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Abstract

Problem Statement
This thesis will discuss the development of an airline simulation model, that will be able to realistically
reproduce the aviation market with respect to passenger choice and market competition. There are
various reasons which stress the need for such a model.

From a scientific perspective: the current airline development models often assume competition to be
static and acting irrespectively of airline strategy. In reality, competition strategies change constantly,
taking market characteristics and choices of competition into account. Additionally, in airline operations
research, an opportunity exists to combine different models describing specific traits of the aviation
market to be able to develop a model which captures the main effects of the total aviation market.

From an industry perspective: to be able to understand the market dynamics of the aviation market
as a whole, with all its underlying specifics is complicated but is desirable for educational and airline
prediction purposes.

Research Objective & Scope
The research objective is to contribute to the development of an integrated simulation framework, which
has the capability of realistically simulating the aviation market by being able to reproduce the compe-
tition and passenger choice for an airline in the aviation market by combining a demand generation,
passenger choice and market competition model. Additionally, exogenous players should be able to be
incorporated in the simulation framework, providing a platform for simulation game play. The integrated
simulation framework will not be developed with the goal of optimizing airline behaviors or strategies,
but rather to model realistic aviation market dynamics with respect to competition and passenger choice.
The scope of this simulation framework is the internal European market.

Methodology
To achieve the above, while also ensuring a stand-alone model, three different sub-models have been
designed: a demand generation model, a demand allocation model and a competitor reaction model.
The simulation of market competition spans both the demand allocation model and the competitor re-
action model. The competition for passengers between airlines is simulated in the demand allocation
model, while the competitor reaction model is centered around the active reaction of the computer player
with respect to the different competitors in the simulation game. The simulation framework has been
coded in Python, an open source programming language.

The demand generation model used in this thesis is based on a gravity model with decision variables
on the total passenger flow at both airports, the distance between the two airports and dummy variables
to split demand into the specified classes. Additionally, the model includes the effects of seasonality for
the different quarters in a year for each route included in the simulation framework. The function of the
demand generation model is to generate demands for the specified number of classes of each origin
and destination pair and for every simulation quarter found in the simulation framework. Logarithmic
techniques have been used to facilitate a linear regression for calibration purposes. The calibration has
been done in the statistical software package SPSS.

The demand allocation model included in this thesis consists of a multinomial logit model. The deci-
sion variables are based on the flight frequency, yield, extra-distance and dummy variables per cabin
class. The demand allocation model is capable of determining market shares for the different flight op-
tions found in a route per quarter. In the simulation framework, the demand allocation model is applied
separately per class to determine the market shares of the different flight options. As with the demand
generation model, calibration has been done using a linear regression in SPSS.
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The competitor reaction model found in the simulation framework is based on a non-linear profit opti-
mization of a single computer player. This computer player is present in every market with flight options
in all classes for the routes specified in the model. The optimization decision variables include the yield
of each class and the flight frequency in each route. The optimization takes the strategies of other com-
petitors into account as well as the demands for each class in each route when optimizing and reacts
accordingly. The optimization is constrained using capacity constraints, as well as bounds on the yields
per class.

Simulation Model Calibration
The gravity model used for the demand generation purposes was found to achieve an 𝑅ኼ of 0.766, which
is considered a reasonable total overall model performance. The predicted demands for each class in
the different calibration routes were, in comparison to the actual demand data, found to be representative
in terms of the total demand. With respect to the demand splits over the different classes, the model is
capable of making the split. However, the realistic performance of the gravity model differs per route.
The discount economy class was found to have the best prediction performance.

The demand allocation model achieved an overall performance represented by an 𝑅ኼ level of 0.711,
which is also considered reasonable. When comparing the models passenger choice predictions to that
found in the actual data, the multinomial logit model can be considered representative of the actual data.
The trends and market shares predicted agree well with those seen in reality.

Simulation Games & Results
Multiple simulation games were played to test the simulation framework as a whole and observe the
behaviour of the competitor reaction model. In general, it can be noted that the simulation games proved
that the integrated sub-models worked together in the expected manner.

With respect to the computers’ optimization behaviour, it was observed that the goal to optimizing profit
of the computer works well. The tendency of the computers optimization was to optimize its profit by
achieving a maximal load factor. The computer does this by flying the lowest possible frequency to cater
for all demand while having the highest possible yield levels. From a profit optimization perspective, this
is an understandable outcome.

When testing the computers reaction in a multi-route environment of three routes, with two routes under
stiff competition, no shift was found in focus to the third route.

Validation & Verification
The verification process of the set requirements saw all simulation framework and sub-model require-
ments to be fulfilled.

Concerning the generalizability of the demand generation model, the demands generated for the dis-
count economy class and premium economy class were sufficiently accurate to be used for the simu-
lation frameworks purposes. However, the other classes displayed deficiencies which cannot be con-
sidered to accurately reflect reality. The gravity model in this form is considered not to be confidently
generalizable for routes with similar characteristics.

For the demand allocation model, the results between the calibration and validation routes proved to be
similar and thus it can be concluded that with the same level of confidence as for the calibration routes,
the model used can be generalized to routes with similar characteristics.

Conclusions & Limitations
In this thesis, a contribution has been made to the development of a simulation framework which is
capable of realistically simulating market dynamics with respect to competition and passenger choice
in the European aviation market. In total, 22 routes have been included into the simulation framework,
with airports including those in Amsterdam, Copenhagen, Frankfurt, London and Madrid. To achieve
this, a demand generation model, demand allocation model and market competition model have been
combined. Additionally, the simulation framework is compatible with exogenous competitor inputs to
create a game environment while hosting dynamic competition by the computer player. The demand
generation model has proved to be sufficiently accurate to be used for the purpose of this simulation
framework. The model in its current form is however not sufficiently accurate to be generalizable for
routes with similar characteristics. The demand allocation model is considered capable of simulating
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passenger choice between flight options representable to what happens in reality, while being general-
izable for routes with similar characteristics. The competitor reaction model with the profit optimization
strategy works as expected.

Themain two limitations of the simulation framework include the absence of capacity constraints per OD-
Route and inherent incapability of simulating indirect flights. With respect to the capacity constraints,
there is no constrain which ensures that the number of flights between an origin and destination pair are
equal to the number of flights returning. Therefore, capacity deficiencies which might occur in reality
are not accounted for in the current setup. With respect to the indirect flights inclusion, the simulation
framework can only handle indirect flights when inputted manually by exogenous players. Currently, no
controls on determining the possible connections and seat availability for indirect passengers is imple-
mented in the simulation framework. However, the demand allocation model can cope with the indirect
flight market share predictions.
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1
Introduction

The airline industry is one of the most exciting and harshest business environments that exist. With a
vast number of competitors, each differentiating themselves to convince passengers to choose to travel
with their respective companies, it can become overwhelming for an airline to decide what strategy would
be most suitable. Airline seats can be considered the most perishable commodity in the world as, as
soon as the aircraft leaves the ground, the seats can no longer be sold (Park et al., 2009). This makes
defining the correct strategy, including decisions on frequency and fare, ever so critical. Especially if
you consider that your competitors are facing a similar challenge. What strategies can you choose, to
convince passengers they should fly your colors?

In order to make educated decisions on airline strategy, one needs to be able to first understand the
market dynamics which are present in the aviation markets. These market dynamics are increasingly
difficult to understand, as so many different elements affect the market in one manner or another. Before
addressing the challenges found in aviation markets, it is essential to get a better understanding on these
dynamics.

There are a multitude of different aspects to be taken into account in order to simulate aviation market
dynamics. In basis, there are passengers and goods which need to be transported between different
city pairs. To transport these passengers and goods, aircrafts are needed. However, in deregulated
markets like Europe and the US, the airlines flying these aircrafts need to ensure that their businesses
are commercially viable. To do this, airlines optimize their flight frequency, cabin configuration and fares
to ensure that passengers want to travel with them allowing the airlines to make profit and achieve their
(financial) objectives. Additionally, long-term decisions need to be made on the size of an airline’s fleet,
as well as the type of aircraft that should be used. These aircrafts need to undergo maintenance and
inspection from time to time, to ensure safety and that they adhere to legal constraints. The above are
just a few of the major forces which effect aviation markets globally, but it demonstrates perspective on
how incredibly complex the aviation market is.

Building a simulation framework which addresses all characteristics of the aviation market is very com-
plex, given the large number of external parameters which all influence the markets. However, research
should be done to determine the modeling possibilities and discover what is possible when trying to
simulate the aviation market as a whole. There are an exorbitant number of researches which strive to
model specific aspects of the aviation market, with variable success. Combining different sets of spe-
cific models could be an opportunity to further refine a model for the aviation market, which would be
considered beneficial from many perspectives.

To address this opportunity and challenge, the TU Delft and Cranfield University have undertaken the
development of an airline simulation framework which will be able to realistically reproduce the aviation
market with respect to passenger choice and market competition in order to assist in understanding
aviation market dynamics. The simulation framework will strive to include multiple sub-models, each
providing the simulation framework with specific characteristics of the aviation market. The sub-models
included in this study describe the demand generation, demand allocation and market competition pro-
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cesses as can be found in the aviation market. In this master thesis, the first contributions have been
made to the development of this simulation framework.

This master thesis will commence with a discussion on the state-of-the-art currently found in literature,
described in the literature review found in Chapter 2. Chapter 3 will define the research proposal, which
contains the research objective and scope. In Chapter 4, details the methodology applicable to the total
simulation framework and its sub-models. This is followed by the presentation of the calibration results
of the demand generation and demand allocation models in Chapter 5. In Chapter 6, the results of
several simulation games will be portrayed, with which observations of the simulation frameworks model
behaviour will be observed. Chapter 7 presents the verification and validation results of the simulation
framework and its sub-models. In the conclusions and recommendations chapter found in Chapter 8,
the final findings of the simulation framework will be described, together with the frameworks limitations
and recommendations for future research. The Appendices contain supporting data and figures on the
results found throughout this thesis.
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2
Literature Review

The literature review described in this chapter is the first step to facilitate the MSC thesis with knowledge
created and tested in the past on the different modeling techniques. Relevant knowledge that is deemed
applicable and relevant to assist in the development of the simulation framework described previously
will be collected and analyzed to determine the state-of-the-art in modeling characteristics of the aviation
market.

The literature review will be structured as follows. First, the literature relevant to the demand generation
models will be portrayed. This will be followed by a section on passenger itinerary models. This will
include sections on passenger segmentation, pricing, service-levels, path quality and passenger itinerary
modeling techniques. The following chapter will incorporate the literature relevant to market competition
models. Here sections on competitors and modeling competition reaction will be discussed. After each
section of the literature review, a conclusion of the findings will be given.

2.1. Sub-Model: Demand Generation
In designing a simulationmodel for the aviation market, an accurate demand generationmodel is needed
to provide expected demands on the routes that are in scope. The difficulty with generating these
expected demands is described by the dichotomy of the demand and supply in the air travel market.
As described by Belobaba et al. (2009), this dichotomy is characterized by the fact that there is an
inherent inability to compare the demand and supply within air travel of an origin and destination (OD)-
pair. To clarify, demand is focused around the origin and destinations of passengers, while the supply
is focused on the amount of flights and flight structures between the OD-pairs. This leads to the quick
conclusion, that directly comparing supply and demand in air travel is not possible. A flight leg between a
city-pair does not necessarily only carry OD passengers for that city-pair, but may also carry passengers
traveling between other OD-pairs using the flight leg only as a connection.

Yet despite the dichotomy of demand and supply, airlines need to be able to forecast and predict de-
mand to ensure that they know what demands to expect on different routes and at different times. To do
this, different demand generation models have been researched to achieve different goals. For exam-
ple, airlines can be interested in forecasting future traffic growth, or the response of passenger demand
due to a change in flight frequency. Another reason could be that airlines need to forecast demand
on new routes or between new city-pairs (Doganis, 2002). Last, airlines could be interested in how de-
mand differs between passenger segments which have different characteristics, as this could potentially
generate more accurate forecasts (Doganis, 2002).

In the following section an overview will be given on the different types of demand generation models
that exist. Furthermore, the most used variables in demand generation will be described, as well as a
section on the methods of calibration.
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2.1.1. Demand Generation Model Types
In the following section, the different methods used for demand generation are discussed. The type of
demand generation model airlines use depends on the goal that they need to achieve. The section has
been divided into subsections which each describe a separate set of models. In Figure 2.1, an overview
of the main demand models is given.

Figure 2.1: Demand Models as described by Doganis (2002)

Qualitative methods
Qualitative demand generation is based around rough estimations by experts as well as analysis of
expected trends. This method includes techniques such as executive judgment, market research and
Delphi techniques (Grosche, 2009). Each technique is described below.

Executive Judgment Executive judgment is a technique where a person with expertise on a certain
area or route forecasts demand based on his/her insights and assessments. It is a quick manner of
forecasting demand and has as an advantage that the forecaster may be aware of aspects not always
captured in mathematical models. However, long term forecasts will not be very accurate. This forecast-
ing technique is often used to verify or specify demands forecasted by mathematical models (Doganis,
2002).

Market ResearchMarket research is based on techniques where the main activity consists of collecting
data on different market characteristics. Examples of data collected are passenger preferences through
passenger surveys, tourism statistics, trade flows and information on business interactions. With this
data, demand between OD-pairs can be developed. This method is especially interesting when no
past traffic data is available between city-pairs, however the method can be time consuming (Doganis,
2002).

Delphi Techniques The Delphi technique is similar to that of executive judgment, except that multiple
specialists are being consulted. With this method, multiple individuals are asked to forecast demands.
These forecasts are then combined, after which the experts again share their opinion. Multiple iterations
of this process are possible. It has been found that this method is most suitable for forecasts for regions
or markets instead of specific routes (Doganis, 2002).

Time-Series Projections
Time-series projections are mathematical models which are based on one essential independent vari-
ables, namely time. In these models, it is assumed that current factors that influence demand are rela-
tively stable through time. As described by Grosche (2009), this assumption does not always hold in the
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fast-moving aviation market. Furthermore, Grosche (2009) describes that for time-series projections to
be accurate, sufficient accurate data is needed to calibrate these types of models. Time-series models
include exponential forecasts and liner trend projections.

Exponential Forecasts Exponential forecasts are forecasts where the traffic demand is influenced by
a constant percentage per unit of time. This has as an effect that the change in total demand in absolute
terms is greater with each year but the yearly percentual change is close to constant. Exponential fore-
cast can be done using the average rate of growth or by exponential smoothing (Doganis, 2002).

Linear Trend Projections Linear trend projections are characterized by the fact that with each unit of
time, the absolute change is constant. This means that over the course of time, the percentual change
per unit time decreases. Linear trend projections can be done as a simple trend or as a moving average
trend (Doganis, 2002).

Casual Methods
Demand generation based on casual methods are characterized by the variables taken into account.
With casual methods, air travel demand is being related to economic, social or supply variables such
as the level of business or tourism activities in a city. The unique principle of using casual methods
is that the individual effect of these variables on air travel demand can be predicted. Therefore, when
the value of such a variable changes, a new air travel demand between city-pairs can be predicted.
This is in contrast to the previously discussed methods, where the influence of individual independent
variables on the demand can not be tested. The advantage of using such a model is that, for example,
evaluation of different airline strategies or changes in economic situation and its effect on the demand
can be analyzed. Common casual methods include the regression model, and one of its variations
namely the gravity model (Grosche, 2009).

Regression Models Regression models tend to be a function of multiple independent variables. Com-
monly used variables are the air fare and a variable describing the level of income of a region. Regression
models can both be used for specific routes or for entire regions (Doganis, 2002).

Gravity ModelsGravity models are based on the principle that two cities are attracted to each other due
to certain variables and lose attraction due to others. A simple gravity model for example will incorpo-
rate the relationship of the distance between two cities and their populations (Doganis, 2002). In more
extensive gravity models, multiple attracting and deterring variables between city-pairs are included.
Furthermore, gravity models are especially know for generating demand for routes where little or no
traffic data is available, the model is very often applicable for new routes (Doganis, 2002). A simple
example of a gravity model developed in the research by Doganis (1966) can be found in Equation 2.1,
here the main variables included were the total air traffic at the origin and destination airports (𝐴።𝐴፣) as
well as the distance between the two airports (𝐷።፣).

𝑇።፣ = 𝐾
𝐴።𝐴፣
𝐷ፏ።፣

(2.1)

Demand Generation Method Choice
As can be seen in Section 2.1.1, there are multiple types of demand generation models which can be
used for different purposes and in different situations. In the following section, the choice for demand
generation models will be discussed. In Table 2.1, the main demand models discussed can be found
along with data on their performance with respect to different criteria.

In reality, an airline often does often use multiple demand generation models at the same time, based on
its forecasting needs. The reason for this is that no single existing model can guarantee being completely
accurate (Doganis, 2002). However, when choosing demand generation models, distinct choices are
made based on the needs of an airline. The objective of the forecast, the speed of a forecast, the
cost of setting up the model and data availability are all important factors which need to be taken into
account.
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Preliminary requirements for a demand generation model have been determined to guide the selection
of the appropriate demand model to be further researched. These requirements include that the rela-
tionship between air travel demand and market characteristics should be captured. Furthermore, the
possibility of new routes should not be excluded. The demand model should be simple yet meaningful
enough to ensure that the collecting efforts of market characteristics is kept feasible. The model should
furthermore be accurate in the short and long term. These characteristics were all found to best apply
to gravity models and therefore it was decided to concentrate on this type of demand generation model.
Additionally, according to Grosche et al. (2007), this is one of the most widely used forecasting methods
for airlines which means it is well known to literature. The following sections will thus concentrate on
gravity models.

Table 2.1: Trade-off Diagram (Doganis, 2002)

Qualitative methods Time-series projections Causal methods
Executive
judg-
ment

Market
re-
search

Annual
aver-
age
growth

Linear
trend

Linear
w/
moving
aver-
ages

Regression
analysis

Gravity
model

Accuracy Short-term
(0-6 mo.)

Good Good Fair/
good

Fair/
good

Good Good Good

Long-term
(> 6 yrs)

Poor Poor/
fair

Poor Poor Poor/
fair

Fair Fair

Suitability
for
forecasting

Growth Good Good Good Good Good Good Good
Reaction Fair Good n.a. n.a. n.a. Good Poor
New
routes

Poor Fair n.a. n.a. n.a. Fair Good

Ability to identify turning point Poor/
fair

Fair Poor Poor Poor/
fair

Good Poor

Days required to 1 - 2 90+ 1 - 2 1 - 2 1 - 2 30 - 90 20 - 60
produce forecast
Cost of implementation Very

low
Very
high

Low Low Low High Moderate

2.1.2. Demand Generation Variables
Within literature, demand is generally defined to be dependent on two main driver groups. Namely, geo-
economic factors and service-related factors (Rengaraju and Thamizh Arasan, 1992)(Jorge-Calderón,
1997). Geo-economic factors are described by the economic activity and geographical aspects of the
region in which the the origin and destination of a trip are located. Service-related factors are focused
on the product with which a trip is made and thus is dependent on the service-level a transportation
company provides.

• Economic Factors The main characteristics used in relevant literature linked to economic activity
are centered around factors such as a regions population and it’s level of income (Anderson and
Kraus, 1981)(Brueckner, 1985)(Rengaraju and Thamizh Arasan, 1992)(Jorge-Calderón, 1997).
Other variables that have been used which were more specific included the ratio of university
degree-holders(Rengaraju and Thamizh Arasan, 1992), the ratio of employment (Rengaraju and
Thamizh Arasan, 1992), the regions type of production sector (Fleming and Ghobrial, 1994) and
the level of interaction between two cities in terms of economy, politics and social aspects (Russon
and Riley, 1993). Doganis (1966) used another interesting factor, namely the total traffic at both
airports. It was found that this was a good measure of the economic activity and level of income
of the airports region and catchments area. Thus, by using airport traffic data it is not needed to
incorporate more specific economic variables.

• Geographic FactorsWith respect to the locational factors between two regions, the main variable
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with which is modeled is the distance between the origin and destination of the route. The distance
between two regions or cities has two aspects in which the demand to travel between the two is
affected. The social and commercial interaction between two cities or regions decreases with
increasing distance, negatively effecting demand. On the other hand, with increasing distance
the demand for air travel increases with respect to other transportation modes due to air travels
competitive advantage with respect to travel time (Jorge-Calderón, 1997).

Another locational factor often taken into account is the closeness of airports in a region or city.
In regions with multiple airports, different airport characteristics such as the services provided, the
airlines flying through the airports and the ease of access effect the demand an airport generates
(Brueckner, 1985)(Rengaraju and Thamizh Arasan, 1992)(Russon and Riley, 1993).

• Service-Related Factors The service-related variables most commonly discussed in literature are
characteristics to do with the quality and the price of the service provided (Jorge-Calderón, 1997).
With respect to service-quality variables used in literature, often occurring aspects include flight
frequency, load factor, aircraft type and airline branding (Jorge-Calderón, 1997)(Grosche et al.,
2007). With respect to pricing, all relevant literature on demand generation agree that the fare of
the service significantly impacts the demand of the product. According to both the studies done by
Jorge-Calderón (1997) and Grosche et al. (2007), pricing in the airline industry is often considered
to be exogenous as airlines have limited control over pricing due to competition and other market
elements such as the fuel price.

According to Grosche et al. (2007), the benefit of excluding service-related variables lies in the fact that
the output of these type of models, namely the amount of passengers willing to travel, give a basis
for airline-specific scheduling. The reason being that airlines can then predict the total potential travel
demand between city pairs and not only the current demand which is affected by the current level of
service.

2.1.3. Calibration Methods
As the focus in this chapter has been on gravitymodels, this section will focus on the calibration/parameter
estimation methods for these types of models are discussed. To ensure a demand generation model
can achieve good model fit with respect to real life situations, the model parameters are calibrated using
real world data. The calibration method itself usually considers using logarithm techniques together with
linear regressions (Grosche, 2009).

Calibration furthermore often happens in one of two manners (Grosche, 2009).

• The first method is by time-series calibration, here the demand model is calibrated for a specific
city-pair using demand data for different time periods.

• The second calibration method used is cross-sectional calibration. Here a demand generation
model is calibrated for multiple city-pairs and is thus calibrated using data from the different city-
pairs at a single period in time.

Another possibility is a combination of the above two methods, namely panel data calibration. Here the
calibration is done for data on multiple city-pairs over different time periods. The type of calibration used
is based on the objective of a specific research. If sufficient data is available, calibration can also be done
for specific subsets of demand such as for different fare classes or different sets of passengers.

After calibration has been done, it is important to check for the reliability of the models. This is most often
done using the coefficient of multiple determination (𝑅ኼ), which is a measure of the fit of the model to
actual data. To ensure independent variables in a regression model are statistically related to demand,
partial correlation measurements are used (Doganis, 2002).

2.1.4. Conclusions on Demand Generation
In the previous section, the different demand generationmodels have been discussed. First, an overview
was given on the different types of models that exist and what characteristics they have. Next, the choice
process of demand models was portrayed after which the focus was decided to be put on gravity models.
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Variables used in demand generation models were next to be discussed, followed by an overview of the
calibration techniques specified to gravity models.

It was found that there are two main subsets of demand generation models namely, qualitative models
and quantitative models. The first subset is mainly based on expert opinions and market research.
The second subset is based on mathematical models including time-series models and casual models.
For reason discussed previously, it was decided to focus on the casual models and specifically gravity
models.

Variables used in the gravity models were centered around two subsets namely, geo-economic factors
and service-related factors. The choice of variable used in the models was very much dependent on the
goal of the researchers and the data available to them. Additionally, the type of demand that needed
to be generated was heavily affected by the choice of variable. By combining service-related and geo-
economic variables into a model, constrained demand models with respect to supply which capture the
effect of the level of service and price between the two airports is generated. Unconstrained demand
on the other hand, which only uses geo-economic factors, has as an advantage that one can develop
models where different transportation modes can be modeled as these models are not specified towards
air travel. However, finding data to develop these models is often difficult and time-consuming, therefore
constrained demand models are easier to develop.

The extensiveness of models is also a differentiator between demand generation models. More exten-
sive models, are most interesting if the goal of the research is to enhance accuracy and to determine
the effect of different variables on demand. However, the downside to modeling with large amounts of
variables is the availability, time needed to find and accessibility of data, as described by Grosche et al.
(2007). The exact definition of the demand generation model used in the thesis research can be found
in Section 4.2.

2.2. Sub-Model: Demand Allocation
In the previous section, methods were discussed on how to generate demand between different city
pairs. With these demands, we can now look at how to specify what share of the total demand between
two city-pairs will be split among the different travel options. However, to be able to allocate the demand
accurately over the different travel alternatives, it is key to understand consumer preference which en-
ables to better predict travel demand. Additionally, a model which can accurately simulate passenger
choice, is essential in testing the development strategy of an airliner.

This section will be structured as follows. First the different types of passenger itinerary choice models
will be discussed, followed by a section on the different available data types used for these models.
Next, an explanation will be given on discrete choice models, the basis of modeling passenger itinerary
choice. Following, a review will be given on the different passenger choice variables used in passenger
choice modeling.

2.2.1. Types of Passenger Itinerary Models
Throughout the years, many studies have been done on how to distribute passenger demand at different
levels of aggregation. As described by Coldren and Koppelman (2005), the main distinction can bemade
between three types of passenger itinerary models: models with a very high level of aggregation, models
with only limited scope and models using stated preference data.

During this literature study, multiple studies were found modeling passenger demand at different levels
of aggregation. The first set of studies were based on the total amount of passenger travel between for
example airport-pairs (Ippolito, 1981) (Anderson and Kraus, 1981) (Abrahams, 1983) (Baena Moreno,
2006) (Hsiao and Hansen, 2011) and domestic competition with other modes of transportation (Jung
and Yoo, 2014). Other studies however focused on the allocation of passenger demands to airlines
at different levels of aggregation. With these studies, airline service-attributes and their effect on de-
mand were modeled. The levels of aggregation used here were for example at the level of airport-pairs
(Proussaloglou and Koppelman, 1995) (Carrier, 2008), flight shares on point-to-point networks (Prous-
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saloglou and Koppelman, 1999) and itinerary shares for airport pairs Coldren et al. (2003) (Coldren and
Koppelman, 2005) (Koppelman et al., 2008).

These last set of researches, where specific itineraries are modeled, are especially of interest to the
current literature review. Here, passenger demands are distributed between different itineraries based
on the preferences of passengers and the characteristics of the itineraries. The potential for these
types of models are that they allow airlines to more accurately plan their services up to itinerary level in
comparison to designing their services based on a total demand between an airport-pair.

2.2.2. Data Types
Within passenger itinerary models, there are two main types of data input: stated preference (SP) data
and revealed preference (RP) data. The type of data available to a research strongly affects the factors
that can be researched and tested, and thus it is important when determining what should be achieved
with the research.

Stated Preference SP data has been used for the majority of the researches which strive to model
passenger choice (Carrier, 2008). SP data is generally collected using passenger surveys, which has
as an advantage that the researchers can be as specific as they want to be. Often collected data
includes information on the socio-economic characteristics of the travelers, the characteristics of their
current and future travel and travel history (Carrier, 2008). The surveys are designed to simulate the
choice environment passengers experience when determining what choice they will want to make. This
is however done in a simplified manner, as simulating the complete choice scope would be very difficult,
especially with the amount of ways one can buy air tickets online. Another disadvantage of SP data
is based on two sorts of bias. The first is based on non-response bias, where the data acquired might
not represent the broader passenger scope. The second form of bias, response bias, is based on the
notion that the responses collected by the survey do not actually represent what the responder would
do in real life (Carrier, 2008).

Revealed Preference RP data is based on historical booking data. Here the choices made by passen-
gers are extracted from the actual bookings they have made, which has as an advantage that the data
reflects actual passenger choice. The disadvantage of RP data is on the other hand that the booking
data does not portray the choice scope the booking was made in, which makes it difficult to determine
what type of choice trade-off was made (Carrier, 2008). Additionally, with booking data, the researcher
is dependent on the available data types in contrast to SP data where specific data on points of interest
can be collected.

2.2.3. Discrete Choice Models
In the modeling of passenger choice, researchers have typically made use of the concept of discrete
choice modeling (DCM) based on random utility theory (RUT) (Carrier, 2008) (Wen and Lai, 2010). This
modeling technique has proven to be capable of modeling the effect of different factors on the demand
of air travel and thus provide a manner in which passenger choice and preference can be understood
(Proussaloglou and Koppelman, 1999). In the following section, the RUT and the different DCM models
that are found in literature will be discussed.

Random Utility Theory RUT was first discussed in the psychology research done by Thurstone (1927)
and was extended on by Marschak (1960). RUT is based on the assumption that the utility value of each
choice option is known to the choice-maker. However, this perception of utility is not fully known to the
researcher so uncertainty needs to be taken into account. This is done by modeling utility with two parts,
one determined by the research and one random component to account for the uncertainty (Carrier,
2008). In the research by Manski (1977), the four main types of uncertainty were described:

• Unobserved attributes - Information on attributes is incomplete

• Unobserved taste variations - Unobserved variations found from person to person

• Measurement errors and imperfect information - Imperfect measurement data

• Instrumental variables - Some characteristics of variables are not fully observable
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Additionally, the assumptions is made that the choice-maker always chooses the alternative with the
highest level of utility (Ben-Akiva and Lerman, 1985).

Discrete Choice Models DCMs is a collective name for models that are used to simulate choices be-
tween multiple discrete choice alternatives. The alternatives among which has to be chosen with DCMs
need to cohere to a number of conditions: the alternatives have to be collectively exhaustive, mutually
exclusive and there has to be a finite amount of choices that can be made (Carrier, 2008). The condition
that all alternatives need to be collectively exhaustive refers to the fact that all possible choices that can
be made, should be represented in the model. Mutually exclusiveness refers to the fact that each alter-
native is unique, thus choosing one means not choosing any of the others. The fact that there should be
a finite amount of alternatives ensures that a choice can always be made. The choices made in a DCM
are, apart from the alternatives themselves, based on the characteristics of the choice maker. This is
based on the fact that choice makers with different traits an characteristics make different choices. For
DCM modeling, both RP and SP data can be used depending on the goal of the researcher and the
available data. Below, the main DCMs used are described.

Probit Model The earliest usage of DCMs can be found in the use of so called Probit Models (PM)
(Carrier, 2008). PMs assume that the uncertainties found in DCMs are captured by a multivariate normal
distribution. The advantage of a PM is that it is very flexible in its usage as it is able to achieve an
unrestricted covariance matrix of the uncertainties. However, computationally there are difficulties, as
the choice probabilities produce by PMs do not take a closed form solution (Carrier, 2008).

Multinomial Logit Model The multinomial logit model (MNL) is known to be the most popular DCM
used for passenger choice modeling (Wen and Lai, 2010). The reason for this is that this type of DCMs
are computationally simpler and that the output estimates of these models are of closed form. This
eases interpretation, making the MNL models more preferable to use with respect to the PM (Carrier,
2008). The MNL model assumes that the uncertainties found in DCMs are captured by a an extreme
value distribution, while being independently and identically distributed (Carrier, 2008). This has as a
consequence, as described by Wen and Lai (2010), that the MNL model has as a disadvantage that
when options in the choice subset are perceived to be similar, the model is known to generate unreliable
results. This characteristic is described by the property known as the independence from irrelevant
alternatives (IIA) (Carrier, 2008).

An example of a MNL model used in the research by Coldren et al. (2003) can be found in Equation
2.2. Here the probability function can be found that was used to determine the share of passengers per
itinerary, which thus reflects the number of choices people make for a certain option.

