighbors Knowledge Every node in the network should know and be
able to communicate (bidirectionally) with their direct neighbors. Total knowl-
edge of the network in term of any other nodes and nodes connection beyond
this direct neighbors is not required.

• Dynamic Network Structure The protocol should be able to handle changes in
the network in term of addition or deletion of nodes, addition or deletion of con-
nection, or node failure.

3.2. Network Structure

Let G denote a undirected graph network that consists of N number of nodes denoted
as Pi where i ∈ {1, ...N }. Each node in G may be connected to other nodes with a bidi-
rectional edges connection. We do not assume any particular network structure in
the protocol. Every node has a corresponding pair of secret and public key, and every
node in the network have a knowledge of every other node’s public key of Paillier [37].
This knowledge is used to provide additively homomorphism properties between any
node. Each of Pi hold a secret value mi that should only be known by Pi only. Every
node also has an ability to compute a function E() and D(), Paillier encryption and
decryption function.

In peer-to-peer network, any given node only knows the information of connectiv-
ity between itself and its direct neighbors. The overall structure of G may change from
time to time, thus keeping the information of overall network will be time and space
consuming. Any arbitrary node may be used to relay messages from any other node so
that messages can be exchanged between any two node. For the sake of simplicity, in
describing on how the protocol works in this section we assume that such change in
the network G may happen only before the start of "Initiate" phase. That is the proto-
col works correctly if no new node is added, removed, or failed during one run of the
protocol. The protocol still works if the network structure in G changed and protocol
get to run again.

The protocol does not use external aggregator that resides outside the network,
all aggregation calculation is done in the node within the network. Thus, we assume
that every node in the network has a capabilities to compute additive homomorphic
encryption that is required in the protocol. We also assume that the underlying com-
munication channel of the network is an authenticated channel, that is every node in
the network can be sure that the messages they received are indeed originating from
the node that sends them.

3.3. Protocol Goal

The goal of the protocol is to compute a summation of mi of some of the nodes’ secret
value without leaking any information of the individual value to any other party, that
is, at the end of the protocol the value of

∑
j m j where j ∈ I ⊆ {1, ..., N } will be known

by P j , we refer to this set as an aggregation set. We argue that computing the total of
some of the nodes’ secret value as opposed to all nodes is more practical in peer-to-
peer network scenario. The definition on how we include the node membership in the
aggregation set is defined in the protocol description.

The adversarial model used in the protocol is honest but curious, every parties be-
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have according to the protocol but may try to find out more information by reading
every messages that are being exchanged through them [48] [30]. We also assume that
at least two of the nodes that contribute to the aggregation set are not colluding with
each other, as it is trivial to conclude individual node secret value if every other nodes
collude but one by subtracting the individual secret value of colluding nodes from the
aggregated sum of protocol result [24].

3.4. Protocol Evaluation

Our research is aimed to provide privacy-preserving data aggregation in peer-to-peer
network scenario. Therefore, we focus our evaluation on the correctness and privacy-
preserving properties of our proposed protocols. To argue about these two properties,
we also provide proof in the protocol description that they are indeed conform with
this requirements. Due to their nature of protocol in peer-to-peer network, we also
evaluate our proposed protocols in term of running time that they require to achieve
the goal. To measure communication cost of the protocol instead of implementing
and simulating the protocol in simulated network environment, we measure the total
message being sent in the network instead. Therefore our evaluation of of protocol
run time excludes the time required if the protocols are implemented in real network
scenario.

Due to lack of related research that specifically aim to solve similar goal as our
work, we evaluate or proposed protocol using Protopeer [22] peer-to-peer framework
modeling. The network being used to evaluate our protocols are generated randomly
based on parameters that we explain in details in Chapter 6 using classes that are
provided in ProtoPeer: BootstrapServer, BootstrapClient, and NeighborManager
class. Since our protocols does not require specific construction of network structure
in order for them to function, network structure that are provided by ProtoPeer are
sufficient.





4
Paillier-based Privacy Preserving

Data Aggregation Protocol

In this chapter we propose our first protocol for privacy preserving data aggregation
in peer-to-peer network. Our proposed protocol use Paillier cryptosystem, utilizing
its additive homomorphism property and secret sharing techniques in order to share
noise values that help in achieving privacy. It also handles inherently unknown and dy-
namic network structures that exist in peer-to-peer network by having a parameter to
limit aggregation set generation in the nearest nodes only. We also give prove that our
proposed protocol is correct and privacy-preserving in honest but curious adversarial
model.

4.1. Protocol Description

Each node in the network have these following phase in order to achieve the protocol
goal.

1. Initiate Any arbitrary node Pi in the network G may begin entering initiate step
at any time instance as long as it has two or more neighbors connected to them.

Figure 4.1: Because there is no assumption of the knowledge of the network, a node that initialize the
protocol sends a γ parameter along with initial message. In the end of the protocol, every node that have
hop of less than or equal to γ are included in the aggregation set.

25
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This node Pi decide on a parameter γ that define the maximum hops of neigh-
boring nodes. Any other nodes within reach of γ hops or lower from initiating
node are included in aggregation set.

Initiating node sends message with a type INITIATE and γ parameter to all of
its direct neighbors. The message also contains information about i as a root of
the initiator, that is the index of Pi . The node Pi then may enter "Receive Reply-
Initate" phase.

2. Receive Initiate Any node P j that receive INITIATE message from Pi need to
compute a noise value n j so that ∑

j
n j = 0 (4.1)

with j ∈ nei g hbor (Pi ) and nei g hbor (x) is a function that return the set of in-
dices of x’s direct neighbor, as ilustrated in Figure 4.2. To put it simply, P j needs
to agree with its direct siblings (by viewing Pi as a parent) of a value that if
summed together will result in zero. The steps of how to generate and exchange
such values is described deeply in the next section.

After agreeing on such value n j the node check γ parameter, if its value is more
than one the node sends message with a type AGGREGATE and decrease γ pa-
rameter by 1 to all of its direct neighbors except Pi . The message still contains i
information as the root of the initiator. If γ value is not more than one, then the
node does not send such message to its neighbors.

