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Abstract

Blockchain technologies offer decentralized, secure, and transparent transaction sys-
tems but face significant scalability challenges, especially in mobile and peer-to-peer
environments. Directed Acyclic Graph (DAG)-based protocols, such as Trustchain,
present a promising alternative by allowing each agent to maintain a personal chain of
relevant transactions, thereby improving throughput and reducing resource consump-
tion. Despite its theoretical potential, Trustchain has not yet been effectively imple-
mented for smartphones. To evaluate performance, we provide an implementation over
two communication protocols, focusing on throughput. We found that our QUIC-based
implementation displays an over three times throughput improvement when keeping a
QUIC connection open, and can confidently store at least 28 536-byte blocks per sec-
ond. However, our UDP-based version outperforms our implementation, confidently
storing at least 500 668-byte blocks per second.

1 Introduction

Blockchain technologies have begun to attract wide-spread interest after Satoshi Nakamoto’s
Bitcoin paper was published in 2008[1]. The idea took hold so quickly - and the core
philosophy driving their widespread adoption - is the promise of secure data storage through
a network of agents with equal rights, as opposed to depending on a central authority.

Despite their increased adoption, there is a significant limitation that widely used tech-
nologies, such as Bitcoin, cannot scale for more general purpose applications as the network
size grows: Bitcoin can process only about seven transactions per second and require confir-
mation times of around ten minutes|2]. This by design bottleneck has sparked interest and
research towards a new class of blockchain systems: DAG (Directed Acyclic Graph)-based
[3], which, unlike the linear blockchain, has the underlying structure of a Directed Acyclic
Graph, promising higher scalability.

In this paper, we will focus our attention on the Trustchain protocol [4] - a DAG-based
blockchain protocol that aims to be Sybil-resistant - a type of attack where an attacker can
generate multiple identities in the network to gain disproportionate influence.

Smartphones now outnumber traditional computers and are an important internet access-
point. A native mobile Trustchain client would unlock the possibility of multiple new tech-
nologies, such as a more scalable system of transactions. However, there is a unique set of
challenges when developing such a system:

1. There are limited computing resources on a mobile phone.
2. Although there are testing frameworks, many are not mobile-oriented.
3. There are use-cases where throughput is critical, such as retail payments.

To the best of our knowledge, no successful native Trustchain smartphone application
exists to date, even more so for analyzing and optimizing its throughput. We aim to bridge
this gap by developing a prototype, as inspired by the published draft [5]. Due to time
constraints, we focus on the core blockchain logic - creating a message, integrating it as
a payload, sending it to be signed by another agent, then storing the block upon receipt,
without the consensus algorithm described in the section. Furthermore, we are measuring
the throughput a 2-peer network the Trustchain application supports, and we investigate
possible ways of further optimizing for this benchmark. In short, we aim to answer the
following research questions:



1. How can we build a smartphone application which implements the core features of the
Trustchain protocol?

2. Given the base implementation of the application, what is its throughput performance
(that is, the number of transactions per second that the app will be able to support)?

The rest of the paper has the following structure: we will present our research method-
ology in Section 2, followed by an overview of our Trustchain implementation in Section 3.
In Section 4, we will delve deeper in the experimental analysis, and into the incremental
findings we have observed regarding throughput in our 2-peer experiments. Section 5 covers
elements of responsible research, and we mark the end by limitations, conclusions and future
work in Section 6.

2 Methodology

2.1 Prototype development

The aim of the first part of the project is developing a viable Trustchain implementation.
In extension, its criteria needs to be:

e Implement a main version with a mature framework used for peer-to-peer communi-
cation.

e Connect to another peer.
e Be able to create a block and sign it.

o Attach a message to a block and send it to another peer. Both the sending agent and
the receiving agent need to add it to their own block.

e Implement alternative networking protocols versions alongside the main one, such as
UDP[6] and TFTP[7].

We will deem our application as ready-to-be-benchmarked for the second step.

2.2 Throughput analysis

Having a core application that integrates the main Trustchain features - that is, wrapping
the payload inside a block, signing it, sending it to another agent that then signs and thus
completes, then sends it back to us - we will now perform an iterative experimental analysis
on how the throughput gets impacted in our application under diverse circumstances. First
of all, it is essential to define throughput in our application. By definition, throughput is
the number of work a system can handle over a specific period. In order to define "handled
work", we can consider multiple definitions. However, the most relevant ones are at a few
keypoints in our workflow which allow as having a block being "processed":

e getting the block signed by both agents.
e getting the block back right after being signed by the receiving agent.

e getting the block stored on the sending agent.



For completeness and ease of implementation, we will consider the last two alternatives as
variants of a block being processed, with a strong preference for the latter - since that is a
stage when a block completely finishes its completeness and is stored on the chain. Moreover,
we will decide to keep some factors as controlled as possible, while others we need to keep
controllable when running a benchmarking experiment. The controlled factors include:

e Running the experiments on the same private Wi-Fi, with no other devices connected
to the network.

e Running on the same model of smartphones, with the same Android version.
On the other hand, the ones we can control for ourselves are:
e The duration of the simulation (in ms).

e the approximate number of messages we will be sending per second (by which we
divide 1000ms to obtain the interval we are waiting between messages).

e the payload size (in bytes).

