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ABSTRACT

Aims. To form kilometre-sized planetesimals, the streaming instability is an efficient method for overcoming the barriers to planet
formation in protoplanetary discs. The streaming instability has been extensively modelled by hydrodynamic simulations of gas and a
single dust size. However, recent studies considering a more realistic case of a particle size distribution have shown that this will sig-
nificantly decrease the growth rate of the instability. We follow up on these studies by evaluating the polydisperse streaming instability
in the non-linear regime to see if clumping can occur in the same manner as the monodisperse streaming instability and determine the
size distribution in the densest dust structures.

Methods. We employ 2D hydrodynamic simulations in an unstratified shearing box with multiple dust species representing an under-
lying continuous dust size spectrum using FARGO3D. We use the Gauss-Legendre quadrature in dust size space to calculate the drag
force on the gas due to a continuous dust size distribution. These simulations are compared to previous analytical results of the poly-
disperse streaming instability in the linear phase. We then look at the saturated non-linear phase of the instability at the highest density
regions and investigate the dust size distribution in the densest dust structures.

Results. When sampling the size distribution, the error in the growth rate converges significantly faster with the number of dust sizes
using the Gauss-Legendre quadrature method than the usual uniform sampling method. In the non-linear regime, the maximum dust
density reached in the polydisperse case is reduced compared to the monodisperse case. Larger dust particles are most abundant in
the densest dust structure because they are less coupled to the gas and can therefore clump together more than the smaller dust grains.
Contrary to expectations based solely on dust-gas coupling, our results reveal a distinct peak in the size distribution that arises from
the size-dependent spatial segregation of the highest-density regions, where particles with the largest Stokes numbers are located just
outside the densest areas of the combined dust species.

Conclusions. The 2D unstratified polydisperse streaming instability is less efficient than its monodisperse counterpart at generating
dense clumps that may collapse into planetesimals, and in the densest regions, the distinct dust size distribution could be related to the

size distribution that ends up in the planetesimal and can mimic the size distribution of dust growth.
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1. Introduction

Planets form in protoplanetary discs, where solid particles with
sizes of around 0.1 um need to clump together to form planet-
sized objects of around 10000 km. However, this process is
not trivial, and certain barriers impede the growth of the dust.
At small sizes, the growth of the particles is dominated by
collisional growth, which can lead to maximum dust sizes of
approximately one centimetre, depending on local disc condi-
tions (Birnstiel et al. 2011). The dust also feels a drag from the
gas that orbits at sub-Keplerian velocities, which causes the dust
to lose angular momentum and radially drift inwards towards the
host star. The drift speed is dependent on the particle size such
that for meter-sized objects, the drift timescale becomes shorter
than the timescale of collisional growth, making it very difficult
for particles to grow larger than one meter before they drift into
the host star (Weidenschilling 1977; Nakagawa et al. 1986).
Radial drift can also trigger instabilities that can aid in dust
growth. The relative velocities between the dust and gas can con-
centrate dust particles until densities exceed the threshold for
gravitational collapse, leading directly to kilometre-sized bod-
ies unaffected by fast radial drift. One of the most prominent

* Corresponding author; j.p.matthijsse@tudelft.nl

drift-induced instabilities is the streaming instability (SI, e.g.
Youdin & Goodman 2005; Youdin & Johansen 2007; Johansen
et al. 2007; Nesvorny et al. 2019; Li & Youdin 2021). The
SI has been extensively modelled using only a single dust
size (monodisperse), either with a fluid-fluid or fluid-particle
approach. More recent studies considering a more realistic case
of a particle size distribution (first explored in Bai & Stone
2010) have also shown that this can dampen the instability in
certain regimes (see Yang & Zhu 2021; Rucska & Wadsley
2023). Studies of the linear phase show that the polydisperse
streaming instability (PSI) case will significantly decrease the
growth rate of the monodisperse streaming instability (mSI)
(Krapp et al. 2019; Paardekooper et al. 2020; Zhu & Yang 2021;
McNally et al. 2021).

In this paper, we aim to build on the linear analysis of the PSI
by investigating the non-linear regime and determining which
dust sizes will end up in the overdensities formed by the insta-
bility during the saturated phase. This work is a continuation
of three previous PSI papers (Paardekooper et al. 2020, 2021;
McNally et al. 2021) focusing on the non-linear regime using
hydrodynamical simulations.

Other studies of the PSI in the non-linear regime (Bai &
Stone 2010; Yang & Zhu 2021; Schaffer et al. 2018, 2021;
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Rucska & Wadsley 2023) have covered a large part of the param-
eter space, evaluating PSI with a fluid-particle treatment, and
have found dust clumps with densities exceeding the local Roche
density, which may subsequently collapse into planetesimals.
Yang & Zhu (2021) considered the non-linear evolution of the
PSI using a discrete number of dust sizes. In this study, we take
the dust size distribution to be a continuous limit using a fluid-
fluid treatment and only look at the high dust-to-gas ratio regime
1 > 1 and smaller dust sizes that are well coupled to the gas.
As in Yang & Zhu (2021), we ignore the vertical component of
the stellar gravity and work in an unstratified local model of the
disc. This simplified model allows us to make direct contact with
linear theory (see Krapp et al. 2019; Paardekooper et al. 2020;
Zhu & Yang 2021) and further our understanding of polydisperse
drag instabilities. In this regime, we focus on the evolution of the
dust size distribution to see if the PSI has a distinct size distri-
bution at the highest density regions that could be related to the
size distribution that ends up in planetesimals. This distribution
could in turn be anchored to detailed observations of the Solar
System (e.g. Mottola et al. 2015; Blum et al. 2017; Fulle & Blum
2017; Simon et al. 2018, 2022).

The heuristic model behind SI in the low dust-to-gas ratio
regime u < 1 is a resonant drag instability (RDI; Squire &
Hopkins 2018b). The gas is supported by pressure. The forces
and thus the acceleration of the gas are different from that of
the dust. This leads to a drift velocity, dv, that causes an accel-
eration acting on the dust. In the Epstein regime (Epstein 1924),
this acceleration, @grag 4, is linearly dependent on the gas and dust
velocity difference and the stopping time of the dust particles 7
such that

.. \ﬁﬂ ()
) 8 ¢spg

where a is the size of the particle, py is the bulk density of the
dust particle, p, is the gas density, and ¢, is the sound speed. This
leads the terminal velocity of the dust to always be in the direc-
tion of the pressure maxima. This principle can be used to create
overdensities that grow exponentially if there is a perturbation
in the gas, and its wave velocity w(K) matches the projected
streaming velocity of the dust relative to the gas,

w; - k = wg(K), 2

with wy as the size-dependent velocity of dust relative to the gas
and k as the wavenumber of the perturbation. The drag feed-
back on the gas increases the pressure maximum, leading to
exponential growth if the projected wave velocity of the pres-
sure perturbation is the same as the dust drift (Squire & Hopkins
2018a; Squire & Hopkins 2020; Magnan et al. 2024). From the
definition of the RDI, it follows that the instability must be (1)
unstable for all y, (2) have growth rates maximised when the
‘resonant condition’ w, - k = wy = Q- k is satisfied, and (3) have
a growth rate in the linear regime that scales as J(w) ~ u'/?
rather than u. However, the drift velocity of the dust strongly
depends on the dust size, making the RDI less effective for the
distribution of dust sizes if there is no distinct resonant velocity
(Krapp et al. 2019; Paardekooper et al. 2020, 2021; Zhu & Yang
2021; McNally et al. 2021)1.

There is a second regime at a high dust-to-gas ratio with
higher growth rates where the PSI can grow. Importantly, the

I This will be further explored in Paardekooper and Aly (in prep.),
where the authors show that the RDI streaming instability is particularly
negatively affected by the size distribution.
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high-u streaming instability is not an RDI and does not follow the
RDI definitions from Squire & Hopkins (2018a). If the dust-to-
gas ratio is higher than one (u > 1), then there are fast-growing,
high-k modes that are traditionally also called the ‘streaming
instability’, but they are fundamentally different and share none
of the RDI features and correlations that appear in low dust-to-
gas ratio SI°. Instead, the high dust-to-gas ratio regime is more
akin to a forced harmonic oscillator.

In this study, we aim to explore how different dust sizes
clump together in the saturated regime of the instability and
what the size distribution will be in the highest-density clumps.
Section 2 discusses the governing equations in the local frame as
well as the equilibrium state. In Section 3, we discuss the method
of discretisation of size distribution and list the numerical setups
of the simulations. In Section 4, we present the growth rates of
different runs and compare their growth rates to analytical work.
The non-linear regime and its properties are studied in Section 5
together with a convergence study. The simulations with differ-
ent setups are used in a parameter study to investigate the effect
of varying the diffusion coefficient, size distribution shapes, and
dust-to-gas ratios in Section 6. In Section 7, we discuss how
substructures arise within the densest clumps. In Section 8§, we
discuss the possible implication of the approximations we make,
and we summarise our findings and the implication of the found
substructures in the densest clumps on planet formation.

