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Despite enormous investments in airport security, terrorists have been able to find and exploit vulnerabilities at
security checkpoints. Existing vulnerability assessment methodologies struggle with accounting for human behavior,
and agent-based modelling forms a promising technique to overcome this limitation.
This paper investigated how the decision-making and performance of human operators can be taken into account
while assessing vulnerability at an airport security checkpoint. To this end, an agent-based model was designed, in
which the performance of security operators was modelled using a functional state model, while decision making
was modelled using decision field theory. Passengers and an attacker that brings a weapon to the security checkpoint
were also explicitly modelled as agents. Simulation results indicate that the highest skilled operators outperformed
their lowest skilled counterparts on analyzing X-ray images, but performed worse on both searching luggage and
performing patdowns. Furthermore, results showed that a high focus on speed of security operators leads to a decrease
in luggage searches and therefore increased vulnerability.
More work is needed to calibrate and validate the simulation results, but initial results are promising. The agent-based
model can be used by airport regulators and managers to understand the workings of their security checkpoint better
and ultimately to reduce vulnerabilities.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Despite enormous investments in airport security, terrorists have been
able to find and exploit vulnerabilities at security checkpoints. In the years
after 9/11, aviation has been targeted by several bombing attempts (BBC
News, 2006; Edmunds, 2010; Burns, 2010), such as the shoe bomber
(CNN, 2001). Each of those attempts exploited new vulnerabilities and
bypassed the security checkpoint successfully. It is only after such an attempt
that new regulations and procedures are developed to address the exploited
weakness in the security checkpoint. This reactive approach leaves airports
vulnerable to innovating attackers. This problem is well recognized within
the scientific literature, but developing a method that accurately assesses
all vulnerabilities in a security checkpoint is a challenging task.

The security checkpoint is operated by security operators that con-
stantly have to perform cognitive tasks, such as detecting illegal items on
an X-ray image (IATA, 2012). These operators also continuously have to
make decisions, such as the decision to confiscate a potential weapon or
not. Empirical research has shown that security operators do not necessarily
follow protocol, but regularly bend and break the rules (Kirschenbaum
et al., 2012a; Kirschenbaum et al., 2012b; Kirschenbaum, 2013;
er Ltd. This is an open access artic
Kirschenbaum, 2015). They commonly ignore potential threats and alarms
are often processed as false. Furthermore, the performance of security
operators is dependent on a variety of factors, of which cognitive task
demands and personality are two examples. These human factors affect
the performance of the checkpoint as a whole and additional vulnerabilities
may emerge from their behavior. Therefore any method that aims to
systematically identify all vulnerabilities in a security checkpoint should
include these cognitive aspects in the analysis.

The objective of this work therefore is to understand how the decision-
making and performance of human operators influence vulnerability at an
airport security checkpoint. To this end,we employ an agent-basedmodelling
approach to identify and quantify the vulnerabilities of two typical airport se-
curity checkpoint setups. The contribution of this work is twofold. First, we
define a novel agent-basedmodel to assess vulnerability, in which we specify
security operators' behavior by combining two different cognitive models.
The performance of security operators on different tasks in the checkpoint
is modelled using the functional state model (Bosse et al., 2008), and their
decision-making process is modelled using decision field theory
(Busemeyer and Townsend, 1993). The developed model can easily be
adapted to test future concepts of security checkpoints, such as X-ray opera-
tors working remotely. These types of experiments are hard to perform
directly at airports, as it may interrupt security operations. Secondly, by
performing experiments with the model, we generate new insights with
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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respect to vulnerabilities at the security checkpoint. Three types of experi-
ments are performed: experiments related to operator performance, experi-
ments related to operator decision making and experiments related to
different airport security checkpoint setups.

This paper is structured as follows. First, related literature about
existing vulnerability assessment methodologies and human performance
and decision making is reviewed in Section 2. Then, the agent-based
model that we developed for this work is described in Section 3 and cali-
brated in Section 4. Three experiments were performed with the model
and are described in Section 5. The first experiment is used to understand
the influence of security operator performance on vulnerability, and
the second for understanding the influence of security operator decision
making on vulnerability. The third experiment is then used to investigate
the effect of using different security checkpoint setups on vulnerability.
Finally, the work is concluded in Section 6.

2. Related work

This section provides an overview of existing vulnerability assessment
techniques, with a special focus on agent-based modelling. Furthermore,
existing human performance and decision making models are discussed.

2.1. Existing vulnerability assessment methodologies

Following the ISO (I. Guide, 73, 2009) standards, vulnerability is
defined as “intrinsic properties of something resulting in susceptibility to
a risk source that can lead to an event with a consequence”. Most vulnera-
bility assessment methodologies are interested in quantifying vulnerability
as a value between 0 and 100%.

Themost commonmethod to estimate vulnerabilities is to consult secu-
rity experts involved in the field. These experts know about the equipment,
procedures, and performance of the operators. They use this knowledge to
quantify vulnerabilities on a predefined scale. Unfortunately, expert elicita-
tion has proven to perform poorly in parameter estimation when there are
dependencies in the system (Cooke and Goossens, 2008), while these
dependencies inevitably exist (Cole and Kuhlmann, 2012).

Wu andMengersen provide an overviewofmodels thatwere used to aid
security policy and planning (Wu and Mengersen, 2013). The discussed
models range from simple probabilistic models (Chawdhry, 2009), to
Bayesian models (Babu et al., 2006; Nie et al., 2009) and a fuzzy model
(Akgun et al., 2010). None of these models explicitly incorporate the
behavior of security operators, and therefore lack the capability to under-
stand how the decision-making and performance of human operators
influence vulnerability at an airport security checkpoint.