𝑆𝑖 = 𝑒𝑥𝑝(𝑉።)
∑ፉ 𝑒𝑥𝑝(𝑉፣)

(2.2)

Here, Si was deemed the passenger share on itinerary i, Vi the value of itinerary i and the summation
was over all values of itineraries of a specific city-pair on a specific day (Coldren et al., 2003).
The utility values of each itinerary were computed using a linear relationship. This was done by sum-
ming the weighted independent explanatory variables for each individual itinerary. In Equation 2.3, the
explanatory variables are denoted by X and the weights of each parameter are denoted by 𝛽.

𝑉። = 𝛽ኻ𝑋ኻ። + 𝛽ኼ𝑋ኼ። + ... + 𝛽፧𝑋፧። (2.3)

Generalized Extreme Value Models Generalized extreme value (GEV) models have been known to
overcome the disadvantage of IIA found in MNL models by being able to represent different substitution
patterns among the different alternatives found in the choice set (Carrier, 2008). GEV models assumes
that the uncertainties found in DCMs are captured by a joint extreme value distribution (Carrier, 2008).
The most used GEV model was designed by Ben-Akiva (1974) and consists of a nested logit (NL) model
and is known for the simple manner in which it is constructed. The nesting in NL models has to do with
how a model segments its choices into different groups. For example nesting can be done with respect
to time periods, city-pairs or air carriers. This has as an advantage that sub-choice sets can be made
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with itineraries which are perceived as similar within the total choice set. Therefore, the need to model
choices between options which are not related diminishes.

An example of such a nesting structure can be found in Figure 2.2. Here the nesting structure is depicted
which was used in the research by Hsiao and Hansen (2011). The first level contains the split between
travel mode. In the air travel nest, this is then followed by the origin-destination pair nests which is
further segmented into route connection types. To clarify, 𝑂 − 𝐷 stands for origin and destination, while
𝐻 stands for a hub.

Figure 2.2: Example of a Three-level Nested Logit Model (Hsiao and Hansen, 2011)

Mixed Logit ModelMixed logit (ML) models are a form of DCM models which in the past was computa-
tionally unfeasible but have now started to be used more and more due to the increase in computational
power (Carrier, 2008). The ML models are considered to be highly flexible and are able to account
for preference heterogeneity as well as flexible substitution patterns among alternatives. However, the
computational complexity of these models can still be considered to be unaffordable (Hsiao and Hansen,
2011). Furthermore, according to Garrow (2016), there are currently no ML models being used to model
passenger itinerary choice using RP data.

2.2.4. Passenger Choice Variables
All the different types of DCMs discussed above, combined with different choice variables, produce the
passenger itinerary models that are being researched in this literature study. The following section pro-
vides a concise overview of the different techniques and variables used in literature effecting passenger
choice.

The structure of the following section will be as follows. The section will begin with the different manners
in which passengers are segmented. Next, the effect of pricing and service-levels on passenger choice
are discussed. The section will end with a discussion on the passenger preference for different levels
of path quality.

Passenger Segmentation
Before looking at the different elements which have an effect on passenger choice, it is important to
define what different types of passengers exist and what general elements affect the choices they make.
Already in 1956, it was recognized that a market population can be segmented into different groups who
share certain traits or needs (Smith, 1956). This segmentation has also been widely applied to the
aviation sector.
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Passenger Types Segmentation based on passenger types is the technique of creating sub-groups
which describe a specific group of passengers which have similar traits (Haaijer et al., 1998). The main
methods used for passenger segmentation can be split into two types: a priori approaches and post-hoc
approaches (Teichert et al., 2008).

A priori approaches are based on predefining segments using known characteristics such as socio-
demographic traits. A common segmentation between passenger types is found to be between business
and leisure passengers (Proussaloglou and Koppelman, 1999)(Adler, 2005) as these two groups have
very different needs and traits with respect to their travel preferences. For example, Carrier (2008) noted
that passengers with high frequent flyer levels could indicate business travel, as business travelers will
most likely fly more often than leisure travelers, accumulating frequent flyer miles more quickly.

Post-hoc approaches are used to create segments by using clustering techniques. These clustering
techniques cluster similarities found in one or a combination of multiple selected descriptive variables
(Teichert et al., 2008). Researches which have used clustering techniques are for example those by Ma-
son and Gray (1995), Chiang et al. (2003) and Wen et al. (2008). The disadvantage of using clustering
is that there is a tendency to generate a large amount of segments when dealing with a lot of descriptive
variables; this makes the segmentation technique inefficient to work with (Wen and Lai, 2010). To over-
come this disadvantage, research has been put into another post-hoc technique, the latent class (LC)
model. The LC model has as an advantage that the researcher can predefine the amount of segments
to be made. For each segment, the model will then determine the size and the profiles of the choice
makers (Wen and Lai, 2010). It has been found, that LC models generally improve the fit of passen-
ger segmentation models in comparison to the other described models (Carrier, 2008). In the research
done by Carrier (2008), the LC model furthermore lead to a intuitively better passenger segmentation in
cases where the market was split between time-sensitive business travelers and price-conscious trav-
elers instead of only the passengers trip purpose as in the study by Proussaloglou and Koppelman
(1999).

The features and data used for passenger segmentation relies on the purpose and the data available
to the researcher. Often, segmentation is done using SP data collected through surveys, as was done
in the studies done by O’Connell and Williams (2005), Teichert et al. (2008) and Wen and Lai (2010).
As discussed previously, as SP data is based on the questions asked in the surveys, a multitude of
factors can be taken into account. The focus of most studies has been on trip purpose, while others
also included factors based on fare, catering and frequent flyer programs (Carrier, 2008). RP, on the
other hand, is limited to the booking data available to the researchers. This data does not provide
the flexibility in asking the questions the researcher needs answered. The data also does not clearly
contain information on the interviewed persons’ trip purpose or travelers traits. Yet, there are a few
ways in which trip purpose and passenger traits can be deduced from RP data. The travelers profile
can for example be deduced using the frequent flyer status, which provides information on how often
the passenger flies. Furthermore, information on gender is generally easily available from booking data
(Carrier, 2008). Trip purpose can in some cases be deduced using the characteristics of the in and
outbound flights. For example, round trips which are completed within the week are strongly related
to business travel (Carrier, 2008). Distribution channels through which bookings were made can also
indicate the purpose of travel, as non-business travelers have been found to have booked flights using
the internet while business travelers more often make use of travel agents (Carrier, 2008).

With respect to the performance of the different manners in which to segment passengers, the study of
Teichert et al. (2008) clearly makes a comparison between two a priori models and several latent class
models with different numbers of predefined segments. The first a priori model segmented passengers
into business and leisure and was found to achieve an 𝑅ኼ of 0.29 and 0.25 respectively. The second
a priori model which segmented between business class (BC) on business routes (BR), BC on leisure
routes (LR), Economy (EC) on BR and EC on LR achieved 𝑅ኼ levels of 0.3, 0.31, 0.27 and 0.13 re-
spectively. The different LC models, which differed in amount of segments from two to five achieved 𝑅ኼ
levels between 0.31 and 0.33.

Passenger departing time preferences Besides trip purpose and passenger characteristics, passen-
ger segmentation can also been done with respect to their preferences in departing time. This can for
example be done for the preferred time of the day and for the preferred day of the week. The accus-
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tomed approach to segment the day, is by allocating multiple fixed time-slots which represent passenger
preferences (Carrier, 2008). An example of this is found in the research by Coldren et al. (2003) where
the day was segmented into slots of an hour, except for the segments of 22.00-00.00 and 00.00-05.00
which were defined as two larger segments due to the fact that demands in these periods are at a low.
For each fixed time period, a dummy variable was included in the passenger utility function.

Another option is to group times of day with respect to the connection banks at an airport (Carrier,
2008). This has as an advantage that it takes network airliner’s preferences into account as they group
departures and arrivals together to ensure connection possibilities.

Amore sophisticatedmodel to segment time-of-day preferences is discussed by (Abou-Zeid et al., 2006).
This model introduces the concept of segmenting the time-of-day preferences as a continuous function
of time. To model the continuous time function for passenger time preference, weighted sin and cos
curves were used. These curves were added to the utility function described in Equation 2.3 in the
following form:

ፕᑚ዆...ዄᎏᎳ×፬።፧(
Ꮄᒕᑥᑚ
ᎳᎶᎶᎲ )ዄᎏᎴ×፬።፧(

Ꮆᒕᑥᑚ
ᎳᎶᎶᎲ )ዄᎏᎵ×፬።፧(

Ꮈᒕᑥᑚ
ᎳᎶᎶᎲ )ዄᎏᎶ×፜፨፬(

Ꮄᒕᑥᑚ
ᎳᎶᎶᎲ )ዄᎏᎷ×፜፨፬(

Ꮆᒕᑥᑚ
ᎳᎶᎶᎲ )ዄᎏᎸ×፜፨፬(

Ꮈᒕᑥᑚ
ᎳᎶᎶᎲ ) (2.4)

In Equation 2.4, 𝑡። represents the departure time of the modeled flight and 1440 accounts for the number
of minutes per day.

In the research by Koppelman et al. (2008) it was found that the continuous time function was behav-
iorally superior to the discrete time-periods, it contained less parameters and was statistically more
significant.

Besides the time-of-day preferences of passengers, it is also of importance to take the passenger pref-
erences with respect to the day of the week into account. This was acknowledged by Baena Moreno
(2006), who used the day of the week as one of their three criteria when modeling the effect of flight
frequency on an airlines’ level of service. It is essential to realize that trip characteristics will have an
effect on what day of the week people prefer to fly. For example, travel which is completed within week-
days can be expected to be generated by business passengers, especially when looking at short-haul
markets (Carrier, 2008). Leisure passengers on the other hand might center their travels around the
week-end. Yet, in the research done by Coldren et al. (2003), it was realized that time-of-day prefer-
ences and day of the week preferences were dependent on each other. Thus in their model, itineraries
were generated for specifically for each day of the week. As with the time-periods, the preference for
day of the week was accounted for using dummy variables, or by estimating the models parameters for
each specific day.

Pricing
In this section, the focus will be on the literature relevant to passenger choice models and pricing. Here
a differentiation will be made between the fare and fare rules and how they affect passenger choice. In
the following section, fare is defined as the price passengers pay for their flight tickets and fare rules
are defined as the non-monetary implications of a ticket such as the option to change or cancel a ticket
or the minimum stay that is needed (Carrier, 2008). In general, the influence of an increase in airfare is
found to lead to a decrease in the demand for an airline ticket (Wen and Lai, 2010).

Fares The pricing of airline tickets is in almost all literature (focusing on passenger choice) one of the
leading factors which affect the demand shares of airliners. It is a monetary variable which is most
directly observed and felt by any customer and thus provokes one of the largest incentives to buy or
not buy a certain ticket. This is confirmed by Wen and Lai (2010) who observed. In their studies based
around passenger SP, that passengers are more responsive to changes in the pricing of tickets than any
other aspect. This same result is also established in an more recent study, where fare along with access
time and journey time are seen to be of essence in passenger choice (Jung and Yoo, 2014). In this
same study, it was also found that business travelers have a higher willingness to pay more to reduce
the overall journey time in comparison to economy passengers (Jung and Yoo, 2014). This conclusion
stands to reason that business travelers are willing to pay more for enhanced services, and should be
kept in mind during the segmentation of passenger groups.
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With respect to fare modeling, multiple manners have been researched and tested in the relevant litera-
ture. In general, fare is used as an independent variable, implemented in a form of a DCM. This can be
done using the actual monetary variable (Proussaloglou and Koppelman, 1999) (Jung and Yoo, 2014),
as a dummy variable (Jorge-Calderón, 1997) or as a fare ratio (Coldren and Koppelman, 2005) (Martín
et al., 2008). The choice of how fare is modeled depends on the availability of fare data. Often studies
based on RP data include actual monetary values or fare ratios. Studies based on SP data however,
can comprises of the whole spectrum of fare variable types.

The fare variables are also often segmented into multiple segments for different groups of passengers.
For example, Proussaloglou and Koppelman (1999) determined three fare classes for both business
and leisure passengers, as did Jorge-Calderón (1997) and Martín et al. (2008). Coldren and Koppelman
(2005) however lacked extensive fare data, thus resorted to using one fare ratio based on the average
carrier fare between two airport-pairs divided by the average fair of the city pair for all computations. What
was evident in all studies was that fare has a significant negative impact on passenger demand, whereas
business passengers were slightly more insensitive to price change than leisure passengers.

Fare Rules As mentioned, fare rules are the non-monetary implications applicable to airline tickets.
Commonly used fare rules by flag carriers included a minimum travel stay, a round-trip requirement, the
ability to change or cancel a ticket or purchase requirements (Carrier, 2008). Fare rules are used to do
two main things: to ensure that business passengers are discouraged to buy discounted air tickets and
to channel low-fare passengers on to low demand flights and thus allowing seat-availability for high-pay
passengers on the higher demand flights (Carrier, 2008). Thesemeasures therefore affect the manner in
which passengers make choices on air travel, as they have to determine to which fare rules they are able
and willing to adhere. Data on fare rules is key to being able to model the effects on passenger choice.
With SP data the effects can be measured by questioning the respondents correctly, but in booking data
this information is not always available and thus may be incorporated as a modeling uncertainty due to
lack of information.

However, with the introduction of low cost carriers, the aviation market changed. Low cost carriers
(LCC), in comparison to the established legacy airliners, focused on the relaxation of fare rules and with
that disrupted the pricing market (Carrier, 2008). LCC’s did this by selling lower priced one-way flights,
obviating the conditions of a fixed trip duration or round-trip (Currie et al., 2008). In response, the large
majority of legacy carriers were obliged to change their pricing methods to be able to compete with the
LCCs. This is especially visible in the medium and short-haul markets where fare rules were relaxed
and the pricing range was reduced (Carrier, 2008). Therefore, the effect of fare rules in medium and
short-haul markets could be deemed negligible, which would make the lack of information on fare rules
less harmful to passenger choice modeling activities.

Level of Service
Besides looking at the pricing of a flight ticket, passengers will also be influenced by what level of service
they will be receiving for the agreed price. Service levels especially can be assumed to have a large
effect on demand in markets where pricing competition has saturated and prices are relatively similar
(Vaze and Barnhart, 2012). In this section, the PIM will be further extended with findings from literature
on the effect of different service level aspects provided by airliners. This will be done by looking at pre-
flight services, in-flight services and other relevant services which contribute to a passengers choice. For
each segment, an outline of different aspects found in literature and their highlights will be enlightened
on.

Pre-Flight Service Levels Pre-flight services include aspects such as the check-in-service (Wen and
Lai, 2010) (Chang and Yeh, 2002), distribution channel (Carrier, 2008), frequent flyer memberships
(Proussaloglou and Koppelman, 1995)(Borenstein andRose, 2011) andmarketing and promotion (Prous-
saloglou and Koppelman, 1995)(Coldren et al., 2003). In the study performed by Wen and Lai (2010),
it was found that check-in services were seen as one of the aspects which passengers feel are most
important with respect to service levels, as long delays at check-in are disliked and should be avoided.
Another interesting highlight was the high impact of frequent-flyer programs on the choices of pas-
sengers on flights, especially those passengers who travel frequently (Proussaloglou and Koppelman,
1995).
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In-Flight Service-Levels The in-flight service-levels provided by an airline can be divided into two main
elements: the flight services and the fleet allocation. Flight services are based around services such
as on-board comfort including food and beverages, entertainment, seat comfort (Wen and Lai, 2010)
(Chang and Yeh, 2002) (Coldren et al., 2003) (Martín et al., 2008) and cabin staff services (Wen and
Lai, 2010) (Chang and Yeh, 2002) (Coldren et al., 2003). Interestingly enough, it was found in the study
done by Wen and Lai (2010) that food and beverages did not provide positive influence on passenger
choice as the other mentioned attributes did. It was hypothesized that this was due to the fact that only
short-hauled flights were investigated and that this parameter thus might not have the same effect as
on a long-haul flight.

Fleet allocation concerns the airlines choice of aircraft type which will be used on the different flight legs.
Aircraft types have been used to model passenger choice in the researches by Coldren et al. (2003)
and Coldren and Koppelman (2005) as they found that passengers prefer larger aircraft based on the
notion that these aircraft are safer and have a higher level of comfort. This is backed up by Belobaba
(2014) who states that the aircraft type becomes more and more important as the distance of the flight
increases.

Other Service-Levels Besides pre-flight and in-flight services, two more factors that affect passenger
itinerary choice have been identified in the relevant literature. The first is the handling of abnormal con-
ditions, which weighs in on passenger choice and includes factors such as the handling of flight delays,
customer complaints and luggage loss or damage (Chang and Yeh, 2002). The second interesting as-
pect to look at is the reliability of service provided by the airline (Chang and Yeh, 2002). Aspects to do
with reliability mentioned in different researches included: On-time performance (Wen and Lai, 2010)
(Coldren et al., 2003) (Hsiao and Hansen, 2011) and safety standards (Coldren et al., 2003). In the
research done by Hsiao and Hansen (2011) a useful manner to model on-time performance of an airline
was discussed. Here, the average delay per flight at each airport in a flights itinerary was used as an
indicator of the on-time performance of different flight options.

2.2.5. Path Quality
Another element that is essential to take into account is the effect airline path quality has on passenger
itinerary choices. This is especially interesting when looking at indirect flights as new aspects such
as extra travel time and connections arise. In this section, the effect of path quality on passenger
itinerary choice will be considered, focusing on the type of routing, the value of time and the frequency
of flights.

Routing There are multiple ways in which passengers can route flights between their choice of origin
and destination pair as shown in Figure 2.3. As discussed in the research done by Alamdari and Black
(1992), flights can be:

• Direct between city-pairs

• Indirect between city-pairs, with or without change of airline or airplane

• A combination of the indirect path described above, including alternatives in departure and arrival
airports

Figure 2.3: Route Models (Alamdari and Black, 1992)
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The definition of an itinerary, which depicts the linking of a city-pair by one or more flight legs is widely
used in aviation network theory (Coldren et al., 2003). A flight leg is thus a flight between two air-
ports (Bertsimas and Patterson, 1998), which means that an itinerary can consist of multiple flight legs.
Modeling all the different possibilities within an actual network can become very complex, which is why
researchers often simplify the networks they model to a scope they find relevant and suitable for their
research.

Path Preference When looking at the preferences of passengers, it is found that airline passengers
greatly favor direct flights between their chosen city-pair (Hansen, 1990)(Alamdari and Black, 1992).
Yet, a direct itinerary to a chosen destination is not always a possibility. Therefore, it is important to
include how choices are made when it comes to indirect flights. An important variable to consider is the
total travel time of different itineraries between the same OD-pairs (Coldren et al., 2003). According to
Coldren et al. (2003) passengers prefer shorter travel times when choosing itineraries. Yet, total travel
time is not the only parameter that effects passengers decisions on which itinerary to take, it has also
been found that between itineraries with the same airport of connection, the itinerary with the shortest
ground time is preferred (Coldren et al., 2003). The importance of connection time was also discussed
by Dobson and Lederer (1993) who concluded that itineraries have a maximum time that passengers
want to wait on a connection to ensure realistic modeling. Narangajavana et al. (2013) furthermore adds
that, in general, business passengers are more sensitive to waiting times than to prices.

Monetary Value of Time To determine the effect of having a connecting flight and departing or arriv-
ing earlier or later than the desired time, it is of importance to determine the value that time has on a
passengers choice. In a study done by Ramjerdi et al. (1997) on Norway, it was found that the value
of time was equivalent to $54.5 and $73.2 per hour for leisure and business passengers respectively.
Sadly, due to a lack of information the difference between waiting time and travel time value was not
determined. However, the value of an hour of scheduled displacement was set to be equivalent to $11.0
and $43.6 per hour for leisure and business passengers respectively. In another study, the US values
of travel time were determined. Here, travel time with business purposes was found to be $57.20 and
$31.90 for leisure purposes (Institute, 2013). Values such as these can be applied to determining the
cost experienced by the traveler.

Desired Arrival Time Another point of interest with respect to path quality, is the potential passengers
preference with respect to arriving earlier or later than their desired arrival time. According to both Adler
et al. (2006) and Lijesen (2006), passengers in general prefer arriving before rather than after their
desired arrival time, especially for passengers with short stays at their destination.

Flight Frequency The frequency an airline provides is another important dimension on which passen-
gers base their choice. The reason being that a higher flight frequency will lead to more choice and
will better suit ones needs with regards to traveling moments between city-pairs (Brueckner, 2010). An
increase in frequency on a particular route will thus create a higher demand for that particular airline
(Vaze and Barnhart, 2012). The reason for this is, is the so called scheduled displacement of a pas-
senger. The scheduled displacement of a passenger is the disutility of a flight leaving at a time earlier
or later than ones preference. Therefore, the larger the scheduled displacement the less attractive a
set of itineraries will be for a passenger. Increasing the frequency of flights, decreases the scheduled
displacement and thus leads to a more attractive situation.

2.2.6. Conclusions Demand Allocation
In the previous section, the passenger itinerary choice model has been discussed. The chapter started
with a discussion on the different types of passenger itinerary choice models, which was followed by
a section on the different available data types used for these models. After this, an explanation was
given on discrete choice models, the basis of modeling passenger itinerary choice. Lastly, the different
variables which are affecting passenger choice and are used in modeling were considered.

We can conclude from the literature that a great deal of research has been done into different passenger
choice models at different levels of aggregation. From simple demands between city-pairs to demand
allocation to itineraries with specific times and days and everything in between. Furthermore, an exten-
sive set of different types of variables has been used in the different studies. What variables to be used
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to determine passenger choice in each research, was heavily dependent on the type of data available
to the researcher. With stated preference data, researchers were often able to develop their own data
sets through questionnaires. Researchers working with revealed preference data were limited to what
was being recorded.

With respect to modeling methods, it became clear that DCMs were the manner in which passenger
choice was modeled. The most relevant DCM methods included the most often used multinomial logit
models and nested logit models.

Passenger choice models have become increasingly more complex and detailed. Simple MNL models,
using discrete time periods, were improved with the use of for example continuous time functions and
penalties for scheduled displacement. The development of newer NL model was a direct consequence
of the fact that MNL models did not realistically take inter-itinerary competition into account and gener-
ated unreliable results when alternatives were too similar. With NL models, the complexity of nesting
structure was introduced to enable more accuracy in determining itinerary demand shares and inter-
itinerary competition. In general, the level of complexity of the model lead to higher representations of
reality.

Concluding form the literature study: what is especially important with respect to the research of this
thesis, is to determine what type of passenger choice model will best fit into simulation framework as a
whole. A trade-off between modeling accuracy, data availability and model complexity essential. The
exact definition of the demand allocation model used in this thesis research can be found in Section
4.3.

2.3. Sub-Model: Market Competition - Competitor Reaction
When designing a simulation framework that can model the aviation market in a way that integrates de-
mand generation, demand allocation and competition, it is important to review what has been described
in literature on current competition modeling techniques. Since the airline deregulation act in 1978, the
aviation market has changed dramatically with respect to competition. The act ensured that airliners
were now able to compete in a free market, giving them control of their pricing, scheduling and routing.
This also opened the door for airlines with new revenue models, such as LCCs who would challenge
the legacy carriers in a manner not seen before (Carrier, 2008). In the following chapter, the literature
relevant to market competition, including that of LCCs will be discussed.

The coming section will be structured as follows. The first section will contain a discussion on regularly
seen airline business models, which will be followed by a section on how competitive reaction in the
aviation market is modeled. The final section will summarize and conclude on the relevant literature for
a market competition model.

2.3.1. Airline Business Models
In the aviationmarket, several types of can networks be observed. The basic segmentation can be based
on the type of routes an airline flies: hub-and-spoke or point-to-point. An airline with a hub-and-spoke
model has one or multiple hubs at specific location(s) and from there flies all its flights directly to one of
its many destination or spokes. Connecting flights are possible but only through the hub (Hansen, 1990).
A point-to-point airline only flies direct flights between two city pairs and does not support connecting
flights (Hansen, 1990). Airlines however do not see their business models in such a black and white
manner, thus it is possible to see airlines which combine business models if needed.

The two general competitors types in the aviation market are the full service carriers and the LCCs. The
designation is self-evident: the full service carriers provide passengers with a product which includes
multiple levels of service and comfort, differentiation in airfares and usually fly according to a hub-and-
spoke model (O’Connell and Williams, 2005). The LCCs on the other hand operate in a much more
simple and cost effective manner: one class operations, point-to-point services, online booking modes
and electronic ticketless systems are all used to keep costs low and operations efficient (Ko, 2016).
These differences in business models have an effect on the amount and type of passengers that will
use the services of an airline. The manner of choice of passengers has been discussed in Section
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2.2. For this section, it is interesting to see how the airlines with different business models compete.
Inherently, due to the different businessmodels, it can be expected that airlines react in different manners
as their goals are different. In the following section, this will be researched.

2.3.2. Modeling Competitive Reaction
Previously, the airline business models have been described but there still lies a gap in how competitors
react to one another. Research has proved that competitors in the aviation field are quite efficient in
reacting to one another’s price changes (Jones and Jr., 1995). However, the difficulty here is how this
competitive reaction can be modeled.

In literature, a few different methods on modeling competitive reaction have been discovered. However,
these methods are more focused on how competitors can maximize certain variables such as profit
in a competitive environment instead of simulating real life situations or competition between different
business models. Yet, these researches are thought to be relevant, as an airlines goal can for example
be to maximize its profit or market share in a competitive environment. Linking different goals to different
types of business models could be a way to simulate competition between different business models,
but as this is not described in the found researches this is merely a suggestion. The main methods and
principals of modeling competitive reaction are discussed below.

Non-cooperative Games
Non-cooperative describes the characteristic that players of the game only consider their own (profit)
function when making choices (Hansen, 1990).

An example of this is found in the study done by Hansen (1990). Here, a non-cooperative game between
a set of hub-and-spoke and point-to-point carriers seeking to maximize profit was designed and tested
to model airline hub competition. Through the assumptions made in the research, the models pay-off
function, which determines the profit an airline makes, limits itself to decision variables for each player
based on its flight frequencies. Inputs for the pay-off function were derived using underlying models
including a market share model, airline cost model and an average fare model.

The market share model is developed based on the logit form, similar to those discussed in the Section
2.2. The average fare model was based on the analysis of 250 markets in the US. It was found that the
ideal model was only a function of distance. The model had the following form:

𝐹
𝐷 = 𝛼 +

𝛽
𝐷 +

𝛾
𝐷ኼ (2.5)

The airline cost model was designed as a function of the distance flown, the operating costs, the flight
frequency and the number of seats per flight.

The final model then used numerical methods to optimize each airlines frequencies for profit maximiza-
tion, which lead to quasi-equilibria within five to six rounds of iterations. After these optimization rounds,
changes to the airline frequency sets lead to insignificant changes to the equilibrium states and was
thus considered to be applicable to compare to actual data. Looking at the simulation model, the load-
factors, proportion of trips using connecting services, the average on-plane length and activity levels
at the largest hubs resembled those of the actual system. The main discrepancies were found in the
levels of activity at airports in multi-region airports which were over predicted and airports situated in thin
local markets which were under predicted. Explanations for these discrepancies were that the model
assumed one city to be served by one local airport and the lack of competition advantages of airports in
thin local market locations. The research suggested these discrepancies to be further researched, as
well as incorporating airline pricing into the model. Furthermore the assumption that complete demand
inelasticity should be replaced, as it was deemed to be unrealistic. According to the authors, the overall
performance of the model proved potential in predicting of competitive outcomes.

One-shot Simultaneous Game
In the one-shot simultaneous game, both players make a choice on the available decision variables
simultaneously while assuming that the competitor does the same and that their choice is then fixed.
Both competitors know the options that the other can choose from, and what result that will have on their
profit (Wei and Hansen, 2007).
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An example of this is found in the research done by Wei and Hansen (2007) where the competition
between two competitors was simulated. Here, both players choose the aircraft size and frequency
simultaneously while assuming that the competitor does the same and that their choice is then fixed.
Both competitors know the options that the other can choose from, and what result that will have on their
profit. Therefore, the choice made by both competitors will be optimal for themselves, while the games
total optimal is dependent on both competitors choice.

A variation of the one-shot simultaneous game was also researched by Wei and Hansen (2007). Here,
a two-level one-shot simultaneous game was designed. This was setup up by dividing the choices on
aircraft size and frequency into two sections. First both airlines simultaneously made a choice on the
aircraft size they will provide. Next, both competitors as a reaction on the first choice simultaneously
make a choice on the frequency that will be flown.

The research by Zito et al. (2011) also makes use of a one shot simulation game. In this research a
duopoly market is modeled. The decision variables of the competitors in this research were focused on
fare and frequency for a short-haul market. The model is based on a hierarchical bi-level optimization.
Where the airline is trying to maximize its profit by optimizing its revenues through fares while keeping
the cost due to the frequency of flights low. On the other hand, the demand from passengers will be
affected by cost of the fare and flight frequency which they will want to keep low. The model was able
to find Nash equilibriums between the two airlines on the basis of fare and frequency while being able
to simulate the interaction between airline and passenger demand. A Nash equilibrium is defined as
an equilibrium that is found in solutions of games of two or more players. A Nash equilibrium is found
when no player can benefit from only changing their own strategy, but needs the others to change their
strategies as well to find a new optimum (Ko, 2016).

Leader-and-follower Stackelberg Game
In the leader-and-follower Stackelberg game it is assumed that one of the competitors has the advantage
to decide on its variables before the other competitors can. The other competitors will thus have to react.
The first choice maker however does realize that the competitors will react, and takes this into account
in the choice making (Wei and Hansen, 2007).

The third model designed in the study by Wei and Hansen (2007) was based on the leader-and-follower
Stackelberg game. Here, it is assumed that one of the two competitors has the advantage to make
choices on aircraft size and frequency before the other competitor. The second competitor will thus
have to react to the strategy of the first competitor. As described above, the first competitor realizes that
the second competitor will react, and takes this into account in the choice making. The solution process
in this model will thus first determine the optimal choices of competitor two with respect to all choices of
competitor one and from that the optimal choice will be made for competitor one.

In the research by Ko (2016) competition between three types of airlines was modeled using the principal
of the leader-and-follower Stackelberg game. These airlines include a full service carrier (FSC), a low
cost carrier (LCC) and a subsidiary LCC of the FSC. Each airline is a player in the model and makes
decisions on variables including the fare, flight frequency and the number of aircrafts used on the route
while maximizing its own profit. The demands of the airlines are a function of the flight fares and the
flight frequency. The profit function of the airlines is built up out of four components: the sales revenue,
the variable cost of passengers, the variable cost of operation and the fixed cost of aircraft. In the first
game the FSC is seen as the first decision maker, after which the decisions of both LCCs follows.

In the second model, Ko (2016) developed a similar model to the one described above only now the
FSC and subsidiary LCC work together. The FSC and subsidiary thus can be seen as one group, to
which the rival LCC has to react.

Performance Comparison
In two of the researches described above, different models were compared to determine their respective
performance in comparison to each other. Below, these results are discussed.

Wei and Hansen (2007) As Wei and Hansen (2007) compared multiple competitor reaction models
in their research, a performance comparison could be done. To recap, the models tested were the
one-shot simultaneous game, the two-level hierarchical game and the leader-and-follower Stackelberg
game. With respect to the different models, the authors stated that with respect to reality, the two-level
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hierarchical game was found to be most accurate. The reason being that airlines usually fix decisions
on aircraft size for the long-term and will vary with the flight frequency on a more short-term level. All
models showed that competitors regularly chose for smaller aircrafts with a higher frequency. This
matches reality, as increasing frequency has a higher effect on market share than increasing the size of
an aircraft (Hansen and Liu, 2015).

