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ABSTRACT

The trend of the slender and high-rise building has made the structure prone to dynamic loading. This the-
sis is focused on the dynamic behavior of the high-rise building subjected to wind action. The acceleration
becomes a limiting criterion in designing such structure which can be categorized as the comfort criteria of
the building. Nausea and motion sickness from the acceleration of the building has been studied by human
experience, and numerous building code has included this in the design criteria [6]. The tuned mass damper
(TMD) comes from the basic vibration absorber theory by Frahm in 1909; then the studied continued and
applied in a building. At present, the TMD is a well-known technology to mitigate vibration, but it is not al-
ways applicable in every building case. Therefore a study of the interaction between the building properties
also the soil structure interaction (SSI) is made in the application of the TMD.

This thesis aims to study the dynamic behavior of a high rise building with the implementation of TMD and
to take into account the SSI, also to indicate which type of building is preferable to apply a TMD. The model
for the high-rise building is an analytical one-dimensional model which is validated by the finite element
program (FEP). The analytical model can give a good fit for the building response but due to the model of the
wind load is a random load, it is challenging to match precisely the TMD performance due to the comparison
of different load phase. The physical characteristic and tendency of the TMD performance to different build-
ing parameter still can be studied in this analytical model.

It is shown in this study that the damping plays an important role not only to reduce the acceleration of
the building but also influence the effectiveness of TMD. The acceleration is drastically reduced in the lower
damping ratio area, which makes the TMD more effective if the building has lower damping ratio contributed
from the material, structural joints, and SSI. The reducement of the acceleration by increasing stiffness and
mass is very limited compared to the application of TMD.

There are two building data for the base of the analysis; the first is the European Patent Office EPO building
which is designed by Zonneveld Ingenieurs and the new proposal of slender high rise building in Rotterdam.
The EPO building has a unique geometry which the contribution of torsional vibration is high. The slender
high rise building shows that the TMD is more effective in reducing the acceleration in this case. The reason
is the slender high rise has higher acceleration compare to EPO building when the required building stiffness
for the deformation limit is applied.
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1
INTRODUCTION

The trend of slender and lighter high rise building has made the structure is prone to dynamic loading. There-
fore the human comfort in term of building’s acceleration becomes a crucial limiting factor in designing a high
rise building. Since then, many damping devices and structural systems are made to make the structure achieve
an admissible acceleration.

1.1. GENERAL
Early in the 19th century, a high rise structure is to describe a building about 100m height for office or resi-
dential uses. With a growing of technology and knowledge, a high rise structure now can reach much taller to
800m height. Therefore, to build a high rise structure is more complex and challenging. Firstly, the purpose
of building high rise is not only as a place for people to live or work, but lately, a high rise building is also
built for a landmark. It makes the aesthetic value of the structure becomes more important which influence
the geometry of the structure and its dynamic behavior. Secondly, human factor in designing high rise plays
an important role and has significant effect. The quality of the building inside has to be maintain regarding
the air, light quality and also comfort criteria regarding building movement. As example in the Netherlands,
strict daylight penetration limits the width of the building and therefore has effect on the slenderness of the
structure. Also, the safety of the people in case of emergency such as fire and extreme cases also crucial in
high rise structure. This human factor affects the strength and stiffness of the structural elements and total
stability of the structure. Thirdly, economic and environmental demand in high rise structure has significant
influence in the strength and stability of the structure. To reduce the transportation cost of the material and
reducing the cost to build the foundation, light material is preferred. Sustainability issues also made the en-
gineers think about future use of the high rise or demolishing process, which aim for the element to be easily
removed or reused. All of these factors influence the slenderness and lightness of the high rise which can
make it sensitive to the dynamic behavior.
In this research of high rise structure, the design is to be located in the Netherlands. This geographical con-
text has an influence of the structure in two major ways. Firstly, the strong wind condition which gives not
only large internal forces in the structure, but also vibration. Secondly, the soft soil condition in the Nether-
lands. Looking at the perspective of structural vibration, soft soil condition has a contribution to the struc-
tural damping of the high rise.

1.2. PROBLEM STATEMENT
In the lighter and slender high rise structure, dynamic response due to wind loading has the major problem.
To improve the dynamic behavior of the building, mass and stiffness can be designed to some extent. It can
be improved by redistributing the stiffness to have lower value in the bottom, stronger in the middle and
using outrigger structure at the top [3]. But in higher and slender high rise, damping plays more important
role in reducing the dynamic responds. In modern high rise building, natural damping is not sufficient and
additional or external damping is needed to reduce dynamic responses [24].

The tuned mass damper (TMD) is a well-known technology to mitigate vibrations in structures but it has
also limitation and not always gives benefits in every case. Previous studies of dynamic behavior of high-rise

1



2 1. INTRODUCTION

buildings have suggested that the soil structure interaction (SSI) plays an important role in the overall energy
dissipation due to characteristics of the soils. But in these cases of soft soils, the effectiveness of TMD’s might
be reduced drastically [14].

1.3. AIMS OF THE PROJECT
Though the TMD in SSI with high damping condition is not effective. It can be seen in the model from the
literature [14] (Figure 1.1) that a conventional mass connected to a translational spring and dashpot model is
used. Therefore the aim of the project is:

1. To study the dynamic behavior of a high rise building with the application of TMD in SSI. This include
the effect of each parameter of the building and the soil structure interaction which describe in the
boundary condition.

2. To study the performance of different types of TMD model in the high rise building.

3. Study the TMD’s influence in the total cost of the structure. TMD is not cost efficient solution for all the
building, so introducing the limitation and the situation in which the TMD has a good role in reducing
the total cost is desired.

Figure 1.1: Discrete Model of High Rise with TMD

1.4. METHODOLOGICAL APPROACH
Currently there is no high-rise building in the Netherlands that uses this technology (TMD), therefore, exper-
imental evidences cannot be extracted. However, it is necessary to explore the possibilities of TMD usage in
future buildings. In order to do so, theoretical models that study the effectiveness of use of TMD’s as a solu-
tion should be developed. The theoretical models can be derived from the simple system of a lumped mass
or 1 degree of freedom system, many degrees of freedom system, and infinitely many degrees of freedom or
continuous system.

1.5. RESEARCH QUESTIONS
Some research questions which correlated with the aims and the background of the thesis are:

1. What is the influence of mass, stiffness, and damping on the performance of TMD?

2. Under what condition the application of TMD is beneficial to the total cost of the building?

3. What is the effect of different types of TMD in term of reducing the building acceleration?

4. What is the effect of SSI on the effectiveness of the TMD?

5. How does the dynamic behavior of the high rise building on different SSI condition?
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1.6. REPORTING STRUCTURE
I Literature Study

The literature study provide existing theory and application related with the topics. The literature study
includes he general overview of high rise structure and its dynamic behavior. In this chapter the back-
ground theory of dynamic systems and the solution are discussed. The next chapter discussed the
theory and application of tuned mass damper. The last chapter is about the relation of both systems
and the soil characteristics.

II Modeling
Parametric modeling of the system is done with the mathematical programming such as Maple and
Matlab based on the vibration theory. First, the physical meaning of the mathematical variable are
discussed and elaborate with the solution method. To validate the output, discrete and continuous
system are compared.

III Analysis
The parameters and the output of the models are further analyzed in this chapter. The parameters can
be grouped in three types which are: the characteristics of the structure, TMD, and soil. Analyzing the
trend of each characteristics can leads to obtain the solution of this project. The main interest are the
parameter of the TMD which can be the quantity, types and position of the TMD.

IV Conclusion and Recommendation
The important and significant points of the resulting analysis is written down in this chapter. The criti-
cism to this report and method is also given by the author to improve the future research of this topics.





2
DYNAMICS OF HIGH-RISE BUILDING

In this chapter, the characteristics, limitation, and modelling of high rise structure are discussed. The model in
this literature are the mathematical model to analyze the dynamic behavior of the structure. There are three
system which will be discussed those are 1DOF, NDOFs, and 1 Dimensional model of continuous system.

2.1. HIGH RISE BUILDING
One of the definition of high rise structure can be derived from the internal forces. A building can be defined
as a high rise if the stresses due to horizontal loading are larger than due to vertical loading [11]. This horizon-
tal loading can be caused by various source such as earthquake, machinery, and the wind load on the façade
of the building. In this thesis, the loading is limited to the wind loading only which varies from the height of
the building and the time.
Wind induced vibration in high rise structure can be differentiated in thee response component according
to the direction of the excitation. The first direction is along the wind excitation when the excitation is par-
allel to the wind direction, the second is when the excitation is perpendicular to the wind direction which
is across wind excitation, and the third is the torsional if the structure is asymmetric [15]. The across wind
excitation caused by the negative pressure acts on the side façade of the building caused by wind. This ex-
citation are induced by wake flow field and vortex shedding. The wake region is the vortices caused by the
wind Figure2.1(left). The vortex shedding is a phenomena when a fluid flows around a bluff body creating an
oscillation Figure2.1(right).

Figure 2.1: Wake Excitation (left) [ntl.bts.gov] and Vortex Shedding (right) [projectggroupf.wordpress.com]

The vibration can also classified by the aeroelastic effects which are: lateral vibration by vortex, lateral vi-
bration by galloping instability, and buffering vibration by gust wind [13]. The first is the vortex induced
vibration (VIV) which is occur when the frequency of the vortex shedding is close to the natural frequency
of the structure. The second is the galloping instability when the frequency of the structure is below those of
vortex induced vibration. The third is buffering when the velocity fluctuations in an oncoming flow causing
unsteady loading around a structure.
There are two types of criteria which should be satisfied in designing a high rise which are ultimate limit
and serviceability limit. Ultimate limit is related to the internal forces and buckling of the structural element
while serviceability limit is related to the deflection and acceleration which disturb the comfort level of the
user. The wind induced vibration gives a dynamic response in the building in term of a displacement and an
acceleration which also affect the internal force of the structural elements. In this thesis, the attention is more
to the serviceability limit which in many case is the main limiting factor when designing a high rise structure.
In the Netherlands, the acceleration limits are regulated from the Netherlands building code NEN6702 (2.2).

5
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Figure 2.2: Dutch Comfort Criteria for Buildings [11]

The displacement limit of a high rise building can be obtained by: H (height of the building) divided by 750 if
the base rotation is not taking into account and by 500 if it does.
To improve the structural response to vibration, mass, stiffness and damping are the three parameters which
contributes to dynamics of structure. The total damping comprises internal material damping, damping due
to the energy loss in the structural joints and the energy dissipation by soil-structure interaction.

2.2. SINGLE DEGREE OF FREEDOM
The simplest system to model a structure is a single degree of freedom (DOF) system. Degree of freedom is
defined as the number of possible direction for the system to move. One of the example of the single degree
of freedom system is a mass connected to a spring or and dashpot. The system can be undamped or damped,
but due to the interest of this thesis is on the damping, damped system is discussed in this explanation. The
vibration of a dynamic system can be separated into two condition related to time. Transient vibration is
defined as a temporary vibration of a mechanical system which consist of free and forced vibration. Steady-
state vibration is defined as a vibration of a mechanical system after sufficiently long time which means the
effect of the initial conditions are no longer applied.
To obtain the response of the dynamic system, three steps should be done which are: write the equation of
motion, solve the free vibration, and solve the force vibration. These three steps will be discussed in detailed.

2.2.1. EQUATION OF MOTION (EOM)
The equation of motion is derived from the Newton’s second law which is

F = m ∗ ẍ (2.1)

In case of mass spring dashpot system Figure2.3, the equation of motion becomes:

Figure 2.3: Mass-spring-dashpot system

2.2.2. FREE VIBRATION
There are two mechanism that drive the dynamic behavior of dynamic system. The first mechanism is a
motion due to initial condition which called free vibration. In mathematical term, this is the solution of the
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homogeneous equation. So the equation of free vibration can be written as:

mẍ + cẋ +kx = 0

ẍ +2nx +ω2
n x = 0

(2.2)

Whereωn =p
k/m later known as the natural frequencies of the vibrating system with the given initial condi-

tion, and n is just a replacement from c/2m which contain the information about the damping of the system.
One of the output in solving the free vibration is the characteristic value, in this case is the natural frequency
or eigenvalue of the system. The presence of natural frequency means that the system may vibrate with a
certain amplitude without the presence of the external force.

The free vibration for the damped system can be distinguished in two cases. The so called critically damped
free vibration is the case when the system does not oscillate and go to the equilibrium position (Figure 2.5).
This is the case when the damping is larger than the natural frequency (n >ωn). The other case is the damped
free vibration when the system is oscillating but gradually decays to the equilibrium position (Figure 2.4). This
happen when the damping is smaller than the natural frequency (n <ωn).

Figure 2.4: Critically damped free vibration (left) Damped free vibration (right)

2.2.3. FORCED VIBRATION
The second mechanism is the forced vibration which is the motion due to the external force. In mathematical
term, this linked to one of the particular solutions. While in undamped system the particular solution is in the
same type as the load, there must be a phase shift in damped system. Which means that the response and the
force are never in phase (pointing at the same direction). There can be more than one form of particular so-
lution in damped system. For harmonic force, the particular solution can be: xpar t = Xc cos(ωt )+ Xs sin(ωt )
or xp ar t = Re(X e iωt ) if it is a cosine load or Im(X eωt ) if sinusoidal.
Under general disturbing force when the load is irregular and non-periodic, there are 2 ways to find the force
vibration. The first is based on the assumption that the force is a superposition of a sequence of short impulse
which used Duhamel’s Integral. The second is based on the application of Fourier series which assume that
the force is a continuous superposition of its harmonic component.
Then the total response of the equation of motion is the sum of the free vibration response and forced vibra-
tion.

2.2.4. STEADY-STATE VIBRATION
The steady-state vibration will occur in undamped system because the damping decays the free vibration
gradually, leaving only the force vibration. The steady-state response of the damped system can be found:

xstead y = |X |cos(ωt −φ)

xst ati c = Fo

k

|X | = Fo

k

1√(
1− ω2

ω2
n

)2 +
(

2n
ωn

)2
ω2

ω2
n

|X |
xst ati c

= 1√(
1− ω2

ω2
n

)2 +
(

2n
ωn

)2
ω2

ω2
n

(2.3)
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The (2.6) is known as the dynamic magnification factor which means that the dynamic response of a system
can be obtain by multiplying the static response with this dynamic magnification factor.

Figure 2.5: Magnification Factor

If this equation is plotted vs frequency (Figure 2.6), it can be seen (also from (2.6)) that if the damping is zero
(γ= 0) and the natural frequency of the system is equal to the frequency of the load (ω/ωn = 1), the response
goes to infinity. This is known as the beating or resonance phenomena.

2.3. MULTI DEGREES OF FREEDOM STRUCTURE
The example of N-DOFs (N is a certain number >1) system can be seen in Figure 1.1 which each of the floors
is the mass and each mass consist of 1DOF (translation) except the base floor which also can rotate. The
principle of N-DOFs system is the same with the 1DOF system, but the equation is more convenient to write
in the matrix form since it has many EOMs. The three steps of solving the 1DOF system still can be applicable
in N-DOFs system. One of the method to form the EOMs is through the displacement method when each
of the DOFs are moved to a certain displacement and obtain the reaction force contributes to the particular
DOF. Then the matrix form of the EOMs can be written as:

[M ]ẍ + [C ]ẋ + [K ]x = [F ] (2.4)

Where [M], [C], and [K] are respectively mass, damping, and stiffness matrix of the system. One way to check
the EOM is to look at these matrixes. The mass matrix should have a positive value on the diagonal (meaning:
a stable system) and should be diagonal matrix if there is no rigid constrained between masses. The stiffness
matrix should be symmetric and have positive value in the diagonal. Because the criteria for a stable system
is having a pure imaginary of the characteristic value s2 = −k/m, and it cannot be the case if one of the k or
m has negative value. Because the system has many masses, it has also many natural frequencies depend on
the number of the mass. There is additional characteristic value which is the eigenvector. It tells the infor-
mation of the displacement relation in one modes to the others. Three methods will be introduced to solve
the N-DOFs system which are the model analysis, Fourier analysis, and direct numerical integration. The
modal analysis is the fastest method since it used the orthogonality property which can decouple the matrix
EOMs to its components. But this method cannot handle system with high damping value since the damp-
ing matrix cannot be decoupled. The direct numerical integration can handle any case but slow processing
time. Therefore the one will be used in this thesis is the Fourier analysis which can handle damping but only
limited to a linear system.

2.4. CONTINUOUS SYSTEM
A continuous system can be define as a system which is discretized to an infinitely many masses to have a
continuous properties along the system. Which means that a continuous system can also be describe as a
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system with infinitely many degree of freedom. In this thesis the continuous system has only one dimen-
sional structures. Which means that the mechanical behavior (stress) of the structure is varies only on one
coordinate regardless the number of the direction of the movement.
A high rise building is often modeled as a beam. There are three types of beam theory which are: Euler-
Bernoulli Beam, Timoshenko Beam, and Rayleigh Beam. The simplest model is an Euler-Bernoulli beam, the
theory neglect the influence of rotational inertia and also assumed that the cross section of the beam remain
planar to the central axis. The Rayleigh beam take into account the influence of rotational inertia but neglect
the rotational of the cross section. The most advance model is Timoshenko beam model which takes into
account both of the phenomena. In this case, the Euler-Bernoulli Beam is enough as a representation of a
high rise building because a building has small rotational inertia and also has a high slenderness. While the
effect of the cross section rotation is high on a thick beam. A Euler-Bernoulli beam has two degree of freedom
for each discretized mass namely deflection and rotation. The rotation defined as the first derivative of the
deflection. The derivation of the equation of motion can be seen on the Appendix (A.8), the final equation
can be seen below:

ρA
∂2u

∂t 2 + d 2

∂x2

(
E I

∂2u

∂x2

)
= q(x,t ) (2.5)

To obtain the response, this equation can be solve by many methods. Two well-known methods are the
method of separation of variables and Fourier transform. The method of separation of variables assumes
that the solution or the response of the vibration can be defined as two separate functions of time and coor-
dinate ((u(x, t ) = W (x)Φ(t ))). But this method cannot work if one of the boundary condition contains time
derivation which in the case in this thesis with TMD. Therefore another method with an application of Fourier
Transform can be used. This method also known as a solution in the frequency domain because the Fourier
Transform change the function from a time domain to the frequency domain.

2.5. MODEL OF DAMPING
Every conservative structure in the world can dissipate energy which means that if we vibrate a structure by
an impulse, the conservative structure will be on its original position after a period of time. This energy dissi-
pation through time is defined as a damping. In high rise building, the source of damping can be categorized
as follow:

1. Damping from the Material This damping is come from the internal friction in the material itself. The
physical mechanism which produce damping in the material differs from each specific material. Some
of the physical mechanism are thermoelasticity, eddy-current effect, stress induced, and electronic ef-
fect.

2. Damping from Structural Joints The energy dissipation from the structural joints comes from the lo-
cal frictional effect in the joint. The cause can be also through air pumping which is trapped in the
structural joints.

3. Damping from Soil Structure Interaction Vibration on the building that propagating to the soil is dissi-
pated through the radiation to the deeper layer and histeretic loss in soil due to its imperfect elasticity
(material damping).

4. Aerodynamic Damping When a flow of air interacts with an object, there is a restoring moment which
is opposite to the movement of the object create by the airflow. This restoring moment is known as
aerodynamic damping which is dependent on the dynamic pressure create by air speed.

5. Added Damping To overcome acceleration problems in building, engineers build many types of artifi-
cial dampers. One of the example is discussed in this thesis which is a tuned mass damper.

6. Radiation Damping A vibrating object have a vibrating energy of electrons. Radiation damping occurs
when the electron is converted to electromagnetic energy and emitted in from of radio wave, infrared,
or light.

In previous research, it is state that the observation of damping turn to be non-linear. A method to linearized
damping has been introduced by Rayleigh (1877) which is well known now as a viscous damping. Viscous
damping is an energy loss caused by liquid lubricant in which its force is proportional to its relative velocity.
These damping then modeled as a mathematical expression for the equation of motion. Some types of the
damping model which has been studied are discussed in the next section below.
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2.5.1. MATERIAL DAMPING
To model the material damping [5], there are two categories which has been made in the literature which are
the frequency dependent model and the frequency independent model.

1. Kelvin-Voigt Model Kelvin-Voigt model is consist of a spring which is paralel with a dashpot as it can
be seen in the figure. The spring and dashpot model the behavior of a viscoelastic solid. By definition,
viscoelasticity is the viscous and elastic characteristic of a material. The equation of motion of a single
degree of freedom system of the Kelvin-Voigt model can be seen in the equation below:

mü + cu̇ +ku = 0 (2.6)

2. Collar Model
Another model of damping is the Collar model which model a damping of a system depend on the
frequency. This model is also called a frequency dependent damping as it can be seen in the equation
below:

mü + (b/ω) u̇ +ku = 0 (2.7)

3. Kimball-Lovell Model
Kimball and Lovell ovserved that material damping in engineering material is not dependent on the
frequency. Therefore they build a damping model which is independent of the frequency as can be
seen in the equation below:

mü + (k + i b)u (2.8)

4. Myklestad Model
Myklestad model is an alternative of the Kimball-Lovell model in which the spring constants is replace
by an exponential term as it can be seen in the equation below:

müC1e i mu (2.9)

5. Reid Model
Reid model is build to handle multiple frequency forced vibration and also free vibration. The damping
term of the Reid model can be seen in the equation below:

mü +b|u/u̇|u̇ +ku = 0 (2.10)

Kelvin-Voigt model is the well known model for the damping which is chosen also in this thesis. The ad-
vantage of this model is the simplicity that the damping is linear while it can modeled the behavior of a
viscoelastic solid.

2.5.2. VISCO-ELASTIC BODY
To apply the Kelvin-Voigt model in the continuos system, a model called visco-elastic body is applied in the
Euler-Bernoulli beam. The definition of visco-elastic bodies is when the mechanical properties of system is
varies through time. This is the combination of elastic theory from Hooke’s Law and the viscous phenomena
from Newton’s Law.
The assumption in this theory is the system is linear: which taking into account the small deformation, and
follows Boltzmann’s superposition theory. The theory state that if a stress cycle σ1(t ) gives a strain ε1(t ) and
stress σ2(t ) gives a strain ε2(t ), then the sum of the cycle σ1(t )+σ2(t ) gives a strain ε1(t )+ε2(t ).
The stress can be expressed as the summation of Hooke’s and Newton’s Law as falling:

σ=σo +σs

σo = Eε

σs = ηε̇= η ∂
∂t
ε

c∗ = η/E

σ(t ) = E

(
1+ c∗

∂

∂t

)
ε(t )

(2.11)

The major advantage is: The model is the simplest model which can represent damping which is increases
with the increase of the natural frequency of the system as it can be seen in the later chapter.



3
TUNED MASS DAMPER

This chapter discusses the theory and application of tuned mass damper (TMD) on a high-rise building. The
introduction explains about the initial idea of TMD, the model which is applied in this thesis is also discussed.

3.1. INTRODUCTION

Tuned mass damper in principal is a vibration absorber which is first introduced by Hermann Frahm in 1909.
This is used to improve high vibration in resonance phenomena. The vibration absorber can be damped or
undamped, the magnification factor of both can be seen in Figure3.1.

Figure 3.1: Magnification Factor of undamped vibration absorber (left) [15] and Magnification factor of damped vibration abserober
(right) [10]

Those figures are obtained from two degrees of freedom system which consist of the primary system (1st
mass) and the auxiliary system (2nd mass) which is the absorber. It can be seen on the Figure3.1 that as the
frequency of the load (ω) reach ωb , the primary system has 0 amplitude. The positive value of amplitude
means that the system is in phase with the load. The natural frequency of the auxiliary system is tuned to
the natural frequency of the primary system to get high effectiveness. So that when the first resonance takes
place, the main system absorbs the energy from the load, then the second resonance can occur when the
auxiliary system absorbs the energy from the primary system. But in case of moderately stiff soil and stiff
rock, the mass damper should be tuned to the natural frequency of the soil structure system rather than the
structure with clamped base [24].

For the undamped vibration absorber, the plot only gives the information about the primary system. The
work done by the damping is given by the force times the relative displacement of the two masses. When the
damping is 0 (damping force is zero), and when the damping is infinite (the two masses are locked together)
the relative displacement is zero, there is no energy dissipation, and the amplitude is maximum. But in be-
tween those values, there is an optimum damping which the auxiliary system absorb the vibration the most
[10].

11
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The tuning for the damped vibration absorber can be obtained by the equation below:

f = 1

1+µ
µ= absorber mass

main mass

f = ω2

ω1

(3.1)

The maximum damping capacity that can be obtained from TMD is roughly equal to the mass ratio (m/M)
but this required fine-tuning. It is desirable to use a damper with a mass ratio at least twice that required
added damping to avoid the need of fine tuning [21].
In the relation of the vibration of high-rise structure, the previous study shows that the TMD has low effec-
tiveness in reducing structural response in along wind excitation as also mentioned in previous chapter that
this is not the critical vibration. The TMD is more effective in reducing the vibration caused by lock-in exci-
tation than crosswind wake excitation and along wind turbulence [24]. The performance of TMD is expected
to reduce 50-60% vibration [13].

3.2. UNDAMPED VIBRATION ABSORBER
The system of the undamped vibration absorber consisting of one primary mass and one absorber mass
which is connected only by spring stiffness can be seen in the Figure3.2.

Figure 3.2: Undamped Vibration Absorber System

The equation of motions for the 2 masses can be seen in the equation below:

m1ẍ1 +k1x1 +k2x1 −k2x2 = Po sin(ωt )

m2ẍ2 −k2x1 +k2x2 = 0
(3.2)

In this case, the main focus is to study the excitation of the system by the harmonic force. Therefore to plot
the dynamic magnification factor in steady-state regime, the solution can be found in the form of:

x1 = A1 sinωt

x2 = A2 sinωt
(3.3)

The next step is to substitute this steady-state solution to the EOM. From the substitution, it is obtained that:

A1

xst
=

1− ω2

ω2
2(

1− ω2

ω2
2

)(
1− k2

k1
− ω2

ω2
1

)
− k2

k1

A2

xst
= 1(

1− ω2

ω2
2

)(
1− k2

k1
− ω2

ω2
1

)
− k2

k1

(3.4)

In which some terms of the ratio between the properties are introduced as:
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Static response:

xst = Po

k2

Natural frequency:

ω2 =
√

k2

m2
(3.5)

ω1 =
√

k1

m1

Mass ratio:

µ= m2

m1

It can be seen from the equation 3.4 that the denominator is the same on both of the system. This explains
the resonance phenomena that if the main system has an infinitely large amplitude, then it induce also an
infinitely large force to the other system which also resulting infinitely large amplitude. As when the denomi-
nator is zero, both of the system has infinitely large amplitude, and this can happen when ω=ω2 =ω1 which
is the requirement of resonance.
It can also be seen the main system can have a zero amplitude if the frequency of the load is the same as
the frequency of the absorber system (ω = ω2). Using this condition to the absorber’s equation resulting
A2 = −Po/k2 and then x2 = −Po sinωt/k2. It can be concluded that the force resulting from this absorber
motion is equal to F2 = x2k2 =−Po sinωt which is the same as the external force but in the opposite direction
and this is why the main system has no vibration at all.
Now the system becomes a 2 DOFs system. To find the natural frequency of this 2DOFs system, we should
find the root of the denominator equal to zero. The absorber system is tuned to have the same frequency as
the main system because it is not relevant to apply a vibration absorber unless there is a resonance in the
SDOF system of the main system only. Therefore the denominator can be written as:(

1− ω2

ω2
2

)(
1−µ− ω2

ω2
2

)
−µ

(
ω

ω2

)4

−
(
ω

ω2

)2

(2+µ)+1 = 0

(
ω

ω2

)2

=
(
1+ µ

2

)
±

√
µ+µ2

4

(3.6)

It can be seen that the equation has two real roots which are true because 2 DOFs system also has two natural
frequencies. By tuning the frequency of the vibration absorber to the primary system, from the equation 3.4
the frequency response of the system can be written as:

∣∣∣∣ X1

xst

∣∣∣∣= 1− ω2

ω2
2(

1− ω2

ω2
2

)(
1− k2

k1
− ω2

(ω2
2)

)
− k2

k1∣∣∣∣ X2

xst

∣∣∣∣= 1(
1− ω2

ω2
2

)(
1− k2

k1
− ω2

(ω2
2)

)
− k2

k1

(3.7)

To plot the frequency response of the primary mass, we choose the mass ratio:

µ= 1

20
= 0.05

Plotting the equation 3.7 with the frequency ratio g = ω
ω2

as x axis and
∣∣∣ X1,2

xst

∣∣∣ as y axis resulting in the Figure3.3:
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Figure 3.3: Dynamic Magnification Factor in Undamped Vibration Absorber System

It can be seen that when the resonance phenomena occur in a SDOF system, that the amplitude goes to
infinity when the frequency of the load is the same as the natural frequency of the main system. Placing a
mass attached to the primary system with a spring may absorb all the response. So the vibration absorber
will be the one that oscillates instead of the main mass (which now has zero amplitude).

