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Summary

Machine learning can be effectively applied in control loops to robustly make optimal control decisions.
There is increasing interest in using spiking neural networks (SNNs) as the apparatus for machine
learning in control engineering, because SNNs can potentially offer high energy efficiency and new
SNN-enabling neuromorphic hardwares are being rapidly developed. A defining character of control
problems is that environmental reactions and delayed rewards must be considered. While reinforce-
ment learning (RL) provides the fundamental mechanisms to address such problems, realizing these
mechanisms in SNN learning has been underexplored. Previously, schemes of spike timing dependent
plasticity (STDP) learning modulated by factors of temporal difference (TD-STDP) or reward (R-STDP)
have been proposed for RL with SNN. Here we designed and implemented an SNN controller to ex-
plore and compare these two schemes by considering Cart-Pole balancing as a representative exam-
ple. While the TD-based learning rules are very general ones, the resulted model exhibits rather slow
convergence, producing noisy and imperfect results even after prolonged training. We show that by
integrating the understanding of the dynamics of the environment into the reward function of R-STDP,
a robust SNN-based controller can be learnt much more efficiently than by TD-STDP. The work of this
master thesis project has also been published as a paper in Electronics, Vol. 12 [45].
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Abbreviations

Abbreviation Definition

ANN Artificial Neural Network
ML Machine Learning
RL Reinforcement Learning
R-STDP Reward-modulated Spike Timing Dependent Synap-

tic Plasticity
SNN Spiking Neural Network
STDP Spike Timing Dependent Synaptic Plasticity
TD Temporal Difference
TD-STDP Temporal Difference-modulated Spike Timing De-

pendent Synaptic Plasticity
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1
Introduction

There is substantial interest in using Spiking Neural Networks (SNNs), a framework of machine learning
(ML) closely related to biological neural systems, for control problems because of the potential high en-
ergy efficiency of SNN relative to other ML approaches like Artificial Neural Networks (ANNs). The main
topic of this thesis is about the designing and testing of SNN algorithms that implement reinforcement
learning (RL), which is one of the most widely applied ML approaches to control tasks.

1.1. Control Tasks and Machine Learning
The past decade has witnessed the vast development of ML, which is making substantial impacts in
various disciplines of science and engineering [37]. In the particular field of control engineering, ML
approaches have also been extensively investigated for tasks that include industrial process control[50],
autonomous vehicle maneuvering [52], and robotics operation [67].

As summarized by Moe et al. [49], a traditional control loop can be considered as comprising
several essential blocks, including the internal and external observation blocks, the control blocks, and
the (optional) dynamics model block. The internal and external observation blocks describe the (past
and) current states of the system and the environment. These states are used by the control blocks to
determine what future states the system should reach to achieve certain control goals and what actions
should be taken to bring the system into these future states. In model-based control [12], the decision
making of the control blocks is assisted by the dynamics model block, which predicts the behavior of the
system (e.g., through simulations of the physical system), while in model-free control [20], no dynamic
model of the system is required.

For many control systems, blocks fulfilling one or more of the above functions can be advanta-
geously implemented with ML. For example, ML can be applied to preprocess complex sensory data
before these data are used to make control decisions [29]. Moreover, supervised learning (one type
of ML) [35] can be applied to produce a dynamic model [71], which can be used in place of a physics-
based model if the physics model is overly simplified, difficult to derive, or too time consuming to sim-
ulate. At the core of the control loop, ML can be used to achieve robust nonlinear mapping from the
high-dimensional state variables to optimal control decisions. In fact, reinforcement learning (RL) [39],
a subfield of machine learning, has been widely recognized as targeting problems that generally fall
into the scope of control engineering [5].

1.2. Machine Learning with Artificial Neural Networks
So far, machine learning approaches in control engineering have been mainly based on artificial neu-
ral networks (ANNs) [34], because ANN models are of high adaptability, high flexibility, and easy to
train. A typical ANN consists of multiple layers of artificial ”neurons” or nodes [73]. The nodes in
the first layer (i.e., the input layer) receive data from outside of the ANN and pass these data to the
internal nodes. Nodes in subsequent layers receive output from nodes of earlier layers through prede-
fined internode connections. Each node combines multiple inputs using (learnable) connection-specific
weights, passes the result (possibly after adding a learnable bias) through a nonlinear activation func-

1



1.3. Machine Learning with Networks of Spiking Neurons 2

tion, and produces output. The outputs of the nodes in the last layer usually correspond to the final
output of the ANN.

To train an ANN, items of training data are propagated through the network layers. Then the task-
specific loss functions are evaluated based on the output of the network, and the derivatives(or gradient)
of the loss with respect to the learnable network parameters are computed with the back-propagation
algorithm [42]. The parameters are updated according to the gradient to reduce the loss (i.e., gradient
descend or GD [55]).

1.3. Machine Learning with Networks of Spiking Neurons
The wide applicability of deep ANNs (i.e., ANNs with many hidden layers) to different problems can
be attributed, at least partially, to their hierarchical organization of relatively simple computational units
into dedicated network structures. Such structures have been inspired by the intricately connected
neuron networks in a biological brain. However, the computations performed by the nodes of ANNs
(the artificial ”neurons”) are fundamentally different from the ”computations” performed by the biological
neurons. In fact, Vreeken has proposed that computational neuron networks can be divided into three
generations [65]: the first and second generations use artificial neurons that accept real-valued inputs
and generate outputs of binary (the first generation) or continuous (the second generation) values, while
the third generation uses neurons that consider time-dependent signal series (i.e. spike trains) as input
and output, mimicking the signaling between true neurons in biological brains [54].

A typical neuron cell hasmany dendrites and an axon, which are respectively connected to upstream
and downstream neurons through micro-structures called synapses [44]. The interconnected neurons
use spikes to communicate with each other [54]. Over a period of time, a series of spikes (a spike train)
generated by a pre-synaptic neuron can modulate the voltage level of a post-synaptic neuron. When
the latter voltage is above a threshold value, the post-synaptic neuron generates its own spike (i.e.
firing) and its voltage level drops down. In a spiking neuron network (SNN), each neuron will receive
the spike trains from the upstream neurons connecting to its input synapses, produces its own spike
train, and passes its spike train to the downstream neurons connected with its output synapses.

It has been suggested that SNNs can offer much higher energy efficiency than conventional ANNs[40].
Neuronal activity in an SNN is event-driven, because a neuron is only active when it receives or fires
a spike, while it can be idle when there is no event. This is different from an artificial neuron in an
ANN that needs to be always active. Energy-efficient SNN computations are actively being pursued
through the development of both SNN-based ML algorithms [38] and neuromorphic hardwares that
enable on-chip SNNs [48].

A major current difficulty in using SNN is the lack of general learning algorithms for various ML
tasks [28]. Because the spike train signals in SNNs are discrete and nondifferentiable, backpropaga-
tion training cannot be straightforwardly applied to SNN. It is an active field of research to develop
appropriate algorithms to train SNNs for different applications. These algorithms have been roughly
classified as conversion-based and spike-based [18]. In a conversion-based algorithm, a trained ANN
is converted to an SNN so that the SNN can generate the same input-output mapping as the ANN. It
has been shown that this conversion approach can produce SNNs of comparable accuracy as deep
ANNs for image recognition tasks. In another type of spike-based algorithms, gradient descend train-
ing of SNN is enabled using differentiable approximation of the spike function for derivative estimation
and backpropagation. This approach has produced SNNs that can solve small-scale image recognition
problems.