2. Polydisperse equations of motion

A numerical approach is necessary to study the PSI’s non-
linear evolution. We can use the Euler equations that govern the
evolution of the mixture and dynamics of the gas:

Bipg + V- (pg¥y) = 0, 3)

\%
0 Vg + (Vg - V) Vg = —p—p + @y + Agrag, o (@)
g

where p is the gas pressure, a, are the forces acting on the gas
except the drag force of the dust denoted with @grag, -

We can take the velocity moments of the Boltzmann equation
to derive the fluid equations that describe the evolution of the
dust particles:

8,0 +V-(ou) =0, )
Ju+ (u-Vyu=ay(u)+ a’drag,d(u)- (6)

Here, u is defined as the size-dependent bulk velocity (u =
(Va)v), o the size density, and ag4(u) the acceleration due to
external forces and @grag,(w) from the drag between the dust
and the gas (see, Paardekooper et al. 2021, for full derivation).
In this derivation, we neglect the divergence of the stress ten-
sor. This can only be done if we are in the regime of the fluid
approximation. The fluid approximation is only valid for parti-
cles for which the coupling to the gas is strong enough, requiring
Stokes number 7, < 1 (Garaud et al. 2004; Jacquet et al. 2011).
Compared to the mSI, the backreaction on the gas is dependent

on the size density o, given by

o(x,t,a) = ppV(a) f f(X,vq,a,t)dv, 7

2 See for example, the difference between model Af (the fast-growing
instability, run with 4 = 2 and in the high-u SI regime) and As (the slow
instability with g = 0.2) in Yang & Zhu (2021).
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with V(a) the volume of the dust particle (V(a) = 4ra®/3 for
spherical dust particles). The size density is the mass density
between a and a + da, such that

i = f oda, 8)

piva = f ouda, ©)

with vq4 the bulk velocity of the dust. We can use these equations
together with the definition of the acceleration of the dust dgraga
to derive an expression for the total momentum transfer between
the dust and gas:

u-v,
Pelirage = | o(a) da. (10)

2.1. Local frame

We simulate the PSI within a shearing box (Goldreich & Lynden-
Bell 1965), a co-rotating frame at an orbiting radius ry with
Cartesian coordinates (f — X; q3 — ¥; Z — Z). The transforma-
tion from the inertial frame will introduce inertial forces within
the shearing box, the Coriolis and tidal forces. These forces are
included through an effective potential ® = —S Qx?, with S the
shearing rate, in a Keplerian disc S = %Q with Q the angular
velocity. A global pressure gradient (0P/0r) exists throughout
the disc in the local frame. This pressure gradient is described
with the parameter’

an

This means that the background acceleration on the gas, without
the correction of the dust, can be given by
@y =2nX —2Q X vy — VO. (12)

Taking into account the equations from the frame transfor-
mation (12), momentum transfer (10) and the original equation

governing the motions and mixture of gas and dust (3), (4), (5)
and (6) will give the equations of motion within a shearing-box:

0ypg + V- (pgvg) = 0, (13)
v
Ove + (Ve V) vg = 2% — ~L — 20 x vy — VO
Pg
1 u-—v,
L f o) =2 da, (14)
Pg 7s(a)
0,0+V-(ou)=0, (15)
u-v,
Ju+@-Viu=-2Qxu-Vod - . (16)
75(a)

3 We note that we use a dimensional pressure support parameter 1
similar to Paardekooper et al. (2020, 2021); McNally et al. (2021).
This parameter is related to the non-dimensional parameter defined in
Youdin & Goodman (2005) by 17 = roQ?nyg. This is a largely cosmetic
choice allowing us to use a length scale of 1/Q?, without using r, the
orbital radius of the shearing box.

2.2. Equilibrium state

From the shearing box equations (13)—(16), we can find an equi-
librium solution, this will indicate the radial drift and shear
velocity of the gas and dust particles. We assume an isothermal
equation of state, and all quantities are constant in space (apart
from the shear) and have no vertical gravity (this is thought
to represent the midplane of a protoplanetary disc). Then, the
equilibrium solution is given by

_2n Jh
Ug.x = — G907+ 5% (17)
_ gy 1490
AU g T (9
_2 - x@d + o) 19)
Tk (L + @)+ T+ T
_ oL 1 +Jo + k15(a)J
= S xRN (L + TP + T 20)
Vg =u; =0, 21

where « is the epicyclic frequency and 7, is a series of integrals
given by

1 f o(kts(@))™
=— | T2l

D¢ 1 + k?75(a)
(from Paardekooper et al. (2020); first derived in Tanaka et al.

2005). These equations form the background solution in the
shearing box.

Im (22)

2.3. Linear analysis

To evaluate the growth of the PSI, we need to have a perturbation
on top of the equilibrium state that grows in the form of

X(x,t,a) = X(x,a) + X' (x,1,a), (23)
if we take the perturbation to be in the form of
X'(x,1,a) = X(a) exp (ik - X — iwt). (24)

Here, k = (kx, ky, kZ)T is the wavevector, and w is the frequency.
The growth rate of the perturbation is dependent on the imag-
inary part of the frequency, and the instability will grow if
J(w) > 0. We can analytically determine the value of w by solv-
ing the equations of motion (13)—(16) for (23). If we want to use
these equations to solve for w, this will constitute an integral
eigenvalue problem for eigenvalue w. This eigenvalue problem
can be solved by either a discrete solver (Krapp et al. 2019) or by
using a root finding method; both of these methods are described
in Paardekooper et al. (2021) and an implementation in the pub-
licly available Python package psitools* (Paardekooper et al.
2020, 2021; McNally et al. 2021).

We want to further simplify the problem by only using
dimensionless units by choosing a timescale Q™! and a length
scale n7/Q2. When the timescale is Q' the Stokes number is
the non-dimensional stopping time St = Qrtg, the parameters
governing the system are now: the non-dimensional wave vec-
tor K = ki/Q?, the non-dimensional sound speed c,/(Q), the
shear parameter S /Q2, the dust-to-gas ratio y = pg / p(g) and the size
density 0°(a). We use the relation between Stokes number and
dust size (1) to express the size density in the non-dimensional
stopping time (7).

4 https://doi.org/10.5281/zenodo.4663587
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3. Numerical approach

We evaluate the non-linear regime with numerical simulation
using the hydrodynamical code FARGO3D (Benitez-Llambay &
Masset 2016; Benitez-Llambay et al. 2019) to evaluate the
clumping of different dust sizes of the PSI.

3.1. Approximating the drag integral

FARGO3D allows for multiple dust fluids in a single simulation. In
this multifluid picture, where a discrete number of dust sizes is
considered, the backreaction on the gas is dictated by momentum
conservation (Benitez-Llambay et al. 2019):

_ Pd,j
Peldragg = (uj - Vg) >
j Ts»j

where the sum is over all dust species, and subscripts j indicate
quantities belonging to the jth dust species. In the polydisperse
picture, where instead of a discrete number of sizes, we have a
continuous size distribution, we can view the above equation as
an approximation to the integral (10). This can be made explicit
by defining pg; = o(a;)Aa, in the case of constant size bins of
width Aa. The size distribution will usually span many orders of
magnitude, in which case it is advantageous to choose size bins
that have a constant size in log space, but the fundamental prin-
ciple remains that the integral (10) is approximated by a (middle)
Riemann sum or, in other words, the midpoint rule. This method
is commonly used to approximate the drag integral (see e.g.
Bai & Stone 2010; Krapp et al. 2019; Schaffer et al. 2018; Zhu &
Yang 2021; Yang & Zhu 2021), and we henceforward refer to this
method as the discrete method.

If we do not start with a multifluid approach, but assume
from the start that we have a continuous size distribution, we
need an accurate but robust way to calculate the drag integral
(10). Without a priori knowledge about the integrand, Gauss-
Legendre quadrature (GL) is a promising step forward from the
midpoint rule. It is still convenient to work in log-size space,
but rather than choosing bins of constant widths, the integration
nodes are now given by the roots of the nth Legendre polynomial
if we consider n integration nodes. If we, for simplicity, integrate
over a rather than in log space, we have

max u(a) - v 2 u(a;) - v
fﬂ O'(a)T—gda ~ Z wja(aj)%,
S _/:O S

S,J

(25)

(26)

Amin

where w; are the GL weights and a; are the integration nodes,
both appropriately adjusted for the integration range. If we com-
pare (26) to (25), we see that if we define the dust densities as the
product of the size density at the integration node and the corre-
sponding weight, the equations are identical. This means that the
GL integration method can be implemented in all hydrodynam-
ics codes using pressureless fluids by choosing the appropriate
sizes and redefining dust densities. Importantly, no changes in
the internal workings of the code are necessary.