P j then waits for all its direct neighbors to reply with REPLY-AGGREGATE mes-
sage (if it sends any) or after a brief period of waiting ignore the neighbors that
send no reply. Let Pk be such neighbors where k denote index of neighbors that
reply with such message type along with an encrypted value received from Pk

denoted as Er oot (m′
k ). P j then computes

Er oot (m j ).
∏
k
Er oot (m′

k ).Er oot (n j ) (4.2)

which under additive homomorphism will yield to

Er oot (m j +
∑
k

m′
k +n j ) (4.3)

P j sends a message with a type REPLY-INITIATE to Pi along with this value by
denoting it as Er oot (m′

j ).

Notice that if node P j doesn’t receive any replies from its direct neighbors (or
if it is not sending any message because of the γ parameter) then it sends this
following value instead

Er oot (m′
j ) = Er oot (m j ).Er oot (n j ) (4.4)

= Er oot (m j +n j ) (4.5)

3. Receive Aggregate Any node Pk that receive AGGREGATE message from P j check
the corresponding γ parameter, if it has value more than 1 then it forwards AG-
GREGATE message further to their direct neighbors except P j by first decreasing
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Figure 4.2: Nodes that are directly connected to the initiating node exchange values n j with each other
with a requirement that the values are summed to zero. When sending aggregation result in the next step,
these nodes send the value along with the noise to ensure privacy from the initiating node.

γ parameter. It then wait for all of its direct neighbors except P j to send message
with type REPLY-AGGREGATE or after a brief period of waiting ignore the neigh-
bors that send no reply, thus treating that neighbors as a failure. After receiving
REPLY-AGGREGATE messages Pk computes

Er oot (mk ).
∏

l
Er oot (ml ) (4.6)

where l denote the neighbors’ index of Pk that give reply message after brief
period of time and Er oot (x) is an encryption of message x using Pailier under
public key of root of the message initiator, that is the node Pi . Under an additive
homomorphism, computing this value will yield to

Er oot (mk +
∑

l
ml ). (4.7)

Pk sends a message with a type REPLY-AGGREGATE to P j along with this value
by denoting it as Er oot (m′

k ). An illustration can be seen in Figure 4.3.

If the γ value is not more than one (thus making it one of the leaves in the span-
ning tree), then Pk send a message with type REPLY-AGGREGATE to P j along
with Er oot (mk ) value denoted as Er oot (m′

k ).

4. Receive Reply-Initiate Any node Pi that already do "Initiate" phase may enter
this phase. Pi needs to wait for all of its direct neighbors P j that receive INI-
TIATE message in the previous steps to reply with REPLY-INITIATE along with
Er oot (m′

j ) value. Pi then computes the total summation of aggregation set as
follow

msum = mi +Dr oot (
∏

j
Er oot (m′

j )), (4.8)

where Dr oot (x) denote a Pailier decryption function of ciphertext x using Pi se-
cret key (that is obviously known by Pi ).

Node Pi then sends a message with type BROADCAST-SUM along with msum

value and γ parameter that are the same with the one used in "Initiate" phase.
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Figure 4.3: Nodes Pk that are not directly connected to the initiating node encrypt their secret value using
the root’s public key and send it to their parent P j . In this case the privacy in ensured because P j cannot
see the secret value.

5. Broadcast Sum Any arbitrary node that receive a message with type BROADCAST-
SUM store msum information as a total value in the aggregate set. The node
also checks the γ parameter, if it has value more than one the node forward the
BROADCAST-SUM message further to its direct neighbors except the one that
sent it the message with γ parameter decreased by one.

4.2. Exchanging Noise Values

In "Receive Initiate" phase of protocol description we mention that the protocol re-
quires nodes that are involved in those phase to exchange noise values with their direct
siblings such that the total of those noise value will result in value zero. In this section,
we explain on how to achieve that in detail.

Our approach slightly follow additive secret sharing exchange technique in [34]
with modification. Let us consider P j where j ∈ nei g hbor (Pi ) denotes sibling nodes
that are directly connected to the initiating node Pi . In the "Initiate" phase of the
protocol, initiating node Pi also sends to each of its direct neighbors the information
about nei g hbor (Pi ) so that every nodes that are directly connected to Pi have an in-
formation about their direct siblings.

Let K denote the cardinality of set nei g hbor (Pi ), that is the number of Pi direct
neighbor. Every node P j create K −1 random shares integers s j ,k with k corresponds
to the index of their direct siblings, note that s j , j is not defined as this point. Assuming
the existence of authenticated channel in the network, every P j then could sends s j ,k

to their direct siblings Pk by relaying them through Pi .
After sending their own generated shares s j ,k and receiving M−1 number of shares

from other siblings, P j then computes

s j , j =− ∑
k;k 6= j

sk, j . (4.9)

Every P j now have a noise value that have summation value equal to zero as follow:

n j =
∑
k

s j ,k . (4.10)
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Proof: It is indeed
∑

j n j = 0. Because by construction we have

∑
j

n j =
∑

j

∑
k

s j ,k , (4.11)

=∑
j

∑
k

sk, j , (4.12)

=∑
j

(
∑

k;k 6= j
sk, j + s j , j ), (4.13)

=∑
j

(
∑

k;k 6= j
sk, j −

∑
k;k 6= j

sk, j ), (4.14)

=∑
j

0, (4.15)

= 0. (4.16)

4.3. Analysis

In this section we give evaluation of our protocol proposal in term of formal proof
sketch of protocol correctness and privacy-preserving properties. Furthermore, we
also evaluate our protocol computational complexity in the term of operation done
in each sub-phases. Later on we also evaluate the communication complexity of our
protocol in term of number of bits that each type of message in the protocol sends.

4.3.1. Correctness

We formally define correctness requirement as: For all nodes Pi that involves in the
protocol run, if all of them are honest then the value of msum =∑

i∈I mi , where I is the
aggregation set, is computed correctly and be known by all of them.