Another highly interesting type of SNN learning algorithms make use of the so-called spike timing
dependent plasticity (STDP) of synapses [46]. Compared with the other algorithms, this type of al-
gorithms more resemble the adaptive learning process of a biological brain, and are potentially more
suitable for energy-efficient implementation on a neuromorphic device. However, the development of
STDP rules for SNN learning remains an underexplored research direction, especially in robotics and
autonomous control [1, 8], where adaptive learning and energy efficiency are often emphasized.

1.4. Focuses and Structure of the Current Report
In the current thesis, we investigate the use of SNN instead of ANN in control problems. In particular,
we are interested in designing SNNs to perform the task of making control decisions that maximize the
future rewards associated with the decisions. While the most widely usedML approach for such tasks is
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reinforcement learning (RL), the most natural learning method for SNN is perhaps spike timing depen-
dent plasticity (STDP). For reinforcement learning, the STDP-based approaches include introducing
either reward signals or temporal difference signals into the algorithm (i.e. R-STDP or TD-STDP). Both
algorithms have been proposed in previous studies. However, the original work introducing R-STDP
has only used regression tasks without delayed rewards as demonstrating examples. For TD-STDP,
while actor-critic reinforcement learning models have been implemented in previous works, there lack
reports of realization of other RL models, including Q-learning, which can be considered as one of
the most fundamental RL techniques. Moreover, the relative advantages and drawbacks of these two
variants of STDP have not been analyzed by considering the same problem.

Here we try to address the above issues by considering an example of using SNN to solve the
classical Cart-Pole Game. With a simple yet effective SNN architecture, we realized Q-learning for
the Cart-Pole control task with TD-STDP. We also realized efficient R-STDP through introducing de-
layed rewards. We examined the effects of learning rates and exploration/exploitation schemes in our
TD-STDP algorithm. We also demonstrated the importance of a proper reward function in R-STDP.
We found that while R-STDP could be less general than TD-STDP because to design a good reward
function for R-STDP requires prior understanding of how the environment respond to control decisions,
learning with R-STDP can be much more efficient if a good reward function can indeed be defined.

The rest of this thesis is structured as below. In Chapter 2, we present brief introductions of the basic
techniques of RL, followed by an overview of SNN with emphasis on TD-STDP and R-STDP learning.
The Cart-pole game is introduced at the end of Chapter 2. Chapters 3 and 4 present respectively
methods and results of our work in details. Chapter 5 contains concluding remarks.



2
Preliminary

In this chapter, we give preliminary introductions to several major components of our work. They are
reinforcement learning (RL), spiking neural network (SNN) and the Cart-Pole Game.

2.1. A Brief Introduction to Reinforcement Learning (RL)
The idea of reinforcement learning (RL) arises from the study of classical and instrumental conditioning
of animals. It emphasizes the interaction between an learner and the environment surrounding the
learner as well as the use of a feedback system that evaluates the learner’s performance. The feedback
will then be used by the learner to adjust its behavior to achieve certain preset objectives.

In a typical RL scheme, an agent (a learner is often noted as an agent in RL) is in one of a range
of possible states, noted as s ∈ S, where S is the state space. In each state, the agent can take an
action a from a predefined set A, which denotes the action space. The action that the agent takes
can potentially change the state that the agent currently stays in. At each state, the agent may receive
a certain amount of reward. The goal of the agent is to choose a proper action at each given state, so
that the total amount of reward the agent received from the states it goes through will eventually be
maximized.

The rules by which the agent chooses its action can be noted as the policy π. For example, π can
correspond to the probability for the agent to take action a when at state s, namely, π(s, a) = P (a|s) for
s ∈ S and a ∈ A. The goal of RL is to find the optimal policy for every state.

Assuming that the environment evolves in consecutive steps during learning. At a certain step n,
the agent detects that the environment is at a state sn and chooses an action an (according to its current
policy), we define the Q-value function as the averaged future total reward the agent is able to receive
by following the policy π at all future states, namely,

Qπ(sn, an) = Eπ(G|s = sn, a = an), (2.1)

in which G stands for the total future rewards or gaining, Eπ stands for averaging over all possible
evolution trajectories of future state sequences given the policy π.

Now we consider the Q-value function that corresponds to the optimal policy πopt (i.e., the policy
that maximizes the Q values), and note this function as Qopt. Because the total future reward of step
n is the sum of the reward for the state at step n+ 1 and the total future reward of step n+ 1, and also
because the optimal policy at step n + 1 would be to take the action with the maximum future gaining
after step n+1, Qopt should satisfy the following Bellman Optimal Equations, which were proposed by
Bellman as the basis for solving the RL problem via a dynamic programming [6] algorithm,

Qopt(s, a) = R(s) + Σs′∈SP
a
ss′maxa′∈AQopt(s

′, a′), (2.2)

where P a
ss′ refers to the transition probability P (sn+1 = s′|sn = s, an = a).

To solve the Bellman equations, one can start from some initial Q-value function and iteratively
update it. In this process, we can define the deviations of the current Q-value function from the Bellman
equations as the temporal differences, namely,

TDQ = R(s) + Σs′∈SP
a
ss′maxa′∈AQ(s′, a′)−Q(s, a) (2.3)

4



2.2. An Overview of SNN 5

The optimal Q-value function can be obtained by iteratively using the temporal differences to update
the Q-value function,

Qnew(s, a) = Qold(s, a) + γTDQ, (2.4)

in which γ is the learning rate.
The RL algorithm that derives the optimal policy by learning the Q-value function is known as Q-

Learning [69]. When the state space and the action space are discrete, the Q-value function is actually
a table (i.e., Q-table) of Q-values for all state-action pairs. Guided by the Q-table, the agent can choose
the appropriate action to take based on the states in which it is in. It has been proven by its inventor
Watkins that the Q-learning algorithm based on equation 2.4 can converge if the Q-values are repre-
sented in the form of a lookup table [68].

2.2. An Overview of SNN
2.2.1. Spiking Neuron Models
SNN is built using the third generation of artificial neurons (i.e., the spiking neuron), which are capable
of processing individual spikes. Various spiking neuron models have been proposed over the years and
the differences of these models showed a trade-off between the accuracy of the described biological
process and computational efficiency [33]. The Leaky Integrate and Fire (LIF) Model is one of the widely
used spiking neuron models that are computationally inexpensive while still being able to capture the
most essential characteristics of a biological neuron as a unit to process the temporal information.

Figure 2.1: The change of the membrane potential of a neuron cell can be modeled as the response of the RC electronic
circuit shown in the figure above.

The LIF Model was proposed by Louis Lapicuqe in the year of 1907 when he discovered that the
voltage level (i.e., the membrane potential) change inside a biological neuron cell can be modeled by
the voltage level change inside a RC low pass filter shown in Figure 2.1 [13]. The dynamics of the LIF
model can be formulated as Equation 2.5,

C
dvm
dt

= −g(vm − El) + i(t), (2.5)

where vm is the membrane potential of the neruon cell, C and g is respectively the capacitance and
the conductance of the abstracted RC low pass filter circuit, El is the resting potential of the neuron
cell,and i(t) stands for the time-varying current that flows into the neuron.