We can define the appropriate size and redefined dust den-
sities with scipy.special.roots_legendre (Virtanen et al.
2020). This function gives the roots of the Legendre polynomial
x; and weights w; between [-1;1]. If we want to work in log-
size space, we can map these notes to the correct Stokes number
using

Ts, max

(+1)/2
) (27)

Ts,j = Ts,min
Ts, min
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Fig. 1. Integration of a normalised log-normal distribution (dashed line)
using a discrete method (blue line) and a Gauss-Legendre quadrature
(orange line).

and the redefined dust density by

1
Pd,j = 5 In

Ts, max

) wj T, j 0(Ts, ). (28)

Ts, min

We give an example of the differences between the integra-
tion methods in Figure 1 by integrating a log-normal distribution
using five points with the discrete and the GL method. The inte-
gration error using the discrete method is 8.292% and 0.018%
using the GL method. This error will be smaller when using
more integration points, but GL is more accurate using fewer
integration points, which is less computationally expensive.

It is worth noting that, while GL and the discrete method
have the same form, they differ fundamentally. When using GL,
we let go of the concept of size bins: all we have is integra-
tion nodes. While the sum over all dust *densities’ pg ; = w;o(a;)
gives the total dust density, as in the discrete case, this does not
hold for partial sums. In other words, the GL method is optimised
for integrating over the full-size distribution.

3.2. The initial size distribution

The size distribution o(a) in a protoplanetary disc can be
expected to be inherited from the interstellar medium. The par-
ticle size distribution of the interstellar medium follows a power
law given by MRN distribution (Mathis et al. 1977; Draine &
Lee 1984):
omrx(@.f) < @, f=-35. (29)
A power law will also follow from collisional evolution if we
expect pure fragmentation or pure coagulation, making it a rea-
sonable approximation for the size distribution when studying
the PSI (e.g. used in Krapp et al. 2019; Paardekooper et al. 2020;
McNally et al. 2021; Yang & Zhu 2021). When using dimen-
sionless units to set up the simulations, the size distribution will
be expressed in non-dimensional stopping time (Stokes number)
Ts, the stopping times can be converted back to dust sizes using
(1) and a disc model, e.g. as a rough guide, a meter-sized boul-
der orbiting in the Minimum Mass Solar Nebula (MMSN) at
one Astronomical Unit (AU) has a Stokes number of order unity
(Weidenschilling 1977).

In our numerical study of the PSI, we want to explore a
similar parameter space as was covered in the analytical anal-
ysis of the PSI in the linear regime by McNally et al. (2021).
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For our standard case, we stay in the high-u regime and take
the dust-to-gas ratio u = 3, although we vary this later (see
Section 6.4).

The largest Stokes number 7, max in the distribution needs
to be small enough that the fluid approximation holds. This
approximation breaks down for 7, > 1 Q7! therefore, we take
To.max = 1071 Q1. Although the dust size distribution in a pro-
toplanetary disc can cover orders of magnitude, the error in the
back-reaction of the dust is dependent on the sample rate of the
distribution and is dominated by the larger dust sizes. There-
fore, we sampled O(2) with 7, € [1073;107'] Q! (similar to the
Stokes range in run Af and As in Yang & Zhu 2021).

3.3. Setup

We simulated the PSI with a shearing box in two spatial dimen-
sions (X & ), where the vertical stellar gravity is neglected
(unstratified and isothermal). This means that the boundaries of
the shearing box can be periodic. The background velocities of
the gas and dust are given by the equilibrium solution (17)—(22).
The gas and dust densities and velocities are perturbed by a small
wave given by

X'x,K,a) =X (ROGF(Ky, K., @) cos(Kx + K.2)

— I F(Ky, K., @) sin(Kyx + K.2)). (30)

The amplitude X = 1075 for all simulations®, the non-
dimensional wavenumber K = (30,0, 3O)T (from Figure 9 in
McNally et al. 2021 we know that at this wavenumber the
instability grows J(w) > 0, even if there is viscosity @) and
0 f(K, a, i, o) are the 4(N + 1)-dimensional (complex) eigen-
vectors. These eigenvectors are associated with the (complex)
eigenvalue w(K, @, o) and the (complex) mode frequency w is
calculated for a specific wave number K and viscosity parameter
a with psitools.psimode. This setup is the same as the test
problem LinA from Youdin & Johansen (2007).

The size of the shearing box is given in terms of the
non-dimensional wavenumber L,, = 27/K, . In this study, we
perturb the system with one wavenumber and take the size of the
box to be the length of the wave (L, = 27/301n/ 0?). The spatial
resolution of the hydro-code is an important parameter of con-
vergence; the linear regime of the instability only needs modest
spatial resolution, e.g. only needing 4 x 4 for mSI. However, in a
non-linear regime, the spatial resolution governs the limit of the
smallest resolved clumping and maximum density. The spatial
resolution is therefore always a compromise between accuracy
and computation time. In this study, we do a larger parameter
sweep at a resolution of 256 X 256 and a convergence study up to
a resolution of 1024 x 1024. The specific combination of spatial
resolution Ngrig, number of dust species nq and other parameters
for different simulations are defined in Table 1.

4. Linear regime

The perturbation will first grow exponentially (24), where the
growth rates of the SI are dependent on the wavenumber, dif-
fusion and size distribution J(w(K, @, c)). This growth has an
analytical solution that can be calculated with software pack-
age psitools (Paardekooper et al. 2020, 2021; McNally et al.
2021). We compare the analytical growth rates with those from

5 Except the simulations of varying dust-to-gas ratio, these are per-
turbed with white noise in the gas, with a standard deviation of
107%c,.

Table 1. List of simulation runs.

RunName ng Ngig Sample « T max B i
PSI20:454 20 1024  G.L. 0 107" -35 3
PSI10y54 10 1024  GL. 0 100 35 3
PSIS14 5 1024  GLL. 0 100" -35 3
mSTg24 1 1024 GL. 0 100" -35 3
PSI10s;; 10 512 G.L. 0 100" -35 3
mSIs;; 1 512 G.L. 0 1070 35 3
PSI20 20 256 G.L. 0 107" -35 3
PSI10 10 256 G.L. 0 1000 35 3
mSI 1 256 G.L. 0 100" -35 3
PSI404isc. 40 256 Discrete 0 107! =35 3
PSI204isc. 20 256 Discrete 0 10! =35 3
PSI104isc. 10 256 Discrete 0 10t 35 3
PSI,es 10 256 GL. 10% 107! -35 3
mSIyjeg 1 256 GL. 10% 107! -35 3
PSI 7 10 256 GL. 107 107" -35 3
mSI,e7 1 256 GL. 107 100" -35 3
PSIyies 10 256 GL. 10° 107! -35 3
mSl,e6 1 256 GL. 10° 107! -35 3
PSI; s 10 256  G.L. 0 5-102% -35 3
mSI;sen 1 256 G.L. 0 5-102 -35 3
PSI, 2.1 10 256 G.L. 0 2-100" =35 3
mSI, o1 1 256 G.L. 0 2-100" =35 3
PSI; 35 10 256 G.L. 0 100" -38 3
PSIz; 3o 10 256 G.L. 0 100" -32 3
S 10 256 G.L. 0 100" =35 05
mST: s 1 256 G.L. 0 100" -35 05
PSI | 10 256 GL. 0 10" -35 1
mSI* | 1 256 G.L. 0 100" -35 1
PST’ 10 256 G.L. 0 107" -35 3
mST" 5 1 256 G.L. 0 107" -35 3

Ly XLy  ¢/(Qn)  pY  Tomin K* X
(ZxZ)n/Q* 20 1107 (30,0,30)" 107°

Notes. Simulation parameters, with ny the number of dust species, Ngiq
the spatial resolution, Sample the sampling method of the size distribu-
tion (G.L. stands for GL method and Discrete for the discrete method),
« the dust diffusion, T, min and 7, ma the domain of stopping times, 8
the slope of the size distribution (omrn(Ts,8), see (29)), u the dust-to-
gas ratio, L the size of the shearing box, ¢ the sound speed, pg the gas

density, K the non-dimensional wavenumber and X the amplitude of
the perturbation. All the simulations are perturbed by the same sinusoid
except the simulations of varying dust-to-gas ratios that are perturbed
by white noise with a standard deviation of 10~*¢;.

the numerical simulations. The analytical growth rate can be
determined from the frequency w (24); for the polydisperse case
wpst = 0.42030787 + 1 0.04858883 and for the monodisperse
case wpst = 0.34801869 + i 0.4190302. The time evolution of
perturbations amplitude for a wave is shown in Figure 2A. The
amplitude is calculated with a Fast Fourier Transform (with the
software package SciPy; Virtanen et al. 2020). This amplitude
can determine a growth rate corresponding to the numerical
approach before it transitions into the non-linear regime for our
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Fig. 2. Time evolution of the mSI (run: mSI;g4) and PSI (run:
PSI1014;4). The dot-dashed line shows the mSI run, the solid lines show
the ten individual dust species of the PSI run, and the dotted line is
the sum over all the dust species. Plot A shows the amplitude of the
largest mode in the shearing box (A sinusoid with wavenumber K =
(30,0, 30)"), plot B shows the maximum density in the shearing box,
plot C shows the mean density at every snapshot’s 99" percentile and
plot D shows the average probability density function of the normalised
density distribution in the non-linear regime between (140 < Qr < 160).

runs. This happens at Qt ~ 125 for PSI runs and Qr ~ 30 for
the mSI runs. In Figure 2, the coloured solid lines correspond to
individual dust species at different Stokes numbers for the poly-
disperse case PSI10gy4, and the dotted line is the amplitude of
the sum of the dust species. The monodisperse dust species at
7, = 0.1 Q7! is shown as a dot-dashed line. The growth rates
and error between the analytical and numerical growth rates are
given in Table 2

In the linear regime, it is a lot easier to converge with spa-
tial resolution than with the number of dust species (see Krapp
et al. 2019; Zhu & Yang 2021). The error in the growth rate is an
indication of how good the sampling method approximates the
continuum limit of the integrated momentum transfer between
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Table 2. Growth rates.