Ideally, as in other benchmarking works [8], we will increase the workload - that is, the
number of messages we are sending per second - exponentially, in order to reach the point
where it faster bottlenecks. We will thus fix the same duration - long enough to minimize
initial connection establishments -, exponentially increase the workload (the number of mes-
sages we are sending per second), and choose arbitrary payload sizes in order to measure the
throughput as the workload increases. We will put both the iroh and udp versions under
the same loads which will exponentially rise, under arbitrary payload sizes.

3 Overview of Trustchain Communication Implementa-
tions

3.1 Design & Implementation

The elements described in this section have been collaboratively developed withing our
research group. Finally, each of us delved into analyzing different aspects: energy efficiency,
latency, robustness, storage and throughput.

The goal of the first part of this research is building a peer-to-peer application that is
using the Trustchain framework - in particular, that is able to send messages to a peer and
respect the core feature of the Trustchain protocol: creating a block proposal with the given
payload, sign it, send it to another peer, then receive it signed back and adding it to our
own chain.

Technology evaluation We have first started with our peer-to-peer networking layer de-
cision. In order to build our application, we have investigated 3 options of already-
existing libraries for peer finding and optimal message sending for smartphone agents:

e [ipv8 - python library that performs peer identity and NAT puncturing.
e Kotlin-ipv8 - a Kotlin-native version of ipv8 with limited functionality.

e iiroh / rust-iroh - a mature Rust framework that uses QUIC[9] and a relay network
to find and send messages between peers.


https://py-ipv8.readthedocs.io/en/latest/
https://github.com/Tribler/kotlin-ipv8
https://github.com/n0-computer/iroh
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Figure 1: Blockchain implementation workflow

Taking into account the fact that we want a general-purpose application and the ma-
turity of the technologies, we have finally decided upon using a Core Rust layer for
implementing the Trustchain logic - block creation, signing, sending, as well as net-
working with iroh, and a thin layer of Kotlin for user interaction and for testing the
application on Android devices, the bridge between the two being the Java Native
Interface (JNI). We have further thought about interoperability between Rust and
Swift, thus strengthening our decision of decoupling the core Trustchain and network-
ing logic from the device’s operating system and future adoption on iOS devices.

Moreover, we will compare our results with a significantly lighter variant for networking
- that is, raw UDP, and provide insight towards the possibility of adopting a solution
for raw UDP instead of a heavy framework such as iroh - with the caveat that UDP
does not provide the reliability that QUIC does, and only works on a local network
peer.

Trustchain Architecture Implementation Having taken strong inspiration from the
IETF Trustchain draft [5], we have come up with the workflow for creating a valid
block, attaching a payload and sending it to another client presented in Figure 1, using
the block structure in Figure 2. It includes a stage of block proposal creation (where
the agent signs the payload with its private key) then a completion and storage phase
by the receiving agent (where it signs it as well and stores it, then sends it back to the
original sender), followed by the original sending agent storing the completed block.
We will further port this blockchain implementation to our network-specific versions.

Considering its core features that are shared with the draft description, such as having
each agent signing the message and publishing its public key, as well as the core
philosophy of keeping an independent chain where each of the agents are, we have
assumed this version to be a viable implementation for the purpose of measuring its
throughput.

3.2 QUIC-based Implementation (iroh)

This implementation leverages the underlying implementation of QUIC in rust, through
the quinn library. It provides out-of-the-box peer-to-peer message transmission API’s; in-
cluding asymmetric encryption (which is used for generating the private-public key pair for
each agent), as well as peer-discovery techniques. QUIC is a modern transport protocol
designed for multiplexed, low-latency, and reliable communication, making it well-suited for



payload String, The message or data payload being transmitted in this block

sender_pubkey String, Base64-encoded public key of the block sender

sender_sig String, Base64-encoded signature of the payload by the sender (set immediately when block is created)
receiver_pubkey String, Base64-encoded public key of the block receiver

receiver_sig String, Base64-encoded signature of the payload by the receiver (empty for proposals)

prev_hash_sender Siring, SHA-256 hash of the previous block in the sender’s chain (empty for genesis blocks)
prev_hash_receiver String, SHA-256 hash of the previous block in the receiver's chain (empty for genesis blocks)
index uB4, Sequential index of this block in the chain (starting from 1)

Figure 2: Transaction Block Structure

peer-to-peer networking in resource-constrained environments. In this implementation, each
smartphone agent operates a QUIC endpoint, handling incoming and outgoing connections
through bi-directional streams. The Rust code exposes JNI interfaces for Android integra-
tion, enabling the mobile app to start listeners, send messages, and retrieve benchmarking
results. We have implemented two important functions using rust-iroh. The first one is
highlighting the receiving logic for rust:

start native 0S level thread for listening to incoming messages
create new tokio runtime
inside this tokio runtime, create a QUIC endpoint through ‘quinn‘’s
Endpoint interface
loop {
wait for incoming connection
if received, spawn a new green (user-level) thread. inside this thread:
{
await for incoming connection to convert into a valid ‘Connection®
object
when this happens, open a send_stream and a recv_stream through
the ¢.accept_bi()‘ method
read from receiving stream the message and
process_it. This is the point where the blockchain implementation
takes over.
wait for stream to finish
close connection.