This equation can be derived by using simple Ohm’s law as the differential form of a capacitor
equation. Briefly, the current flows through the resistor can be calculated as

ir = g(vm − El). (2.6)

The current flows through the capacitor is

ic = C
dvm
dt

(2.7)

The sum of ir and ic should be equal to the total input current i(t), which leads to Equation 2.5.
The LIF model mainly focuses on describing the time integral of current that flows into the neuron

cell, which builds up the membrane potential of the cell until it reaches over the threshold voltage, which
triggers the neuron cell to fire a spike. It also contains a ”leaky” term that leads to the restoration of the
membrane potential to its resting value, which is caused by the diffusion of ions in a neuron cell [26].
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2.2.2. Encoding Information with Spikes
The information transmitted within SNNs is encoded by short electrical pulses (i.e., spikes). Two main
categories of spike coding schemes could be found from biological studies: one is rate coding and the
other is temporal coding [14]. During the early days of neuroscience, rate coding has been considered
as the main scheme used by biological neuron systems to encode sensory information [24]. However,
later studies have shown that rate coding would fail to explain certain observations such as the fast
response time of a human visual system [63]. The timing of the occurrence of a spike (i.e., temporal
coding) was then proposed as the coding scheme for the information processed in the neural system,
and this idea has been supported by a wide range of studies over different sensory systems [2]. In some
studies population coding has been considered as a third category spike coding scheme. However,
population coding is essentially to consider a group of neurons, each of which still uses either rate
coding or temporal coding [3].

Rate Coding
Rate coding translates the information to be encoded into the spike firing rates of the spiking neurons.
Three types of rate coding could be commonly found in the literature, including count, density, and
population rate coding [3].

Count rate is defined by
v =

Nspikes

T
, (2.8)

where Nspikes stands for the spike count and T stands for the time window size. This coding scheme
is actually calculating the mean firing rate (i.e., the average number of fired spikes in terms of a period
of time), and therefore is sometimes also referred to as frequency coding.

Density rate is defined by
p(t) =

1

∆t

Nspikes(t; t+∆t)

K
, (2.9)

where Nspikes is the number of spikes emitted though time period (t; t +∆t), K is the total number of
runs, and ∆t is time step length for each run. Equation 2.9 is used to calculate the average number of
spikes fired over K number of runs.

Population rate is defined by

A(t) =
1

∆t

Nspikes(t; t+∆t)

N
, (2.10)

where N is the number of neurons in a neuron group and Nspikes stands for total number of spikes
emitted during time period (t; t +∆t). This coding approach computes the average number of spikes
fired by a group of N neurons over a time period of length ∆t.

Although current studies in neuroscience have suggested that rate coding may not correctly repre-
sent the predominant information encoding scheme adopted by a biological brain, rate coding is still
widely applied in SNNs for certain benefits. Rate coding usually provides better tolerance to errors
relative to temporal coding, since the information is represented by not single but multiple spikes. More
number of spikes can also mean that there are stronger stimuli for the network during learning [18].
Researchers have already successfully implemented SNNs using rate coding in tasks including object
classification and robotic control [15, 66].

Temporal Coding
Temporal coding translates the information to be encoded into the timing of spikes. Various temporal
coding schemes have been proposed over the years, some of them modeling observations from the
field of neuroscience.

Time to first spike (TTFS) coding use the time difference between the start of the stimulus and
the first coding spike to represent information [36]. The timing of the first spike is usually determined
by the inverse of the amplitude of the input, a (e.g., t = 1

a ) or some linear relation to a (e.g., t = 1− a).
In this way, a small value of a leads to a late fired spike or no fired spike at all, while a large value of a
results in an early fired spike. It is shown by Wenzhe et al. that TTFS could be beneficial in achieving
high computational performance with a relatively low hardware implementation overhead [30].

Phase coding translate the information to be encoded into the relative time difference between
spikes with an oscillation as a reference [61]. The coded signals are sent out in cycles. Several
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neurons are used in this coding approach and each of them fires spikes with a periodic pattern if the
input is zero (relative to some reference value). The spike timing difference between the oscillating
reference and each neuron encodes the input in a way that is similar to TTFS.

Rank-order coding (ROC) encodes the information with the firing order of a group of neurons
(with a global timing reference). Unlike TTFS, the precise timing of the spikes is omitted in this coding
scheme [64]. For example, a group of spiking neurons (noted respectively as A, B, C, D, and E) can
encode an input stimulus as A > C > E > B > D (”A > C” means neuron A fired earlier than neuron
C) and there are 5! different possible firing orders, each of which can be used to encode a particular
input state.

Inter-spike interval (ISI) coding or latency coding encodes the data into the latency between two
consecutive spikes [51]. One special case of ISI is Burst coding, which uses a group of spikes with a
very small ISI (i.e., a burst) and translate the input information into various interspike latency.

Temporal Contrast (TC) coding generates a spike train when change in the input signal is ob-
served. Three commonly applied TC coding algorithms are threshold-based representation (TBR),
step-forward (SF), and moving-window (MW). TBR detects the absolute input signal changes and
emits either positive or negative (depends on whether the change corresponds to increasing or decreas-
ing) spike signals if the change exceeds a threshold value. SF compares the signal difference between
the current input and a moving baseline, and emits a positive or negative spike when the difference
exceeds a threshold value. MW takes the mean value of the signal in a predefined time window and
emits spikes based on the change of this mean value [53].

Temporal coding, supported by our current observations of the biological neural system, comes with
certain advantages. Due to the sparsity of the emitted spikes in temporal coding, the power consump-
tion of using temporal coding can be significantly lower than that of using rate coding. Temporal coding
is also able to provide a fast respond time if the information is encoded by the time of a single spike [25].
Several interesting applications of SNN using temporal coding include clustering of high-dimensional
data [72], and an artificial microelectronic nose [7].

2.2.3. Training Methods
Due to the richness of its temporal dynamics, a SNN can be trained in several different approaches
[19]. Some training methods are adapted from previous studies on ML[62] and some are inspired by
the biological process of how a synapse is intensified or weakened [47]. So far there is no learning
approach that can dominate the other approaches in all application scenarios. In a particular scenario,
one learning approach could be more effective than other approaches.

Convert Pre-trained ANN
One way of training SNN is first to train an ANN with the desired functionality and then to convert
the ANN into a SNN. This is also known as shadow training [19]. The conversion process is done by
replacing the ANN neurons with spiking neurons. The rule for replacing the neurons could be matching
the activation functions of the ANN nodes either to the firing rates of the spiking neurons [17] or to the
timing of the spikes emitted by the spiking neurons [56].

An obvious advantage of applying the conversion method is that previous knowledge of how to
train ANNs could be directly applied for the training of SNNs. Therefore, problems associated with the
training of SNNs with multiple layers (i.e., deep SNNs) could be solved with methods learned from the
studies of deep ANNs. Another advantage of the conversion method is that one can avoid the dead
neuron problem in directly training SNNs. The dead-neuron problem is that certain neurons may not fire
spikes at all during training, and their states do not affect the total loss value. As a result, the weights
of the dead neurons could not be updated by training.

The conversion method has several drawbacks. The training of a complex ANN itself is time-
consuming, and the conversion process from an ANN to an SNN also requires a rather long simulation
time. The performance of the converted SNN is usually worse than that of the source ANN since the
conversion process can lead not to an exact replication but only to an approximation of the original
ANN [43].

Backward Propagation
Back propagation (BP) is the most widely used learning algorithm for ANN [42]. The goal of BP is to
quantify how the change in the weight parameters affect the value of the loss functions. More formally,
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BP generates the partial derivatives of the loss with respect to the weights (i.e., the gradient). The BP
algorithm consists of two stages. The first is feedforward, in which an input is fed into the network and
the output loss is calculated. The second stage is to backpropagate the calculated derivatives of the
loss from output to input to calculate the gradient by using the chain rule of derivatives.

For applying BP to a SNN, one major challenge is that spikes are discontinuous and therefore could
not be differentiated. The SpikeProp method uses the fact that time is continuous and calculates the
derivative of the timing of the spike with respect to weight [9]. However, the use of SpikeProp requires
that at least one spike be emitted by each neuron, or the derivative cannot be computed. A dead
neuron will freeze the learning process. This drawback is often overcome by applying a force firing
regularization mechanism.