Run J(wa  I(w, AB(w)/B(w)a. x100%
mSTies 0419030 0418981(4)  —0.011760(10)%
PSI5 924 0.048 589 0.0487270(4) +0.2845(7)%
PSI10:924 0.048589 0.04862045(6) +0.06511(8)%
PSI20:924 0.048589 0.04861846(23) +0.06099 (3)%
PSI10s5;; 0.048589 0.048 6284 (6) +0.08135(9)%
ST 0419030 0418966(4)  —0.015 150 (13)%
PSIS5 0.048 589 0.0487456(6) +0.3227 (4)%
PSI10 0.048 589 0.048 6402 (8) +0.105 69 (18)%
PSI20 0048580 0.0486381(4)  +0.10153 (9)%
PSI104isc. 0.048589 0.043094 (5) —-11.308 (12)%
PST204. 0.048580 0.0473176(11) —2.616(6)%
PSI404isc. 0.048 589 0.048395(7) —0.399 (6)%

Notes. The error between the growth rate calculated analytically J(w),.
and the growth rate from the numerical simulations J(w)y at K =
(30,0,30)".

104 4 1 1 1 1 1 1 L
E Distribution .
B PP Discrete
3 1 — Gauss-Legendre
10" 7 ng
] — 10
] - 20
— 40
2 10% 3
10" 3 -
] ("(,ef»""' Analytical
1 / —_— xexp(S(w)-t)
100 T T T T T T T
0 20 40 60 30 100 120 140 160

Fig. 3. Normalised amplitude of the largest mode of the shearing box (a
sinusoid with a wavenumber K = (30, 0, 30)7) for different numbers of
dust species and sampling methods. The runs with ten dust species are
shown in blue, 20 dust species are shown in orange, and 40 dust species
are shown in green. The solid line indicates the GL method (27), and
the dotted line indicates a log-linear sampling method (runs: PSI20,
PSI10, PS1404isc., PSI204;isc., and PSI104;isc.). The dot-dashed line
is an analytical solution of the growth rate calculated with psitools.

the gas and dust (10). The error in the momentum transfer in the
linear regime depends mainly on three parameters, the number
of dust species used to sample the size distribution, the sam-
pling method, and the spatial resolution. When we use the GL
method, the error in the growth rate compared to the analytical
value already converges between ny = 5 and 10, see Table 2
This is also visible if we show the amplitude growth of the
largest wavevector K = (30, 0, 30) between the GL method and
the discrete method, see Figure 3. In this Figure, the GL method
(solid line) agrees with analytical results from psitools for
both ny = 10 and 20. While the amplitude of the discrete method
(dotted line) also converges with the analytical results, they are
significantly less accurate than the GL method at the same num-
ber of dust species. Using the discrete sampling method, the
error in the growth rate at ng = 40 is similar to the error using
the GL method when using only 74 = 5 (Table 2), which is a lot
less computationally expensive to run.
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Fig. 4. Efficientcy of dust compression as a function of Stokes number.
The top plot shows the growth rate in the linear regime at wavevec-
tor K = (30, 0, 30)” for setups with different maximum Stokes numbers
Tsmax- Lhe solid orange and blue lines are the analytical growth rates (for
mSI and PSI, respectfully) calculated with psitools (McNally et al.
2021). The diamonds indicate the fitted values of the growth rate in
the linear regime of the numerical simulations. In the bottom plot, the
diamonds correspond to the fitted values of the saturated amplification
factor of the maximum density in the non-linear regime. The solid grey
lines indicate the values for run PSI10, and the dotted grey line indi-
cates the average Stokes number of the size distribution of run PSI10.

The growth rate is also dependent on the maximum Stokes
number, this is visualised in the top plot in Figure 4. The analyt-
ical growth rates calculated with psitools are visualised with
the solid lines. We see that the growth rates decrease for lower
Stokes numbers and are always lower for PSI than mSI. Even if
we compare the growth rate of the mSI at the average Stokes
number of a PSI size distribution, the growth rate of PSI is
still smaller. For the specific example of the PSI with 7 max =
0.1Q7!, which has an average Stokes number 7, = 0.037Q!,
the mSI growth rate is still 2.803 times higher than the growth
rate of the PSI. The Stokes number of the mSI would have to be
7, = 0.0321 Q! to have a similar growth rate as the PSI.

The fitted values of the growth rates of the numerical runs
agree well with the analytical growth rates in the top plot of
Figure 4 for 7, max 2 0.035Q7!. For lower 7, however, we see
the fitted mSI growth rates (red diamonds), start to deviate from
the analytical growth rates (orange line). This can be explained
by faster growing high-K modes; these get excited by small
numerical errors and can boost the power P(K) at wavenum-
ber K = (30, 0,30)7 and can even become the largest perturbed
mode before the instability reaches the non-linear regime. This
happens for runs mSI; <035, run PSI; 5.5, and run PSIg_35.
This is also visible in the time evolution of the amplitude, where
the amplitude suddenly increases a lot faster, such as the blue
line in the top plot of Figure 14.

5. Non-linear regime

When the amplitude of the perturbation gets high enough, the
wave will break and transition to a turbulent non-linear state,
showing vortices-like motion in the Xx,z-plane. Even though the

non-linear regime is not analytically tractable, the fact that it
saturates allows us to quantify it statistically; therefore, we can
extract trends from this regime. The important feature is that
the non-linear regime will produce high-density structures. This
is also important for planet formation because the high-density
structure can lead to clumping when we include self-gravity, and
then the dust clumps can collapse into planetesimals when the
Roche density is exceeded (see, e.g. the strong clumping cri-
teria of Li & Youdin 2021). The extent of the trapping in the
monodisperse case depends on the spatial resolution and Stokes
number because we consider the dust to be a pressureless fluid
with no diffusion. The spatial resolution in a grid-based hydro-
dynamical code determines the minimum size of structures that
can be resolved. This also puts a constraint on the size of the
clump, and larger clumps will have smaller maximum densi-
ties; the convergence of spatial resolution is further discussed
in Section 5.2.1.

We expect higher dust densities for species with higher
Stokes numbers since smaller dust is strongly coupled to the gas,
which in turn is (nearly) incompressible. This means that the
density distribution for smaller dust sizes will be more homo-
geneous, affecting the amplification factor for monodisperse
distributions, see the bottom plot in Figure 4. In this plot, we
can see that the amplification factor of the maximum density
becomes lower for lower Stokes numbers. This is also the case
for the individual dust species in PSI runs, where the smaller
dust sizes are distributed more homogeneously. In Figure 5, we
look at a snapshot of the normalised density for all the com-
bined dust and the different dust sizes of run PSI10;¢y4, where
we can see that the dust sizes are correlated; low-density and
high-density regions occur in the same place for different dust
species. The figure also shows that the amplification factor is
lower for the smaller dust species. The normalised density for the
largest dust bins shows more structure than the smallest species
and is also visible if we plot the time evolution of the max-
imum density and the time-averaged density distributions, see
Figure 2B and D, respectively. In Figure 2B, the dot-dashed line
shows the monodisperse case from run mSI;g,4 and the solid line
the individual dust species, where the colour indicates the Stokes
number and the average Stokes number of the sum of the size dis-
tribution. In this figure, we can see that the amplification factor
for mSI is largest at 484 + 324. The amplification factor of the
PSI is significantly lower at 27.3 + 4.6.

Considering the strong 7, dependence of the SI, comparing
monodisperse and polydisperse simulations with a monodisperse
7, equal to the maximum of the dust distribution of the corre-
sponding polydisperse distribution is expected to yield higher
dust densities in the monodisperse case, see bottom panel of
Figure 4. Correcting for this bias, comparing polydisperse sim-
ulations to monodisperse ones with a 7, equal to that of the
average of the size distribution still shows higher dust densities in
the monodisperse case. For the specific example with run PST10,
the average Stokes number is 7, = 0.037Q~!. At this Stokes
number, the mST amplification factor of the maximum density is
still 3.5 times higher than the amplification factor of run PSI10.
The Stokes number of the mSI would have to be 7, = 0.02 Q™!
to have a similar amplification factor. This means that a PSI can
not be represented by an mSI run with properties that are derived
from the averaged properties of the PSI setup, such as the average
Stokes number and total dust density of the size distribution.