Several other methods exist as well. A failure tree models events in the
form of an event tree (Benner, 1975), in which the nodes of the tree are
events and the branches of each node specify the possible outcomes of the
event. For each event in the tree, the likelihood of the different outcomes
must be estimated, and vulnerability is finally calculated based on the com-
bination of these events. The reliability of these methods hinges on the
accuracy of those estimates which are not always accurate (Stroeve et al.,
2013). Furthermore, a failure tree is unable to accurately model a complex
socio-technical environment such as a security checkpoint.

The scenario-based approach is an approach that tries to identify threat
scenarios to which airport security is most vulnerable (Cole and Kuhlmann,
2012). Thismethod startswith identifying all threat elements that together de-
scribe the airport environment. For each of those scenarios, the countermea-
sures are identified as well. This allows users to identify scenarios in which a
limited number of countermeasures are available. This approach has two
major limitations. First of all, the airport environment is reduced to a linear
set of relations between threat elements and countermeasures. Second, this
method aims to identify the threat scenarios to which the system is most vul-
nerable, but only identifies the number of countermeasures related to each
threat scenario, without factoring in the effectiveness of each measure.

Using penetration testing, airport defenses are physically tested. The re-
sults from those tests can be used to give better vulnerability estimates and
2

develop better protocols. The big advantage of penetration testing is that it
does not require any assumptions about the complexity of the system nor
the behavior of the security operators. This guarantees that the vulnerabilities
found during these tests coincide with reality, and can be beneficial to cali-
brate or validate other methodologies. However, a problemwith penetration
testing that it is labor-intensive and thus expensive (Bennett, 2015; Airport
data & contact information, 2018). Due to these problems, airports can
only test their defenses on a small subset of security scenarios.

2.2. Vulnerability assessment using agent-based modelling

Over the last few years, agent-basedmodelling has gained interest as an
approach to assess airport security (Wilson et al., 2006). This is proposed as
a risk management methodology called AbSRiM by Janssen et al. (2019b).
In this methodology, security risks are assessed by building an agent-based
model that can be used to simulate a threat scenario. Using Monte Carlo
simulations, vulnerabilities can then be assessed. The agent-based model-
ling approach allows for modelling complex environments that emerge
from the interactions between autonomous agents. Furthermore, human
aspects can be explicitly modelled and therefore be taken into account in
the assessment of vulnerability. On the contrary, agent-based models
require an extensive modelling effort and this is a time-consuming process.
As this approach forms a promising alternative to overcome the limitations
of the other methodologies, we employed this methodology to assess
vulnerabilities at security checkpoints.

2.3. Modelling security operator performance and decision making

Different studies have shown that the performance of security operators
is not always optimal and that it is common for them to bend and break
the rules (Kirschenbaum et al., 2012a; Kirschenbaum et al., 2012b;
Kirschenbaum, 2013; Kirschenbaum, 2015; United States House of
Representatives, 2011).

The performance of humans is dependent on a variety of factors, of which
cognitive demands of a task and personality are two examples (Gonzalez,
2005; Hancock, 1989). Several computational models have been proposed
in literature to model the performance of humans. Many of these models
have a specific focus on aspect, like situation awareness (Endsley, 1995).
The Functional State Model is a dynamic performance model that describes
the performance of an agent as a function of task complexity, the state of
the agent and its characteristics (Bosse et al., 2008). The model incorporates
a large set of different factors, such as stress, exhaustion and situation aware-
ness. The model was validated by empirical experiments with human opera-
tors from defense. This is also the model that we use in this work to model
human performance, as it aims to incorporate a diverse set of factors.

Human decision making has been a long-studied field, and an extensive
overview of modelling human decision making can be found here (Osman,
2010; Canellas, 2017). Two main streams can be distinguished when
modelling human decision making: bounded and unbounded rationality
(Canellas, 2017). In bounded rationality, decisions are made within a set
of human constraints such as limited information or processing speed of
the brain, while in unbounded rationality these constraints are not present.
In this work, we also use the bounded rationality paradigm. Within the
bounded rationality paradigm, several types of models are developed in
literature: linear decision making models (Canellas, 2017), machine
learning approaches (Gibson et al., 1997) and diffusion models
(Busemeyer and Townsend, 1993; Ratcliff and McKoon, 2008). We focus
on probabilistic decision making, which is shown to be well capable of
account for human irrationality. Important models in this area are the deci-
sion field theory model (Busemeyer and Townsend, 1993) and the Ratcliff
diffusion model (Ratcliff and McKoon, 2008). We used the decision field
theory model in this work to model decision making of security operators,
as it has strong empirical support and is famous for its ability to reproduce
many known irrationalities in human decision making.

Only a few works exist that aim to model the behavior of security
operators (Skorupski and Uchroński, 2015; Skorupski and Uchroński,
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2017). This research models the effects of human factors on the perfor-
mance of the security system by using a fuzzy inference system. However,
their system is mostly based on expert opinions. Our work focuses on
more detailed cognitive models of human security operators, and how
they can be used to estimate vulnerability. Furthermore, we explicitly
represent interactions between agents (security operators and attackers),
and important security devices, such as body scanners.

3. Modelling the security checkpoint

This section describes the agent-based model that was developed to
assess vulnerabilities at an airport security checkpoint, while focusing on
human performance and decision making. The specification of the environ-
ment is discussed in Section 3.1, and the different types of agents are
discussed in Section 3.2.

3.1. Environment

The environment of the model contains four different objects: luggage,
weapons, sensors and equipment. Luggage has a complexity level that
influences the task complexity of operators that interact with this luggage.
The complexity level can either be high or low. Furthermore, luggage is
owned by a passenger and may contain explosive traces (represented as a
Boolean value) and/or a weapon.