The Back Propagation Through Time or BPTT method unrolls the total computation graph of the
neural network and applies the back propagation framework to it. There are multiple branches for
backpropagation in the unrolled computing graph, which can be chosen on the basis of whether a
neuron has fired or not. BPTT will only propagate the gradient backward through the computational
path connected by neurons that have fired [70].

Synaptic Plasticity
The above algorithms for learning SNNs have been transferred mainly from ANN studies. They do not
correspond to the actual way how the learning process takes place in a biological brain. Neuroscience
studies have long revealed synaptic plasticity, namely, the changes of the connection strengths at
synapses, as a fundamental mechanism underlying biological learning. Naturally, learning algorithms
based on synaptic plasticity for SNN have been extensively examined.

The Hebbian plasticity is a type of synaptic plasticity that generally follows the rule first postulated
by Hebb as ”Cells that fire together wire together.” [31]. In other words, it relies on the correlated
firing activity of the pre- and post-synaptic neurons to decide whether to change the strength of the
connectivity of a synapse. The core idea behind these learning rules is to build up synaptic connections
to represent causal relationships.

Spike-timing dependent synaptic plasticity (STDP) is a form of Hebbian learning with precisely de-
fined relationships between spike timing and changes in connection strengths [59]. Biologically, STDP
is supported by the experimental finding that the co-activation of the pre- and the post-synaptic neu-
rons can lead to two types of plasticity or synaptic changes: long-term potentiation (LTP) and long-term
depression (LTD). LTP refers to the strengthening of the synaptic connection when the pre-synaptic
neuron fired within a short period before the firing of the post-synaptic neuron, while LTD refers to
the weakening of the connection when the firing events took place in a reversed order. Equation 2.11
presents a simple mathematical model for STDP with LTP and LTD,

∆w =

{
A+exp(− s

τ+
), s > 0

A−exp(
s
τ−

), s <= 0,
(2.11)

where∆w is the change of the connection strength or synaptic weight, s is the timing difference between
the post- and pre-synaptic spikes, A+ and A− are respectively the coefficients for potentiation (weight
increase) and depression (weight decrease). The time windows for LTP and LTD are given by τ+ and
τ−, respectively.

The STDP learning mechanism provides a possible basis for training SNNs to make control de-
cisions in a control loop. This can be achieved by introducing an additional modulating factor for the
synaptic plasticity process of SNN [22, 21]. Themodulating factor can be determined from the reactions
of the environment to the control decisions made according to the output of the SNN, so that the finally
trained SNN can produce control decisions that lead to the optimal outcomes. Neuroscience studies
have shown that in biological brains, the chemical substance dopamine is one of the most important
neuromodulators in such feedback or reward-based learning processes. Namely, the dopamine level
represents the amount of rewards that guide the learning process by modulating STDP [4].This bio-
logical phenomena can be simulated with the extension of the STDP model in formula 2.11 into the
following modulated STDP formula,

∆w = M ∗ weligibility, (2.12)

in which M represents the effects of the neuromodulators, while weligibility selects synapses for the
reward-modulated plasticity according to the conventional STDP rules[22].
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Several previous studies have investigated the application of the above idea of modulated STDP-
learning rules for various ML problems including the making of control decisions [21, 23]. Florian et
al. introduced the reward-modulated STDP or R-STDP algorithm [21], in which the modulating factor
came from the deviations of the SNN’s actual and expected outputs. In that study, the effectiveness of
the algorithm was illustrated with the examples of using SNN to solve the XOR problem and to output
pre-defined spike trains. We note that these examples were essentially regression problems, in which
the so-called ”rewards” were actually derived from the errors of the regression but not from a reaction of
an environment upon which a control decision (determined from the outcome of the SNN) had impacted.
In other words, the rewards for these problems were instantaneous but not delayed, as in typical control
problems.

Frémaux et al. have proposed to use the temporal difference (TD) concept in reinforcement learning
(RL) as the modulating factor for STDP [23]. This TD-STDP learning rule is applied to train actor-critic-
type reinforcement learning (RL) controllers [39, 5]. In such a controller, an SNN-subnetwork serving as
the critic provides estimations of the ”values” of the environmental states. During training, the temporal
change of the values estimated by the critic was used to derive the modulating factor for STDP. The
analyses in ref [23] illustrated the potential of using SNNs to implement general RL strategies for control
tasks.

Despite these previous studies, STDP-based SNN learning for control tasks is still an underexplored
research problem. As mentioned above, in the original study that examined R-STDP [21], the examples
did not comprise typical control tasks with delayed rewards. Moreover, there lack studies that compare
the relative advantages and drawbacks of different schemes such as R-STDP and TD-STDP for the
same specific control task. In this paper, we explore the use of SNN with reward factor-modulated
STDP learning for control tasks by considering the Cart-Pole balancing problem [27] as a representa-
tive example. We have designed and implemented a novel SNN controller trained by the TD-STDP
rules similar to those proposed in ref [23]. Being based on the RL Q-learning strategy [69], the SNN
presented here has a much simpler overall network architecture than the critic-actor architecture of ref
[23]. While the TD-STDP learning rule is very general and does not require any specific assumption
about the dynamics of the environment (i.e., the target to be controlled), it turns out to lead to rather
slow convergence, producing somewhat imperfect controllers even after prolonged training. We have
also examined R-STDP learning. We show that by integrating the understanding of the specific dynam-
ics of the environment into the designing of the reward function, a more robust SNN-based controller
can be learned much more efficiently by R-STDP than by TD-STDP.

2.2.4. SNN Simulators
Software simulators for SNN have been implemented to help the development of new algorithms or
system architectures based on neuromorphic computing. These include NEST, Brian2, Brian2GeNN,
BindsNET and Nengo, which are all openly accessible [41]. In general, these simulators use mainly two
types of simulation strategies: one is synchronous (”clock-driven”) and the other one is asynchronous(”event-
driven”) [10].

A clock-driven simulator will update the state of each neurons in the network at the same time for
each time step (also known as a ”clock tick”) of the simulation (i.e., S(t) → S(t + dt)). It is shown
by Hirsch and Smale that if the simulated differential equation is linear, the state update process is
also linear, which gives us the idea that the task of updating a state is equivalent to multiplying a
matrix to the previous state vector (i.e., S(t) = AS(t + dt) for some matrix A). Thus clock-driven
simulators could be relatively easily built upon existing matrix-based scientific computation tools [32].
When the simulated differential equations are nonlinear, numerical integration methods such as the
Euler’s method or the Runge–Kutta method can be applied. The accuracy of the simulated results
highly relies on the granularity of the time step (i.e., how long the ”clock tick” would be) since the spike
timing is strictly aligned to a fixed gird of ”clock ticks”. Therefore, the result of a clock-driven simulator
is a discrete-time approximation to the actual temperal dynamics even the differential equations can be
integrated with very high accuracy [10].

An event-driven simulator will only update the state of a neuron at the time when it detects an input
spike or fires an output spike. The inter-spike dynamics is integrated analytically. Thus, an event-
driven simulator can provide relatively more accurate simulation results than a clock-driven simulator,
but at the expense of the need for more computational resources and is thus usually only possible for
small-scale network models [16].
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In this work, the highly flexible and easily extensible SNN simulator Brian2 developed by the compu-
tational neuroscience community is used. Brian2 is a clock-driven simulator (also supports event-driven
simulation mode) implemented purely in Python and supports a range of different platforms [60]. It pro-
vides a variety of libraries to generate spike signals, create neuron groups, define connecting synapses,
monitor spike signals, and control the overall simulations. In this study, the input neurons have been
defined by using the Brian2 function SpikeGeneratorGroup(), the output neuron groups have been
defined by using the Brian2 function NeuronGroup(). The synapses have been created by using the
Brian2 function Synapses() and connected using the function Synapse.connect(). For the TD-STDP
SNN, noutput=10. For the SD-STDP SNN, noutput=1. The counting of spikes generated by the output
neuron groups has been monitored with the Brian2 function SpikeMonitor().