The PSI s not a simple summation of individual discrete mSI
cases at different Stokes numbers. One way the PSI differs from
mSI is in terms of growth rates. The growth rates of all the indi-
vidual dust species are identical for the PSI case, but this depends
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Fig. 5. Snapshot of the normalised density in the non-linear regime (Q¢ = 166) for the PSI run PSI10:4,4. The figure shows the density of the sum
of the dust species (upper left), gas (lower left), and nine of the ten individual dust species with an increasing Stokes number.)

on the Stokes numbers in the mSI case, see Section 6.2. This also
translates into the transition time of the individual dust species
of the PSI. They all transition simultaneously (see Figures 2A—
C), whilst the transition time mSI changes with Stokes numbers
(however, the shared point of transition for PSI is also different
for different Stokes ranges, see Section 6.2). There are also dif-
ferences between discrete mSI cases and individual dust species
of the PSI. The amplification factor is lower than the mSI case,
and if (see Figure 5). The dust sizes are correlated; low-density
and high-density regions occur in the same place for different
dust species.

5.1. The size distribution in the clumps

In Figure 2B, we can see that when considering the maximum
dust density, the amplification factor increases monotonically
with 7, as expected from linear theory and non-linear monodis-
perse simulations. However, in Figure 2C, we plot the mean of
the top 1% of the dust density. We see that the trend is sub-
tly different: the dust density increases with 7, for most of the
Stokes number range, but the maximum density occurs at 7y,
slightly smaller than the maximum. Since the top 1% of the dust
density probes more extended structures than the absolute max-
imum dust density, this indicates that there is a peak in the size
distribution in the clumps.

We can better visualize this peak in the size distribution by
plotting the size distribution o°(75). In Figure 6, we show the time
evolution of a polynomial that passes through the GL points of
PSI simulation (from run PSI10:4;4) throughout the simulation.
The top panel of Figure 6 shows size distribution at the 99" per-
centile, with the dotted line indicating the MRN size distribution

A158, page 8 of 16

' . 7 160
!
< i
~ | TS y ! 140
S : i :
5 10 Analytical @ i |
R - Tatves ] ;
ISy —e | Em i ! F 120
-----
' g L 100
8 &
°
E” F 60
9
&
A
$ L 40
)
: 20
10° . .
0.99 i E
0.98 T 1 1 0
1()73 1072 1071
Ts

Fig. 6. Top: mean size distribution in the 99" percentile at different
times. The dotted line indicates the size distribution at Qf = 0. Bottom:
same size distribution normalised by the background-size distribution
0(t,). The dashed line indicates the Stokes number corresponding to
the resonant velocity, and the dot-dashed line is the average Stokes num-
ber of the size distribution at Qf = 0

at the start of the simulation. The bottom panel shows the same
size distribution normalised by the background distribution and
has a subplot zoomed at smaller densities.
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The size distribution in the non-linear regime (Qf > 125) set-
tles into a trend with increasing densities at higher 75, but shows a
clear peak. The peak in the size distribution could indicate either
a resonance corresponding to the drift velocity or an inherent
dependence on the Stokes range. From the mSI theory of the
RDI, we can expect a strong response at size densities where the
radial phase velocity of the perturbation matches the background
radial drift velocity at a certain Stokes number:

y\]gt)) _ wg .

(3D

The PSI does not have this simple response with size distribution
because of the distribution of dust sizes. There is a range of radial
drift speeds u, (see Eq. (19)) dependent on the dust size, whilst
the resonance can only be satisfied by a single velocity. However,
we can use equation (9) and (19) to find the mean radial drift
speed i1’ of the size distribution. The mean drift velocity can be
compared to the mSI drift speed vdg(rs) where we define a res-
onance size 7, where v3)(r5) = #1’(c) holds (from Paardekooper
et al. 2021). In Figure 6, the Stokes number corresponding to this
response is indicated with a vertical dashed line, and the average
Stokes number 7V is indicated with the dot-dashed line. The peak
of the size distribution visually overlaps with the resonance size
but does not convincingly correspond to it. On the other hand,
the peak in the size distribution can be an inherent feature of
the Stokes number range and is affected by the maximum Stokes
number T max.

5.2. Convergence

It is also possible that the peak in the size distribution corre-
sponds to a numerical error. If this is the case, the peak should
depend on the spatial resolution or the number of dust species
used to sample the continuum size distribution. Another possi-
bility is that the polynomial interpolation through the density of
the individual dust species at the Stokes numbers that are sam-
pled through the GL points will appear to indicate a peak, whilst
the densities of the discrete dust species do not indicate this. We
can validate this by using a larger number of dust species as well
as comparing the GL method to the discrete method.

5.2.1. Spatial resolution

The spatial resolution directly limits the smallest structures that
can be resolved within the simulation and the maximum den-
sity that is possible to create through clumping. Together with
the fact that the dust fluid is fully compressible (unlike the gas),
the simulations will never converge with spatial resolution unless
dust diffusion is implemented, see Section 6.1. The dust without
diffusion can be compressed into arbitrarily small volumes, and
the maximum density in the non-linear regime will increase with
increasing spatial resolution. This increase in density is not as
strong if we look at the mean of larger percentiles. This is visi-
ble in Figure 7, showing the amplification factor for the mSI and
PSI simulations at a spatial resolution of 256, 512 and 1024. For
the PSI runs, the saturated mean density at the 99™ percentile
and maximum density increases with resolution, although the
difference between resolutions is less at the 99™ because we are
analyzing larger structures. The linear regime of the PSI and mSI
is not affected by the resolution, and the transition from the lin-
ear regime to the non-linear regime happens at the same time
for different spatial resolutions, indicating that the linear regime
already fully converged before a spatial resolution of 256 x 256
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Fig. 7. Normalised (mean) density at the densest pixel and at the
99t percentile (indicated by darker and lighter colours; respectively)
for different spatial resolutions. The mSI runs at different resolutions
are indicated with the dotted line for run mSI;g;4, mSIs;;, and mSI
using green, orange, and blue, respectively. The PSI runs PSI10;4,4,
PSI10s;,, and PSI10 have the same colour coding as the mSI runs.
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Fig. 8. Normalised mean size distribution at the 99™ and 90™ percentiles
and between 140 <Qr <160 using the same PSI runs and colour scheme
as Figure 7.

(Table 2). The amplification factor of the 99" percentile in the
saturated regime for a resolution of mSIs;, is lower than at a
resolution of mSI,se, this is counter-intuitive but not significant.
The error is smaller than the 1 — o variation of density, and the
maximum density of mSIsy; is higher than mST at a Ngiq = 256°,

The overall shape of the peak in the size distribution in the
highest density regions is consistent between resolutions, shown
in Figure 8. The height of the size distribution increases slightly
at higher Stokes numbers. At higher resolutions, the maximum
amplification factor increases; therefore, 9gth percentile covers
less area, decreasing the relative presence of smaller Stokes
numbers that are more homogeneously distributed around the
shearing box. This is also why the size distribution is flatter when
we average over the 90" percentile (also shown in Figure 8). We
average over a larger area, where the smaller, more homogeneous
dust species are relatively more abundant compared to the higher
Stokes numbers that are more clumped. The simulations follow
the relation between the overabundance of larger Stokes num-
bers in the highest-density regions and spatial resolution, but the
peak (underrepresentation of the largest Stokes numbers) also

6 In the mSI runs, we observe a numerical artefact in the gas density
on the scale of the grid cells, the PSI is unaffected. A similar error in
the mSI is also mentioned in Section 3.5.5 of Benitez-Llambay et al.
(2019).
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Fig. 9. Normalised mean density at the 99™ percentile for different num-
bers of dust species from run mSI;4,4 (indicated with a dotted pink line),
run PSI5:g;4 (in blue), run PSI10,4,4 (in orange), and run PSI20,g,, (in
green).
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Fig. 10. Normalised mean size distribution at the 99™ percentile and
between 135 < Qf < 145 using the same PSI runs and colour scheme
as Figure 9. The dashed line indicates the Stokes number at resonance
velocity v4%(t,) = #%(0), and the dot-dashed line shows the average
Stokes number at Qf = 0.

stays consistent with different resolutions. There is a weak trend
in the position of the peak to drift to smaller stroke numbers with
higher resolution, although the change in Stokes number is a lot
smaller than the difference between different-sized dust species.