Then, theweapon object conceptualizes a weapon that an attacker agent
aims to bring past the security checkpoint. Aweapon is of a certain type. The
type of weapon can, for instance, be a ceramic knife or an explosive liquid.
Similar to luggage, a weapon can contain explosive traces. Furthermore, a
weapon has a perceived risk, rperc, that indicates to which extent a security
operator perceives objects that closely resemble the weapon as a risk to
the airport. For instance, explosive liquids resemble a bottle of water and
are therefore perceived as a low risk. Perceived risk is formalized as a real
number between 0 and 1. While rperc is different for each operator, we
assumed that it is the same for everyone, and, therefore, included it as
part of the weapon. Finally, a weapon can be on the body of an attacker,
or in the luggage of an attacker. A full list of weapon types and their
corresponding parameters is shown in Section 4.

Different sensors were defined in the model: X-ray sensor, Walk-
through metal detector (WTMD), explosive trace detector (ETD) and body
scanner. Each sensor has a probability to detect a specific weapon type,
called base detection probability pdetectsensor(weapon_type). This parameter is
calibrated and shown in Section 4. Based on this detection probability,
the sensor either detects or does not detect a weapon when presented,
which can then be observed by operators. The X-ray sensor is an exception
to this standard, as this sensor only allows operators to observe the luggage
that is currently sensed by the sensor. In this case, the likelihood of detec-
tion is determined by the skill of the x-ray operator.

Finally, two types of equipment were defined in the model: queue
separators and X-ray systems. Queue separators are used to guide passengers
to the security checkpoint, while the X-ray system moves luggage forward
through an X-ray sensor.

3.2. Agents

Three different agent types were defined: passengers, attackers, and
operators. Each of these agents is human agents and is discussed inmore de-
tail below.

3.2.1. Passengers and attacker agents
Passengers and the attacker were defined similarly. They both do not

exhibit sophisticated strategical behavior. Passengers carry luggage that
they bring to the security checkpoint. Furthermore, passengers could
carry explosive traces and they can own a weapon. This weapon can, as de-
fined above, either be on the body of the passenger or in its luggage. We
refer to a passenger that owns a weapon as an attacker, and as a passenger
otherwise.
3

3.2.2. Security operators agents
A set of security operators that execute activities at the security check-

point were defined: patdown operator, ETD check operator, luggage
check operator, and X-ray operator. This section discusses the definition
of the X-ray operator, as the other operator types are defined similarly.

Airport security is largely defined by regulations and guidelines defined
by different regulatory institutes. For instance, the European Union has
regulations for its member countries (Council of European Union, 2008a;
Council of European Union, 2008b), the United States has the Aviation
and Transportation Security Act (107th Congress, 2001), and the ICAO
developed a security manual (ICAO, 2017).

Following these regulations and guidelines, each of these operators
executes a fixed set of tasks and decisions. An X-ray operator inspects
output generated by the X-ray machine and determines if there is a poten-
tially illegal item. When this is the case, (s)he has to inform the luggage
check operator, who then searches the luggage. Security operators do
not necessarily follow this protocol, but regularly bend and break the
rules. They commonly ignore potential threats and alarms are often
processed as false (Kirschenbaum et al., 2012a; Kirschenbaum et al.,
2012b; Kirschenbaum, 2013; Kirschenbaum, 2015; United States House of
Representatives, 2011). Furthermore, humans cannot continuously perform
optimally. It is dependent on a variety of factors, of which cognitive
demands of a task and personality are two examples (Gonzalez, 2005;
Hancock, 1989).

The performance of security operators on different tasks in the check-
point is modelled using the functional state model (Bosse et al., 2008),
and their decision-making process is modelled using decision field theory
(Busemeyer and Townsend, 1993). In the case of the X-ray operator, the
modelled task is inspecting output generated by the X-ray machine, while
the modelled decision is that of informing or not informing the luggage
check operator.

The functional state model, the decision field theory model, and their
integration are discussed below.

3.2.2.1. Functional state model. Tomodel the performance of security opera-
tors, the functional state model was selected (Bosse et al., 2008). While the
model contains a set of 37 parameters, we only discuss the most important
parameters here. For the other parameters, the reader is referred to the
work of Bosse et al. (2008). The input for the model is the task level (TL),
which is dependent on the skill level (SL) of the operator and the task com-
plexity (TC) of the task at hand. For an X-ray operator, the task complexity
represents how complex the luggage (s)he is currently investigating is.
This dependency is modelled as follows:

TL tð Þ ¼ TC tð Þ
SL

ð1Þ

The output of the model is the performance quality (PQ) of the agent, in-
dicating how well the operator is performing. A PQ of 1 corresponds to the
baseline performance of an agent, while values lower than 1 correspond to
performances that are worse than this baseline and values higher than 1
correspond to performances better than baseline. No theoretical bounds
of PQ were provided in Bosse et al. (2008). However, typical PQ values in
our simulation results are in the range of 0.5 and 1.5.

PQ is dependent on two factors: provided effort (PE) and task level (TL):

PQ tð Þ ¼ PE tð Þ
TL tð Þ ð2Þ

PE is determined by the generated effort (GE) of the agent, recovery
effort (RE) and noise effort (NE). The latter two parameters correspond to
the ability of humans to decreases exhaustion, and the effort the human
has to contribute to the noise in the environment respectively.

PE tð Þ ¼ GE tð Þ−RE tð Þ−NE tð Þ ð3Þ
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GE is the most important contributor to PE, and is ultimately defined
by effort motivation (EM), among many other parameters. We refer to
Eqs. (2) and (4) in the work of Bosse et al. for a complete deduction of GE
(Bosse et al., 2008; Bosse et al., 2011).