Ko (2016) The models compared in the research by Ko (2016) included two leader-and-follower Stack-
elberg games. It was found in the research by Ko (2016) that the FSC can make the most profit when it
is market leader and working together with its subsidiary LCC as done in the second model described.
In this case, the subsidiary LCC caters to the mid-cost segment passengers while the FSC caters to
the high-cost segment passengers. In general, the author concludes the research in suggesting that
future work should not only focus on maximizing profit, but also on market shares or eliminating compe-
tition.

2.3.3. Conclusions Market Competition - Competitor Reaction
In the previous chapter, a discussion was given on the most common form of business models found
in the aviation market. This was followed by a section on how competitive reaction is modeled in found
researches.

It was found that there are two main business models which airlines adhere to, namely hub-and-spoke
models and point-to-point models. However, the modeling of competition between the two types of
business models or even within competitors of the same business model were not specifically described
in the literature found. On the other hand, what is described in literature is how tomodel reaction between
competitors based on a set goal. This goal was most often maximizing profit on the basis of different
variables. However, as described by Ko (2016) future work should also focus on being able to model
the goal of maximizing market share or eliminating competition. It might also be possible to set different
goals for different competitors in the same model, simulating competition between different airlines with
different business models. However, to the authors best knowledge this has not yet been done.

When looking at what has been modeled with respect to competition reaction, it is interesting to note
that all studies model competition reaction on a very small scope. Most studies reviewed in this literature
study modeled the reaction between two players on a route or small set of routes. In the study by Ko
(2016) this was brought to three players, namely an FSC, LCC and a subsidiary LCC. How the modeling
technique could be extended towards a realistic network size was not apparent.

Additionally, as is common in research: the longer research is done, the more complex the researches
become. Where Hansen (1990) modeled competition reaction in a non-cooperative game in which only
the airlines own strategy is taken into account, Wei and Hansen (2007) modeled competitor reaction
using three different game-theory types which considered the choice set of the competition before mak-
ing a choice on their own reaction strategy. This last method of also taking the competitors choices into
account was continued in the research found in later time periods.

Another element that changed in time with research, is the amount of decision variables taken into
account. Hansen (1990) focused on modeling competition reaction solely on the flight frequency, Wei
and Hansen (2007) extended this to frequency and aircraft size while Zito et al. (2011) used frequency
and fare. Ko (2016) was the most extensive research found: it included the decision variables of fare,
flight frequency and the number of aircrafts on a route as input to its simulation.

It seems that the modeling of competition is not done in as an extensive fashion as for example pas-
senger itinerary modeling. Despite this, methods have been developed to simulate possible reactions
between competitors based on set goals. These modeling techniques might be applicable to implement-
ing in a grand simulation model, for which simulation of competition between airlines would be relevant.
However, it should be noted that, in reality the reaction of competitors to changes in strategy may not be
focused on only one specific goal such as profit maximization. Different combinations of goals coming
from complex strategies and business plans could lead to different reactions then to those modeled in
the discussed papers. The exact definition of the computer reaction model used in this thesis can be
found Section 4.4
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3
Research Plan

In the following chapter, a description of the thesis research plan is given. It provides an insight on how
the research was initiated, progressed and how it was fulfilled. This chapter consists of a discussion on
the problem statement, past research, the project plan, the research scope, and finally the prospected
research contributions. It is important to realize that the research plan is an evolving process, where
different situations and findings during the research have steered the research and therefore the plan
in a certain direction. The research plan described in this chapter thus reflects the final research plan
which has been executed.

3.1. Problem Statement
In the coming section, the problem statement which inspired towards this thesis is described. The
problem statement for this thesis is not necessarily a problem, but more of an opportunity. In any case,
the problem statement will be described from two perspectives, namely from the scientific and from the
industry perspective.

• Scientific Perspective

– In the current airline development models, competition is often assumed to be static and
acts irrespectively of airline strategy. Therefore, simulating an airline market is difficult as
the modeled competition does not react to the strategies of the other competitors. In reality,
competition strategies change constantly, taking market characteristics and choices of the
competition into account.

– In airline operations research, there are a multitude of different models which are designed
to simulate, forecast and/or predict certain traits within the airline market. Each model on
its own provides an understanding of the specified research scope. However, each model
independently does not portray the dynamics of the aviation market as a whole.

• Industry Perspective

– The aviation market is a complicated combination of different processes which occur simul-
taneously. Describing and understanding these separate market dynamics can be tough
enough as it is, but being able to combine all these dynamics into one and being able to
clearly understand what is happening can be even more difficult. This difficulty arises from
both the complexity of the underlying processes, as well as the broad scope of different pro-
cesses which come together in the total dynamics of the aviation market.

In summary, from a scientific perspective competition in airline development models are often assumed
to be static, which is unrealistic. Furthermore, an opportunity exists to combine different specific models
describing the aviation market, to be able to develop a model which captures the main effect of the total
aviation market. From an industry perspective, being able to understand the market dynamics of the
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aviation market as a whole, with all its underlying specifics is complicated but is desirable for multiple
purposes. The contributions that this thesis could make with respect to the problems described above
are discussed in Section 3.5.

3.2. Past Research
The main basic components when considering the aviation market dynamics as a whole are, in general,
based around two concepts: supply and demand. Supply within the aviation market can be seen as
the flights and flight options which different competitors provide to a market. These different options
compete with each other for passenger demand, a continuous process which is influenced by market
forces, especially since aviation markets around the world have been deregulated. Demand in the avi-
ation market is generally based around people wanting to travel between two locations for whatever
purpose and how they make the choice to travel between different flight options.
As mentioned in Section 3.1, specific models which describe certain traits of the aviation markets are
often well researched. So are models on demand generation, passenger choice and dynamic compe-
tition. However, the development of a simulation framework which can reproduce the competition and
passenger choice for an airline while integrating models on demand generation, passenger choice and
market competition is found to be unknown to literature. With respect to the authors best knowledge,
such a framework has yet to be researched. In contrast, with respect to the underlying models, much
research has been done and so these models have been reviewed in detail to discover how these mod-
els have been constructed. From these findings, it has been determined what possibilities there are to
combine the different models to develop one integrated simulation framework.

Demand Generation Demand generation is a well-researched area in literature. Over the years, ex-
tensive models have been developed to forecast demands between cities and airports at multiple levels
of aggregation. It was found that, with respect to modeling simplicity and model effectiveness, gravity
models were considered the optimal way to generate demand. This decision was based on preliminary
set goals, including that the demand generated should take the influence of market characteristics into
account as well as being simple to compute but at the same time be meaningful.

Passenger Itinerary ModelsPassenger choice models have extensively been researched by a great
number of academic studies. The use of discrete choice models often were at the basis of this type of
modeling. It was found in the literature review, that themost usedmodel type consisted of themultinomial
logit models. However, the later developed, nested logit models have proven to model passenger choice
in a more realistic fashion by being able to accurately model between choice options which are very
similar and being able to account for increased inter-itinerary competition. Something the MNL model
could not.

The combination of demand generation and passenger choice models is furthermore logical and often
seen. This is due to the fact that the demand generated between city-pairs, by for example a gravity
model, can be used as an input for demand allocation by a passenger choice model to different itinerary
alternatives.

Market Competition Models Market competition modeling which simulate competitor reaction have
been found to be the least developed modeling area of the three discussed in this literature review.
Modeling of competitor reaction is currently done with respect to predefined goals, such as maximizing
profit instead of simulating reality. This need not be a problem, as if goals per competitor are defined cor-
rectly, reality can be simulated. However, to the authors best knowledge market competition is currently
simulated in a basic fashion at small scope and with up to three players and three decision variables.
However, market competition models have included simple passenger itinerary models, thus the possi-
bility to link these models to a passenger choice model is certainly plausible.

3.3. Project Plan
The development of a simulation framework which integrates demand generation, passenger choice and
market competition has yet to be designed. Thus, the proposed research objective has been defined to
be:
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To contribute to the development of an integrated simulation framework, which has the
capability of realistically simulating the aviation market by being able to reproduce the com-
petition and passenger choice for an airline in the aviation market by combining a demand
generation, passenger choice and market competition model.

The hypothesis of this research will be that the developed simulation framework is able to realistically
reproduce the market dynamics found in the aviation market with respect to passenger behavior and
competition among airlines. Additionally, exogenous players should be able to be incorporated in the
simulation framework, providing a platform for simulation game play.

To ensure the research objective is properly defined on which to continue this thesis research, the impli-
cation of ’realistic simulation’ needs to be further defined. The different sub-models which are combined
within the integrated simulation framework must all be represented in this simulation. Below, the thesis
definition of realistic simulation is described per sub-model.

Demand Generation Realistic simulation of a demand generation model is defined as a model which is
able to predict demand between a specific OD-pair where the values are similar to actual demand values
and the demand split between classes follow the actual class distribution of demand. The model should
furthermore be generalizable to routes with similar characteristics. The demand model itself should
additionally host coefficients with the expected signs for the different independent variables.

Demand Allocation Realistic simulation with respect to demand allocation is defined as a model which
is capable of simulating passenger choice between flight options in a similar manner to that found in
the actual data, based on the included selection of parameters. The choice model should furthermore
be generalizable to routes with similar characteristics which are not included in the model. Additionally,
as with the demand generation model, the demand allocation model should host coefficients with the
expected signs for the different independent variables.

Market Competition - Competitor Reaction Realistic simulation when focusing on competitor reaction
is difficult to determine, as accurately defining the reaction of competitors is based on a great number
of variables. Furthermore, the competitors’ strategy is also hard to define as accurate airline strategies
are confidential. Realistic simulation for the competitor reaction model is thus in this thesis defined as
that the competitor reaction model behaves in the manner and following the strategy which is specified
and for which it has been designed.

The model in its totality, is considered to realistically simulate the aviation market if each sub-models
performs in the manner described above.

3.4. Research Scope
Besides the objective of the research, it is also of essence to limit the scope that this research will
have. The scope is defined with respect to specific processes within the aviation market, hardware and
software availability, locational interest as well as thesis time constraints. This leads to the following
scope:

• The thesis will focus on combining a demand generation model, a passenger choice model and
a competitor reaction model into a single integrated simulation framework. The integrated simu-
lation framework will not be developed with the goal of optimizing airline behaviors or strategies,
but rather to model realistic aviation market dynamics with respect to competition and passenger
choice.

• The thesis is looking to bring a contribution towards an integrated simulation framework of the
aviation market, with which in the future can be built upon and improved. Therefore the simulation
framework should be designed in a software package which is available to the interested parties,
namely the TU Delft and Cranfield University.

• The scope has been set on the development of a simulation framework for the internal European
market. The European aviation market is known for its high level of competitiveness, many opera-
tors and broad selection of travel options between city-pairs. This creates the need to understand
the European market, to be able to facilitate the analysis of the market and when making educated
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decisions on for example airline strategies. Furthermore, data on the European aviation market is
available through the University of Cranfield.

With the scope in mind, the specific goals of this research will include the following:

1. Determine an integrated model framework

2. Develop a demand generation model

3. Develop a passenger choice model

4. Develop a market competition - competitor reaction model

5. Combine the three models into a unique integrated simulation framework

6. Validate the model according to a European case study

The scope and goals can further be summarized in the below model framework (Figure 3.1), which
depicts the general process in which the research project is designed. As the figure shows, the initial
research bases itself on determining what is already available in literature with respect to the different
sub-models, as has been described in Chapter 2. This is followed by the technical design of the sim-
ulation framework, where each sub-model is designed and integrated. Following, the sub-models and
complete integrated simulation framework are tested, after which the results are analyzed. Then verifi-
cation and validation procedures follow. The complete process of design and testing is iterative, with the
resource constraints in mind. With an acceptable model in place, the integrated simulation framework
is finalized and this thesis is concluded.

Literature on  
Passenger Choice 

Theory

Literature on  
Demand Generation 

Theory

Literature on 
Competitor 

Reaction 

Conceptual 
Simulation Model

Analysis of Results
Validation & 
Verification

Integrated 
Simulation Model

Demand Allocation 
Model

Competitor 
Reaction Model

Demand Generation 
Model

Case Study 
Development

Figure 3.1: Research Framework

3.5. Research Contribution
The research will be, to the best knowledge of the author, the first integrated simulation framework which
can reproduce both the competition and passenger choice in the aviation market, while also being able
to determine general travel demand between city-pairs. The scientific and industry contributions are
described specifically in the paragraphs below.

Scientific Contribution

• By combining different models which are specifically designed to simulate certain market traits,
a generalized simulation framework can be built which is able to simulate basic aviation market
dynamics. Of interest here is to determine the possibilities of combining different models, and to
what level they are able to accurately capture these market characteristics.

• The model will be the foundation on which in the future can be extended with other models, such
as for example a fleet scheduling and maintenance planning model. Additionally, the currently
integrated models can be extended and improved on.
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Industry Contribution

• The integrated simulation framework could be used to train (future) aviation professionals in the
dynamics of the aviation market, by giving a look and feel on how different choices affect the levels
of demand for a flight option and how a potential competitor would react.

• The final model could potentially be a cost-effective tool for airlines to predict the outcomes of
future strategies, where different exogenous changes to the aviation market can be modeled and
where market structures can be analyzed in a simplified manner.
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4
Methodology

4.1. The Integrated Simulation Framework
In the following section, the design of the integrated simulation framework will be explained. Here the
focus will be on both the simulation framework as well as all the sub-models present. First, a discussion
on the simulation framework will put the model as a whole into perspective. With this in place, the
sub-models and their build will be discussed as well as how they are connected.

4.1.1. The Integrated Simulation Framework
The simulation framework has been designed according to the requirements originated from the thesis
assignment, the literature study and the project plan. The summarized process that occurred from
requirements to simulation model can be found in Figure 4.1.

Thesis Requirements Research Model

Simulation model which is capable of 
realistically simulating the aviation 
market for multiple periods in the 

European context

Including a Demand 
Generation Model

Including a Passenger Choice 
Model

Including a Market 
Competition Model

Design a model which can generate 
demand for different routes which 

can be used as the demand input for 
the simulation model

Design a model which is capable of 
determining how passengers make 
their travel choice with respect to 
different flight options including 

differentiation between direct and 
indirect flights

Design a optimization model which is 
capable of reacting to and optimizing 

for the competition environment 
 Game Player   input 

compatible 

Sub-Model 1: Demand Generation

Sub-Model 2: Demand Allocation

Sub-Model 3: Competitor Reaction

Figure 4.1: The Integrated Simulation Framework - from Requirements to Model

From Requirements to Model In general, the goal of the model is to be able to realistically simulate
passenger choice and the competition between carriers for the passengers choice, in an ’as realistic
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as possible’ method for the aviation market in the European context. Additionally, a requirement was
to make the simulation model interactive, by being able to included exogenous players inputs into the
model to create a game environment. To enable the above, while also ensuring a stand-alone model,
three different sub-models had to be designed. These three sub-models included a demand generation
model, a demand allocation model and a competition model. Each separate model will be discussed
later on in this report. The integrated simulation model has been written in Python, an open source
programming language.

Simulation Framework Setup Before the different sub-models are described in detail, it is key to de-
scribed the total models setup as a whole. In summary, the setup of the integrated simulation framework
can be found in Figure 4.2.
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Discount Economy Demand

Premium Economy Demand

Full Economy Demand

Business Demand

First Demand

Gravity Model

Input Player Flight 
Options

MNL

Share per Discount Economy Option

Share per Premium Economy Option

Share per Full Economy Option

Share per Business Class Option

Share per First Class Option

Profit optimization
Computer Flight 

Options

Output Generation

Ouput Process Input

Player Flight Options

Computer Flight 
Options

Demand OD-Pair/Class

Player Flight Options

Computer Flight 
Options

Demand OD-Pair/Class

Figure 4.2: Integrated Simulation Framework

Simulation Framework Setup Description The integrated simulation framework will be described with
respect to the general steps below, for an in-depth look with respect to the sub-models you are referred
to Section 4.1.2. The general setup of the framework is as follows:

1. Demand Generation

(a) In the first step of the model, the demand is generated for each OD-pair split per class for all
four quarters of the year. This is used as an input for the models of the simulation framework.

2. Demand Allocation

(a) In the second step, the demand generated is allocated over the different flight options which
are available.
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(b) The demand allocation process takes the static input coming from the demand generation
model, as well as variable inputs of flight options coming from the players and the computer.

(c) The demand allocation process is repeated for every simulation round.

3. Competitor Reaction

(a) The third step, is the competitor reaction sub-model. Here the computer player optimizes its
flight options over the different OD-pairs, in order to maximize its profit with respect to the
flight options provided by the different players.

(b) The output of the optimization step is then used as the new strategy set of the computer player
in the next simulation year.

4. Output Generation

(a) After every iteration of the demand allocation model, the simulation model produces output
which describes different key performance indicators (KPI’s) of the competitors included in
the model.

It should be noted that the simulation of market competition spans both the demand allocation model
and the competitor reaction model. The competition for passengers between airlines is simulated in the
demand allocation model, while the competitor reaction model is centered around the active reaction of
the computer player with respect to the different competitors in the simulation game.

4.1.2. The Sub-Models
In this subsection, the different sub-models included in the integrated simulation framework will be de-
scribed in more detail. The inputs, outputs and the process within each sub-model will be described. Ad-
ditionally, a description will be given on the simulation frameworks’ total output generation process.

Sub-Model 1: Demand Generation
The function of the demand generation model is to generate the demands for the specified number of
classes of each OD-pairs found in this model. The demands are generated for every quarter in the
simulation year, and are then used as input for the two models which follow the demand generation
model. In Figure 4.3, the diagram explaining the demand generation model can be found.

OD-Pair

Discount Economy Demand

Premium Economy Demand

Full Economy Demand

Business Demand

First Demand

Gravity Model

Figure 4.3: The Demand Generation Model with an Example for Five Seat Fare Classes

Below, the inputs, outputs and the demand generation process are explained:
Inputs

• The OD-pairs for which the demand should be generated. Which includes:

– The total number of passenger movements at both airports.

– The distance between the two airports, calculated as described in Section 4.2.4 using the
data as found in Table 4.4.
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– The seasonality effects of demand per quarter per route, as described in 4.2.5.

Process

• The demand generation process consists of a gravity model, which for the different specified routes
computes the expected demand per cabin class. The specific setup of the gravity model can be
found in Section 4.2 as well as the specifics for the calibrated gravity model in Section 5.2.

Outputs

• The outputs of the demand generation process are the demands per cabin class for the different
specified routes in number of passengers per quarter including the effects of seasonality.

Sub-Model 2: Demand Allocation
The function of the Demand Allocation model is to determine with which flight options the different pas-
sengers will fly towards their destination. The flight options are differentiated by class, frequency, yield,
whether the are direct or in direct and the OD-pair. Below, the different inputs, outputs and the demand
allocation process will be described in detail. In Figure 4.4, the models explanatory diagram can be
found.

Competitor Reaction
Output Generation

Input Player Flight 
Options

MNL

Share per Discount Economy Option

Share per Premium Economy Option

Share per Full Economy Option

Share per Business Class Option

Share per First Class Option

Player Flight Options

Computer Flight 
Options

Demand OD-Pair/Class

Figure 4.4: The Demand Allocation Model with an Example for Five Seat Fare Classes

Inputs

• Demand OD-Pair/Class - As described previously, the demands for the different classes per route
coming from the demand generation model serve as an input for the demand allocation model.

• Player Flight Options - The player flight options include the different flight options which the sim-
ulation game players have decided on. This differs per simulation iteration based on the player
decisions.

• Computer Flight Options - The computer flight options are set by the simulation model. The com-
puter flight options differ per iteration, with the input coming from the Competitor Reaction model
where the computers reaction is based on the players declared flight options. In Table 4.1, an
example of the flight inputs can be found.

Process
The demand allocation process is centered around the multinomial logit model (MNL), the buildup of this
model, as well as the calibrated model, can be found in Sections 4.3 and 5.3 respectively. Below the
general process can be found.
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• In the MNL model, the market share of each different flight option of both computer and players is
computed based on its characteristics.

• As the demand inputs are split per class, the market shares are computed for every class sepa-
rately. As a consequence, the market share per flight option, within the same class, is effectively
calculated with respect to the three independent variables: yield, flight frequency and extra dis-
tance. Business class flight options will thus compete for market share among each other, while
first class tickets will compete with the other first class tickets in the same OD-pair.

Outputs

• The outputs include the market shares for every flight option in the simulation model

• These market shares also directly lead to the computation of the passenger demand for each flight
option, irrespective of the capacity of the flight option.

Table 4.1: Flight Option Input Example

Player Flight Option Flight Origin Destination Gateway Quarter Distance Extra Distance Class Fare Frequency Seat Share Aircraft Seats Yield

1 1 1 AMS CPH 0 QTR3 633 0 Disc_EC 50 90 60 180 0.079
1 2 1 AMS CPH 0 QTR3 633 0 Prem_EC 70 90 40 180 0.111
2 3 2 AMS CPH 0 QTR3 633 0 Disc_EC 45 40 100 180 0.071

Computer 4 3 AMS CPH 0 QTR3 633 0 First 300 800 10 180 0.474
Computer 5 3 AMS CPH 0 QTR3 633 0 Business 250 800 10 180 0.395
Computer 6 3 AMS CPH 0 QTR3 633 0 Full Y 200 800 20 180 0.316
Computer 7 3 AMS CPH 0 QTR3 633 0 Prem_EC 150 800 20 180 0.237
Computer 8 3 AMS CPH 0 QTR3 633 0 Disc_EC 100 800 40 180 0.158

As the table depicts, each flight option has its own cabin class, yield and seat share. Flight options are
combined into flights, where each flight has a maximum number of seats and a flight frequency. For
example, from Table 4.1, flight 1 has two flight options: discount economy and premium economy with
a maximum of 180 seats for the total flight and a flight frequency of 90 flights. 60% of those flights are
in the discount economy class, while the other 40% are found in premium economy.

Sub-Model 3: Competitor Reaction
The last sub-model in the integrated simulation framework consists of the competitor reaction model
as depicted in Figure 4.5. This model is specifically designed for the computer player in the simulation
model. The model consists of an optimization model which is described in detail in Section 4.4. Below,
the general workings are explained.

Profit optimization
Computer Flight 

Options
Player Flight Options

Computer Flight 
Options

Demand OD-Pair/Class

Figure 4.5: The Competitor Reaction Model

Inputs

• Demand OD-Pair/Class - The demands for every cabin class per OD-pair determine the potential
for every flight option to generate revenue.

• Player Flight Options - The player flight options, along with the calculated utility values are used to
determine the competition the computer is up against. These strategies will be taken into account
in the optimization.

31



• Computer Flight Options - The computer flight options are the flight options which will be optimized
for by the simulation framework with respect to flight frequency and yield. The computer has flight
options in every route for every class in each quarter of the simulation.

Process

• Profit Optimization - The competitor reaction is based on a profit optimization of the computers
strategy. This effectively means that the computer player plays to survive against the decisions
the other competitors make. The exact method which is used to do this is explained in detail in
Section 4.4, but the general method is described below:

– The Computer flight options are optimized with respect to the flight frequency and yield, taking
the effect of these choices on the market share, flight cost and profit into account. Additionally,
the optimal seat share within the aircraft is determined to maximize profit.

– Constraints in the optimization include the number of seats available on the aircraft and sev-
eral capacity constraints for each simulation year.

Outputs

• Optimized Computer Flight Options - The output of the competitor reaction model consists of the
flight options of the computer for the next simulation year.

Output Generation
The output generation process of the integrated simulation model, computes the different outputs from
the simulated data. This can then be used to reflect on the simulation model and serve as input for the
players to make choices for a possible new simulation round. The different outputs generated in this
sub-model are the following:

• Demand related

– The demand per flight option

– The capacity per flight option

– The spill per flight option and per route

– The load factor of the different flight options and the players as a whole

• Operational KPI’s

– Available Seat Kilometer (ASK)

– Revenue Passenger Kilometers (RPK)

– Revenue Available Seat Kilometer (RASK)

– Cost Available Seat Kilometer (CASK)

• Monetary values

– The revenue per flight option

– The cost per flight

– The profit per flight

– The profit per player

4.1.3. Data Availability
Supplement to the thesis models was the available data for the different sub-models within this simulation
framework. In this subsection, the different data-sets available and used will be discussed. The exact
manner in which the data was mined and cleaned to make it applicable to use for different purposes
during this research will be explained in the appropriate sections.

32



OAG
OAG, the main data source for this thesis, was generously made available by the University of Cran-
field. OAG is a global leader with respect to digital flight data, with data ranging from flight schedules,
passenger booking data up until real time flight statuses. Below, a small description can be found of the
exact data-sets provided for this thesis work.

OAG - Marketing Information Data Tapes
The OAG Marketing Information Data Tapes(MIDT) consists of data on passenger bookings including
information on Origin and Destination (OD) pairs, average fare prices per cabin class for both direct and
connecting flights. Effectively this data consists of OD pair MIDT data at a monthly level. OAG presents
the raw data in the form as found in Table 4.2. The data available consists of monthly booking information
for the years 2011-2015. The OAG MIDT data has been used specifically for its booking data, helping
to calibrate the gravity model and MNL model for demand generation and demand allocation purposes
respectively.

Table 4.2: Summarized Example data OAG - MIDT

Pub. Al. (Dominant) Origin Gateway 1 Destination Cabin Bookings Fare Timeseries

Lufthansa German Airlines Madrid Barajas Apt Frankfurt International Apt Copenhagen Kastrup Apt Premium Economy 9.45 104 201104
Lufthansa German Airlines Madrid Barajas Apt Frankfurt International Apt Copenhagen Kastrup Apt Discount Economy 89.08 0 201104

Air Berlin Frankfurt International Apt Palma de Mallorca Madrid Barajas Apt Discount Economy 98.5 0 201110
KLM-Royal Dutch Airlines Copenhagen Kastrup Apt Amsterdam Madrid Barajas Apt First 26.76 108 201107

OAG - Schedules
The OAG - Schedules database consists of data with information on airline schedules, capacity and
airline movements. Effectively the data consists of flight schedules for the selected routes on the daily
level , an example of this can be found in Table 4.3. The data was used to determine flight frequencies
of the different flight options in the MIDT data-set.

Table 4.3: Example data OAG - Schedules

Published Carrier Flight Number Origin Destination Departure Time Arrival Time Elapsed Time Distance (KM) Equipment Frequency Seats Time series

9U 864 CDG FRA 1155 1315 1:20 449 320 8 1312 201111
AF 1000 CDG MAD 715 920 2:05 1061 32S 5 750 201107
AF 1001 MAD CDG 1015 1220 2:05 1061 32S 4 600 201105

Eurostat
Eurostat, the official statistics office of the European Union, strives to set data collection standards and
distribute high-quality data and statistics on a multitude of sectors and subjects within the European
Union. Sectors of which data is available include: the general economy, population and transport. This
data source is free to use.

Eurostat - Air Transport Measurements - Passengers
For this thesis, the Eurostat air transport measurements - passengers was collected and used. This
set of data provided information on the total traffic at the different airports specified for a selection of
years.

OpenFlights Airports Database
For this thesis, the distances between airports had to be computed and to achieve this, the open source
airport database provided by OpenFlights was used (OpenFlights, 2014). This database holds informa-
tion on over 10,000 airports around the globe, including the needed locational data which could be used
to determine the distance.

4.2. Sub-Model: Demand Generation
In the following section, the design methodology of the demand generation model will be described.
The section will start off with a description of the method selection, followed by the models mathematical
formulation. Next, the data used and in which manners it was manipulated to be used for calibration will
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be described. Additionally, the process of deseasonalization is described, which is the last step before
the data is used for calibration. The final subsection describes the gravity model calibration itself, as
well as the software with which it is done.

4.2.1. Method Selection
As described in Section 2.1.1, a distinction can be made between two main subsets of demand gen-
eration models which are used to predict demands between two airports: qualitative and quantitative
models. For this thesis, the decision was made to specifically look at demand generation from a math-
ematical perspective, thus quantitative models have been considered to be most suitable to focus on.
The demand generation model sought after had one generic requirement: it should be simple to de-
velop and to implement, while staying meaningful. Furthermore, the model was intended to be used for
a multitude of markets and thus be robust and flexible in demand prediction, adding new routes should
only require minimal changes to the model. Additionally, a relationship between air travel demand and
market characteristics should be captured, while being applicable in both the long and short term time
frames. With the previously stated criteria in mind and the trade-off table between the different model
types found in Table 2.1, the decision was made to develop a gravity model which could accurately
predict demand between two airports.

4.2.2. Mathematical Formulation
The main concept of a gravity model is that there are attracting and deterring variables which affect the
amount of attraction felt for example between two cities. The type of variables used to model these
attracting and deterring effects can consist of a multitude of different types and is very much subjective
to the available data. In the following subsection, the mathematical formulation and the accompanying
parameters used in this thesis will be described.

Gravity Model Formulation
The demand generation gravity model used in this thesis is represented by Equation 4.1:

𝑇።፣፜ =
𝐴።𝐴ᎎ፣
𝐷᎐።፣

∗ 𝑒፜Ꮃ∗ፏ፫፞፦ፄዄ፜Ꮄ∗ፅ፮፥፥ፘዄ፜Ꮅ∗ፁ፮፬ዄ፜Ꮆ∗ፅ።፫፬፭ዄፊ (4.1)

Here 𝑇።፣፜ describes the passenger demand between airports 𝑖 and 𝑗 for each different class 𝑐.𝐷።፣ repre-
sents the shortest distance between the two airports, while 𝐴። and 𝐴፣ contain the total amount of yearly
passengers at both airports. To account for the distribution of passenger demand per class, dummy vari-
ables for each class are included with accompanying coefficients 𝑐፜. 𝐾 is an equation constant.

As can be seen in Equation 4.1, the demand generation formula will compute the passenger demand
between two airports per class irrespectively of the supply. As described by Grosche et al. (2007), the
advantage of predicting demand in this manner is that demand can be considered unconstrained by the
levels of service between the two airports and thus consists of the total potential travel demand. This
is ideal for simulating realistic air transport demand environments, while also being applicable to new
routes between airports. However, as the gravity model designed uses the total traffic at both airports
as one of its input variables, the demand is not fully unconstrained as it is assumed these passengers
have already proved willingness to use air transport over other forms of transport. This is on the other
hand an advantage for the same reason, namely these passengers are willing to fly. If demand were to
be predicted completely unconstrained, geo-economic variables should be used which are not directly
affected by air travel supply. The scaling of the travel proportions between air travel and non-air travel
between city-pairs have not been researched as this was considered out of scope here.

Another observation can be made with respect to the fact that a split per class is made in the gravity
model. The reason for this is that, for model simplicity purposes, the assumption ismade that passengers
of the different classes will only be interested in flying that specific class. It has thus been assumed that
for example passengers who usually fly discount economy will not be willing to buy business class
tickets.
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Parameters Included
The parameters included in Equation 4.1 are individually described below:

• 𝐴። and 𝐴፣ - the passenger traffic at both ODs airports

– The use of parameters which describe the passenger traffic at both ODs give a good measure
of the economic activity and the level of income of the airports region and catchments area
(Doganis, 1966). Therefore, separate data (often difficult to come by) can be replaced by
using airport traffic data.

– In this gravity model, the product of the passenger traffic is used as an independent variable.
Therefore, the demand predicted can be considered unidirectional.