2.3. The Cart-Pole Game
The Cart-Pole Game is one of the classical control problems that have been widely applied for the
performance evaluation of control algorithms. This problem could be stated as that given a cart with a
pole attached to it through a fixed joint (i.e., the pole can only rotates in a plane perpendicular to the
horizontal surface) , the cart can move on a flat surface with no friction. At each step of the game, the
control agent should choose one of two actions, pull right or pull left. The action will affect the state
of the Cart Pole. The goal of the controller is that the pole should be kept in approximately upright
positions without falling for as long as possible. The values that the agent can observe are:

• The position of the cart: x,
• The velocity of the cart: v = dx

dt ,
• The pole angle: θ,
• The angular velocity of the pole: ω = dθ

dt .

Here right is defined as the positive direction for these values.
In the work of this thesis, the Cart-Pole model environment implemented in the gym library [11] is

applied. This environment would terminate its simulation if one of these three situations occurs:

• The pole falls down, which occurs when the absolute value of the angle of the pole is larger than
12◦.

• The cart slides out of edge of the animation display (i.e., the cart position is out of the range
between -2.4 to 2.4)

• The simulation steps are larger than 200 (or other customized) value.

By definition, the first two termination conditions correspond to the reach of some failure states of the
environment, while the third termination condition indicates successful completion of the task.



3
Methodology

In this chapter, we present the computational models and methods used in our work in details. We
describe the overall workflows of the TD-STDP and R-STDP learning processes, the structure of the
SNN including input and output spike encoding, formulations of the learning rules, and so on.

3.1. The TD-STDP SNN
3.1.1. The Overall Workflow of the Program
The overall framework of our program using TD-STDP learning to solve the Cart-Pole control problem
is presented in Figure 3.1. The entire program can be divided into two main parts, one is the Cart-Pole
environment, the other is the SNN-based controller. Each training episode comprises consecutive a
simulation of the Cart-Pole steps from start till one of the finishing conditions is met. At each Cart-
Pole step, the environment simulator and the SNN simulator run in sequential order. After a Cart-Pole
simulation step, the SNN simulator takes the current state of the Cart Pole as its input (see below),
runs for a fixed period of time, and produces its output, based on which an action to be applied to the
Cart-Pole environment will be chosen. After taking the action, the Cart-Pole environment evolves to the
next step. The whole process is iterated until the termination of the environment simulation. Then the
Cart-Pole environment is reset and started again from a new initial state to perform the next episode
of the training.

Figure 3.1: A general work flow of the training process using TD-STDP

3.1.2. The Architecture of the SNN
The overall structure of the SNN is illustrated in Figure 3.2. There are only two layers of neurons. The
first is the input layer, which is made up of a number of input neurons. The second is the output layer,

11
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which is made up of two groups of neurons, each group corresponding to one possible choice of the
action. Every input neuron is connected to every output neuron through a synapse.

Figure 3.2: The overall structure of the SNN using TD-STDP

3.1.3. The Input Neurons
The spikes generated by the input neurons code the observed state of the Cart Pole. First, an observed
variable of the Cart Pole is mapped to an integer index using the following formulae,

idobs =


0, obs ≤ obsmin

floor(x−xmin

∆x ), obsmin < obs < obsmax

Nstates,obs,−1 obs ≥ obsmax

(3.1)

Nstates,obs = ceil(
xmax − xmin

∆x
), (3.2)

where the variable obs corresponds to one of the observed variables x, v, θ or ω. [obsmin, obsmax]
defines the region for evenly divided bins,∆x is the width of the bins, andNstates,obs is the total number
of bins or discrete states for the variable obs.

Any possible state of the Cart Pole is described by a unique combination of the four integers
(idx, idv, idθ, idω). The total number of possible states is Nstates,total = Nstates,x ∗Nstates,v ∗Nstates,θ ∗
Nstates,ω.

The total number of input neurons of the SNN is defined to be Nstates,total ∗ ninput, so that each
possible state is represented by a group of ninput neurons. When a given state of the Cart Pole is
passed to the SNN, only the ninput neurons representing that particular state will fire spikes. Meanwhile,
all other input neurons will remain inactive. This encoding technique is inspired bymethods for encoding
categorical variables for ML problems and is generally known as one-hot encoding [57].

3.1.4. The Output Neurons
The dynamics of each of the output neurons is described by an LIF model with adaption in Equation
3.3[58].

τm
dV

dt
= ge(Ee − V ) + El − V, (3.3)

in which V is the membrane potential, El is the resting potential, Ee is a high-value voltage, τm is a
time constant for the membrane potential, and ge is a dimensionless quantity representing the effects
of the upstream spikes received through the input synapses. Without receiving spikes from the input
synapses, the dynamics of ge is described by

τg
dge
dt

= −ge, (3.4)

in which τe is a time constant for the lasting effect of the input spikes. When there is an input spike from
a synapse i connecting to the neuron, ge is instantaneously changed according to

ge = ge + wi, (3.5)

in which wi is the weight of the synapse i. The effects of spikes received by different synapses are
simply summed.
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3.1.5. Q-Learning by SNN
The output of the SNN is interpreted as the (scaled) Q-values of corresponding actions given the par-
ticular input state, namely,

Q(s, a) = scale ∗ nspikes(s, a), (3.6)

in which nspikes(s, a) refers to the number of spikes fired by the neurons in the output group associ-
ated with action a when only the input neurons encoding state s have been firing in a period of SNN
simulation.

Note that this definition of the SNN’s output as the (scaled) Q-value that depends on both the state
and the action is somewhat different from the SNN value network of ref [23]. There, the SNN’s output
from a single group of neurons provided the values of only the states without further discrimination of
different actions.

Hereby using separated groups of output neurons for different actions, we do not need an extra
actor module as in ref [23] to evaluate the actions. Instead, the action is determined by the same
groups of neurons that estimate the Q values.

To determine the TD error of the current SNN for the Cart-Pole step n, we run the SNN with the input
state sn for a period of time, obtain the Q(sn, a) values, choose and carry out action an, and obtain the
next state of the Cart Pole sn+1. We then run the SNN with the input state sn+1 to obtain Q(sn+1, a).
Following Equation 2.3, the TD error for step n is computed as

TDn = TD(sn, an) = γmaxaQ(sn+1, a) +Rn+1 −Q(sn, an). (3.7)

Here, we have included a ”discount factor” γ so that the rewards of only a finite number of future steps
have effective contributions to the current Q value.

The formula above with Rn+1 = 1 is applied only when the state at step n+ 1 does not correspond
to a failure state of the Cart Pole. When sn+1 corresponds to a failure state (and the simulation of the
environment will terminate), bothQ(sn+1, a) and Rn+1 should be zero (because there will be no current
or future reward). Then the TD error for step n is computed as

TDn = −Q(sn, an). (3.8)

As shown in Figure 3.1, the TD error is used to update the weights of the synapses connecting the
input state neurons to the output neurons.