Effort motivation is based on the current task level and the difference
between experienced pressure (EP) and optimal experienced pressure
(OEP). EP is similar to a person's stress level, while OEP determines how
well a person can cope with a high EP. Finally, EP is, among other terms,
related to generating effort above and below a critical point. The critical
point is the amount of effort someone can generate without becoming
exhausted. For an X-ray operator, PQ is reflected in the likelihood (s)he
observes a weapon from the observations of the X-ray sensor. This is
modelled as follows.

poperatordetect weapon typeð Þ ¼ max 0; 1−
1−px−ray

detect weapon typeð Þ
k � PQ

� �
ð4Þ

The value pdetectx−ray(weapon_type) corresponds to the base likelihood that a
specific type ofweapon is detected by anX-ray operator, which is calibrated
in Section 4.2. The value 1 − pdetectx−ray(weapon_type) corresponds to the base
probability of not detecting the weapon: the base false-negative rate.
When performing well (i.e. a high PQ), X-ray operator improves on this
base false-negative rate, and vice versa. We model this by dividing the
base false-negative rate by the performance quality and a scaling factor k.
The underlying assumption here is that the false-negative rate linearly de-
creases with increasing PQ. This false-negative rate is then transformed
back to a detection probability by subtracting it from 1. To ensure that
the value falls between 0 and 1, we take the maximum of 0 and the value
obtained above.

The other operators at the security checkpoint use this performance
model to execute the patdown activity, search luggage and perform an
ETD test. The value of k, and other related parameters of the functional
state model are calibrated in Section 4.

Two different personality types are introduced based on the work of
Bosse et al.: personality I and personality II (Bosse et al., 2008). Bosse
et al. extensively experimented with these two personality types and per-
formed an in-depth analysis of their behavior. Type I has a relatively high
OEP, meaning that it can cope well with high EP levels, while type II does
not. This allows the first personality type to perform better under high
pressure. We experiment with these personality types in our analysis.

3.2.2.2. Decision field theory. The decision-making process of the security
operators was modelled based on the work of Busemeyer and Townsend
(1993). The decision-making process in this model is an iterative
process in which the operator constantly updates their preferences until
the preference for one of the options exceeds a decision threshold value.
This threshold value is one of the inputs of the model and its magnitude
is related to the effort an agent spends on a decision. The higher the
threshold value, the more time and energy the security operator needs
to reach it.

During each iteration, the agent focuses on one of his goals. The
selection of this goal is a random process, but the likelihood of the
agent focusing on a goal depends on the attention weight. Once the atten-
tion of the agent is focused on one of his goals, the agent's preferences
are updated based on the agents beliefs about how each of the options
helps him in achieving the goal (s)he currently focuses on. The magni-
tude with which the preference for each of the goals is updated is
known as valence. This valence is defined for each combination of
goals and options.

Finally, the decision-making process is influenced by the agent's initial
beliefs. This initial preference is the preference the agent has for each
outcome before the decision process starts. An overview of this process is
shown in the bottom part of Fig. 1.

For an X-ray operator, one decision is identified. If the X-ray oper-
ator observes a potential weapon (see also Section 3.2.2), (s)he has to
decide if the luggage requires a search from the luggage check
4

operator. The options for the X-ray operator are inform or ignore. Fur-
thermore, three goals are defined for the X-ray operator based on
existing literature (Sharpanskykh and Haest, 2016; Fairbrother,
2010).

• Accuracy

- The operator wants to do their work as well and accurate possible. The
importance of this goal may be dependent on pressure within the orga-
nizations or the agent's standards.

• Speed

- The operator wants to do their job as fast as possible. The importance of
this goal may be due to pressure within the organization to reach a cer-
tain throughput or the security operator wanting to minimize effort.

• Perceived Risk
- It is the job of the security operator to minimize the risk of an attack.
Perceived risk represents the beliefs an agent has about the potential
consequences of the observed prohibited item. The importance of this
goal may be dependent on the agent's beliefs about the likelihood of
an attack and his risk aversion.

Both luggage check operators and physical check operators use this de-
cision mechanism to determine if a passenger requires secondary screening
when an illegal object was found. The ETD operator makes the same deci-
sion when explosive traces were observed. The other related parameters
of this model are calibrated in Section 4.

3.2.2.3. Integration of models. We integrated the models by relating
parameters of the functional state model to the decision field theory
model. The relation between the models is shown in Fig. 1.

The decision threshold was set to be equal to the provided effort (PE) as
defined in the functional state model. Provided effort denotes the effort
that is contributed to the task by the agent. This relation means that the
higher the provided effort, the more effort the agent wants to invest in
making an accurate decision. This is based on findings by Busemeyer and
Townsend (1993). Furthermore, we assumed that the initial preference
of the X-Ray operator is according to regulations present at the security
checkpoint, meaning that there is a strong initial preference to request a
luggage check if needed. The next section describes how these parameters
are calibrated.

4. Model sensitivity and calibration

In this section, the sensitivity of the functional state model and the
decision field theory model is discussed. Furthermore, it is described how
the overall modelwas calibrated. Different parameters had to be calibrated:
parameters related to weapons, sensors, airport configurations, and opera-
tors. These are discussed in detail below.

4.1. Sensitivity analysis

We performed sensitivity analysis of both the functional state model
and the decision field theory model. Fig. 2(a) shows how different task
levels affect the performance quality and the provided effort in the func-
tional state model. Results were obtained after the task level was kept
constant for 20 s. At this point, the performance quality converged to
an equilibrium value for any task level. From the figure, it becomes
clear that both personality types have the highest performance quality
around a task level of 250. The peak performance of personality type I
is at a task level 230. At this point, it outperforms personality type II
by 24%.