• 𝐷።፣ - Shortest distance between the two airports 𝑖 and 𝑗
• 𝑐፜- Coefficient for distribution of passenger demand per class 𝑐
• 𝑃𝑟𝑒𝑚𝐸- Dummy variable which represents the premium economy class

• 𝐹𝑢𝑙𝑙𝑌- Dummy variable which represents the full economy class

• 𝐵𝑢𝑠- Dummy variable which represents the business class

• 𝐹𝑖𝑟𝑠𝑡- Dummy variable which represents the first class

• 𝐾 - Regression intercept

– The regression intercept is a constant which describes the value for the regression if all inde-
pendent variables were to be zero.

To clarify: the demand for a route in the economy class can be computed when all cabin class dummy
variables described above are set to zero.

Gravity models can be extended with a multitude of different parameters. As described in Section 2.1.2,
these parameters comprise of geo-economic or service related components. The choices of using the
above described parameters was to ensure a simple yet meaningful model, while maximizing the use
of the information coming from the data available. More on the data available for this model will be
discussed in the following section.

4.2.3. Data
In the following section, the steps taken to construct data-sets which will be used for the calibration of
the demand generation gravity model will be discussed. A general overview of the numbered steps
can be found in Figure 4.6, this will also be the manner in which the data manipulation process will be
described.

Deseasonalized data 
per OD pair/QTR/Cabin

Calibrated Gravity 
Model

7Raw – OAG MIDT

1

Aggregation

2

3

Calc. 2

8

9

Calibration 
Gravity Model

10

Data per OD pair/QTR

Data per OD pair/QTR/
Cabin

Deseasonalize

4

Calc. 1Calc. 1

5

6

Figure 4.6: Data Use Demand Generation Model

The data manipulation steps are as follows:

1. Collection of MIDT data

2. Aggregation - The raw data-set is aggregated for demand for every route per quarter
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3. Aggregation - The raw data-set is aggregated for demand for every route per cabin class and per
quarter

4. Deseasonalization of demands data using the technique of moving averages. For more on this
technique see Section 4.2.5

5. Calculation of the total number of passengers per route per quarter

6. Calculation of the percentage of passengers per cabin class over the total amount of passengers
for that route per quarter.

7. Computation final dataset: Combining the aggregations, the outputs of the deseasonalization and
calculation one

8. Total number of passengers per route per quarter is deseasonalized

9. Percentage of passengers per cabin class is multiplied with the deseasonalized total demand per
route per quarter to obtain the deseaonalized passenger demand per cabin per route per quarter

10. The gravity model is calibrated with the final data-set

4.2.4. Airport Distance Calculations
For the demand generation model, as well as multiple other sub-models within the simulation framework,
the distance between the different specified airports needs to be computed. This is done using a data-set
which includes all the locations of airports in Europe. The data comes in the format found in Table 4.4.
As can be seen, the locations are specified with respect to their latitudinal and longitudinal locations.
To compute the distance between two locations using these parameters, the ’haversine’ equations are
used:

𝑎 = 𝑠𝑖𝑛ኼ(Δ𝜙2 ) + 𝑐𝑜𝑠(𝜙ኻ) ∗ 𝑐𝑜𝑠(𝜙ኼ) ∗ 𝑠𝑖𝑛
ኼ(Δ𝜆2 )

𝑐 = 2 ∗ 𝑎𝑠𝑖𝑛(√𝑎)
𝑑 = 𝑅 ∗ 𝑐

(4.2)

Here 𝜙 is the latitude, 𝜆 is the longitude, 𝑅 is the earths radius (which is approximately 6,371km) and 𝑑
is the greater-circle distance between the two airports.

Table 4.4: Airport Locations Example

Name City Country IATA/FAA ICAO Latitude Longitude Altitude

Heathrow London United Kingdom LHR EGLL 51.4775 -0.46139 83
Schiphol Amsterdam Netherlands AMS EHAM 52.30861 4.763889 -11
Barajas Madrid Spain MAD LEMD 40.49356 -3.56676 2000

Charles De Gaulle Paris France CDG LFPG 49.01278 2.55 392

4.2.5. Deseasonalization of MIDT Data
The deseasonalization of data is used to remove the seasonal effects found in the data and make the
data more stable for calibration. By doing this, the cyclic trend is removed and what remains is the
underlying trend of the data. For an example of this process please refer to Figure 4.7.
In first instance, an attempt was done at deseasonalizing the data for every route, per quarter and
per cabin classes. However, due to the lack of datapoints in some cabin classes, this was not a viable
option. It was therefore decided to deseasonalize the data points per route per quarter, to ensure reliable
results.

Deseasonalization was done through the method of moving averages, which is described step for step
below:
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1. Computation of the average quarterly values for every route

(a) The average quarter one value would for example be equal to:

𝑞𝑎፧ = (𝑞ኻ, 𝑞኿, 𝑞ዃ, 𝑞ኻኽ, ...)/#𝑦𝑒𝑎𝑟𝑠 (4.3)

(b) Where 𝑞፧ are the demands for the specified quarter of each year and 𝑞𝑎 is the average
demand for the specified quarter

2. Computation of the average value of demand of the entire data-set (𝐴̄)
3. Compute the deseasonalized demand value (𝑑𝑑)

(a)
𝑑𝑑 = 𝑞፧ − (𝑞𝑎፧ − 𝐴̄) (4.4)

With the data deseasonalized, the gravity model could then be calibrated. The cyclic effects of season-
ality were however not discarded, but added back to the predicted data to reproduce seasonal effects. In
the integrated simulation framework you will therefore provide demand with seasonality effects, similar
to reality.

Figure 4.7: Example of Deseasonalized Demand for the London Amsterdam Route

4.2.6. Calibration Techniques and Software
There are multiple manners in which calibration can be done, ’ordinary least squares’ being the most
common (Grosche, 2009). Below, this technique is described as is the software package used and the
performance checks which followed. In Section 5.2, the results of the calibration process done during
this thesis will be described.

Calibration Technique - Ordinary Least Squares
The calibration of the gravity model as described in Equation 4.1 was done using the method of ordinary
least squares (OLS), as is used to calibrate in the research by Grosche et al. (2007) and many others.
Here, the Equation for the gravity model first had to be transformed using logarithmic techniques to
develop a linear function which could be used for the linear regression technique. Equation 4.5 depicts
the transformed Equation 4.1.

𝑙𝑛(𝑇።፣፜) = 𝑘 + 𝛼 ∗ 𝑙𝑛(𝐴።𝐴፣) − 𝛾 ∗ 𝑙𝑛(𝐷።፣) + 𝑐ኻ ∗ 𝑃𝑟𝑒𝑚𝐸 + 𝑐ኼ ∗ 𝐹𝑢𝑙𝑙𝑌 + 𝑐ኽ ∗ 𝐵𝑢𝑠 + 𝑐ኾ ∗ 𝐹𝑖𝑟𝑠𝑡 (4.5)

The OLS technique is based on the minimization of the sum of squares of the difference between the
predicted values by the linear model and the actual values which are being predicted. This method
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however, as pointed out in Silva and Tenreyro (2006), estimates the values of 𝑙𝑛(𝑇።፣፜) and not of 𝑇።፣፜
which can lead to discrepancies. This inequality is known as the Jensen’s inequality and has as an effect
that estimates may be unreliable, yet in many applications this has been neglected (Silva and Tenreyro,
2006).

Data Analysis Type
Calibration of the gravity model can, as explained in Section 2.1.3, be done using different types of data-
sets. Time-series calibration for example consists of calibration for a specific city-pair using demand
data for different time periods, while cross-sectional calibration uses data for multiple city-pairs at a
single period in time. Panel data calibration on the other hand is done using data on multiple city-pairs
over different time periods.

The manner in which the type of analysis is possible is highly dependent on the available data. In
this thesis, the data-set used for calibration of the gravity model originated from the OAG-MIDT data-
set. The data consisted of monthly records of the amount of passengers, per flight option, per time
period. This has been aggregated to a data-set with quarterly demands, per route, per year. The final
data-set thus includes all OD-pairs, with quarterly demand spread over the years between 2011 and
2015. Furthermore, with the goal of developing a demand generation model which could be generically
used for all routes in the model, a preference for the thesis was to calibrate using panel data. With the
availability of the data and the mentioned goal for the model, the choice for panel data calibration was
evident.

Calibration Software - SPSS
The software package SPSS, a renowned statistical software package, was used to calibrate the pa-
rameters found in the demand generation gravity model. A built-in function for linear regression allowed
the simultaneous entering of parameters into the model for which the different regression coefficients
were found. After calibration, the gravity model calibration had to be tested to determine the models
performance and if it was statistically sound. The methods used to do this are described below.

Parameter Control
The first check after calibration was to determine if the parameters had the correct significance levels
and had the expected effect on the dependent variable. This was done using a t-test, which indicates
if the independent variable is explanatory of the dependent variable or if the independent variable has
little or no relation to the dependent variable. The higher the significance level is found by the t-test, the
worse the relationship between the dependent and independent variables. For this thesis, a threshold
of 0.05 was set for the significance of the parameters; if the parameter had a significance level under
the stated threshold it had the accepted significance.
If the parameters were accepted, the next step was to determine if the parameters had the expected
effect on the dependent variable, in this case the passenger demand. Positive coefficients for parame-
ters indicated that, with an increase of the variable, a positive effect would be seen with respect to the
dependent variable. Vice-versa, a negative effect on the dependent variable would be experienced in
the case for parameters with a negative coefficient.
Following these checks, an additional significance test was done to ensure that the included parame-
ters in the gravity model were not affected by multicollinearity. Multicollinearity is defined as the situ-
ation where seemingly independent variables are dependent of each other (Doganis, 2002). This can
be checked through the correlations table of the independent variables, where multicollinearity can be
identified by correlation values of over 0.86 (Doganis, 2002).

Calibration Performance Testing
After the parameter checks had been done, the total performance of the calibrated gravity model was
checked with the use of four different methods.

The first method that was used to determine the performance of the gravity model was to determine its
goodness-of-fit. The goodness-of-fit describes how well the predicted model fits the actual data. For
OLS models, the goodness-of-fit can be derived from the coefficient of multiple determination (𝑅ኼ). The
closer 𝑅ኼ is to 1, the better the fit of the the OLS model.

For the second method, the Analysis of Variance (ANOVA) table was used to determine the overall
significance of the calibrated gravity model. In this table, the significance parameter should be below
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0.05 to be accepted. With these two performance tests in place, a good view of the overall models
performance can be given.

To determine themodels workings per subset, a third method of performance testing was used. Here, the
accuracy of the different predictions were tested using the method of the standard error of the estimate.
The standard error of the estimate was computed using Equation 4.6 (Lane, 1999). In this equation,
the square root is taken of the sum of the squared differences between the actual and predicted values
divided by the amount of data entries compared. With this value in place for different data subsets, the
accuracy of the calibrated gravity model can be tested for different specific cases.

[𝐻]𝜎፞፬፭ = √
∑(𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒)ኼ

#𝐷𝑎𝑡𝑎𝐸𝑛𝑡𝑟𝑖𝑒𝑠 (4.6)

The fourth and final method used to determine the models performance compared the plots of the actual
values vs. the predicted value plots of the gravity model. This visual check was used to determine how
well the predicted data fitted the actual data.

4.3. Sub-Model: Demand Allocation
4.3.1. Method Selection
For the demand allocation process, there are multiple methods which can be implemented to simulate
passenger choice with respect to different travel options. Of these options, the discrete choice models
are most popular. In this thesis, the demand allocation model was chosen with respect to expected
accuracy, the data available as well as the models complexity. The model was expected to deliver a
reasonable accuracy with the available demand, while being feasible with respect to modeling complex-
ity to fit within the time constraints of the thesis. Additionally, the demand allocation model needed to
fit well within the simulation framework as a whole. The focus was therefore on the two main models
used in literature to simulate passenger choice, namely: multinomial logit models and nested logit mod-
els. Within the total build-up of the model, the MNL model was found to be most compatible due to its
simplicity and ease of design. The MNL model was furthermore the most popular model type used for
passenger allocation (Wen and Lai, 2010), which leads to the assumption that, in general, the model
produced acceptable results. The data available was found to be compatible as well. Therefore, the pur-
pose of including a simple but effective demand allocation model, the multinomial model was considered
optimal.

The model however does have a few drawbacks, as has been discussed in the literature review section
of this report. The main drawbacks is that the model produces unreliable results when the different
choices are perceived to be similar. For example, two flight options which in the model are identical with
respect to characteristics will result in equal shares. However, in reality carrier preference may influence
passengers choice for example. This has been considered a limitation of the model in use.

4.3.2. Mathematical Formulation
Multinomial Logit Model Formulation
Themultinomial logit model which is used for demand allocation purposes consists of two main formulas,
which can be found in Equations 4.7 and 4.8. Equation 4.7, describes the manner in which the market
share of a certain itinerary is computed with respect to the other available itineraries. This is done by
taking the exponential of the utility of the itinerary, and dividing it by the sum of the exponential values of
all competing itineraries. By doing this for every separate itinerary, the shares of each different itinerary
can be defined.

𝑀𝑆። =
𝑒𝑥𝑝(𝑉።)
∑ፉ 𝑒𝑥𝑝(𝑉፣)

(4.7)

In the above equation 𝑀𝑆። is the market share for itinerary 𝑖, while 𝑉። and 𝑉፣ are the utility values for
routes 𝑖 and 𝑗.
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In Equation 4.8, the utility values needed to compute the market shares with the formula above are
determined. As can be seen in the equation, the utility function is a linear function which is based on
multiple parameters which increase or decrease the utility of a flight option.

𝑉። = 𝐾+𝛽ኻ𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦።+𝛽ኼ𝑌𝑖𝑒𝑙𝑑።+𝛽ኽ𝐸𝑥𝑡𝐷𝑖𝑠𝑡።+𝛽ኾ𝐹𝑖𝑟𝑠𝑡።+𝛽኿𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠።+𝛽኿𝐹𝑢𝑙𝑙𝑌።+𝛽ዀ𝑃𝑟𝑒𝑚𝐸። (4.8)

In the above equation 𝑉። is the utility value for route 𝑖. 𝛽፧ are the coefficients for the different variables
included in the model and determine the magnitude and effect of the variable on the flight options util-
ity.

Parameters Included
During the thesis process, different sets of independent variables were tested to determine an opti-
mal set of variables to be included. Below, the different parameters included in the utility function are
described.

• 𝐾 - The regression intercept

• 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦። - The flight frequency provided for the flight option per quarter

• 𝑌𝑖𝑒𝑙𝑑። - The yield of the flight option

• 𝐸𝑥𝑡𝐷𝑖𝑠𝑡። - The extra distance flown when using an indirect flight option

• 𝐹𝑖𝑟𝑠𝑡። - Dummy variable which represents the first class for which the value is 1 when calculating
the utility of a first class flight option

• 𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠። - Dummy variable which represents the business class for which the value is 1 when
calculating the utility of a business class flight option

• 𝐹𝑢𝑙𝑙𝑌። - Dummy variable which represents the full economy class for which the value is 1 when
calculating the utility of a full economy class flight option

• 𝑃𝑟𝑒𝑚𝐸። - Dummy variable which represents the premium economy class for which the value is 1
when calculating the utility of a premium class flight option

Independent variables such as the flight frequency are expected in the utility function describing pas-
senger choice. Some variables however need some further explaining.

During the calibration procedure it was found that the yield was the best manner in which to describe
fare in the utility function. The big advantage of using yield is that it is comparable over flight options,
irrespective of the route. Furthermore, yield also benefited within the total integrated simulation frame-
work.

The variable for extra distance is included to be able to simulate the effect on demand when passengers
take an indirect route. This parameter was chosen over a time parameter due to data availability. The
extra distance of indirect routes is quite simply computed, while extra travel time is very much dependent
on connection times between the different flights. Data on these times was unavailable so extra travel
time was therefore not an option during this thesis research.

4.3.3. Data
A number of manipulation steps have been undertaken to ensure the data was ready for the calibration
of the previously discussed MNL model. In this subsection, the different steps are discussed.

General Data Manipulation Process
The general data manipulation process can be found in Figure 4.8. The steps taken were the follow-
ing:
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Figure 4.8: General Data Use Demand Allocation

1. OAD-MIDT raw data collection

2. As advised by an industry expert often using similar data, data entries of demands of under 100
passengers and fares of under 25 EUR were removed. According to the industry expert this data
can be considered unreliable as it is incorrect. (Nicola Volta,personal communication, April 19,
2017).

3. The first aggregation ensured that the data was aggregated to contain one data entry per route
per month per carrier per cabin.

(a) Before aggregation, the stated fare was multiplied by the number of bookings to determine
the revenue. This revenue was aggregated along with the data set. After aggregation the
revenue was divided by the number of bookings to determine the average paid fare.

4. With the outputs coming from the connection frequency data, direct frequency data and the extra
distance data outputs, the final monthly data-set was created. For each data entry, the accompa-
nying frequency and extra distance were added. The blocks where the connection and frequency
data and extra distance data are computed will be described separately.

5. The second aggregation round consolidated the data to a data-set which included the different
data entries at a quarterly level.

(a) The same procedure as described in step 3 was used with respect to the average fare

(b) With the average fare in place, the average yield was computed by dividing the average fare
by the OD-distance

(c) Columns were added to the data-set to account for the dummy variables for the different
classes

(d) Market share calculations were done for every data entry

(e) The final step included the splitting of the final data-set into one data set for calibration and
one for validation

Direct and Connecting Flight Frequency Computation
The general process for the computation of the direct and connecting flight frequency process can be
found in Figure 4.9. Specifically, the following steps were taken:
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Figure 4.9: Flight Option Frequency Computation Process
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1. OAG - Schedules data collected

2. Direct frequency computation

(a) The data included had the format as described in Table 4.3. For every route, per carrier, per
month the data was aggregated to determine the total frequency for that specific month. This
was used as the direct frequency available.

3. Connecting frequency computation

(a) The raw schedule data was aggregated to determine the flight frequency, per flight number,
for each month, keeping the departure and arrival times intact.

(b) The aggregated schedule data was duplicated and positioned under the original aggregated
data-set.

(c) A new column was included to determine the time at the hub. The arrival times of flight
options in the original data-set were set as the hub time, as were the departure times of the
flight options in the duplicated data. By doing this, a possibility arose to link the different flights
to one another and determine possible connections. An example of what the new data-set
looked like can be found in Table 4.5, the data entries depicted in bold are an example of
possible connections.

(d) The criteria which determined if a flight had a possible connection were the following:

• The connecting flight had a minimal layover time of 45 minutes

• The connecting flight had a maximal layover time of 180 minutes

• The two flights were scheduled in the same year, month, location of hub and were flown
by the same carrier

• The final connection frequency was determined by the effective connection frequency
experienced by the passenger. This meant that if there was only one flight to the hub,
but three out of the hub to the destination, the passenger effectively had one connecting
flight option towards the destination. Vice-versa the same was also true. Therefore the
affected connection frequency was assumed to be limited by theminimum flight frequency
of one of the two flight legs.

4. The direct and connecting frequency outcomes were then combined to be used in the general data
use process as found in Figure 4.8.

Table 4.5: Determining Connection Possibilities

Origin Hub Destination Published Carrier Flight Number Dep_time Hub_time Arr_time

CPH AMS KL 1124 06:35 08:10
FRA AMS KL 1762 06:55 08:20

AMS LHR KL 1007 08:35 09:00
MAD AMS KL 1708 06:00 08:40

AMS FRA KL 1765 08:45 10:05
AMS CPH KL 1125 08:50 10:15

LHR AMS KL 1000 06:35 09:05
AMS MAD KL 1701 09:35 12:10
AMS LHR KL 1009 10:25 10:50

Extra Distance
To compute the extra distance flown by a connecting flight, simple formula was used. This can be found
in Equation 4.9.

𝐸𝑥𝑡𝐷𝑖𝑠𝑡። = (𝐷𝑖𝑠𝑡𝐿𝑒𝑔1። + 𝐷𝑖𝑠𝑡𝐿𝑒𝑔2።) − 𝐷𝑖𝑠𝑡𝑂𝐷። (4.9)
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Here the extra distance of flight option 𝑖 is computed by the difference between the distance of the
sum of the two flight legs, minus the distance that would have been flown if the flight were direct. The
assumption here is that the distances are the shortest distances between the two airports.

Market Share
The last step in the manipulation of the data-set to ensure it is ready to be used for the calibration of the
MNL model was to add a column describing the market shares of each flight option. The calculation of
the different market shares can be described by Equation 4.10.

𝑀𝑆። =
#𝐵𝑜𝑜𝑘𝑖𝑛𝑔𝑠።
∑#𝐵𝑜𝑜𝑘𝑖𝑛𝑔𝑠፣

(4.10)

Here the market share was computed for flight option 𝑖 by dividing the demand for flight option 𝑖 by
the sum of all bookings for flight options in the same OD-pair, in the same year and in the same quar-
ter.

4.3.4. Calibration Technique and Software
With the steps described in Subsection 4.3.3 complete, the data was ready to calibrate the MNL Model.
In particular, the coefficients of the independent variables in the utility function found in Equation 4.8
needed to be determined. This subsection will describe the manner in which this was done, as well as
which software package was used to accomplish this.

Calibration Technique - Ordinary Least Squares
The calibration technique used to determine the coefficients of the independent variables in the utility
function is based on the method used in the research done by Hsiao and Hansen (2011). The technique
consists of a method of a number of steps after which the method of ordinary least squares can be
used to determine the coefficients. The steps made and the accompanying assumptions are described
below.

The market share of a flight option is describe with Equation 4.10. With this in mind, the difference of the
market shares of two flight options in logarithmic form, can be described using Equation 4.11. Here, the
natural logarithm of the market shares of route 𝑖 and 𝑗 are found to be equal to the differences between
their utilities.

𝑙𝑛(𝑀𝑆።) − 𝑙𝑛(𝑀𝑆፣) = 𝑉። − 𝑉፣ (4.11)

The above equation creates a possibility to a linear regression which implies that the coefficients of the
variables can be computed. However, before this can be done, flight option pairs need to be determined
allowing the regression. In the research by Hsiao and Hansen (2011), it is assumed that the pairs of
alternatives will consist of a flight option and a non-air alternative. This non-air alternative is assumed to
have a market share of zero, and a utility function of zero. The assumption implies that the option of not
flying is not applicable to any passengers in the model. With respect to the total integrated simulation
framework, this assumption is acceptable as has been described previously. Therefore, it is possible to
simplify Equation 4.11 into Equation 4.12.

𝑙𝑛(𝑀𝑆።) = 𝑉። (4.12)

Extending the above equation to its full form, leads to Equation 4.13 over which a linear regression is
done to determine the 𝛽 coefficients. The market share and independent variables are obtained from
the calibration data set.

𝑙𝑛(𝑀𝑆።) = 𝐾+𝛽ኻ𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦። +𝛽ኼ𝑌𝑖𝑒𝑙𝑑። +𝛽ኽ𝐸𝑥𝑡𝐷𝑖𝑠𝑡። +𝛽ኾ𝐹𝑖𝑟𝑠𝑡። +𝛽኿𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠። +𝛽኿𝐹𝑢𝑙𝑙𝑌። +𝛽ዀ𝑃𝑟𝑒𝑚𝐸።
(4.13)

Calibration Software - SPSS
As used in the calibration of the gravity model for the demand generation purposes of this thesis, the
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calibration of the MNLmodel was done using SPSS. Additionally, the regression was also done using the
built-in linear regression option of this software package. Below, the different techniques used to verify
the estimated coefficients and to test the workings and accuracy of the model are described.

Parameter control
With the regression technique similar to that of the gravity model, the different methods used to check
the calibrated MNL model are the same as with that of the gravity model. They will briefly be discussed
below.

1. Coefficient significance check - Ensure that the significance of the calibrated coefficients is below
the threshold of 0.05.

2. Coefficient expected effect on dependent variable - Ensure that the coefficients have the expected
sign and thus effect on the dependent variable.

3. Multicollinearity check - Determine that the independent variables included in the calibration do
not have correlations of above the set threshold of 0.86.

Calibration Performance Testing
As described above, due to the similarity of the calibration of the two sub-models, the performance tests
for the calibrated MNL model are also equal to that for the gravity model. The techniques used are listed
here.

1. Goodness-of-fit - To determine howwell the predicted values from the calibratedmodel fit the actual
data the coefficient of multiple determination (𝑅ኼ) is used. The closer 𝑅ኼ is to one, the better the
fit.

2. Analysis of Variance (ANOVA) - To ensure the overall significance of the calibrated model, the
ANOVA is used to determine if the significance of the model is below 0.05. If this is the case, the
model is considered significant

3. Standard error of the estimate - To determine the accuracy of the demand allocation model for
several different specific cases

4. Visual control - By comparing the plots of the actual and predicted data to observe performance of
the demand allocation model and identify complications

Independent Variable Impact
The MNL model is built of several independent variables which describe the utility function of a flight
option. These variables differ in magnitude and size and are thus difficult to compare to one another. It
is therefore interesting to determine what impact each variable has on the market share, in a manner
which allows comparing the different variables to each other. To do this, the following equation can be
used:

𝐼𝑚𝑝𝑎𝑐𝑡፯ =
𝑎𝑏𝑠(𝑅𝑎𝑛𝑔𝑒፯ ∗ 𝛽፣)

∑𝑎𝑏𝑠(𝑅𝑎𝑛𝑔𝑒፯ ∗ 𝛽፣) + 𝑎𝑏𝑠(𝐾)
(4.14)

Here the numerator consists of the range of variable 𝑣 multiplied by the coefficient of the variable 𝑣. This
is then divided by the sum of the ranges multiplied, by their respective coefficients plus the regression
intercept. With this computation done for every independent variable, conclusions can be made on the
importance of the different variables on the market share.

4.4. Sub-Model: Competitor Reaction
The competitor reaction model consists of an optimization model which optimizes the strategy of the
single computer player. This computer player represents an average competitor to be found on a specific
route. For this model, the computers definition will be given in Section 5.1.2. This model is specifically
based on a profit optimization of the computer player over the different routes for each quarter. This
includes taking the other player strategies into account and reacting accordingly. In the following section,
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the build of the optimization model will be described. Furthermore, the software used to optimize with
will be mentioned.

4.4.1. Mathematical Formulation
In the following section, the mathematical formulation of the competitor reaction model will be described.
This subsection will be split into five parts: the model parameters, variables, intermediate formulas,
constraints and the optimization itself.

Parameters
The parameters included in this optimization model are static for every run of the optimization sequence.
However, values may differ from simulation run to simulation run. Below, the parameters required to run
this model are listed, as well as a description whether they are static or not.

• The player flight option utility values (Excluding computer flight options).

– With every new input of player flight options, the utilities of the flight options change. This
parameter may thus change between different simulation runs.

• The computer flight options

– The computer flight options are in principal an empty set of all flight options waiting to be filled
in with the variables of yield and frequency. This empty set is thus static.

• The demands per class per route

– Depending on the demand generation inputs, the values here can change form simulation
run to simulation run.

• The flight durations between OD-pairs

– Flight durations between OD-pairs are assumed to be static.

– Flight durations are computed by assuming an average speed of 880km per hour for the
aircrafts in the model and dividing the distance between the OD-pairs by the aircraft speed.

• The block hour restrictions

– The block hour restrictions parameter-set differs per simulation year. The block hour restric-
tions determine the range in block hours per route between which the computer player should
stay.

– In the first simulation year, the block hours are constrained with respect to the pre-defined
market averages. For this thesis, these averages have been defined in Section 5.1.2. After
the first optimization run, the block hour restrictions are based on the following defined rules:

⋄ The maximum increase and decrease of the block hours per route per optimization year
is 20%

⋄ If the block hours in a route are within the lowest 10% of the range after an optimization
year, the following year will have a block hour lower bound which is 5% lower in that route.

Variables
In the optimization model, the variables to be optimized are found below. For every route and every flight
option within the computer flight option set, the optimized values will need to be found. This implies that
for every route five yields will be optimized for each class, as well as one flight frequency for the flight
containing the different cabin classes.

• Yields per class per route

– The yields are constrained by upper and lower bounds. The bounds used in this thesis are
the following:

⋄ Upper bound: The average yield value of the class plus twice the standard deviation.

45



⋄ Lower bound: The minimum value of zero or the average yield value of the class minus
twice the standard deviation.

⋄ Twice the standard deviation on top of or less than the average value of yield is used to set
realistic bounds and remove unwanted outliers. By using twice the standard deviation,
according to Chebyshev’s inequality irrespective of the distribution of the data, 75% of
the values will be within the 2 standard deviations of the mean (Taylor Courtney, 2016).
This is assumed a reliable bound to work with.

⋄ In the lower bound, the maximum value is determined between the two stated values to
ensure the minimum yield does not return negative values.

• Flight frequency per flight

– The flight frequency is bound by the block hour restrictions, which have been previously de-
scribed. Conversion from block hours to frequency is done using the flight time between
OD-pairs.

– The flight frequency variable was specified to be an integer.

Pre-Computations
To ease computation and understandability of the optimization model, several preliminary computations
were done. These can be found in the equations below, along with their separate descriptions.

In Equation 4.15, the market share calculation for the computer flight option per class 𝑐 and per route 𝑛
can be found. It was derived from the market share equation found in Equation 4.7. In Equation 4.15,
the market share is computed with respect to the static utilities of the player flight options. This equation
is later on used in the optimization process.

𝑀𝑆፧፜ =
𝐸𝑋𝑃(𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑈𝑡𝑖𝑙𝑖𝑡𝑦፧፜)

𝐸𝑋𝑃(𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑈𝑡𝑖𝑙𝑖𝑡𝑦፧፜) + ∑፧፜ 𝐸𝑋𝑃(𝑃𝑙𝑎𝑦𝑒𝑟𝑈𝑡𝑖𝑙𝑖𝑡𝑦፧፜)
(4.15)

In Equation 4.16, the total flight block time per route 𝑛 is computed which is later on used to build
constraints on. It consists of the flight time between the OD-pair, multiplied by the flight frequency of the
computer in that route.

𝑇𝑜𝑡𝑎𝑙𝐹𝑙𝑖𝑔ℎ𝑇𝑖𝑚𝑒፧ = 𝐹𝑙𝑖𝑔𝑡𝑇𝑖𝑚𝑒፧ ∗ 𝐹𝑙𝑖𝑔ℎ𝑡𝐹𝑒𝑞𝑢𝑒𝑛𝑐𝑦፧ (4.16)

In Equation 4.17, the revenue of all the different flight options are computed. This is done by summing
the revenue of all classes 𝑐 for every route 𝑛. As can be observed, the revenue is a function of the
market shares. With the market share being a non-linear function based on a MNL model, this leads to
the entire equation being non-linear.

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 =∑
፧፜
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒፧ ∗ 𝑌𝑖𝑒𝑙𝑑፧፜ ∗ 𝑀𝑆፧፜ ∗ 𝐷𝑒𝑚𝑎𝑛𝑑፧፜ (4.17)

In Equation 4.18, the cost of the flight per route 𝑛 are calculated. This is done using the flight frequency,
distance and number of aircraft seats available. The formula for this cost model has been researched
and designed by Swan and Adler (2006) to estimate cost for short-haul flights (≤5000km). Adler et al.
(2010) improved the cost model to make it applicable to European short haul flights by multiplying the
equation by 2.2 to be able to convert dollars into euros as well as account for general administrative
overheads and commission costs.