The protocol works by constructing a spanning tree from the network G with ini-
tiating node acting as tree’s root and the traversal of other nodes is done in breadth
first approach. Such spanning tree has a depth (that is, the number of edges connec-
tion between root and furthest leaf) of less than or equal to γ parameter. Therefore we
can see the γ parameter as a maximum level that the root is willing to do the traversal.
In analyzing the correctness, we can see the protocol process in three different sub-
phase: (1) initiating node and its direct neighbors, (2) internal (non-leaves) node, and
(3) external (leaves) nodes.

Consider the first sub-phase of initiating node acting as root of the spanning tree
and its direct neighbors. Let Pi denote the initiating node and P j denote its direct
neighbors. In "Receive Reply-Initiate" phase of the protocol, each P j send m′

j to Pi .

Let assume for now that m′
j contains the encryption of the original m j value along

with all values of its subtree (if we treat P j as a root of this subtree) plus the noise value
n j . In the end of "Receive Reply-Initiate" phase we indeed have msum the total sum of
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secret values in the aggregation set because,

msum = mi +Dr oot (
∏

j
Er oot (m′

j )), (4.17)

= mi +Dr oot (Er oot (
∑

j
m′

j )), (4.18)

= mi +
∑

j
m′

j , (4.19)

= mi +
∑

j
(m j + sub(P j ))+∑

j
n j , (4.20)

= mi +
∑

j
(m j + sub(P j ))+0, (4.21)

= ∑
i∈I

mi , (4.22)

where sub(x) denote the total value of the subtree of x node except x’s secret value.
If P j is a leaf node, then this becomes trivial as sub(P j ) = 0. Because initiating node
broadcast msum to all of other nodes that involves in aggregation set I , then it is the
case that every one of them have msum information.

Previously, we assume the existence and correctness of encryption of m′
j . This is

indeed a correct assumption due to our protocol construction. Consider the second
sub-phase in internal nodes, they are the type of node that are not a leaf node and not a
direct neighbor of initiating node. In "Receive-Initiate" phase of protocol description,
encryption of m′

j is constructed as either

Er oot (m′
j ) = Er oot (m j ).Er oot (n j ), (4.23)

= Er oot (m j +n j ), (4.24)

if P j is a leaf node which make it trivial as already discussed in previous paragraph, or

Er oot (m′
j ) = Er oot (m j ).

∏
k
Er oot (m′

k ).Er oot (n j ), (4.25)

= Er oot (m j +
∑
k

m′
k +n j ), (4.26)

if P j is not a leaf node. If once again we assume an existence and correctness of m′
k ,

both of them fulfill our previous assumption that m′
j contains the encryption of m j

and all of the node’s subtree.
Our assumption about m′

k is indeed also a correct one. As m′
k is constructed to

have exactly such property. Described in "Receive Aggregate" phase of the protocol
description, m′

k is constructed as either

Er oot (m′
k ) = Er oot (mk ).

∏
l
Er oot (ml ), (4.27)

= Er oot (mk +
∑

l
ml ), (4.28)

for non-leaf node Pk with one or more child nodes Pl . Or as

Er oot (m′
k ) = Er oot (mk ), (4.29)

for leaf node Pk . Thus, fulfilling our correctness assumption about it.
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4.3.2. Privacy Preserving

We formally define privacy-preserving requirement as: For all nodes Pi that involves
in the protocol run, if all of them are honest then the value of mi is known only by Pi ,
where i ∈ I and I is the aggregation set.

All encryption in the protocol is done using Pailier cryptosystem with the public
key of initiating node. Because of that, it is self-evident that any node other than initi-
ating node cannot decrypt the encryption of secret value from any other node involv-
ing in the aggregation set. We are now left to focus on our privacy preserving analysis
in the initiating node.

We argue that the initiating node, although holds the private key required to de-
crypt any ciphertext in the protocol, have no ability to see or deduce the actual secret
value of any other node involved in the protocol. In our protocol description we re-
quire that arbitrary node can only initiate the protocol if it is connected to at least two
of other nodes, this has its own reasoning. If a node is connected to zero other node,
then that node do not need to run any protocol to compute aggregation value as the
value is its own secret value. If a node is connected to just one other node, then the ag-
gregation value can be computed but it is impossible to achieve privacy, because it is
trivial to calculate other node’s secret value by subtracting the aggregation result with
its own secret value. Thus, at least two of connection to other nodes is required.

Privacy of nodes that are not directly connected to the initiating node is guaranteed
because when they send encryption of their secret value, the value is sent through
other node and multiplied with the intermediate node’s secret value. Thus not only
it calculates the addition of secret value in homomorphic manner, it also prevent the
initiating node to recover individual value because it only receives the encryption of
addition results only.

Nodes P j that are connected directly to the initiating node Pi need other way to
ensure their privacy, that is why we require these nodes to exchange noise values n j

with a requirement that
∑

j n j = 0, with their siblings. If these nodes have other nodes
Pk connected to them (thus acting as their children in spanning tree) then the pri-
vacy already achieved because when they send encryption of m′

j to the initiating node
it contains encryption of addition result of m j and the node’s subtree secret value.
This noise value is useful particularly in the case of when P j is one of the leaves in the
spanning tree. Their secret value’s privacy is guaranteed because when Pi only receive
individual encryption of m′

j from P j it contains n j , thus disabling the decryption to
individual secret value. Decryption process only works correctly in recovering them
only if Pi receive values from other P j as well, in the form of total aggregation only.

4.3.3. Computational Complexity

In analyzing the computational complexity of the Paillier-based protocol, we list the
number of operations performed by nodes per execution of their respective sub-phases
of the protocol and also the number of such sub-phases being invoked in the network.
The amount of operations performed depends on several variables that are listed in
Table 4.1.