At task levels lower than 225 the performance quality of both per-
sonalities rapidly drops. This is mainly due to a lack of provided effort
as can be seen in Fig. 2(b). In this range, personality type II outperforms
personality type I by 20%. At task levels above 275, the performance of
both personalities exponentially decreases. The provided effort of both
agents stays approximately stable around 230, meaning that the agent



Fig. 1.An overview of the functional statemodel (Bosse et al., 2008) (top) and the decision field theory model (Busemeyer and Townsend, 1993) (bottom) used in this work.
The integration between the two models is shown as well.
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cannot provide more effort. At even higher task levels the performance
quality drops.

We investigated the sensitivity of the decision field theory model as
well. The values in Table 3were usedwith c=30, but the initial preference
for the inform decision was varied. The decision threshold was set to a
uniform random value between 70 and 250, which is the range of provided
effort values as observed above. Two scenarios were investigated: 1) a
weapon with a perceived risk of 0 was observed, and 2) a weapon with a
perceived risk of 1 was observed. A total of 1000 simulations were
performed for each data point.

Fig. 3 shows how different initial preferences for the inform decision
influence the decision of the X-ray operator. Both graphs have the same
general shape. The choice to inform the luggage-check operator increases
from a baseline value to 100% when the initial preference becomes 250.
At initial preferences above 250, the operator chooses to inform the
luggage-check operator 100% of the time. This is because the initial
preference already exceeded the threshold value. The range of values for
both scenarios is different. In scenario 1, the luggage-check operator is
informed 93% of the time without any initial preference, while this is
only 50% in scenario 2. In scenario 1 the dominant decision is to inform,
as two out of three goals favor this decision. As the perceived risk is zero
in scenario 2, there are effectively only two goals: accuracy and speed.
5

Neither of these goals dominates the other, leading to a baseline of
50% inform decisions.
4.2. Weapon and sensor calibration

Table 1 shows the different weapon types used in this work. For each of
the weapon types, it is indicated if they contain explosive traces and their
perceived risk. It should be noted that the perceived risk represents the
risk that is perceived by operators for objects that resemble the weapon.
For instance, if a bomb is not recognized as such (like explosive liquids),
the perceived risk is much lower. Bombs and fire-arms were assumed to
have the highest perceived risks, while liquids were not perceived as a
large risk, as operators continuously confiscate water bottles. Knives were
perceived as a larger risk, but they are still commonly observed.

Table 2 shows the different detection probabilities for weapon-
sensor combinations and weapon-activity combinations. The values
for X-ray performance is based on literature (Wales et al., 2009), as
well as the explosive bulk detection probabilities for body scanners
(Grabell, 2011). No data could be found on how security operators per-
form on searching luggage and patdowns. These values were therefore
based on assumptions.



Fig. 2. The effect of changing task levels on performance quality and provided effort.

Fig. 3. The effect of changing initial preferences on the decision of X-ray operators to inform luggage-check operators when an illegal item was observed.
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4.3. Airport configurations calibration

Two different airport configurations were defined based on IATA
documentation (IATA, 2012): the regional airport and the international
airport. There are two main differences between these configurations.
First, the regional airport uses a WTMD whereas the international air-
port uses a body scanner. This choice of equipment impacts the detec-
tion rates of weapons hidden on the body of the attacker. The second
difference is the communication between the X-ray operator and the
luggage check operator. At the regional airport, there is the possibility
to communicate directly, while at the international airport the luggage
check operator is not in direct contact with the X-ray operator. The lug-
gage check operator has to perform an X-ray himself/herself to deter-
mine where the weapon can be found.
Table 1
The different types of weapons with a description, an indication if explosive traces
are present and their perceived risk.

Type Explosive
traces

rperc Description

Explosive bulk Y 1 An improvised explosive device.
Explosive liquid Y 0.1 Liquid explosives are often not directly

recognized as a bomb.
Explosive
powder

Y 0.2 Explosives in powder form are commonly
not recognized as a bomb.

Gun N 1 A standard handgun.
Knife N 0.3 A small knife.
Ceramic knife N 0.3 A small knife without metal.
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4.4. Operator performance calibration

The task complexity (TC) of operators for the different tasks that
they perform are calibrated in this section. To this end, we assumed three
different skill levels (SL) for operators: 0.8 (low), 0.9 (medium), and 1.0
(high). These levels correspond to a realistic variation in skill between agents
in the functional state model, based on experimentation with the functional
state model and values found in literature (Wales et al., 2009). Furthermore,
we assumed a base task level (TLbase) of 150, corresponding to a performance
quality (PQ) of around 0.5. The base task level is the task level when the
agent is not performing its activity and is based on the work of Bosse et al.
(2008). An X-ray operator has about 1 s to identify potentially prohibited
items in luggage and research has shown that the number of false negatives
increases when the images become harder to interpret (Wales et al., 2009).
Based on the same work, we assumed that the performance of an X-ray
operator decreases with 5.47% for more complex luggage.

The scaling factor k was calibrated as follows. The value for k × PQ
should be equal to 1, as an average operator performs according to the
Table 2
The detection probability pdetect(weapon) for each sensor and activity.

Expl.
bulk

Expl.
liquids

Expl.
powder

Gun Knife Ceramic
knife

WTMD 0.00 0.00 0.00 1.00 1.00 0.00
Body scanner 0.56 1.00 0.00 1.00 1.00 1.00
X-ray activity 0.735 0.645 0.645 0.875 0.675 0.675
Lugg. search
activity

0.90 0.90 0.90 0.90 0.90 0.90

Pat down activity 0.90 0.90 0.90 0.90 0.90 0.90
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base detection probability. We have performed 1000 simulations for each
skill level, personality type, and task level to determine the mean perfor-
mance quality of operators, and found that it corresponds to 0.59. We use
this mean performance quality to finally find k to be equal to 1.68.