Another critical function is, on the other hand, the one for sending a message, which
illustrates the exact same behavior, with the change of opening a connection to another
peer instead of waiting for an incoming one, and using the sending stream instead of the
receiving stream.



3.3 Raw UDP Implementation (udp)

Our UDP implementation is rather trivial in nature. We are leveraging the std: :net rust
crate, specifically the UDP interface. We are simply opening a known UDP socket and
sending a message block. As far as our receiving logic goes, we have a separate thread with
a loop on which we continuously scan for messages on our own socket. However, for the
scope of this research, this implementation is good enough: we aim to showcase a comparison
between a complex framework (iroh, which uses QUIC) and the simple UDP transmission
of blocks, knowing their main differences, which are reliability, and UDP being only usable
on the local network due to its lack of complex peer-finding protocols.

By implementing and comparing these two approaches, we are able to experimentally
analyze the impact of protocol choice on throughput, efficiency, and reliability for decentral-
ized, DAG-based blockchains on smartphones. This comparative analysis provides practical
guidance for future Trustchain deployments in mobile and resource-constrained environ-
ments.

4 Experimental setup and results discussion

4.1 Experimental Setup

We have developed a simulation run implementation which, over a user-specified duration,
sends messages with a user-defined size at a user-defined workload (messages per second
rate). We are recording timestamps in a shared data structure, which include the message
itself - the full block in a serialized format - as well as the operation type, which describes
the operation we are executing - in our case, sending a message (send_benchmark_sc),
processing it right after it has arrived from our peer (processing_message) and right after
the completed block has been finally stored in the sending agent (store_block_e). After
this duration ends, we are exporting the benchmark result in csv format and based on
the count of the rows of a specific operations (sent, or stored), we can derive the specific
throughput.

Using lour implementation, we have leveraged Android Studio’s native option of flashing
the application into our available phones. We conducted our experiments using two identical
Motorola Moto G04s smartphones connected to the same Wi-Fi network, with specifications
written in Appendix C. The experimental workflow for iroh involved the following steps:

1. Open the application on Agent B and click on GO TO IROH COMMUNICATION.

2. On Agent B, click the ‘Copy* button next to the third textbox, which includes Agent
B’s Nodeld.

3. Paste the Nodeld to a shared Google Docs file.

4. Open the shared Google Docs file on Agent A , copy the Nodeld.

5. Open the application on Agent A and click on GO TO IROH COMMUNICATION.
6. Paste the Nodeld as a destination, in the first text field.

7. Fill in the Simulation Config text box with its respective message size, messages per
second and simulation test duration values.


https://github.com/mbakker520/smartphone-trustchain/tree/tudor-benchmarking

10.
11.

Click on Run Simulation and wait for the csv filed export message to be displayed on
the screen, remember the name.

Kill the app on Agent B.
Kill the app on Agent A.

Take the csv file from Agent A’s storage through a cable and using Android Studio’s
Device explorer.

Regarding the UDP version, we take a slightly different approach, due to its lack of
overhead for connections and rather simple implementation, which allows the application to
perform in a similar manner over time.

1.

SANEE

® N>

10.
11.
12.

4.2

Hardcode a set of workloads we want to run this implementation for. There will be an
automatic 20 seconds timeout between each experiment, to make sure that no packets
from the previous iteration have interfered with the current simulation run.

Open the application on Agent B and click on GO TO UDP COMMUNICATION.

On Agent B, scroll to the bottom of the page and manually copy the displayed Nodeld.
Paste the Nodeld to a shared Google Docs file.

Open the shared Google Docs file on Agent A, and copy the Nodeld.

Open the application on Agent A and click on GO TO UDP COMMUNICATION.

Paste the Nodeld as a destination, in the first text field.

Fill in the Simulation Config text box with its respective message size, messages per
second and simulation test duration values.

Click on Run Simulation and wait for the csv file export message to be displayed on
the screen.

Kill the app on Agent B.
Kill the app on Agent A.

Import the csv file from Agent A’s storage using Android Studio’s Device explorer.

Iterative Runs and Results

4.2.1 Rust Iroh with constant reconnection - 10 Byte payload

First of all, as mentioned in the methodology, we will select an arbitrary workload and
perform a test. We will arbitrarily choose 10 Bytes as the message size - which, although
rarely used in practice - will give us a strong insight into the behavior of the throughput of
the 2-peer system.

We are running for the workloads [1, 2, 4, 8, 16, 32, 64, 128]. However, when running with
the 64 workload, we notice something interesting: the application breaks with a memory-
related exception, and we no longer have enough results to make confident assumptions.
We have theorized the root of this issue to be the heap getting overflown by tokio’s green
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Figure 3: Sent and stored throughput, 10B payload, 25 seconds, iroh with reconnection

threads generated with Rust’s tokio: :spawn, however, a more in-depth analysis needs to
be performed in this regard. The method described in subsection 4.2.4 fixes this issue.

Therefore, in order to obtain meaningful results, we run the benchmark with the following
workloads: [1, 2, 4, 8, 16, 20, 24, 28, 32, 36] messages / 1000 ms, for 5 times each workload
for 25 seconds, and obtain the result in Figure 3.