Table 4.2 lists the number of invocation of protocol’s sub-phases in the network.
The table also lists the number of operation being executed per invocation of a sub-
phase. Note that depending on their role in one run of the protocol, each nodes exe-
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Symbol Description

G The network where the protocol run
N Number of nodes in the network
∆(G) Maximum degree of the network
γ Maximum depth of the protocol run, rela-

tive to the initiating node
I The aggregation set
t Bit-length of secret value
α Bit-length of noise value
β Bit-length of ciphertext
h Bit-length of common header (message

type flag, gamma, root identifier, sender
identifier, receiver identifier)

Table 4.1: Symbols used in computational and communication analysis of Paillier-based privacy preserv-
ing data aggregation protocol

Sub-phase Occurrence Operation per Occurrence
Encryption Decryption Multiplication

Initiate 1 1 O(∆(G))
Noise exchange O(∆(G))
Receive Initiate O(∆(G)) 1
Receive Aggregate O(∆(G)γ) 1
Reply-Initiate O(∆(G))
Receive Reply-Initiate O(∆(G))
Receive Reply-Aggregate O(∆(G)γ) O(∆(G))
Broadcast Sum |I |

Table 4.2: Computational complexity analysis of the first protocol

cutes different sub-phases in the protocol with others and may invoke several of such
sub-phases. The overall computational cost of the protocol is then can be obtained by
multiplying values in each rows. Notice that in giving the computational complexity
analysis we use worst-case scenario notation as the actual computation of the proto-
col depends heavily on the network structure that it runs on. Also, the analysis in here
excludes the key generation phase and node initialization that are done by every node
in the network, since the phase only executed one time by each node and not executed
in each invocation of the protocol.

The overall protocol complexity is dominated by aggregation sub-phases (the rec
eive-aggregate and receive reply-aggregate) in a exponential factor of the γ parameter.
This analysis comes from the upper bound of number of node in a full tree with the
degree equal to∆(G) and height equal to γ [44]. The multiplication operations are exe-
cuted in β-bit of number of ciphertexts. Notice that every node in the network at most
executes multiplication of β-bit numbers ∆(G) times. Therefore, the operations of the
protocol are spread to the node in the network that are included in the aggregation set.



4.4. Achieving Overall Network Aggregation 33

Message type Bit-length

INITIATE h +O(∆(G))
NOISE-EXCHANGE h +α
REPLY-INITIATE h +β
AGGREGATE h
REPLY-AGGREGATE h +β
BROADCAST-SUM h + t

Table 4.3: Communication complexity analysis of the first protocol

4.3.4. Communication Complexity

We analyze the communication complexity of the Paillier-based protocol by listing the
number of bits transmitted by each type of messages in the network and also the num-
ber of such message type being transmitted in one protocol run. Table 4.1 lists vari-
ables that we use in giving this analysis.

Table 4.3 lists the number of bits transmitted by each type of messages in the net-
work in one message transmission. The total message in bit of the network can roughly
be obtained by multiplying values in Table 4.3 with the number of occurrence per sub-
phase in Table 4.2. All of the message share common header field information, with
bit-length denoted as h, that contains information about message type, gamma pa-
rameter, identifier of root, identifier of sender, identifier of receiver. The actual length
of this header field depends on the underlying implementation.

Notice that the INITIATE message type also sends O(∆(G)) bits of data along with
the common header information. This information contains the identifier of nodes
that are directly connected to the initiating node and is used in the noise exchange
phase of the protocol. Meanwhile, REPLY-INITIATE and REPLY-AGGREGATE message
type send roughly the same message length in bits as their role are similar, that is to
send aggregation result upstream to the direction of the initiating node.

4.4. Achieving Overall Network Aggregation

The protocol constructs an aggregation set by generating a spanning tree with the ini-
tiating node as the root of the tree. The depth of the traversal of the tree depends on
γ parameters, the protocol finds nodes with up to γ length from the initiating node. If
we let γ more than or equal to the number of hops of farthest node from the initiating
node than it is easy to show that the protocol will have all nodes in the network G in
the aggregation set.

In order to have this information on the number of hops required to reach the far-
thest nodes from any other nodes, we can have another step when a new node is con-
nected to any node that is already within the network. Let every nodes in the network
have a variable γmax that have value of the number of hops required to reach the far-
thest node. Upon receiving a new connection in the network, a node Pi compare its
current γmax with the value one, if it is more than one than Pi sets its γmax to one.
Pi then broadcasts to all of its direct neighbor a message containing an information
of γnew = 2. Any nodes that receive information of γnew message compare their cur-
rent γmax with this value, updating it if the value is less than γnew . Then they further



34 4. Paillier-based Privacy Preserving Data Aggregation Protocol

broadcast a new γnew incremented by one message to their other direct neighbor, and
every network recursively do the same until every nodes receive this message, having
their respective γmax information updated.



5
Secret Share-based Privacy

Preserving Data Aggregation Protocol

In this chapter we propose another protocol for privacy preserving data aggregation in
peer-to-peer network. The second protocol only utilizes additive secret sharing tech-
nique without relying on Paillier cryptosystem unlike the first protocol. Similar with
the first protocol, the second protocol does not require an overall network structure
in order for it to achieve its task, instead it also utilizes a threshold parameter to limit
aggregation set membership to the nearest nodes only.

5.1. Protocol Description

Our first proposed protocol uses both Paillier cryptosystem for its additive homomor-
phism properties and secret sharing to generate noise values between initiating node’s
children. Here we propose another alternative protocol that only uses secret shar-
ing entirely without having to rely on Paillier cryptosystem for its additive homomor-
phism. We illustrate the protocol in Figure 5.1. This alternative protocol is useful where
there is a limitation on having a public knowledge of all of the public key in the net-
work and the limitation in the nodes when having Paillier cryptosystem is not possible.
However this protocol imposes another limitation that is required to be fulfilled by the
network, namely that upon constructing a spanning tree of the aggregation set as de-
fined in our previous protocol any internal nodes need to be connected to at least three
direct nodes (one is the parent upstream node and two other is the children down-
stream node). The initiating node can still connected to two nodes only, the children.
This other requirement is required to ensure privacy in all nodes of the network. In
defining our alternative protocol we assume that all internal non-root nodes in the
spanning tree are connected to at least three other nodes, one is the upstream parent
node and at least two downstream children nodes. The protocol works as follow:

1. Pre-Initiate Any arbitrary node Pi in the network G may begin entering initiate
step at any time instance as long as it has two or more neighbors connected
to them. Before doing so, they execute this phase to query all of their direct
neighbors’ status. The node Pi only includes its direct neighbors if they are active
and not already in the aggregation set.

35
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(a) (b)

Figure 5.1: Our second proposed protocol works as follow: in (a) initiating node does its initiate phase
and then each node recursively execute their own initiate phase to their children as depicted in example
of (b).