3.1.6. Determining Eligibility of the Synapses
Given the current state of the Cart Pole, the SNN is simulated for a fixed number of SNN time steps
(note that these are not the Cart Pole steps). The SNN simulation produces two outcomes. The
first is the estimated Q-values described above. The second outcome includes the eligibility traces
of the synapses for updating the synapses’ weights. To determine the eligibility for each synapse (for
simplicity, we will omit the index of the synapse from the following formulations) based on the relative
timing of pre- and post-synaptic spikes, we first define the following pre-synaptic activity and post-
synaptic activity traces,

Apre(t) =
∑

k∈input spikes

ξ(t− tk)e
− t−tk

τpre , (3.9)

Apost(t) =
∑

k∈output spikes

ξ(t− tk)e
− t−tk

τpost , (3.10)

in which tk represents the time of spike k, and the Heaviside step function ξ(t− tk) is applied to select
spikes that were received (for Apre) or fired (for Apost) before the time t, i.e.,

ξ(t− tk) =

{
1, t− tk ≥ 0

0, otherwise.
(3.11)

Clearly, Apre is non-negligible only not long (compared with the time constant tpre) after a pre-synaptic
spike has been received. Similarly,Apost is non-negligible only not long after the firing of a post-synaptic
spike. Then the eligibility of the synapse according to the STDP rule can be determined as

wtrace = ∆pre

∫
O(t)Apre(t)dt−∆post

∫
I(t)Apost(t)dt, (3.12)
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where ∆pre and ∆post are parameters affecting the learning rates. In the above equation, the function
I(t) represents the time series of input spikes at that synapse, while the function O(t) represents the
time series of the output spikes, i.e,

I(t) =
∑

k∈input spikes

δ(t− tk), (3.13)

O(t) =
∑

k∈output spikes

δ(t− tk). (3.14)

In Equation 3.12, the first term corresponds to long-term potentiation (LTP) of the synapses, because it
makes a positive contribution towtrace only when an output spike is generated shortly after the receiving
of a pre-synaptic spike (thus Apre is non-negligible); the second term corresponds to long-term depres-
sion (LTD), as it makes a negative contribution to wtrace if an input spike is received at the synapses
shortly after the post-synaptic neuron has fired (thus Apost is non-negligible).

3.1.7. Learning the Synaptic Weights by TD-STDP
After the determination of TDn, the weights of the synapses connecting to the output groups corre-
sponding to action an are updated using

wnew = wold + β ∗ TDn ∗ wtrace,n, (3.15)

where β is a constant that adjusts the rate of the weight change, and wtrace,n is the eligibility trace
calculated using Equation 3.12 at the nth Cart-Pole step.

3.1.8. Exploration and Exploitation in Training
In order for the agent to accumulate experiences in various Cart-Pole states, the exploration of various
possible states should be encouraged during the initial training phase of the SNN. This is achieved by
adding a stochastic mechanism to choose the action. Specifically, for the first 100 episodes, the agent
always chooses an action randomly at every Cart-Pole step. After that, the agent randomly chooses
an action with a probability of Pexplore, the value of which starts from 1.0 and is downscaled at the
beginning of each new episode by a factor of α = 0.99. With a probability of 1 − Pexplore, the agent
chooses the action according to

P (an = a) ∝ e(Qa/δQ0
). (3.16)

With the above definition, the action of the agent would be deterministic only when the difference be-
tween the Q-values of the two actions provided by the SNN is significant (relative to δQ0

, which is
chosen to be 0.1).

3.2. The R-STDP SNN
3.2.1. The Differences between the R-STDP and the TD-STDP Programs
The overall framework of the R-STDP program shown in Figure 3.3 is similar to the overall framework
of the TD-STDP program. The main differences between the two programs come from the different
interpretation of the output of the SNN (i.e., the number of spikes fired by each of the two groups of
neurons in the output layer). In the TD-STDP SNN, the output represents the scaled Q-values for
different actions of the corresponding input state. Thus, the relative output changes upon changes in
the input state have meaning. In the R-STDP SNN, the output is (by definition) interpreted or used as
simple numerical metrics for choosing the action (here the action associated with the output group that
fires the more number of spikes is preferred). Thus, upon changes in the input state, the corresponding
changes in the output of the R-STDP-trained SNN are not concerned. This leads to a different weight-
updating scheme in the R-STDP program.
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Figure 3.3: A general work flow of the training process using R-STDP

3.2.2. Updating Synapse Weights with Delayed Reward
After the action (chosen based on the output of the SNN) has been taken, a new state of the Cart
Pole is returned. A reward value R is calculated from both the previous state and the new state of the
Cart Pole (see below). The weights of the SNN synapses are updated using the reward as well as the
eligibility factors computed from the previous run of the SNN. When the action taken leads to a positive
reward, the synapse connections that would increase the probability of the SNN to output the taken
action should be strengthened, while the synapse connections that would increase the probability of
the SNN to produce the opposite action should be weakened. The opposite should apply when the
action taken leads to a negative reward. This reasoning leads to the following updating rules. Namely,
for every synapse connecting to the output neuron associated with the taken action, the weights are
increased according to

wnew = wold +R(sn, sn+1) ∗ wtrace,n, (3.17)

while for every synapse connecting to the output neuron associated with the opposite of the taken
action,

wnew = wold −R(sn, sn+1) ∗ wtrace,n. (3.18)

3.2.3. Reward Function Designs
Intuitively, the reward function should reflect the objective of the control task, which is to keep the pole
in the upward direction. As this goal should be realized by the actions that are chosen according to and
carried out upon the given states of the Cart Pole, an action should be rewarded positively if it causes
the state of the Cart Pole to change towards a new state that favors the achieving of the control goal.
Based on this intuition, we designed and tested three different reward functions for the SNN controller.
From reward function 1 to reward function 3, more and more sensory information is encoded into the
reward function, and therefore, the actual tendency of the agent to keep the pole in the upright position
is more accurately pictured. In the following formulations, the subscript old corresponds to the Cart-
Pole step n in equations 3.17 and 3.18 while the subscript new denotes the Cart-Pole step n+1 in the
same equations.

Reward Function 1 This reward function is defined to return 1 when the pole angle is in the range
where the pole does not fall and the cart is still within the range of the animation display, and to return
0 otherwise. That is,

R1 =

{
1, The simulation is not terminated

0, otherwise.
(3.19)

Reward Function 2 This reward function is defined as

R2(ωold, ωnew) =


1, ωold ∗ ωnew < 0 or

|ωold| > |ωnew|
−1, otherwise.

(3.20)

This reward is determined by comparing the current angular velocity ωnew with the angular velocity
observed at the previous Cart-Pole step ωold. If a sign change of the angular velocity has been detected,
this means that the action has reversed the previous moving trend of the pole, and thus a reward of 1
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is assigned to this kind of action. If there is no sign change of the angular velocity, the shrinking of the
absolute value of the angular velocity itself also indicates that the pole is slowing down its rotation. The
action is thus also encouraged with a reward of 1. In other situations, the reward value of -1 is used to
punish the action taken for not contributing to reverse or reduce the rotation of the pole.

Reward Function 3 This reward function is defined as

R3(ωold, ωnew, θold, θnew) =
R2(ωold, ωnew), θnew ∗ ωold > 0

1, θnew ∗ ωold ≤ 0 and θnew ∗ ωnew < 0

−1, otherwise.

(3.21)

Compared with the reward function 2, reward function 3 considers not only the angular velocity but also
the angular position of the pole. In reward function 3, reward function 2 is only used when ωold and
θnew are of the same sign. This is based on the following reasoning. If ωold and θnew are not of the
same but of opposite signs, θold must be of the same sign as θnew, because

θold = θnew − ωold ∗∆t. (3.22)

Then θold and ωold must be of opposite signs. This means that ωold causes a reduction in the tilt angle
of the pole. Therefore, the reward function 2, which rewards the reversal or reduction of ωold, is no
longer suitable. In this case, further consideration of a comparison of the sign of θnew with that of ωnew

remains. If the signs are opposite, the new state has retained the desired direction of ωnew to correct
the tilt angle θnew. The action taken is then rewarded by a positive value. Otherwise, the action is
punished with a negative value of -1.