We notice a peak in the store throughput at around 8 operations per second, where it
reaches (according to the Results in Appendix A) a mean of 7.84 +0.009 ops/sec. The send
throughput grows naturally with the actual sending instructions we do in the simulations,
which we expected. The throughput increasing together with the sending rate, then plum-
meting/decreasing is expected as well. However, we notice quite a large variance from the
point of 16 ops/second onward - which indicate less reliable results as the workload increases.
However, they do indicate that they do not overcome the aforementioned peak.

4.2.2 Rust Iroh with constant reconnection - 100 Byte payload

In order to display the behavior of the store throughput over a larger payload size, we have
chosen 100 Bytes and kept the rest of the conditions the same. We have obtained the result
in Figure 4.

We again notice a peak in the store throughput at around 8 operations per second, where
it reaches a mean of 7.02 £ 0.469 ops/sec. The send throughput grows naturally with the
actual sending instructions we do in the simulations, which we expected. The throughput
increasing together with the sending rate, then plummeting/decreasing is expected as well.
There is an increase in variance in the latter workloads - however, based on their 95%
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Figure 4: Sent and stored throughput, 100B payload, 25 seconds, iroh with reconnection

Confidence interval, even its upper bound doesn’t seem to surpass the mentioned peak.

4.2.3 Raw UDP - 100 Bytes

Running the UDP version provides us with outstanding results: the sending throughput and
store throughput match for the workloads [1, 2, 4, 8, 16, 24, 28, 32], which we have also
tested in the iroh version. Since presenting the graph would be redundant, we provide the
following rates:

Workloads: [1, 2, 4, 8, 16, 24, 28, 32]
Send counts (avg): [25.0, 50.0, 99.0, 196.0, 387.4, 576.0, 670.6, 756.4]
Store counts (avg): [25.0, 50.0, 99.0, 196.0, 387.4, 576.0, 670.6, 756.2]

However, this raises the question: under which conditions does the UDP store throughput
start to diverge from the sending throughput? We will delve deeper in this aspect in the
following parts.

4.2.4 Rust Iroh connection optimization - 100 Bytes

The rust-iroh implementation breaking at around 40 messages per second imposes a critical
limitation. Moreover, in our current implementation for iroh (as also presented in the
pseudocode in 3.2), we are waiting for an Incoming QUIC connection inside the loop,
then closing it each time. While this is a generally good idea and supports messages to
different peers, in our current use case - that is, testing for only two peers - we can perform



an optimization which is in tune with QUIC’s spirit of being able to multiplex between
multiple streams.

In order to reflect a use-case where there is a long connection between two-peers, we
are going to perform the following variation from the original pseudocode, which we have
reflected in this implementation:

create new tokio runtime
inside this tokio runtime, create a QUIC endpoint through ‘quinn‘’s
Endpoint interface
wait for first incoming connection
once it has arrived and turned into a valid ‘Connection object® do
loop {
open a send_stream and a recv_stream through the ‘.accept_bi()°¢
method
read from receiving stream the message and
process_it. This is the point where the blockchain
implementation takes over.
wait for stream to finish

3

Now, running the same workloads as in section 4.2.2, we obtain the result in figure 5.

This is an unexpected improvement. As opposed to the store peak being around 8
ops/second (of 7.84 +0.009), we have now obtained a stable peak at 28 operations,/second,
which according to the results in the annex, corresponds to 25.58 £ 0.100 ops/sec. We have
therefore managed to obtain a maximum store throughput 3.26 times larger than iroh
with the optimization of keeping the connection open.

Moreover, we have also increased the capacity of the application itself. The system no
longer breaks, and we are able to put iroh under a load of 1000 messages/second without
any issues, as opposed to it breaking at 40 messages/second.

4.2.5 Limit testing: iroh versus UDP - 128 Bytes

Now that we have enhanced iroh’s performance for large workloads, we are free to test its
capabilities, up to 1024 messages/second and put iroh and UDP to a more fair comparison.

We are making a small change in the code, as we are now dividing 1000 ms by the work-
load - which, due to integer division and Kotlin working with integer number of milliseconds
- will not provide us with fair results. We are going to put both the iroh and the udp-version
under the workloads of [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024], over the course of 1024
ms batches, for an overall of 25 seconds, as before.

We have obtained the result in Figure 6. Although we have obtained a maximum through-
put when sending approximately 527.72 per second (that is, with a 95% confidence interval,
295.96 £ 236.577), a more reliable throughput rate can be recognized for the workload of
32 messages per second: with a 95% confidence interval, 28.87 + 0.04 blocks per second.
Analyzing the payload size that we have recorded in our benchmarks (attached in Appendix
B), we see that there is a minimum of 536 characters in the message size, which corresponds
to 536 Bytes/message. Therefore, we can confidently say that we have obtained at least
15474.32 4 21.44 Bytes/second of storage throughput.