3.3. DAMPED VIBRATION ABSORBER (DVA)
DVA (Figure3.4) was introduced by J.P.Den Hartog and J.Ormondroyd and published in 1928. They observed
that by placing a damper in a vibration absorber, there is a method to find the optimum ratio of the main
system’s frequency and absorber’s frequency. It is known by tuning ratio.

Figure 3.4: Damped Vibration Absorber System

3.3.1. FREQUENCY RESPONSE
The magnification factor should be derived first with the same procedure as the undamped vibration ab-
sorber to obtain this tuning ratio.
Equations of Motion:

m1ẍ1 +k1x1 +k2(x1 −x2)+ c2(ẋ1 − ẋ2) = Po sinωt

m2ẍ2 +k2(x2 −x1)+ c2(ẋ2 − ẋ1) = 0
(3.8)

Steady State Solution:
x1 = Im(X1e iωt ) ; x2 = Im(X2e iωt ) (3.9)

By substituting the steady-state solution to the equations of motion:

[−m1ω
2 +k1 +k2 + iωc]X1 − [k2 + iωc2]X2 = Po

−[k + iωc]X1 + [−mω2 +k + iωc]X2 = 0
(3.10)

Now take a closer look at the main system by expressing the X2 in X1 from the equation 3.10:

X1 = Po
(k2 −m2ω

2)+ iωc2

(−m1ω2 +k1)(−m2ω2 +k2)−m2ω2k2 + iωc2(−m1ω2 +k1 −m2ω2)
(3.11)
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Due to the damping in the system, the equation is now in complex value form. To obtain the amplitude, we
need to take the absolute value of equation 3.11 and by doing this, we can eliminate the imaginary part also.
At first, separate the imaginary part by multiplying with its complex conjugate.

X1 = (A+ i B)

(C + i D)
∗ (C − i D)

(C − i D)
= ((AC +BD)+ i (BC − AD))

(C 2 +D2)
(3.12)

After separating the imaginary part, the absolute value can be obtain through this equation:

amplitude = |X1| = |E + i F | =
√

(E 2 +F 2)

|X1| =
√

(A2C 2 +B 2D2 +B 2C 2 + A2D2)

(C 2 +D2)2 =
√

(A2 +B 2)(C 2 +D2)

(C 2 +D2)2 =
√

(A2 +B 2)

(C 2 +D2)

|X1|
Po

=
√√√√ ((k2 −m2ω2)2 +ω2c2

2 )

[(−m1ω2 +k1)(−m2ω2 +k2)−m2ω2k2]2 +ω2c2
2 (−m1ω2 +k1 −m2ω2)2

(3.13)

Introducing some terms of the ratio between the properties which introduced as:

µ= m2

m1
;ω2 =

√
k2

m2
;ω1 =

√
k1

m1
; f = ω2

ω1
; g = ω

ω1
; xs t = Po

k1
;cc = 2m2ω1

|X1|
xs t

=

√√√√√√
(
2 c2

cc
g
)2 + (

g 2 − f 2
)2(

2 c2
cc

g
)2 (

g 2 −1+µg 2
)2 + [

µ f 2g 2 − (
g 2 −1

)(
g 2 − f 2

)]2

(3.14)

In which g is the frequency ratio and cc is the critical damping. We set the natural frequency of the absorber
to be the same as the main system (f=1). Using the same mass ratio as the undamped vibration absorber

µ= 1

20
= 0.05

plot with a different value of the damping (Figure3.5)

Figure 3.5: Frequency Response Function (DVA)
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3.3.2. TUNING RATIO

There are two extreme cases which result in the infinitely large value of the amplitude of the main system.
The first is when the c2 = 0 (green plot) which means the same case as the undamped vibration absorber. It
can also be seen through mathematical expression below.

f = 1;c2 = 0;

|X1|
xs t

=
√√√√√ (

g 2 −1
)2[

µg 2 − (
g 2 −1

)2
]2

µg 2 − (
g 2 −1

)2 = 0

g 4 − (2+µ)g 2 −1 = 0

g 2 =
(2+µ)±

√(
2+µ)2 −4

2

(3.15)

The equation 3.15 is the same as the equation 3.6 from the undamped system. Now consider the second case
which is c2 =∞ (blue plot). This means the system is the same case as a SDOF system with a combined mass
of both main’s and absorber’s.

f = 1;c2 =∞
|X1|
xs t

=
√√√√ (2g )2

(2g )2
(
g 2 −1+µg 2

)2

g 2 −1+µg 2 = 0

(1+µ)g 2 = 1

g 2 = 1

(1+µ)

(3.16)

Through this mathematical expression, it can be seen that the system with infinitely large damping value has
only one natural frequency which is a SDOF system.
It is very interesting that in Figure3.5, in the different value of c between 0 and infinity, there are 2 points
which all the line intersect and undisturbed by the damping value (points O and P) which is also called the
locked points. Then the optimum value of c can be found if these 2 points is the maximum peak throughout
the frequencies and if these 2 points are the same height.
While the first criteria can be easily found by decreasing/increasing the value of c, the key to the second
criteria is the ratio of the natural frequency of the main system and the absorber. Den Hartog define this as
the tuning ratio, the derivation of the tuning ratio is explained in the procedure below.

1. These 2 locked points are undisturbed by the damping value

The mathematical expression below describes a condition how the magnification factor is not disturbed by
the damping value.

|X1|
xs t

=

√√√√√√ A
(

c2
cc

)2 +B

C
(

c2
cc

)2 +D
;

A

C
= B

D
(3.17)

Using the complete equation from 3.13 to 3.17, the equation for this condition becomes:

(
1

g 2 −1+µg 2

)2

=
(

g 2 − f 2

µ f 2g 2 − (g 2 −1)(g 2 − f 2)

)2

µ f 2g 2 − (
g 2 −1

)(
g 2 − f 2)=±(

g 2 − f 2)(g 2 −1+µg 2) (3.18)

The equation 3.18 has two forms of the equation. The equation with a negative sign on the right-hand side
gives a trivial solution ( the root of g=0) which leads to 0 response. So taking into account the positive sign on
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the right-hand side resulting:

µ f 2g 2 − (g 2 −1)(g 2 − f 2) = (g 2 − f 2)(g 2 −1+µg 2)

µ f 2g 2 − g 4 + g 2 f 2 + g 2 − f 2 = g 4 − g 2 +µg 4 − g 2 f 2 + f 2 −µg 2 f 2

(2+µ)g 4 −2(1+ f 2 +µ f 2)g 2 + f 2 = 0

g 4 − 2(1+ f 2 +µ f 2)

2+µ g 2 + f 2

2+µ = 0

(3.19)

2. These 2 locked points should be in the same height

Take a look at the equation 3.13, due to the presence of the first condition, any number of c/cc can be applied.
To simplified the equation, choose c/cc =∞

|X1|
xs t

=

√√√√√√
(
2 c2

cc
g
)2 + (

g 2 − f 2
)2(

2 c2
cc

g
)2 (

g 2 −1+µg 2
)2 + [

µ f 2g 2 − (
g 2 −1

)(
g 2 − f 2

)]2
∗ cc /c2

cc /c2

=
√

(2g )2

(2g )2(g 2 −1+µg 2)2

(3.20)

Then from this point, take into account the second condition which means that point O which is located at
g1 is at the same height or have the same |X1|/xs t with point P which is located at g2. This condition can be
described mathematically using equation 3.20:

−1

g 2
1 −1+µg 2

1

= 1

g 2
2 −1+µg 2

2

(g 2
1 + g 2

2 )(1+µ) = 2

(g 2
1 + g 2

2 ) = 2

1+µ

(3.21)

Now we can finalize the derivation of the tuning ratio by using the characteristics of a quadratic equation for
the equation 3.19 that:

x2 +ax +b = 0 ; x1 +x2 =−a

g 2
1 + g 2

2 = 2(1+ f 2 +µ f 2)

2+µ
(3.22)

Therefore, the expression of f = (ω2/ω1) which is the ratio between absorber’s natural frequency and natural
frequency of the main system can be obtained by substituting equation 3.22 to 3.21:

2

1+µ = 2(1+ f 2 +µ f 2)

2+µ
2(2+µ)

1+µ = 2+2(1+µ) f 2

f 2 = 4+2µ−2−2µ

2(1+µ)(1+µ)
= 1

(1+µ)2

f = 1

(1+µ)

(3.23)

The natural frequency of the absorber can be determined using this tuning ratio(f):

ω2 = ω1(
1+ m2

m1

) (3.24)

With this tuning, the Figure3.5 can be plot again with the different natural frequency of the absorber system.
It is expected that the point O and P now is at the same height which is the optimum effectiveness of the
absorber (Figure3.6). Although the point O and P is now at the same height, a proper value of damping
(c) should be determined so that the peak or maximum value is located at the point O and P. Usually, the
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optimum value of c can be seen if the plotting line is a approach a straight line between O and P points (this
situation can be viewed in the magenta colored line in Figure3.6). In the case when the damping value is too
small can be seen in the red colored line, and the case when the damping value is too high can be viewed in
the black colored line. These two lines have a peak/peaks, not in the point O and P which means the damping
value is not yet at an optimum value.

Figure 3.6: Frequency Response Function (Optimum)

3.4. DAMPED VIBRATION ABSORBER IN DAMPED SYSTEM
The soft soil condition also affects the damping of the building. Therefore to study this effect, a two degree of
freedom system with a damper in the primary system is modeled.

Figure 3.7: DVA in Damped System

Equation of Motions (EOM):

m1(ẍ1)+k1x1 + c1(ẋ1)+k2(ẋ1 − ẋ2)+ c2(ẋ1 − ẋ2) = Po sinωt

m2(ẍ2)+k2(x2 −x1)+ c2(ẋ2 − ẋ2) = 0
(3.25)

Steady State Solution:
x1 =ℑX1e iωt ; x2 =ℑX2e iωt (3.26)

Substituting the steady state solution to the EOM resulting:

(−ω2m1 +k1 + iωc1 +k2 + iωc2)X1 − (k2 + iωc2)X2 −Po = 0

(−ω2m2 +k2 + iωc2)X2 − (k2 − iωc2)X1 = 0
(3.27)

The expression for X2 in the equation 3.27 top can be expressed with X1 obtained from the equation 3.27
bottom, by doing this, the expression for X1 after this substitution can be written as:

X 1 =− (Po(−m2ω
2 +k2 + iωc2))/

(ω2c1c2 + iω3c1m2 + iω3c2m1 + iω3c2m2 −ω4m1m2

− iωc1k2 − iωc2k1 +ω2k1m2 +ω2k2m1 +ω2k2m2 −k1k2)

(3.28)
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Using the same method as in the equation 3.11 to 3.13, the dynamic magnification factor for DVA in the
damped system as shown below:

|X1|
xs t

=
√

(−ω2k1m2 +k1k2)2 +ω2c2
2 k2

1

ω2 A2 +B 2 (3.29)

in which:
A = ((−m1 −m2)c2 − c1m2)ω2 + c1 ∗k2 + c2k1

B =−ω4m1m2 + ((m1 +m2)k2 + c2c1 +m2k1)ω2 −k1k2
(3.30)

To compare this equation to the DVA system, input the c1 equal to zero, the mass ratio

µ= m2

m1
= 0.05 (3.31)

and the tuning ratio ω2/ω1 = 1/(1+µ). It can be seen that the plotting result (Figure3.8(left)) is the same as in
Figure3.6.

Figure 3.8: FRF DVA Validation (left) DVA with Damped Structure (right)

Figure3.8 FRF DVA Validation (left) DVA with Damped Structure (right) Now with the same equation, plot with
the presence of damping value c1 = 0.1 which can be seen in Figure3.8(right). Some difference which occurs
due to the presence of damping are:

1. The peak is reduced

2. The point O and P is no longer the optimum points (Q and R)

3. The effectiveness of TMD is reduced

Figure 3.9: Comparison FRF with Higher Absorber Mass

The solution to gain high effectiveness in here can be to increase the peak again by reducing the mass and
stiffness of the main mass. But it can also be looked at the different way, to increase the TMD effectiveness is
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to lower the intersection points between the blue and green line which means reducing the value of the point
(O, P, Q, and R). Therefore it can be done with moving the two peaks of the undamped absorber mass (green
line) further away. The two peaks are displaced further away when the mass of the absorber is increased
which can be seen in Figure3.9.

The point O and P in Figure3.9 (left) still not the optimum points but because of the scaling, we couldn’t see
this. But it is true that the optimum point also reduced as the two peaks of the green line are move further.
The tuning ratio is no longer the same as DVA but the stiffness of the absorber (k2) still have to be tuned until
the optimum points (Q and R) is at the same height. The damping of the absorber (c2) also has to be tuned
until the maximum peak is at the optimum points (Q and R).

3.5. ACTIVE MASS DAMPER
Although the concept of a passive mass damper for vibration absorber [16] is proofed to reduce the response
of the primary system, there are still weak points of a passive mass damper. Some of the negative points
which can be observed through previous chapter are:

1. The effectiveness of passive mass damper can be increased only by increasing the ratio of TMD mass
and primary mass which is small in the case of a high-rise building.

2. Due to small mass ratio, damping ratio is also small. Therefore it is practically difficult to tune the TMD.
Also, the time for mass absorber to reach steady state is longer due to small damping ratio [24].

Therefore the active mass damper is introduced to optimize the vibration absorber system. The model for
the AMD can be seen in the Figure3.10.

Figure 3.10: Active Mass Damper

The main idea of the AMD is to be able to set the actuator or control force u(t ) to the desired response of the
primary mass.

3.5.1. FREQUENCY RESPONSE
For stufy purpose of the AMD system, the term relative motion and different type of loading is introduced by
[3] in the following equation:

y(t ) = x2(t ) −x1(t )

fw (t ) = m1ω
2
1Fe iωt

(3.32)

The u(t ) is the control force which can be described through many algorithm, the convensional algorithm for
the control force is the full-state feedback law:

u(t ) =−Qẍ1 =−m1qẍ1 (3.33)

In which Q is the feedback gain and q is normalized feedback gain. The equation of motion for the mass
absorber in the AMD system is:

m2ẍ2 + c2ẋ2 +k2x2 − c2ẋ1 −k2x1 = u(t )

m2(ÿ + ẍ1)+ c2 ẏ +k2 y = u(t )

m2 ÿ + c2 ẏ +k2 y = u(t ) −m2ẍ1

(3.34)
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and the equation of motion of the primary system can be written as:

m1ẍ1 +k1x1 − c2 ẏ −k2 y =−u(t ) + fw (t ) (3.35)

Through elimination of equation 3.34 and 3.5.1, we can obtain the equation which is indipendent from the
control force u(t ) which is:

(m1 +m2)ẍ1 +k1x1 = fw (t ) −m2 ÿ (3.36)

Because there are two unknown responses (x1, x2) we should use two equations to obtain the responses. The
first equation which is used is the equation 3.36, and the second equation is obtained from the substitution
of the control force (3.33) to equation 3.34 resulting:

m2 ÿ + (m2 +m1q)ẍ1 +k2 y + c2 ẏ = 0 (3.37)

The response of the system can be obtained in the form of:

x(t ) = X e iωt ; y(t ) = Y e iωt (3.38)

By substituting the solution to the equation 3.36 and 3.37, the equations become:

−ω2m2Y + [−ω2(m1 +m2)+k1
]

X1 = m1ω
2
1F[−ω2m2 + iωc2 +k2

]
Y −ω2(m1q +m2)X1 = 0

(3.39)

The expression of Y is obtained from the equation 3.39 bottom equation which can be written as:

Y = ω2(m1q +m2)

−ω2m2 + iωc2 +k2
X1 (3.40)

We can obtain the frequency response by substituting the equation 3.40 to the 3.39 top equation.

X1 =
m1ω1

2
(−ω2m2 + iωc2 +k2

)
−m1 m2

(
q −1

)
ω4 − i (m1 +m2)c2ω3 + ((−k1 −k2)m2 −k2 m1)ω2 + i c2 k1ω+k1 k2

(3.41)

To simplify the equation, some ratio between the parameter is introduced (similar with the previous mass
damper system)

µ= m2

m1
; ω2 =

√
k2

m2
; ω1 =

√
k1

m1
; f = ω2

ω1
; g = ω

ω1
; xs t = Po

k1
; η= c2

cc
= c2

2m2ω2
(3.42)

We can obtain the frequency response by separating the real and imaginary part of the equation 3.41 and
taking the absolute value from it just like the procedure in section 3.3 from equation 3.12. The frequency
response can be written as:

∣∣∣∣ X1

F

∣∣∣∣=
√√√√ (

f 2 − g 2
)2 +4η2 f 2g 2((

1−q
)

g 4 − (
µ f 2 + f 2 +1

)
g 2 + f 2

)2 +4η2 f 2g 2
(−µg 2 − g 2 +1

)2 (3.43)

3.5.2. TUNING RATIO
Due to the presence of the control force u(t ), the optimum damping should be depend on it. The optimum
damping ratio can be derived with the similar concept of locked points as the DVA by Den Hartog in the sec-
tion 3.3.
1. These 2 locked points are the intersection between 2 functions

These 2 functions are the response function with zero damping and the response function with infinite damp-
ing. By substituting damping ratio equal to zero and infinite to the frequency response function (3.43), the
equation becomes: (

1

1− (1+µ)g 2

)
=

( (
f 2 − g 2

)
(1−q)g 4 − (

µ f 2 + f 2 +1
)

g 2 + f 2

)

g 4 − 2
(
µ f 2 + f 2 +1

)
2+µ−q

g 2 + 2 f 2

2+µ−q
= 0

(3.44)
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Using the characteristic of a quadratic equation to the equation 3.44:

x2 +ax +b = 0 ; x1 +x2 =−a

g 2
1 + g 2

2 = 2
(
µ f 2 + f 2 +1

)
2+µ−q

(3.45)

2. These 2 locked points should be in the same height

This statement can be written in the equation form such as:∣∣∣∣ X1

F

∣∣∣∣
(g1)

=
∣∣∣∣ X1

F

∣∣∣∣
(g2)

=α (3.46)

The symbol α is the maximum response of the primary mass. From the previous section of DVA, we know
that the optimum situation is when the maximum response (α) is placed on the two locked points.
Since the locked points is not influenced by the damping, we can use the infinite damping value to simplify
the frequency response equation (3.43) which can be written as:

∣∣∣∣ X1

F

∣∣∣∣=
√

1

(1− g 2(1+µ))2 =± 1

(1− g 2
1,2(1+µ))

1

1− g 2
1 (1+µ)

= −1

1− g 2
2 (1+µ)

g 2
1 + g 2

2 = 1

1+µ

(3.47)

From these two conditions, by substituting equation 3.45 to 3.47, the tuning ratio can be obtained such as:

f =
√

1−q

(µ+1)2 (3.48)

3.5.3. NORMALIZED CONTROL FORCE

The value of the normalized control force (q) must be derived from the desired maximum response (α). This
condition can be obtained through equation 3.47 (first equation):

1

1− g 2(1+µ)
=α (3.49)

The expression of g can be obtained by substituting the tuning ratio (f) to the equation 3.44. The root for the
quadratic equation can be obtained trhough:

ax2 +bx + c = 0 ; x = −b ±
p

b2 −4ac

2a

g 2
1,2 =

1

1+µ

(
1±

√
µ+q

2+µ−q

) (3.50)

Finally the expression of normalized control force is obtained through substitution of equation 3.50 to 3.49:

q = 2+µ−µα2

α2 +1
(3.51)

Nishimura derived also the optimum damping ratio for active damped vibration absorber in undamped pri-
mary system which can be seen in the equation below:

η=
√

3(µ+q)

8(1+µ)
(3.52)
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3.5.4. FREQUENCY RESPONSE PLOT
The mass ratio is chosen as the same value as the DVA in section 3.3. To plot the frequency response, first we
determine the maximum response we would like to achieve. Then the other parameters can be derived from
the α.

µ= 1

20
= 0.05

α= 3

q = 2+0.05−0.05∗32

32 +1
= 0.16 (3.53)

f =
√

1−0.16

(0.05+1)2 = 0.873

Optimum Damping:

η=
√

3(0.05+0.16)

8(1+0.05)
= 0.274

Now we can plot the frequency response for the main system which depicted in Figure3.11

Figure 3.11: AMD Frequency Response for the Primary Mass

It is true that the DVA (section 3.3) and AMD (section 3.5) has different loading case,

m1ω
2
1Fe iωt ; Po sinωt

but because we applied
m1 = 1 ; ω1 = 1

and since the response is observed in the frequency domain and the harmonic time form of the loading is
canceled, therefore we can compare the result for the DVA and AMD which is depicted in the Figure3.12.
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Figure 3.12: Comparison of Frequency Response AMD and DVA







4
BUILDING CASE

This chapter discusses the data for the case study which is the European Patent Office (EPO). EPO building is
designed by Zonneveld; the building has a slenderness of 1:5 and the ratio between its length and width are
1:8. It’s quite a slender and wide building. This building can be categorized as one of the tall buildings in The
Netherlands.

4.1. BUILDING DESCRIPTION
To build the analytic model of the high rise building, structural mechanism and flow of forces on the building
need to understand carefully. In this thesis, the wind loading is considered to be the main horizontal loading
on the building. The first element which interacts with the wind load is the facade of the building, then it
transfers the force to the floor or the perimeter beam, then from the floor to the main load-bearing struc-
ture. The main load-bearing structure or called the stability system is the main element which resists the
horizontal load. Then the force is transferred by this stability system to the base of the building which is the
foundation and to the soil.

The dynamic of European Patent Office is analyzed by Zonneveld in collaboration with TNO. A wind tunnel
test is performed to the building model, and then the dynamic wind pressure is inputted to the finite ele-
ment program, TNO Diana. Static analysis is performed with finite element program SCIA Engineer. The
dimension of the building is:

Building Parameter
Building Height 105 m
Building Width 156 m
Building Thickness 18 m

Table 4.1: EPO building data

4.1.1. SCOPE AND ASSUMPTION
This thesis is focused on the influence of the TMD in reducing the dynamic response of a building. The TMD
is mainly used to reduce the response of the building on the serviceability limit especially acceleration. The
vibration of a building due to horizontal wind loading is mainly on the horizontal axis. Therefore we neglect
the vertical vibration of the building. Then we can determine the building properties which contribute to the
horizontal vibration which can be categorized in three main components:

• Superstructure : Building mass, stiffness and damping

• SSI Component : Translation and rotation of the base due to interaction
between the building foundation and soil

• TMD Component : TMD mass, spring, and dashpot

27
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Figure 4.1: European Patent Office Building

The European Patent Office (EPO) building use a steel frame as the main load bearing structure. There are
four main steel frame in the building, and each of them are supported by a concrete block of 20x2m at the
base as it can be seen in the Figure4.1.

Figure 4.2: Group Piles Model in SCIA Engineer (Zonneveld)

The concrete block is then supported by a group of piles. The piles are modeled as a vertical and horizontal
spring-dashpot elements on the finite element program.The large proportion of the piles is located under the
tip of the steel frame as it can be seen in the Figure4.2.

To understand the behavior of the concrete plate on the base, the deformation of the plate is observed. The
deformation of the concrete plate due to horizontal wind load on the building (static analysis) is shown in
Figure4.3. The static analysis means that the fluctuating component of the wind is taken into account by a
constant load factor. It can be seen that the plate on the base of the building does not act as a rigid plate, the
large deformation is concentrated on the thick concrete plate below the steel frame especially the location
which has direct contact with the steel profile. The rest of the concrete plate has hardly resisted any deforma-
tion.

Figure 4.3: Deformation of The Base Concrete Plate due to Horizontal Wind Load

The one dimensional model for the building can be seen in the Figure4.4. The torsional vibration (Figure4.4
(right)) has a significant influence because the width of the EPO Building is larger than the height. A torsional
load can be derived from a horizontal load with a certain eccentricity along the building width. This torque
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can also be seen as a bending moment in the plane on the floor. Then the floor transferred the force to the
steel frame which in principal receives a horizontal force the same as the bending beam case. Therefore both
stiffness of the beam (EI) and the torsional rod (GJ) comes from the four steel frames as the main load-bearing
structure in the building.

Figure 4.4: Continuous System: High Rise Building with TMD Model

The base resistance to the rotational on the beam is majority taken by the vertical group piles under the steel
frame Figure4.2. This rotational resistance is modeled as a rotational spring and dashpot at z = 0. The hori-
zontal resistance of the group piles is modeled as a translation spring-dashpot for the beam and as a torsional
spring-dasphot for the torsional rod.

The derivation of equation of motion of the Euler-Bernoulli beam and torsional rod can be seen in the ap-
pendix A, the equation can be written as:

ρA
∂2

∂t 2 u(z,t ) + ∂2

∂z2

(
E I

(
1+ c∗

∂

∂t

) ∂2

∂z2 u(z,t )

)
= q(z,t )

ρ J
∂2

∂t 2 θ(z,t ) + ∂

∂z

(
G J

(
1+ c∗θ

∂

∂t

) ∂
∂z
θ(z,t )

)
= τ(z,t )

(4.1)

The ρA is the distributed mass, E I is the stiffness and c∗ is the damping properties of the beam. While for the
torsional bar, J is the polar moment of inertia and G J is the torsional stiffness of the bar.

4.1.2. ANALYTICAL MODEL
The model which is used in this thesis to analyzed the EPO building is the continuous system of a Euler-
Bernoulli Beam as it can be seen in Figure4.4. The method of analysis in this thesis is the frequency domain
analysis using Fourier Transform. The reason for the chosen model and method are:

• Euler-Bernoulli is the most simple model compare to the Rayleigh and Timoshenko beam theory. This
model is sufficient to model the high rise building because the effect of rotational inertia and the shear
deformation is not significant in this case.

• A high rise building’s main stability system (core) resist the load through bending stiffness which is the
major component of the building compared to the shear stiffness of the building frame.

• Wind load is the only horizontal loading which is considered therefore zero initial condition can be
taken into account, and Fourier Transform can be applied.

• Wind loading is a continuous loading on the building which has no time duration such as Earthquake
loading. Therefore analysis in the frequency domain is the only method to identify the damping of the
building.

• The wind load spectrum is well known tools to take wind loading into account. This spectrum contains
various data of the wind load which is used in the building code to design a building.
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• Fourier transform can handle boundary condition with time components such as dashpot which is
considered in this thesis for the SSI and TMD.

In every model and theory, there is some assumption which has to be satisfied to perform the analysis. The
assumptions which are made due to the Euler-Bernoulli beam model and Fourier Transform method are:

• The cross-section of the beam remain planar to the central axis which neglects the rotational of the
cross-section.

• The system has a small vibration or small deformation theory is applied. The theory can be applied if
the beam slope squared is smaller than 1.

• Fourier Transform uses the principle of superposition which states that a periodic function can be ex-
panded to a summation of sines and a cosines function. This method can be applied only in the linear
system.

• The torsional behavior is assumed constant along the width, in later chapter it can be seen through the
finite element model that this is not the case.

The derivation of the dynamic of a Euler-Bernoulli beam can be seen on the Appendix A. It is shown that the
dynamic stiffness matrix from the equation A.23 is:

Ks+ iωCs β3EI∗ Ks+ iωCs −β3EI∗

EI∗β2 − (Kr+ iωCr)β −EI∗β2 − (Kr+ iωCr)β

γcosh
(
βL

)+EI∗β3 sinh
(
βL

)
γsinh

(
βL

)+EI∗β3 cosh
(
βL

)
γcos

(
βL

)+EI∗β3 sin
(
βL

)
γsin

(
βL

)−EI∗β3 cos
(
βL

)
EI∗β2 cosh

(
βL

)
EI∗β2 sinh

(
βL

) −EI∗β2 cos
(
βL

) −EI∗β2 sin
(
βL

)

 (4.2)

A condition of the linear homogeneous algebraic equation of

KD ∗C = 0 (4.3)

is the determinant of the matrix KD is equal to zero. By doing so, we can obtain the frequency equation which

the roots of this equation are the natural frequency of the system. The frequency equation which is obtained
through Determinant|KD | can be written as:

Frequency Equation =|2E I∗β3((E I∗β3(−β4E I∗2 −CrC sω2 + (iCr K s+
2iCrγ+ i K rC s)ω+K r (K s +2γ))cos(βL)+ (−β4((K r + iωCr )β2+
iωC s +K s +γ)E I∗2 + (−CrC sω2 + (iCr K s + i K rC s)ω+
K r K s)γ)sin(βL))cosh(βL)− (β4((K r + iωCr )β2 − iωC s −K s −γ)

E I∗2 + (−CrC sω2 + (iCr K s + i K rC s)ω+K r K s)γ)sinh(βL)

cos(βL)+2E I∗β((K s + iωC s)sin(βL)γsinh(βL)+1/2β2(β4

E I∗2 −CrC sω2 + (iCr K s + i rC s)ω+K r K s)))|

(4.4)

4.2. BUILDING PROPERTIES
This section discusses how to obtain all the properties needed for the one dimensional model from the model
in finite element program. The building properties are categorized into two groups: superstructure and soil-
structure interaction. The TMD properties is set to zero when searching the building properties.