2. Initiate This node Pi decide on a parameter γ that define the maximum hops
of neighboring nodes. Any other nodes within reach of γ hops or lower from
initiating node are included in aggregation set.

Initiating node sends message with a type INITIATE and γ parameter to all of its
direct neighbors that are included in the "Pre-Initiate" phase. The message also
contains information about i as a root of the initiator, that is the index of Pi . The
node Pi then may enter "Receive Reply-Initate" phase.

3. Receive Initiate Any node P j that receive INITIATE message from Pi need to
compute a noise value n j so that ∑

j
n j = 0 (5.1)

with j ∈ nei g hbor (Pi ) and nei g hbor (x) is a function that return the set of in-
dices of x’s direct neighbor. To put it simply, P j needs to agree with its direct
siblings (by viewing Pi as a parent) of a value that if summed together will re-
sult in zero. The steps of how to generate and exchange such values is described
deeply in Section 4.2.

After agreeing on such value n j the node check γ parameter, if its value is more
than one the node execute its own INITIATE phase by first doing PRE-INITIATE
with γ parameter decreased by 1, in doing so the node P j also ignore the node
Pi in determining its direct neighbors. The message still contains Pi information
as the original initiator. If γ value is not more than one, then the node does not
send such message to its neighbors, instead it sends a message with type REPLY-
INITIATE along with m′

j = m j +n j to Pi .

4. Receive Reply-Initiate Any node Pi that already do "Initiate" phase may enter
this phase. Pi needs to wait for all of its direct neighbors P j that receive INITI-
ATE message in the previous steps to reply with REPLY-INITIATE along with m′

j
value. Pi then computes the total summation of aggregation set as follow

msum = mi +
∑

j
m′

j . (5.2)
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Node Pi then sends a message with type BROADCAST-SUM if and only if it is
the original initiator (this can be checked by the message that contains original
i index) along with msum value and γ parameter that are the same with the one
used in "Initiate" phase.

If this node is not the original initiator, it sends msum +n j to its parent instead
with the message type REPLY-INITIATE, note that the parent treats the value as
m′

j .

5. Broadcast Sum Any arbitrary node that receive a message with type BROADCAST-
SUM store msum information as a total value in the aggregate set. The node
also checks the γ parameter, if it has value more than one the node forward the
BROADCAST-SUM message further to its direct neighbors except the one that
sent it the message with γ parameter decreased by one.

5.2. Analysis

In this section we give evaluation of our protocol proposal in term of formal proof
sketch of protocol correctness and privacy-preserving properties. Furthermore, we
also evaluate our protocol computational complexity in the term of operation done
in each sub-phases. Later on we also evaluate the communication complexity of our
protocol in term of number of bits that each type of message in the protocol sends.

5.2.1. Correctness

We formally define correctness requirement as: For all nodes Pi that involves in the
protocol run, if all of them are honest then the value of msum =∑

i∈I mi , where I is the
aggregation set, is computed correctly and be known by all of them.

Similar with the first protocol, the second protocol in its core works by construct-
ing spanning tree of the network G with the initiating node acting as the root of the
tree. The spanning tree that is constructed has a depth (the number of edges connec-
tion between root and furthest leaf) less than or equal to γ parameter. The traversal is
done in breadth-first fashion. Unlike the first protocol however, the second protocol
has only one core phase that is executed recursively, the noise exchange using secret
sharing phase.

Let us consider the initiating node Pi that acts as the root of the spanning tree in
the network G. Recall that we assume that all internal non-root nodes in such span-
ning tree are connected to three other nodes (one upstream parent nod and two other
children). Let P j denote the nodes that are directly connected to Pi , all of them have
their own aggregation result m′

j of their own sub-tree (such sub-tree that they become
the root of it) and noise value n j . In the "Receive Reply-Initiate" phase, the final sum-
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mation is indeed computed correctly because

msum = mi +
∑

j
m′

j , (5.3)

= mi +
∑

j
(m j + sub(P j ))+∑

j
n j , (5.4)

= mi +
∑

j
(m j + sub(P j ))+0, (5.5)

= ∑
i∈I

mi . (5.6)

where sub(P j ) denotes the total value the children of sub-tree where P j is the root.
Since the protocol recursively execute this steps throughout the spanning tree, m′

j is
constructed correctly in similar approach as the construction of msum .

5.2.2. Privacy Preserving

We formally define privacy-preserving requirement as: For all nodes Pi that involves
in the protocol run, if all of them are honest then the value of mi is known only by Pi ,
where i ∈ I and I is the aggregation set.

We argue that even without using additively homomorphism properties of Paillier
as in first protocol, the second protocol indeed also achieve privacy preserving prop-
erties. Recall that our assumption requires any internal non-root nodes to be con-
nected to at least three other nodes where two of them are the children. This property
is required to ensure privacy preserving requirement that comes from noise exchange
steps.

In every phase of the protocol run, every node Pi in the network only have knowl-
edge of their own secret value mi , or if they are in the process of aggregating data (such
as in "Receive Reply-Initiate" phase) an information of their children secret value (or
the total of their sub-tree value) m′

j added with the noise value n j . The original value
can only be recovered if the node already obtain all of its children messages so that the
noise values can be cancelled out (recall that

∑
j n j = 0).

5.2.3. Computational Complexity

In analyzing the computational complexity of the Secret share-based protocol, we list
the number of operations performed by nodes per execution of their respective sub-
phases of the protocol and also the number of such sub-phases being invoked in the
network. The amount of operations performed depends on several variables that are
listed in Table 5.1.

Table 5.2 lists the number of invocation of protocol’s sub-phases in the network.
The table also lists the number of operation being executed per invocation of a sub-
phase. Note that depending on their role in one run of the protocol, each nodes exe-
cutes different sub-phases in the protocol with others and may invoke several of such
sub-phases. The overall computational cost of the protocol is then can be obtained by
multiplying values in each rows. Notice that in giving the computational complexity
analysis we use worst-case scenario notation as the actual computation of the protocol
depends heavily on the network structure that it runs on.