𝐶𝑜𝑠𝑡 = 𝐹𝑙𝑖𝑔ℎ𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦፧ ∗ (0.019 ∗ (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒፧ + 722) ∗ (𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑆𝑒𝑎𝑡𝑠 + 104) ∗ 2.2) (4.18)

In Equation 4.19, the profit of the computer player is determined. This equation is optimized to determine
the computer players’ reaction. As the revenue is a non-linear function, the profit optimization is found
to be non-linear.

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐶𝑜𝑠𝑡 (4.19)
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Constraints
To ensure the optimization model stays within realistic bounds, constraints have been added to the
model. The first set of constraints can be found in Equation 4.20 which describes the capacity constraint.
This constraint ensure that for every route 𝑛 in the model, the sum of passengers for all cabin class 𝑐
does not exceed the total number of aircraft seats available on that route.

∑
፜
𝐷𝑒𝑚𝑎𝑛𝑑፧፜ ∗ 𝑀𝑆፧፜ ≤ 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑆𝑒𝑎𝑡𝑠 ∀𝑛 ∈ ℕ (4.20)

The second set of constraints is used to ensure that a minimum number of block hours is achieved per
route 𝑛. This is done to ensure that the computer player, which is supposed to simulate the average
competitor found in a route, represents general competition in a market. The constraint can be found in
Equation 4.21.

𝑇𝑜𝑡𝑎𝑙𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒፧ ≥ 𝐵𝑙𝑜𝑐𝑘𝐻𝑜𝑢𝑟𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚፧ ∀𝑛 ∈ ℕ (4.21)

The final constraint is found in Equation 4.22. In this constraint the total number of block hours available
over all routes is defined. The total number of block hours is a maximum number of block hours which
the computer player can fly over all routes. This ensures that the total amount of block hours, which
would be limited by capacity constraints in reality, is limited in the model as well. The maximum total
amount of block hours used in this thesis can be found in Section 5.1.2.

∑
፧
𝑇𝑜𝑡𝑎𝑙𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒፧ ≤ 𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝐻𝑜𝑢𝑟𝑠 (4.22)

Optimization
With the parameters, variables and preliminary computations defined, the optimization itself is simple to
explain. For every quarter in the year that is optimized for, the optimization model optimizes the profit
function as found in Equation 4.19. The decision variables include the flight frequency, the yields per
separate class and the seat share per class per flight for the computer in every route. By combining the
four optimized quarters of computer flight options, a new computer flight option strategy set is created
with which the rest of the simulation can be run.

4.4.2. Optimization Software
As can be deduced from Section 4.4.1, the optimization is based on a non-linear formulation. To be able
to cope with this non-linear optimization problem, a software package was sought which could handle this
type of optimization and also be integrated within the Python environment (in which the integrated simu-
lation framework was programmed). The software package capable of doing the optimization was found
in the open source APMonitor optimization software (Hedengren et al., 2014). This software package
is a combination of different large-scale optimization solvers used for linear, quadratic, nonlinear, and
mixed integer programming and was thus capable of optimizing the problem found in this thesis.

4.5. Simulation Model Assumptions and Their Implications
With the general operation method of the integrated simulation framework defined, there are a number of
assumptions which have been made in the different sub-models which apply to the entire model. These
assumptions and their implications are described below.

• All demand generated is assumed to want to fly. Passengers will only not fly if and when capacity
levels are too low to accommodate these passengers.

– This assumption has as a consequence, that it is assumed that the passenger demand gen-
erated is irrespective of supply effects. Therefore pricing and frequency will not have an effect
on the demand itself. In reality, this will not be the case but as an assumption it is reasonable
if frequencies and fares are kept to an average experienced industry level.

• Demand generated is directly split over the different cabin classes.
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– This assumption has as a consequence that buy-ups of buy-downs do not occur in this model.
Passengers will thus only fly in the class in which they have been split. In reality shifting
between classes would be possible, however large shifts between different cabin levels are
not expected. Passengers flying economy class are not expected to quickly divert to business
class and vice versa. This simplification in the simulation model is expected to effect the
reliability of the model, but not very severely.

• The non-air alternative has a market share of zero

– As described in the demand allocation model, the market share and utility of the non-air al-
ternative, which is used to calibrate, is assumed to be zero. This is in accordance to the first
assumption stated, which assumes all passengers in the model are wanting to fly. Further-
more, the demand generation model is calibrated using the total passengers at both airports
who are already showing their readiness to fly, thus it is a reasonable assumption that these
passengers only want to fly.

48



5
Simulation Model Calibration

This chapter will describe the simulation model calibration process and results. The focus of this chapter
will be on the general definition of the simulation framework, including descriptions on the airports used,
the routes included and supply and demand characteristics. These sets of information will provide the
simulation framework with a scope definition, the opportunity to calibrate two of the three underlying
sub-models and provide the computer player with possible strategy sets.

The chapter will commence with the definition of the simulation frameworks scope. This will be fol-
lowed by the calibration results of the demand generation model. In the final section of this chapter, the
calibration results of the demand allocation model will be enlightened on.

5.1. Simulation Framework Scope
The integrated simulation model has been built with the European context in mind. Therefore, decisions
have been made to determine what the scope would be within this European context, while ensuring
the feasibility of the development within the time limit set for the thesis. Below, the decisions made with
respect to the airports that would be included in the model have been explained. These airports define
the scope for which the model will simulate and determines the data for which the different sub-models
are calibrated. In Section 5.1.2 the route characteristics, which follow from the airport selection, are
described.

5.1.1. Airport Selection
Airport Criteria
The simulation model has a focus on the internal European market. Besides, it was decided that the
airports in this model would only include those which are the major airport of their country. The assump-
tion behind this being that these airports fulfill a similar of transportation function and cater for a broad
selection of passengers types. Additionally, major airports provide services from many different type of
air carriers with different business models. The final intention with respect to selecting the airports to
be included in the simulation model was based on ensuring a locational spread of airport location from
north to south.

Selected Airports and Routes
With the criteria and intentions described above in mind a selection of airports was made. The airports
all fall within Western European states including the north of Denmark’s Copenhagen airport as well as
Spain’s largest airport (with respect to passengers) Madrid Barajas. In Table 5.1 the complete selection
of included airports in the simulation model can be found.

With respect to the routes included in the model, not all possible OD-pairs from this selection are in-
cluded in the model. The reason for this is the distance between the two cities. As described in the
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Table 5.1: Airport Selection

Country Airport City Served Passengers 2015 Passengers 2016

United Kingdom Heathrow Airport London 74,985,475 75,711,130
France Charles de Gaulle Airport Paris 65,766,986 65,933,145

Netherlands Amsterdam Airport Schiphol Amsterdam 58,284,848 63,625,664
Germany Frankfurt Airport Frankfurt 61,032,022 60,786,937

Spain Adolfo Suárez Madrid–Barajas Airport Madrid 46,824,838 50,420,583
Denmark Copenhagen Airport Copenhagen 26,610,332 29,043,287

research by Grosche et al. (2007), routes above 500km experience less competition from other modes
of transportation. With this constraint, the assumption is made that the travel between the OD pair will
consist out of air travel. Therefore, in this thesis only routes above 500km are in scope. An exception
is made between the airports of London and Amsterdam, to the authors best knowledge, the travel time
due to the sea and the route needed to be taken by rail transport give reason to exclude the route from
this constraint. The route from Paris to London does not apply for this assumed exclusion, as the rail
link between the cities is in comparison to that from Amsterdam much more effective. In comparison,
Amsterdam-London by train will take around five hours, while a flight will take one hour. Paris-London
on the other hand is approximately two hours by train, while the flight is around one hour.

Calibration and Validation Routes
During the process of calibration and validation of the different sub-models in the integrated simulation
model, a split was made between routes that would be used for calibration and those that would be
used for validation of the sub-models. This selection can be found in Table 5.2. The validation process
was constructed to be cross panel, to be able to test if the simulation framework was generalizable to
routes with similar characteristics. If this were found to be the case, the simulation framework could then
be extended for routes with similar characteristics with minimal modifications. This would greatly ease
scaling the simulation framework to a larger network.

Table 5.2: Model Routes

Calibration Validation Excluded Routes

AMS-LHR CPH-FRA AMS-CDG
LHR-AMS FRA-CPH CDG-AMS
LHR-MAD CPH-LHR CDG-FRA
MAD-LHR LHR-CPH FRA-CDG
AMS-MAD FRA-MAD AMS-FRA
MAD-AMS MAD-FRA FRA-AMS
AMS-CPH CDG-LHR
CPH-AMS LHR-CDG
CDG-CPH
CPH-CDG
CDG-MAD
MAD-CDG
FRA-LHR
LHR-FRA
MAD-CPH
CPH-MAD

5.1.2. Route Characteristics
In this subsection, the route characteristics which follow from the airport selection are discussed. In this
part of the report, the focus will be on the characteristics which influence and are used in the integrated
simulation framework as a whole, and some of which are used as inputs for the computer player. These
characteristics include the total traffic at the airports for different years, block hour statistics and yield
statistics.
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Demand statistics are not described here, as they are used for calibration purposes only and not as inputs
for the simulation model itself. Information on demand statistics are thus discussed in the appropriate
sections of this thesis report.

Total Traffic Airports
In Table 5.3 the total traffic at each airport can be found. It can been seen that the largest airport in terms
of traffic in this data-set is London Heathrow. The smallest airport in this data set is the Copenhagen
airport, while the other three airports are quite similar in size. As described previously, these values are
used in the demand generation process. The values have been collected for the data source Eurostat
for the years 2011-2015, in accordance with the years available in the OAG MIDT data sets. Depending
on the settings used in the integrated simulation framework, the corresponding values from Table 5.3
are used for the applicable simulation year.

Table 5.3: Total Traffic at the Airports

MAD AMS LHR CPH FRA CDG

2011 49574061 49838392 69475746 22707908 56561629 60871885
2012 45181569 51107756 70108071 23310622 57752093 61620823
2013 39708868 52626164 72402110 24041898 58158784 62027269
2014 41581093 55029358 73439386 25681268 59687019 63781392
2015 46335711 58315280 75017520 26625779 61139124 65764343

Block Times
In Table 5.4, the block time statistics of every route in the data set can be found. This table consists of
values on the average, maximum and minimum block times flown in each route, as well as the average,
maximum and minimum frequency flown in reach route. Additionally, the flight time is stated in index
form. The block times found in this table are used in the competitor reaction model when optimizing
the computer player, which acts as a typical competitor that is on average found in each route. The
block times below are the values which represent the average of the competition in each route. The
total maximum block time over all routes has been defined as the sum of all average block times over all
routes found in the table below. This value is used to determine a maximum capacity over all routes for
the computer player. The minimum values for each route, are used as minimum block time constraints
in each route for the optimization model.

Table 5.4: Block Times Typical Competitor

Route Avg. Block Time [h] Max. Block Time [h] Min. Block Time [h] Avg. Freq. [Flights/QTR] Max. Freq. [Flights/QTR] Min. Freq. [Flights/QTR] Flight Duration [h]

AMS-CPH 400 584 25 378 552 24 1.06
AMS-LHR 609 764 222 811 1018 296 0.75
AMS-MAD 580 1097 44 292 552 22 1.99
CDG-CPH 454 696 118 307 470 80 1.48
CDG-MAD 463 1093 37 301 710 24 1.54
CPH-AMS 409 584 27 387 552 26 1.06
CPH-CDG 469 696 133 317 470 90 1.48
CPH-FRA 359 513 125 322 460 112 1.12
CPH-LHR 627 760 189 434 526 131 1.44
CPH-MAD 172 796 27 64 297 10 2.68
FRA-CPH 377 513 134 338 460 120 1.12
FRA-LHR 852 1188 339 792 1105 315 1.08
FRA-MAD 506 898 109 260 462 56 1.94
LHR-AMS 613 764 224 817 1018 298 0.75
LHR-CPH 639 760 208 442 526 144 1.44
LHR-FRA 856 1188 329 796 1105 306 1.08
LHR-MAD 1546 2087 403 886 1196 231 1.74
MAD-AMS 565 1097 26 284 552 13 1.99
MAD-CDG 460 1093 37 299 710 24 1.54
MAD-CPH 182 750 29 68 280 11 2.68
MAD-FRA 513 897 115 264 461 59 1.94
MAD-LHR 895 1284 244 513 736 140 1.74

Yield
Table 5.5 describes the yield statistics found in the data set per class. As with the block times, the
computer player acts as a typical competitor that is on average found in each route. The yields below
are the values which represent the average, maximum and minimum of the competition in each route
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per class. The yields found in this table are used as inputs in the optimization model. How this is
implemented, has been explained in Section 4.4.1.

Table 5.5: Yields Computer

Cabin Average Yield Max. Yield Min. Yield Std. Dev. Yield

Business 0.757 5.510 0.054 0.386
Full Economy 0.571 1.139 0.172 0.178

Premium Economy 0.225 1.205 0.021 0.197
Discount Economy 0.124 0.414 0.019 0.082

First 0.085 0.549 0.013 0.080

Seasonality
Table 5.6 shows the seasonality data used to simulate seasons in the model for quarter 1. During
the process of deseasonalization, the seasonal variability per quarter was computed. The demand
generated with the gravity model, generates deseasonalized demand. Thus by adding the values found
in the mentioned tables back to the demand generated, seasonality effects are returned to the generated
demand. For the seasonality tables of the other quarters, please refer to Tables A.1, A.2 and A.3.

Table 5.6: Route Demand Seasonality Quarter 1

Route Month Moving Average Seasonality Effects Seasonality Percentage

AMS-MAD Qtr1 31063 -6522 79.0%
CPH-MAD Qtr1 4617 -1198 74.1%
MAD-AMS Qtr1 33471 -5044 84.9%
MAD-CPH Qtr1 3993 -1262 68.4%
CPH-CDG Qtr1 26521 -6936 73.8%
AMS-CPH Qtr1 27788 -4629 83.3%
CDG-CPH Qtr1 26473 -7663 71.1%
LHR-MAD Qtr1 40209 -3914 90.3%
FRA-LHR Qtr1 87191 -5050 94.2%
LHR-FRA Qtr1 90379 -4976 94.5%
MAD-CDG Qtr1 30776 -7007 77.2%
CDG-MAD Qtr1 29164 -8165 72.0%
CPH-AMS Qtr1 28359 -3728 86.9%
MAD-LHR Qtr1 40185 -4051 89.9%
AMS-LHR Qtr1 81494 -4520 94.5%
LHR-AMS Qtr1 87053 -5587 93.6%

5.2. Sub-Model Calibration: Demand Generation
This section discusses the results of the calibration of the demand generation model. This model is one
of the sub-models within the simulation framework and to understand its standalone performance it is
of essence to discuss its calibration results separately. The section will start off with a description on
the data used for the model, followed by the results of the calibration on the overall performance and
subset-specific performances. Last, significance checks for the model and its parameters will be done
and the results of this displayed.

5.2.1. Data Input
In Table 5.7, the data descriptives of the data used for the calibration of the demand generation gravity
model can be found. As can be seen from this table, there were in total 1194 inputs into the gravity
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model for calibration, originating from the OAG dataset for the years 2011-2015. The spread of the data
entries per route, per cabin and per quarter were very much dependent on the availability in the data set.
It was assumed that differences in data availability were caused by the fact that some flight options were
not supplied on a route in a specific year and were therefore not available in the data-set. The spread of
data entries for the different routes and classes can be found in Appendix C, Table C.22. With respect
to the data itself, it can be seen that the ranges of the dependent variable (Deseasonalized demand)
and the independent variables (Distance and AiAj) are large. This is due to the fact that the data entries
are spread over 16 different routes over five cabin classes and five years.

Table 5.7: Total Data Set - Dependent and Independent Variable Descriptives

Descriptive Statistics
N Range Minimum Maximum Mean Std. Deviation Variance

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Statistic
Distance 1194 1.698E+03 3.670E+02 2.065E+03 9.735E+02 1.337E+01 4.619E+02 2.133E+05
Deseasonalized Demand 1194 8.841E+04 8.115E+01 8.849E+04 1.255E+04 5.542E+02 1.915E+04 3.667E+08
AiAj 1194 3.632E+15 9.547E+14 4.587E+15 2.747E+15 3.194E+13 1.104E+15 1.218E+30

In Table 5.8, the demand averages per route and cabin can be found. As expected, the discount econ-
omy class is the class which caters for the most demand per route. The order in passenger volumes for
the other classes differs per route. Interestingly enough, it does seem that the first class also caters for
quite a number of passengers in the different routes. This could be explained by the fact that the routes
included in the model are between cities which have business links, which would lead to business travel
and thus passengers flying in classes with higher prices and higher levels of services than discount
economy class.

Table 5.8: Demand Averages, Minimums and Maximums per Route and Cabin

Route Cabin Data Count Min Max Average Route Cabin Data Count Min Max Average

AMS-CPH Discount Economy 20 19415 42381 29634 FRA-LHR Discount Economy 20 60248 74547 69709
AMS-CPH First 18 731 5099 1855 FRA-LHR Premium Economy 20 2785 24475 16036
AMS-CPH Premium Economy 17 108 1865 738 FRA-LHR Business 20 2384 6323 3920
AMS-CPH Full Y 14 225 1377 659 FRA-LHR Full Y 20 1222 4220 2293
AMS-CPH Business 2 243 251 247 FRA-LHR First 5 715 2261 1131
AMS-LHR Discount Economy 20 53903 90684 68225 LHR-AMS Discount Economy 20 59960 93389 75332
AMS-LHR Full Y 20 3556 10097 7468 LHR-AMS First 19 2129 9998 5131
AMS-LHR First 19 1218 6360 3731 LHR-AMS Full Y 20 2471 7551 4896
AMS-LHR Premium Economy 20 576 7265 3475 LHR-AMS Premium Economy 20 1539 6790 3966
AMS-LHR Business 20 1854 4492 3302 LHR-AMS Business 20 2229 4833 3571
AMS-MAD Discount Economy 20 18651 34836 28532 LHR-FRA Discount Economy 20 63367 79188 72356
AMS-MAD First 20 3078 10983 6836 LHR-FRA Premium Economy 20 2580 27893 16735
AMS-MAD Premium Economy 18 255 5613 2040 LHR-FRA Business 20 3098 6694 4218
AMS-MAD Full Y 14 228 1069 545 LHR-FRA Full Y 20 496 3822 1816
CDG-CPH Discount Economy 20 18386 46956 30500 LHR-FRA First 5 514 1685 922
CDG-CPH First 19 354 8723 2800 LHR-MAD Discount Economy 20 21890 52141 34026
CDG-CPH Premium Economy 20 105 1965 874 LHR-MAD Business 20 3007 7097 4139
CDG-CPH Business 3 171 422 295 LHR-MAD Premium Economy 20 576 9770 3043
CDG-CPH Full Y 5 114 533 233 LHR-MAD Full Y 20 942 5527 2649
CDG-MAD Discount Economy 20 18163 35645 27300 LHR-MAD First 3 779 2535 1770
CDG-MAD First 20 1201 16351 6327 MAD-AMS Discount Economy 20 19707 36221 28993
CDG-MAD Premium Economy 20 585 9377 3158 MAD-AMS First 20 3881 11732 6979
CDG-MAD Business 10 102 2802 880 MAD-AMS Premium Economy 19 105 5206 2357
CDG-MAD Full Y 6 102 736 347 MAD-AMS Full Y 14 111 1012 433
CPH-AMS Discount Economy 20 22403 37810 28998 MAD-CDG Discount Economy 20 18390 38850 28505
CPH-AMS First 19 817 5488 2124 MAD-CDG First 20 1379 18954 5832
CPH-AMS Full Y 17 104 1011 641 MAD-CDG Premium Economy 20 630 6341 3100
CPH-AMS Premium Economy 16 108 1252 595 MAD-CDG Business 9 172 1436 569
CPH-AMS Business 6 100 272 169 MAD-CDG Full Y 5 235 629 362
CPH-CDG Discount Economy 20 19184 47877 30059 MAD-CPH Discount Economy 20 1565 9811 4681
CPH-CDG First 20 836 8022 2718 MAD-CPH Premium Economy 13 230 1374 609
CPH-CDG Premium Economy 19 178 1791 684 MAD-CPH First 10 106 631 328
CPH-CDG Business 1 245 245 245 MAD-CPH Full Y 1 283 283 283
CPH-CDG Full Y 2 163 194 178 MAD-LHR Discount Economy 20 27870 43974 35970
CPH-MAD Discount Economy 20 1554 9790 5243 MAD-LHR Business 20 1539 6816 3427
CPH-MAD Premium Economy 11 113 1911 648 MAD-LHR Full Y 20 763 5383 2389
CPH-MAD First 9 198 1152 480 MAD-LHR Premium Economy 20 486 5890 2099
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5.2.2. Calibration Results
With the data for the independent and dependent variables described in Section 5.2.1, as well as the
dummy variables for the different classes, the model was calibrated using OLS. The results from this
calibration can be found in the following section.

Calibration Coefficients
In Table 5.9, the coefficients of the regression intercept, independent variables and dummy variables can
be found. As described in Section 4.2.6, the variable coefficients were first verified on their significance.
The threshold to accept the coefficients was set at 0.05 and as can be seen below, all coefficients were
accepted.
Following, the effect on the dependent variable was controlled. The findings for each parameter were
the following:

• Regression Intercept (𝐾) - The effect here was stated as negative. As it is a regression intercept,
this value is accepted as a given.

• Distance - The coefficient for the distance is found to be negative, which is expected. The increase
in distance is in general known to decrease the amount of social and commercial interaction of two
cities (Jorge-Calderón, 1997).

• Dummy variables for class - All dummy variable coefficients for class in the table below are nega-
tive. This is because the classes are in comparison to the situation in the discount economy class.
The discount economy class has much higher demand levels than the other classes and thus with
respect to discount economy, all other classes will have a negative effect on the demand. This
coefficient is thus as expected.

• The product of the total traffic at both airports (𝐴𝑖𝐴𝑗) - the coefficient of this variable is seen to be
positive as expected. The more passengers both airports have traveling through them, the more
passengers that will want to fly, implicitly increasing the demand.

Table 5.9: Gravity Model Parameter Coefficients

Coefficients
Parameters Unstandardized Coefficients

Coeff. Std. Error Sig.
𝐾 -38.7572 2.183761 0.00***
Distance -0.36013 0.050237 0.00***
Business -3.21767 0.080193 0.00***
Premium Economy -2.84439 0.06363 0.00***
Full Y -3.46384 0.072082 0.00***
First -2.37923 0.067905 0.00***
AiAj 1.456408 0.057051 0.00***

Significance level : ’***’< 0.001; ’**’<0.01; ’*’<0.05, ’-’ insig.

In literature, different forms of gravity models have been tested. Of the independent variables found
above, it is possible to compare the coefficient value of the distance to other studies. The other variables
and dummy variables included are not easily compared as the reviewed literature does not implement
these in an identical manner. For the literature where a gravity model which only included geo-economic
variables was used as in this thesis, the coefficient of distance is very similar. In the research done by
Rengaraju and Thamizh Arasan (1992), the coefficient for distance was computed to be −0.355 while
Jorge-Calderón (1997) found a coefficient of −0.31.
A curiosity is found with the coefficient of the dummy variable for first class. As can be seen in Table 5.9,
the coefficient of first class is surprisingly lower than that of Full Y and Business. Contemplating the data
set, this coefficient was confirmed. In Table 5.8, the first class demand is often found to be ranked second
or third for the demand per route. Furthermore, over the complete data set, first class was observed
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to rank third in demand over the entire data set. First class flight options attracted almost twice the
demands of Full Y and Business, while only being slightly less than premium economy. This explains
why the coefficient for the first class is lower than expected, compared to the other classes.

Correlation Matrix
With the variable checks in place and with all coefficients for the different variables accepted, the inde-
pendent variables were checked against multicollinearity to ensure that the independent variables are
all sufficiently independent of each other. As stated previously, the threshold set by Doganis (2002) of
0.86 was used. As can be seen in Table 5.10, all independent variables are well below this threshold,
thus no effect of multicollinearity has to be expected.
Table 5.10: Gravity Model Correlation Matrix

Coefficient Correlations
AiAj_LN Premium Economy Full Y Business Dist_LN First

AiAj_LN 1.000 -0.039 -0.113 -0.197 0.417 0.051
Premium Economy -0.039 1.000 0.429 0.390 0.009 0.446
Full Y -0.113 0.429 1.000 0.376 0.064 0.393
Business -0.197 0.390 0.376 1.000 0.061 0.350
Dist_LN 0.417 0.009 0.064 0.061 1.000 0.051
First 0.051 0.446 0.393 0.350 0.051 1.000

Performance Testing
Total Model Performance
With the coefficient checks in place, the total performance of the calibrated gravity model was tested.
To do this, the gravity model calibration outcomes in Tables 5.11 and 5.12 were analyzed. In Table 5.11,
the value for the coefficient of multiple determination (𝑅ኼ) can be found. As described previously, this
coefficient gives an indication of the overall goodness-of-fit of the model. With a value of 0.766, which
is reasonably close to the maximum of 1.000, the calibrated gravity model seems to have a reasonable
performance overall. Comparing this value to similar researches done by Doganis (1966), Rengaraju
and Thamizh Arasan (1992) and Jorge-Calderón (1997) who achieved values of 0.74, 0.95 and 0.37
respectively, the gravity model in this thesis can be considered to perform adequately. The higher value
found in the research by Rengaraju and Thamizh Arasan (1992), may be explained by the larger amount
of independent variables taken into account. The model performance for different subsets of data will
be discussed below.
Table 5.11: Gravity Model Goodness-of-fit

Model Summary

R 𝑅ኼ Adjusted 𝑅ኼ Std. Error of the Estimate
.875 0.766 0.765 0.786

The Analysis of Variance (ANOVA) table found in Table 5.12 is important as it determines whether the
calibrated gravity model is significant as a whole. To determine this, it is important to review the sig-
nificance parameter of the regression. As can be seen in the table, the significance value is 0, which
indicates that the gravity model as a whole is significant and thus may be used with confidence.
Table 5.12: ANOVA Test Gravity Model

ANOVA
Sum of Squares df Mean Square F Sig.

Regression 2405.133 6 400.856 648.777 .000***
Residual 733.404 1187 0.618
Total 3138.537 1193
Significance level : ’***’< 0.001; ’**’<0.01; ’*’<0.05, ’-’ insig.
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Specific Performance
To accurately define the gravity models performance, an analysis on the model performance for different
data subsets needs to be performed. This is done on to the different routes for which the gravity model
has been calibrated, as well as the different classes for which this has been done. Below Tables 5.13
and 5.14 give a representation of the performance per cabin and per route respectively. The standard
error of the estimate is used to determine the performance. This standard error provides a level of the
accuracy of the prediction done by the gravity model. Additionally, the standard error has been presented
as a percentage of the average value over the complete dataset of the particular subset input. This is
done to make it possible to compare the standard errors between different subsets, as the magnitude
of demand for different subsets often differs significantly. This percentage should however be used with
caution for the performance comparisons of the routes and cabins separately, the reason being that
within a cabin the demand varies strongly per route and within a route the demand varies strongly per
cabin. The standard error percentage is very useful in the performance test per route per cabin as found
in Table C.22.

Table 5.13: Gravity Model Performance per Cabin Class

Cabin Std. Error of Estimate Data Entries Std. Err. Perc. of Average Demand

Discount Economy 12260 320 33%
Business 1576 151 51%

Full Y 2095 198 88%
First 3890 232 100%

Premium Economy 4965 293 123%

Table 5.13 describes the performance of the gravity model with respect to the different cabins. Here,
the discount economy class has the best relative performance in the calibration of the gravity model,
with an standard error of 33% over the average demand for that class. Given the fact that the most
passengers fly within this cabin class in the data set with which was calibrated, this can be considered
as desired. The other class which seems to perform well is the business class, with a standard error of
51%. Premium Economy, Full Y and First class are not performing too well, with relatively high standard
errors of the estimate. Noticeable is that the number of data entries of the different classes differs. This,
however, does not seem to have a direct effect on the performance of the model on the different classes.
For a graphical representation of the above table, please refer to Appendix C.

Table 5.14: Gravity Model Performance per Route

Route Std. Error of Estimate Data Entries Std. Err. Perc. of Average Demand

MAD-AMS 3616 73 21%
AMS-MAD 3605 72 17%
LHR-AMS 6635 99 30%
LHR-FRA 9310 85 91%
FRA-LHR 9523 85 88%
MAD-LHR 4784 86 52%
MAD-CDG 5599 74 68%
LHR-MAD 5862 83 31%
AMS-LHR 9942 99 101%
CDG-MAD 6132 76 58%
CPH-MAD 1995 40 20%
CPH-CDG 8730 62 85%
CDG-CPH 8755 67 83%
CPH-AMS 7245 78 69%
AMS-CPH 8050 71 337%
MAD-CPH 2389 44 82%
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Table 5.14 describes the standard error of the estimate per route, which has been used to determine the
gravity models performance in each route as was done previously per cabin. Here, the main finding is
that especially OD-pairs which include Copenhagen have relatively high standard errors of the estimate.
Taking to the plots of the CPH routes in Appendix C, it can be clearly observed that the discount economy
class is being mis-predicted in a more significant manner than other routes. As the discount economy
class caters for the largest amount of passengers in comparison to the other classes, this error leads to
a noticeably larger error for the routes including Copenhagen as an origin or destination. For a graphical
representation of the above table, please refer to Appendix C.

A more specific look at the standard error of the estimate per route and per cabin can be found in
Appendix C in Table C.22. The main observations are described below:

• In general, it seems that the routes and cabin data entries with the highest entry counts are the
most accurate. This is coherent with expectations, as these data subsets will have had the most
effect on the gravity model calibration.

• The problems with the standard errors of the estimate described previously with respect to the
Copenhagen airport are confirmed. The discount economy class performance of the routes in-
cluding CPH have the lowest performance of the discount economy classes.

• The discount economy classes of the routes including CPH are generally underpredicted, with an
exception for the routes between MAD-CPH which are overpredicted.

• In general the performance of the gravity model to predict the demand for discount economy is
good. This is also the case when looking at the standard errors of the estimates per route per
cabin.

The cause of the performance deficiencies found with the Copenhagen route are difficult to explain.
However the hypothesis is that the reason for the deficiencies mainly lies in the characteristics of the
airport. The Copenhagen airport caters for much less passengers than the other airports included in
this thesis. However, in general, the demands are under-predicted by the gravity model which is coun-
terintuitive. The reason for this may lie in the fact that travel from or to Copenhagen with non-air travel
transport is much more troublesome, which increases the travel demand in comparison to the other
routes. Further research on this observation should however be done to come to a definitive conclusion.
Additionally, the over-prediction found in the routes linking Copenhagen and Madrid are expected to be
due to the distance between the cities. In comparison to the other routes in the thesis, this route is much
longer.

5.3. Sub-Model Calibration: Demand Allocation
In the following section, the calibration results for the MNL model used in the demand allocation pro-
cess will be described. This will be done in similar fashion to that of the gravity model, starting with a
description on the data with which the model was calibrated. This will be followed by the results of the
calibration itself, including discussions on the calibrated coefficients, the models performance and the
impact of each independent variable on the market share.