4.2.1. SUPERSTRUCTURE
There are three properties which are needed from the superstructure namely: building mass, building stiff-
ness, and building damping.

BUILDING MASS

The total mass of the building comes from two sources: self-weight and the vertical load of the building. The
data from Zonneveld which is from the SCIA Engineer shows that the total mass of the building is: 1,004,143
kN. This total mass needs to be converted to a distributed mass over the height for the one-dimensional
model. Then the total mass divided by the building height is 9.5x105kg /m.
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BUILDING STIFFNESS

The stiffness of the building can be obtained through a static equation. Since Zonneveld has designed the
dimension of the structure in the SCIA Engineer software, we can obtain the static loading of the building
which is shown in the Figure4.5. There are two types of the load, the number in green color represents the
point load on the perimeter of the building due to the wind pressure on the building side and building roof.
The number in magenta color is the distributed load along the floor which represents the wind pressure on
the building facade. The total building height is 110 m, but the 5 m on top is a roof structure which also re-
ceived a wind load but directly transfers it to the the steel frame.

Figure 4.5: Wind Load on the Building

Then in this case, the building can also be modeled as an Euler-Bernoulli beam model which resist a dis-
tributed horizontal load and a point load on the top due to the load which is transfered from the roof (Fig-
ure4.6).

Figure 4.6: Building Model for Static Analysis

The building height is 105 m. To obtain the distributed load over the z coordinate on the beam (q(z)), the
distributed load on the floor (q f loor ) and the point load (p f loor ) should be transform through the equation
below:

q(z) =

26∑
i=1

q f loor (i ) ∗Bwi d th +p f loor (i )

105−11.8
= 314.44kN /m

P = 2007kN

(4.5)

The number 26 comes from the number of floor in which the distributed and point load acts on the floor, it
can be seen in the Figure4.5 that the wind load start from the height of 11.8 m to the 105 m in which 26 floors
are present. The point load P is just a summation of a point loads present at the top of the building. The
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deformation on the top of the building which is obtain from the finite element program can be seen in the
Figure4.7:

Figure 4.7: Building Top Deformation

The derivation of the static analysis of an Euler-Bernoulli beam can be seen in the appendix B. The final
equation for the deformation on the top of the building is:

u2(z) =
1

EI

( 1

24
qz4 + 1

6
(−Lq −P )z3 + 1

4
L(Lq +2P )z2 + 1

6

(−Kr L13q +3EI L2q −3EI L12q +6EI LP )z

Kr
+ 1

24
qL14

) (4.6)

To complete the equation 4.6, the value of rotational stiffness Kr should be obtained first. This value can
be obtained by observing the botom rotation of the building which is shown in the Figure4.3. There is two
maximum deformation which is a: 4.7 mm and b:-4.7 mm. The rotation on the bottom can be obtain through
the equation below:

θ(0) =
∂u1(0)

∂z
= tan−1

(
a −b

ldi st ance

)
= tan−1

(
(4.7+4.7)/1000

18.1

)
= 0.0005r ad (4.7)

The final equation for the rotation on the bottom of the beam can be seen in the B.16. By substituting the
properties below, we can obtain the value of the rotational stiffness Kr which is:

∂u1(0)

∂z
= 1

EI

(
1

2

(
qL2 −qL12 +2LP

)
EI

Kr

)

Kr = 3.84∗1012

(4.8)

Then with the value of the Kr, the stiffness EI from the equation 4.6 can be obtained as:

u2(L) = 0.161 = 1

EI

( 1

24
qL4 + 1

6
(−Lq −P )L3 + 1

4
L(Lq +2P )L2 + 1

6

(−Kr L13q +3EI L2q −3EI L12q +6EI L P )L

Kr
+ 1

24
qL14

)
E I =5.1∗1013

(4.9)

The building stiffness can also be obtained from the frequency equation in 4.4. But to plot this equation the
properties from the soil structure interaction must be obtained. The value of building stiffness and damp-
ing will be tuned to the natural frequency obtained by the finite element software after the SSI properties is
obtained.

BUILDING DAMPING

The Eurocode determines the value of the building damping which can be used for the high rise design. In
this case, the building damping which is used for the dynamic analysis in TNO Diana is 1%. This damping



4.2. BUILDING PROPERTIES 33

is derived from the experimental result and is categorized based on building material. This value is an ap-
proximation based on the experimental result. Zonneveld also does an experimental result from the existing
building which is Montevideo and Kemedy Building in the Netherlands. The result shows that the building
damping is 1% for Montevideo and 2% for Kemedy which both of them use steel structure as the main struc-
tural material. The influence of this damping uncertainty is discussed in the later chapter.

The damping in the one-dimensional model is defined by the value of c∗ We would like to know the value
of the c∗ to have 1% building damping. The procedure to identify the damping is to apply a hammer test
on the structure. In an analytical model such as one dimensional model in this thesis, the hammer test is
represented by a point load which has a very high force in a very short time. In the frequency domain, this
load is a constant load of 1N over the frequency which also called the white noise spectrum. This model can
be seen in the appendix A.2.

Identification of the damping is done in the frequency domain, this method is introduced by Kennedy-Pancu
which is called the bandwidth of half-power points. First, the response in the frequency domain should be
obtained. The graph of this frequency response can be seen in the figure below:

Figure 4.8: Frequency Response

The damping can be identified from the squared of the frequency response is also called the power spectral
density. It describe the power (amount of energy transferred per unit time) or rate of work, in the frequency
domain. Then the damping ratio can be identified by taking the half of the peak value, then measure the
width of the graph which is intersect with this half peak value. In the equation form this can be written as:

ζ= wi d th

2ωn
=

ũ+
(peak/2) − ũ−

(peak/2)

2ωn
= 0.0074

0.3729
= 0.01 = 1% (4.10)

where ωn is the frequency where the peak located (natural frequency). This 1% damping is obtain by the
value of C∗ = 8.5∗10−3.
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4.2.2. SOIL STRUCTURE INTERACTION
The pile design use soil data available from the CPT test and calculated to a single spring stiffness. Therefore
this single spring stiffness represents the interaction between pile and soil which is modeled in the finite
element software Figure4.2.

Due to the load settlement behavior, the stiffness of the single pile on soil subjected to a static load is different
than to the dynamic load. According to the SBR-hanboek Fundering en Cement 1998-1-3, the spring stiffness
of the dynamic load is higher than the static load due to this settlement behavior. The spring stiffness which
is used for the static analysis (SCIA Engineer (Zonneveld)) is shown in the Figure4.9.

Figure 4.9: Pile-Soil Properties (Zonneveld)

The rectangular shape is the concrete blocks and the circle is the spring stiffness in this model. The vertical
stiffness for each single spring is 358 MN/m for the red color area, 181 MN/m for the yellow color area, and
123 MN/m for the rest. The properties of pile and soil interaction in the dynamic analysis (TNO Diana) are
shown in the Figure4.10.

Figure 4.10: Pile-Soil Properties (TNO Diana), Left Figure (Frame 1), Right Figure (Frame 2)

Because the concrete block is not act as a rigid pile as it is shown in Figure4.3 for static case, the behavior of
the soil structure interaction is non linear due to the relation between force and the flexibility of the concrete
block. Because in the dynamic analysis, the force has a fluctuating value over time. For smaller load, the
concrete may behave as a rigid plate and the force is well distributed to the pile. In this case the rotational
spring stiffness has a larger value. But there is a limit when the force is high enough that the plate behave as
a flexible plate, in this case the rotational spring stiffness has a lower value.

REDUCTION FACTOR

In this thesis, a conservative approach is done by using the largest reduction which is the static analysis case
in Figure4.3. This deformation figure is caused by a wind force which resulting a maximum displacement of
161mm (Figure4.7) on top of the building. On the dynamic analysis by TNO Diana, the result of the displace-
ment can be seen in the Figure4.11.
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Figure 4.11: Displacement Response on the Top of the Building Height and Middle of the Building Width

It can be seen that the maximum of the displacement from the fluctuating wind force is less than the static
analysis. Therefore because the structure still behave in the elastic region, the total force which is transfered
to the concrete block is also larger in the static analysis case. Then it can be concluded that the behavior
in Figure4.3 is the conservative case although there is still uncertainty that the structure may has a larger
response when the non linear analysis is performed. From the finite element program (SCIA Engineer) the
reaction force on each vertical spring can be obtained which is shown in the Table 4.2.

Table 4.2: Reaction Force on the Spring Elemen, Top Table (Frame 1), Bottom Table (Frame 2)

Then the bending moment in the group piles can be calculated by multiply the reaction force to the moment
arm for each pile, the total bending moment of the group piles for the first and second steel frame are:

M =
n∑

i=1
Fi ∗ei

M1 = 3.49∗108N m

M2 = 5.75∗108N M

(4.11)

It is known from the equation 4.7 that the maximum rotation on the bottom is 0.005. If the rotation of the
concrete block in the frame 1 and frame 2 are taken into account separately, the rotation 0.005 is for the frame
1 while 0.000453 is the rotation for the frame 2. Then the rotational stiffness can be obtain as follow:

K r1 = M1

θ1
= 3.49∗108

0.0005
= 6.98∗1011N m/r ad

K r2 = M2

θ2
= 5.75∗108

0.000453
= 1.27∗1012N m/r ad

(4.12)

Then the total rotational stiffness for the whole building can be calculate. Also the comparison can be made
between the method from the static beam (equation 4.8) and from the finite element program. It can be seen
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from the equation 4.13 that the error of the static beam method is 2.46% which is small.

K r = 2∗K r1 +2∗K r2 = 3.93∗1012N m/r ad

error =
∣∣∣∣K rm2−K rm1

K rm2

∣∣∣∣= ∣∣∣∣3.84−3.93

3.93

∣∣∣∣= 2.46%
(4.13)

This is the rotational stiffness when the concrete block is considered as a flexible plate from finite element
program. If the concrete bloc is considered as a rigid plate, then the rotational stiffness can be obtain through
following equation:

K r1 =
n∑

i=1
Ksi ∗e2

i = 1.0663∗1012N m

K r2 =
n∑

i=1
Ksi ∗e2

i = 2.133∗1012N m

(4.14)

It can be concluded that the reduction factor for the rotation stiffness due to the flexibility of the concrete
block in the case of the static load (SCIA Engineer Figure4.3) is:

Frame 1:

Reduced Factor :
0.698

1.0663
= 65.47%

Frame 2:

Reduced Factor :
1.27

2.134
= 59.53%

(4.15)

The soil parameter for a single pile from the Figure4.10 should be converted to the rotational and translational
spring-dashpot of the beam model in Figure4.4. This section shows the procedure to obtain the value of the
translation spring stiffness and damper, also rotational stiffness and damper.

DYNAMIC PARAMETERS OF THE SSI
The dynamic parameter for the SSI is dependent to the frequency of the excitation or the natural frequency of
the structure. In the design method for the high rise building, Gazetas create a table which gives a procedure
in deriving the dynamic stiffness and dashpot of the pile foundation. In this thesis, the dynamic stiffness
and dashpot is shown in the Figure4.10. The rotational stiffness and dashpot for the dynamic analysis of one
dimensional model can be obtained by the equation:

K r1 =
n∑

i=1
Ki ∗e2

i = 2.07∗1012N m

Cr1 =
n∑

i=1
Ci ∗e2

i = 3.87∗1010N sm

K r2 =
n∑

i=1
Ki ∗e2

i = 4.15∗1012N m

Cr2 =
n∑

i=1
Ci ∗e2

i = 7.75∗1010N sm

(4.16)

The flexibility of the concrete block is taken into account by multiplying the value from the equation 4.16 by
the reduction factor (equation 4.15). Then the final value of the SSI properties for the one dimensional model
can be written as:

K r = 2∗2.07∗1012 ∗0.6547+2∗4.15∗1012 ∗0.5953 = 7.65∗1012

Cr = 2∗3.87∗1010 ∗0.6547+2∗7.75∗1010 ∗0.5953 = 1.43∗1012
(4.17)

For the pile soil interaction in the horizontal or translational axis the concrete block is assumed to be rigid.
Because the width of the concrete block is 9 times higher than its thickness, then intertia of the concrete in
the horizontal direction is 93 higher. Therefore the value of the translational spring and dashpot for the one
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dimensional model is the number of piles multiplied by its spring stiffness or dashpot properties (Figure4.10).

K s1 = 36pi l es ∗157N /m +4pi l es ∗127N /m = 6.16∗109N /m

C s1 = 36pi l es ∗1.7N s/m +4pi l es ∗1.2N /m = 6.60∗107N s/m

K s2 = 76pi l es ∗157N /m = 1.19∗1010N s/m

C s2 = 76pi l es ∗1.7N s/m = 1.29∗108N s/m

Ks = 2∗K s1 +2∗K s2

Cs = 2∗C s1 +2∗C s2

(4.18)

In summary, the properties for the SSI in the one dimensional model (Figure4.4 (right) bending vibration)
can be seen in the Table4.3.

SSI Parameter
Ks 3.62∗1010 N/m
Kr 7.65∗1012 Nm/rad
Cs 3.9∗108 Ns/m
Cr 1.43∗1011 Nms/rad

Table 4.3: EPO SSI Properties for One Dimensional Model

4.2.3. NATURAL FREQUENCY AND MODE
In the case of the wind load, the building is excited on the low frequency because the characteristic of the
wind load spectrum has a high value on the low frequency. It is known from the finite element program that
the first two natural frequency (Figure4.12) of the building is the torsional mode 0.285 Hz (1.79 rad/s) and the
bending mode 0.337 Hz (2.117 rad/s).

Figure 4.12: Building Natural Frequency; Top: Torsional; Bottom: Bending

For the one dimensional model, the natural frequency can be obtained by plotting the frequency equation
in the equation 4.4. To obtain the similar frequency as the finite element program, the building mass and
stiffness is changed to:

Building Parameter
EI 4.7∗1013 Nm2

ρA 8.7∗105 kg/m
C∗ 8.5∗10−3 s

Table 4.4: EPO building data
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The plot of the frequency equation using the properties from table 4.3 and 4.4 can be seen in theFigure4.13.
The natural frequency of the system for bending vibration is the root of the frequency equation. In the graph,
it can be seen that the value is 0.3345 Hz which is similar to the value from finite element program.

Figure 4.13: Frequency Equation Plot

The procedure to obtain the mode shape can be seen on the AppendixA. The mode shape for the first three
natural frequencies of the system can be seen on the Figure4.14. In the high rise building which is induced by
a wind load, it is mostly always the case that only the first mode excited by the wind load. Because the wind
spectrum act in low frequency (Figure5.9).

Figure 4.14: Mode Shape



4.3. TORSIONAL VIBRATION 39

4.3. TORSIONAL VIBRATION
The torsional vibration of the building is considered separately (uncoupled) from the bending vibration. Cou-
pled Bending-Torsion vibration occurs due to the difference between the shear center of the cross-section and
the center of mass. If the building cross-section is symmetrical on both of the axes, the torsion vibration can
be uncoupled to the bending. If the building is symmetric on one of the cross-section, the torsional center
will be located on the symmetric axis.

If we see the top view of the cross section of the EPO building including the steel frame, it can be seen that the
building is symmetric in one axis which is the Y-axis. Therefore the location of the torsional axis is located in
line with the Y-axis. Then the torsional motion can be determined as it is depicted in the Figure4.15.

Figure 4.15: Torsional Deformation

In this building, the small rotation theory is applicable in the torsional vibration. Therefore it can be stated
that the torsional movement will induce a translational deflection on the X and Y-axis. The translational de-
flection on X-axis is dominant while the deformation on Y-axis due to torsional movement is negligible. Thus
on the vibration on Y axis, the torsion and bending can be uncoupled.

The torsional vibration of the EPO building is modeled as a torsional bar (Figure4.4 (right)). The TMD act as a
torsional aborber on the top of the building. Soil structure interaction also modeled as a torsional spring and
dashpot on the bottom of the bar. The equation of motion for the torsional vibration is:

−ω2ρ J θ̃(z,ω) − ∂

∂z

(
G J

(
1+ iωc∗θ

) ∂

∂z
θ̃(z,ω)

)
= τ̃(z,t ) (4.19)

Building and soil structure properties need to be obtained to find the response for the torsional vibration.
The procedure to obtain these properties is the same as the bending properties, the detail procedure can be
seen in the following section.

4.3.1. STATIC CALCULATION - SUPERSTRUCTURE
The torsional stiffness of the building for the torsional bar model can be obtained through the finite element
program. The torque which is applied to the building can be seen in the Figure4.16. The figure is a top view
of a floor in the building.

Figure 4.16: Torsional Wind Loading

The wind loading consist of two part, a constant distributed load along the width and a torque which can be
seen in the Figure4.17:
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Figure 4.17: Separation of Trapezoidal Wind Load

The distributed load contributes to the bending behavior of the building while the moment load contributed
to the torque. Therefore the distributed torque along the height for the torsional bar model can be calculated
as:

τ=
26∑

i=1

1

6

di B 2

105−11.8
= 2383.33kN m/m (4.20)

From Figure4.17:

d = b − c and a − c =−d

B = Building Width
(4.21)

The torsional rotation which is obtain from the static calculation in finite element program can be seen in the
Figure4.18. The graph is a top view of the building deformation due to the trapezoidal load.

Figure 4.18: Torsional Rotation on top of the building

It can be seen that the response in static analysis is not a linear but close to a parabolic function. The red line
is the linear approximation of the displacement with the equation and error on the right side of the line. From
the static analysis of finite element progra, the top rotation is 5.854∗10−4 mrad and the bottom rotation is
2.6∗10−6. The static model of torsional bar is derived on the AppendixB.2, when the torsional deformation
can be written as:

θ1(0) =
(−L1+L)τ

Kq

Kq = 8.5∗1013N m/r ad

θ2(L) =
1

GJ

(
−1/2τL2 +LτL+1/2

τ
(−Kq L12 +2GJ L−2GJ L1

)
Kq

)
G J = 2.225∗1013N m2

(4.22)

4.3.2. SOIL STRUCTURE INTERACTION

The torsional resistance on the base of the building can be defined as the resistance of the interaction be-
tween group piles and the soil. Because the pile cap for the group piles has a large dimension on the hori-
zontal direction (Figure4.9), then the movement of the pile cap can be assumed as equally deformed. Unlike
the bending stiffness of the group pile, the torsional stiffness does not need a reduction factor due to this
diaphragm behavior.

The stiffness and damping value for one pile which is used by the TNO Diana for the dynamic analysis can be
seen in the Table4.5 or in the Figure4.10.
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SSI Parameter
∅610 Khor 1.57∗108 N/m

Chor 1.7∗106 Nm/rad
∅520 Khor 1.27∗108 Ns/m

Chor 1.2∗106 Nms/rad

Table 4.5: Horizontal Spring and Dashpot value from TNO Diana model

Therefore the value for the torsional stiffness and damping can be obtain from the equation below:

Kq =
npi l e∑
i=1

(1.57nD610 +1.27nD520)∗108 = 6.741013

Cq =
npi l e∑
i=1

(1.7nD610 +1.2nD520)∗106 = 7.21011

(4.23)

The mass density and polar moment of inertia (ρ J ) of the torsional bar can be obtain by fitting this value to
the given natural frequency from the finite element program. The torsional natural frequency can be seen on
the Figure4.12 which is 0.285 Hz. The frequency equation can be obtained by search the determinant of the
dynamic stiffness matrix in AppendixA EquationA.44 which is written as:

Frequency Equation =−Cq sin(αL)ω2Cθ γt +Cq sin(αL)ω2Cθ+ i GJ cos(αL)αωCθ γt

− i Cq GJ cos(αL)αω+ i Cq sin(αL)ωKθ γt − i GJ cos(αL)αωCθ

+ i Kq sin(αL)ωCθ γt − i Cq sin(αL)ωKθ+GJ2 sin(αL)α2 +GJα

cos(αL) Kθ γt − i Kq sin(αL)ωCθ−GJ Kq cos(αL)α−GJ cos(αL)

αKθ+Kq sin(αL)Kθ γt −Kq sin(αL)Kθ

(4.24)

in which:

α=
√
ω2ρ J

G J∗

γt = iωCθ+Kθ(−ω2 Jθ+ iωCθ+Kθ

) (4.25)

By set the TMD properties to zero, the only unknown in this equation is the mass density and polar moment
of inertia. As the root of this equation is the natural frequency from the one dimensional model, the value of
mass density and polar moment inertia is:

ρ J = 1.5529∗109kg m (4.26)

This value is overestimate due to the linear assumption of the torsional response along the width. After the
dynamic analysis is performed in the Chapter5, the dynamic acceleration can be calculated and this torsional
stiffness value gives too low acceleration compared to the finite element software. A new torsional properties
is introduced in the Chapter5. For the dynamic analysis in Chapter5 the value of the torsional stiffness which
give the same bending + torsional vibration is:

G J = 5×1012N m2 (4.27)

The mass density and polar moment of intertia to give 0.285 Hz natural frequency is:

ρ J = 3.49×108 kg m (4.28)
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4.4. TMD PROOPERTIES
The TMD properties that is used in EPO building is shown in the table below:

TMD Parameter
mt 4.4∗105 kg
Ct 1.6944∗106 Ns/m
Kt 1.394∗105 N/m

Table 4.6: TMD Properties

For the torsional model, the properties of the TMD is the bending TMD properties as in the Table4.6 multi-
plied by the squared of the radius. The radius is the horizontal distance between the location of TMD and the
middle of the building width which is 61.5m in this case.



5
DYNAMIC WIND LOADING

This chapter discusses the dynamic wind loading on the one-dimensional model which is depicted in Figure4.4.
The wind load analysis is done in both bending beam and torsional bar. The output of the analysis is the
building acceleration in the time domain. Then afterward, the effect of the TMD application is also shown.

5.1. INTRODUCTION
In principle, the dynamic wind load can be observed in the time domain or frequency domain. The time
domain analysis (time history analysis) is when the data of the pressure of the wind through time on each
point of the building’s facade is input as the load. This pressure data can be obtained through wind tunnel
test for complex building shape. The second domain is the frequency domain analysis (spectrum analysis)
when the fluctuating wind speed is modeled in frequency regime (or as known as wind speed spectrum) and
input as the load. Several studies have been made to model the variance of the fluctuating wind speed which
is used in practice to design a high rise building throughout the world.

Figure 5.1: Dynamic Wind Load Procedure

The procedure to obtain the acceleration in the time domain is described in the Figure5.1 and discussed in
detail in the section5.2. In this thesis, the frequency domain analysis is used. The reason is that there is a
lot of information which can be obtained through the frequency domain such as damping ratio and natural
frequencies. The procedure to analyze the dynamic wind loading is as follow. The response spectrum can be
described through the equation below.

Suu(z,ω) = |Hs |2SF F (5.1)

where the |Hs |2 is the mechanical admittance and SF F is the wind load spectrum. The detailed information
regarding these procedure is explained in the next following section.

5.2. WIND LOAD SHAPE FUNCTION
In the Eurocode, the shape function of the wind load is determined by the function of the wind speed because
the pressure or the force of the wind load is just some constants multiplied by an exponential function which

43



44 5. DYNAMIC WIND LOADING

is:

f(z) = ln
z

z0
(5.2)

But for a building with a large surface, more accurate wind speed profile can be obtained through the wind
tunnel test which is shown in Figure5.2.

Figure 5.2: Wind pressure profile over the building height

The left figure depicts the side view of the building and the right figure depicts the 3D image of the wind
pressure on the building where the building height and the building width axis are shown in the graph. This
figure depicts the ratio of the wind pressure on the building surface. It can be seen that the highest value is at
the middle of the building which is the point of reference for the ratio which is set to one.

Because the model is 1 dimensional (height), the load shape function for bending vibration can be obtained
by integrate the value over the width. If the position along the building width is the x coordinate from 0 to B,
along building height is z coordinate from 0 to L, and the wind pressure profile is a function of p(x,z), then the
wind load shape function for bending vibration can be written as:

fb(z) =
∫ B

0
p(x,z)d x (5.3)

The integration of the 3D pressure ratio over the width is shown in the in left figure of Figure5.3. The load
shape function for the torsional vibration can be obtained by multiplying the shape function for bending and
the eccentricity. It can be written as:

centroid(z) =
∫ B

0 x p(x,z)d x∫ B
0 p(x,z)d x

eccentricity(z) = B/2−centroid

fθ(x,z) = fb(z) ∗eccentricity(z)

(5.4)

The wind load shape function can be seen in the Figure5.3. The left graph is the shape function for bending
vibration, the middle graph is the eccentricity function and the right graph is the shape function for torsional
vibration.

Figure 5.3: Wind Load Shape for Bending Vibration



5.3. MECHANICAL ADMITTANCE 45

The load shape function for bending and torsion can be also written as a sixth order polynomial equation
which can be seen in the equation below:

fb(z) = az6 +bz5 + cz4 +d z3 +ez2 + f z + g

fθ(x,z) = at z6 +bt z5 + ct z4 +dt z3 +et z2 + ft z + g t
(5.5)

a =−1.96×10−9 at = 1.99×10−8

b = 6.64×10−7 bt =−6.74×10−6

c =−8.66×10−9 ct = 7.60×10−4

d = 5.20×10−3 dt =−3.25×10−2

e =−1.43×10−1 et = 0.43

f = 1.65×10−9 ft =−0.176×10−9

g = 90.2 g t = 1.18×102

5.3. MECHANICAL ADMITTANCE
The model for the bending and torsion vibration of the high rise building with a single TMD on top of the
building can be seen in the figure 5.4 below. The TMD is connected through a spring and dashpot to the
building.

Figure 5.4: One Dimensional Model of a High-rise Building

The equation of motion for the Euler-Bernoulli beam and torsional bar can be seen respectively in the equa-
tion below:

ρA
∂2

∂t 2 u(z,t ) + ∂2

∂z2

(
E I

(
1+ c∗

∂

∂t

) ∂2

∂z2 u(z,t )

)
= q(z,t )

ρ J
∂2

∂t 2 θ(z,t ) − ∂

∂z

(
G J

(
1+ c∗θ

∂

∂t

)
∂

∂z
θ(z,t )

)
= τ(z,t )

(5.6)

The equation of motion for the TMD in bending and torsional model can be seen respectively in the equation
below:

mt
∂2

∂t 2 ut(t ) +Ct

(
∂

∂t
ut(t ) −

∂

∂t
u(z,t )

)
+Kt

(
ut(t ) −u(z,t )

)= 0

Jθ
∂2

∂t 2 θt(t ) +Cθ
∂

∂t

(
θt(t ) −θ(z,t )

)+Kθ

(
θt(t ) −θ(z,t )

)= 0

(5.7)

The detailed analytical procedure to obtain the mechanical admittance can be seen on the AppendixA. The
procedure to obtained the mechanical admittance for bending and torsion is shown in the flow chart (Fig-
ure5.5).



46 5. DYNAMIC WIND LOADING

Figure 5.5: Mechanical Admittance Procedure

The frequency response for the acceleration is derived in the AppendixA:

bending acceleration(z,ω) =ω2ũ(z,ω)

torsion acceleration(z,ω) = R ω2θ̃(z,ω)
(5.8)

The mechanical admittance can be defined as:

Hs (bending) = ∣∣ω2ũ(z,ω)
∣∣2

Hs (torsion) = ∣∣R ω2θ̃(z,ω)
∣∣2

(5.9)

The mechanical admittance for the bending vibration due to the force in frequency domain ( f(ω)) equal to 1,
including the shape function for the wind (5.2) can be seen in Figure5.6 and Figure5.7.