5.2.2. Number of dust species

There are no big differences between simulations at different
numbers of dust species in the linear regime (Section 4), but
Figure 9 does show that the transition point from the linear
regime to the non-linear regime shifts slightly with ny = 10
being slightly earlier and ny = 20 slightly later. The fact that the
smallest sample rate is in the middle does not indicate any clear
trend, but this can also be that nq = 5 is still far from converg-
ing. Because the saturation level between nyg = 10 and ng = 20
is similar, whilst the saturated amplification factor of ng = 5 is
significantly higher.

Figure 10 shows that mean size distribution in the 99" per-
centile does not show any clear correlation between dust sizes
for ng = 5 except an increased abundance of larger Stokes num-
bers. There is a clear peak in the size distribution at ny = 10 and
ng = 20, where the peaks appear to be more skewed at a higher
sampling rate of nqg = 20 compared to nqg = 10. Although this
sharper drop at the largest Stokes numbers does not appear for
ng = 20 at a lower spatial resolution of 256 X 256, see Figure 11.
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Fig. 11. Normalised mean size distribution at the 99™ percentile and
between 150 < Qr <200. The top plot shows the PSI run with ten dust
species sampled from the GL in blue (run PSI10) and the PSI run with
ten dust species uniformly sampled from a logarithmic scale in green
(run PST104;4c.), and the bottom plot shows the PSI run using 20 dust
species sampled from the GL in orange (run PSI20) and the PSI run
with 20 dust species uniformly sampled from a logarithmic scale in pink
(run PSIZ@diSC_ )

The size distribution remains smooth in size space for an increas-
ing number of dust species, indicating that the GL method is
also a good approximation for the continuum in the non-linear
regime.

5.2.3. Sampling method

As discussed in Section 3.1, the GL approximates the integral for
the impulse transfer between the dust species and the gas (10) is
different from the uniform sampling method in logspace, that we
defined as the discrete method. The error between the continu-
ous limit and discrete integral decreases faster with the number
of dust species using the GL method than using the discrete
method, see Section 4.

The effect of the GL sampling method in the non-linear
regime is less straightforward because the local size distribution
can change significantly. It is possible that the size distribu-
tion can become more monodisperse locally and that the back
reaction on the gas will be dominated by only part of the size
distribution. This could affect the integration error. It is also pos-
sible that the peak in the size distribution in the densest regions
could be an artefact of the weights or location of the roots of the
polynomial or the projection of roots x; between [—1; 1] to the
Stokes numbers 7, ; within the Stokes range [ min; Ts, max], glven
by (27) and (28). Therefore, we reconstructed the size distribu-
tion of the simulation from the discrete method (run PSI104;c.
and PSI204;isc.) and compare it to the GL method, shown in
Figure 11.

In the case of 10 dust species (Figure 11 top panel), the slight
offset between the values of Stokes numbers of the two sampling
methods means that the discrete sampling (shown in green) of
the individual dust bins does not sample the size distribution
at Stokes numbers larger than the peak. Therefore, we cannot
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conclude if there is a peak in the size distribution by looking at
ng = 10, but the discrete method does follow the same general
trend of the GL sampling method and are not in disagreement.

At a higher dust sampling rate of ng = 20 (Figure 11 bot-
tom panel), where the discrete distribution does sample Stokes
numbers larger than the peak, we see at least a reduced presence
of the largest Stokes number that is consistent with the peak in
the size distribution seen in all the simulation runs using the GL
sampling method. This shows that the peak in the size distribu-
tion in the densest regions is physical rather than a numerical
artefact.

6. Parameter study

To get a better indication of where the peak of the size dis-
tribution comes from and what can influence its location, we
did a parameter study where we covered different values for
the dust diffusion coefficient @, maximum Stokes number 7 max,
the slope of the size distribution 8 and the dust-to-gas ratio u, see
Table 1. This parameter study is done at a fixed spatial resolution
of Ngrig = 256 and using 10 dust species for the polydisperse
simulations.

6.1. Diffusion

The diffusion coefficient @ is a dimensionless parameter that
quantifies the strength of the turbulence in protoplanetary discs
and the viscosity v = acgH. (Shakura & Sunyaev 1973). We used
the a coefficient for the gas and dust diffusion in FARGO3D. The
dust diffusion is modelled with a continuity equation for (pres-
sureless) dust fluids, spreading mass depending on the gradient
of the concentration (see appendix of Weber et al. (2019) for the
implementation in FARGO3D).

Turbulence in a protoplanetary disc stirs the dust and can
work to concentrate or disperse it, making it possible to form
local regions of higher dust densities but also to destroy the
formed substructure and clumps (Johansen et al. 2007; Yang
et al. 2018; Schéfer et al. 2020; Lim et al. 2024a). The diffu-
sion coefficient is important for addressing the finite resolution
of hydrodynamical grid codes, where implementing a dust dif-
fusion model can be a solution to the infinite compressibility of
dust in the simulations and the unresolved turbulence. An impor-
tant caveat is that the alpha model is limited on the small scales
and can not capture the turbulence concentrating effect.

In the linear regime, the growth rates get smaller when
the diffusion coefficient increases for the mSI (see analytical
work of Youdin & Goodman 2005; Umurhan et al. 2020;
Chen & Lin 2020) and for PSI (see McNally et al. 2021). The
growth rates are shown in the top plot of Figure 12, for runs
[mSIa,le—& mSIa,le—% mSIa,le—G, PSI(Y,]C—S? PSIa,le—% PSIa,le—6]
where for the last polydisperse run with @ = 1075 there is no
exponential growth and PSI does not develop. The lower plot
shows that diffusion also affects the amplification factor of
the SI, lowering the amplification factor for higher values of
diffusion coefficients. The densities corresponding to the 99"
percentile are also more variable in time at higher diffusion
coefficients.

The peak in the size distribution exists for all diffusion coef-
ficients where the PSI was able to form clumps (Figure 13).
This means that the peak is independent of numerical or physi-
cal effects at the smallest scales, which are strongly damped by
diffusion.
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Fig. 12. Time evolution of the mSI (runs:

[mSI*, mST, je_5,mST, 1e-7,mST, 1e6]) are shown with dotted lines
and PSI (runs: [PSI*,PSI, je-s,PSI4 1e-7, PS4 1e-6] ) are shown with
solid lines for different dust diffusion coefficients @. The colour
indicates the diffusion coefficient, where no diffusion is shown in blue,
@ = 1078 in orange, @ = 1077 in green, and @ = 10~® in pink. The
top plot shows the amplitude of the largest mode in the shearing box
(A sinusoid with wavenumber K., = 30), and the dashed lines and
dash-dotted lines show the analytical results calculated with psitools
for the corresponding a. The bottom plot shows the normalised mean
density at the 99" percentile for every snapshot.
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Fig. 13. Normalised mean size distribution at the 99" percentile and
between 380 < Qr <450 for a dust diffusion coefficient of @ = 0 (run
PSI10) in blue, @ = 10~® (run PSI, j._g) in orange, and @ = 1077 (run
PSI, .-7) in green.

6.2. Stokes range

The larger dust species have a bigger impact on the momentum
transfer of the PSI. This means that the location of the discon-
tinuous upper boundary of the size distribution will impact the
PSI. For the mSI, the Stokes number influences the growth rate,
lower Stokes numbers have lower growth rates, see top plot of
Figure 14. This trend is also visible for the PSI, but the run
PSI; s.—> did not grow at the perturbed wave of K., = 30,
although around a time of 90 Qt there is growth. This could
be explained by small numerical errors that excite a different
wavenumber K than the initial perturbation that does have a
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Fig. 14. Time evolution of the mSI (runs: [mSI*,mSI, 5.2, MSI; 2e—1])
are shown with a dotted lines and PSI  (runs:
[PSI*,PSI, se—2,PSI 2e-1]) are shown with solid lines for differ-
ent peak Stokes numbers T, max. The colour indicates maximum Stokes
Number with 7, = 0.05 in blue, 7 = 0.1 in orange, and 7, = 0.2 in
green. The top plot shows the amplitude of the largest mode in the
shearing box (A sinusoid with wavenumber K, , = 30), and the dashed
lines and dash-dotted lines show the analytical results calculated
with psitools for the corresponding @. The bottom plot shows the
normalised mean density at the 99™ percentile for every snapshot.

higher growth rate. The saturated amplification factor is not
strongly affected by the upper boundary of the size distribution
(bottom plot Figure 14).

Changing the maximum Stokes number 7 ,x Will affect the
size distribution in the upper 99" percentile. The peak of the
size resolution in standard run PSI10 lies outside of the Stokes
range of run PSI; s._», but in this run, we still observe a peak
in the distribution now at a different location. This means that
the peak location is dependent on the initial size distribution
and is always slightly smaller than the maximum Stokes num-
ber and thus dependent on 7, . Changing the Stokes range
also changes the bulk properties of the distribution, such as the
average Stokes number 7 and the average drift velocity #%(c).
The bulk drift velocity corresponds to a resonance size s where
va’(rs) = #@%(0), see Section 5.1. This resonance size changes for
the different Stokes ranges and is indicated with a vertical dashed
line in Figure 15. The location of the peak could also depend on
the resonant size. Distinguishing between the resonant size and
maximum Stokes number cannot be done by only changing the
range of Size distribution, but we change the resonant size with-
out changing the maximum Stokes number by changing the slope
of the size distribution (Section 6.3). Another thing to take into
account is that if the maximum Stokes number of the size distri-
bution gets close to unity or even higher, the fluid approximation
of the dust particles may not hold anymore.