5.3.1. Data
In total, 2087 data entries were used to calibrate the coefficients of the independent variables. The
non-dummy variable descriptives can be found in Table 5.15. As can be derived from the table, most
flights in the data set concerned direct flights. This can be derived from the fact that the mean value for
the extra-distance is found to be 0.61 km, which can be explained, as for direct flights the extra-distance
was equal to zero. With respect to frequency, the data variance was large, ranging from carriers flying
ten flights per quarter to carriers with more than a thousand flights. A more specific look on the yield
and flight frequency is done below. When considering the data set regarding the different yields offered,

it is especially interesting to consider Table 5.16. Here the yields‘ descriptives for the different classes
are listed. As can be derived from the data count in Table 5.16, the most frequent class found in the
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Table 5.15: Independent Variable Descriptives

Descriptive Statistics
Variable N Range Minimum Maximum Mean Std. Deviation Variance

Extra Distance [km] 2087 829.43 0 829.43 0.61 18.47 340.97
Frequency [Flights/QTR] 2087 1186 10 1196 498.91 320.42 102670.26

Yield [EUR/km] 2087 5.497 0.013 5.510 0.285 0.301 0.091

data set are discount economy and premium economy. As expected, these two cabin classes have the
low average yields. Also as expected, these classes are followed by full economy, and business class.
Interesting however is that in the total data set, first class yields have the lowest average yield which
is very counter intuitive. During discussions with an industry expert from the University of Cranfield,
strongly acquainted with the data source, the reason for this occurrence is that most passengers in
this class pay with miles (Nicola Volta,personal communication, April 19, 2017). Therefore distortion
in the yield values occur. Another value that pops out of the table below, is the maximum value of
the yield of business class. This value was found once within the data set and can be considered an
outlier. On average, the yield values were around the value found in Table 5.16. In Table 5.17 and

Table 5.16: Yield Averages, Minimums and Maximums per Cabin

Cabin Data Count Min Max Average

Business 258 0.053723 5.509896 0.756678
Full Y 300 0.17182 1.139291 0.570792

Premium Economy 503 0.021308 1.204524 0.225201
Discount Economy 695 0.019278 0.414366 0.123919

First 331 0.013283 0.54942 0.085244

5.18 two descriptives of the data set with respect to the flight frequency are shown. Table 5.17, lists
the flight frequencies descriptives over the data entries. Here, it can be deduced that different carriers
have significantly different flight frequencies per route. Where some carriers have frequencies over a
thousand flights, others supply only 20 flights per quarter. The frequency is of course heavily influenced
by the size of the carrier, and the supply (i.e. size of the planes, number of aircraft) they are flying on a
route.

Table 5.17: Frequency per Data Entry

Route Data Count Min Max Average

AMS-CPH 109 24 552 378
AMS-LHR 175 296 1018 811
AMS-MAD 154 22 552 292
CDG-CPH 101 80 470 307
CDG-MAD 127 24 710 301
CPH-AMS 111 26 552 387
CPH-CDG 96 90 470 317
CPH-MAD 74 10 297 64
FRA-LHR 161 315 1105 792
LHR-AMS 178 298 1018 817
LHR-FRA 161 306 1105 796
LHR-MAD 104 231 1196 886
MAD-AMS 161 13 552 284
MAD-CDG 127 24 710 299
MAD-CPH 86 11 280 68
MAD-LHR 162 140 736 513
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When looking at Table 5.18, the total frequency statistics at quarterly level can be found. Along with
being able to get a feel for the number of flights between an OD-pair per quarter, it is also useful to
conclude that the data set seems logical: as can be seen in the table, the number of flights between
each OD-pair and their opposite hold similar values in all three columns. The flights in one direction are
thus also flying in approximately in the same numbers the other way, as expected.

Table 5.18: Total Frequency per Route per Quarter

Route Min Max Average

MAD-CPH 175 402 297
CPH-MAD 182 403 309
CDG-CPH 397 793 616
CPH-CDG 426 789 619
CDG-MAD 429 906 639
MAD-CDG 474 897 647
CPH-AMS 517 971 821
AMS-CPH 509 1017 824
MAD-AMS 459 1168 883
AMS-MAD 571 1137 886
MAD-LHR 824 1189 1028
FRA-LHR 1307 1757 1586
LHR-FRA 1305 1757 1596
AMS-LHR 1286 1748 1603
LHR-MAD 891 1924 1607
LHR-AMS 1286 1748 1613

5.3.2. Calibration Results
Now that the data used for the calibration has been described in the previous subsection, the actual
calibration results are highlighted. In the following subsection, the parameter coefficients, the parameter
correlations, the models goodness-of-fit, the models overall significance, the models performance and
the impacts of the different parameters will be addressed.

Calibration Coefficients
Table 5.19, shows the calibrated coefficients for the MNL model. As discussed previously, the first check
done on the coefficients is to determine their significance. The threshold set for accepting or declining
the significance of the coefficients was set at 0.05. As can be seen in the table below, all independent
variable coefficients passed this test without any problems.
Second, the effects of the different independent variables on the dependent variable were evaluated.
In general, the signs of the coefficients were as expected, the evaluations for each variable specifically
were as follows:

• Regression Intercept 𝐾 - The regression intercept is a negative constant, which is assumed as a
given

• Extra Distance - As expected, if a route is indirect and thus incurs extra distance on top of that of
the direct route, the demand and hence the market share will be negatively affected.

• Frequency - With increasing frequency, the market share will be positively influenced. This is as
expected.

• Yield - The coefficient for yield is calibrated to a negative value. An increasing yield would thus
have a negative effect on market share which is expected

• Dummy variables for class - As in the calibration for the gravity model, all dummy variable coef-
ficients are negative. This is as expected, with the same reasoning as previously explained. In
comparison to the discount economy class the other classes experience less demand.
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Furthermore, the inclusion of the dummy variables into the multinomial logit model is hypothesized to
combine different unobserved choice factors of the different classes into one variable coefficient. By
doing this, the other variables such as the yield and the frequency are assumed to be more independent
of the type of class flown by the passenger.

Comparing the coefficients of the MNL model to those found in literature, the coefficients are similar
in sign. It is however not possible to compare the coefficients directly, as the different researches use
different combinations of variables and different levels of aggregation lead to different magnitudes of the
coefficients. The effect of the frequency, yield and extra-distance however are in line with what is found
in literature.

Table 5.19: Multinomial Logit Model Parameter Coefficients

Parameters Unstandardized Coefficients
Coeff. Std. Error Sig.

𝐾 -1.567 0.042 0.000***
Extra Distance -0.007 0.001 0.000***
Frequency 0.001 0.000 0.000***
Yield -1.021 0.099 0.000***
Business -2.428 0.086 0.000***
Premium Economy -2.530 0.050 0.000***
Full Y -2.683 0.072 0.000***
First -1.908 0.056 0.000***

Significance level : ’***’< 0.001; ’**’<0.01; ’*’<0.05, ’-’ insig.

Correlation Matrix
In Table 5.20, the correlation matrix following the calibration can be found. This table is used to en-
sure that no multicollinearity is experienced between the different independent variables. As discussed
previously, the threshold for which multicollinearity is determined is set at above 0.86. Between all in-
dependent variables, this is not the case and thus the effect of multicollinearity is not applicable.

Table 5.20: Multinomial Logit Model Correlation Matrix

Coefficient Correlations
First Extra Distance Frequency Full Y Business Premium Economy Yield

First 1.000 0.031 0.020 0.209 0.160 0.348 0.061
Extra Distance 0.031 1.000 0.017 0.019 0.014 0.031 0.004
Frequency 0.020 0.017 1.000 -0.006 -0.007 0.040 -0.223
Full Y 0.209 0.019 -0.006 1.000 0.587 0.397 -0.584
Business 0.160 0.014 -0.007 0.587 1.000 0.372 -0.690
Premium Economy 0.348 0.031 0.040 0.397 0.372 1.000 -0.201
Yield 0.061 0.004 -0.223 -0.584 -0.690 -0.201 1.000

Performance Testing
With the calibration coefficient checks in place, the performance of the MNL models performance is
tested. This is done with respect to the model as a whole, as well as per cabin class, per route and
for both differentiations simultaneously. These performance checks will provide a good idea of how
well the model will be able to allocate demand to the different flight options in the integrated simulation
framework.

Total Model Performance
In Table 5.21, the coefficient of multiple determination 𝑅ኼ can be found. The closer this coefficient is to
1.0, the better the global performance of the model. As can be seen in the table, the performance is
reasonably good with an 𝑅ኼ of 0.711. Comparison of this thesis’ model to model performances found in
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the literature are not feasible, as the different MNL models are constructed with a multitude of different
variable setups, data sets, levels of aggregation and scopes. These differences are unsurmountable to
make a worthwhile comparison.

Table 5.21: Multinomial Logit Model Goodness-of-fit

Model Summary
R 𝑅ኼ Adjusted 𝑅ኼ Std. Error of the Estimate

0.843 0.711 0.711 0.829

With the 𝑅ኼ determined, it is of essence to know if the model is also significant. As described previously,
the significance of the total model can be derived with the ANOVA table. This table can be found in
Table 5.22. Here it can be seen that the regression’s significance is zero, and the calibrated model can
thus be considered significant.

Table 5.22: ANOVA test Multinomial Logit Model

ANOVA

Sum of Squares df Mean Square F Sig.
Regression 3524.000 7 503.429 732.378 0.000***
Residual 1429.082 2079 0.687
Total 4953.081 2086

Significance level : ’***’< 0.001; ’**’<0.01; ’*’<0.05, ’-’ insig.

Specific Performance
The overall performance of the MNL model gives a good indication in general on what to expect from
the model. However it is also of interest to determine how the model works for the different segments
it is used for. In Table 5.23, the standard error of the estimate can be found which gives an indication
of the accuracy of the model. As the model is calibrated with respect to market share, it is difficult to
compare the different standard errors of the estimate due to difference in magnitude that the average
market share has per class. To help with this, the last column in the table portrays the standard error of
the estimate as a percentage of the average share of the cabin class. In this manner comparison of the
models accuracy per cabin class can be made.
As can be seen in Table 5.23, the lowest error percentage is made with the discount economy class.
The other classes have worse performances.

Table 5.23: Multinomial Logit Model Performance per Cabin Class

Cabin Sum of Squared Residuals Std. Error of Estimate perc Data Count Perc. Of Average Share

Discount Economy 8.57 0.11 695 29.4%
Business 0.10 0.02 258 71.5%

First 0.99 0.05 331 80.4%
Full Y 0.13 0.02 300 88.3%

Premium Economy 1.08 0.05 503 114.3%

In Table 5.24, the standard error of the estimate can be found for the calibrated MNL model per route.
Apparent from the table is that the standard error of the estimate for the routes including the same
airport pairs have very similar errors of the estimate. It also shows that the route with the furthest flight
distance, namely between Madrid and Copenhagen, has the largest error of the estimate. The other
routes have similar errors of the estimate, which could insinuate that the routes different slightly in their
characteristics in comparison to the MAD-CPH routes.
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Table 5.24: Multinomial Logit Model Performance per Route

Route Sum of Squared Residuals Std. Error of Estimate Data Entries

MAD-LHR 0.13 0.03 162
LHR-AMS 0.24 0.04 178
AMS-LHR 0.30 0.04 175
LHR-MAD 0.27 0.05 104
CPH-CDG 0.20 0.05 96
CDG-CPH 0.29 0.05 101
AMS-CPH 0.31 0.05 109
CPH-AMS 0.36 0.06 111
AMS-MAD 0.54 0.06 154
MAD-AMS 0.67 0.06 161
FRA-LHR 0.69 0.07 161
LHR-FRA 0.76 0.07 161
CDG-MAD 0.93 0.09 127
MAD-CDG 0.99 0.09 127
MAD-CPH 1.92 0.15 86
CPH-MAD 2.27 0.18 74

In Table D.1, the standard errors of the estimate and the percentual error of the average market share
per route and cabin are listed. Accompanying this table, are the plots of the actual data, the predicted
data and the actual data points plotted against the predicted data points colored per cabin class. The
following main findings were done with respect to the table and different plots:

• In general the multinomial logit model performs best when predicting the discount economy class
shares.

• Confirming what was previously observed, the plots also show that the route MAD-CPH have more
erroneous predictions.

• In general, premium economy and first class shares are under-predicted. This can be clearly be
seen in for example Figure D.7

• The general performance, as seen from the different plots, is that the model estimates the market
share in a reasonable fashion. The actual-vs-predicted value plots follow the same trend, just as
that the market share plots are visually similar.

Variable Impacts
As mentioned previously, the coefficients found during calibration clearly show the effect each indepen-
dent variable has on the dependent variable. However, as the magnitudes of the different variables
differ, it is difficult to determine the impacts of each variable in a manner where the different impacts can
be compared. As described in Section 4.3.4, a method has been devised to overcome this comparison
problem. In Table 5.25, the relative percentual impacts of each independent variable can be found. As
expected, the extra distance and yield have the largest impact on passenger choice. The extra distance
is an indicator for an indirect flight, thus the more extra kilometers flown the less attractive it will become.
Additionally, when making the choice between an indirect and a direct flight, it is expected that passen-
gers will greatly favor direct flights, also adding to the fact that the high relative impact of this variable
is explicable. With respect to the yield, as mentioned previously, the yield is related to the fare, which
according to literature, is one of the main influencers of passenger choice. It could therefore be expected
that this has a high impact. It should however be noted that the impact here may be larger than that
experienced, as the range of yield used covers all classes. For the different classes in the simulation
framework, the yield ranges differ and are smaller than the one used for this calculation. Percentualy,
the yield effect may be slightly lower if this calculation were done for each class separately. The fact that
the flight frequency has a relatively low impact with respect to the other variables does not necessarily
mean it is unimportant. In the set of variables used it may be the one with the least impact, however,
in models with different variables included this would be different, as frequency is also in the literature
seen as an important choice factor of passenger choice. The impacts of the dummy variables are again
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very much relative to the discount economy class, and how the general magnitude of the market share
each class achieves.

Table 5.25: Independent Variable Impacts Multinomial Logit Model

Variable Impacts

Variable Coefficient Range Impact
Extra Distance -0.007 829.43 24.74%

Frequency 0.001 119 5.95%
Yield -1.021 5.497 23.25%

Business -2.428 1 10.06%
Premium Economy -2.530 1 10.48%

Full Y -2.683 1 11.12%
First -1.908 1 7.91%

Constant -1.567 - 6.49%
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6
Simulation Games & Results

With the general simulation framework scope defined and the sub-models needing calibration calibrated,
the simulation framework can be tested as a whole to determine its behaviour. The behaviour of the
simulation framework will be tested on the basis of several simulation games which have been designed
to test different areas of the simulation framework.

This chapter begins with the definition of the different simulation games played, including descriptions on
the different exogenous players included and the optimization strategy of the computer player. Following
the game definitions, the results of these games will be described which will give an insight on the
simulation models behaviour. The chapter will be concluded with the general findings from the played
simulation games.

6.1. Simulation Games Definition
This section discusses the setup of the different simulation games used to test the simulation framework.
In total, four different games have been designed to which the integrated simulation framework will be
played and tested. The results of this testing can be found in Section 6.2. Before the four games are
discussed, the general manner in which the games will be played need to be defined. The computer
player is the player for which the simulation framework optimizes the strategy. Competition is included
through exogenous players who can be static or dynamic. Additionally, the general simulation process
can be found in Table 6.1. As shown, in year 0 the computer is on its own and the starting strategy is
initialized based on the market averages for yield, frequency and pre-set seat share distributions. In
year 1, the player strategies are added to the model, for which the general outputs are computed. Next,
the first optimization of the computer player takes place. In year 1 optimized (Y1OP), the outputs are
generated for the players with their year 1 strategies and the computer with its optimized strategy. In year
2, both exogenous players determine their plan for year two, after which outputs are computed again.
The year 2 optimization is the same optimization as done after year 1. Year 3 and the optimization of year
3 are identical to the years described previously. After these years have been played, the game ends
in this thesis. With the results from the different game years, conclusions on the working of the model
will be taken. In essence, this game form can be considered to be a leader-and-follower Stackelberg
game.
Table 6.1: Example Simulation Game Sequence with Two Exogenous Players

Strategy

Competitor Year 0 Year 1 Year 1 Optimized Year 2 Year 2 Optimized Year 3 Year 3 Optimized

Computer Strategy Y0 Strategy Y0 Strategy Y1 Strategy Y1 Strategy Y2 Strategy Y2 Strategy Y3
Player 1 - Strategy Y1 Strategy Y1 Strategy Y2 Strategy Y2 Strategy Y3 Strategy Y3
Player 2 - Strategy Y1 Strategy Y1 Strategy Y2 Strategy Y2 Strategy Y3 Strategy Y3

65



The simulation games will be played for one-route, which has been determined to be representative
for routes within the data’s scope. This is done to be able to specifically look at the behavior of the
computer reaction in different situations and not be diluted by the size of the game. The model can be
played with all routes included, but this would make an effective observation of the optimization models
behavior difficult, due to the size of the simulation environment it is in. The chosen route for which the
simulation games are played is the route AMS-MAD. As can be seen in Figure 6.1, the AMS-MAD route
was observed to be an average route with respect to demand hence its choice.

An exception to the one route simulation game is found in game 4, where a multi-route game is played.
This is specifically done to determine if the computer player will havemigratory behaviour if it experiences
increased competition in some of the routes it is playing. The routes included in game 4 include those
from Amsterdam to Copenhagen, London and Madrid. More on how the game is setup can be found in
Section 6.1.5.
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Figure 6.1: Average Route Demands per Quarter

6.1.1. Simulation Game 0

In the first simulation game, the computer player is tested on it’s own in the AMS-MAD market. The
game uses 𝐴𝑖𝐴𝑗 data of the year 2015, and is set to be constant to ease comparison over the different
game years.

With respect to the block hour constraints, game 0 uses the total summed frequencymaximum, minimum
and averages of a route found in Table E.1. This has an effect that the game 0 computer represents a
combination of all players that one would find in a market and could be described as a ’super’ player
with respect to size. The reasoning behind this game is, to test the simulation model as a whole and
observe what the optimization model does in such an extreme case.

6.1.2. Simulation Game 1

The second simulation game is similar to the first, only that now the block hours constraints are designed
to force the computer into playing as an average competitor in the route with respect to frequency. The
block hour constraint used in this game can be found in Table 5.4. The yield constraints are set as
described in Table 5.5 and used as described in Section 4.4.1. As with simulation game 0, simulation
game 1 is used to observe the optimization characteristics of the model.
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6.1.3. Simulation Game 2

In simulation game 2, a competitor is added to the simulation framework. This competitor resembles
a low cost carrier, in the manner that it only has one class. The competitor will be flying a constant
two flights per day for each input year. Furthermore, the competitor will drop it’s price for the discount
economy class by EUR 20 each simulation year. The other characteristics are as stated with simulation
game one.

6.1.4. Simulation Game 3

In simulation game 3, a different competitor type is added to the simulation framework. This competitor
resembles a legacy carrier, in the manner that it has all five classes on board. As with game 2, the
competitor flies two flights a day for each input year while dropping it’s price for every class by EUR 20
over each simulation year. Other characteristics are identical to the other games.

6.1.5. Simulation Game 4

In simulation game 4, a multi-route simulation game is played. This simulation game is initiated to test
the models working in a multi-route system, as well as determine the reaction behavior in the computer
if multiple routes are involved. To create this game, three routes in total have been chosen to be simu-
lated. The routes included are the flights from Amsterdam to Copenhagen, London and Madrid.
For each route, to be able to simulate competition in a similar manner to reality, actual data has been col-
lected on the different competitors in each route. These different competitors are implemented into the
simulation model as players, with characteristics which resembles those found in the actual data. The
different flight options in each route for each competitor can be found in Table 6.2. The computer player
in simulation game 4 replaces KLM, which has been excluded from the data. The computer player is
restricted with respect to yields and frequency in a similar manner as found in the previous three games.

Table 6.2: Competitor Data Quarter 1 2015

Carrier Code Route Cabin Frequency Fare [EUR] Seats Seat Share [%]
Air Europa UX AMS-MAD Discount Economy 180 50 160 67
Air Europa UX AMS-MAD First 180 37 160 28
Air Europa UX AMS-MAD Premium Economy 180 63 150 5
Iberia IB AMS-MAD Discount Economy 242 77 150 68
Iberia IB AMS-MAD First 242 93 150 10
Iberia IB AMS-MAD Premium Economy 242 117 150 22
Norwegian Air Shuttle DY AMS-CPH Discount Economy 50 57 186 100
SAS Scandinavian Airlines SK AMS-CPH Discount Economy 330 94 150 95
SAS Scandinavian Airlines SK AMS-CPH Full Y 330 448 150 2
SAS Scandinavian Airlines SK AMS-CPH Premium Economy 330 148 150 3
British Airways BA AMS-LHR Business 709 465 166 7
British Airways BA AMS-LHR Discount Economy 709 137 166 77
British Airways BA AMS-LHR Full Y 709 365 166 12
British Airways BA AMS-LHR Premium Economy 709 122 166 4

The game is first played by keeping all player strategies constant, by which a base reaction can be
determined for the computer (Null Game). In the second iteration of the game, the strategies of two of
the players in the game change. These strategies have been designed to increase competition in the
market and thus challenge the computer player. The strategies and to which players these strategies
belong can be found in Table 6.3. The strategy for DY resembles a competing LCC, which severely
lowers its fare while increasing the number of flights on the route. The strategy of BA represents that of
a competing legacy carrier, which increases its frequency steadily, while gradually also lowering its price.
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Table 6.3: Game 4 Player Strategies

Route Player Y1 Y2 Y3
Freq. Fare Freq. Fare Freq. Fare

AMS-CPH DY - - 10% -20% 10% -20%
AMS-LHR BA - - 15% -10% 15% -10%
AMS-MAD - - - - - - -

As mentioned before, it will be interesting to see how the computer player reacts to the different market
situations. A special focus will be on if the computer will start shifting its focus to the Madrid route when
the other routes come under enhanced competition.
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6.2. Simulation Framework Game Results
In the following section, the simulation game results of the different games tested will be described. The
focus of this section is to determine the behavior of the computer player and the optimization process
which effects it. The section will be discussed in sequence of each played game, according to the games
described in Section 6.1. The results are explained with respect to the game results for the first quarter
of each game. The reason being that differences to the quarter one simulations were not significant,
and thus the results for quarter one are taken to be representative for the entire simulation.

6.2.1. Simulation Game 0

In this section, the results of game 0 will be described. As mentioned in Section 6.1.1, the route tested
here is the AMS-MAD route with the computer in the form of a ’super’ player. The focus of game 0 is to
determine the general optimization behaviour of the computer over the different simulation game years.
Furthermore, the effect of the size of the computer player will be observed. Game 0 will be described
using results on the ASK and RPK development, the profit development, the game KPIs and the seat
share development for the different simulation game years. The section on game 0 will conclude with
the general findings of the game.

ASK & RPK Development
In Figure 6.2, the development of the game player with respect to its ASK’s and RPK’s is found. As
mentioned before, the player starts off with a frequency which is based on the average frequency of all
players combined in the market. From there on, it optimizes towards a value for which the profit has been
optimized. As can be seen in the figure, in each optimization year (indicated by 𝑌#𝑂𝑃) the number of
ASKs drop. This indicates that the computer player is decreasing its frequency with every optimization.
With respect to the step size of the decrease in ASKs, year 0 (Y0) is an initiation year for the computer
player. Between year 0 and year 1 optimization, the maximum change is bound by the predefined
minimum and maximum values of frequency in the simulated route. This is why the decrease is large
in comparison to the other optimization steps. The other optimization steps are bound by a maximum
increase and decrease of 20%. Additionally, if the bound of the minimum frequency of the player is met,
the next year will have a bound which is 5% lower. This decrease of the lower bound by 5% are the
steps we see in optimization years Y2OP and Y3OP. As the game is not continued after optimization 3
(Y3OP) it cannot be stated that this process will continue, however as the RPKs are much lower than
the ASKs it is expected that the model would continue to decrease its frequency and thus ASK. The
RPK level is constant due to the fact that all passengers are being transported by the computer player,
and no additional demand is available.
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Figure 6.2: Game 0 ASK and RPK Development
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Profit Development
In Figure 6.3 the revenue, cost and profit development for game 0 can be found. In line with the ASK’s, a
drop of cost is expected due to the decreasing frequency. New from this figure is the optimizers effect on
the revenue. With a constant RPK, from the previous figure it can be deduced that to increase revenues,
the computer will have increased its fares. Skipping ahead to Figure 6.4, you can indeed see this is the
case as the yields have increased quite a bit. With the increase in revenue and the decrease in cost,
Figure 6.3 does indeed show the computer player to change the losses into a profit.
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Figure 6.3: Game 0 Revenue, Cost and Profit Development

Game KPIs
In Figure 6.4, the KPIs with respect to RASK, CASK, yield and load factor can be found. These KPIs are
in line with the previous two figures. With decreasing frequency and a constant amount of passengers,
the load factor increase with each game year. The CASK is constant over the different years, which is
due to the fact that the cost per flight is constant as well as the number of seats provided and thus with
every flight decrease the decrease in cost and ASKs does not alter the CASK. The RASK shows a clear
increase over the different game years. With decreasing ASKs as well as increasing revenues, this is
as expected.
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Seat Share Development
In Table 6.4, the development of the seat share in the different cabin classes can be found. This table
will only be described here, for the purpose of enlightening the manner in which the optimization model
optimizes the seat share in the aircraft. In year 0, the seat share is initiated with assumed seat shares.
With each optimization year, the model determines the minimum seat share needed to cater for passen-
gers in each class. As can be seen, the configuration of the aircraft quite quickly settles around certain
values. These values however do not add to 100%. The reason for this is that the model indicates
the minimum seat share needed, limited of course by a total seat share of 100%. These seat shares
thus give an indication for the minimum seats in each class needed to transport the right consistency of
passengers.

Table 6.4: Game 0 Seat Share Computer Player Quarter 1

Class Y0 Y1 Y1OP Y2 Y2OP Y3 Y3OP

Discount Economy 40% 40% 25% 25% 27% 27% 28%
Premium Economy 20% 20% 2% 2% 2% 2% 2%
Full Y 20% 20% 1% 1% 2% 2% 2%
First 10% 10% 3% 3% 3% 3% 3%
Business 10% 10% 2% 2% 2% 2% 2%

General Findings Game 0
The game described above, as well as the computer player optimized here has clearly showed the
manners in which the optimization model works. It is clear from the game results above, that the com-
puter optimization process improves the computer players profitability. In game 0 this profitability was
achieved by decreasing the frequency while increasing the yield levels. However, using the computer
player in this form would be unrealistic due to its size and characteristics. The computer player in this
form would, in comparison to competitors in real life, be too large and monopolistic. With respect to the
model itself, having a player which is the average of all competition combined would not be of use, as the
market share calculations by the logit model would be distorted and unreliable. The reason being that
due to the size of the computer player in terms of frequency, an unrealistic amount of share would be
distributed to the computer player. This is irrespective of its choices to fare in comparison to a player of
normal size. Therefore, realistic competition with a ’super’ computer would not be possible. This game
has thus has proved to test the optimization model in an extreme case, showing the capabilities of the
optimization procedure, but from now on the games will be played with a computer player of realistic
size.

6.2.2. Simulation Game 1

In game 1, the computer takes on the size of an average competitor in the AMS-MAD market. As in
game 0, the demand over the years is kept constant to ensure ease of comparison. The focus of game
1 is similar to that in game 0. The optimization behaviour of the computer will be observed, as well as
the effect of the sizing of the computer player. Additionally, this game will serve as a null game, to which
games 2 and 3 can be compared. The results of game 1 will include discussions on the ASK and RPK
development, the profit development, the game KPIs, a spill analysis and will conclude with the general
findings of the game.

Ask & RPK Development
In Figure 6.5, the ASK and RPK development of the computer player can be found. As with game 0, the
optimization model first sees it fit to decrease the frequency and thus ASKs. In game 1, a steady state
with respect to ASKs is already reached in the optimization of year one, where this was not the case in
game 0. This indicates that with respect to size the computer in game 1 is more realistic, as it achieves
an ASK level which, with respect to size, is similar to the available RPKs. In game 0, the computer
players ASKs after 3 optimization years is still almost three time as large as the RPKs available.
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Profit Development
In Figure 6.6, the revenue, cost and profit development of the computer in game 1 can be found. In
accordance with the decrease of ASKs and thus frequency found previously, the costs of the computer
player decrease to the ’optimum’ level in the first optimization year. Revenue wise, the computer player
sees a quick increase due to an increase in yield to its maximum levels constrained by the yield bounds.
This can be deduced from the fact that the RPK levels from the previous figure stay constant, while
the yield found in Figure 6.7 show a clear increase. The result of the decreasing cost and increasing
revenue lead to a clear increase in profit.
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Figure 6.6: Game 1 Revenue, Cost and Profit Development

Game KPIs
In Figure 6.7 the RASK, CASK, yield and load factor are shown. Correspondent to the previously de-
scribed KPI’s, the RASK increase due to optimization is evident. CASK is constant for the same reason
as described in game 0. The load factors of the computer show a clear increase, analogous to the
decrease in ASKs while having constant RPKs. It is observed that from the optimization of year 1, the
computer will fly with a load factor of one.
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Spill Analysis
In Figure 6.8, the seats available, per flight, per cabin class can be observed. The value of the seats
available, per flight, per cabin class are computed using the seats available in the aircraft, per class,
per flight, subtracted by the demand for that class, per individual flight. A negative value thus indicates
that there is more demand than supply of that class per flight. For game 1, this is only the case for the
discount economy class in Y0 and Y1. After the optimization in Y1OP, the computers strategy has been
optimized, with as an effect that no spill of passengers is found for the rest of the simulation years.
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Figure 6.8: Game 1 Seat Availability per Flight Development

General Findings Game 1
As can be deduced from game 1, the computer player described here is a more realistic player type
with respect to size in comparison to the computer player from game 0. Competition bias due to the
limitations of the simulation framework leading to the outwaying of other competitors with an abnormal
frequency is not expected to be the case with this player size. It is therefore recommended to use the
computer player in this manner. The computer in this game however did not have any competition and
thus was free to determine the price as it wanted. The maximum yields were thus quickly used by the
optimization model. This as expected due to the fact that all passengers are expected to fly irrespective
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of the high pricing. The tendency for high prices can be shown in Table 6.5. It is found that from the first
optimization year onwards, all the yield values are at the maximum allowed values.

Table 6.5: Game 1 Yield Development

Y0 Y1 Y1OP Y2 Y2OP Y3 Y3OP

Computer

Discount Economy 0.12 0.12 0.29 0.29 0.29 0.29 0.29
Premium Economy 0.23 0.23 0.62 0.62 0.62 0.62 0.62
Full Y 0.57 0.57 0.93 0.93 0.93 0.93 0.93
Business 0.76 0.76 1.53 1.53 1.53 1.53 1.53
First 0.09 0.09 0.24 0.24 0.24 0.24 0.24

Below, Figures 6.9 and 6.10 display the yield development per class and the frequency development
of the computer player. These will be used as reference points in comparisons with the other games
described.
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6.2.3. Simulation Game 2
With the general behaviour of the computer profit optimization observed in the previous two games, the
focus will now be on how the computer and the optimization software react to the added competition in
the AMS-MAD route. In game 2, the goal is to observe the reaction of the computer player with respect to
a competitor resembling a LCC. In this game, the LCC competitor is assumed to fly the route AMS-MAD
twice a day, while it decreases its fares by 20 EUR per year. The results of the computer reaction will
be described using the observations found from the yield development, the frequency development and
the market share development. The discussion on the results of simulation game 2 will be concluded
with some additional general game findings.

Yield Development
In Figure 6.11, the yields of both the LCC and the computer player can be found. The decrease in fares
per game year of the LCC can clearly be seen in the figure, however it shows that this does not effect
the yields of the computer player. Contemplating Table 6.6, this observation is confirmed. The yields of
each of the cabin classes are still at the maximum values allowed by the yield bounds.