However, when we compare the result with what we obtain in UDP, we notice how in
these specific circumstances, iroh falls rather short.
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Figure 7: Sent and stored throughput, 128B payload, 25 seconds, UDP version

The sending and the receiving throughput are so close that the difference between them
can be barely seen on the graph in Figure 7. Taking the three last 95% CI intervals, we
have the following results:

Workload 256:
Send: 190.57 £ 0.754 ops/sec
Store: 190.53 + 0.754 ops/sec
Workload 512:
Send: 305.32 + 3.895 ops/sec
Store: 305.26 £ 3.909 ops/sec
Workload 1024:
Send: 508.99 + 8.156 ops/sec
Store: 508.27 £ 7.283 ops/sec

Taking into consideration that the error is almost 64 times lower than the mean, we can
safely say that we have reliably obtained at least 500 messages/second throughput in one of
our best instances. Taking the measured block size (Annex B, point 4) of at least 668 bytes,
we have obtained a total of 333400 Bytes/second of message-storing throughput, which is
around 326KB / second.

4.2.6 Final insights

The main insight is that keeping a QUIC connection open, instead of closing it and reopening
again is a strong feature of the protocol, both intuitively and as observed in our experiments.

12



Moreover, it has enhanced the throughput of the two-peer blockchain system of over three
times. Another one is that the viability of our blockchain implementation is confirmed by
the results of our experiments. In extension, we have obtained expected results in the case
of throughput: constantly rising with the same rate as the sending one, followed by a point
where the sending throughput and the storage throughput diverge.

5 Responsible Research

We have used publicly available information and methods in providing our blockchain im-
plementation and results.

Moreover, we have detailed each result and possible shortcomings we are aware of as well
as provided the code through which we have obtained these results.

Our implementation of the IETF Trustchain protocol inherently considers user privacy,
as each agent maintains its own blockchain containing only personally relevant transactions.
Moreover, we have used dummy data as payload for our implementation - thus, no sensitive
information has been used in our application.

In regards to reproducibility, we do believe that us providing the models of the smart-
phones we have used, as well as their full specification, the code, and detailed instructions
over how to run the experiments makes the overall work highly reproducible - at least to
the extent of noticing the same key behaviours of the throughput. There, is however a
factor that has an impact over full reproducibility, which is depending on the Wi-fi network.
Despite the fact that we have aimed to limit this factor as much as possible - that is, by
running all our experiments on a private network, with no other devices - this is of course a
factor that is far beyond our control. Moreover, we do depend on external devices - that is,
the two smartphones - which might also impose some issues, such as possible manufacturing
issues, which are also far beyond our knowledge. In regards with LLM usage, we have mainly
leveraged it for converting natural language into latex (example: pseudocodes used in this
paper) and for highlighting grammar mistakes.

6 Limitations, conclusions and future work

6.1 Limitations

One of our main challenges include the premise of this work - that is, our implementation
of the Trustchain protocol. Although we find that we have implemented a viable version for
measuring its throughput, a deeper analysis needs to be pursued over a more accurate im-
plementation of the Trustchain protocol - respecting the exact block structure and including
the consensus algorithm.

Another challenge which highlights the limitations of the current research involves the
lack of multiple physical agents we can experiment on. For a more proper investigation,
various network topologies need to be analyzed.

One other possible drawback of our implementation is marked by the benchmarking
overhead: although our current way offers significant data, such as the timestamp, the
block structure and the message content, we could have registered only the count of the
stored blocks in the specific timeframe. However, we would then lack the confidence that
the message structure is fully correct. Moreover, we have redundantly benchmarked the
processing time, possibly adding more overhead.
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Another problem we acknowledge in this research is the low amount of times we run the
experiment for a specific workload. A large cause to this is the unfeasibility of manually
executing the iroh experiment at scale, due to the high involvement of human intervention.
We will therefore need a way to automatize this process.

Lastly, we will thoroughly need to extend code quality and robustness. Although it gave
us enough insight for measuring purposes, we cannot ignore some of its observed faults over
time: on our rust iroh optimization, it seems to sometime disconnect for larger workloads,
which gets reflected in the displayed graph. Moreover, in the original iroh version, thorough
investigations need to be conducted over the reason of it breaking at around 40 messages /
second.

6.2 Conclusions

In conclusion, we have successfully developed a smartphone application leveraging ma-
ture peer-to-peer technologies facilitated by the rust-iroh framework, implementing a viable
Trustchain version for testing purposes. Thus, we have answered the first research question
by developing an application that creates a block, sends a payload, then receives back the
completed block and stores it in its own chain.

Moreover, we have benchmarked the storage throughput and have gained relevant in-
sights. First of all, we noticed that keeping a QUIC connection open in iroh can offer
over three times the throughput in our recorded experimental data. Moreover, our imple-
mentation can confidently process around 28 blocks/second with a 128 Bytes payload over
a sending rate of 29 messages per second, marking a maximum processing throughput of
around 15KB /second, having answered our second research question, and providing an opti-
mization from the baseline, being able to increase the stable storage throughput rate by over
three times. However, our UDP-based version outperforms our implementation, confidently
storing at least 500 668-byte blocks per second.