Figure 5.6: Mechanical Admittance: Bending Vibration
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Figure 5.7: Mechanical Admittance: Torsion Vibration

5.4. WIND LOAD SPECTRUM
The wind load spectrum is a frequency function of the wind pressure. Because the building model 1 dimen-
sional model with the space coordinate only in 1 direction which is along the height (z coordinate), the wind
load is a distributed line load along the height. This distributed wind load from the fluctuating part of the
wind can be obtained through multiplication of the wind speed spectrum, a load factor, and aerodynamic
admittance. Which can be also written as:

SF F = |Ha |2 Cw Sv v (5.10)

where H a is the aerodynamic admittance, Sv v is the wind speed spectrum and Cw is the coefficient factor.
The graph of the wind load spectrum for EPO building can be seen in Figure5.8 below:

Figure 5.8: Wind Load Spectrum

The fluctuating wind pressure along the height of the building can be formulated as:

q(z,t ) =
∫ B

0
C f ρai r v̄(x,z)ṽ(x,z,t )d x (5.11)

5.4.1. WIND SPEED SPECTRUM

Wind speed spectrum is a function of wind speed through the frequency. The previous study by shows that
the wind speed in the frequency domain follows the Gaussian model. There is many model which is derrived
from this assumption and in Eurocode, Solari’s variance spectrum model is used to derived the wind speed
spectrum. It can be seen in Figure5.9.
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Figure 5.9: Solari’s Spectrum model

This variance spectrum follows a function in the equation below:

SL = 6.8 fL

(1+10.2 fL)5/3
(5.12)

The graph of the wind spectrum can be seen in Figure5.10 below:

Figure 5.10: Wind Spectrum

The function for the wind speed spectrum can be seen in the equation below:

Sv v = SL
σ2

v

2πn
(5.13)

The relation between dimensionless frequency and frequency in Hz is:

fL = nL

v
(5.14)

5.4.2. AERODYNAMIC ADMITTANCE

For an object which the contact area of the wind is large, the wind velocity has different values on each point
on the surface. If this wind velocity on different point is observed, the peak value of the wind velocity is not
occur at the same time. Therefore, there is less variance of the total wind speed for each time. This phenom-
ena is taking into account by the aerodynamic admittance.
Based on the Eurocode, the aerodynamic admittance can be calculated as:

Rh,b = 1

ηb,h
− 1

2(ηb,h)2 (1−e−2ηb,h ) (5.15)
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in which:

η[b;h] = 4.6 [b;h]
fL

L(z)

L(z) = Lt

( z

zt

)α
α= 0.67+0.05 l n(z0)

(5.16)

The mathematical symbols of b is the building width, h is the building height, fL is the dimensionless fre-
quency, and L(z) is the turbulence length. The plot of the aerodynamic admittance for EPO building can be
seen in Figure5.11 below:

Figure 5.11: Aerodynamic admittance

5.5. SUMMARY
After obtaining all the function, now the response spectrum function (for acceleration) which is described in
the equation can be obtained.

Saa(z,ω) = |Hs |2|Ha |2[C f ρai r v̄0]2 6.8 fL

(1+10.2 fL)5/3

σ2
v

2πn
(5.17)

The graph of the response spectrum (acceleration) for the EPO building can be seen in Figure5.12 below:

Figure 5.12: Response Spectrum

Then the standard deviation for the acceleration response, and the peak acceleration can be obtain through
the following equation:

σa =
√∫ ∞

0
Suudω (5.18)

The response in time domain can also be obtained through the Gaussian model because the model of the
wind speed is also derived from this Gaussian stationary process. This method means that it is assumed that
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a function can be built up by summation of sinusoidal function with random phase. This statement also can
be expressed in the equation form which is:

u(t ) =
N∑

i=1
û(ω)si n(ωt +φ) (5.19)

in which:
û(ω) =

√
2Suu(ω)∆ω (5.20)

The building has two directions in the horizontal axis, the longer length is the building width with 157 m and
the shorter length is the building depth with 20 m. The critical vibration is the vibration of the building with
the direction perpendicular to the building width. The plot of the horizontal acceleration in the time domain
on this critical axis can be seen as these following figures:

Figure 5.13: Bending Acceleration in Time Domain

Figure 5.14: Torsion Acceleration in Time Domain

For EPO building, the peak acceleration for building with and without TMD are:

Peak Bending acceleration:

without TMD = 0.0610 m/s2

with TMD = 0.0344 m/s2

TMD effectiveness = 43%

Peak Torsion acceleration:

without TMD = 0.0438 m/s2

with TMD = 0.023 m/s2

TMD effectiveness = 47%

For the peak horizontal acceleration in the critical axis (perpendicular building width), the location is on
the top corner of the building. This acceleration can be obtained by the summation of the bending and
torsion acceleration in Figure5.13 and Figure5.14 as shown in Figure5.15 below: Peak total (bending + torsion)
acceleration:
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Figure 5.15: Total Acceleration in Time Domain

without TMD = 0.1018 m/s2

with TMD = 0.05143 m/s2

Effectiveness of TMD = 49%

5.6. FREQUENCY DEPENDENT SSI
The value of the spring stiffness and dashpot used in the finite element program to analyzed the dynamic
wind loading is valid on a specific natural frequency of the EPO building. But the soil stiffness and damping is
a frequency dependent value, a model for predicting the soil structure interaction is made by John.P.Wolf. An
estimation base on the dimension of the foundation and CPT test of the soil is made by Mr. Sanchez Gomez
which can be seen in Figure5.16 below:

Figure 5.16: Frequency Dependent of SSI Parameter

It can be seen that the damping value has a relatively high value at lower frequency. For EPO Building case
the natural frequency of the bending vibration of the building is 0.337, the value of the SSI parameter in this
frequency is:
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SSI Parameter
Ks 1.56∗1010 N/m
Kr 2.33∗1013 Nm/rad
Cs 8.04∗108 Ns/m
Cr 5.74∗1011 Nms/rad

Table 5.1: EPO SSI Properties

If the frequency dependent SSI parameter (Figure5.16) is used in the dynamic analysis, which is change the
value of [K sK rC sCr ] to the value of [K sK rC sCr ](ω). The result for the acceleration can be seen in Figure5.17
below:

Figure 5.17: Acceleration with frequency dependent SSI

The peak acceleration is:

without TMD = 0.09463 m/s2

with TMD = 0.04545 m/s2

Effectiveness of TMD = 51%

The value of the peak is slightly different than the result from Figure5.15 because the natural frequency of
the building is slightly changed and therefore because the load is modeled as a random load, the change
of this frequency influence the peak value of the acceleration in time domain. But it can be seen that the
effectiveness of the TMD is about the same with 2% difference.

5.7. COMPARISON WITH FINITE ELEMENT PROGRAM
This TMD effectiveness from the one dimensional model is over estimate compared to the analysis with finite
element program. The acceleration on the top of the building in the middle of the width, which is the bending
acceleration of the building, from TNO Diana can be seen in the figure below:

Figure 5.18: Acceleration on the top middle of the building
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The peak value without TMD is 0.07m/s2 and with TMD is 0.049m/s2 which make the TMD is 30% effective.

The torsional vibration has a large different than the one dimensional model, as mention in the 4. The tor-
sional behavior of the building is not linear along the width as it can be seen in Figure5.19:

Figure 5.19: Torsional vibration from TNO Diana

The color of the graph represent the acceleration on specific location on top of the building. The black graph
(point 6121) is the acceleration on the middle of the width and the red graph (point 190) is te acceleration on
the furthers from the middle as it can be seen in Figure5.20.

Figure 5.20: Points of observation

The torsional acceleration can be determine as the difference between the acceleration on the point 190 and
6121, the value of the acceleration on the blue circle on Figure5.19 can be seen on the Figure5.21.

Figure 5.21: Acceleration value along the building width

It can be seen that the acceleration is not linear along the width. Therefore the torsional stiffness (ρ J ) in this
beam is not a realistic stiffness as in 3D model but it gives an equivalent value for this simple torsional bar
model to perform similar as the critical torsional vibration of the building. The effectiveness of the TMD for
EPO building in finite element program can be seen in the figure below:
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Figure 5.22: Acceleration in point 190

The peak value without TMD is 0.11m/s2 and with TMD is 0.07m/s2 which make the TMD is 36% effective.

5.8. APPLICATION OF WIND TURBINE
The application of wind turbine on high rise building to gain energy is becoming familiar. In the building
industry, a large wind turbine has been applied in Pearl River Tower (China), Strata Tower (United Kingdom),
and also Bahrain World Trade Center (Bahrain). This wind turbine does not only effect the energy gain for
the electricity but also increase the aerodynamic damping of that specific location. Therefore a study of the
application of a wind turbine in reducing the acceleration of the EPO Building is studied in this section. The
model for this study can be seen in Figure5.23 below:

Figure 5.23: One dimensional model for building with wind turbine

The only different between this model and the basic model (building with TMD on top) is the shear boundary
condition on top of the building which can be written as:

Bending Vibration:

(1+ iωC∗)E I
∂3

∂z3 ũ(z,ω)

∣∣∣∣
z=L

− iωCw t ũ(z,t )
∣∣

z=L = 0

Torsion Vibration:

(1+ iωC∗
θ )

∂

∂z
θ̃(z,ω)

∣∣∣∣
z=L

+ iωCwθ θ̃(z,ω)
∣∣

z=L = 0

(5.21)

in which:

Cwθ =Cw t ∗R2

R : Length from the torsional center and position of the wind turbine along the building width
(5.22)
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The value of the Cw t can be obtain through an estimation based on the offshore wind turbine experiment
and simulation result. This simulation is done by D.J.Cerda Salzmann and J. van der Tempel from TU Delft,
the value of the aerodynamic damping of the offshore wind turbine is shown in Figure5.24:

Figure 5.24: Aerodynamic damping in different wind speed [7]

The design is to use the optimum added aerodynamic damping which is taken to be 6% based on the graph.
This value is valid for a certain wind speed, if we look at the wind tunnel test of the EPO Building in Figure5.25:

Figure 5.25: Side view of building (building width vs building height): Correlation factor

The value is the correlation factor of the wind between one point and another point, if we take the static wind
load which state that:

Maximum Wind Speed at correlation factor = 1 :

v̄ = vb kr log

(
z

zo

)∣∣∣∣
z=60m

= 25.9m/s

Optimum Correlation Factor on top of the builing :

C f =
10

25.9
= 0.38

(5.23)

The peformance of the wind turbine in reducing the acceleration on top of the building is depicted in Fig-
ure5.26:
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Figure 5.26: Total (bending+torsion) acceleration of EPO building with wind turbine

The wind turbine increase the damping of the system by 0.1% in bending and 0.93% in torsion and therefore
it reduce the total acceleration from 0.1018 to 0.0926m s2. The reason it is more optimum in the torsion
vibration in this case is due to the model of the torsion which does not taking into account the distribution
of mechanical stress in horizontal direction along the building width. Therefore the performance of the wind
turbine in the torsional vibration can be enhance by placing the wind turbine in the longest radius from
torsional center. Due to the EPO building design which has the width higher than the height, the wind turbine
is more effective in reducing the torsional vibration.



6
TMD DESIGN

Several models are made to study the effect of TMD and soft soil condition. The difference of the model can
be on the different type of TMD, TMD position, and different building properties. The basic model is shown
in the figure3.9, this model is usually applied in reality because often the maximum deflection is on the top of
the building which the TMD is placed. The analytical solution is done in the falling sub-chapter for this basic
model.

6.1. EPO BUILDING CASE
The model is modified to increase the quantity of the TMD. It is desired to study the effect of multiple TMD
in the high rise building. The modified model can be seen in the Figure6.1.There are 2 motions which are ũ1

for 0 ≤ z ≤ LT MD and ũ2 for LT MD ≤ z ≤ L.

Figure 6.1: Building with 2 TMDs

The high-rise building with TMD can be modeled with the discrete system (N-DOFs system, Figure 1.1. Dis-
crete Model of High Rise with TMD [3]Figure 1.1) and continuous system (Figure6.1). The continuous system
is modeled as a Euler-Bernoulli beam with an interaction with soil condition. The soil properties can be input
as translational and rotational stiffness and damping. The TMD first position on the top of the building, later
in the parametric study it may be changed to different positions and quantities.

6.1.1. EQUATION OF MOTION
The equation of motion (EOM) for the first and second motion can be seen in the following equation:

E I∗
∂4

∂z4 ũ1,2 (z,ω) −ω2ρAũ1,2 (z,ω) = q̃1,2 (z,ω) (6.1)

57
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The solution for the homogeneous equation and the particular solution is the same as the basic model in
equation A.12 and A.14.

6.1.2. BOUNDARY AND INTERFACE CONDITION
The boundary condition of the model is the same as in equation A.18 to A.1.2 only the motion ũ1 is used for
z = 0 and ũ2 for z = L. The interface condition at z = L1 can be seen in the equation below:
Displacement:

ũ1(L1,ω) − ũ2(L1,ω) = 0 (6.2)

Rotation:
∂

∂z
ũ1(L1,ω) −

∂

∂z
ũ2(L1,ω) = 0 (6.3)

Bending Moment:

∂2

∂z2 ũ1(L1,ω) −
∂2

∂z2 ũ2(L1,ω) = 0 (6.4)

Shear Force:

E I∗
( ∂3

∂z3 ũ2(L1,ω) −
∂3

∂z3 ũ1(L1,ω)

)
+ (iωCt +K t )(ũ1(L1,ω) − ũt (L1,ω)) = 0 (6.5)

6.1.3. RESULT AND ANALYSIS
The data which is used to compare the different model of the TMD is the EPO building from Zonneveld which
is describe in previous chapter. In summary, the data can be seen in the table 6.2.

Soil Parameter Building Parameter
Ks 3.62x1010 N/m EI 513 Nm2

Kr 7.65x1012 Nm/rad ρA 9.5x105 kg/m
Cs 3.9x108 Ns/m C∗ 7.5x10−3 s
Cr 1.43x1011 Nms/rad L 105 m

Table 6.1: EPO building data

TMD Parameter
mt 4.4x105 kg
Ct 1.8x106 Ns/m
Kt 1.39x105 N/m

Table 6.2: EPO building TMD data

The second model proved that for the same total mass, the quantity of the TMD is not improving its effective-
ness. Since the most effective position is on the top of the building, then it is better that the second mass is
positioned near to the top. The graph of the frequency response function can be seen in the Figure6.2 below:
The different line describe the different position of the second TMD in the building. MTMD 100m means the
first TMD is on the top of the building, and the second is at 100m from the bottom (z=100).
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Figure 6.2: Frequency response for multiple TMD model

6.2. DISTRIBUTED TRANSLATIONAL MASS DAMPER
The model of distributed translational mass damper can be seen in the figure below:

Figure 6.3: Prestressed TMD

6.2.1. EQUATION OF MOTION

TUNED MASS DAMPER

The equation of motion for the TMD can be written as:

−ω2mtd ũt (z,ω) + (iωCd +Kd )(ũt (z,ω) − ũ2(z,ω)) = 0 (6.6)

Then the expression of the TMD motion can be obtain as such:

ũt z,ω = γ ũ2(z,ω)

γ= iωCd +Kd

−ω2mtd + iωCd +Kd

(6.7)

BUILDING

The equation of motion for the building with TMD with distributed property can be seen in the following
equation:
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1. For: 0<z<L1

E I∗
∂4

∂z4 ũ1(z,ω) −ω2ρAũ1(z,ω) = q̃1(z,ω) (6.8)

2. For: L1<z<L2

E I∗
∂4

∂z4 ũ2(z,ω) −ω2ρAũ2(z,ω) + (iωCd +Kd )(ũ2(z,ω) − ũt (z,ω)) = q̃(z,ω) (6.9)

3. For: L2<z<L

E I∗
∂4

∂z4 ũ3(z,ω) −ω2ρAũ3(z,ω) = q̃(z,ω) (6.10)

In order to solve the differential equation for the second motion, substitute the equation 6.7 to the 6.9 result-
ing:

E I∗
∂4

∂z4 ũ2(z,ω) −ω2ρAũ2(z,ω) + (iωCd +Kd )(1−γ)ũ2(z,ω) = q̃(z,ω) (6.11)

HOMOGENEOUS EQUATION:
First, find the solution for the homogeneous equation which can be written as:

∂4

∂z4 ũ2(z,ω) −β4
2ũ2(z,ω) = 0 (6.12)

In which:

β2 =
(ω2ρA+ (iωCd +Kd )(γ−1)

E I∗
ũ2(z,ω)

)1/4
(6.13)

Applying the same form of general solution as in equation A.8, the solution for the homogeneous equation is:

ũ2(z,ω) = A2 cosh(β2z)+B2 sinh(β2z)+C2 cos(β2z)+D2 sin(β2z) (6.14)

PARTICULAR SOLUTION:
The EOM can be re-write as:

∂4

∂z4 ũ2(z,ω) −β4
2ũ2(z,ω) =

q̃(z,ω)

E I∗
(6.15)

Because the form of the loading is the same, the form of the particular solution is the same as in equation
A.14. Substituting this form to the EOM resulting:

24Ap −β4
2

(
Ap x4 +Bp x3 +Cp x2 +Dp x +Ep

)
= ax4 +bx3 + cx2 +d x +e

E I∗
(6.16)

Then the coefficients for the particular solution can be solved through this equation. The result of the coeffi-
cients are:

Ap =− a

β4
2E I∗

; Bp =− b

β4
2E I∗

; Cp =− c

β4
2E I∗

; Dp =− d

β4
2E I∗

; Ep = 24E I∗Ap −e

β4
2E I∗

(6.17)

6.2.2. BOUNDARY AND INTERFACE CONDITION
The boundary condition at the bottom of the model is the same as in equation A.18. The top boundary
condition of this model can be seen as follows:
Bending Moment:

E I∗
∂2

∂z2 ũ3(L,ω) = 0 (6.18)

Shear Force:

E I∗
∂3

∂z3 ũ3(L,ω) = 0 (6.19)

The interface condition at z = L1 and z = L2 can be seen in the equation below:
Displacement:

ũ1(L1,ω) − ũ2(L1,ω) = 0

ũ2(L2,ω) − ũ3(L2,ω) = 0
(6.20)
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Rotation:
∂

∂z
ũ1(L1,ω) −

∂

∂z
ũ2(L1,ω) = 0

∂

∂z
ũ2(L2,ω) −

∂

∂z
ũ3(L2,ω) = 0

(6.21)

Bending Moment:

∂2

∂z2 ũ1(L1,ω) −
∂2

∂z2 ũ2(L1,ω) = 0

∂2

∂z2 ũ2(L2,ω) −
∂2

∂z2 ũ3(L2,ω) = 0

(6.22)

Shear Force:
∂3

∂z3 ũ1(L1,ω) −
∂3

∂z3 ũ2(L1,ω) = 0

∂3

∂z3 ũ2(L2,ω) −
∂3

∂z3 ũ3(L2,ω) = 0

(6.23)

6.2.3. RESULT AND ANALYSIS
With the same data as the table 6.2, the performance of the distributed tuned mass damper (DTMD) model is
described in this section. The frequency response for the acceleration can be seen in the Figure6.4. The figure
describe a building with a DTMD placed on the top of the building. The parameter for this study is the length
of the DTMD which is shown in the legend on the graph. L=20m means the distributed TMD has a length of
20 m downward from the top of the building. But it is design that the DTMD has the same total mass or in
equation:

mtd 1 L1 = mtd 2 L2 = 4.4105kg (6.24)

The value of the y coordinate of the graph is only to compare the effectiveness of the TMD models. The
acceleration value can be obtain from this graph using the procedure form the chapter 1. It can be seen the
optimal length of the distributed TMD is only 1m which is the same as the model 1 (single mass TMD).

Figure 6.4: Frequency response for DTMD model

But in reality, the advantage of the DTMD is that it has a large total mass value compared to single point mass
TMD. Single point mass TMD usually used some blocks of steel clamped as one mass. But in DTMD case, a
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continuous long mass can be used for example in Tokyo Sky Tree, the engineer uses the emergency stair case
with a continuous tubular concrete column as DTMD. This model is studied deeper in the section 5.

6.3. ROTATIONAL MASS DAMPER
The model of rotational mass damper can be seen in the figure below:

Figure 6.5: Prestressed TMD

6.3.1. EQUATION OF MOTION
While the equation of motion of the beam is the same as the Analysis in chapter 7.2, the equation of motion
of the rotating TMD can be seen in the equation below:

ma =∑
F

−ω2mtr R2θ̃(ω) =−(iCtr +Ktr )
(
θ̃(ω) − ∂

∂z
ũ1(L1,ω)

)
θ̃(ω) = iCtr +Ktr

−ω2R2mtr + iωCtr +Ktr

∂

∂z
ũ1(L1,ω)

(6.25)

Therefore, the solution for the beam EOM is also the same as in chapter A.1.1, in summary it can be written
as:

ũ1,2(z,ω) = ũ1,2homog eneous + ũ1,2par ti cul ar

ũ1,2homog eneous = A1,2 cosh(βz)+B1,2 sinh(βz)+C1,2 cos(βz)+D1,2 sin(βz)

ũ1,2par ti cul ar = Ap(1,2)z4 +Bp(1,2)z3 +Cp(1,2)z2 +Dp(1,2)z +Ep(1,2)

(6.26)

6.3.2. BOUNDARY AND INTERFACE CONDITION
The boundary condition for the bottom and top can be seen in the chapter 6.2.2. The interface conditions at
z = L1 when the rotational TMD is placed are:
Displacement:

ũ1(L1,ω) − ũ2(L1,ω) = 0 (6.27)

Rotation:
∂

∂z
ũ1(L1,ω) −

∂

∂z
ũ2(L1,ω) = 0 (6.28)

Bending Moment:

E I∗
( ∂2

∂z2 ũ2(L1,ω) −
∂2

∂z2 ũ1(L1,ω)

)
− (i ∗Ctr +Ktr )

( ∂
∂z

ũ1 − θ̃(ω)

)
= 0 (6.29)

Shear Force:
∂3

∂z3 ũ1(L1,ω) −
∂3

∂z3 ũ2(L1,ω) = 0 (6.30)
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6.3.3. PENDULUM TYPE
The model in the Figure6.6 describes a mass with a certain radius connected to a building by a rigid inexten-
sible bar. The connection to the building is designed to transfer only bending moment by rotational spring
and dashpot. The difference of this model compared to previous rotational TMD model is that the mass has
a potential energy which can be positive (right figure) or negative (left figure).

Figure 6.6: Prestressed TMD

The only change that occur in this model is in the equation of motion of the TMD which is:

−(ω2R2 ± g R)mtr θ̃(ω) =−(iCtr +Ktr )
(
θ̃(ω) − ∂

∂z
ũ1(L1,ω)

)
θ̃(ω) = iCtr +Ktr

−(ω2R2 ± g R)mtr + iωCtr +Ktr

∂

∂z
ũ1(L1,ω)

(6.31)

6.4. RESULT AND ANALYSIS
The plot of the frequency response function for the acceleration of the rotational TMD (RTMD) can be seen
in the Figure6.8. The model is a block of mass horizontally located at radius R from the core, a clear image
can be seen in Figure6.7.

Figure 6.7: Rotational Tuned Mass Damper

In which:
Kr ,Cr = 2[Kt ,Ct ]R2

J = 2mt R2
(6.32)
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Figure 6.8: Frequency Response RTMD

Figure6.8 depicts some different positions of the RTMD on the building. It can be seen that the optimum
position of RTMD is on the top of the building since the rotation is maximum on top. It s proven also from
the static analysis of clamped free beam that the equation for the rotation is:

∂

∂z
u = 1

EI

(
1

24
f z4 − 1

6
f Lz3 + 1

4
f L2z2 + 1

2

f L2zEI

Kr
+ f LEI

Ks

)
(6.33)

Unlike the conventional TMD model, the effectiveness of the RTMD model can be improved without chang-

Figure 6.9: Rotation of a static beam

ing the mass but changing the radius. It has the same influence as changing the mass, but in the case of
Figure6.7 changing the radius does not change the frequency of the RTMD unlike changing its mass.
But because RTMD effect on the bending moment which is not as effective as shear force in reducing the
response, it needs very long radius of 100m to have the same effect of the sigle mass TMD (basic model). This
can be seen in Figure6.10:
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Figure 6.10: Frequency Response RTMD

This is also can be understand through static calculation. If we would like to move a building with the same
deformation, we need the value of bending moment (M) 100 times larger than the value of the shear force (F).

uM = 1

EI

(
−1/6F z3 +1/2F Lz2 + EI F Lz

Kr
+ EI F

Ks

)
uF = 1

EI

(
1/2 M z2 + EI M z

Kr

) (6.34)

Figure 6.11: Influence of bending moment and shear force

The acceleration for the RTMD with 100m radius is 0.0278m/s2. As expected it is higher than the base TMD
model which has the acceleration 0.0301m/s2.
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6.5. ROTATIONAL AND TRANSLATIONAL MASS DAMPER
The model of rotational and translational mass damper can be seen in the figure below:

Figure 6.12: Rotational and translational mass damper

The figure on the left depicts a TMD model which the rotational and translational mass damper is connected
through a pendulum. The figure on the right depicts an uncoupled system of the translational and rotational
behavior of the TMD. The system has 2 masses, one for translational and the other for the rotational.

6.5.1. EQUATION OF MOTION

TUNED MASS DAMPER

For the left figure, the EOM of the TMD is:

−ω2 Jθ+ (iωCr t +Kr t )
(
θ(ω) − ∂

∂z
ũ2(z,ω)

)
+ (iωCt +Kt )(θ(ω) −Rũ2(z,ω)) = 0 (6.35)

Then the expression of θ̃ can be through this equation:

˜θ(ω) =
(iωCtr +Ktr )

∂

∂z
ũ2(L1,ω) + (iωCt +Kt )Rũ2(L,ω)

−(ω2R2 + g R)mt + (iωCtr +Ktr )+ (iωCt +Kt )R2 (6.36)

6.5.2. BOUNDARY AND INTERFACE CONDITION:
The boundary at the bottom can be seen at the equation . The boundry condition at z = L is:
Bending Moment:

E I∗
∂2

∂(z2)
ũ2(L,ω) = 0 (6.37)

Shear Force:

E I∗
∂3

∂z3 ũ2(L,ω) − (iωCt +Kt )(ũ2(L,ω) −Rθ̃(ω)) = 0 (6.38)

The interface conditions at z = L1 are:
Displacement:

ũ1(L1,ω) − ũ2(L1,ω) = 0 (6.39)

Rotation:
∂

∂z
ũ1(L1,ω) −

∂

∂z
ũ2(L1,ω) = 0 (6.40)

Bending Moment:

E I∗
( ∂2

∂z2 ũ2(L1,ω) −
∂2

∂z2 ũ1(L1,ω)

)
− (i ∗Ctr +Ktr )

( ∂
∂z

ũ1 − θ̃(ω)

)
= 0 (6.41)

Shear Force:
∂3

∂z3 ũ1(L1,ω) −
∂3

∂z3 ũ2(L1,ω) = 0 (6.42)
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6.5.3. RESULT AND ANALYSIS

Figure 6.13: Rotational and translational mass damper (coupled)

The mass, translational spring and dashpot value is the same as the base model. Also the rotational spring
and damper is the same as the RTMD model with 100m radius. The graph shows that the performance of the
model with one pendulum mass is in in between the base model (single TMD mass on top of the building)
and the rotational mass damper. This is influenced by the value of stiffness and damping which connect the
pendulum to the building. There are 2 extreme case which are:

1. The rotational stiffness and dashpot is zero (TMD 100% RTMD 0%) - similar to base TMD model (dashed
line)

2. The translational stiffness and dashpot is zero (TMD 0% RTMD 100%) - similar to rotational TMD
model (dashed-dot line)

Figure 6.14: Distributed and translational mass damper (uncoupled)

As the rotational stiffness and daspot is increased from the case 1, the value of the translational stiffness and
dashpot should be decreased to tuned it to have the same natural frequency of the building, it can be seen
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from the equation of motion of the TMD system in equation 6.36. The result from doing this is that the graph
is moved from the case 1 graph, closer to the case 2 graph. So it is reducing the performance of TMD.

In the model when there are 2 separate masses (translational and rotational), the frequency response can be
seen in the Figure6.14. The value of the mass spring and damper is the same as the base model and the RTMD
model with 100m radius. The rotational and translational TMD are placed on the top of the building since it
is the most optimum location for both TMD performance.

It can be seen that the performance of the RTMD + TMD is better than the single TMD because it has more
mass. But comparing to the 2 translational TMD mass on top of the building or double the mass of the
single TMD model, the graph shows that it has similar result with RTMD+TMD model. Because the RTMD
with 100m radiuse itself (dashed-dot line) has a better performance compared to the base TMD model (solid
black line).

6.6. DISTRIBUTED ROTATIONAL MASS DAMPER
The distributed rotational mass damper is design to absorb the large rotational change on the bottom of the
building. The model can be seen in the figure below.