Table 6.6: Game 2 Yield Development

Y0 Y1 Y1OP Y2 Y2OP Y3 Y3OP

LCC

Discount Economy 0.12 0.12 0.11 0.11 0.10 0.10

Computer

Business 0.76 0.76 1.53 1.53 1.53 1.53 1.53
Discount Economy 0.12 0.12 0.29 0.29 0.29 0.29 0.29
First 0.09 0.09 0.24 0.24 0.24 0.24 0.24
Full Y 0.57 0.57 0.93 0.93 0.93 0.93 0.93
Premium Economy 0.23 0.23 0.62 0.62 0.62 0.62 0.62
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Figure 6.11: Game 2 Yield Comparison

Frequency Development
In comparison to the yield levels, when comparing the flight frequency of game 1 with game 2 a change
can be observed. In Figure 6.12, the frequencies of both players in game 2 are shown. What is evident
is that the frequency of the computer player has dropped with respect to game 1. Where the frequency
of the computer player in game 1 was 175 flights per quarter in simulation run Y3OP, the computer in
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game 2 only hosts 94 flights in Y3OP per quarter. The computer has thus reacted to the LCC competitor
by changing the flight frequency.
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Figure 6.12: Game 2 Frequency Development

Market Share Development
In Figure 6.13, the market share development of the two players in game 2 can be observed. In all
classes where the computer player is the sole competitor, the expected market share of one is found.
For the cabin class in which competition is experienced from the LCC, the market share is observed
to slowly decrease for the computer player. This is as expected when keeping the frequency and yield
developments in this game into account. With a near constant frequency for both players after simulation
year Y1OP and the decreasing fares of the LCC, while the computer keeps its yield steady, the discount
economy passenger demand shifts to the LCC competitor as expected.
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Figure 6.13: Game 2 Market Share Development

General Findings Game 2
In general, it can be concluded that the computer has clearly reacted to the addition of competition to
the AMS-MAD market. A clear decrease in frequency was seen with respect to game 1, however no
change in yield was found. This is due to the fact that flying less flights will lead to less ASKs to fill,
and as this was within frequency limits, this reaction was possible. With the maximum yields in place,
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it is observed that the aircraft are still filled and thus no additional reaction is needed to be made with
respect to fare. This is confirmed in Figure E.2, where the load factor of the two players can be found.
The computer player reaches load factors of approximately 100%, which is similar to the load factors
found in game 1.
In Figures E.1, E.2, E.3 and E.4, the revenue, cost, profit, Game KPI’s, ASK, RPK, and seat available de-
velopments can be found of game 2. For completeness reasons they have been added to the appendix,
however the figures are not essential when observing the computer players reaction. It is interesting to
note however that the profit maximizing behaviour of the simulation framework for the computer player
is again clearly observed.

6.2.4. Simulation Game 3

Game 3 is similar to game 2, only now the competitor for the computer player resembles a legacy carrier
offering flights including all cabin classes. Similar to that described in game 2, the focus of this section
will be on how the computer reacts to the added competition during the optimization process. The game
results will be described using sections on yield development, frequency development, market share
development and spill analysis. The final discussion in this section will include additional findings and
general conclusions on the game results.

Yield Development
In Figure 6.14, the yields over the different simulation years are compared for both competitors. With
exception of the business class yields, all yields remain at their maximum bounded values, seemingly
unaffected by the competitor. However, the business class yields have decreased with respect to games
1 and 2. In Table 6.7, it can be observed that the business yield has decreased from its maximum value
of 1.53 in the games before, to 1.41. Furthermore, it is observed in Table 6.7 that in simulation Y2OP
the yield of the business class is slightly increased. Key to understanding this, is observing that in that
optimization year, the available seats per flight for the business class stay equal between the simulation
years Y2, Y2OP and Y3 as can be seen in Table 6.17, but the flight frequency decreases with one flight
in Y2OP. This decrease in frequency, but level seat availability effectively means their are less seats to
fill, thus increasing the price slightly will decrease the demand in such a way that the seat availability
per flight stays constant. In the year following, the Legacy carrier again lowers its fares. The computer
reacts to this in Y3OP not by changing its frequency, but by decreasing the yield of the business class.
These findings show that the simulation framework does react with respect to fare if needed.

Table 6.7: Game 3 Yield Development

Y0 Y1 Y1OP Y2 Y2OP Y3 Y3OP

Legacy

Business 0.75 0.75 0.74 0.74 0.73 0.73
Discount Economy 0.12 0.12 0.11 0.11 0.10 0.10
First 0.09 0.09 0.07 0.07 0.06 0.06
Full Y 0.57 0.57 0.56 0.56 0.54 0.54
Premium Economy 0.22 0.22 0.21 0.21 0.20 0.20

Computer

Business 0.76 0.76 1.42 1.42 1.44 1.44 1.41
Discount Economy 0.12 0.12 0.29 0.29 0.29 0.29 0.29
First 0.09 0.09 0.24 0.24 0.24 0.24 0.24
Full Y 0.57 0.57 0.93 0.93 0.93 0.93 0.93
Premium Economy 0.23 0.23 0.62 0.62 0.62 0.62 0.62
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Figure 6.14: Game 3 Yield Comparison

Frequency Development
In Figure 6.15, the flight frequency development of game 3 can be observed. The frequency of the
computer player after the first optimization year can be seen to be rather steady, with a minimal decrease
of frequency of one flight in the second optimization year. When comparing the flight frequency of the
computer in game year 3 to that of game year 1, a reaction by the computer player can be observed.
Here the frequency has decreased from 175 flights per quarter for a route with no competitors, to 73
flights in game 3 with the legacy carrier. In comparison, in game 2 where an LCC was the competitor,
the flight frequency was found to be 94 flights in Y3OP. It seems that the increased competition on the
computer player has a severe effect on the number of flights it is optimized to provide.

Using Figure E.6, it can be further observed that as in games 1 and 2, the load factor of the computer
player in game 3 remains at approximately 100%.
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Figure 6.15: Game 3 Frequency Comparison

Market Share Development
Figure 6.16, displays the market share development in game 3. Clear is the difference between the
market share developments of the business class in comparison to the other cabin classes. After the
initial change in frequency found in Y1OP, no large changes are found in the computer’s strategy for the
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non-business classes. With the constant decrease of the legacy carriers prices over the different classes
that follows, the slight increase in market share for the legacy carrier after each simulation year can be
seen. For the business class, the market share development is slightly different. Here the change in
frequency and the changes in yield display the battle for market share over the simulation years. Evident
is the decrease in yield of the computer’s business class in Y3OP, which increases the market share
strongly.
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Figure 6.16: Game 3 Market Share Development

Spill Analysis
Figure 6.17 displays the seat availability per class, per flight and per competitor for the different simulation
years. In this game, an interesting observation is made. As can be seen in the discount economy class,
there is a negative value for the seat available per flight for the legacy carrier. This indicates that in
this game, from Y1OP onwards, a demand spill is found for discount economy passengers. As the
simulation framework does not consider a spill and recapture model and passengers are not allowed to
switch to other cabin classes, these passengers are lost. It is interesting to see that the computer player
in this situation does not capture this opportunity. This indicates that adding frequency and decreasing
the fares would not lead to higher profits, thus the computer does not act on this.
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Figure 6.17: Game 3 Seat Availability per Flight Development
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General Findings Game 3
Game 3 portrayed a number of extra behavioral aspects of the computers reaction to competition. The
competition felt from the legacy carrier was found to be more substantial than that of the LCC, leading
to a further decrease in flight frequency. Game 3 further showed that the optimization process also has
an effect on the yield but it seems that this only occurs if frequency changes are no longer possible to
increase profitability. Another interesting find was the fact that the computer player spills demand if that
demand does not increase it’s profitability.
In Section E, the ASK, RPK, game KPI’s, revenue, cost and profit development can be found for of game
3. For completeness reasons they have been added to the appendix, however are not essential when
observing the computer players reaction.

6.2.5. Simulation Game 4
In the final game, multiple routes have been simulated to determine the computer reaction when it has
to optimize for different routes at the same time. Additionally, it is a chance to observe the workings of
the integrated simulation framework as a whole, in a multi-route environment. As described in Section
6.1.5, the game has been played twice. First in a situation where all exogenous players keep there
strategies constant, the so called null game, and second with changing strategies. The figures for the
null game can be found in Appendix E, but will be referred to when appropriate. In the following section,
the findings of game 4 will be discussed. This will be done according to the results on yield development,
frequency development, market share development and profit development. The section will conclude
with the general findings from simulation game 4.

Yield Development
In Figure 6.18, the yield development of game 4 for the route AMS-LHR can be found. As represented
by the blue lines, it can be seen that the fares of British Airways are decreasing with each simulation
year. The computer reaction to the competition can be observed from Y2OP onwards in the business
class. The computer clearly decreases its yield with each optimization year as a reaction to the price
decrease of BA. With respect to the other cabin classes, no reaction is found in the yield levels and
thus they maintain the maximum values as constrained by the simulation model. These yield levels are
identical to those found in the null game, as can be seen in Figure E.10. In the Copenhagen route, where
enhanced competition was also experienced by the computer, no changes to the yield levels were found
as can be seen in Figures E.8. The yield values for the AMS-CPH route were thus found to be equal to
those in the null game found in Figure E.9. The Madrid route, with it’s static competition, was also not
affected in any way in terms of yield.
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Figure 6.18: Game 4 Yield Development AMS-LHR
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Frequency Development
In Figure 6.19, the frequency development of game 4 can be observed. A clear reaction can be found
when comparing the AMS-LHR market between the shown game and the null game found in Figure
E.13. With the increasing frequency of BA, the computer reacts by decreasing its flight frequency. This
reaction is less profound in the AMS-CPH route, where the decrease in frequency between this game
and the null game is only one flight in the final optimization year. In the route to Madrid, no difference in
flight frequency can be observed.
Linking the observations made here to the figures showing the load factors of the different players found
in Figure E.20, an interesting observation can be made. The reaction with respect to frequency, directly
influences the load factors of the different players. It can be seen that the computer player reacts most
strongly, the further it is removed from the maximum load factor of one. The decrease in frequency of the
computer player in the AMS-LHR route after each optimization year, shows the computers behaviour
in trying to achieve the highest load factor possible. The reaction in the CPH route is less profound,
as the load factor over the different simulation years is always close to 100%, thus no large reaction is
needed.
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Figure 6.19: Game 4 Frequency Development

Market Share Development
In Figure 6.20, the market share development for the AMS-LHR can be found. Comparing this figure to
the one describing the null game in Figure E.16, the improvement of market share of BA can be observed.
This is as expected, as BA is constantly decrease its fares while increasing the frequency, making the
BA flight options increasingly attractive for passengers. The computer on the other hand is decreasing
its frequency while keeping the yields high, decreasing the attractiveness and thus negatively affecting
the market share. In the first class, no competition can be found and thus the computers market share
here is one. The market shares for the competitors in the CPH route, are found in Figure E.14. The
competition in this market seems to have the strongest effect on the other exogenous competitor, as
hardly any difference with respect to market share is found for the compute player. As in the previous
results, no changes in the market share of the Madrid route have been observed.
The results described above, clearly show the underlying models workings with respect to allocating
demand over the different flight options. However, it also shows that the computer player does not focus
on maintaining or improving its market share.
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Figure 6.20: Game 4 Market Share Development AMS-LHR

Profit Development
Figure 6.21 portrays the profit development of game 4 in the first quarter for the different games. The
profit optimization procedure is especially apparent in the AMS-LHR route, where after each optimization
year, the simulation framework clearly improves the profitability of the computer player. In the CPH route,
the profit optimization is less visible, as it is only slight. When comparing the game with competition to
the null game in Figure E.19, it can further be observed that the change in profit is most apparent in
the LHR route. Here the profit of the computer player has reduced most drastically, indicating that the
competition is affecting the computer here strongly. As expected after the previous analyses, no changes
were found in the AMS-MAD market.
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Figure 6.21: Game 4 Profit Development

General Findings Game 4
In game 4, a number of characteristics of the simulation framework have become clear. Even though
the game was played in a network including three routes, including two of which experienced increased
competition, no shifts were found to the third market which did not experience enhanced competition.
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This was observed due to the fact that no difference could be found between the results in the Madrid
route between the null game and the game with competition. Another observation was done that con-
firmed observations from previous games, namely that the computer’s reaction is based on first changing
the frequency and only if this is not possible, changing the yield level. The tendency relates to the com-
puter trying to keep the load factors as high as possible, with the highest possible fares. Other than
that, the simulation framework proved to generate and allocate demand in a multi-route environment as
expected.
For completeness reasons the figures not discussed with respect to the null game and other routes have
been added to the appendix. They are however not essential when observing the computer players re-
action in this game.

6.2.6. Conclusions Simulation Framework Game Results
In Section 6.2, the results of different games played with the integrated simulation framework have been
described. These games have been played to determine in what manner the computer player reacts
to the market and competition it is placed in. In this section, the general conclusions of the different
games will be described. Furthermore, a comparison to results gathered by previous research found in
literature will be described.

Game Conclusions
In general, the following conclusions can bemade from the different gameswhich have been played:

• The simulation framework and its underlying models produce the expected results with respect to
the inputs and constraints they are given.

• The process of profit optimization for the computer players works well, in all games played the
computer player increases its profit when comparing the initiation year and the final year of simu-
lation.

• The tendency of the computers reaction is to find a strategy, which has an as high as possible
load factor, while supplying an as low as possible frequency with the highest yield levels possible.
From a profit maximization reasoning, this manner of operation is understandable.

• In the presence of spill in a market, the computer player will only act if it could improve its prof-
itability. If the passengers it could transport would not lead to higher profits, these passengers will
not be catered for.

• From a multi-route perspective, stiff competition does not lead to a shift in focus by the computer
player to other routes. This could be simulated by implementing an extra constraint, which implies
a minimum frequency over all routes. This however should be further tested.

Comparison of Results to Literature
In the research done by Zito et al. (2011), the conclusion was made that in markets where a monopoly
exists, the total amount of service frequency is lower, fares are higher and profits are higher than in a
market with competition. In this thesis, similar results are found with respect to the profit and frequency.
In comparison to game 1, where the computer was flying in a monopolistic market with 175 flights a
quarter, games 2 and 3, which included competition, had a frequency of 262 and 241 per quarter re-
spectively. The fares of the computer player were however more or less equal. This is an interesting
find, as it seems that in the simulations done by Zito et al. (2011) the competitors were found to compete.
In this thesis, the computer is in search of the highest possible profit for itself and is thus not necessarily
competing with the other competitors. This may change if different bounds were set to the computer.
This could for example be done by setting a minimum market share for the computer.

The research conducted by Wei and Hansen (2007) was slightly different from the competitor reaction
model found in this thesis as its decision variables included the aircraft size and the frequency. However,
their model resulted in a situation where competitors would fly smaller aircrafts at higher frequencies to
attract more passengers. According to Hansen and Liu (2015), this is similar to what is found in reality.
In this thesis, the computers reaction, is centered around the change in frequency to ensure high load
factors. Therefore, increasing the frequency would need to lead to a similar load factor or it would not
happen. To make the computers reaction more realistic, the results of Wei and Hansen (2007) should
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be taken into account in the future. It is hypothesized that a similar computer reaction could be found if
the aircraft size would be added to the optimization model as a decision variable.

In the research by Ko (2016), it was mentioned that it would be desirable to change the objective function
of the model to strive for different goals. With respect to the optimization strategy of the computer player
in this thesis, it might be interesting to considered optimizing for other strategies than just profit such
as market share. This could change the reaction of the computer player significantly, and might lead to
more realistic or desirable reactions in a market.

84



7
Verification and Validation

In the following chapter, the verification and validation process will be described. Additionally a sensitivity
analysis will be discussed for the demand allocation and competitor reaction models.

The verification process will describe if the simulation framework and its sub-models comply with the
requirements set at the start of this thesis. For some of the requirements a validation process is possible,
where the results from various sub-models will be tested against reality. Sensitivity analyses will be
included to determine how different independent variables included in the different sub-models effect
the applicable dependent variable.

The chapter will start-off with the verification of the simulation framework as a whole. This will be followed
by a discussion on the sub-models of the simulation framework separately. The chapter will be concluded
with the general findings done during the verification and validation process.

7.1. Simulation Framework
In the coming section, the general requirements set ot the simulation framework will be discussed. For
these requirements, verification processes will be used to determine if the requirements have been met.
The requirements to be verified here can be found below:

• Verification - Combining a demand generation, demand allocation and market competition model
into a simulation framework

• Verification - The simulation framework should allow for exogenous players to compete in the
different markets

Combining to Create Simulation Framework To achieve being able to simulate competition and pas-
senger choice for an airline in the aviation market, it was determined that for this simulation framework
a demand generation, demand allocation and market competition model were to be combined. In this
thesis the combination of these different sub-models was successful and a simulation framework has
been developed including the separate elements. The separate sub-models are combined in the manner
described in Section 4.1.1, while each sub-model have the following key characteristics:

• The demand generation model is based on a gravity model, capable of generating demand be-
tween the specified city-pairs for the different classes implemented in the simulation framework.
The output of this sub-model is an input for the demand allocation and competitor reaction models.

• The demand allocation model simulates passengers choice and consists of a multinomial logit
model. Here, the different flight options provided in the simulation framework are assigned a com-
puted market share, which their flight option will attract based on its characteristics.

• The market competition model is centralized around the competitor reaction model, which is based
on a profit optimization of the computer player in the simulation model. This computer player reacts
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to the competition in each route and optimizes its strategy with respect to profit maximization. Fur-
thermore, the market competition between players is simulated by the demand allocation model,
where the demand for different flight options are predicted.

Exogenous Players The inclusion of exogenous players in the simulation framework has been imple-
mented as an option which can be used in each simulation game year. The exogenous players are
able to determine their strategies and input this into the model. The strategies consists of choices on
fare, frequency, aircraft size and seat shares per class. These inputs are then taken into account in
the demand allocation process as well as the competitor reaction model. The simulation framework is
thus applicable to be used by several players at once, according to which the simulation will then be
run.

7.2. Sub-Model: Demand Generation
In the following section, the verification and validation process of the demand generation model will
be discussed. The sections starts with a discussion on the verification process which is followed by
the validation process. In the validation process, demand is generated for routes which have not been
calibrated for, to determine the demand generations model performance.

Below, a short recap on the requirements which had to be met for the demand generation model are
found as in which section the will be treated:

• Verification - The independent variable signs used in the gravity model are as expected.

• Verification - The magnitude of demand is similar to actual demand values, as is a similar distri-
bution between classes with respect to actual demand splits

• Validation - The model is generalizable to routes with similar characteristics, for which have not
been calibrated

7.2.1. Verification
In the verification of the demand generation model, it is of interest to determine if the demand generation
model complies to the requirements set during the project proposal. As described above, the require-
ments to verify are on if the independent variable signs are as expected and if the magnitude and split
are similar to those found in the actual aviation markets.

Independent Variable Signs Described in Section 5.2.2, all coefficients for the different independent
variables used in the gravity model were found to be as expected.

Demand Magnitude & Splits In general it can be concluded from Section 5.2 that, as the majority of
demand comprises of discount economy passengers and the sub-models performance of this class is
best, the magnitude of the demand generated for each OD-pair is found to reflect reality. Specifying to
the demand splits over the different classes, it can be said that the demand split is available however
the accuracy differs per route.

7.2.2. Validation
As described previously, one of the requirements set in the research plan was to make the demand
generation model generalizable with respect to routes with similar characteristics. To validate if this
is possible, a number of routes were kept for validation purposes, as described in Section 5.1. The
figures and table with descriptives of the performance of the demand generation model for these routes
can be found in Appendix C. In this section, the main findings will be described with references to the
appropriate table and figures when necessary. The section will conclude with the main conclusions with
respect to the validation process.

Main Observations Gravity Model Performance Plots The gravity models performance with respect
to the FRA-MAD route in both directions can be found in Figures C.22 and C.24. Here it can clearly be
observed that the discount economy class is over predicted by the gravity model used in the demand
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generation model. The LHR-CPH routes in both directions however experience the exact opposite. As
can be seen in Figures C.23 and C.26, the demand generation model is under estimating the demand
of the discount economy class between the two routes. These over and underestimations are consid-
ered severe, as they are approximately twice or half of the actual values for the respective markets.
The routes which have the best performance, with respect to performance of estimating the discount
economy class include FRA-CPH and CPH-FRA. As can be seen in Figures C.25 and C.27, there is a
slight over prediction of the discount economy class, but it is less severe than seen in the other routes.
When contemplating Table C.34, the above observations are confirmed. The routes with the best per-
formance with respect discount economy class are indeed those between the airports of Copenhagen
and Frankfurt.

Figures C.32, C.30, C.31, C.29 and C.28 described the performance of the gravity model for the val-
idation routes with respect to the different classes in the model. In general, it can be noted that the
business class and premium economy class are under predicted. The first class is in general over pre-
dicted, while the discount economy and full economy cabin class do not have a general over or under
prediction.

Main Observations Gravity Model Performance Validation Table In Table C.34, the performance
of the gravity model used in the demand generation model for the validation routes can be found per
cabin class. Apparent is the fact that the discount economy class and premium economy class have
the best performance irrespective of the route in comparison to the other classes. This performance, as
mentioned before, is derived from the value of the percentual value of the standard error with respect
to the average demand. These values are lowest for the discount economy and premium economy
classes. The worst performing class is the first class, which have large relative standard errors.

When comparing the validation routes to the calibration routes in Table C.22, a consideration can be
made on the quality of the estimation of the validated routes. The estimates of the discount and premium
economy class for the validated routes may, in general, be considered acceptable however, the other
classes are in general unreliable. A threshold to determine from when an standard error is unacceptable
is difficult to set. However, it is clear that when a standard error is more than 100%of the average demand
value, the estimated demand no longer reflects reality.

General Conclusions In the previous section, the validation process of the demand generation model
was discussed. As known by the reader, the validation is centered around the gravity models perfor-
mance when used on routes it was not calibrated for. The general validation conclusions that can be
made are the following:

• The discount and premium economy cabin classes of the validation routes are considered to be
sufficiently accurate for the integrated simulation games purposes. The other classes can be used,
but cannot be confidently considered as accurately reflecting reality.

• In general, the gravity model used for demand generation is not confidently generalizable for dif-
ferent routes with similar characteristics as those calibrated with. Recommendations on how this
the calibration can be improved to make the model generalizable will be discussed in Section 8.4.

7.3. Sub-Model: Demand Allocation
For the demand allocation model, a description will be found on the process of verification and valida-
tion to determine if the model complies with the set requirements and to observe if the model reflects
reality. Additionally, a sensitivity analysis of the model will describe the effect of changing the values of
different independent variables and how this impacts the dependent variable, in this case the passenger
choice.

For the verification and validation processes, the initially set requirements as well as in which section
they are discussed can be found below:

• Verification - The independent variable signs used in the demand allocation model are as ex-
pected
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• Verification - The choice distributions predicted by the demand allocation model are similar to
those found with respect to actual data

• Validation - The demand allocation model is generalizable to routes with similar characteristics
which have not been used to calibrated the model

7.3.1. Verification
For the verification of the demand allocation model, two requirements are tested to ensure they have
been met in the design of the integrated simulation framework. The requirements to be verified include
those describing the signs of the independent variables, as well as the similarity in choice distributions
between the predicted and actual data. The verification process is described below.

Independent Variable Signs As thoroughly described in Section 5.3.2, all coefficients of the indepen-
dent variables included in the demand generation model were of the expected sign and thus this re-
quirement was easily verified.

Similar Choice Distributions For the verification of the choice distribution requirement, the analysis
found in Section 5.3.2 is of use. Here it was found that on average the values predicted by the demand
allocation model were similar to those found in the actual data. It was however noted that some under
prediction was expected in the premium economy and first classes. Yet in general the predicted choice
distributions of the demand allocation model can be found to be representative for the actual aviation
market.

7.3.2. Validation
As with the validation of the demand generation model, the demand allocation model is validated with
respect to the validation routes to determine if it is generalizable for routes with similar characteristics.
In similar fashion to the demand generation validation, this section will hold a discussion on the main
conclusions coming from the validation process with respect to the applicable plots and tables describing
the models performance. The section will end with the main validation conclusions for the demand
allocation model. The plots and tables used in this discussion can be found in Appendix D and will be
referred to when necessary.

Main Observations MNL Performance Plots As seen in Section 5.3.2, the premium economy and
first class flight options are underestimated. This can clearly be seen in Figures D.19 and D.20, which
depict the demand allocation shares in the routes between Madrid and Frankfurt. As said previously,
this behaviour was also observed in the calibration route set and is thus not surprising. In Figures D.21
and D.22, the demand allocation performance for the routes between Frankfurt and Copenhagen can be
found. Of the validation routes tested, it is observed that these routes have the worst performance. This
is especially visible from the actual-vs-predicted shares plot, where the discount economy shares follow
a different trend than that of the actual-vs-actual data points. Examining Table D.3 this observation is
confirmed, the routes between Frankfurt and Copenhagen are indeed the worst performing. In general
however, it can be deduced from the performance plots that the demand allocation model resembles the
actual demand splits represent the shares with respect to size and magnitude.

Main Observations Gravity Model Performance Validation Table In respect of the performance of
the different cabin classes in the validation routes, it can be observed from Table D.2 that the discount
economy class performs best. Comparing the results to the calibration routes found in Table 5.23, the
errors are comparable to those found in the validation routes. The first class does perform worse, while
the premium economy class performs slightly better than in the calibration routes.

Looking at the the performance results per route as described in Table D.3, the validation routes do not
stand-out in comparison to those found in Table 5.24 which describe the calibration route performances.
The errors are quite similar in both performances tests.

The final table to be contemplated describes the performance of the demand allocation model with re-
spect to each validation route per class and can be found in Table D.4. Confirming previous observations,
the discount economy class is observed to have the best performance. In general, when comparing the
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performance results to that of the calibration routes found in Table D.1, it can be concluded that the
demand allocation model can be used with the same level of confidence as for the routes with which the
model was calibrated. It should however be noted that the performance for flight options of data entries
with low data counts show high signs of error, and can not deliver estimations which are representable
for real life situations. In the validation performance results this is especially the case for a number of
first class flight options.

General ConclusionsAbove, the performance of the demand allocationmodel has been discussed with
respect to the validation routes. It can be concluded that the results found for the validation routes were
similar to those found in the calibration routes. The demand allocation model can thus be considered
to be generalizable for routes with similar characteristics with the same level of confidence as for the
calibrated routes.

7.3.3. Sensitivity Analysis
In the sensitivity analysis done for the demand allocation model, the MNL models sensitivity has been
tested to the different independent variables included. The sensitivity analysis consisted of developing
a base situation, from which the change in market share due to the changed input of the independent
variable was computed.
The base market share was based on the route AMS-MAD, which has been used in the development
of multiple games played in this thesis. For the base market share calculations, the average frequency
and average yields per class were used as inputs as well as an extra distance of zero.
To test the models sensitivity, the minimum and maximum values of each independent variable were
used to calculate the percentual difference in market share. To stay in line with the rest of the thesis,
the yield minimums and maximums were based on the average yield value, plus or minus twice the
standard deviation. Furthermore, as the data set for the route AMS-MAD did not contain connecting
flights, a maximum extra distance was included which was based on the extra distance that would have
been flown if a stopover would be made in London. The inputs for the sensitivity analysis have been
summarized in Table 7.1.

Table 7.1: Demand Allocation Model Sensitivity Analysis Inputs

Descriptive Variable Max. Min. Avg.

AMS-MAD Frequency 1137 571 886
AMS-MAD Extra distance 156 0 0
Discount Economy Yield 0.29 0.00 0.12
Premium Economy Yield 0.62 0.00 0.23
Full Y Yield 0.93 0.22 0.57
Business Yield 1.53 0.00 0.76
First Yield 0.24 0.00 0.09

The results of the sensitivity analysis can be found in Table 7.2. The sensitivity analysis has been
computed per cabin class thus the sensitivity for each separate class can be examined. In general, the
effect on the market share of each independent variable has the expected sign. The easiest independent
variables to compare are the frequency and extra distance as these vary in a constant manner for the
different classes. The market share with respect to the frequency of a flight is found to be less sensitive
in the discount economy class in comparison to the more expensive classes. This same observation
is done when looking at the effect of the extra distance on the market share. It is hypothesized that
this is due to the fact that in more expensive classes, passengers will increasingly consist of business
passengers who become increasingly time-sensitive, as described in the research by Carrier (2008).
Additionally, as expected from the variable impact results found in Section 5.3.2, the extra distances has
a stronger effect on the market share of a flight option than the frequency does.

For the sensitivity of the market share for the yields on the market share, it can be observed that the
percentual effect varies greatly over the different classes. This is due to the fact that the ranges for which
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the sensitivity analysis is done differs per class, as can be seen in Table 7.1. It is therefore difficult to
directly compare the different cabin classes in the manner that was done for the other two independent
variables. The signs are however portray typical effects.

Table 7.2: Demand Allocation Model Sensitivity Analysis

Sensitivity Analysis

Variable Setting Change in MS Disc. Change in MS Prem. E. Change in MS Full Y Change in MS Bus. Change in MS First

Frequency Min. -23.2% -30.9% -31.1% -31.2% -30.0%
Max. 20.6% 33.8% 34.3% 34.4% 31.9%

Yield Min. 8.4% 24.6% 42.1% 110.5% 8.3%
Max. -10.6% -32.3% -29.9% -53.9% -14.0%

Extra Distance Min. 0.0% 0.0% 0.0% 0.0% 0.0%
Max. -57.4% -66.6% -66.9% -66.9% -65.7%

7.4. Sub-Model: Competitor Reaction
In the coming section, the verification process of the competitor reaction model will be discussed. This
model will not have a discussion on validation procedures as the model actual data with respect to com-
petitor reaction is unavailable. This section will however contain a sensitivity analysis of the competitor
reaction model, focused on changing the constraints for multiple independent variables included in the
model.

In similar form as done for the previous models, below the requirements for the competitor reaction
model are found. These requirements will all be verified in the upcoming thesis section.

• Verification - The behaviour of the computer player is as set in the defined strategy

• Verification - The computer is able to react to the changes made by other competitors in the
market

7.4.1. Verification

The verification of requirements ensures that the requirements set for the model are met by the design of
the model. For the competitor reaction model, these requirements include that the behaviour of the com-
puter reflects the strategy that it was set as well as that the computer player is able to react to competition
it experiences. The verification process of these two requirements is discussed below.

Computer Behaviour as Specified As explained in the methodology section of this thesis, which can
be found in Section 4.4, the competitor reaction for the computer was based on the computer optimizing
its profit over the different routes. As observed in the results of all the different simulation games played
in this thesis, as found in Section 6.2, this optimization behaviour was clearly observed. The computer
player’s profit was found to improve after each optimization game year, with the exception if the computer
had already found a steady-state and no further optimization was possible.

Computer Reaction Capabilities The requirement of the computer being able to react to competition
changes, was inherently implemented within the competitor reaction model. The computer takes the
strategies of the competitors into account when optimizing its own strategy for profit.

In the games played in Sections 6.1.3, 6.1.4 and 6.1.5 competitors challenged the computer in different
manners. It was clear from these games that the computer changed its strategy as a reaction to these
competitors. The main reaction was found to be with respect to the flight frequency. Yield reactions were
also observed but these were implemented less frequently. The computers reactions observed, were all
within the specific route it was playing in. A strategy of deferring to different routes if competition in one
of the routes was increased was not found with the current set-up. It is hypothesized that with additional
constraints this could be implemented. More on these additions can be found in the Section 8.4.
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7.4.2. Sensitivity Analysis
The sensitivity analysis designed to test the competitor reaction model is based on the decision variables
included in the model, with the focus on their upper and lower bounds. The upper and lower bounds are
set to ensure the computer player optimizes its strategy within certain limits, leading to a strategy which
represents realistic competition.