4.5. Operator decision calibration

For operator decision making, the following parameters had to be cali-
brated: initial preference, decision threshold, and valence. We used atten-
tion weight as a parameter to experiment with. The decision threshold is
equal to the provided effort PE as suggested in the work of Busemeyer
and Townsend (1993). The valences and initial preferences are shown in
Table 3. The initial preference for the inform decision was assumed to be
the decision threshold of the agent multiplied with a constant of cpref =
0.95. This indicates that the X-ray operator has a strong preference to follow
rules and regulations. Furthermore, the valences related to speed and accu-
racy are±c for both options. We chose c=30 such that the mean decision
time of X-ray operators corresponds to times reported in literature (Wales
et al., 2009). Finally, the valences for the perceived risk goal were made
dependent on the perceived risk of the observed weapon. We assumed
this to be amultiplication between c and the perceived risk. The parameters
of the other operators were determined similarly.

5. Experiments and results

We performed experiments with the model to assess vulnerabilities at
different security checkpoint setups. The setup of the experiments is
discussed first, followed by a discussion of results.

5.1. Experimental setup

The model was implemented in the AATOM simulator, which is a Java-
based airport terminal operations simulator (Janssen et al., 2019a). It is
agent-based and contains several calibrated presets and templates of basic
airport terminal components that can readily be used. No other simulator
that we know of contains such a combination of agent-based modelling
and pre-calibrated airport-specific components.

As specified in themodel description, four operator agentswere defined
in the model: patdown operator, ETD check operator, luggage check
operator, and X-ray operator. We used a single security lane setup, and
passengers were generated for a single flight with up to 100 seats. A single
attacker was introduced among the passengers that went through the secu-
rity checkpoint.

The following parameters were varied in the execution of the
experiments.

• Attacker parameters

- Weapon. The weapon the attacker uses is one of the weapons shown in
Table 1.

- Weapon Location. The attacker has the option to hide the weapons on
his body or in his luggage.

• Checkpoint Configuration. The checkpoint configuration is either the
regional airport or the international airport.

• Operator parameters
- Skill Level. The skill level of the agents is either 0.8 (low), 0.9 (medium)
or 1.0 (high).

- Personality Type. The agents either have personality I or II, based on the
work of Bosse et al. (2008).
Table 3
Calibration of the decision parameters for the X-ray operator.

Initial Pref. Accuracy Speed Perc. risk

Inform cpref · DT c −c c · rperc
Ignore 0.0 −c c −c · rperc
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- Attention Weights. The attention weight for each goal is set to 0.33
(low), 0.5 (medium) or 0.67 (high). The weights are normalized so
that they add up to one after they are selected.

A total of N = 15,000 simulation runs were performed, while using a
uniform random assignment of the above parameter values.

5.2. Results

The results are discussed as follows. We define vulnerability as the
proportion of attackers that moved past the security checkpoint with their
weapon. These attackers did not receive secondary screening and
their weapon was not confiscated. We first show how the skill level and
personality type of security operators influence their performance. Then,
we show how different attention weights of the decision field theory
model influence the decisions made by the operators. Both these results
are an indication of the vulnerability of the security checkpoint, as
both performance and decision making directly influence the number of
secondary screenings and weapon confiscations. Finally, an overall
vulnerability assessment of the different checkpoint configurations is
conducted and a discussion is provided.

5.2.1. Performance of operators
The performance quality of X-ray operators and luggage check opera-

tors can be found in Fig. 4. The performance quality of security operators
is directly related to the vulnerability of the security checkpoint. A low
performance quality of any of the operators leads to a higher vulnerability,
as items are detected with a lower probability. As can be seen in the figure,
PQ increased with skill level for X-ray operators. The agents with the
highest skill level (of 1) outperformed the agents with the lowest skill
level (of 0.8) with 5.2%.

Different results were observed for luggage check operators. The opera-
tors with the highest skill level were outperformed by the agents with the
lowest skill level by 4.0%. This also seems counter-intuitive but can be
explained from the mechanisms of the functional state model. If the task
level becomes too low, the performance quality drops, as skilled agents
are not motivated enough to generate effort. For operators with a lower
skill level, the task is more challenging and they are more motivated to
put in the effort. This lead to the counter-intuitive result that the most
skilled agents were not top performers on this relatively simple task. This
result may seem counter-intuitive but is caused by the fact that agents per-
form (relatively) simple tasks and find it hard tomotivate themselves to put
in enough effort. Following the functional state model, operators with a
higher skill level, experience a lower task level for the same task as their
lower-skilled counterparts. Generated effort is, among other parameters,
based on the motivation of the operator, which in turn is partially deter-
mined by the task level. Because the task level is lower for higher-skilled
operators, the effort motivation decreases, which decreases the provided
effort. Our simulation results have shown that this negative effect on perfor-
mance quality of decreased motivation is larger than that of an increased
task level for lower-skilled operators. Section 3.2.2 provided a discussion
of the different variables in the functional state model.

These results are not unique to the Functional State Model and our
model. Hackman and Oldham proposed a so-called Motivating Potential
Score (Hackman and Oldham, 1976) which is a framework that is widely
used in literature. MPS is, among other terms, composed of skill variety.
This is strongly related to what we have defined as skill level in our paper
and explains the connection between motivation and skill level. Further-
more, jobs with a high MPS, have a positive effect on motivation, perfor-
mance and job satisfaction (Singh et al., 2016). This then relates
motivation to task performance.

The differences between the performance quality of analyzing X-ray
images and checking luggage can be explained as followed. Analyzing
X-ray images is a difficult cognitive task for humans. A large number
of stimuli have to be processed and illegal items have to be identified at
a high speed. An operator performing a luggage check has more time to



Fig. 4. The mean performance quality (and their 95% confidence intervals) for the
different skill levels and personality types.