Figure 6.15: Distributed rotational mass damper

6.6.1. EQUATION OF MOTION

TUNED MASS DAMPER
The equation of motion for the TMD can be written as:

−ω2 J θ̃+ (iωCr d +Kr d)
(
θ̃(z,ω) − ∂2

∂z2 ũ2(z,ω)

)
(6.43)

The expression of TMD’s motion can be obtained from the above equation:

θ̃(z,ω) = γ ∂2

∂z2 ũ2(z,ω) (6.44)

in which:

γ= (iωCr d +Kr d)

−ω2 J + iωCr d +Kr d
(6.45)

BUILDING
The building is divided into three parts, for each part, the equation of motion is:

1. For: 0<z<L1

E I∗
∂4

∂z4 ũ1(z,ω) −ω2ρAũ1(z,ω) = q̃(z,t ) (6.46)

2. For: L1<z<L2

E I∗
∂4

∂z4 ũ2(z,ω) −ω2ρAũ2(z,ω) + (iωCr d +Kr d)
( ∂2

∂z2 ũ2(z,ω) − θ̃(z,ω)

)
= q̃(z,t ) (6.47)
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3. For: L2<z<L

E I∗
∂4

∂z4 ũ3(z,ω) −ω2ρAũ3(z,ω) = q̃(z,t ) (6.48)

By using the expression of the TMD’s motion in equation 6.44, the second EOM in the building can be written
as:

E I∗
∂4

∂z4 ũ2(z,ω) −ω2ρAũ2(z,ω) + (iωCr d +Kr d)(1−γ)
∂2

∂z2 ũ2(z,ω) = q̃(z,t ) (6.49)

This equation can be solve by finding the solution for the homogeneous equation and the particular solution.

HOMOGENEOUS EQUATION:

∂4

∂z4 ũ2(z,ω) +2α2 ∂2

∂z2 ũ2(z,ω) −β4ũ2(z,ω) = 0 (6.50)

In which:

α=
√

(iωCr d +Kr d)(1−γ)

2E I∗

β=
(ω2ρA

E I∗
)1/4

(6.51)

The general solution for this homogeneous linear differential equation is:

ũ2(z,ω) =
4∑

i=1
Ci eλi z (6.52)

Substituting this form of solution to the EOM resulting:

λ4 +2α2λ2 −β4 = 0 (6.53)

The value for λ can be obtained by finding the root of the equation. For the fourth order polynomial in the
form of:

λ2 =−α2 ±
√
α4 +β4

λa,b =±
√√

α4 +β4 −α2

λc,d =±i

√√
α4 +β4 +α2

(6.54)

The form of solution for the homogeneous equation now can be written as:

ũ2(z,ω) = A2 coshλ1z +B2 sinhλ1z +C2 cosλ2z +D2 sinλ2z (6.55)

In which:

λ1 =
√√

α4 +β4 −α2

λ2 =
√√

α4 +β4 +α2

(6.56)

PARTICULAR SOLUTION:
Due to the change occur in the equation of motion, therefore the particular solution for the second building
motion is also changed. But because the form of the load is the same, the particular solution can be found in
the same form as in equation A.14. Substituting to the 2nd EOM resulting:

−β4(Ap x4 +Bp x3 +Cp x2 +Dp x +Ep )+α2(24Ap x2 +12Bpα2x +4Cpα2)+24Ap =
az4 +bz3 + cz2 +d z +e

E I∗
(6.57)
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Therefore the constant for the particular solution can be written as:

Ap =− a

E I∗β4

Bp =− b

E I∗β4

Cp = 24Ap E I∗α2 − c

E I∗β4

Dp = 12Bp E I∗α2 −d

E I∗β4

Ep = 4Cp E I∗α2 +24Ap E I∗−e

E I∗β4

(6.58)

6.6.2. BOUNDARY AND INTERFACE CONDITIONS
The four dynamic boundary conditions can be written as:
Shear Force:

E I∗
∂3

∂z3 ũ1(0,ω) + (iωCs +Ks )ũ1(0,ω) = 0 (6.59)

Bending Moment:

E I∗
∂2

∂z2 ũ1(0,ω) + (iωCr +Kr )
∂

∂z
ũ1(0,ω) = 0 (6.60)

Shear Force:

E I∗
∂3

∂z3 ũ3(L,ω) = 0 (6.61)

Bending Moment:

E I∗
∂3

∂z3 ũ3(L,ω) = 0 (6.62)

The eight interface conditions can be written as:
Displacement:

ũ1(L1,ω) − ũ2(L1,ω) = 0

ũ2(L2,ω) − ũ3(L2,ω) = 0
(6.63)

Rotation:
∂

∂z
ũ1(L1,ω) −

∂

∂z
ũ2(L1,ω) = 0

∂

∂z
ũ2(L2,ω) −

∂

∂z
ũ3(L2,ω) = 0

(6.64)

Bending Moment:

∂2

∂z2 ũ1(L1,ω) −
∂2

∂z2 ũ2(L1,ω) = 0

∂2

∂z2 ũ2(L2,ω) −
∂2

∂z2 ũ3(L2,ω) = 0

(6.65)

Shear Force:
∂3

∂z3 ũ1(L1,ω) −
∂3

∂z3 ũ2(L1,ω) = 0

∂3

∂z3 ũ2(L2,ω) −
∂3

∂z3 ũ3(L2,ω) = 0

(6.66)
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6.6.3. RESULT AND ANALYSIS
The DRMD (distributed rotational mass damper) model is design to influence the curvature of the building.
Because the building is modeled as a beam, the curvature of the beam is defined as the rate of change of the
rotation which can be seen in the figure with dθ.

Figure 6.16: Curvature of a beam

The optimum position of the DRMD must be determined first. The DRMD is modeled with the length of 1 m
and a total mass of 4.4105kg with a radius of 100m. It can be seen in the Figure6.18 that the optimum position
is placed at 50m from the bottom.

Figure 6.17: Response Function along the Building’s Height

This can be understood by seeing the rotation plot along the beam as it can be seen in Figure6.17. Because
the rate of change of the rotation occurs also at the location 50 m from the bottom.

Figure 6.18: Position Parameter

The comparison of the frequency response function and mechanical admittance of the distributed rotational
mass damper with the base TMD model can be seen in the Figure6.19. The acceleration of the DRMD model
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with 100m radius and position at 50m from the bottom is 0.0375m/s2. As expected it is lower than the base
TMD model which has the acceleration 0.0301m/s2.

Figure 6.19: Frequency Response Distributed Rotational Mass Damper

6.7. RIGID BAR MASS DAMPER
The model of rigid bar as a mass damper can be seen in the figure below:

Figure 6.20: Rigid bar as a mass damper

6.7.1. EQUATION OF MOTION
The equation of motion of the TMD can be written as:

−ω2 J θ̃(ω) + (iωCr 2 +Kr 2) θ̃(ω) +
end∑
i=1

(iωCt i +Kt i )
(
L2

i θ̃(ω) −Li ũ2(Li ,ω)

)
= 0 (6.67)

In which:
Li = L− i s (6.68)

The equation of motion of the beam can be written as:

E I∗
∂4

∂z4 ũi (z,ω) −ω2ρAũi (z,ω) = q̃(z,t ) (6.69)

The Boundary condition can be written as:
Shear Force:

E I∗
∂3

∂z3 ũend (0,ω) + (iωCs +Ks )ũend (0,ω) = 0 (6.70)
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Bending Moment:

E I∗
∂2

∂z2 ũend (0,ω) + (iωCr +Kr )
∂

∂z
ũend (0,ω) = 0 (6.71)

Shear Force:

E I∗
∂3

∂z3 ũ1(L,ω) − (iωCt +Kt )(ũ(L,ω) − ũt (ω)) = 0 (6.72)

Bending Moment:

E I∗
∂2

∂z2 ũ1(L,ω) = 0 (6.73)

Interface condition for each point at z = Li can be written as:
Displacement:

ũi (Li ,ω) − ũi+1(Li ,ω) = 0 (6.74)

Rotation:
∂

∂z
ũi (Li ,ω) − ∂

∂z
ũi+1(Li ,ω) = 0 (6.75)

Bending Moment:

∂2

∂z2 ũi (Li ,ω) − ∂2

∂z2 ũi+1(Li ,ω) = 0 (6.76)

Shear Force:

E I∗
( ∂3

∂z3 ũi+i (Li ,ω) − ∂3

∂z3 ũi (Li ,ω)

)
+ (iωCt i +Kt i )(ũi (Li ,ω) − ũt i ) = 0 (6.77)

6.7.2. RESULT AND ANALYSIS
The frequency response for the acceleration due to wind load in frequency domain ( f(ω) = 1) and the mechan-
ical admittance for the rigid bar TMD can be seen in the Figure6.21. The rigid bar has a mass of 4.4∗105kg

Figure 6.21: Frequency response of a rigid bar TMD

and connected with different quantity of viscous damper and spring stiffness. In the legend of the graph, 2
S-V 5m describe that the rigid bar connected with 2 spring stiffness and viscous damper. The first is always on
top of the building, and the second has a 5m spacing below it. It can be conclude that the amount of the vis-
cous damper and spring stiffness does not influence the performance of the TMD. But it influences the value
of each the spring stiffness and damper. With more spring and damper, the value for a single spring-damper
can be reduced.
This model is beneficial to take advantage of using an element of the building which does not have a major
contribution to the structural stability. For example the shaft for emergency escape can be used as a rigid
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TMD from the bottom to the top of the building. Which is also contribute to the total cost because the cost of
the mass is 50% of the total cost of buy and install TMD. The European Patent Office (EPO) which is designed
by Zonneveld has two emergency shaft with a total weight of 2.2∗106kg as it can be seen in the Figure6.22.

Figure 6.22: EPO Building Emergency Shaft

With this emergency shaft as a rigid bar TMD connected to the building through viscous damper and spring
stiffness, the performance of the TMD can be increased as it is shown in Figure6.23. The performance using

Figure 6.23: Frequency response of a EPO’s emergency shaft as a rigid bar TMD

the emergency shaft as TMD is significant, with this shaft as the TMD, the acceleration of the building due to
the bending vibration is 0.0212m/s2. While the acceleration due to the basic TMD model (single TMD mass
on top of the building) is 0.0301m/s2.







7
COST ANALYSIS

Besides the TMD performance, cost is a significant parameter in designing a TMD. A comparison in using the
TMD and increasing the dimension of the steel profile is made in this chapter. Then further analysis in the cost
analysis can explain more about the beneficial of the TMD and on which building properties it is favored.

7.1. INTRODUCTION
The main idea of the cost analysis is to compare the cost of reducing building acceleration by applying TMD
and increasing the dimension of the steel profile. The procedure of the cost analysis is shown in Figure7.1:

Figure 7.1: Cost analysis procedure

1. Reduce the building stiffness by decreasing the steel profile dimension. The minimum limitation of
this decrement is the displacement limit of the building which is h/500.

2. Do the dynamic analysis to obtain the acceleration of this reduced properties.

3. Reduce the acceleration of the building by increasing the dimension of the steel profile.

4. Reduce the acceleration of the building by applying TMD.

Static analysis is used to determine the stiffness of the building. There are 2 properties which the building
has that influence the maximum deflection of the building, which are the bending property and torsional
property. The total deflection at one point of the building can be obtained by the summation of bending and
torsion deflection. The model which is used for the static analysis can be seen in the figure below:

77
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Figure 7.2: Bending Beam Model

The bending deflection can be seen in following equation:

u2(z) = 1

EI

(
1/24 qz4 + 1

6
(−Lq −P )z3 + 1

4
L(Lq +2P )z2+

1

6

(
−Kr L13q +3EI L2q −3EI L12q +6EI LP

)
z

Kr
+ 1

24
qL14

) (7.1)

The torsional rotation of the building with very stiff torsional base Kq , that the torsional deformation at the
base equal to zero, can be seen in the following equation:

θ2 = −1/2τz2 +Lτz −1/2τL12

GJ
(7.2)

7.2. ANALYSIS
Based on the static analysis in Equation7.1 with the wind load in Figure4.17, the bending and torsional stiff-
ness of the building which is needed to fulfill the deformation limit of h/500 = 0.21m is:

q = 226.11kN /m

P = 2007kN

τ= 2383.33kN m/m

E I = 3.5×1013N m2

G J = 1.9×1013

(7.3)

Figure 7.3: Steel Frame SCIA Engineer

Comparing this value to the initial EPO building properties (E I = 4.7×1013 N m2) in Table4.4, this reduce of
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the building stiffness is made by decreasing the dimension of steel profile which is also decrease the building
mass. This condition is modeled in SCIA Engineering finite element program to calculate the decrement of
the mass which can be seen in Figure7.3.

Because the steel frame core is the structural element which resist the horizontal stability of the building,
the stiffness of the building due to horizontal wind loading can be obtain through calculating the stiffness of
the 6 steel frame cores. There are two types of steel frame in EPO building, these two frame is depicted in
the two figures from the left side of Figure7.3. There are 2 type 1 steel frame and 4 type 2 steel frame in the
EPO building. The model of the steel frame which is loaded by 10kN /m horizontal force. The deformation
formula for the Euler-Bernoulli Beam which is:

u(L) = qL4

8E I

E I = qL4

8u(L)

(7.4)

The deformation on top of the steel frame is obtained through the SCIA Engineering program which is shown
in Figure7.3 (two figures on the right side), then the stiffness of one steel frame can be calculated as:

E I1 = 1.707×1012N m2

E I2 = 6.906×1012N m2

E Itot al = 2∗E I1 +4∗E I2 = 4.5×1013N m2

(7.5)

The total mass for the 6 steel frames model in Figure7.3 is 6.288ton which is obtain from the finite element
program. With the same procedure, the steel profile dimension is decreased to obtained the E Itot al = 3.5×
1013N m2. The total mass for 6 steel frames of the reduced dimension is 4.938ton. It reduces the steel frame
mass by 1.35ton, then the ρA becomes 8.57×105kg /m from 8.7×105kg /m. Which is less than 1%, the mass
from the change of steel profile dimension is relatively mall because the majority of the mass is located on
the concrete floor and imposed load of non-structural elements.

Then the total acceleration with the building with stiffness as in Equation7.3 and mass per unit length of
8.57×105kg /m can be seen in the blue graph on the figure below:

Figure 7.4: Acceleration

The black graph represent the building with the properties as in Chapter4, and the orange graph represent
the building with TMD properties in Table4.6. The peak for each graph are:

Blue = 0.1134m/s2

Black = 0.1m/s2

Orange = 0.056m/s2

(7.6)

It can be seen that the increase of steel profile dimension gives a small influence in the building acceleration
compared to the TMD. The EPO building is already required the comfort criteria for a building based on
figure which is 0.17m/s2. But the building also need to required the user requirement such as the client in
performance based design. A further reference for the acceleration of the building is made, the figure below
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Figure 7.5: Comfort Criteria [D. Boggs]

shows an experiment of how people experience the building acceleration.

The building period for EPO is 3.5 second, and if the criteria of 0.1 for little difficult of working is made in this
case. Then the additional steel is enough to fulfill the standard performance. In this case the EPO building is
already close to the limit therefore the increase of steel dimension can be consider to be applied. The price of
the 1350ton steel is 1713 euro/ton, the cost for this enhancement is 2,312,550 euro. For this case, the reduce
of the acceleration through the stiffness gives the same amount with the total cost from the TMD which is
2x107 euro. But if we compare to the same amount reduction, the mass of TMD can be reduce to achieve the
same acceleration as the increase of the steel profile dimension. With the TMD mass of 1×105kg the peak
acceleration is 0.939m/s2 as it can be seen in Figure7.6:

Figure 7.6: Acceleration with lower TMD mass

The steel mass of 4.4×105kg is 814,800 euro, then the price can be reduced by 629,618 euro which makes the
TMD application more advantageous.



8
SENSITIVITY STUDY

The sensitivity study is done to understand the influence of the building, soil, and TMD properties in the dy-
namic behavior of the structure. The procedure is to change one property of the system in the one dimensional
model and see the influence in term of the acceleration of the building.

8.1. BUILDING PROPERTIES
One of the most important and sensitive property of the building which correlated to the acceleration is
the damping. Since it is more difficult to predict then the stiffness or mass of the building, there are a lot
uncertainty in the value of the building damping. In this section, the damping which is studied is the damping
of the building which in the one dimensional model, is represented by the value of C∗.

To measure the damping value of the building which is influenced by the C∗, the soil structure interaction
(SSI) is changed to the rigid base on the one dimensional model. This properties can be seen in the table
below:

SSI Parameter: Rigid Base
Ks 1∗10100 N/m
Kr 1∗10100 Nm/rad
Cs 0 Ns/m
Cr 0 Nms/rad

Table 8.1: SSI Paramter for One Dimensional Model (Figure4.4)

Then the damping is measured by inputing the force equal to one in the frequency domain and plot the power
spectral density as it is done in the Section4.2.1. The C∗ value for the bending beam and torsional rod which
give the material damping the same value for the bending and torsion can be seen in the Table8.2.
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82 8. SENSITIVITY STUDY

Table 8.2: C∗ value for the bending and torsion model(4.4) to obtain the same damping ratio

Then to obtain the acceleration at the top of the building, with the C∗ value from the Table8.2, change the
SSI properties back to the Table4.3. With the same procedure as the Chapter4 the peak acceleration (bend-
ing+torsion) of the building on the top corner can be obtained. Then the influence of the building damping
(C∗) to the peak acceleration can be seen in the Figure8.1. It can be seen that the damping ratio has a signifi-
cant influence from the value of zero to 4.5% which can reduce the peak acceleration from 0.13 to 0.06m/s2.
Therefore an accurate prediction for the damping of the building need to be developed.

Figure 8.1: Influence of C∗ on Peak Acceleration

8.2. TMD PROPERTIES
The passive TMD rely solely on the mass (this can be interpreted different way such as the Prestressed TMD),
while the spring and dashpot is just a value which need to be tuned so that the mass give the optimum perfor-
mance in absorbing the vibration. Therefore the sensitivity study in the TMD properties is done by changing
the value of the TMD mass. The parameter of the TMD mass often mention in the form of the mass ratio (µ),
which is the ratio of the TMD mass with the Building mass. The value of the mass ratio, TMD mass, and the
spring-dashpot properties which is tuned to the optimum value can be seen in the Table8.3.

Table 8.3: Value of TMD Properties for Sensitivity Study
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In this thesis the optimum value of spring-dashpot of the TMD is defined as the value which gives the Build-
ing acceleration to the lowest point. For the spring stiffness, Den Hartog has derived the optimum tuning
value of K which can be obtain through the Equation3.23.

ωT MD

ωbui ldi ng
= 1

1+µ
Kt =ω2

T MD ∗mt

(8.1)

In this case, this equation is applicable untilµ= 0.01, this equation is slightly modified trough a multiplication
by a constant factor in larger TMD mass. The reason that the tuning ratio is not applicable is because the
frequency of the wind has a high value in low frequency (Figure5.9). Therefore for the large TMD mass, the
distance of the first and the second peak is larger when plotting the response in the frequency domain. Then
it is more optimum that the second peak (peak which has larger frequency value) has higher value than the
first peak. This condition can be seen in the plot of the mechanical admittance in the Figure8.2.

The Figure8.2 is the result of the basic model and procedure in the Section5. The figure on the right is the
squared value of the figure on the left which is the mechanical admittance or can be also called the power
spectral density. This value is take into account the shape function of the wind load but without taking into
account the frequency function. The frequency load which is used in this graph is a constant value of one.
The full calculation of the dynamic wind load is done for the bending and torsional model to obtain the peak
acceleration at the top corner of the building as that is the critical location. The acceleration plot for different
mass ratio can be seen in the Figure8.5

Figure 8.2: Mechaniccal Admittance: TMD Mass Parameter

The optimum value of the dashpot (Ct ) is obtained through trial and error. The value from the trial and error
can be plot as a graph to find Ct value for different TMD mass. The figure shows that the optimum value of
Ct can be obtain trhough the second or third order polynomial function with an error less than 0.1%.

Figure 8.3: Optimum Ct for each Mass Ratio

Because the TMD is tuned to the bending natural frequency of the building, then the optimum Ct value is
when the bending vibration (acceleration) is at the lowest value. Therefore it can be seen on the Figure8.4
that the bending plot is smooth while the torsion is not. The Figure8.4 shows that th effective mass ratio in
the EPO building bending vibration is 0.003. Because after TMD mass is larger than 0.003 of the building
mass, the influence of increasing the mass to reduce the acceleration is significantly drop.
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Figure 8.4: Acceleration for Bending and Torsion with different Mass Ratio

The bending combine with torsion acceleration at the top corner of the building which is represented by the
model in Figure4.4 can be seen in the Figure8.5.

Figure 8.5: Acceleration for Building+Torsion with different Mass Ratio

The figure on the bottom represent the peak value from the top figure for each mass ratio. The vertical blue
line on the bottom figure shows the mass ratio value of the EPO building (µ = 0.0048). It can be concluded
that the TMD design for the EPO building is effective since after 0.005 the increase of the TMD mass is not
significant.



8.3. SOIL STRUCTURE INTERACTION 85

8.3. SOIL STRUCTURE INTERACTION
This chapter discuss how the soil structure interaction (SSI) properties change the sensitivity graph of the
building and TMD properties. To understand the characteristics of the four SSI properties, the Figure8.6
shows the influence of the SSI damping on the damping ratio of the one dimensional model.

Figure 8.6: SSI Damping (Cs Cr) Influence on the Model Damping

The graph is obtain from the bending model only, with the Cs and Cr changed at the same time. So for exam-
ple, the damping of 4% on the grey graph (normal stiffness Kr Ks Table4.3) is the result of the C s = 3.41∗109

and Cr = 1.25∗1012 together. With the same understanding of the dashpot characteristic as in Section3.3.2,
a high value of dashpot means that the support becomes rigid. So there is an optimum value of the damp-
ing in SSI properties which gives a high damping ratio. This damping value can be changed also based on
the foundation design, a rigid wall pile and soft ground can produce a larger damping ability [Konishi, 2011].
This topic needs further modeling and analysis to be done. But since there is corelation between foundation
design and damping of the SSI, if the TMD is applied on the structure, low SSI is wanted for the better perfor-
mance of the TMD (3.4).

The influence of the stiffness also affect the damping ratio of the total high rise building, a higher stiffness re-
strict the relative displacement at the base and therefore it limits the damping ability. Note that this stiffness
is a value which represent the soil structure interaction so it takes into account both of the foundation and
soil properties.

Figure 8.7: SSI damping influence in Building Damping Parameter

The relation between acceleration and damping ratio remain unchanged whether the damping ratio comes
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from the SSI or C∗ (building) properties. It is because what matter for the response is the area of the mechan-
ical admittance, a 1% damping has the same mechanical admittance graph whether it comes from SSI or the
building damping. But the damping from the SSI has an influence on the sensitivity of the building damping
(C∗) which is shown in the Figure8.7.

It can be seen that on the contrary with the damping gain from the Cs and Cr, the building damping gives
lower value with the decrease of the Kr and Ks (20% decrease (green line)). This is because the C∗ gives more
damping ability if the deformation difference along the beam is increase and lower base stiffness reduce the
difference between internal deformation of the beam.



9
SLENDER HIGH RISE

9.1. STATIC WIND LOADING
The procedure to obtain the wind pressure on the building’s facade is based on The Netherlands building
code NEN-EN 1991-1-4 which is also according to Eurocode. This building code is only applicable for build-
ing height under 200 m, therefore an additional information for the wind pressure above 200 m is obtained
through The Netherlands building code NTA4614-3. The input values in accordance with the NEN-EN 1991-
1-4 can be seen in the Table9.1.

Wind Data Properties
Basic wind velocity vb 27 m/s
Orography factor co 1
Minimum Height zmi n 10 m
Maximum Height zmax 200 m
Roughness length zo 1 m
Roughness length terrain category II zo,II 0.05 m
Reference height zt 200 m
Length scale Lt 300 m
Turbulence factor kl 1
Air Density ρai r 1.25 kg /m3

Building height h 270 m
Building width (in plane with wind load) b 25.5 m
Building depth (out of plane with wind load) d 25.5 m

Table 9.1: Basic Value for Wind Load

9.1.1. PEAK VELOCITY PRESSURE
The reference height (ze ) to calculate the velocity pressure for building with its height larger than twice its
width can be seen in the Figure9.1. The procedure in the section below can be followed to calculate the peak
velocity pressure.

MEAN WIND VELOCITY

The mean wind speed function over the height can be obtained through the equation below:

vm(z) = cr (z) co(z) vb (9.1)

where cr (z) is a roughness factor and kr is a terrain factor which can be calculated as:

cr (z) = kr ln

(
z

zo

)
kr = 0.19

(
zo

zo , I I

)0.07 (9.2)
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Figure 9.1: Reference height and velocity pressure profile

WIND TURBULENCE

The turbulence intensity is defined as the standard deviation of the turbulence divided by the mean wind
velocity.

Iv (z) = σv

vm(z)
(9.3)

in which:
σv = kr kl vb (9.4)

PEAK VELOCITY PRESSURE

The peak velocity pressure can be written in the equation below:

qp (z) = (1+7Iv (z))
1

2
ρ v2

m(z) (9.5)

Based on the Figure9.1, the profile for the peak velocity pressure along the height of the building can be seen
in the Figure9.2. In which the wind speed and turbulence intensity is a function of height and their values
can be seen in the table (left side of the figure).

Figure 9.2: peak velocity pressure over height

9.1.2. WIND FORCES ON STRUCTURES
The wind forces for the building with h/d > 5 can be determined through the force coefficient as written in
the equation below:

Fw (z) = cs cd c f qp (ze ) b (9.6)
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FORCE COEFFICIENT

The force coefficient for structural elements with rectangular sections can be calculated as:

c f = c f ,0 ψr ψλ (9.7)

Where the c f ,0 is the force coefficient for rectangular section with sharp corners and without free-end flow.
This value can be determined through Figure9.3. The slender high rise which is considered has the same
width and depth. Therefore the value for the force coefficient can be taken as:

d/b = 1

c f ,0 = 2.1
(9.8)

Theψr andψλ respectively are the reduction factor for section with rounded corner and the end-effect factor
for elements with free-end flow. Because the building has a sharp corner and attach to the ground, the value
for both factor can be taken as one. Then the force coefficient can be determined as:

c f = 2.1 (9.9)

Figure 9.3: Force coefficient c f ,0

STRUCTURAL FACTOR

The structural factor can be separated into two elements, which are the size factor (cs ) and the dynamic
factor (cd ). These factors take into account the fact that the peak of the wind pressure on a surface is not
occur simultaneously. The formula for the structural factor can be seen in the equation below:

cs cd =
1 + 2 kp Iv (zs )

√
B 2 +R2

1+7 Iv (zs )
(9.10)

zs is the reference height and can be determined as:

zs = 0.6 h Ê zmi n

= 120 m
(9.11)

Then the turbulence intensity at the reference height zs can be calculated as:

Iv (zs ) = kr ∗1∗ vb

kr ln zs
zo

∗1∗ vb
= 1

ln zs
zo

= 0.2088 (9.12)

B 2 is the background factor which taking into account the fact that the wind pressure is not constantly dis-
tributed in a surface. This factor can be calculated as:

B 2 = 1

1+0.9

(
b +h

L(zs )

)0.63 = 0.7193 (9.13)



90 9. SLENDER HIGH RISE

Where L(zs ) is the turbulent length scale which can be calculated as:

L(zs ) = Lt

(
zs

zt

)α
for zs Ê zmi n

L(zs ) = 213.051 m

α= 0.67+0.05 ln(zo) = 0.67

(9.14)

R2 is the resonance response factor which taking into account the resonance between the frequency of the
fluctuating wind and the building’s natural frequency. This factor can be calculated as:

R2 = π2

2 δ
SL

(
zs ,n f1

)
Rh(ηh) Rb(ηb) (9.15)

where Rh Rb is the aerodynamic admittance and can be calculated as:

Rh,b = 1

ηh,b
− 1

2 η2
h,b

(
1−e−2 η2

h,b

)
RhRb = 0.19937∗0.70852 = 0.14126

(9.16)

δ is the total logarithmic decrement of damping which can be calculated as summation for the logarithmic
decrement of structural damping, aerodynamic damping and artificial damping. The aerodynamic damping
can be neglected because according to the equation:

δa = c f ρvm(zs )

2n f µe
(9.17)

It produce a very small value because µe is the mass per unit area of the structure is relatively large (105) com-
pared to the wind speed. The total logarithmic decrement for steel building without TMD can be calculated
as:

δ= δs +δa +δd = 0.05 (9.18)

SL is the wind’s power spectral density as a function of the non-dimensional frequency ( fL(zs ,n f1)). This
function is expressed by Solari as:

SL(zs ,n f1) = 6.8 fL(zs ,n f1)(
1+10.2 fL(zs ,n f1)

)5/3
= 0.119

fL(zs ,n f1) = n f1 L(zs )

vm(zs )
= 1.031

n f1 = 0.14 H z

(9.19)

The first natural frequency of the building (n f1) is obtained through an iteration process. For a Euler-Bernoulli
beam model with a clamped base, the first natural frequency can be calculated as:

n f1 = 3.52

h2

√
E I

ρA
(9.20)

The building height is a known constant and the mass is also known because the floor has the major contri-
bution of the building mass. The first assumption is made for the building stiffness. As later the wind force is
determined, a static calculation can be made to check whether the deformation of the building is exceeded
the admissible deformation limit or not.

kp is the peak factor which is the ratio of the maximum value of the fluctuation part of the building response
to its standard deviation. This factor can be written as:

kp =
√

2ln(vT )+ 0.6p
2ln(vT )

= 3.123 (9.21)

T is the averaging time for the mean wind velocity which can be taken as 600 seconds and v is the up-crossing
frequency which can be calculated as:

v = n f1

√
R2

B 2 +R2 = 0.1175 (9.22)
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Then all the inputs for the structural factor is calculated, then the value for the structural factor is:

cs cd = 1.157 (9.23)

9.1.3. WIND FORCE
The wind force profile Fw (z) based on Equation9.6 along the building height can be seen in the Figure9.4

Figure 9.4: Force coefficient c f ,0

Because the building is above 200 m, the building code NTA4614 gives directly the wind pressure for building
up to 300 m. The comparison between the wind pressure from NEN-EN1991 up to 200m and NTA4614 up to
270 m can be seen in middle figure of Figure9.5 below:

Figure 9.5: Wind Pressure Comparison

Then the wind pressure for the building up to 270 m can be obtained by modifying the value from NTA4614 to
the wind pressure from the NEN-EN1991. The value for the wind force still use the same Equation9.6, which
is basically some constants multiplied by the wind pressure and the building width. This wind force profile
can be seen on the right figure on Figure9.5.
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9.2. BUILDING PROPERTIES
There are five properties which is needed for the dynamic analysis of this slender high-rise building namely:

1. Building mass per unit height

2. Building stiffness

3. Building damping

4. Soil Structure Interaction

5. Dynamic wind load

9.2.1. BUILDING MASS
The total building mass can be calculated as the total mass from the structural elements, and the imposed
load which is the contribution of non-structural elements. The dimension of the structural element can be
seen on the floor-plan in the Figure9.6.