6.3. Slope of size distribution

Varying the slope of the size distribution will change the bulk
properties of the distribution without changing the Stokes range.
Decreasing the slope of the size distributions power law will
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Fig. 15. Normalised mean size distribution at the 99™ percentile and
between 380 <Qr <450 for a dust diffusion factor of @ = 0 (run PSI10)
in blue, @ = 1078 (run PSI, . g) in orange, and @ = 1077 (run PS1, ;. 7)
in green.
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Fig. 16. Normalised mean density at the 99™ percentile for the different
size distributions. Run PSI;_3, is shown in blue (8 = —3.5), run PST10
in orange, and run PSIg_3g in green.

skew the distribution to have more mass and momentum trans-
fer at a Stokes numbers closer to the upper boundary 7 max.
This causes the PSI to be more similar to mSI, and as with the
mSI, the PSI with the smaller slope run PSIg_3, has a higher
growth rate and saturated amplification factor than run PSTI10 &
PSIg_33 (see Figure 16). Similar to run PSI; s._, run PSIg_3g
grows very slowly at K = (30,0, 30)” but get excited at another
higher wavenumber by small numerical errors that overtakes the
perturbed wave at K = (30, 0,30).

The resonant Stokes number corresponds to the resonant
velocity of the whole size distribution dependent on the slope
(0a(s) = #2(0)), 75 at vy is smaller for smaller B. If the loca-
tion of the peak in the size distribution in upper percentiles is
dependent on the resonant Stokes number, the peak would shift
for different initial slopes of the size distribution. In Figure 17,
we see that the location of the peak in the size distribution does
not shift to the same extent as the Stokes number corresponding
to the resonant velocity. The shift in the location of the peak is
too small to quantify if the location of the peak is dependent on
the resonant velocity.

6.4. Dust-to-gas ratio

The SI in the low dust-to-gas ratio regime ¢ < 1 is a Reso-
nant Drag Instability (RDI) (Squire & Hopkins 2018b), and we
can see from Figure A2 in McNally et al. (2021) that there
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Fig. 17. Mean size distribution at the 99" percentile and between 175 <
Qr <225 for different power law slopes with 8 = —3.2 (run PSIg_3,) in
blue, § = —3.5 (run PSI10) in orange, and 8 = —3.8 (run PSIz_33) in
green.
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Fig. 18. Normalised mean density at the 99" percentile for different
dust-to-gas ratios. The figure shows u = 3 (run PSI, 3) in green, u = 1
(run PSI, ;) in orange, and u = 0.5 (run PSI,qs) in blue.

is no substantial growth for the PSI in the low dust-gas-ratio
regime (u = 0.5). This is a direct consequence of the adverse
effect of the size distribution on the RDI streaming instability
(Paardekooper & Aly (in prep.)). We can compare this to numer-
ical simulations at different dust-to-gas ratios that, if perturbed
with white noise, should be able to grow in their fastest-growing
mode. This is done with three different dust-gas ratios in runs

PST} ,, PSI" | and PST ., these simulations are perturbed by
s s 0.

white noise in the gas, where the standard deviation is 107 - ¢.
When we perturb the gas with white noise, the run at u = 3
reaches the saturated non-linear regime after Qr ~ 75, com-
pared to Qt ~ 125 for the standard run (PSI10) where we only
perturbed the wavevector K = (30,0, 30)T. Similar to previous
work (e.g. Yang & Zhu 2021; Zhu & Yang 2021; McNally et al.
2021; Krapp et al. 2019), lowering the dust-to-gas ratio will also
decrease the growth rate. The run at a dust-to-gas ratio y = 1
(PSI;‘I) takes more than four times as long to reach the satu-

rated non-linear regime at Qr ~ 400. However, in contrast to the
mSI case, the saturated amplification factor at the 99™ percentile
has a similar saturated value at 4 = 1 as the one of u = 3, see
Figure 18. The normalised size distribution at the 99™ percentile
of 4 = 1 is also very similar to u = 3, showing the same peaked
structure. At a dust-to-gas ratio of u = 0.5, there is no significant
growth of the instability after the full length of the run Q¢ = 500.

7. Substructure in clumps

The peak in the size distribution at the upper 99" percentile
indicates that there is some substructure in clumps. Part of the
substructure can be explained by the difference in the density
distribution for the different Stokes numbers (Figure 2D). Caus-
ing the general trend that the larger Stokes are overrepresented
within the 99™ percentile of the sum of dust species (the area of
99" percentile contour of the larger Stokes numbers is smaller
than the sum of dust and area of the smaller Stokes numbers
is larger). This only leads to the overabundance of larger dust
sizes in the clumps but does not explain the peak in the size
distribution. This is also visible in the dust-size distribution in
Figure 9a of Yang & Zhu (2021), where high-u run (Af) shows an
over-representation of the largest dust sizes in the denser regions.

An effect that can lead to the substructure and a peak in
the size distribution is a spatial separation between the highest-
density regions of different Stokes. This Stokes-dependent sepa-
ration can occur through the PSI, where the different dust sizes
undergo different drag forces when drifting through the gas.
Causing the most decoupled dust sizes (largest Stokes numbers)
to be in front of the smaller Stokes sizes in the clumps in the
drift direction. We can visualise this by plotting the contour of
the densities 99" percentile for the different dust species. This
is done for the four largest dust sizes and the sum over all dust
species in Figure 19. In this figure, we can see that the individ-
ual clumps are made of adjacent filaments of the individual dust
species, where we find these filaments are in order of size, with
often the largest Stokes number on the left. This corresponds
to the direction of the background pressure gradient and drift
direction.

The density contour indicates where most of a specific dust
is located, but the density and size distribution are more discon-
tinuous. In the numerical simulation, we always need to use a
discrete number of dust species (nq = 10 for run PSI10:4;4).
Therefore, we see some gaps between the contours. These
become smaller if we take the limit to a continuous size dis-
tribution (ng — 00), but the averaged behaviour of the clumps is
already converged at nqg = 10 (Section 5.2.2). Within a contour
of a dust bin, the size distribution is not monodisperse. However,
the spatial dispersion in the clumps causes specific regions to be
more monodisperse compared to the background distribution.

The spatial separation also causes the peak size distribution
in the highest percentiles because the largest Stokes numbers are
slightly in front of the rest of the clump, causing part of the
dust to fall outside of the percentile contour of the sum of dust
species. More of the largest dust species are slightly ahead of
the rest of the clump and therefore less present in the densest
regions of the sum of the dust species. This showed up in the
averaged size distribution at 99™ percentile in density as a peak
(see Figure 6).

When we take the average size distribution over the contour
of individual clumps, we find that the individual clumps also
form a peak, and the shape of the size distribution is consis-
tent with the shape of the average size distribution, indicating
that the peak is not a symptom of averaging over high-density
regions that have different individual compositions.

8. Discussion and conclusion
8.1. Maximum dust density

One of the main results of this paper is that the maximum
density of the dust is significantly lower for the PSI than the
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Fig. 19. Contour of density at the upper 99™ percentile for the sum of the density and the dust bins of the four largest Stokes numbers. The figure
shows the substructure of the clumps in the non-linear regime (snapshot at Qr = 166.5) for the PSI (run PSI10;4,4).

mSI ~ O(10); this will make it harder to reach a large enough
amplification, where clumping can lead to planetesimal forma-
tion. The natural clumping criteria in 3D is the Roche density,

o2
PR = 426’

with clumping expected for p > pg. We follow Li & Youdin
(2021); Lim et al. (2024b) and apply the same criteria in 2D,
but it should be noted that 3D simulations are required to assess
clumping using the Roche density. When assuming a low mass
disc with a Toomre parameter Q of 32 (Toomre 1964), the Roche
density pr =~ 180pg. The mSI runs reach the Roche density,
but in the PSI simulations we reach a maximum density of
Pdmax = 82+ 14,02 (see run PSI10;¢y4 in Figure 2), which would
be below the strong clumping criteria of Li & Youdin (2021);
Lim et al. (2024b), making it more difficult to form planetesimals
through the PSI compared to the mSI. However, since the dust is
modelled as a pressureless fluid, a higher spatial resolution will
lead to larger densities, possibly exceeding the Roche density.
Another important consideration is that the model we used
is simplified in several ways. First of all, we considered only
two spatial dimensions. Therefore, the highest-density regions
are not true clumps in 3D but are sheets of higher density in

(32)
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2D. To represent real clumps that could end up becoming plan-
etesimals, we need to consider the 3D simulations; this could
affect the shape of the clumps and, in turn, also affect the spatial
separation we observe in the highest-density regions between the
different dust species.