(a) (b)

Figure 3.4: Different reward function designs. (a) Reward function design 2 that employs the angular velocity of the pole. (b)
Reward function design 3 that employs the angular velocity of the pole as well as the angle of the pole.

3.2.4. Exploitation and Exploration
With the above R-STDP learning rules and the encoding scheme of the Cart-Pole states, the SNN will
only be able to learn to choose a good action for states that the agent has already visited. It would
not provide a good policy for those states it has not seen yet.To encourage the exploration of various
possible states during the initial training phase, we define a probability Pexplore for the agent to randomly
take one of the two possible actions (exploration) instead of taking the action determined from the
SNN’s outputs (exploitation). The value of Pexplore is set to be 1 at the beginning of the learning and is
downscaled by a value of γexplore = 0.9 at the start of each new episode, so that as the training process
progresses, fewer random actions will be taken and the learning process can eventually converge.



4
Results

In this chapter, we present results of using TD-STDP and R-STDP to solve the Cart-Pole problem. For
TD-STDP, we describe a working setup and effects of varying several design choices. For R-STDP, we
present the results of using three different designs of the reward function.

4.1. TD-STDP Learning
4.1.1. Results of a Working Setup
The TD-STDP learning process described in the previous chapter involves a range of parameters and
design choices, which include the various time constant and voltage parameters of the spiking neurons,
the learning rate, and the strategy for exploration/exploitation. For parameters of the SNN, we have
mostly used the default values from the Brian2 (see corresponding entries in Table 4.1)

Parameter Value
τm 10 ms
τg 5 ms
Ee 0 mV
El -74 mV

Vthreshold -54 mV
Vreset -60 mV
γ 0.98

τpre, τpost 20 ms
∆pre 0.0001
∆post 0.00001*∆pre

Nstates,total 120
ninput 1
noutput 10

Table 4.1: Parameters used for the SNN network. Vthreshold and Vreset are respectively the threshold potential for generating
a spike and the reset potential after spike generation for an output neuron. Other symbols are defined in Chapter 3.

After some initial trials and errors, we found that the exploration/exploitation scheme given in Section
3.1.8 and a value of 0.01 for the learning rate β in Equation 3.15 leads to reasonable performance.

During one training session, the duration starting from the initialization/resetting of the Gym Cart-
Pole environment to the termination of the environment is considered as one episode. As the goal
of the Cart-Pole problem is to keep the pole in the upright position as long as possible, we define an
episode to be successful if the number of time steps for which the pole has not fallen down is larger
than a threshold of nthreshold = 200. At a particular training stage, the performance can be evaluated
by considering the success rate over 20 consecutive episodes centered around that stage.

Figure 4.1a shows the success rates as functions of the number of training episodes in three inde-
pendent runs using the above setup.

17



4.1. TD-STDP Learning 18

(a) (b)

Figure 4.1: The training results of the SNN using TD-STDP, where the three differently colored lines indicate the three
independent trials. (a) The success rate of the SNN controller changes over the training episodes using TD-STDP learning. (b)
The root mean square change of the SNN-produced Q-values between two consecutive training episodes during TD-STDP

training. In this and in the subsequent figures, different colors indicate different and independent training runs.

As the training process evolves, the success rate of the SNN controller generally increases, but
with several drops. These drops could be the results of the agent encountering states that it does not
yet have enough experiences to form a good policy. This change of success rate indicates that the
training process is indeed converging, although in a somewhat noisy manner. This phenomenon can
also be seen from Figure 4.1b which plots the root mean square change of the Q-values between two
consecutive training episodes against the number of training episodes. The curves exhibit fluctuations
within a certain range even after prolonged training.

4.1.2. Q-values Learnt in Different Runs
In Figure 4.2, the SNN generated Q-values from two different prolonged runs are compared. Those Q-
values were extracted right after the value of 1.0 for the 20-episode-window success rate was reached
for the first time in the respective runs.

Figure 4.2a shows that although the Q-values learnt from the two different runs are not exactly the
same, they are highly correlated. We note that in this figure, the Q-values of 0 are associated with
states that have never been visited in the corresponding run. Obviously, there are a few states that
have been visited only in one run but not in the other run. For such states their probabilities of being
visited are low and to fill the corresponding entries in the Q-value table with high certainty requires quite
extensive training. Visiting such states at the very late stages of training should be the reason for the
sporadic occurrences of unsuccessful episodes even after long training processes.

Figure 4.2b indicates that for a given state, the Q-value changes of one action relative to the other
are also highly correlated between the two runs. More importantly, the signs of the Q-value changes for
most states are conserved across different runs, meaning that independently trained SNN agents will
likely choose the same action at the same state. Thus, the SNNs trained by TD-STDP learning have
generated meaningful Q-value tables in spite of noises.
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(a) (b)

Figure 4.2: Comparison of Q-values generated by SNNs trained in different runs. (a) Each point in this scatter plot
corresponds to a state-action pair of the Cart-Pole agent. Points of different colors correspond to different actions. Values

along the horizontal axis are from one run and those along the vertical axis are from the other run. (b) Each point in this figure
corresponds to a state, and the scatter plot compares the Q-value change of one action relative to the other at that state from

the two different runs.

4.1.3. Effects of Varying the Learning Rate
Clearly, the performance of the SNN will depend on the parameters. To explore the entire parameter
space requires extensive resources and is out of the scope of the current study. Here we have focused
on the effect of changing the learning rate parameter β in Equation 3.15 and the exploration/exploitation
scheme.

Figure 4.3 and Table 4.2 show the effects of varying the value of β in independent training runs
lasting maximally 800 episodes. Since not all learning rate settings could ensure the Cart-Pole agent
to achieve any success episode within 800 episodes of training, instead of using success rate, we
use here the average steps within a 20-episode-width window as the performance metric in Figure 4.3.
Table 4.2 lists the numbers of episodes passed for this metric to first reach different threshold values.
The results indicate that while too small learning rates lead to low efficiency of learning (Figure 4.3a,
too large learning rates (Figure 4.3e cause the learning to be unstable. The value of 0.01 from our
exploratory investigation seems to be a well-balanced choice.
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(a) (b)

(c) (d)

(e)

Figure 4.3: The training results of the SNN using TD-STDP with different learning rate using the average number of sustained
Cart-Pole steps in an episode within a 20-episode-width window as the metric. (a)β = 0.001. (b) β = 0.005. (c) β = 0.01. (d) β

= 0.05. (e) β = 0.1.
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Table 4.2: The training results of the SNN using TD-STDP with different learning rates. Different columns list the numbers of
episodes passed for the number of sustained Cart-Pole steps averaged over 20-episode-width windows to first reach different

threshold values. The three numbers in each entry are from three inpendent runs. The symbol ”*” indicates that the
corresponding threshold were not reached within 800 episodes of training.

4.1.4. Effects of Varying the Exploration/Exploitation Scheme
The results in Figure 4.4 and Table 4.3 show the effect of using different exploration and exploitation
schemes. The schemes considered include the following.

• Scheme 1: The scheme described in section 3.1.8, which is to first use 100 episodes of com-
pletely random exploration (pexplore = 1.0) and then downscale pexplore by the factor of 0.99 per
episode.

• Scheme 2: As Scheme 1 but without the starting 100 episodes of completely random exploration.
• Scheme 3: No exploration is performed, that is, pexplore is set to zero from the beginning of
training.