Fig. 5. Percentage of correct inform decisions (and their 95% confidence intervals)
for the different attention weights.
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execute the task at hand. Typically, they take around 90 s, while X-ray
operators only have a few seconds for their task. This allows the luggage
check operators to generate more effort and therefore reaching higher
performance quality.

Furthermore, agents that cannot cope with pressure well (type II)
outperform agents that can better cope with pressure (type I) by 20%.
The results of the different personality types shown in this figure are an
aggregate of all skill levels. Personality type II has a relatively low OEP,
which is closer to the actual experienced pressure than the high OEP of
personality type I. The difference between these values determines the
effect on effort motivation. A low difference leads to a low reduction in
effort motivation, while a high difference leads to a high reduction of effort
motivation. As mentioned before, a lower effort motivation finally leads to
a lower performance quality.

5.2.2. Decision making of operators
We analyze the decision-making process of X-ray operators. When an

X-ray operator detects a potential weapon, the agent has two options.
The first option is to ignore that the potential weapon was observed,
while the second option is to inform the luggage check operator.
When a potential weapon was detected, luggage check operators were
informed correctly 93.7% of the time on average. This number varied
based on the attention weights for each of the goals, as shown in
Fig. 5. Not searching luggage when it contains a weapon, directly
increases the vulnerability of the system.

One of the reasons for an X-ray operator to not inform the luggage check
operator is that it might not perceive the potential weapon as an actual
weapon. For instance, liquid explosives might resemble a water bottle.
While a water bottle is illegal according to checkpoint regulation, regula-
tions are not always strictly enforced by security operators (Kirschenbaum
et al., 2012a; Kirschenbaum et al., 2012b; Kirschenbaum, 2013;
Kirschenbaum, 2015). Not informing the luggage check operator then
leads to faster processing of passengers, which is of enormous economic
importance for airports.

From the figure, it becomes apparent that the attentionweight for speed
was the most dominant parameter in the inform decision. Varying this
parameter from low (0.33) to high (0.67), lead to a 12% decrease in
luggage searches. The second most important parameter is the attention
weight for accuracy. Increasing this parameter from low to high, caused
an 11% increase in luggage searches. The attention weight for risk was
less dominant. An increase from low attention to high caused a 5.3%
increase in luggage searches. This parameter was less influential, as many
potential weapons are not perceived as a large risk by the operators.
Speed and accuracy, on the other hand, played a more important role in
the decision-making process. While not shown, results for decisions by
other types of operators followed similar trends.

Jesus performed a questionnaire among security operators at a regional
airport to determine how they make trade-offs between security and effi-
ciency (Jesus, 2018). One of the main findings of his research was that op-
erators could be classified into three categories: 1) passenger level of
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service operator, 2) security-focused operator, and 3) efficiency-focused
operator. About 13% of the surveyed employees fell into the last category.
These employees mostly focused on improving the efficiency of checkpoint
operations and barely on security.

While the results of Jesus are not readily comparable to our results, we
do observe an interesting similarity between them. Both results indicate
that some employees mostly focus on executing their work efficiently
(i.e. high attention weight for speed), which then results in increased
vulnerabilities.

5.2.3. Different checkpoint setups
The performance of the security checkpoint for different weapons and

locations are shown in Fig. 6. In this figure, the distribution between three
potential outcomes of a scenario are shown: vulnerability (weapon not confis-
cated and no secondary screening), secondary screening (regardless of
weapon confiscation) and the situation in which the weaponwas confiscated
while no secondary screening was conducted.

From thisfigure, it becomes clear that someweapons were never confis-
cated at the regional airport. These weapons cannot be detected by the
equipment used to scan the passengers. None of the explosives smuggled
on the body get detected by the WTMD and the same holds for ceramic
knives. Explosives only got detected by a random ETD check, which lead
to a secondary screening in 10.1% of the cases. Furthermore, knives
can be taken through the checkpoint at the regional airport without large
consequences. Most often, the knife got confiscated and the attacker
could try again at a different time as the chances on a secondary screening
were found to be almost zero. The regional airport performed best on de-
tecting guns in luggage. These weapons were confiscated 84.8% of
the time when they were located in the luggage (as compared to 70.0%
in the international airport) and immediately lead to a secondary
screening. This becomes 90.7% when the attacker carried the weapon
on their body.

At the international airport, only one type of weapon remained unde-
tected. Smuggling explosive powder through a body scanner had a success
rate of 88.6%. The only measure against it was a random ETD check. Fur-
thermore, liquid explosives and powders hidden in luggage were confis-
cated only 32–34% of the time. Even when these items were confiscated,
the security operator did not necessarily recognize these items as bomb
parts and allowed the attacker to move on. Bulk explosives, on the other
hand, were detected in 50% of the cases and lead to immediate secondary
screening. An attacker bringing a gun was very unsuccessful at the interna-
tional airport. The attacker was most successful when locating the gun in
their luggage, but this only had a success rate of 30%. Knives could
best be brought hidden in the luggage as well. In that case, they were
only confiscated 36% of the time and the chances of secondary screening
were minimal. However, the potential impact of a knife past the security
checkpoint is far more limited than that of other weapons investigated in
this work.

The regional airport outperformed the international airport on checking
luggage for all weapons. In the regional airport, 62.6% of the weapons in
the luggage are confiscated, whereas in the configuration of the
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international airport this is only 42.6%. The main reason for this is the lack
of communication in the configuration of the international airport. The X-
ray operator flags luggage for a search, but the luggage check operator
has to identify the weapon on the X-ray image himself. This extra step in
the process caused a loss in performance of 32% and occurs solely because
two officers independently had to recognize a weapon on an X-ray image
instead of just one.