Secondly, the simulations do not consider self-gravity. This
does not prevent us from comparing to clumping criteria; see,
for example, Li & Youdin (2021), they studied clumping in 2D
simulations without doing self-gravity using the Roche density
as criteria. Lim et al. (2024a)’ also shows that switching on self-
gravity in 3D simulations of the SI only significantly affects den-
sity structure if the maximum density already exceeds the Roche
density. Although self-gravity could affect the substructure
in the formed clumps, studying the PSI without self-gravity
would not significantly change the clumping criteria.

The biggest simplification is that our simulations are
unstratified, while previous simulations of the multi-species
streaming instability have mostly been stratified 3D simula-
tions (Bai & Stone 2010; Schaffer et al. 2018, 2021; Rucska &
Wadsley 2023). Although these simulations show similar trends,
such as larger dust species playing a larger role in the formed

7 Section 3.2.
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structure, they cannot directly be compared with the unstratified
simulations in this paper or from Yang & Zhu (2021). Lin (2021)
shows that the dominant instability in stratified discs is driven
by the vertical gradient in the azimuthal velocity of the dusty
gas (vertical shear), which provides a source of “free energy”
resulting in an instability through partial dust-gas coupling. The
vertically shearing streaming instability (VSSI) has fast growth
rates compared to the "classical" SI and will likely form the ini-
tial turbulence in stratified simulations. Li & Youdin (2021) find
that the linear unstratified SI growth rates are not a good predic-
tor for SI clumping in stratified simulations and that analytical
growth rates are surprisingly similar to non-clumping runs.

Lastly, the simulations in this paper are isothermal; accord-
ing to Lehmann & Lin (2023), the non-isothermal SI will
suppress sufficiently small-scale modes through radial buoyancy
only if the gas cooling timescale is comparable to the dynami-
cal one (8 = 1). However, the linear analysis in this paper has
been done at larger scale modes (K = 30) and is less affected if
we assume the SI occurs in specific regions where the cooling
occurs on timescales roughly similar to dynamical. Whether this
affects the clumping would have to be tested with non-isothermal
simulations.

8.2. Gauss-Legendre integration

We have introduced a new way to implement the integration
of the backreaction on the gas, where we take the continuum
limit using the GL method to sample the size distribution. We
can compare the error in the momentum transfer from the inte-
gration (22) in the linear regime, where we found that the GL
method converges a lot faster to the continuum limit than the
discrete method. The GL method is shown to work well in the
linear regime (see Figure 11) where the size distribution is a
smooth function, and the momentum transfer integral is well-
behaved and thus can be accurately approximated by the GL
nodes. Even though this expectation is no longer valid in the
non-linear regime, we notice that the size distribution resulting
from the GL integration remains smooth (see Figure 6) and con-
verges with the number of dust species used in the sampling (see
Figure 10).

An important distinction is that we take a truly polydisperse
approach, that is, with a continuum in sizes, using the GL
method. There have also been multi-species SI studies using
different numerical integration routines. Bai & Stone (2010) use
a particle-fluid approach where the continuous size distribution
is discretised into a number of bins with a fixed width in Stokes
number in the logarithmic scale (each bin covers half a O(10)),
and where equal mass bins are also assumed. A similar method
(discrete logarithmic sampling) is used in Krapp et al. (2019);
Schaffer et al. (2018); Zhu & Yang (2021); Yang & Zhu (2021).
Rucska & Wadsley (2023) also uses equal mass boundaries,
but these are not equally spaced linearly or logarithmically.
This discrete sampling method is analogous to using a Riemann
sum approximation with a midpoint rule and is also bound by
the approximation error of this routine. Therefore, at a low
number of dust species, this discrete method does not represent
the continuous limit, and the integration error between the
discrete method and the continuous limit converges significantly
slower with the number of dust species than the GL method (see
Section 4).

Simulating the PSI using a particle-fluid approach, the dust
size distribution can also be quasi-continuously, where each
particle is given a unique size sampled from the size distribu-
tion. This method is explored in Schaffer et al. (2018, 2021),

and is analogous to a Monte-Carlo algorithm for the numerical
integration of the momentum transfer, which converges even
slower than the midpoint rule.

8.3. Effect on planetesimals

Our analysis revealed that in the densest regions, larger dust sizes
are overrepresented, and there is a peak in the size distribution.
This peak was not expected, and we explored a couple of expla-
nations, such as the resonant velocity of the size distribution and
the spatial separation of the different dust species. The spatial
separation is the preferred explanation for the peak in the dens-
est regions, causing the largest dust species to fall outside of the
densest region of the sum over all the dust. The observed size
distribution in these densest regions can mimic the distribution
that can result from dust growth (Birnstiel et al. 2011). We can
form the peak in the sized distribution through dynamics and the
size-dependent coupling between the gas and the dust, without
dust growth or fragmentation. That the size distribution changes
through dynamics can in turn also affect coagulation, by e.g.
making the size distribution locally more monodisperse. There-
fore, combining coagulation with polydisperse hydrodynamical
simulations of the SI would be an important further step.

If the peak in the size distribution persists when the den-
sity exceeds the Roche density, the peak in the size distribution
also ends up in rubble pile asteroids (Chapman 1978; Walsh
2018; Visser et al. 2021). The size distribution of the particles
making up the rubble pile can be observed (e.g. Gundlach &
Blum 2013; Blum et al. 2017; Fulle & Blum 2017). The observed
size distribution can then inturn be an indication of the for-
mation history and the local environment where the asteroid
was formed through gravitational collapse, taking into account
how the PSI changes the size distribution in the highest-density
regions. However, we then need to consider that the size of the
aggregates can change during the collapse (Wahlberg Jansson &
Johansen 2017; Pinto et al. 2021; Visser et al. 2021), although the
size distribution at the Roche density can also affect the cloud
collapse. The size distribution can also change at later stages due
to radiative or chemical reactions or kinetic impacts (Poulet et al.
2016; Graves et al. 2019; Hsu et al. 2022). Although this primar-
ily affects the surface, the interior of the asteroid, below a layer
of a few tens of centimetres, can still represent the primordial
size distribution (Capria et al. 2017).

8.4. Summary

We investigate the 2D unstratified PSI using FARGO3D, focus-
ing on the evolution of the continuous size distribution and
morphology in the densest dust structures. The main results and
findings of this paper are as follows:

— The Gauss-Legendre quadrature method used for sampling
the size distribution converges much faster with the num-
ber of dust species compared to a discrete method when we
compared the growth rates of the numerical simulations to
the analytical growth rate (see Section 4). This allowed us
to use fewer dust species whilst maintaining an acceptable
accuracy on the momentum transfer between the dust and
the gas in the continuum limit, which can be significantly
less computationally expensive.

— Similar to previous work (Krapp et al. 2019; Paardekooper
etal. 2020, 2021; McNally et al. 2021; Zhu & Yang 2021), we
find that the PSI has slower growth rates than the mSI. This
makes the parameter space where the PSI can be triggered
to form clumps smaller, especially when considering that the
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growth rate of the PSI changes faster with a maximum Stokes
number or dust diffusion than the mSI (see Section 4 and 6.1
for more details).

— In the regimes where the PSI forms clumps, the amplification
factor can be up to an order of ten smaller than the mSI at the
maximum Stokes number of the PSI range, making it more
difficult for the clumps to reach the Roche density limit and
collapse into planetesimals.

— The PSI cannot be represented by an mSI run with properties
that are derived from the averaged properties of the PSI setup
such as average Stokes number and total dust density of the
size distribution, and the PSI is not a simple summation of
individual discrete mSI cases at different Stokes numbers.

— There is a correlation between the location of higher density
regions of the different dust sizes in a PSI run, although the
larger dust sizes clump more. There is a pronounced overrep-
resentation of larger dust species in the dense regions in the
non-linear regime. This overrepresentation occurs because
smaller dust particles are more tightly coupled to the nearly
incompressible gas, which limits their ability to clump as
effectively as the larger dust species.

— We observed a peak in the size distribution of the dens-
est regions. This peak arises from the spatial segregation of
the differently sized dust species, where particles with the
largest Stokes numbers are located just outside the densest
areas of the total dust density (the combined dust species).
This spatial separation plays a crucial role in shaping the size
distribution in these regions.

— The peak in the size distribution at the densest regions
can mimic the distribution we observed when we had dust
growth (Birnstiel et al. 2011). We find that through dynam-
ics and size-dependent coupling between the gas and dust,
we can form a size distribution with a bump on top of
the background MRN distribution without dust growth or
fragmentation.

Our findings highlight that it is more difficult to form planetesi-
mals considering the more realistic polydisperse case. In the PSI
we find distinct features in the densest regions. To consider a
more realistic comparison to clumping that leads to planetesimal
formation, future work should consider the 3D stratifield setup.
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