Figure 9.6: High-rise Floor plan and Structure

Then the total structural volume can be calculated as:

Total Volume Column =(8∗ (2∗0.75)+4∗ (1.5∗1.5)+
4∗ (2.5∗0.75+0.75∗ (2.5−0.75)))∗270

=9112.5 m3

Total Volume Floor =((25.5∗25.5)−33.75)∗0.28∗90 = 15535.8 m3

Total Volume Bracing =(1∗0.75)∗25.632∗240 = 4613.76 m3

Total Volume =29262.06 m3

The imposed load for an office building is 3.5kN /m2 for an office building. The mass per unit height can be
calculated as:

ρA = 29262.06 m3 ∗2400 kg /m3

270m
+ 616.5∗90∗3.5∗101.94

270
= 3.33×105kg /m

(9.24)
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9.2.2. BUILDING STIFFNESS

The building stiffness is obtained through the static calculation. The model for this calculation is a bending
beam which can be seen in Figure9.7.

Figure 9.7: Bending Beam Model

in which:

q2(z) = a z6 +b z5 + c z4 +d z3 +e z2 + f z + g

a

b

c

d

e

f

g


=



−2.415×10−12

2.33×10−9

−8.99×10−7

1.79×10−4

−2.05×10−2

1.568

23.803



(9.25)

The detailed procedure to derive the response for this model is shown in the AppendixB.3. The deformation
on the top of the building can be written according to the EquationB.43 which is:

u2(L) =
1

EI

(
aL10

5040
+ bL9

3024
+ cL8

1680
+ dL7

840
+ eL6

360
+ f L5

120
+ 1

24
g L4 − L

2520

(
60 aL6 +70bL5 +84

cL4 +105dL3 +140eL2 +210 f L+420 g
)
L3 + L2

1680

(
105 aL6 +120bL5 +140cL4+

168dL3 +210eL2 +280 f L+420 g
)
L2 + 1

5040Kr

(
−280Kr L19a +630E I L8a −630

EI L18a −315Kr L18b +720EI L7b −720EI L17b −360Kr L17c +840EI L6c −840EI

L16c −420Kr L16d +1008EI L5d −1008EI L15d −504Kr L15e +1260EI L4e −1260

EI L14e −630Kr L14 f +1680EI L3 f −1680EI L13 f −840Kr L13g +840Kr L13q1+
2520EI L2g −2520EI L12g +2520EI L12q1

)
L+ 1

15120Ks

(
252Ks L110a +280Ks L19b

+315Ks L18c +2160EI L7a −2160EI L17a +360Ks L17d +2520EI L6b −2520EI L16

b +420Ks L16e +3024EI L5c −3024EI L15c +504Ks L15 f +3780EI L4d −3780EI L14

d +630Ks L14g −630Ks L14q1+5040EI L3e −5040EI L13e +7560EI L2 f −7560

EI L12 f +15120EI Lg −15120EI L1 g +15120EI L1q1
))

(9.26)
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The deformation limit for the building is requested to be 570 mm. To achieve this limit, EquationB.43 can be
used with z equal to L (deformation at the top of the building). The soil structure interaction is assumed to be
rigid in this case, this can be done by substituting a very high number (10100) to Kr and Ks .Then after all the
known constants is input, EquationB.43 becomes:

6.73×1010 +9.65×10−92E I

E I
= 0.57

E I = 1.18×1011N /m2
(9.27)

9.3. DYNAMIC ANALYSIS
After the building properties is obtained through the static calculation, the dynamic analysis with the same
procedure as in Chapter5 is performed. But there are some differences in comparison to the EPO building
case, these differences is explained in detail in the following sections. The model for the slender high rise
building can be seen in Figure9.8 where L1 = 25.5 m.

Figure 9.8: One Dimensional Model for High Rise Building

The soil structure interaction (SSI) is assumed to be rigid with small damping effect (clamped base), therefore
the value of the SSI parameters can be written as:

SSI Parameter
Ks 1∗10100 N/m
Kr 1∗10100 Nm/rad
Cs 0 Ns/m
Cr 0 Nms/rad

Table 9.2: SSI Properties for One Dimensional Model

9.3.1. DYNAMIC WIND LOAD
Because the wind tunnel test is not performed for this slender high rise, the shape function for the wind load
is obtained through the assumption based on Eurocode. The assumption is the wind load follows a function
of natural logarithm through the height which can be written as:

for 0 É z É L1 : f1(z) = lnb/zo

for L1 É z É h : f2(z) = ln z/zo
(9.28)

Equation9.28 can be plot along the building height as it is shown in Figure9.9 below:
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Figure 9.9: Load Shape Function

This change of the load shape function ( f(z)) influence the mechanical admittance (Hs ) because it changes
the coefficients of the particular solution in the section A.4.1 AppendixA. The shape function consist of two
part, the constant part and the second part which follows the function of natural logarithm. To make it easier
for finding the particular solution, the function in the second part can be approximate by the sixth order
polynomial equation which is:

f2(z) = az6 +bz5 + cz4 +d z3 +ez2 + f z + g (9.29)

The particular solution for the exponential function is the same sixth order polynomial equation as shown in
EquationA.62. The difference is located on the value of the coefficients which now can be determined as:

a =−6.47×10−14 e =−7.90×10−4

b = 6.63×10−11 f = 6.53×10−2

c =−2.77×10−8 g = 2.007

d = 6.14×10−6

Then with the same procedure as Chapter5 the top acceleration for this slender high-rise building can be
seen in Figure9.10. The peak acceleration can be written as:

without TMD = 0.1889 m/s2

with TMD = 0.0919 m/s2

Effectiveness of TMD = 51.35%
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Figure 9.10: Top Acceleration



10
CONCLUSION

There is numerous way to reduce the acceleration of the building. The damping can be enhanced by damp-
ing devices such as a viscous damper, magnetic damper, frictional damper and metallic yield device[9]. Also,
the controlled force can be applied to the structure by devices such as active tendon system and active brace
system. While the damping devices have a limited energy dissipation which is related to the material, also the
active devices have a limitation because it depends on the power source. The advantages of the application
of TMD in reducing structural vibration is that it resonates with the same frequency as the structure but on
the opposite direction of the structure in which the energy of the building can be transfer to the mass of TMD
which can absorb more energy than the damping devices.

The analytical model gives a higher effectiveness of the TMD compared to the finite element program. The
difference is the analytical model only consider one direction of stress distribution while the finite element
program can consider in 3 dimensions. Also, the properties of the building and soil need to be estimated in
this analytical model, the stiffness and mass considered to be homogeneous along the height. The SSI mod-
eled as a single spring and dashpot while in the finite element program there is a correlation between the piles
and the flexibility of the concrete plate in the bottom. But the drawback is the most influence on the torsional
model of the building. The building does not have a straight line along the width in the acceleration response.
An approximation is made by lowering the torsional stiffness of the torsional bar which results in the same
peak acceleration on the building, but the value along the building width cannot represent the acceleration
response as in the finite element program.

The model of damping in this thesis uses the Kelvin-Voigt model which can give a damping ratio that depends
on the frequency. This damping is a material damping model which it can be seen in the equation that the
material properties of modulus elasticity (E) contributes to the damping. This model is not a complete rep-
resentation of the damping in the building because damping can also come from the structural joint which
behaves as a friction damping[1]. In the analysis of the building properties, this model gives a linear correla-
tion to the increase of the inertia. The increase of the inertia of the building influence directly the damping
properties of the system.

Application of TMD in Building

The performance of the TMD is dependent on the value of its mass, and the stiffness and damping are tuned
so that the mass can give its optimum performance. The higher the ratio of the mass between the TMD and
the building, the higher the effectiveness of the TMD (Figure8.5).

The effectiveness of TMD can be influenced by the damping of the building. The effect of damping ratio on
the acceleration is sensitive in the lower damping ratio value (8.1). This characteristic creates a condition
that the TMD (and also any damping devices) can reduce the damping of the building drastically when the
building has low damping ratio. Therefore in the sense of material, a material with low damping such as steel
is preferred than concrete in the application of TMD.

Damping of the building can be increased by soil structure interaction also reduce the effectiveness of TMD.
The parameter in the SSI is frequency dependent. Therefore the building’s natural frequency influences the
damping obtained by the SSI. In the EPO Building case, lower frequency gives an optimum value for the
dashpot (Figure8.6), but it also provides a high stiffness which reduces the damping ratio of the total system.
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Therefore a building with a low natural frequency is preferable in the TMD application and the slender high
rise is a preferred case because it has a low frequency. To predict the performance accurately in the design
phase, an accurate prediction of the damping, which may come from different sources in the building, should
be developed.

Types of TMD

The different types of the TMD which contribute to the different response of the building such as displace-
ment, rotation, and curvature is modeled. The most effective way to reduce the acceleration is the transla-
tional TMD which contribute to the displacement in the horizontal direction. It can understand that to give
the same displacement in the static beam model; a horizontal force needs lower value than the bending mo-
ment. The rotational TMD can have the same performance with translational TMD but with a tremendous
moment arm which is almost equal to the building height. This model is challenging to construct because
the structure for the arm should be stiff enough to transfer the rotation to the rotational spring and dashpot
at the top of the building.If the TMD mas the same total amount of mass regardless its quantities, then the

quantities do not influence in reducing the top peak acceleration on the building because the total energy
transferred to the mass is the same since it has the same total value of mass. The mass of the TMD can be
anything; some buildings use storage tank as the TMD. A nonstructural element may also be used as a mass,
in this thesis, the idea comes from the Tokyo Sky tree which uses the emergency shaft as a TMD. This system
is beneficial because the concrete shaft has a large mass. Therefore, it can be effective to reduce the acceler-
ation. We do not need to buy or place a new mass such as a block of steel in the building if we use a part of
the building such as emergency exit as the TMD. But further investigation about the safety of the people in
emergency situation should be evaluated more.

Cost Analysis

TMD is more cost efficient when reducing the acceleration than increasing the dimension of the steel. But
not every building case need to reduce the acceleration as much as when TMD is applied such as the EPO
building. The design process often determines the stiffness to require the deformation limit first then check
the acceleration. A building which has a low acceleration (±0.02m/s2 the acceleration limit Figure2.2) when
using the value of this stiffness (stiffness which require deformation limit h/500) is not suitable for TMD ap-
plication. It is the case because the acceleration can be reduced by increasing the dimension of the profiles.
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REMAINING CHALLENGES

Besides the result and conclution for the study of the TMD in this thesis, there are limitation as a result of
the assumption or the important aspect which has not been studied. Some recomendations and remaining
challenge which is important to be studied is mention in this chapter.

1. This thesis is only consider a building acceleration due to wind load. A different loading type such as
earthquake is a very important aspect to be studied.

(a) The loading characteristic has a longer period than the wind which may excite multiple mode of
the building. This condition give an opportunities to the other type of the TMD because the shape
of the higher mode than the first has another maximum position of the displacement.

(b) The passive TMD system has a limitation not be able to tuned to multiple frequency, and also need
a certain time to activate. This aspect is more significant in the case of earthquake. Earthquake
has a limited duration of time and a quick TMD response might has a significant influence of the
response. Enhance of TMD system such as hybrid, semi-active, and active is also benefitial to
tuned the TMD to multiple frequency.

(c) While the vibration of the wind is influence the serviceability limit (acceleration), the earthquake
loading is a natural disaster which correlated to the safety (ultimate limit state) such as building
collapse. This gives a very different perspective and analysis. Because the a big earthquake has a
long return period, civil engineer usually does not design the building to be elastic because it is
too costly (depend on the function of the building), therefore non linearity due to the elastoplastic
of the structure may has great influence and challenging to be studied.

2. The 2 dimensional model for the torsional vibration need to be developed. The torsional model gives a
drawback in predict the acceleration along the width of the building. The stiffness of the torsion is also
cannot be predict through the static analysis which gives a limitation in study the torsional behavior
and effect of TMD in reducing torsional behavior.

3. Variation of building cases need to be studied in order to understand an important point which is not
present in the case in EPO building. The building has a unique torsional characteristic but the effect of
SSI is not play a significant role in this case. A deeper study about the model of the SSI and the design
of the foundation of different type of soil data related to the building acceleration, damping, and the
effect of TMD application is important to be studied.

4. There are numerous devices which may be beneficial to reduce the acceleration. A study about the
damping devices and active control device is important to compare the best solution to reduce build-
ing vibration and response. A cost analysis and the preferred building case for each of the device is
important parameter in this study.

5. It is still a challenge to design a new type of TMD which has more effective than the conventional TMD.
The fact that the TMD depend on the value of the mass is very limiting. A detailed creative design
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regarding the uses of the space of the TMD is also present in building industry and also a challenge.
A creative use of the active force in the TMD, or more advance technology such as artificial intelligent
might be the key to the future design of TMD.



A
MECHANICAL ADMITTANCE

A.1. EULER-BERNOULLI BEAM
The high rise building with single TMD on top of the building is modeled as a one dimensional model which
can be seen in the figure 5.4 below. The TMD is connected through a spring and dashpot to the building and
the building is modeled as a Euler-Bernoulli beam model.

Figure A.1: Model 1: Single TMD

A.1.1. EQUATION OF MOTION
The high rise building is modeled as an Euler-Bernoulli beam, therefore the equation of motion of the system
is:

ρA
∂2

∂t 2 u(z,t ) + ∂2

∂z2

(
E I

(
1+ c∗

∂

∂t

) ∂2

∂z2 u(z,t )

)
= q(z,t ) (A.1)

To solve the partial differential equation (PDE) in equation of motion, Fourier Transfer is used. The reason to
choose Fourier Transform is it can simplified the equation to ordinary differential equation (ODE) and there
are a lot of information which can be obtain in the frequency domain. But there are condition which should
be satisfied due to the assumption in the theory of Fourier Transform. FT can’t handle initial conditions but
since the excitation due to initial condition is not relevant in this situation, then this condition is satisfied.
The system is limited to a linear system due to the application of superposition. The equation A.1 becomes:

−ω2ρAũ(z,ω) +E I∗
∂4

∂z4 ũ(z,ω) = q̃(z,ω) (A.2)
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In which:
E I∗ = E I

(
1+ iωc∗

)
ũ(z,ω) =

∫ ∞

−∞
u(z,t )e

−iωt d t

q̃(z,ω) =
∫ ∞

−∞
q(z,t )e

−iωt d t

(A.3)

For the TMD, the equation of motion can be seen in the equation below:

−ω2mt ũt (ω) + (iωCt +Kt )(ũt (ω) − ũ(L,ω)) = 0 (A.4)

From this equation, the expression of ũt can be derived such as:

ũt (ω) =
iωCt +Kt

−ω2mt + iωCt +Kt
ũ(L,ω) (A.5)

HOMOGENEOUS EQUATION

The equation of motion can be separated to a homogeneous equation and a particular solution while the
summation of both is the total solution. The homogeneous equation of the EOM can be written as:

∂4

∂z4 ũ(z,ω) −βũ(z,ω) = 0 (A.6)

In which:

β=
(ω2ρA

E I∗
)1/4

(A.7)

The general solution for this homogeneous linear differential equation is:

ũ(z,ω) =
4∑

i=1
Ci eλi z (A.8)

Substituting this form of solution to the homogeneous equatiokn resulting:

4∑
i=1

Ci (λ4
i −β4)eλi z = 0 (A.9)

We would like to find the non-trivial solution of this equation which are:

λ4 =β4

λ2
a,b =±β2

λ1,2 =±β
λ3,4 =±iβ

(A.10)

Substituting these value back to the general solution resulting:

ũ(z,ω) =C1eβz +C2e−βz +C3e iβz +C4e−iβz (A.11)

Because we know that the response (deformation) is a real value, we can write the solution in real value form
using Euler formula which is:

ũ(z,ω) = A cosh(βz)+B sinh(βz)+C cos(βz)+D sin(βz) (A.12)

PARTICULAR SOLUTION

The particular solution is related to the loading on the system. The loading on the high rise building which is
considered in this thesis is the wind loading. The wind loading have a function of time (frequency) and space
which can be separated as written in the equation below:

q(z,ω) = f(ω) f(z) (A.13)
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The value of the wind load is not constant over height and it can be obtained from the wind speed. The shape
function ( f(z))of the wind pressure from the wind tunnel test can be seen in the the Figure5.2 and Figure5.3.
The load shape function can be seen in Equation5.5, then the particular solution can also be found on the
same form as the load therefore it can be written that the solution is:

ũpar ti cul ar = Ap z6 +Bp z5 +Cp z4 +Dp z3 +Ep z2 +Fp z +Gp (A.14)

Substitute the particular solution to the EOM resulting:

E I∗
(
360Ap z2 +120Bp z +24Cp

)−ω2ρA
(

Ap z6 +Bp z5 +Cp z4 +Dp z3 +Ep z2 +Fp z +Gp
)

= az6 +bz5 + cz4 +d z3 +ez2 + f z + g
(A.15)

The value of the constants can be derrived from this equation which are:

Ap = −a

ω2ρA
; Bp = −b

ω2ρA
; Cp = −c

ω2ρA
; Dp = −d

ω2ρA
; Ep = 360E I∗Ap −e

ω2ρA

Fp = 120E I∗Bp − f

ω2ρA
; Gp = 24E I∗Cp − g

ω2ρA

(A.16)

Then the total solution for the bending vibration can be written as:

ũ(z,ω) = A cosh(βz)+B sinh(βz)+C cos(βz)+D sin(βz)

+Ap z6 +Bp z5 +Cp z4 +Dp z3 +Ep z2 +Fp z +Gp
(A.17)

A.1.2. BOUNDARY CONDITIONS
To find the value of the coefficient (A, B, C, D), the boundary conditions are used. The number of the con-
ditions should satisfied the number of the unknowns. In this case there are 4 dynamic boundary conditions
which are:
BC1-Shear Force:

E I∗
∂3

∂z3 ũ(z,ω)

∣∣∣∣
z=0

+ (iωCs +Ks )ũ(z,ω)
∣∣

z=0 = 0 (A.18)

BC2-Bending Moment:

E I∗
∂2

∂z2 ũ(z,ω)

∣∣∣∣
z=0

− (iωCr +Kr )
∂

∂z
ũ(z,ω)

∣∣∣∣
z=0

= 0 (A.19)

BC3-Shear Force:

E I∗
∂3

∂z3 ũ(z,ω)

∣∣∣∣
z=L

− (iωCt +Kt )
(
ũ(z,ω) − ũt(ω)

)∣∣
z=L = 0 (A.20)

BC4-Bending Moment:

E I∗
∂2

∂z2 ũ(z,ω)

∣∣∣∣
z=L

= 0 (A.21)

The expression of ũt (ω) can be substituted to the beam motion ũ(L,ω) from the equation A.5. To obtain the
response (ũ(z,ω)), there are 4 unknowns [A, B, C, and D] need to be obtained. Therefore the 4 boundary condi-
tions is used to obtain the unknowns. After substituting the expression of ũ in equation A.12 to the boundary
condition, the 4 equations can be put in matrix form:

KD ∗C = F (A.22)

Matrix KD is called the dynamic stiffness matrix which can be seen in the equation A.23. Vector C consist of
the coefficient [A, B, C, and D], and vector F is the value which does not contain any coefficient [A, B, C, D] in
the boundary condition equation.

KD =


Ks+ iωCs β3EI∗ Ks+ iωCs −β3EI∗

EI∗β2 − (Kr+ iωCr)β −EI∗β2 − (Kr+ iωCr)β

γcosh
(
βL

)+EI∗β3 sinh
(
βL

)
γsinh

(
βL

)+EI∗β3 cosh
(
βL

)
γcos

(
βL

)+EI∗β3 sin
(
βL

)
γsin

(
βL

)−EI∗β3 cos
(
βL

)
EI∗β2 cosh

(
βL

)
EI∗β2 sinh

(
βL

) −EI∗β2 cos
(
βL

) −EI∗β2 sin
(
βL

)

 (A.23)
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In which:

γ= (iωCt +Kt )

(
iωCt +Kt

−ω2mt + iωCt +Kt
−1

)
(A.24)

F =


−6DpEI_star− (Ks+ iωCs)Gp

−2EI_star Ep− (−Kr− iωCr)Fp

−
(
γL6 +120EI_star L3

)
Ap−

(
γL5 +60EI_star L2

)
Bp−

(
γL4 +24EI_star L

)
Cp−

(
γL3 +6EI_star

)
Dp−γL2Ep−γLFp−γGp

−30L4EI_star Ap−20EI_star L3Bp−12EI_star L2Cp−6EI_star LDp−2EI_star Ep

 (A.25)

Then the coefficient vector C can be solved by:

C = KD
−1F (A.26)

The coefficients substitute again to equation A.12 to obtain the response in frequency domain. In order to get
the acceleration of the building the equation below is used:

acceleration =ω2ũ(z,ω) (A.27)

A.2. MODEL FOR DAMPING IDENTIFICATION
The procedure to identify the damping is to apply a hammer test on the structure. In an analytical model
such as one dimensional model, the hammer test is represent by a point load which has a very high force in
a very short time. In the frequency domain, this load is a constant load of 1N over the frequency which also
called the white noise spectrum. This model can be seen in the FigureA.2.

Figure A.2: Model 1: Damping Identification

The equation of motion of the model is the same as the previous model in section A.1, the only change is
that the boundary condition of the TMD is change to a point load. This boundary condition at the top of the
model can be seen in the equation below: BC3-Shear Force:

E I∗
∂3

∂z3 ũ(z,ω)

∣∣∣∣
z=L

+P(ω) = 0 (A.28)

A.3. TORSIONAL BAR
The torsional motion of the building is modeled as a torsional bar which can be seen in the FigureA.3. The
TMD is also absorb the vibration in torsional degree of freedom. The TMD gives a torque which is equal to
the horizontal force multiplied by the arm from the torsional center rotation (middle of the width).
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Figure A.3: Model 1: Torsional Bar Model

A.3.1. EQUATION OF MOTION
The equation of motion of a torsional bar can be seen in the figure below:

ρ J
∂2

∂t 2 θ(z,t ) − ∂

∂z

(
G J

(
1+ c∗θ

∂

∂t

)
∂

∂z
θ(z,t )

)
= τ(z,t )

−ω2ρ J θ̃(z,ω) − ∂

∂z

(
G J

(
1+ iωc∗θ

) ∂

∂z
θ̃(z,ω)

)
= τ̃(z,t )

(A.29)

The equation of motion of the TMD in torsional degree of freedom is:

Jθ
∂2

∂t 2 θt(t ) +Cθ
∂

∂t

(
θt(t ) −θ(z,t )

)+Kθ

(
θt(t ) −θ(z,t )

)= 0(−ω2 Jθ+ iωCθ+Kθ

)
θ̃t(ω) = (iωCθ+Kθ) θ̃(z,ω)

θ̃t(ω) =
iωCθ+Kθ(−ω2 Jθ+ iωCθ+Kθ

) θ̃(z,ω)

(A.30)

The solution for the equation of motion can be separated into two components which is the solution for the
homogeneous part and the particular solution.

HOMOGENEOUS EQUATION

The homogeneous equation of the equation of motion can be written as:

−ω2ρ J θ̃(z,ω) − ∂2

∂z2

(
G J

(
1+ iωc∗θ

)
θ̃(z,ω)

)= 0

−
(
ω2ρ J

G J∗

)
θ̃(z,ω) − ∂2

∂z2 θ̃(z,ω) = 0

∂2

∂z2 θ̃(z,ω) +α2θ̃(z,ω) = 0

(A.31)

in which:
G J∗ =G J

(
1+ iωc∗θ

)
α=

√
ω2ρ J

G J∗
(A.32)

The general solution for this homogeneous linear differential equation is:

θ̃(z,ω) =
2∑

i=1
Ci eλi z (A.33)
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Substituting this form of solution to the homogeneous equation resulting:

2∑
i=1

Ci
(
α2 +λ2

i

)
eλi z = 0 (A.34)

We would like to find the non-trivial solution of this equation which are:

λ2 =−α2

λ1,2 =±iα
(A.35)

Substituting these value back to the general solution resulting:

θ̃(z,ω) =C1e iαz +C2e−iαz

= (C1 +C2)cos(αz)+ i (C1 −C2)sin(αz)

= A cos(αz)+B sin(αz)

(A.36)

PARTICULAR SOLUTION

The load shape function for the torsional vibration can be seen in Equation5.5 (bottom). Then the particular
solution can be written as:

θ̃par ti cul ar = Ap2z6 +Bp2z5 +Cp2z4 +Dp2z3 +Ep2z2 +Fp2z +Gp2 (A.37)

Substitute the particular solution to the EOM resulting:

−G J∗
(
30Ap2z2 +20Bp2z +12Cp2 +6Dp2 +2Ep2

)−ω2ρ Je2
(

Ap2z6 +Bp2z5 +Cp2z4 +Dp2z3

+Ep2z2 +Fp2z +Gp2

)
= at z6 +bt z5 + ct z4 +dt z3 +et z2 + ft z + g t

(A.38)

The value of the constants can be derrived from this equation which are:

Ap2 = −at

ω2ρ J
; Bp2 = −bt

ω2ρ J
; Cp2 =

30G J∗Ap2 + ct

ω2ρ J
; Dp2 =

20G J∗Bp2 +dt

ω2ρ J
; Ep2 =

12G J∗Cp2 +et

ω2ρ J

Fp2 =
6G J∗Dp2 + ft

ω2ρ J
; Gp2 =

4G J∗Ep2 + g t

ω2ρ J

(A.39)

Then the total solution from the homogeneous equation and the particular solution can be written as:

θ̃(z,ω) =A cos(αz)+B sin(αz)

+ Ap2z6 +Bp2z5 +Cp2z4 +Dp2z3 +Ep2z2 +Fp2z +Gp2
(A.40)

A.3.2. BOUNDARY CONDITIONS
There are two boundary conditions which are needed to solve the two unknowns from the solution of homo-
geneous equation. These boundary condition can be seen in the equations below:
BC1-Torque

G J∗
∂

∂z
θ̃(z,ω)

∣∣∣∣
z=0

− (
iωCq +Kq

)
θ̃(z,ω)

∣∣
z=0 = 0 (A.41)

BC2-Torque

G J∗
∂

∂z
θ̃(z,ω)

∣∣∣∣
z=L

+ (iωCθ+Kθ)
(
θ̃(z,ω) − θ̃t (z,ω)

)∣∣
z=L = 0 (A.42)

After substituting the total solution to the boundary conditions, one can put the equations to a matrix form
of:

KDθ+Cθ = T (A.43)

The dynamic stiffness matrix for the torsional vibration can be written as:

KDθ =
[ −i Cqω−Kq GJα

−(
γt −1

)(
Kθ + iωCθ

)
cos(αL)−GJα sin(αL) GJα cos(αL)− (

γt −1
)(

Kθ + iωCθ
)

sin(αL)

]
(A.44)
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in which:

γt = iωCθ+Kθ(−ω2 Jθ+ iωCθ+Kθ

) (A.45)

Then the vector T on the right side of the equation which is obtained from the particular solution can be
written as:

T =
[ −Fp2 GJ + (+i Cqω+Kq

)
Gp2

−
(
L6γt2 +6GJ L5

)
Ap2 −

(
γt2 L5 +5GJ L4

)
Bp2 −

(
γt2 L4 +4GJ L3

)
Cp2 −

(
γt2 L3 +3GJ L2

)
Dp2 −

(
γt2 L2 +2GJ L

)
Ep2 − (

Lγt2 +GJ
)

Fp2 −Gp2 γt2

]
(A.46)

in which:

γt2 = (iωCθ+Kθ)
(
1−γt

)
(A.47)

Then the coefficient vector Cθ can be solved by:

Cθ = KDθ
−1T (A.48)

The coefficients can be substituted to equation A.40 to obtain the response in frequency domain. In order to
get the acceleration of the building the equation below is used:

acceleration = Rω2θ̃(z,ω) (A.49)

in which R is the radius from the center of rotation in which we would like to observed. In the EPO building
case, the maximum acceleration located on the corner of the building or R = 78m.