6.3 Future work

Our future work focuses on improving the limitations this paper proposes. First of all, we
aim to adopt a more accurate Trustchain representation, which also includes the consensus
algorithm. We aim to write more formal unit tests for the correctness of the protocol, as
well as following a more structured software engineering approach. Moreover, we will further
investigate issues that the implementation currently poses and fix them.
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A Confidence intervals - experiments 4.2.1 - 4.2.4

1. Confidence intervals deviations for the experiment described in 4.2.1, Figure 3.
Throughput Summary with 95
Workload 1:
Send: 1.04 + 0.001 ops/sec
Store: 0.94 £ 0.175 ops/sec
Workload 2:
Send: 2.02 £ 0.001 ops/sec
Store: 2.01 + 0.017 ops/sec
Workload 4:
Send: 3.98 + 0.005 ops/sec
Store: 3.62 + 0.630 ops/sec
Workload 8:

Send: 7.84 £ 0.009 ops/sec
Store: 6.98 + 0.491 ops/sec

Workload 16:

Send: 15.46 + 0.024 ops/sec
Store: 2.07 + 0.745 ops/sec

Workload 24:

Send: 22.87 + 0.029 ops/sec
Store: 1.58 + 0.815 ops/sec

Workload 28:

Send: 26.51 + 0.066 ops/sec
Store: 0.88 + 0.568 ops/sec

Workload 32:

Send: 29.64 + 0.069 ops/sec
Store: 1.32 £+ 1.320 ops/sec
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2. Confidence intervals for the experiment described in 4.2.2, Figure 4.

Throughput Summary with 95% CI:
Workload 1:

Send: 1.04 £+ 0.001 ops/sec

Store: 0.80 + 0.395 ops/sec
Workload 2:

Send: 2.02 £ 0.007 ops/sec

Store: 2.01 + 0.031 ops/sec
Workload 4:

Send: 4.00 + 0.006 ops/sec

Store: 3.28 + 0.685 ops/sec
Workload 8:

Send: 7.90 + 0.009 ops/sec

Store: 7.02 £ 0.469 ops/sec
Workload 16:

Send: 15.67 4+ 0.018 ops/sec

Store: 4.04 + 1.969 ops/sec
Workload 24:

Send: 23.32 + 0.059 ops/sec

Store: 3.57 £ 2.822 ops/sec
Workload 28:

Send: 27.10 + 0.068 ops/sec

Store: 4.14 + 2.279 ops/sec
Workload 32:

Send: 30.32 £ 0.093 ops/sec

Store: 3.56 + 1.552 ops/sec

3. Confidence intervals for the experiment described in 4.2.4, Figure 5.

Throughput Summary with 95% CI:
Workload 1:

Send: 1.03 + 0.001 ops/sec

Store: 1.03 + 0.001 ops/sec
Workload 2:

Send: 2.03 £ 0.002 ops/sec

Store: 2.03 £ 0.002 ops/sec
Workload 4:

Send: 4.01 £ 0.001 ops/sec

Store: 2.43 + 1.894 ops/sec
Workload 8:

Send: 7.90 + 0.005 ops/sec

Store: 7.87 4+ 0.020 ops/sec
Workload 16:

Send: 15.65 + 0.005 ops/sec

Store: 15.59 £ 0.017 ops/sec
Workload 24:

Send: 23.32 4+ 0.029 ops/sec
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Store: 23.21 £+ 0.032 ops/sec
Workload 28:

Send: 25.72 + 0.084 ops/sec

Store: 25.58 £ 0.100 ops/sec
Workload 32:

Send: 28.83 4+ 0.257 ops/sec

Store: 22.98 £+ 11.205 ops/sec
Workload 36:

Send: 32.54 + 0.142 ops/sec

Store: 25.90 + 12.632 ops/sec

B iroh results for 128 Bytes, connection optimization -
experiment 4.2.5

1. Confidence intervals for throughputs - iroh version

Throughput Summary with 95% CI:
Workload 1:

Send: 1.01 £+ 0.002 ops/sec

Store: 1.01 4+ 0.002 ops/sec
Workload 2:

Send: 1.98 £ 0.003 ops/sec

Store: 1.98 4+ 0.003 ops/sec
Workload 4:

Send: 3.90 + 0.001 ops/sec

Store: 3.66 + 0.472 ops/sec
Workload 8:

Send: 7.68 + 0.002 ops/sec

Store: 7.66 *+ 0.019 ops/sec
Workload 16:

Send: 15.02 4+ 0.006 ops/sec

Store: 14.96 £+ 0.021 ops/sec
Workload 32:

Send: 29.02 £+ 0.013 ops/sec

Store: 28.87 + 0.045 ops/sec
Workload 64:

Send: 55.78 4+ 0.419 ops/sec

Store: 21.22 4+ 20.793 ops/sec
Workload 128:

Send: 103.75 + 1.826 ops/sec

Store: 61.03 + 48.766 ops/sec
Workload 256:

Send: 189.22 + 3.452 ops/sec

Store: 50.08 £ 69.495 ops/sec
Workload 512:

Send: 323.25 + 11.415 ops/sec

17



Store:
Workload

123.28 + 147.558 ops/sec
1024 :

Send: 527.71 + 35.360 ops/sec

Store:

295.96 £ 236.577 ops/sec

2. Message sizes - iroh version

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:

Run 1:
Min:

1:

25 store_block_e operations
536, Max: 665, Avg: 659.5
25 store_block_e operations
536, Max: 665, Avg: 659.5
25 store_block_e operations
536, Max: 665, Avg: 659.5
25 store_block_e operations
536, Max: 665, Avg: 659.5
25 store_block_e operations
536, Max: 665, Avg: 659.5

2:

49 store_block_e operations
536, Max: 665, Avg: 662.2
49 store_block_e operations
536, Max: 665, Avg: 662.2
49 store_block_e operations
536, Max: 665, Avg: 662.2
49 store_block_e operations
536, Max: 665, Avg: 662.2
49 store_block_e operations
536, Max: 665, Avg: 662.2

4:

97 store_block_e operations
536, Max: 665, Avg: 663.6
67 store_block_e operations
536, Max: 665, Avg: 663.0
97 store_block_e operations
536, Max: 665, Avg: 663.6
97 store_block_e operations
536, Max: 665, Avg: 663.6
97 store_block_e operations
536, Max: 665, Avg: 663.6

8:

192 store_block_e operations
536, Max: 666, Avg: 664.8
191 store_block_e operations
536, Max: 666, Avg: 664.8



Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:

Run 1:
Min:

191 store_block_e operations
536, Max: 666, Avg: 664.8
190 store_block_e operations
536, Max: 666, Avg: 664.8
191 store_block_e operations
536, Max: 666, Avg: 664.8

16:

374 store_block_e operations
536, Max: 666, Avg: 665.4
373 store_block_e operations
536, Max: 666, Avg: 665.4
374 store_block_e operations
536, Max: 666, Avg: 665.4
374 store_block_e operations
536, Max: 666, Avg: 665.4
373 store_block_e operations
536, Max: 666, Avg: 665.4

32:

720 store_block_e operations
536, Max: 666, Avg: 665.7
722 store_block_e operations
536, Max: 666, Avg: 665.7
720 store_block_e operations
536, Max: 666, Avg: 665.7
723 store_block_e operations
536, Max: 666, Avg: 665.6
722 store_block_e operations
536, Max: 666, Avg: 665.6

64:

877 store_block_e operations
536, Max: 666, Avg: 665.7
396 store_block_e operations
536, Max: 666, Avg: 665.4
1373 store_block_e operations
536, Max: 667, Avg: 666.1

3 store_block_e operations
536, Max: 664, Avg: 600.0

2 store_block_e operations
536, Max: 664, Avg: 600.0

128:

4 store_block_e operations
536, Max: 664, Avg: 616.0
2544 store_block_e operations
536, Max: 667, Avg: 666.5
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Run 2:
Min:
Run 3:
Min:
Run 4:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

2546 store_block_e operations
536, Max: 667, Avg: 666.5

2535 store_block_e operations
536, Max: 667, Avg: 666.3

No store_block_e operations found

256:

1697 store_block_e operations
536, Max: 667, Avg: 665.9
4547 store_block_e operations
536, Max: 667, Avg: 666.7

5 store_block_e operations
536, Max: 664, Avg: 600.0

6 store_block_e operations
536, Max: 664, Avg: 632.0

5 store_block_e operations
536, Max: 664, Avg: 625.6

512:

8 store_block_e operations
536, Max: 600, Avg: 592.0
7645 store_block_e operations
536, Max: 667, Avg: 666.8
7741 store_block_e operations
536, Max: 667, Avg: 666.8

10 store_block_e operations
536, Max: 665, Avg: 632.1

8 store_block_e operations
536, Max: 600, Avg: 592.0

1024:

3 store_block_e operations
536, Max: 600, Avg: 578.7
12339 store_block_e operations
536, Max: 669, Avg: 667.2

12 store_block_e operations
536, Max: 665, Avg: 621.6
12280 store_block_e operations
536, Max: 669, Avg: 667.3
12367 store_block_e operations
536, Max: 669, Avg: 667.2

3. Confidence intervals for throughputs - UDP version

Throughput Summary with 95% CI:

Workload

1:

Send: 1.01 £+ 0.002 ops/sec

Store:

1.01 + 0.002 ops/sec
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Workload 2:

Send: 1.97 £ 0.002 ops/sec

Store: 1.97 + 0.002 ops/sec
Workload 4:

Send: 3.89 £ 0.003 ops/sec

Store: 3.89 4+ 0.003 ops/sec
Workload 8:

Send: 7.66 £ 0.008 ops/sec

Store: 7.66 + 0.008 ops/sec
Workload 16:

Send: 15.03 4+ 0.023 ops/sec

Store: 15.03 £ 0.023 ops/sec
Workload 32:

Send: 29.08 £+ 0.020 ops/sec

Store: 29.08 £ 0.020 ops/sec
Workload 64:

Send: 55.63 4+ 0.121 ops/sec

Store: 55.63 £+ 0.121 ops/sec
Workload 128:

Send: 102.40 £ 0.737 ops/sec

Store: 102.38 £ 0.752 ops/sec
Workload 256:

Send: 190.57 £ 0.754 ops/sec

Store: 190.53 £ 0.754 ops/sec
Workload 512:

Send: 305.32 + 3.895 ops/sec

Store: 305.26 + 3.909 ops/sec
Workload 1024:

Send: 508.99 + 8.156 ops/sec

Store: 508.27 £ 7.283 ops/sec

4. Message sizes - UDP version

Workload 1:

Run 0: 25 store_block_e operations
Min: 536, Max: 665, Avg: 659.5
Run 1: 25 store_block_e operations
Min: 665, Max: 665, Avg: 665.0
Run 2: 25 store_block_e operations
Min: 665, Max: 665, Avg: 665.0
Run 3: 25 store_block_e operations
Min: 665, Max: 666, Avg: 665.0
Run 4: 25 store_block_e operations
Min: 666, Max: 666, Avg: 666.0

Workload 2:

Run 0: 49 store_block_e operations
Min: 666, Max: 666, Avg: 666.0
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Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:

49 store_block_e operations
666, Max: 666, Avg: 666.0
49 store_block_e operations
666, Max: 666, Avg: 666.0
49 store_block_e operations
666, Max: 666, Avg: 666.0
49 store_block_e operations
666, Max: 666, Avg: 666.0

4:

97 store_block_e operations
666, Max: 666, Avg: 666.0
97 store_block_e operations
666, Max: 666, Avg: 666.0
97 store_block_e operations
666, Max: 666, Avg: 666.0
97 store_block_e operations
666, Max: 666, Avg: 666.0
97 store_block_e operations
666, Max: 666, Avg: 666.0

8:

191 store_block_e operations
666, Max: 667, Avg: 666.2
191 store_block_e operations
667, Max: 667, Avg: 667.0
191 store_block_e operations
667, Max: 667, Avg: 667.0
191 store_block_e operations
667, Max: 667, Avg: 667.0
191 store_block_e operations
667, Max: 667, Avg: 667.0

16:

375 store_block_e operations
667, Max: 667, Avg: 667.0
375 store_block_e operations
667, Max: 667, Avg: 667.0
376 store_block_e operations
667, Max: 667, Avg: 667.0
376 store_block_e operations
667, Max: 667, Avg: 667.0
376 store_block_e operations
667, Max: 667, Avg: 667.0

32:
727 store_block_e operations
667, Max: 667, Avg: 667.0



Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:
Run 1:
Min:
Run 2:
Min:
Run 3:
Min:
Run 4:
Min:

Workload
Run O:
Min:

727 store_block_e operations
667, Max: 667, Avg: 667.0
727 store_block_e operations
667, Max: 667, Avg: 667.0
726 store_block_e operations
667, Max: 667, Avg: 667.0
728 store_block_e operations
667, Max: 667, Avg: 667.0

64:

1394
667,
1385
667,
1392
668,
1393
668,
1391
668,

128:
2537
668,
2547
668,
2558
668,
2563
668,
2594
668,

256:
4727
668,
4784
668,
4773
668,
4769
668,
4764
668,

512:
7830
668,

store_block_e
Max:
store_block_e
Max:
store_block_e
Max:
store_block_e
Max:
store_block_e
Max:

store_block_e
Max:
store_block_e
Max:
store_block_e
Max:
store_block_e
Max:
store_block_e
Max:

store_block_e
Max:
store_block_e
Max:
store_block_e
Max:
store_block_e
Max:
store_block_e
Max:

store_block_e
Max:

667, Avg:
668, Avg:
668, Avg:
668, Avg:

668, Avg:

668, Avg:
668, Avg:
668, Avg:
668, Avg:

668, Avg:

668, Avg:
668, Avg:
668, Avg:
668, Avg:

668, Avg:

668, Avg:

operations
667.0
operations
667.1
operations
668.0
operations
668.0
operations
668.0

operations
668.0
operations
668.0
operations
668.0
operations
668.0
operations
668.0

operations
668.0
operations
668.0
operations
668.0
operations
668.0
operations
668.0

operations
668.0
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Run 1: 7571 store_block_e operations
Min: 668, Max: 668, Avg: 668.0
Run 2: 7603 store_block_e operations
Min: 668, Max: 668, Avg: 668.0
Run 3: 7573 store_block_e operations
Min: 668, Max: 668, Avg: 668.0
Run 4: 7581 store_block_e operations
Min: 668, Max: 668, Avg: 668.0

Workload 1024:

Run 0: 12474 store_block_e operations
Min: 668, Max: 670, Avg: 668.3

Run 1: 12800 store_block_e operations
Min: 669, Max: 670, Avg: 669.2

Run 2: 12540 store_block_e operations
Min: 669, Max: 670, Avg: 669.2

Run 3: 12992 store_block_e operations
Min: 669, Max: 670, Avg: 669.2

Run 4: 12729 store_block_e operations
Min: 669, Max: 670, Avg: 669.2

C Smartphone Agent Specification

Model: Motorola Moto G04s

Operating System: Android 14

Processor: Unisoc T606 (Octa-core: 2xCortex-A75 1.6 GHz, 6x Cortex-A55 1.6 GHz)
RAM: 4GB

Internal Storage: 64 GB (expandable via microSD)

Battery: 5000 mAh with 15 W fast charging

Connectivity: Dual SIM, 4G LTE, Wi-Fi 802.11 a/b/g/n/ac, Bluetooth 5.0
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