• Scheme 4: As Scheme 1 but pexplore is immediately changed from 1.0 to 0 after the first 100
episodes.

The schemes with gradually decaying pexplore (Figures 4.4a and 4.4b) lead to more robust training
than the schemes with the abruptly changed pexplore (Figure 4.4d) or without exploration (Figure 4.4c).
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(a) (b)

(c) (d)

Figure 4.4: The training results of the SNN using TD-STDP with different exploration/exploitation schemes using the average
number of sustained Cart-Pole steps within a 20-episode-width window as the metric. (a) Scheme 1. (b) Scheme 2. (c)

Scheme 3. (d) Scheme 4.

Table 4.3: The same as Table 4.2, but for results of different exploration/exploitation schemes.

4.1.5. The TD Error for Failure State-Action Pairs
We also looked at the effects of not using Equation 3.8, which sets the TD error of a failure state-action
pair to the negative of the pair’s previous Q-value in the learning process. In Figure 4.5 and Table 4.4,
the results obtained by using Equation 3.8 are compared with the results obtained by using the value
of 0 for the TD errors of failure state-action pairs. These results indicate that using Equation 3.8 leads
to not only more efficiency but also more learnt Q-values to fill in the resulted Q-table.
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(a) (b)

Figure 4.5: The training results of the SNN using TD-STDP with different TD error values for failure state-action pairs using the
average number of steps in an episode within a 20-episode-width window as the metric. (a) Using the negative of the current Q

values. (b) Using the value of 0.0.

Table 4.4: The same as Table 4.2, but for comparing results of using different TD error values for failure state-action pairs.

4.2. R-STDP Learning
We have tested the three different reward functions described in Sction 3.2.3.

4.2.1. Results of Reward Function 1

(a) (b)

Figure 4.6: The training results of the SNN using R-STDP and Reward Function 1. (a) The success rate of the SNN controller
changes over the training episodes using R-STDP learning. (b) The total reward accumulated in one episode versus the

number of training episodes.
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The use of Reward Function 1 results in a noisy graph that indicates that the number of time steps an
episode lasts is entirely random(Figure 4.6). This implies that the agent is not learning anything and
therefore cannot making meaningful choices of actions to counter the falling of the pole. This simple
reward design seems not to provide enough timing difference that helps the SNN network to learn a
proper weight distribution over the synapses.

(a) (b)

Figure 4.7: The training results of the SNN using R-STDP and Reward Function 2. (a) The success rate of the SNN controller
changes over the training episodes using R-STDP learning. (b) The total reward accumulated in one episode versus the

number of training episodes.

4.2.2. Results of Reward Function 2
As illustrated in Figure 4.7, by using the Reward Function 2 described in Equation 3.20, the number
of time steps that the Cart-Pole simulation is not terminated is generally increasing over the number
of episodes. The number of sustained steps eventually fluctuates between 127 and 200, producing
success rates between 0.5 to 0.7 which cannot be further improved by longer training. This reward
function design only considers the changes of the angular velocity of the pole over two time-steps
since the angular velocity represents the tendency of change in terms of the pole angle. However, as
this reward function does not take the angular values into consideration, it may actually reward the
wrong action choice when the angular value and the angular velocity are of opposite signs.

4.2.3. Results of Reward Function 3
Also using the success rate over 20 episodes as the metric for the performance of the SNN at different
training stages, the results of R-STDP using Reward Function 3 (Equation 3.21) are plotted in Figure
4.8a. Figure 4.8a compared with Figure 4.1a, the use of R-STDP shows a more satisfying result. As
the training progresses, the success rate increases rather smoothly. They gradually reach the value
of 1 with only very small fluctuations in less than 50 episodes. It is interesting to compare this result
of R-STDP using Reward Function 3 with those of TD-STDP, which usually do not show signs of
convergence until more than 300 episodes and remained imperfect and noisy until more than 400
episodes.

The accumulated reward in each training episode is shown in Figure 4.8b. As intended, the R-STDP
learning process led to a gradual increase in total rewards.
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(a) (b)

Figure 4.8: The training results of the SNN using R-STDP and Reward Function 3. (a) The success rate of the SNN controller
changes over the training episodes using R-STDP learning. (b) The total reward accumulated in one episode versus the

number of training episodes.



5
Conclusion

Our study has shown that it is feasible to design SNNs for reward optimization to make proper control
decisions. Given that STDP learning, the ”native” learning algorithms for SNNs, has so far been rela-
tively under-explored in the context of reinforcement learning for control tasks, the solutions proposed
here for the Cart-Pole example can serve as good starting points for developing solutions for more
complicated control problems with SNNs implementing the various RL techniques.

The solutions presented here employ a rather simple yet effective SNN structure. By using discrete
variables to represent the states of the Cart-Pole and applying one-hot encoding with input spiking
neurons, we are able to efficiently achieve the goal of balancing the pole using SNNs of only two layers
(i.e., only an input layer and an output layer without any hidden layers).

Although the scheme of one-hot encoding of the input space has proven its effectiveness in this and
several previous studies on SNN, the resolution to discretize the state spacemay affect the performance
of the control system. Moreover, as the dimension of the state space increases, the required number
of discretized states (and thus the number of input neurons for covering the state space) will increase
exponentially. In principle, this problem can be addressed by separately encoding the different input
dimensions and then using more hidden layers to project the combined input into some sort of latent
representations of the input space. The implementation and testing of such network architectures will
be an interesting problem for future investigations.

Given our simple SNN architecture, we investigated two different modulated STDP training methods
for RL tasks. TD-STDP is built on the theoretical basis of the classical reinforcement learning algorithms.
Although, for the problem examined here, the TD-STDP approach exhibits lower learning efficiency than
R-STDP (R-STDP produces consistently good results after less than 50 episodes, while TD-STDP still
delivers noisy result after 300 training episodes), TD-STDP does not use any assumption about the
dynamics of the Cart-Pole system for learning. Thus, it provides a more general solution for handling
RL problems using SNN. The shared basic concepts between traditional RL and TD-STDP-based SNNs
also imply that future optimization of SNN for RL may benefit from ideas developed in previous studies
on RL.

The interaction between the agent and the environment in which it roams is crucial in RL control
applications. Due to the nature of this type of applications, the reward received by the agent for taking
an action is usually delayed relative to the timing of the action, because the feedback of the environment
obtainable as the sensory data are usually reactions to previously taken actions. The R-STDP learning
rule employed in the training of Cart-Pole controller has successfully used the delayed reward signals
to extract useful information to help the SNN generate a stable policy. This is achieved by storing the
eligibility traces of the synapses and by using a reward function that is jointly determined by the current
and past observations. However, the success of the R-STDP SNN has critically relied on the definition
of a reward function that utilized substantial pre-established knowledge or understanding about the
dynamics of the problem. This restricts the applicability of the model to general control problems, for
which learning has to be based on experiences, not on assumptions about the actual dynamics of the
system to be controller. In this regard, TD-STDP presents a more general framework for the SNN to
solve control problems as no pre-established knowledge about the dynamics of the problem is needed.
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Despite the fact that RL has been a well-studied field, the training and application of SNN in solving
RL problems still remains an active field for ML researchers to explore. An especially intriguing ob-
servation is that the RL and the SNN techniques both share the methodology inspired by the learning
process of a biological neural system. A long-term goal of this project is to assist the development of
control software on neuromorphic computational units. One important follow-up work would be to imple-
ment similar SNNs on physical hardware beyond software simulators. The potential of implementing
SNN on a hardware level to exploit its power efficiency and the biological relevancy of SNNs compared
to the more widely studied ANNs also make SNN a promising approach to further enhance the overall
performance of neural network models.
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