Unlike the first protocol, the secret share-based protocol relies fully on the noise
that are added to the secret value. The initiate phase and also noise exchange phase
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Symbol Description

G The network where the protocol run
N Number of nodes in the network
∆(G) Maximum degree of the network
γ Maximum depth of the protocol run, rela-

tive to the initiating node
I The aggregation set
t Bit-length of secret value
α Bit-length of noise value
h Bit-length of common header (message

type flag, gamma, root identifier, sender
identifier, receiver identifier)

Table 5.1: Symbols used in computational and communication analysis of Secret share-based privacy
preserving data aggregation protocol

Sub-phase Occurrence Operation per Occurrence
Addition

Pre-Initiate O(∆(G)γ)
Initiate O(∆(G)γ) O(∆(G))
Noise exchange O(∆(G)γ)
Receive Initiate O(∆(G)γ) 1
Receive Reply-Initiate O(∆(G)γ)
Broadcast Sum |I |

Table 5.2: Computational complexity analysis of the second protocol

are invoked recursively in the network up to the γ parameter. Every node in the net-
work at most executes addition of α-bit numbers ∆(G) times. Similar with the first
protocol, the operations are spread to the node in the network that are included in the
aggregation set.

5.2.4. Communication Complexity

We analyze the communication complexity of the Secret share-based protocol by list-
ing the number of bits transmitted by each type of messages in the network and also
the number of such message type being transmitted in one protocol run. Table 5.1 lists
variables that we use in giving this analysis.

Table 5.3 lists the number of bits transmitted by each type of messages in the net-
work in one message transmission. The total message in bit of the network can roughly
be obtained by multiplying values in Table 5.3 with the number of occurrence per sub-
phase in Table 5.2. All of the message share common header field information, with
bit-length denoted as h, that contains information about message type, gamma pa-
rameter, identifier of root, identifier of sender, identifier of receiver. The actual length
of this header field depends on the underlying implementation.

Notice that the INITIATE message type also sends O(∆(G)) bits of data along with
the common header information. This information contains the identifier of nodes
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Message type Bit-length

PRE-INITIATE h
REPLY-PRE-INITIATE h
INITIATE h +O(∆(G))
NOISE-EXCHANGE h +α
REPLY-INITIATE h +α
BROADCAST-SUM h + t

Table 5.3: Communication complexity analysis of the second protocol

that are directly connected to the initiating node and is used in the noise exchange
phase of the protocol. In REPLY-INITIATE message type, the protocol sends messages
with bit-length equal to the header added by the bit-length of the noise, this is due to
the fact that the second protocol is not using encryption and relies fully on the added
noise.
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Implementation and Experimental

Result

We present our implementation and experimental result of our proposed protocols
in this chapter. Both of the protocols, the first one using Paillier homomorphic cryp-
tosystem and the second alternative protocol using only secret sharing techniques are
presented here. We further discuss the differences among those two based on the ex-
perimental result. The implementation of the protocols is done in Java programming
language on an Intel Core i7-4500U @ 1.80 GHz with 16GB of RAM machine.

6.1. Peer-to-Peer Framework Used

In implementing our protocol we utilize ProtoPeer [22], which further have been ex-
tended by DIAS [38], framework. The framework suits our intention well because it al-
lows us to implement our protocol programmatically without having to dive too deep
into the underlying network and message passing mechanism. It also allows us to not
only build our protocol but also allows us to do evaluation on them, by using pre-
existing sets of APIs. Using ProtoPeer also allows a further work to transition our im-
plementation to live network with less time consuming work.

In ProtoPeer and DIAS’ context, every node in the network acts as an individual
Peer that has its own self-contained application code definition called a Peerlet. Every
interaction is modelled as either (1) message driven, when a node receive a message
and depending on the type of the message act upon it, or (2) time driven, when a timer
that already set-up previously trigger an event on a certain time.

On the other hand, both of our proposed protocol are designed without assuming
total knowledge of the network. We define the design of our protocols in the term of
behaviour of a node (or Peer, in ProtoPeer terminology) and what it should do when
it receive a certain message type. As can be seen in Figure 6.1, this is achievable in
implementation of ProtoPeer context by first defining the message and then handling
the behaviour of each node based on the message received by them.

We generate our network structure using ProtoPeer’s BootstrapServer, Bootstrap-
Client, and NeighborManager peerlet classes. By providing a parameter of how many
nodes that we want to generate in the network, these peerlet classes generate them and
make connections between the nodes in the network. We do not create our own pre-
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1 public void handleIncomingMessage ( Message message ) {
2 i f ( message instanceof Pail l ierMessage ) {
3 Pail l ierMessage pail l ierMessage =
4 ( Pail l ierMessage ) message ;
5 switch ( pail l ierMessage . messageType ) {
6 case INITIATE : {
7 . . .
8 }
9 case NOISE_EXCHANGE: {

10 . . .
11 }
12 case REPLY_INITIATE : {
13 . . .
14 }
15 case AGGREGATE: {
16 . . .
17 }
18 case REPLY_AGGREGATE: {
19 . . .
20 }
21 case BROADCAST_SUM: {
22 . . .
23 }
24 }
25 }
26 }

Figure 6.1: In protocol implementation we handle the behaviour by differentiating the type of message
received

defined network as our proposed protocols could handle arbitrary structure of net-
work and creating pre-defined network would fall outside the scope of our research
interest.

Our experiments are run in SimulatedExperiment context of ProtoPeer. What it
does is basically simulating network communication by not using the actual network
infrastructure. Because of that, our experiments does not include the communication
cost of the actual network communication as we have zero delay and zero loss exper-
iment. To measure our network messaging capabilities, we measure the number of
messages that are being sent and received in the network instead.

In the first protocol, the Paillier-based, we modified a Paillier protocol implemen-
tation from [28], adding a capabilities to compute encryption from different object
instances using a public key of the target.