A.4. SLENDER HIGH-RISE BUILDING
The model for the dynamic analysis of the slender high-rise building is shown in FigureA.4 below:

Figure A.4: One Dimensional Model for High Rise Building

in which:

L1 = 25.5 m (A.50)

A.4.1. EQUATION OF MOTION
The high rise building is modeled as an Euler-Bernoulli beam, therefore the equation of motion of the system
is:
for 0 É z É 25.5:

ρA
∂2

∂t 2 u1(z,t ) +
∂2

∂z2

(
E I

(
1+ c∗

∂

∂t

) ∂2

∂z2 u1(z,t )

)
= q1(z,t )

(A.51)

for 25.5 É z É L:

ρA
∂2

∂t 2 u2(z,t ) + ∂2

∂z2

(
E I

(
1+ c∗

∂

∂t

) ∂2

∂z2 u2(z,t )

)
= q2(z,t ) (A.52)
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To solve the partial differential equation (PDE) in equation of motion, Fourier Transform is used, which trans-
form the equation A.51 and A.52 into:

−ω2ρAũ1,2(z,ω) +E I∗
∂4

∂z4 ũ1,2(z,ω) = q̃1,2(z,ω)
(A.53)

For the TMD, the equation of motion can be seen in the equation below:

−ω2mt ũt (ω) + (iωCt +Kt )(ũt (ω) − ũ2(L,ω) ) = 0 (A.54)

From this equation, the expression of ũt can be derived such as:

ũt (ω) =
iωCt +Kt

−ω2mt + iωCt +Kt
ũ2(L,ω) (A.55)

HOMOGENEOUS EQUATION

The equation of motion can be separated to a homogeneous equation and a particular solution while the
summation of both is the total solution. The homogeneous equation of the EOM can be written as:

∂4

∂z4 ũ1,2(z,ω) −βũ1,2(z,ω) = 0 (A.56)

In which:

β=
(ω2ρA

E I∗
)1/4

(A.57)

The general solution for this homogeneous linear differential equation is:

ũ1,2(z,ω) =
4∑

i=1
Ci eλi z (A.58)

which it is known that the solution form is:

ũ1,2(z,ω) = A1,2 cosh(βz)+B1,2 sinh(βz)+C1,2 cos(βz)+D1,2 sin(βz) (A.59)

PARTICULAR SOLUTION

The particular solution is related to the loading on the system. The wind loading have a function of time
(frequency) and space which can be separated as written in the equation below:

q1,2(z,ω) = f1,2(ω) f1,2(z) (A.60)

The frequency characteristic of the wind load is taking into account by the Solari wind spectrum, therefore
the value of f1,2(ω) is equal to one in this mechanical admittance. The shape function f1(z) can be seen in top
equation of Equation9.28 and the shape function f2(z) can be seen in Equation9.29. The particular solution
can also be found on the same form as the load therefore it can be written that the solution is:

ũpar ti cul ar 1 = Ap1 (A.61)

ũpar ti cul ar 2 = Ap z6 +Bp z5 +Cp z4 +Dp z3 +Ep z2 +Fp z +Gp (A.62)

Substitute the particular solution to the EOM resulting:

−ω2ρA Ap1 = lnL1

E I∗
(
360Ap z2 +120Bp z +24Cp

)−ω2ρA
(

Ap z6 +Bp z5 +Cp z4 +Dp z3 +Ep z2 +Fp z +Gp
)

= az6 +bz5 + cz4 +d z3 +ez2 + f z + g

(A.63)

The value of the constants can be derrived from this equation which are:

Ap1 = lnL1

−ω2ρA

Ap = −a

ω2ρA
; Bp = −b

ω2ρA
; Cp = −c

ω2ρA
; Dp = −d

ω2ρA
; Ep = 360E I∗Ap −e

ω2ρA

Fp = 120E I∗Bp − f

ω2ρA
; Gp = 24E I∗Cp − g

ω2ρA

(A.64)
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Then the total solution for the bending vibration can be written as:

ũ1(z,ω) =A1cosh(βz)+B1sinh(βz)+C 1cos(βz)+D1sin(βz)+ Ap1

ũ2(z,ω) =A2cosh(βz)+B2sinh(βz)+C 1cos(βz)+D1sin(βz)

+ Ap z6 +Bp z5 +Cp z4 +Dp z3 +Ep z2 +Fp z +Gp

(A.65)

A.4.2. BOUNDARY CONDITIONS
To find the value of the 8 coefficients (A1,2,B1,2,C1,2,D1,2), the boundary and interface conditions are used.
The number of the conditions should satisfied the number of the unknowns. In this case there are 4 dynamic
boundary conditions and interface conditions which are:
BC1-Shear Force:

E I∗
∂3

∂z3 ũ1(z,ω)

∣∣∣∣
z=0

+ (iωCs +Ks )ũ1(z,ω)

∣∣
z=0 = 0 (A.66)

BC2-Bending Moment:

E I∗
∂2

∂z2 ũ1(z,ω)

∣∣∣∣
z=0

− (iωCr +Kr )
∂

∂z
ũ1(z,ω)

∣∣∣∣
z=0

= 0 (A.67)

BC3-Shear Force:

E I∗
∂3

∂z3 ũ2(z,ω)

∣∣∣∣
z=L

− (iωCt +Kt )
(
ũ2(z,ω) − ũt(ω)

)∣∣
z=L = 0 (A.68)

BC4-Bending Moment:

E I∗
∂2

∂z2 ũ2(z,ω)

∣∣∣∣
z=L

= 0 (A.69)

IC1-Deformation:
ũ2(L1,ω) − ũ2(L1,ω) = 0 (A.70)

IC2-Rotation:
∂

∂z
ũ2(z,ω)

∣∣∣∣
z=L1

− ∂

∂z
ũ1(z,ω)

∣∣∣∣
z=L1

= 0 (A.71)

IC3-Bending Moment:

E I∗
∂2

∂z2 ũ2(z,ω)

∣∣∣∣
z=L1

− E I∗
∂2

∂z2 ũ1(z,ω)

∣∣∣∣
z=L1

= 0 (A.72)

IC4-Shear Force:

E I∗
∂3

∂z3 ũ2(z,ω)

∣∣∣∣
z=L1

− E I∗
∂3

∂z3 ũ1(z,ω)

∣∣∣∣
z=L1

= 0 (A.73)

The expression of ũt (ω) can be substituted to the beam motion ũ(L,ω) from the equation A.55. To obtain the
response (ũ1,2(z,ω)), there are 8 unknowns [A1, B1, C1, D1, A2, B2, C2, D2] need to be obtained. Therefore
the 4 boundary conditions and 4 interface conditions is used to obtain the unknowns. After substituting the
expression of ũ in equation A.59 to the boundary condition, the 4 equations can be put in matrix form:

KD ∗C = F (A.74)

Matrix KD is called the dynamic stiffness matrix and vector C consist of the coefficient [A1, B1, C1, D1, A2, B2,
C2, D2], and vector F is the value which does not contain any coefficient [A1, B1, C1, D1, A2, B2, C2, D2] in
the equations of boundary conditions and interface conditions. Then the coefficient vector C can be solved
by:

C = KD
−1F (A.75)

The coefficients substitute again to equation A.59 to obtain the response in frequency domain. In order to get
the acceleration of the building the equation below is used:

acceleration1,2 =ω2ũ1,2(z,ω) (A.76)





B
STATIC ANALYSIS OF A BEAM

B.1. EULER-BERNOULLI BEAM

The model which is used as the case to solve the statics of the Euler-Bernoulli beam is shown in the Figure4.6
below:

Figure B.1: Static: Bending Beam

There are two equations of motion which is separate after L1 = 11.8 m. The first equation which represent the
motion of the beam on the bottom can be derived as:

For 0 É z É L1 : E I
∂4u1(z)

∂z4 = 0

E I
∂3u1(z)

∂z3 = A1

E I
∂2u1(z)

∂z2 = A1z +B1

E I
∂u1(z)

∂z
= 1

2
A1z2 +B1z +C1

E I u1(z) = 1

6
A1z3 + 1

2
B1z2 +C1z +D1

(B.1)
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The second equation which represent the motion of the beam on the top can be derived as:

For L1 É z É L : E I
∂4u2(z)

∂z4 = q

E I
∂3u2(z)

∂z3 = qz + A2

E I
∂2u2(z)

∂z2 = 1

2
qz2 + A2z +B2

E I
∂u2(z)

∂z
= 1

6
qz3 + 1

2
A2z2 +B2z +C2

E I u2(z) = 1

24
qz4 + 1

6
A2z3 + 1

2
B2z2 +C2z +D2

(B.2)

The boundary conditions of the static can be seen in the equations below:
BC1-Deformation:

u1(0) = 0 (B.3)

BC2-Bending Moment:

E I
∂2u1(0)

∂z2

∣∣∣∣∣
z=0

− Kr
∂u1(0)

∂z

∣∣∣∣
z=0

= 0 (B.4)

BC3-Shear Force:

E I
∂3u2(z)

∂z3

∣∣∣∣∣
z=L

+P = 0 (B.5)

BC4-Rotation:

E I
∂2u2(z)

∂z2

∣∣∣∣∣
z=L

= 0 (B.6)

The interface conditions of the system can be seen in the equation below:
IC1-Deformation:

u1(L1) −u2(L1) = 0 (B.7)

IC2-Rotation:

∂u1(z)

∂z

∣∣∣∣
z=L1

− ∂u2(z)

∂z

∣∣∣∣
z=L1

= 0 (B.8)

IC3-Bending Moment:

E I
∂2u1(z)

∂z2

∣∣∣∣∣
z=L1

− E I
∂2u2(z)

∂z2

∣∣∣∣∣
z=L1

= 0 (B.9)

IC4-Shear Force:

E I
∂3u1(z)

∂z3

∣∣∣∣∣
z=L1

− E I
∂3u2(z)

∂z3

∣∣∣∣∣
z=L1

= 0 (B.10)

By substituting the equation B.1 and B.2 to the boundary and interface conditions, we can put these eight
equation in the matrix form:

KS CS = FS (B.11)

In which KS is a matrix which contains all the value in front of the coefficient vector CS [A1,B1,C1,D1,A2,B2,C2,D2].
The vector FS is the component which does not contain any coefficients in the vector CS . The KS and FS can
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be seen in the following equation:

KS =



0 0 0 EI−1 0 0 0 0

0 1 −Kr
EI 0 0 0 0 0

0 0 0 0 L
EI EI−1 0 0

0 0 0 0 1 0 0 0

1/6 L13

EI 1/2 L12

EI
L1
EI EI−1 −1/6 L13

EI −1/2 L12

EI − L1
EI −EI−1

1/2 L12

EI
L1
EI EI−1 0 −1/2 L12

EI − L1
EI −EI−1 0

L1 1 0 0 −L1 −1 0 0

1 0 0 0 −1 0 0 0



(B.12)

FS =



0

0

−1/2 qL2

EI

−Lq −P

1/24 qL14

EI

1/6 qL13

EI

1/2 qL12

L1 q



CS =



A1

B1

C1

D1

A2

B2

C2

D2



(B.13)

The coefficient vector CS can be solved by using matrix operation:

CS = KS
−1FS

CS =



−Lq +L1 q −P

1/2 qL2 −1/2 qL12 +LP

1/2 (qL2−qL12+2LP)EI
Kr

0

−Lq −P

1/2L
(
Lq +2P

)
1/6 −Kr L13q+3EI L2q−3EI L12q+6EI LP

Kr

1/24 qL14



(B.14)

Substituting this coefficients to the equation B.1 and B.2, we can obtain the equation for the deformation of
the building:

u1 = 1

EI
(1/6(−Lq +L1 q −P )z3 +1/2(1/2 qL2 −1/2 qL12 +LP )z2+

1/2
(qL2 −qL12 +2LP )EI z

Kr
)

u2 = 1

EI
(1/24 qz4 +1/6(−Lq −P )z3 +1/4L(Lq +2P )z2 +1/6

(−Kr L13q +3EI L2q −3EI L12q +6EI LP )z

Kr
+1/24 qL14)

(B.15)

The bottom rotation is the first derivative of the u1 which can be written as:

∂u1

∂z
= 1

EI

(
1/2

(−Lq +L1 q −P
)

z2 + (
1/2 qL2 −1/2 qL12 +LP

)
z +1/2

(
qL2 −qL12 +2LP

)
EI

Kr

)
(B.16)
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B.2. TORSIONAL BAR
The torsional bar model for the static calculation can be seen in the FigureB.2 below:

Figure B.2: Static: Torsional Bar

The governing equations for the bottom part of the bar for 0 É z É L1:

G J
∂2

∂z2 θ1(z) = 0

G J
∂

∂z
θ1(z) =−A1

G J θ1(z) =−A1 z −B1

(B.17)

The governing equation for the top part of the bar for L1 É z É L:

G J
∂2

∂z2 θ2(z) = τ

G J
∂

∂z
θ2(z) = τ z − A2

G J θ2(z) =−1

2
τ z2 − A2 z −B2

(B.18)

The boundary conditions of the static can be seen in the equations below:
BC1-Torque

G J
∂

∂z
θ1(z)

∣∣∣∣
z=0

− Kq θ1(z)

∣∣
z=0 = 0 (B.19)

BC2-Torque

G J
∂

∂z
θ2(z)

∣∣∣∣
z=L

= 0 (B.20)

IC1-Torsion
θ1(L1) −θ2(L1) = 0 (B.21)

IC2-Torque

G J
∂

∂z

(
θ1(z) −θ2(z)

)∣∣∣∣
z=L1

= 0 (B.22)

By substituting the governing equation to the boundary and interface conditions, we can put these eight
equation in the matrix form:

KSt CSt = FSt (B.23)
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In which KSt is a matrix which contains all the value in front of the coefficient vector CSt [A1,B1,C1,A2,B2].
The vector FSt is the component which does not contain any coefficients in the vector CSt . The KSt and FSt

can be seen in the following equation:

KSt =


−1 Kq

GJ 0 0

0 0 −1 0

− L1
GJ −GJ−1 L1

GJ GJ−1

−1 0 1 0

 (B.24)

FSt =


0

Lτ

− 1
2
τL12

GJ

−L1τ

 CS =


A1

B1

A2

B2

 (B.25)

The coefficient vector CSt can be solved by using matrix operation:

CS = KS
−1FS

CS =



− (−L1+L)τ

−GJ (−L1+L)τ
Kq

−Lτ

− 1
2
τ(−Kq L12+2GJ L−2GJ L1)

Kq


(B.26)

Substituting this coefficients to the equation B.1 and B.2, we can obtain the equation for the deformation of
the building:

θ1(z) =
1

GJ

(
(−L1+L)τz + GJ (−L1+L)τ

Kq

)
θ2(z) =

1

GJ

(
−1/2τz2 +Lτz +1/2

τ
(−Kq L12 +2GJ L−2GJ L1

)
Kq

) (B.27)

B.3. SLENDER HIGH-RISE
The building stiffness is obtained through the static calculation. The model for this calculation is a bending
beam which can be seen in FigureB.3.

Figure B.3: Bending Beam Model

There are two equations of motion which is separate after L1 = 25.5 m. The first equation which represent the
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motion of the beam on the bottom can be derived as:

For 0 É z É L1 : E I
∂4u1(z)

∂z4 = q1

E I
∂3u1(z)

∂z3 = q1z + A1

E I
∂2u1(z)

∂z2 = 1

2
q1z2 + A1z +B1

E I
∂u1(z)

∂z
= 1

6
q1z3 + 1

2
A1z2 +B1z +C1

E I u1(z) = 1

24
q1z4 + 1

6
A1z3 + 1

2
B1z2 +C1z +D1

(B.28)

The second equation which represent the motion of the beam on the top can be derived as:

For L1 É z É L : E I
∂4u2(z)

∂z4 = q2

E I
∂3u2(z)

∂z3 =
∫

q2 + A2

E I
∂2u2(z)

∂z2 =
∫ ∫

q2 + A2z +B2

E I
∂u2(z)

∂z
=

∫ ∫ ∫
q2 + 1

2
A2z2 +B2z +C2

E I u2(z) =
∫ ∫ ∫ ∫

q2 + 1

6
A2z3 + 1

2
B2z2 +C2z +D2

(B.29)

in which:
q2(z) = a z6 +b z5 + c z4 +d z3 +e z2 + f z + g

a

b

c

d

e

f

g


=



−2.415×10−12

2.33×10−9

−8.99×10−7

1.79×10−4

−2.05×10−2

1.568

23.803



(B.30)

The boundary conditions of the static can be seen in the equations below:
BC1-Deformation:

E I
∂3u1(0)

∂z3

∣∣∣∣∣
z=0

+Ks u1(0) = 0 (B.31)

BC2-Bending Moment:

E I
∂2u1(0)

∂z2

∣∣∣∣∣
z=0

− Kr
∂u1(0)

∂z

∣∣∣∣
z=0

= 0 (B.32)

BC3-Shear Force:

E I
∂3u2(z)

∂z3

∣∣∣∣∣
z=L

= 0 (B.33)

BC4-Rotation:

E I
∂2u2(z)

∂z2

∣∣∣∣∣
z=L

= 0 (B.34)
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The interface conditions of the system can be seen in the equation below:
IC1-Deformation:

u1(L1) −u2(L1) = 0 (B.35)

IC2-Rotation:

∂u1(z)

∂z

∣∣∣∣
z=L1

− ∂u2(z)

∂z

∣∣∣∣
z=L1

= 0 (B.36)

IC3-Bending Moment:

E I
∂2u1(z)

∂z2

∣∣∣∣∣
z=L1

− E I
∂2u2(z)

∂z2

∣∣∣∣∣
z=L1

= 0 (B.37)

IC4-Shear Force:

E I
∂3u1(z)

∂z3

∣∣∣∣∣
z=L1

− E I
∂3u2(z)

∂z3

∣∣∣∣∣
z=L1

= 0 (B.38)

By substituting the equation B.28 and B.29 to the boundary and interface conditions, we can put these eight
equation in the matrix form:

KS CS = FS (B.39)

In which KS is a matrix which contains all the value in front of the coefficient vector CS [A1,B1,C1,D1,A2,B2,C2,D2].
The vector FS is the component which does not contain any coefficients in the vector CS . The KS and FS can
be seen in the following equation:

KS =



1 0 0 Ks
EI 0 0 0 0

0 1 −Kr
EI 0 0 0 0 0

0 0 0 0 L 1 0 0

0 0 0 0 1 0 0 0

1/6 L13

EI 1/2 L12

EI
L1
EI EI−1 −1/6 L13

EI −1/2 L12

EI − L1
EI −EI−1

1/2 L12

EI
L1
EI EI−1 0 −1/2 L12

EI − L1
EI −EI−1 0

L1 1 0 0 −L1 −1 0 0

1 0 0 0 −1 0 0 0



(B.40)

FS =



0

0

− aL8

56 −1/42bL7 −1/30cL6 −1/20dL5 −1/12eL4 −1/6 f L3 −1/2 g L2

−1/7 aL7 −1/6bL6 −1/5cL5 −1/4dL4 −1/3eL3 −1/2 f L2 − g L

−1/24 q1L14

EI + aL110

5040EI + bL19

3024EI + cL18

1680EI + dL17

840EI + eL16

360EI +
f L15

120EI +1/24 g L14

EI

−1/6 q1L13

EI + aL19

504EI + bL18

336EI + cL17

210EI + dL16

120EI + eL15

60EI +1/24 f L14

EI +1/6 g L13

EI

−1/2q1L12 + aL18

56 +1/42bL17 +1/30cL16 +1/20dL15 +1/12eL14 +1/6 f L13 +1/2 g L12

−q1L1+1/7 aL17 +1/6bL16 +1/5cL15 +1/4dL14 +1/3eL13 +1/2 f L12 + g L1



(B.41)

The coefficient vector CS can be solved by using matrix operation:

CS = KS
−1FS (B.42)
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By substituting this coefficients to the equation B.28 and B.29, we can obtain the equation for the deformation
of the building.

u2(z) =
1

EI

(
az10

5040
+ bz9

3024
+ cz8

1680
+ d z7

840
+ ez6

360
+ f z5

120
+ 1

24
g z4 − L

2520

(
60 aL6 +70bL5 +84

cL4 +105dL3 +140eL2 +210 f L+420 g
)
z3 + L2

1680

(
105 aL6 +120bL5 +140cL4+

168dL3 +210eL2 +280 f L+420 g
)
z2 + 1

5040Kr

(
−280Kr L19a +630E I L8a −630

EI L18a −315Kr L18b +720EI L7b −720EI L17b −360Kr L17c +840EI L6c −840EI

L16c −420Kr L16d +1008EI L5d −1008EI L15d −504Kr L15e +1260EI L4e −1260

EI L14e −630Kr L14 f +1680EI L3 f −1680EI L13 f −840Kr L13g +840Kr L13q1+
2520EI L2g −2520EI L12g +2520EI L12q1

)
z + 1

15120Ks

(
252Ks L110a +280Ks L19b

+315Ks L18c +2160EI L7a −2160EI L17a +360Ks L17d +2520EI L6b −2520EI L16

b +420Ks L16e +3024EI L5c −3024EI L15c +504Ks L15 f +3780EI L4d −3780EI L14

d +630Ks L14g −630Ks L14q1+5040EI L3e −5040EI L13e +7560EI L2 f −7560

EI L12 f +15120EI Lg −15120EI L1 g +15120EI L1q1
))

(B.43)
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Dynamic Stiffness and Force - Bending Beam

Matlab file: Model Bending Beam Symbolic.m

1 %% TRANSFER FUNCTION / MECHANICAL ADMITTANCE
2 % Fi r s t Model : Ordinary mass sp r ing dashpot system
3 % This program i s f o r a s i n g l e TMD on top o f the bu i l d i ng
4 c l e a r ; c l c ; warning ( ’ o f f ’ , ’ a l l ’ )
5 syms x omega ;
6 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 % A. SELECT CASE
8 % ! Parameter that are loaded :
9 % So i l : Kr Ks Cr Cs

10 % Bui ld ing : E I s t a r ; mass ; beta ; L ;
11 % Par t i c u l a r So lu t i on : a b c
12 syms Kr Ks Cr Cs EI s t a r mass beta L
13 % A. 1 . DATA:
14 % A. 4 . TMD TRANSLATION:
15 syms mt Ct Kt
16 % A. 5 . WIND LOAD:
17 % a . Wind load on bu i l d i ng f ( omega ) :
18 syms a b c d e f g
19 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20 % B. EQUATION OF MOTION (EOM)
21 % B. 1 . Pa r t i c u l a r So lu t i on :
22 Ap = −a /( E I s t a r ∗beta ˆ4) ;
23 Bp = −b/( E I s t a r ∗beta ˆ4) ;
24 Cp = −c /( E I s t a r ∗beta ˆ4) ;
25 Dp = −d/( E I s t a r ∗beta ˆ4) ;
26 Ep = (360∗ EI s t a r ∗Ap−e ) /( E I s t a r ∗beta ˆ4) ;
27 Fp = (120∗ EI s t a r ∗Bp−f ) /( E I s t a r ∗beta ˆ4) ;
28 Gp = (24∗ EI s t a r ∗Cp−g ) /( E I s t a r ∗beta ˆ4) ;
29 upart = Ap∗xˆ6+Bp∗xˆ5+Cp∗xˆ4+Dp∗xˆ3+Ep∗xˆ2+Fp∗x+Gp

;
30 % upart = Ap∗xˆ4+Bp∗xˆ3+Cp∗xˆ2+Dp∗x+Ep ;
31 % B. 2 . EOM of bu i l d i ng − t o t a l s o l u t i o n ( homogeneous &

pa r t i c u l a r ) :
32 u = [ cosh ( beta ∗x ) s inh ( beta ∗x ) cos ( beta ∗x ) s i n (

beta ∗x ) upart ] ;
33 % B. 3 . EOM of TMD ( at z = L) :

1



34 ut = (Kt+1 i ∗omega∗Ct) ∗ subs (u , x , L) /(1 i ∗omega∗Ct−
omegaˆ2∗mt+Kt) ;

35 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36 % C. BOUNDARY CONDITION
37 % C. 1 . At the bottom of bu i l d i ng ( at z = 0)
38 % a . Shear f o r c e − t r a n s l a t i o n a l s t i f f n e s s :
39 BC1 = ( subs ( E I s t a r ∗ d i f f (u , x , x , x )+(1 i ∗omega∗Cs+Ks)

∗u , x , 0 ) ) ;
40 % b . Bending moment − r o t a t i o n a l s t i f f n e s s :
41 BC2 = ( subs ( E I s t a r ∗ d i f f (u , x , x )−(1 i ∗omega∗Cr+Kr) ∗

d i f f (u , x ) , x , 0 ) ) ;
42 % C. 2 . At the top o f bu i l d i ng ( at z = L)
43 % a . Shear Force − TMD:
44 BC3 = ( subs ( E I s t a r ∗ d i f f (u , x , x , x )−(1 i ∗omega∗Ct+Kt)

∗(u−ut ) ,x , L) ) ;
45 % b . Bending moment :
46 BC4 = ( subs ( d i f f (u , x , x ) , x , L) ) ;
47 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48 % D. MATRIX & OUTPUT
49 M = [BC1;BC2 ;BC3 ;BC4 ] ;
50 noc = length (M) ; %matrix l ength
51 % D. 1 . Dynamic s t i f f n e s s matrix :
52 K Dyn = M( ( 1 : ( noc−1) ) , ( 1 : ( noc−1) ) ) ;
53 % D. 2 . Force matrix :
54 F = −M( ( 1 : ( noc−1) ) , noc ) ;
55 Frequency Equation = det (K Dyn)

Dynamic Stiffness and Force - Torsion Bar

Matlab file: Model Torsional Bar Symbolic.m

1 %% TRANSFER FUNCTION / MECHANICAL ADMITTANCE
2 % This program i s f o r a s i n g l e TMD on top o f the bu i l d i ng
3 c l e a r ; c l c ; warning ( ’ o f f ’ , ’ a l l ’ ) ;
4 syms x omega ;
5 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % A. SELECT CASE
7 % ! Parameter that are loaded :
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8 syms Kq Cq
9 syms GJ star rhoJ

10 syms J te tha K tetha C tetha
11 syms a b c d e f g
12 syms L
13 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

14 % B. EQUATION OF MOTION (EOM)
15 % B. 1 . Pa r t i c u l a r So lu t i on :
16 Ap = a/(−omegaˆ2∗ rhoJ ) ;
17 Bp = b/(−omegaˆ2∗ rhoJ ) ;
18 Cp = ( c+30∗GJ star ∗Ap)/(−omegaˆ2∗ rhoJ ) ;
19 Dp = (d+20∗GJ star ∗Bp)/(−omegaˆ2∗ rhoJ ) ;
20 Ep = ( e+12∗GJ star ∗Cp)/(−omegaˆ2∗ rhoJ ) ;
21 Fp = ( f+6∗GJ star ∗Dp)/(−omegaˆ2∗ rhoJ ) ;
22 Gp = (g+2∗GJ star ∗Ep)/(−omegaˆ2∗ rhoJ ) ;
23 t e tha pa r t = (Ap∗xˆ6+Bp∗xˆ5+Cp∗xˆ4+Dp∗xˆ3+Ep∗xˆ2+