5.2.3.1. Relation with related work.ABCNews reported in 2015 that in 95%of
trials undercover investigators were able to smuggle mock explosives or
banned weapons through checkpoints (Fishel et al., 2015). Two years later,
this percentage decreased to a still extremely high value of around 80%
(Kerley and Cook, 2017). These problems do not only exist in the United
States. The Telegraph reported late 2014 that airport security failed to
detect half of the dangerous weapons at Frankfurt airport (Huggler, 2014).
The vulnerabilities that we found in this work (see Fig. 6) are close to the vul-
nerability as described in these public reports. However, to the best of our
knowledge, there is no public data available that evaluates the effectiveness
of security checkpoints specifically for different weapon types, as we do in
our work. We have used all data that was available to calibrate the capabili-
ties of the different sensors to detect each weapon type in our model. How-
ever, more work is needed to validate our results. This can be done by
performing penetration tests with different weapon types at security check-
points, and comparing these results with our simulation results.

5.3. Discussion of results

As mentioned in Section 4, the calibration of the model was based on a
set of simplifying assumptions. These assumptions influenced the magni-
tude of the resulting vulnerabilities in different checkpoint configurations.
The calibration of the model can be improved by performing field tests to
determine different parameters. For instance, the performance of operators
for searching luggage can be evaluated by providing security operators a set
of luggage containing legal and illegal objects. Furthermore, perceived risks
of objects can be evaluated for different operators using a similar method.
Decisionmaking of operators can be calibrated better by performing choice
experiments, such as the one performed by Jesus (2018).

While vulnerability estimates are inherently hard to validate, some
researchers performed real-life experiments (Ford, 2017; Gholami et al.,
Fig. 6. The performance of the checkpoint setups for the different weapons defined in thi
no secondary screening; red bar), percentage of secondary screening (with or without w
blue bar).
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2017). This form of validation is a direction of further research for this
work. Both calibration and validation of the model can still be improved,
but the proposed model is still valuable for airport security practitioners,
as it can be used to generate improved results when more data becomes
available.

We did not consider all securitymechanisms that are present in airports.
For instance, intelligence agencies can detect attackers before they arrive at
the security checkpoint. Behavior detection officers (United States Govern-
ment Accountability Office, 2013; Winter and Cora, 2015) are also capable
of detecting suspicious behavior at the security checkpoint and perform
secondary screenings based on that. Furthermore, more strategic attacker
behavior in which the attacker chooses the right type of weapon for the
checkpoint configuration can be considered as well.

Agent-based modelling is an important tool to better understand
complex systems. Using our model, vulnerabilities caused by imperfect
human decision making and performance were identified. Understand-
ing how these vulnerabilities emerge enables airport security managers
and policymakers to improve their security policies and reduce vulner-
abilities. For instance, in Section 5.2.1 we found that operators with a
low skill level outperform their higher-skilled counterparts on checking
luggage. This is a surprising result that hiring officials can take into ac-
count while hiring security operators. Furthermore, higher-skilled oper-
ators outperform lower-skilled operators on the more difficult task of
examining X-ray images. We also quantify the effect of different skill
levels on the performance of operators (see Fig. 4). This result can be
used as a basis for hiring officials to hire operators for specific positions.
Furthermore, they can use this result to better understand the effects of
the composition of their current team on the performance of the security
checkpoint.

Our model can also be used to test future concepts of security check-
points. For instance, when X-ray officers do their work remotely, our
model can be adapted with relative ease to determine the performance of
such a setup. These types of experiments cannot easily be performed at
airports, as it may interrupt security operations. Furthermore, experiments
with humans are known to be hard to perform due to the diversity of
human behavior. Using our model, these experiments can be performed
more easily. This can, for instance, be done by hiring operators with the
right personality type and skill set, or by taking these aspects into account
while planning operators.
s work. Performance is shown in terms of vulnerability (weapon not confiscated and
eapon confiscation; green bar), confiscated weapons (without secondary screening;
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Our agent-based approach is more time consuming to perform than
most other vulnerability assessment methodologies and requires a large
amount of data for calibration. Other vulnerability assessment methodolo-
gies form better alternatives in cases with a lack of time or data, but our
approach is particularly suitable to investigate vulnerabilities in which
human behavior plays a role. A more in-depth discussion about the advan-
tages and disadvantages of the use of agent-basedmodelling is discussed by
Janssen et al. (2019b).

6. Conclusion

In this paper, we investigated how the decision-making and perfor-
mance of human operators can be taken into account while assessing vul-
nerability at an airport security checkpoint. We developed an agent-based
model, in which the performance of these operators was modelled using
the functional state model, while decision making was modelled using
decision field theory.

Simulation results indicated that the highest skilled operators
outperformed their lowest skilled counterparts on analyzing X-ray images,
but performedworse on both searching luggage and performing patdowns.
This lead to similar differences in security checkpoint vulnerabilities as
well. These skilled operators found their tasks too easy and are unable to
motivate themselves to put in the required effort. Furthermore, the goals
the operator focuses on during the decision-making process were found to
influence vulnerability. A high focus on accuracy or perceived risk for the
X-ray operator lead to an increase in luggage searches, and therefore re-
duced vulnerabilities. However, a high focus on speed leads to a decrease
in luggage searches and therefore increased vulnerability. The developed
model can be used to assess the effect of human behavior and decision
making on the performance of current and future security checkpoint
procedures, which is often impossible in real-life experiments. More work
is needed to calibrate and validate the model and simulation results, but
initial results are promising.

This work can be extended by investigating how other types of security
measures (i.e., behavior detection officers) influence the vulnerability of
the security checkpoint. The vulnerability with respect to other threat
scenarios (i.e., a bomb attack before the security checkpoint) can be inves-
tigated as well. Finally, the model can be calibrated better by using classi-
fied data on sensor performance, operator performance and attacker
behavior.
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