6.2. Paillier-based Privacy Preserving Data Aggregation

We did an experiment with four different scenarios that differs in the number of nodes
or peers in the network: 500, 1000, 2000, and 5000 nodes. Results are shown in Table
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NUM_PEERS Runtime (ms) Total Messages

500 9,595 25,567
1,000 20,894 67,563
2,000 46,521 162,027
5,000 133,643 484,035

Table 6.1: Experiment result of Paillier-based protocol

6.1. We set the γ parameter, the maximum hops of the protocol, of all of them to be 10.
Furthermore, we measured the total runtime of one aggregation protocol and we also
measured the total messages being sent/received in the whole network. In measuring
the runtime of the protocol, we do not include the time it takes for all nodes to ini-
tialize its internal value, such as keypair and secret value generation. A total runtime
is defined as the total time it takes (in ms) from the first INITIATE message until the
last BROADCAST-SUM message, that is until all of the nodes included in aggregation
set have a knowledge of the total sum result. We repeat our experiment ten times and
taking the average result in measuring the total runtime.

Every node has a randomly generated 32-bits secret value number in Zn . Each of
them also have their own keypair of Pailler with the length of 1024-bits. Recall that due
to Paillier, our ciphertexts are in Zn2 . In the first phase of the protocol, we require an
exchange of noises among all nodes that are directly connected to the initiating node.
The information of ciphertext added with noise value is theoretically secure, however
we need to mask the secret value distribution. To mask the distribution of the secret
values, we set the length of the noise to be a 128-bits number [33] [34]. To validate
correctness of our implementation, we also store every secret values that contribute
in the aggregation set to an external storage (we implemented this in static variable in
Java) and by the end of the protocol we compare the sum of the value stored with the
result of our protocol runs.

6.3. Secret Share-based Privacy Preserving Data Aggregation

We used a similar approach in our second sets of experiment of the second protocol
as we did with the previous set for the first protocol. Result can be seen on Table 6.2.
The only difference is that in the second protocol each node does not have to generate
a keypair of Paillier. We use a similar definition of total runtime as we did in previous
protocol, it is measured as a total time it takes from the first PRE-INITIATE message
until the last BROADCAST-SUM message.

The parameter of number length also similar with the previous protocol experi-
ment. We generated a random 32-bits secret value number, and we also use a 128-bits
number for our values in the noise exchange phase. Correctness is also still validated
by the means of comparing the value from external storage with the resulting value of
protocol runs.

6.4. Protocol comparison

As we can see from the experiment result our first protocol, the Pailer-based, requires
approximately 40 percent more runtime compared with the second protocol, the secret-
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NUM_PEERS Runtime (ms) Total Messages

500 4,413 28,677
1,000 11,001 76,671
2,000 29,390 191,215
5,000 102,228 585,583

Table 6.2: Experiment result of Secret share-based protocol
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Figure 6.2: A comparison plot of protocol total runtime in two protocols.
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Figure 6.3: A comparison plot of total messages in the network of two protocols.
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share based one, based on four number of peers scenario that we conducted in exper-
iment. This is to be expected because in the first protocol we require multiplication of
big number as part of additive homomorphism properties in each intermediate nodes
of the network. In the second protocol we only add the secret value that already added
by noise value in order to to aggregate the data, this requires fewer operation than what
it requires in the first protocol.

However, based on our experiment in measuring total messages in the network,
our first protocol sends approximately 16 percent less messages in the network com-
pared with the second protocol, based on four number of peers scenario. This is due to
the fact that in our second protocol we require each node to recursively invoke noise
exchange phase with their direct siblings prior to sending secret values to their parent
node. This mechanism does not exist in the first protocol as noise exchange phase is
only required to be executed by the nodes that are directly connected to the initiating
node.





7
Discussion and Future Work

Data is inherently valuable due to its capability when we could operate on it. Treating
data as a secret while in the same time hindering its usage effectively devalued it. On
the other hand, blindly trust other parties to handle our private data is also not the best
approach as they can misuse our data. Having a mechanism to provide operational
capabilities while still maintaining privacy of our data is a desirable approach. We
explore research in the field of power-grid and smart meter, wireless sensor network,
crowdsensing and find out shared similarities among them in the sense that they all
could be described as protocol in the distributed network concept although they all
differ in the field of application.

Several protocol for privacy preserving data aggregation have been proposed in
earlier works, however all of them assume a total knowledge of the network structure.
Earlier works also assume roles of node in the network, the nodes could be regarded as
either normal node that only provide data and aggregator node that aggregate the data
provided. Our research focus on a less assumptive scenario where each node in the
network only knows and could communicate with nodes that are directly connected
to it. Our work also aims to solve a more general case where we want to compute some
of the node in the network based on a parameter as opposed to compute all of the
nodes in the network. One of the real world application of this scenario is in the field
of decentralized power-grid where power are generated near where they are needed as
opposed to one single power provider. Our focus in this research could be described
by this following research question:

How can privacy be achieved in data aggregation of peer-to-peer network
scenario where there is no authority and each node in the network have no
knowledge of the overall network structure?

This chapter’s purpose is to revisit the research question and discuss our two pro-
posed protocols of how they achieve the research goal. Later on we also give research
idea for the future work.

7.1. Discussion

We proposed two protocols of privacy-preserving data aggregation in peer-to-peer net-
work. The first protocol relies on additive homomorphism properties of Paillier cryp-

47



48 7. Discussion and Future Work

tosystem and secret sharing scheme for noise exchange in nodes that are directly con-
nected with initiating node. The second protocol relies solely on secret sharing scheme
that executed recursively throughout the network, while requires more assumption in
the network structure. Both of proposed protocols require no knowledge of overall
network structure and they both achieve privacy-preserving data aggregation in some
of the node in the network based on hop threshold parameter.

Our proposed protocols differs with related works that mentioned in Chapter 2 be-
cause while the works mentioned there specifically solve privacy-preserving data ag-
gregation in their own specific application domain, we choose to based own work on
more abstract concept so that they can be applied in any domain (with small update),
due to this reason we based our proposed protocol to work in peer-to-peer network
scenario. Our proposed works also require no knowledge of overall network structure
as storing this kind of complete information is space consuming, instead every node
in the network are required only to be able to communicate bi-directionally with their
direct neighbors and data aggregation is achieved in some of the network based on a
hop parameter. Moreover, our protocols also require no separation of roles among the
nodes, all of them could initiate the protocol and thus become the central of aggrega-
tion as long as it fulfill the requirements that are mentioned in Chapter 4 and Chapter
5.