Fp∗x+Gp) ;
24 % B. 2 . EOM of bu i l d i ng − t o t a l s o l u t i o n ( homogeneous &

pa r t i c u l a r ) :
25 alpha = sq r t ( omegaˆ2∗ rhoJ/GJ star ) ;
26 te tha = [ cos ( alpha ∗x ) s i n ( alpha ∗x ) t e tha pa r t ] ;
27 % B. 3 . EOM of TMD ( at z = L) :
28 t e t h a t = ( K tetha+1 i ∗omega∗C tetha ) ∗ subs ( tetha , x ,

L)/(−omegaˆ2∗ J te tha+1 i ∗omega∗C tetha+K tetha ) ;
29 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 % C. BOUNDARY CONDITION
31 % C. 1 . Tors i ona l Force at the bottom (x = 0) :
32 BC1 = subs ( GJ star ∗ d i f f ( tetha , x )−(1 i ∗omega∗Cq+Kq) ∗

tetha , x , 0 ) ;
33 % BC1 = subs ( ( tetha ) ,x , 0 ) ; %Clamped
34 % C. 1 . Tors i ona l Force at the top (x = L) :
35 BC2 = subs ( GJ star ∗ d i f f ( tetha , x )+(1 i ∗omega∗C tetha

+K tetha ) ∗( tetha−t e t h a t ) ,x , L) ;
36 % BC2 = subs ( ( tetha ) ,x , L) ; %Clamped
37 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

38 % D. MATRIX & OUTPUT
39 M = [BC1;BC2 ] ;
40 noc = length (M) ; %matrix l ength
41 % D. 1 . Dynamic s t i f f n e s s matrix :
42 K Dyn = M( ( 1 : ( noc−1) ) , ( 1 : ( noc−1) ) )
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43 % D. 2 . Force matrix :
44 F = −M( ( 1 : ( noc−1) ) , noc )
45 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Response - Acceleration

Matlab file: V Response Spectra.m

1 %% WIND:RESPONSE SPECTRUM
2 c l e a r ; c l o s e a l l ; warning ( ’ o f f ’ , ’ a l l ’ )
3 % Def ine the Time ax i s : Max value and Steps :
4 time = l i n s p a c e (0 ,3600 ,10000) ;
5 u time = ze ro s ( l ength ( time ) ,2 ) ; %Output
6 g l oba l lower bound upper bound n s t ep s ;
7 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 % A. FREQUENCY STEP: [ rad/ s ]
9 lower bound = 0 . 0 8 5 ;

10 upper bound = 11.904442545394877 ;
11 n s t ep s = 15000 ;
12 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 % ! Random Phase :
14 phase = 2∗ pi ∗ rand (1 , n s t ep s ) ;
15 % B. LOAD PROGRAM:
16 % B. 1 . S e l e c t Case : Data Prope r t i e s
17 II DATA EPO TNO DIANA
18 f o r comb = 1:2
19 % B. 2 . Mechanical Admittance :
20 % a . Status : 1 . no TMD / 2 . with TMD
21 s t a tu s = 1 ;
22 % b . Output : 1 . d i sp lacement / 2 . v e l o c i t y / 3 .

a c c e l e r a t i o n
23 output = 3 ;
24 i f comb == 1
25 III Model Bending Beam
26 e l s e
27 I I I Mode l Tors i on Bar
28 end
29 %% B. 3 . Load Spectrum :
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30 IV Wind Spectrum
31 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32 % C. RESPONSE SPECTRUM:
33 S uu = psd .∗ S FF ’ ;
34 % C. 1 . Standard Deviat ion
35 sd = sq r t ( t rapz ( omega k , S uu ) ) ;
36 %%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37 % D. RESPONSE IN TIME DOMAIN:
38 % D. 1 . Amplitude :
39 f r equency s t ep = omega k (2)−omega k (1 ) ;
40 ak = sq r t (2∗S uu ’∗ f r equency s t ep ) ;
41 % D. 2 . Response :
42 u t ime n = ak .∗ s i n ( omega k .∗ time ’+phase ) ;
43 u time ( : , comb) = u time n ∗ ones ( n steps , 1 ) ;
44 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 % E. PLOTTING:
46 % E. 1 . Response Spectrum :
47 f i g u r e ; p l o t ( omega k ’/2/ pi , S uu )
48 t i t l e ( ’ Response Spectrum ’ ) ; y l ab e l ( ’ S u u ’ ) ;

x l ab e l ( ’ f r equency [Hz ] ’ ) ;
49 % E. 2 . Response in time domain :
50 f i g u r e ; subplot ( 1 , 3 , [ 1 , 2 ] ) ; p l o t ( time , u time ( : , comb)

)
51 t i t l e ( ’ Response ’ ) ; y l ab e l ( ’ a c c e l e r a t i o n [m/ s ˆ2 ] ’ ) ;

x l ab e l ( ’ time [ s ] ’ ) ; yl im ([−0.07 0 . 0 7 ] ) ;
52 % E. 3 . Probab i l i t y Density Function :
53 x psd range = 0 . 0 7 ;
54 x psd = l i n s p a c e (−x psd range , x psd range , 1000 ) ;
55 f = 1/ sq r t (2∗ pi ∗ sd ˆ2) ∗exp(−x psd .ˆ2/(2∗ sd ˆ2) ) ;
56 subplot ( 1 , 3 , 3 ) ; p l o t ( f , x psd ) ; yl im ([−0.07 0 . 0 7 ] ) ;
57 end
58 % E. 4 . Total Response f o r Bending and Torsion
59 t o t a l r e s p on s e = sum( u time , 2 ) ;
60 bending acc ( para ) = max( abs ( u time ( : , 1 ) ) ) ;
61 max( abs ( u time ( : , 2 ) ) ) ;
62 rmtasdf = max( abs ( t o t a l r e s p on s e ) ) ;
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Data Properties

Matlab file: II DATA EPO TNO DIANA.m

1 %% EPO BUILDING DATA PARAMETER:
2 % A. SOIL PROPERTIES:
3 % A. 1 . BENDING PROPERTIES:
4 % a . Clamped Base :
5 Kr=1e100 ; Ks=1e100 ; Cs=0; Cr=0;
6 % b . Data from TNO Diana :
7 Kr=7.65 e12 ; Ks=3.62 e10 ; Cs=3.90 e8 ; Cr=1.43 e11 ;
8 % c . Data from Serg i o :
9 Kr=2.33 e13 ; Ks=1.56 e10 ; Cs=8.05 e8 ; Cr=5.79 e11 ;

10 % A. 1 . TORSION PROPERTIES:
11 Kq=6.74 e13 ;Cq=7.24 e11 ;
12 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 % FREQUENCY DEPENDENT SSI :
14 load ( ’ S t i f f n e s s d a t a .mat ’ ) ;
15 f r eq2 = f r e q ∗2∗ pi ;
16 % Srpings and dashpots
17 K hor i zonta l = r e a l (Kh) ; % Hor i zonta l s t i f f n e s s sp r ing

N/m
18 K rota t i ona l= r e a l (Kr) ; % Rotat iona l s t i f f n e s s sp r ing

Nm/rad
19 C hor i zonta l = imag (Kh) . / ( 2∗ pi ∗ f r eq ’ ) ; % Hor i zonta l

dashpot Ns/m
20 C ro ta t i ona l = imag (Kr) . / ( 2∗ pi ∗ f r eq ’ ) ; % Rotat iona l

dashpot Nsrad/m
21 % Fi t t i n g
22 [ Ks omega , go f ] = f i t ( f req2 ’ , K hor izonta l , ’ c ub i c i n t e rp ’ )

;
23 [ Kr omega , go f ] = f i t ( f req2 ’ , K rotat iona l , ’ c ub i c i n t e rp ’ )

;
24 [ Cs omega , go f ] = f i t ( f r eq2 ( 2 : 4 1 ) ’ , C hor i zonta l ( 2 : 4 1 ) , ’

c ub i c i n t e rp ’ ) ;
25 [ Cr omega , go f ] = f i t ( f r eq2 ( 2 : 4 1 ) ’ , C ro t a t i ona l ( 2 : 4 1 ) , ’

c ub i c i n t e rp ’ ) ;
26 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

27 % B. EPO BUILDING SLENDERNESS 1 :5
28 % ! EI [Nm2 ] ; rho∗ area [ kg/m] ; C star [ s ]
29 % B. 1 . Bui ld ing Bending :
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30 L = 105 ; %[m] Bui ld ing Height
31 EI = 4 .7E+13; %Bui ld ing S t i f f n e s s
32 Cstar = 8 .5 e−3; %Mater ia l Damping
33 mass = 8 .7 e5 ; %Bui ld ing mass/ l ength
34 % B. 2 . TMD Bending :
35 % ! Kt/Ct parameter = [ 1 .noTMD; 2 .Optimum 3 .Ct=0;

4 . Ct=i n f t y ] ;
36 mt = 4.4 e5 ; %[ kg ] TMD Mass
37 % a . Or i g i na l TNO Diana Value :
38 Kt parameter =[0 ; 1 .694 e6∗ ones (3 , 1 ) ] ; %[N/m] TMD

spr ing s t i f f n e s s
39 Ct parameter =[0 ; 1 .394 e5 ; 0 ; 1 e15 ] ; %[ Ns

/m] TMD damping
40 % b . With Formula :
41 mass ra t i o = mt/mass/L ;
42 Kt parameter =[0 ; (1/(1+mass ra t i o ) ∗2 .0226) ˆ2∗mt∗

ones (3 , 1 ) ] ; %[N/m] TMD spr ing s t i f f n e s s
43 % B. 3 . Bui ld ing Tors ion :
44 Rad = 61 . 5 ;
45 % a . Normal Bui ld ing :
46 GJ = 1.9 e13 ;
47 Cstar t e tha = 1.12 e−2;%[m]
48 rhoJ = GJ/(1 .7907∗2∗L/ pi ) ˆ2 ;
49 % B. 4 . TMD Torsion :
50 J te tha = 4 .4 e5∗Radˆ2 ; %[ kg∗mˆ2 ]
51 K tetha parameter = Kt parameter∗Radˆ2 ; %[N/m2]
52 C tetha parameter = Ct parameter∗Radˆ2 ; %[ Ns/m2]
53 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Mechanical Admittance - Bending Beam

Matlab file: III Model Bending Beam.m

1 %% TRANSFER FUNCTION / MECHANICAL ADMITTANCE
2 % Fi r s t Model : Ordinary mass sp r ing dashpot system
3 g l oba l lower bound upper bound n s t ep s ;
4 % Set the Looping va r i ab l e f o r p l o t t i n g ( Var i ab l e s are

determined in
5 % Response Spectra f i l e )
6 a f r f = l i n s p a c e ( lower bound , upper bound , n s t ep s ) ; n f r f

= length ( a f r f ) ;
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7 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 % A. 1 . FORCE COEFFICIENTS: f ( x ) = axˆ6+bxˆ5+cxˆ4+dxˆ3+ex
ˆ2+fx+g

9 load ( ’ c o e f f ’ )
10 a=c o e f f (1 ) ; b=c o e f f (2 ) ; c=c o e f f ( 3 ) ; d=c o e f f ( 4 ) ; e=

c o e f f (5 ) ; f=c o e f f ( 6 ) ; g=c o e f f (7 ) ;
11 % a Set the Locat ion Point f o r the Output :
12 x = L ;
13 n Ct = length ( Ct parameter ) ;
14 FRF = ze ro s ( n f r f , n Ct ) ; %Output : Frequency

Response Function
15 FE = ze ro s ( n f r f , 1 ) ; %Output : Frequency Equation
16 % b . Loop f o r Ct Parameter :
17 f o r i = s t a tu s : s t a tu s
18 % c . Set TMD parameter :
19 Kt=Kt parameter ( i ) ; Ct=Ct parameter ( i ) ;
20 % d . Loop f o r FRF:
21 f o r j = 1 : n f r f
22 omega = a f r f ( j ) ;
23 % A. 2 . Bui ld ing Parameter :
24 Ks=Ks omega ( j ) ; Cs=Cs omega ( j ) ;
25 Kr=Kr omega ( j ) ; Cr=Cr omega ( j ) ;
26 EI s t a r = EI∗(1+1 i ∗omega∗Cstar ) ;
27 beta = (mass∗omegaˆ2/ EI s t a r ) ˆ(1/4) ;
28 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 % D. MATRIX & OUTPUT
30 % D. 1 . Dynamic s t i f f n e s s matrix :
31 % This va lue obta in from Model Bending Beam Symbolic

.m f i l e
32 K Dyn ;
33 F;
34 FE( j ) = Frequency Equation ;
35 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36 % E. LOOPING
37 % a . Co e f f i c i e n t matr i s :
38 u = [ cosh ( beta ∗x ) , s inh ( beta ∗x ) , cos ( beta ∗x ) , s i n

( beta ∗x ) , − ( g + (24∗ c ) /beta ˆ4) /( E I s t a r ∗beta
ˆ4) − ( c∗xˆ4) /( E I s t a r ∗beta ˆ4) − (d∗xˆ3) /(
E I s t a r ∗beta ˆ4) − ( x∗( f + (120∗b) /beta ˆ4) ) /(
E I s t a r ∗beta ˆ4) − ( xˆ2∗( e + (360∗ a ) /beta ˆ4) ) /(
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EI s t a r ∗beta ˆ4) − ( a∗xˆ6) /( E I s t a r ∗beta ˆ4) − (b
∗xˆ5) /( E I s t a r ∗beta ˆ4) ] ;

39 % b . Co e f f i c i e n t matr i s :
40 U = (K Dyn) \(F) ;
41 A = (U(1) ) ; B = (U(2) ) ; C = (U(3) ) ; D = (U(4) ) ;
42 Coef f = [A;B;C;D ; 1 ] ;
43 i f output == 1
44 % c . Output disp lacement :
45 FRF( j , i ) = ( abs (u∗Coef f ) ) ;
46 e l s e i f output == 2
47 % d . Output v e l o c i t y :
48 FRF( j , i ) = ( abs (1 i ∗omega∗(u∗Coef f ) ) ) ;
49 e l s e i f output == 3
50 % e . Output a c c e l e r a t i o n :
51 FRF( j , i ) = ( abs(−omegaˆ2∗(u∗Coef f ) ) ) ;
52 end
53 % f . Output TMD disp lacement :
54 FRF( j , i ) = ( abs ( ut∗Coef f ) ) ;
55 end
56 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

57 % F. OUTPUT
58 % F . 1 . Frequency Response Function :
59 u f r f = FRF( : , i ) ;
60 % F . 2 . Power Spec t r a l Density :
61 % ! Trans fe r Function |FRF | ˆ 2 :
62 psd = FRF( : , i ) . ˆ 2 ;
63 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

64 % G. P lo t t i ng :
65 % G. 2 . Frequency Equation
66 f i g u r e ; subplot ( 1 , 2 , 1 ) ; hold on ;
67 f i ndpeaks (−abs ( r e a l (FE) ) , a f r f /2/ p i ) ; r e f l i n e (0 , 0 ) ;
68 x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’Re(FE) ’ ) ; t i t l e ( ’

Real Part Frequency Equation ’ ) ;
69 [ pks , n f r e ]= f indpeaks (−abs ( r e a l (FE) ) , a f r f /2/ p i ) ;
70 subplot ( 1 , 2 , 2 ) ; hold on ;
71 f i ndpeaks (−abs ( imag (FE) ) , a f r f /2/ p i ) ; r e f l i n e (0 , 0 ) ;
72 x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’ Im(FE) ’ ) ; t i t l e ( ’

Imaginary Part Frequency Equation ’ ) ;
73 [ pks , nfim ]= f indpeaks (−abs ( imag (FE) ) , a f r f /2/ p i ) ;
74 f i g u r e ;
75 p lo t ( a f r f /2/ pi , abs (FE) ) ; r e f l i n e (0 , 0 ) ;
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76 x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’ Frequency
Equation ’ ) ; t i t l e ( ’ Frequency Equation ’ ) ;

77 % G. 2 . FRF
78 f i g u r e ; subplot ( 1 , 2 , 1 ) ;
79 % f indpeaks ( u f r f , ( a f r f /2/ p i ) ) ;
80 p lo t ( ( a f r f /2/ p i ) , u f r f ) ;
81 x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’ | u(omega ,L) | ’ ) ;

t i t l e ( ’FRF ’ ) ;
82 % G. 3 . PSD
83 subplot ( 1 , 2 , 2 ) ;
84 f i ndpeaks ( psd , a f r f /2/ pi , ’ Annotate ’ , ’ ex t ent s ’ , ’

WidthReference ’ , ’ h a l f h e i g h t ’ ) ;
85 x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’ | H s |ˆ2 [ (mˆ2/N)

ˆ2 ] ’ ) ; t i t l e ( ’ Mechanical Admittance ’ ) ;
86 [ pks , l o c s , widths , proms]= f indpeaks ( psd , ( a f r f /2/ p i )

, ’WidthReference ’ , ’ h a l f h e i g h t ’ ) ;
87 ze ta = widths . / l o c s /2 %damping r a t i o
88 l o c s
89 end

Mechanical Admittance - Torsional Bar

Matlab file: III Model Torsion Bar.m

1 %% TRANSFER FUNCTION / MECHANICAL ADMITTANCE
2 % This program i s f o r a s i n g l e TMD on top o f the bu i l d i ng
3 g l oba l lower bound upper bound n s t ep s ;
4 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 % B Par t i c u l a r So lu t i on :
6 c o e f f = [1 .99446534884015 e−08 ,−6.73641900229052e

−06 ,0 .000760218918796258 ,−0.0325190735908715 ,0 .432176621836927 ,−0.175878908807810 ,118.239288102794] ;

7 a=c o e f f (1 ) ; b=c o e f f (2 ) ; c=c o e f f ( 3 ) ; d=c o e f f ( 4 ) ; e=
c o e f f (5 ) ; f=c o e f f ( 6 ) ; g=c o e f f (7 ) ;

8 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 % E. LOOPING
10 x = L ;
11 % ! Set the Looping va r i ab l e f o r p l o t t i n g ( Var iab l e s

are determined in Response Spectra f i l e )
12 a f r f = l i n s p a c e ( lower bound , upper bound , n s t ep s ) ;
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13 % E. 1 . SOLUTION OF THE RESPONSE:
14 n Ct = length ( C tetha parameter ) ;
15 FRF = ze ro s ( n steps , n Ct ) ;
16 FE = ze ro s ( n steps , n Ct ) ;
17 % a . Loop f o r Ct Parameter ( Al l Ct va lue s : [ 1 : n Ct ] ;

noTMD only : [ 1 : 1 ] ) :
18 f o r i = s t a tu s : s t a tu s
19 % b . Set TMD parameter :
20 % 1.noTMD; 2 .Optimum 3 .Ct=0; 4 . Ct=i n f t y ;
21 K tetha = K tetha parameter ( i ) ; C tetha =

C tetha parameter ( i ) ;
22 % c . Loop f o r FRF:
23 f o r j = 1 : n s t ep s
24 omega = a f r f ( j ) ;
25 GJ star = GJ∗(1+1 i ∗omega∗Cstar t e tha ) ;
26 % d . S t i f f n e s s and Force Matrix :
27 % This va lue obta in from Model Tors ion Bar Symbol ic .

m f i l e
28 K Dyn ;
29 F;
30 % e . Co e f f i c i e n t matrix f o r the response :
31 U = (K Dyn) \(F) ;
32 A = (U(1) ) ; B = (U(2) ) ;
33 Coef f = [A;B ; 1 ] ;
34 % f . Response :
35 te tha = [ cos ( x ∗ ( ( omegaˆ2∗ rhoJ ) /GJ star ) ˆ(1/2) ) ,

s i n (x ∗ ( ( omegaˆ2∗ rhoJ ) /GJ star ) ˆ(1/2) ) , − ( g −
(2∗GJ star ∗( e − (12∗GJ star ∗( c − (30∗GJ star ∗a )
/( omegaˆ2∗ rhoJ ) ) ) /( omegaˆ2∗ rhoJ ) ) ) /( omegaˆ2∗
rhoJ ) ) /( omegaˆ2∗ rhoJ ) − ( a∗xˆ6) /( omegaˆ2∗ rhoJ )
− (b∗xˆ5) /( omegaˆ2∗ rhoJ ) − ( xˆ4∗( c − (30∗
GJ star ∗a ) /( omegaˆ2∗ rhoJ ) ) ) /( omegaˆ2∗ rhoJ ) − ( x
ˆ3∗(d − (20∗GJ star ∗b) /(omegaˆ2∗ rhoJ ) ) ) /( omega
ˆ2∗ rhoJ ) − ( xˆ2∗( e − (12∗GJ star ∗( c − (30∗
GJ star ∗a ) /( omegaˆ2∗ rhoJ ) ) ) /( omegaˆ2∗ rhoJ ) ) ) /(
omegaˆ2∗ rhoJ ) − ( x∗( f − (6∗GJ star ∗(d − (20∗
GJ star ∗b) /(omegaˆ2∗ rhoJ ) ) ) /( omegaˆ2∗ rhoJ ) ) ) /(
omegaˆ2∗ rhoJ ) ] ;

36 % E. 2 . OUTPUT:
37 i f output == 1
38 % a . Output disp lacement :
39 FRF( j , i ) = 78∗( abs ( tetha ∗Coef f ) ) ;
40 e l s e i f output == 2
41 % b . Output v e l o c i t y :
42 FRF( j , i ) = 78∗( abs (1 i ∗omega∗( te tha ∗Coef f ) ) ) ;
43 e l s e i f output == 3
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44 % c . Output a c c e l e r a t i o n :
45 FRF( j , i ) = 78∗( abs(−omegaˆ2∗( tetha ∗Coef f ) ) ) ;
46 end
47 % d . Output TMD disp lacement :
48 % FRF( j , i ) = eva l ( abs ( t e t ha t ∗Coef f ) ) ;
49 % E. 3 . Frequency Equation
50 FE( j , i ) = abs ( det (K Dyn) ) ;
51 end
52 end
53 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

54 % F. OUTPUT
55 % F . 1 . Frequency Response Function :
56 u f r f = FRF( : , i ) ;
57 % F . 2 . Power Spec t r a l Density :
58 % ! Trans fe r Function |FRF | ˆ 2 :
59 psd = FRF( : , i ) . ˆ 2 ;
60 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

61 % G. P lo t t i ng :
62 % G. 1 . FE
63 f i g u r e ; p l o t ( ( a f r f /2/ p i ) , (FE( : , i ) ) ) ;
64 x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’ Frequency

Equation ’ ) ; t i t l e ( ’FE ’ ) ;
65 % G. 2 . FRF
66 f i g u r e ; subplot ( 1 , 2 , 1 ) ;
67 p lo t ( ( a f r f /2/ p i ) , u f r f ) ;
68 x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’ | u(omega ,L) | ’ ) ;

t i t l e ( ’FRF ’ ) ;
69 % G. 3 . PSD
70 subplot ( 1 , 2 , 2 )
71 f i ndpeaks ( psd , a f r f /2/ pi , ’ Annotate ’ , ’ ex t ent s ’ , ’

WidthReference ’ , ’ h a l f h e i g h t ’ ) ;
72 x l ab e l ( ’ f r equency [Hz ] ’ ) ; y l ab e l ( ’ | H s |ˆ2 [ (mˆ2/N)

ˆ2 ] ’ ) ; t i t l e ( ’ Mechanical Admittance ’ ) ;
73 [ pks , l o c s ,w] = f indpeaks ( psd , a f r f /2/ pi , ’

WidthReference ’ , ’ h a l f h e i g h t ’ ) ;
74 ze ta = w./ l o c s /2 %damping r a t i o
75 l o c s
76 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Dynamic Wind Load

Matlab file: IV Wind Spectrum.m

1 %% WIND: LOAD SPECTRUM
2 % ! fL = d imens i on l e s s f requency
3 % ! n = frequency in Hz
4 % ! omega = frequency in rad/ s
5 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % A. INPUT PARAMETER
7 % A. 1 . Re f f e r ence Height :
8 % a . Bui ld ing he ight and width :
9 H height = L ; B width = 156 ; %[m]

10 z = H height ;
11 % A. 2 . Bas ic v e l o c i t y [m/ s ] :
12 vb 1 = 20 . 5 ; %(1 year ) − RMS
13 vb 50 = 27 ; %(50 years ) − Peak
14 vb = vb 50 ;
15 % A. 3 . Roughness l ength [m] :
16 zo = 1 ;
17 z o I I = 0 . 0 5 ;
18 kr = 0 .19∗ ( zo/ z o I I ) ˆ 0 . 0 7 ;
19 % A. 4 . Minimum & Maximum Height [m] :
20 z min = 10 ;
21 z max = 200 ;
22 % A. 5 . Factor − Turbulence Length (L( z ) ) :
23 k l = 1 ;
24 Lt = 300 ;
25 % a . Re f f e r ence he ight f o r L( z ) :
26 zt = 200 ;
27 % A. 6 . Pres sure Co e f f i c i e n t :
28 Cp = 1 . 5 ;
29 % A. 7 . Alpha :
30 alpha = 0.67+0.05∗ l og ( zo ) ;
31 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32 % B. LOAD SPECTRUM
33 % B. 1 . Variance Spectrum ( S o l a r i ) :
34 % a . Standard dev i a t i on :
35 s igma v = kr∗vb∗ k l ;
36 % b . Mean wind speed [m/ s ] :
37 vm = vb∗kr∗ l og ( z/zo ) ;
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38 vm2 = vb∗kr∗ l og ( H height /zo ) ;
39 % c . Turbulence l ength :
40 L turbu lence = Lt ∗( z/ zt ) ˆ alpha ;
41 % d . Frequency :
42 omega k = l i n s p a c e ( lower bound , upper bound , n s t ep s

) ;
43 n = omega k /(2∗ pi ) ;
44 fL = n∗L turbu lence /vm;
45 % e . Variance spectrum :
46 SL = 6.8∗ fL ./(1+10.2∗ fL ) . ˆ ( 5/3 ) ;
47 % B. 2 . Wind Spectrum (Svv ) [ rad/ s ] :
48 Svv = SL∗ s igma v ˆ2 ./ omega k ;
49 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 % B. 3 . Aerodynamic Admittance [ d imens i on l e s s ] :
51 % a . Height :
52 e ta h = 4.6∗ H height ∗ fL/ L turbu lence ;
53 Rh = 1./ eta h−(1−exp(−2∗ e ta h ) ) . / ( 2∗ e ta h . ˆ 2 ) ;
54 % b . Width :
55 e ta b = 4.6∗B width∗ fL/ L turbu lence ;
56 Rb = 1./ eta b−(1−exp(−2∗ e ta b ) ) . / ( 2∗ e ta b . ˆ 2 ) ;
57 % c . Admittance :
58 x i2 = Rh.∗Rb; %xi2 = addimitance ˆ2
59 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

60 % B. 4 . Load Spectrum :
61 % a . Load c o e f f i c i e n t :
62 r h o a i r = 1 . 2 5 ; %[ kg/mˆ3 ]
63 Cw = (Cp∗ r h o a i r ∗vm2) ˆ2 ;
64 S FF = Cw∗Svv .∗ x i2 ;
65 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

66 % C. PLOTTING
67 % C. 1 . Variance Spectrum
68 f i g u r e ; p l o t ( fL , SL)
69 t i t l e ( ’ Variance Spectrum ’ ) ; y l ab e l ( ’ S v v [(−) ] ’

) ; x l ab e l ( ’ d imens i on l e s s f requency ’ ) ;
70 % C. 2 . Wind Spectrum
71 f i g u r e ; p l o t ( omega k , Svv )
72 t i t l e ( ’Wind Spectrum ’ ) ; y l ab e l ( ’ S v v [ (m/ s ) ˆ2/(

rad/ s ) ] ’ ) ; x l ab e l ( ’ f r equency [ rad/ s ] ’ ) ;
73 % C. 3 . Aerodynamic Admittance
74 f i g u r e ; p l o t ( omega k , x i2 )
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75 t i t l e ( ’ Aerodynamic Admittance ’ ) ; y l ab e l ( ’ x i ˆ2 ’ ) ;
x l ab e l ( ’ f r equency [ rad/ s ] ’ ) ;

76 % C. 4 . Load Spectrum
77 f i g u r e ; p l o t ( omega k , S FF)
78 t i t l e ( ’ Load Spectrum ’ ) ; y l ab e l ( ’ S F F [Nˆ2/( rad/

s ) ’ ) ; x l ab e l ( ’ f r equency [ rad/ s ] ’ ) ;
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