Looking back into Section 1.6, we identify five sub-questions that motivate us in
doing this research. The first question focus on what mechanism could be used in or-
der to maintain privacy of secret data of each node in the network. To answer this, our
proposed protocols use different mechanism to achieve privacy-preserving properties.
The first protocol that we propose relies on additive homomorphism properties of Pail-
lier cryptosystem while the second protocol relies solely on secret sharing mechanism
that are recursively invoked.

The second sub-question focus on the dynamic structure of the network where
nodes can be added or deleted be handled. Both of our proposed protocol handle this
scenario well and correctly compute the aggregation result if nodes are not added or
deleted during one protocol run. Since in the real world scenario we can safely assume
that such event of nodes addition and removal are rare, then our proposed protocol
would work correctly most of the time.

The third sub-question focus on the way the protocol handle lack of knowledge
of the overall network structure. Both of our protocols solve this issue by having a γ
parameter that bound the maximum number of hops the protocol should invoke the
aggregation protocol sub-phase. By using this approach, a total network aggregation
is still possible if the node that invoke initiate phase have an information of the hop
count to reach furthest node. This approach of storing only the hop of the furthest
node is preferable storage-wise than storing an information of a whole network struc-
ture.

In the fourth sub-question, we discuss the mechanism to achieve privacy preserv-
ing data aggregation without the availability of central authority. In both of our pro-
posed protocol, we solve this issue by allowing every node in the network to spon-
taneously invoke the initiate protocol as long as it fulfill requirements mentioned in
Chapter 4 and Chapter 5. By invoking the initiate phase, we construct a spanning tree
of the network with the maximum depth of γ and the initiating node acting as the root
of this spanning tree.

Finally, in the fifth sub-question we explore the suitable cryptographic primitive
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that could be used in solving privacy-preserving data aggregation in peer-to-peer net-
work scenario. Our first protocol fully utilize both additive homomorphism properties
of Paillier crypto system along with secret sharing to achieve privacy. On the other
hand the second protocol only relies on secret sharing while requiring more assump-
tion in the network structure. Both of the protocol are upper bounded by γ parameter
exponentially.

7.2. Future Work

To the best of our knowledge, our proposed protocols are the first protocol to achieve
privacy-preserving data aggregation in peer-to-peer network where each node in the
network does not need to store the overall network structure. Both of them, Pailier-
based and secret share-based achieve both correctness and privacy-preserving require-
ment. However, we realize that there are rooms for improvement in these protocols.

• Malicious security model. In defining our two protocols description, we use
honest but curious security model. That is, every parties assumed to follow the
protocol description while still be able to infer as much information as they want
from received data. This approach is suitable to use in defining new protocols,
as we already did. However, in real world scenario there might be a case where
some of the parties in the network behave maliciously and try to corrupt the net-
work by not following the protocol definition. One of the example is that a node
in the protocol might act like it is connected to non existence nodes in order
to lie to another node that it has several direct neighbor. This is malicious due
to the fact that the privacy of both of our protocols are guaranteed by noise ex-
change mechanism of nodes that are directly connected to the network. Acting
malicious in this phase may thus break privacy. Future works should have this
in mind and design according to the malicious security model.

• Real world network testing. In evaluating both of our protocols, we use sim-
ulated scenario of Protopeer’s SimulatedExperiment context. This experiment
context simulates network communication and also simulates nodes environ-
ment in one single machine. Furthermore we also generate our network struc-
ture using Protopeer’s BootstrapServer, BootstrapClient, and NeighborManager
classes without full control of the underlying network being generated. Future
research topic may use real world network data to evaluate the protocols perfor-
mance. Testing in real network environment where we have delay and loss in
message transmission also an interesting idea to propose.

• Application in specific field. Our contribution in this thesis focus on protocols
that work on peer-to-peer network scenario, it is a lot more abstract than re-
lated works that we reviewed where they focus on one specific application field.
Applying our protocols in one specific field, for example testing them in decen-
tralized power-grid where privacy is an important aspect to have, is one of inter-
esting research topic that could be proposed.
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7.3. Final Remarks

Two of our proposed protocols achieve their intended goal to have privacy-preserving
data aggregation in peer-to-peer network settings. To be precise, our proposal dif-
fers from related works that have been conducted previously in term of underlying
assumption of the network structure. Our two proposed protocols require no knowl-
edge of overall network structure that they run under. By only having abilities to com-
municate with their direct neighbors, each node in the network which our protocol
run under could achieve data aggregation in privacy preserving way of several nodes
based on a parameter provided.

In worse case scenario, both of our protocol complexity is exponential in the term
of γ parameter. However, due to their nature of being peer-to-peer protocol, every
node in the network have a pretty low overhead in their computation. In the first pro-
tocol every node in the network have computation that are upper bounded by mul-
tiplication operation in ciphertext domain in maximum degree of the network only.
While in the second protocol, the operation are conducted as addition in noise value
domain.
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Appendix

A.1. Pailler-based run log example

#1
==DEBUG result is (500) 1075725634667
==protocol result is 1075725634667
++ Experiment Paillier based with NUM_PEERS = 500
== Total timerun 9477.0
== PEER INIT (incl. Paillier keygen)
sum 30881.0
avg 61.762
== Message count
INITIATE_MSG 20
NOISE_EXCHANGE_MSG 760
REPLY_INITIATE_MSG 20
AGGREGATE_MSG 8249
REPLY_AGGREGATE_MSG 8249
BROADCAST_SUM_MSG 8269
Total messages = 25567

A.2. Secret share-based run log example

#1
== mSum = 937476874671 DEBUG =937476874671
++ Experiment Secret share based with NUM_PEERS = 500
== Total timerun 3783.0
== PEER INIT
sum 9.0
avg 0.018
== Message count
PRE_INITIATE_MSG 6930
REPLY_PRE_INITIATE_MSG 6930
INITIATE_MSG 418
NOISE_EXCHANGE_MSG 5712
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REPLY_INITIATE_MSG 418
BROADCAST_SUM_MSG 8269
Total messages = 28677
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