For the sensitivity analysis, game 2 is denoted as the null game to enable a basis for comparison. This
game was set on the AMS-MAD route and consisted of the competition between a player representing
a LCC and the computer player. In total, three different sensitivity analysis have been done. The results
of the sensitivity analysis can be found in Table 7.3. The sensitivity analysis games have been defined
below:

• Sensitivity Analysis Yield

– The standard yield bounds are derived from Table 5.5, where the upper and lower bounds for
each class were the average yield, plus or minus twice the standard deviation of the yield.
For the sensitivity analysis, the standard deviations of the yield have been set to 5.0, which
severely broadens the yield ranges. A minimum of 0.00 was always ensured for the different
yields to guarantee that negative yields were not a strategy option. Frequency bounds were
as normal.

• Sensitivity Analysis Frequency

– The standard frequency bounds for the AMS-MAD route can be found in Table 5.4. For the
sensitivity analysis, the minimum and maximum bounds were changed to a minimum of one
flight and a maximum of 10.000 flights per month. Yield bounds were as normal.

• Sensitivity Analysis Yield and Frequency

– In the final sensitivity analysis, both yield and frequency bounds were let go and the above
mentioned changes were implemented. This sensitivity analysis gives the computer a large
amount of freedom to determine its strategy in the optimization process.

Table 7.3: Sensitivity Analysis Comparisons

Sensitivity Game Freq. [Month] Yield Disc. Yield PremE Yield FullY Yield Bus Yield First Profit [EUR] Load Factor

Null 94 0.29 0.62 0.93 1.53 0.24 3.96E+07 0.99
Yield 62 1.29 10.23 10.57 10.76 10.09 4.82E+08 1
Frequency 94 0.29 0.62 0.93 1.53 0.24 3.96E+07 0.99
Both 62 1.29 10.23 10.57 10.76 10.09 4.82E+08 1

The results of the sensitivity analyses can be found in 7.3. Themain findings are described below:

• Sensitivity Analysis Yield

– The computer player is found to increase its yields to the highest possible values for the cabins
in which it does not experience competition. A logical consequence as the passengers will
fly irrespective of the unrealistically high yields.

– The discount economy class also experiences a larger yield than in the null game, however
this is much lower than the maximum value it could achieve. This is due to the fact that it
has competition in this cabin class and thus must keep a yield level for which passengers will
want to fly with the computers flight option while having a frequency of 62 flights.

• Sensitivity Analysis Frequency

– Interestingly, the broadening of the frequency strategy space has not lead to a change in
strategy with respect to the null game. The yield bounds thus have a significant effect on the
optimization strategy and find the optimum frequency level to be the same as within the null
game, while the yields are all at their maximum levels.

• Sensitivity Analysis Yield and Frequency
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– Combining both yield and frequency range broadenings leads to an optimal strategy equal to
that of the yield sensitivity analysis. Comparing this to the previous sensitivity analysis it is a
logical step as now the yield restrictions are less restrictive and give opportunity to decrease
the frequency and increase the yields.

In general it can be concluded that the competitor reaction model has a tendency to fly the minimum
amount of flights necessary, with high load factors, at the highest prices possible. The yields however
do take into account the competition and thus yield levels are affected by the competition. From a profit
optimization goal, this finding is as expected, however it thus shows the importance of setting realistic
bounds to the computer player reflecting the type of competitor one would like to simulate.

92



8
Conclusions and Recommendations

In this chapter, the conclusions concerning the simulation framework designed over the course of this
study will be described. The discussion will focus on the general contributions of the research as well
as the limitations of the simulation framework and the recommendations for future research.

8.1. Conclusions
In the following section, the conclusions describing the simulation framework will be discussed. This will
be done according to a similar structure as found in the research proposal. The section will start with
the conclusions regarding the research objective and scope. This will be followed by the contributions
made to science and to the airline industry.

8.1.1. Research Objective and Scope
At the start of this thesis, a number of needs and opportunities have been identified. In general, it was
found that being able to understand the dynamics of the aviation market as a whole, with its underlying
specifics, is complicated but is desirable for multiple scientific and industry purposes. The main needs
to such a framework, have been identified to be the inclusion of sub-models which describe the general
traits of the aviation market while specifically including dynamic competitor reaction and the possibility
to include exogenous players into the simulation to provide a platform for simulation game play. From
this, the research objective was thus defined to be:

To contribute to the development of an integrated simulation framework, which has the
capability of realistically simulating the aviation market by being able to reproduce the com-
petition and passenger choice for an airline in the aviation market by combining a demand
generation, passenger choice and market competition model.

Below, the conclusions on the different sub-models, as well as a conclusion on the total simulation
framework are discussed. The conclusions will also reflect on the requirements set in the research
proposal with respect to realistic simulation.

Demand Generation
The demand generation model used in this thesis is based on a gravity model with decision variables
on the total passenger flow at both airports, the distance between the two airports and dummy variables
to split demand into the specified classes. Additionally, the model includes the effects of seasonality for
the different quarters in a year for each route included in the simulation framework.

The independent variables included in the gravity model are found to have the expected signs, while
all being significant. Furthermore, the effects of multicollinearity were not found between the different
independent variables. The total model is found to achieve an 𝑅ኼ of 0.766, which describes a reasonable
total performance.
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Comparing the predicted demands for each class in the different calibration routes to the actual demand
data, it can be concluded that in terms of total demand the gravity model performs well. The reason for
this is the fact that the models performance is best for the discount economy class, which caters for the
largest group of passengers. An exception is found in routes including CPH as an origin or destination.
It is expected this is due to unforeseen differences in airport characteristics in comparison to the other
airports with which were calibrated. With respect to the demand splits over the different classes, the
model is capable of making the split, however the realistic performance of the gravity model differs per
route.

With respect to the generalizability of the demand generation model, it was found in the validation pro-
cess that the demands generated for the discount economy class and premium economy class were
sufficiently accurate to be used for the simulation frameworks purposes. However, the other classes dis-
play deficiencies which cannot be considered to accurately reflect reality. The gravity model in this form
is therefore not considered to be confidently generalizable for routes with similar characteristics.

In general, the demand generation model has proven to be sufficiently accurate to be used for the
purpose of this simulation framework. As the gravity model included is basic in its build, the performance
can be considered to be good. With respect to calibration and data gathering, the gravity model in this
form is efficient and thus can easily be extended. The model in its current form is however not sufficiently
accurate to be generalizable for routes with similar characteristics for all classes.

Demand Allocation
The demand allocation model included in this thesis consists of a multinomial logit model. The deci-
sion variables are based on the flight frequency, yield, extra-distance and dummy variables per cabin
class. The demand allocation model is capable of determining market shares for the different flight op-
tions found in a route per quarter. In the simulation framework, the demand allocation model is applied
separately per class to determine the market shares of the different flight options.

The models’ calibration delivered the expected signs for the different decision variables, at the correct
levels of significance and excluding any effects of multicollinearity. The overall performance of the model
was found to achieve an 𝑅ኼ level of 0.711, which can be considered reasonable.

When comparing the models’ passenger choice predictions to those found in the actual data, the MNL
model can be considered to be representing the actual data. The trends and market shares predicted
agree well with those seen in reality. For the purpose of the simulation framework, the models’ per-
formance has been as expected. Looking more specifically at the performance of the demand allo-
cation model for the different cabin classes, it can be concluded that the performance is best for the
discount economy class. The premium economy class and first class were however found to be under-
predicted.

During the validation process, the generalizability of the demand allocation model was tested. The
results between the calibration and validation routes proved to be similar and thus it can be concluded
that with the same level of confidence as for the calibration routes, the model used can be generalized
to routes with similar characteristics.

The demand allocation model is hence considered capable of simulating passenger choice between
flight options representable to what happens in reality, while being generalizable for routes with similar
characteristics. This is in line with the expectations set at the start of this thesis and the simulation
framework can thus confidently be used for simulation purposes.

Market Competition - Competitor Reaction
The competitor reaction model found in the simulation framework is based on a non-linear profit opti-
mization of a single computer player. This computer player is present in every market with flight options
in all classes for the routes specified in the model. The optimization decision variables included the yield
of each class and the flight frequency in each route. The optimization takes the strategies of other com-
petitors into account, as well as the demands for each class in each route while optimizing and reacts
accordingly. The optimization is constrained by capacity, as well as by the yields per class.

In the multiple simulation games played, the computers’ optimization behavior has been determined.
It has been found that the goal set to the computer of optimizing profit works well. In all optimization
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years for which a profit increase could be made, the computer player increases its profits. In general,
the computer optimizes its profit by achieving an as high as possible load factor. The computer does this
by flying the lowest possible frequency to cater for all demand while having the highest possible yield
levels. From a profit optimization perspective, this is an understandable outcome. When testing the
computers reaction in a multi-route environment of three routes, with two routes under stiff competition,
no shift was found in focus to the third route. Extra constraints to the computer should be added to
achieve this behaviour.

In general, the profit optimization strategy, of the computer reaction, works as expected. In the thesis
objective, it was defined that the competitor reaction model would be considered realistic if it behaves
in accordance with the strategy which is specified and for which it has been designed. From this point
of view, a realistic model has been achieved. However, while the computer does react to the strategies
of the different exogenous competitors when optimizing the profit, the model cannot be said to compete
with the competitor. The strategy of optimizing profit will always try to improve on the simulation year
previous to the optimization year. However, under stiff competition this could mean that in the long run,
the computer will phase itself out of a market.

Total Simulation Framework
In this thesis, a contribution has been made to the development of a simulation framework which is
capable of realistically simulating market dynamics with respect to competition and passenger choice
in the European aviation market. In total, 22 routes have been included into the simulation framework,
with airports including those in Amsterdam, Copenhagen, Frankfurt, London and Madrid. To achieve
this, a demand generation model, demand allocation model and market competition model have been
combined. Additionally, the simulation framework is compatible with exogenous competitor inputs to
create a game environment while hosting dynamic competition by the computer player.

8.2. Research Contribution
In the following section, the research contributions of this thesis will be described. In general, to the
authors best knowledge, this is the first simulation framework which can reproduce (dynamic) compe-
tition and passenger choice in the European aviation market via a serious-gaming -environment. The
contributions with respect to science and industry are described separately below.

8.2.1. Scientific Contribution
• The simulation framework in this thesis can be seen as a proof-of-concept in such a way that there
are large possibilities in combining different models which model specific traits of the aviation
market. By combining these different models, simulation frameworks can be designed which hold
the potential of accurately simulating larger scope aviation market dynamics.

• The designed simulation framework can act as a base framework, on which improvements and
extensions can be built in the future. This solid foundation is an ideal basis on which new re-
search can be started, for example related to improvements of the demand generation model or
the extensions into fleet scheduling.

• The simulation framework includes dynamic competition, which is rare in simulation models. The
dynamic competition is an improvement on static competition, as it is capable of reacting to changes
in competitor strategies, as is found in reality. Depending on the strategy set to the computer
player, different types of realistic competition can be simulated. This addition, increases the sim-
ulation frameworks resemblance of the market dynamics found in reality.

8.2.2. Industry Contribution
• For educational purposes, the simulation framework designed in this thesis could be of great value
to (future) aviation professionals. The simulation framework has the capability of simulating mar-
ket dynamics in a representative way with respect to reality. Additionally, being able to play as
an exogenous competitor and change strategy with respect to the models’ outputs, provide an

95



environment where one can learn about aviation market dynamics by playing games with various
roles and settings.

• The simulation framework has the potential to become a cost-effective tool to predict the outcomes
of future strategies for airlines. The simulation framework could for example be used to determine
the effect of exogenous market changes, or the opening of a new route.

8.3. Limitations
The following section will discuss the limitations of the simulation framework and its sub-models. The
limitations will take a substantial amount of effort to be tackled , but at the same time may be input for
continuing and interesting research projects. For every disclosed limitation, a possible solution has been
described.

Simulation Framework
• Capacity Constraints per OD-Route

– With respect to the capacity constraints, no constraints have currently been included which
ensure that the number of flights between an OD-pair are equal to the number of flights re-
turning. Therefore, capacity deficiencies which might occur in reality are not accounted for in
the current setup.

– Possible Solution: This limitation could be overcome by introducing a general model con-
straint which does not allow capacity differences in both directions for an OD-pair. This con-
straint should hold for both exogenous players as well as the computer player.

• Aircraft Configurations

– As with the capacity constraints, no constraints exist which ensure that the aircrafts flying in
one quarter in both directions of an OD-pair have the same seating configuration.

– Possible Solution: This limitation could be overcome with the introduction of a general simu-
lation framework constraint which ensures that the aircraft flying between an OD-pair have a
fixed configuration per quarter.

• Indirect Flights

– The simulation framework can only handle indirect flights when inputted manually by exoge-
nous players. Currently, no controls on determining the possible connections and seat avail-
ability for indirect passengers are implemented in the simulation framework. However, the
demand allocation model can cope with the indirect flight market share predictions.

– Possible Solution: To overcome this limitation, a number of additions have to be made to
the simulation framework. These additions include a script which determines the possible
connections and connection frequency and, a constraint which ensures that the sum of the
direct and indirect passengers on a flight stays within capacity limits.

Demand Generation
• Dynamic Demand Generation

– In the current demand generation model, supply effects are not considered when determining
demand. Therefore, the different players in the model have the opportunity to supply unre-
alistic flight frequencies or yield levels. Currently, this is restricted in the model by the users
themselves and several constraints on the computer player. It might however be more real-
istic to have the demand change with respect to supply effects. Low frequencies and high
yields may for example decrease demand, as passengers will decide not to travel anymore
or look for other means of transportation.
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– Possible solution: For a dynamic demand generation model, the gravity model currently used
would need to undergo an overhaul. Decision variables based on supply would need to be
added and research needs to be done on the criteria based on which potential travelers make
decisions on how and whether or not they travel. Furthermore, the new decision variables
should be coherent with the rest of the sub-models in the simulation framework.

Demand Allocation
• Spill and Recapture Model

– In the current simulation framework setup, the demand allocation model splits the demand on
the basis of the expected passenger choice but does not take the capacity of the flight option
into account. Therefore, demand for a flight option which exceeds the capacity is spilled. This
spill is in no way recaptured and can be considered lost forever.

– Possible Solution: To overcome this limitation, a spill and recapture model should be de-
signed. Opportunity here is to determine what number of passengers ‘spilled’ would be will-
ing to fly an alternative flight option. Parameters that might be included in such models are
for example buy ups and buy downs with respect to class, flying on a more expensive alter-
native and taking an indirect alternative. Additionally, a demand penalty could be issued for
upcoming game years if demand was found to be lost. More research related to options and
possibilities would have to be done in this area to overcome this limitation.

Market Competition - Competitor Reaction
• Short-Term Strategies

– The optimization software which controls the computer reaction does not take long term strate-
gies into account. In this setup the computer will try to improve its profit with respect to the
previous game year, but not necessarily ensure its survival. As a consequence, the computer
over a number of simulations may optimize itself until it is practically non-existent.

– Possible Solution: This limitation is currently not a big problem, as the simulation currently
only plays over three simulations years. If one would prolong the simulations game time,
research should be done to determine if the above behaviour is acceptable or not.

8.4. Recommendations
In the upcoming section, recommendations for further and future research related to the simulation
framework will be discussed. These recommendations capture leads on which future effort(s) could
focus, which would most likely result in a more comprehensive simulation framework.

Simulation Framework
• Passenger Segmentation

– Passenger segmentation in the model designed in this thesis is based on class preference,
acquired from the actual data. It may be interesting to change the passenger segmentation
to for example trip purpose and determine if this would more accurately represent reality.
The segmentation by trip purpose may also provide insight on the behaviour of passengers
when determining their second best choice. It is for example hypothesized that passengers
with business purpose, in comparison to leisure travelers, would more quickly go for more
expensive flight options if their first flight option preference is not available.

• Non-Air Travel Modes

– The current simulation framework assumes that all passengers in the model are willing to fly.
It would however be interesting to include the options of non-air travel to the simulation frame-
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work, to better simulate the competition between air and non-air travel alternatives and the
choice of whether or not to fly. With this implemented, it might even be possible to reintroduce
the routes under 500km which have currently, in general, been excluded.

• External Market Influences

– Currently, external market influences such as an increase in fuel prices or an economic down-
turn cannot easily be implemented. In case that there is a need or wish to simulate such a
situation, it would be interesting to add parameters which could simulate these effects. With
this in place, the correct reaction of an airline could be tested using the simulation framework.
Research would need to be done to discover what exogenous market effects would be most
interesting to include.

• Cost Model

– The current cost model which determines the cost of flight operation is very basic and can
be considered econometric. In the future it would be interesting to include a more extensive
cost model, which for example also takes into account the costs of different airlines and land-
ing fees at airports. Furthermore, cost differentiation for different types of players could be
introduced, for example lower costs for cost sensitive low cost carriers.

• Model Extensions

– The simulation framework in its current form is a basis which can be extended with additional
sub-models. These opportunities should be explored, to increase the complexity and scope
that it covers within the aviation market. An addition which comes to mind is a fleet allocation
model, which determines the types and availability of aircraft over the different routes and for
different carriers.

Demand Generation
• Model Complexity

– The demand generation model is currently in an effective and meaningful yet simple form.
In the future, the extension of this model could potentially increase its accuracy and gener-
alizability to routes with similar characteristics. Further additions which could be made are
for example the inclusion of the GDP, airport catchment area and variables on the social and
commercial interaction between two cities.

• Directional Demand

– A simple addition to the demand generation model, would be to split the current variable which
comprises the product of the passenger flow at both airports into two separate variables. By
doing this, directional demand could be generated between OD-pairs.

• Calibration Clustering

– To increase the accuracy of the gravity model, multiple gravity models could be calibrated for
different clusters of route characteristics. Examples of this clustering would be on the basis of
distance between the OD-pairs, leisure and business markets, magnitude of demand on the
routes, time period or airport sizes. In the current thesis, multiple clusters were experimented
with, however with the available data set this was not possible.

Demand Allocation
• Model Complexity

– By increasing the model complexity, the accuracy of prediction of passenger choice could be
improved. Additions which could be interesting are the time-of-day preference of passengers
to fly, the preference for the type of carrier and the preference for aircraft type and size.
Also, the inclusion of the extra time of flying an indirect flight, instead of the extra distance,
is expected to be beneficial. Literature showed that especially the extra time of flying an
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indirect flight has significant effect on passenger choice. Including the above was currently
not possible due to limitations of the available data.

• Calibration Clustering

– As with the demand generation model, it may be interesting to develop multiple multinomial
logit models to more accurately determine passenger choice for different groups of passen-
gers. Clusters could include different passenger types, age groups and seasons of travel.

Market Competition - Competitor Reaction
• Different Computer Strategies

– In this thesis, the competitor’s (computer player) reaction was based on a profit optimiza-
tion. It would be useful to determine what the behavior of the computer player would be if
exposed to different predefined strategies. Examples could be the optimizations of market
share, frequency and minimum passenger spillage.

• Load Factor Constraint

– In the current competitor reaction model, the computer has the tendency to lower the flight
frequency to ensure high load factors with high yields. This could lead to situations under
hefty competition that the computer optimizes itself out of a market. It might be of interest to
prevent this. A solution could be found in implementing constraints on, for example, maximum
load factors and minimum market shares.

• Minimum Total Frequency Constraint

– As found in Game 4, no shift in focus was found to a route where no competition was experi-
enced by the computer player, while competition in other routes was increasingly more hefty.
If an active behavior would be desired in this situation, it is hypothesized that a minimum total
frequency over all routes for the computer player would suffice. This constraint would ensure
that the computer player cannot layoff flights indefinitely, and would have to redistribute them
over the simulated markets. With such a constraint, a shift to markets with less competition
may be seen.
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A
Seasonality Effects

Table A.1: Route Demand Seasonality Quarter 2

Route Month Moving Average Seasonality Effects Seasonality Percentage

AMS-MAD Qtr2 41194 3609 108.8%
CPH-MAD Qtr2 6611 795 112.0%
MAD-AMS Qtr2 40347 1832 104.5%
MAD-CPH Qtr2 6155 900 114.6%
CPH-CDG Qtr2 41652 8196 119.7%
AMS-CPH Qtr2 38474 6058 115.7%
CDG-CPH Qtr2 42913 8776 120.5%
LHR-MAD Qtr2 47042 2919 106.2%
FRA-LHR Qtr2 94446 2205 102.3%
LHR-FRA Qtr2 98915 3560 103.6%
MAD-CDG Qtr2 46664 8881 119.0%
CDG-MAD Qtr2 45766 8438 118.4%
CPH-AMS Qtr2 36957 4870 113.2%
MAD-LHR Qtr2 46334 2099 104.5%
AMS-LHR Qtr2 87647 1633 101.9%
LHR-AMS Qtr2 94761 2122 102.2%
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Table A.2: Route Demand Seasonality Quarter 3

Route Month Moving Average Seasonality Effects Seasonality Percentage

AMS-MAD Qtr3 37405 -181 99.5%
CPH-MAD Qtr3 6590 775 111.8%
MAD-AMS Qtr3 37728 -786 97.9%
MAD-CPH Qtr3 5420 164 103.0%
CPH-CDG Qtr3 34226 769 102.2%
AMS-CPH Qtr3 27700 -4717 83.0%
CDG-CPH Qtr3 33678 -459 98.6%
LHR-MAD Qtr3 47186 3063 106.5%
FRA-LHR Qtr3 91567 -674 99.3%
LHR-FRA Qtr3 97934 2580 102.6%
MAD-CDG Qtr3 38973 1190 103.1%
CDG-MAD Qtr3 38908 1579 104.1%
CPH-AMS Qtr3 29349 -2738 90.7%
MAD-LHR Qtr3 45067 831 101.8%
AMS-LHR Qtr3 82781 -3233 96.1%
LHR-AMS Qtr3 90094 -2546 97.2%

Table A.3: Route Demand Seasonality Quarter 4

Route Month Moving Average Seasonality Effects Seasonality Percentage

AMS-MAD Qtr4 40679 3094 107.6%
CPH-MAD Qtr4 5443 -372 93.2%
MAD-AMS Qtr4 42512 3998 109.4%
MAD-CPH Qtr4 5453 198 103.6%
CPH-CDG Qtr4 31427 -2029 93.5%
AMS-CPH Qtr4 35705 3288 109.2%
CDG-CPH Qtr4 33483 -654 98.0%
LHR-MAD Qtr4 42054 -2069 95.1%
FRA-LHR Qtr4 95760 3519 103.7%
LHR-FRA Qtr4 94192 -1163 98.8%
MAD-CDG Qtr4 34719 -3064 91.2%
CDG-MAD Qtr4 35478 -1851 94.8%
CPH-AMS Qtr4 33682 1595 104.7%
MAD-LHR Qtr4 45357 1121 102.5%
AMS-LHR Qtr4 92134 6120 106.6%
LHR-AMS Qtr4 98651 6011 106.1%
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B
Gravity Model Deseasonalization Plots

(a) Deseasonalizated demand AMS-CPH (b) Deseasonalizated demand AMS-LHR

(c) Deseasonalizated demand AMS-MAD (d) Deseasonalizated demand CDG-CPH

(e) Deseasonalizated demand CDG-MAD (f) Deseasonalizated demand CPH-AMS
Figure B.1: Deseasonalizated demand set 1
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(a) Deseasonalizated demand CPH-CDG (b) Deseasonalizated demand CPH-MAD

(c) Deseasonalizated demand FRA-LHR (d) Deseasonalizated demand LHR-AMS

(e) Deseasonalizated demand LHR-FRA (f) Deseasonalizated demand LHR-MAD
Figure B.2: Deseasonalizated demand set 2
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(a) Deseasonalizated demand MAD-AMS (b) Deseasonalizated demand MAD-CDG

(c) Deseasonalizated demand MAD-CPH (d) Deseasonalizated demand MAD-LHR
Figure B.3: Deseasonalizated demand set 3
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C
Gravity Model Performance

Figure C.1: Gravity Model Performance CDG-CPH OLS

Cabin x-min x-max

Business 0 2
Discount Economy 3 22

First 23 41
Full Y 42 46

Premium Economy 47 66

Table C.1: Cabin Ranges CDG-
CPH OLS

Figure C.2: Gravity Model Performance AMS-MAD OLS

Cabin x-min x-max

Discount Economy 0 19
First 20 39

Full Y 40 53
Premium Economy 54 71

Table C.2: Cabin Ranges AMS-
MAD OLS
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Figure C.3: Gravity Model Performance AMS-LHR OLS

Cabin x-min x-max

Business 0 19
Discount Economy 20 39

First 40 58
Full Y 59 78

Premium Economy 79 98

Table C.3: Cabin Ranges AMS-
LHR OLS

Figure C.4: Gravity Model Performance AMS-CPH OLS

Cabin x-min x-max

Business 0 1
Discount Economy 2 21

First 22 39
Full Y 40 53

Premium Economy 54 70

Table C.4: Cabin Ranges AMS-
CPH OLS

Figure C.5: Gravity Model Performance AMD-LHR OLS

Cabin x-min x-max

Business 0 19
Discount Economy 20 39

First 40 45
Full Y 46 65

Premium Economy 66 85

Table C.5: Cabin Ranges MAD-
LHR OLS
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Figure C.6: Gravity Model Performance MAD-CPH OLS

Cabin x-min x-max

Discount Economy 0 19
First 20 29

Full Y 30 30
Premium Economy 31 43

Table C.6: Cabin Ranges MAD-
CPH OLS

Figure C.7: Gravity Model Performance MAD-CDG OLS

Cabin x-min x-max

Business 0 8
Discount Economy 9 28

First 29 48
Full Y 49 53

Premium Economy 54 73

Table C.7: Cabin Ranges MAD-
CDG OLS

Figure C.8: Gravity Model Performance MAD-AMS OLS

Cabin x-min x-max

Discount Economy 0 19
First 20 39

Full Y 40 53
Premium Economy 54 72

Table C.8: Cabin Ranges MAD-
AMS OLS
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Figure C.9: Gravity Model Performance LHR-MAD OLS

Cabin x-min x-max

Business 0 19
Discount Economy 20 39

First 40 42
Full Y 43 62

Premium Economy 63 82

Table C.9: Cabin Ranges LHR-
MAD OLS

Figure C.10: Gravity Model Performance LHR-FRA OLS

Cabin x-min x-max

Business 0 19
Discount Economy 20 39

First 40 44
Full Y 45 64

Premium Economy 65 84

Table C.10: Cabin Ranges LHR-
FRA OLS

Figure C.11: Gravity Model Performance LHR-AMS OLS

Cabin x-min x-max

Business 0 19
Discount Economy 20 39

First 40 58
Full Y 59 78

Premium Economy 79 98

Table C.11: Cabin Ranges LHR-
AMS OLS
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Figure C.12: Gravity Model Performance FRA-LHR OLS

Cabin x-min x-max

Business 0 19
Discount Economy 20 39

First 40 44
Full Y 45 64

Premium Economy 65 84

Table C.12: Cabin Ranges FRA-
LHR OLS

Figure C.13: Gravity Model Performance CPH-MAD OLS

Cabin x-min x-max

Discount Economy 0 19
First 20 28

Premium Economy 29 39

Table C.13: Cabin Ranges CPH-
MAD OLS

Figure C.14: Gravity Model Performance CPH-CDG OLS

Cabin x-min x-max

Business 0 0
Discount Economy 1 20

First 21 40
Full Y 41 42

Premium Economy 43 61

Table C.14: Cabin Ranges CPH-
CDG OLS

111



Figure C.15: Gravity Model Performance CPH-AMS OLS

Cabin x-min x-max

Business 0 5
Discount Economy 6 25

First 26 44
Full Y 45 61

Premium Economy 62 77

Table C.15: Cabin Ranges CPH-
AMS OLS

Figure C.16: Gravity Model Performance CDG-MAD OLS

Cabin x-min x-max

Business 0 9
Discount Economy 10 29

First 30 49
Full Y 50 55

Premium Economy 56 75

Table C.16: Cabin Ranges CDG-
MAD OLS

Figure C.17: Gravity Model Performance Premium Economy OLS

Route x-min x-max Route x-min x-max

AMS-CPH 0 16 FRA-LHR 141 160
AMS-LHR 17 36 LHR-AMS 161 180
AMS-MAD 37 54 LHR-FRA 181 200
CDG-CPH 55 74 LHR-MAD 201 220
CDG-MAD 75 94 MAD-AMS 221 239
CPH-AMS 95 110 MAD-CDG 240 259
CPH-CDG 111 129 MAD-CPH 260 272
CPH-MAD 130 140 MAD-LHR 273 292

Table C.17: Route Ranges Pre-
mium Economy OLS
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Figure C.18: Gravity Model Performance Full Y OLS

Route x-min x-max Route x-min x-max

AMS-CPH 0 13 LHR-AMS 98 117
AMS-LHR 14 33 LHR-FRA 118 137
AMS-MAD 34 47 LHR-MAD 138 157
CDG-CPH 48 52 MAD-AMS 158 171
CDG-MAD 53 58 MAD-CDG 172 176
CPH-AMS 59 75 MAD-CPH 177 177
CPH-CDG 76 77 MAD-LHR 178 197
FRA-LHR 78 97

Table C.18: Route Ranges Full Y

Figure C.19: Gravity Model Performance First OLS

Route x-min x-max Route x-min x-max

AMS-CPH 0 17 FRA-LHR 144 148
AMS-LHR 18 36 LHR-AMS 149 167
AMS-MAD 37 56 LHR-FRA 168 172
CDG-CPH 57 75 LHR-MAD 173 175
CDG-MAD 76 95 MAD-AMS 176 195
CPH-AMS 96 114 MAD-CDG 196 215
CPH-CDG 115 134 MAD-CPH 216 225
CPH-MAD 135 143 MAD-LHR 226 231

Table C.19: Route Ranges First
OLS

Figure C.20: Gravity Model Performance Discount Economy OLS

Route x-min x-max Route x-min x-max

AMS-CPH 0 19 FRA-LHR 160 179
AMS-LHR 20 39 LHR-AMS 180 199
AMS-MAD 40 59 LHR-FRA 200 219
CDG-CPH 60 79 LHR-MAD 220 239
CDG-MAD 80 99 MAD-AMS 240 259
CPH-AMS 100 119 MAD-CDG 260 279
CPH-CDG 120 139 MAD-CPH 280 299
CPH-MAD 140 159 MAD-LHR 300 319

Table C.20: Route Ranges Dis-
count Economy OLS
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Figure C.21: Gravity Model Performance Business OLS

Route x-min x-max Route x-min x-max

AMS-CPH 0 1 FRA-LHR 42 61
AMS-LHR 2 21 LHR-AMS 62 81
CDG-CPH 22 24 LHR-FRA 82 101
CDG-MAD 25 34 LHR-MAD 102 121
CPH-AMS 35 40 MAD-CDG 122 130
CPH-CDG 41 41 MAD-LHR 131 150

Table C.21: Route Ranges Busi-
ness OLS
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Table C.22: Gravity Model Performance per Route per Class

Route Cabin Std. Error of Estimate Data Entries Std. Err. Perc. of Average Demand

MAD-CPH Full Y 4 1 1%
MAD-AMS Discount Economy 4341 20 15%
AMS-MAD Discount Economy 4421 20 16%
LHR-AMS Discount Economy 13782 20 18%
LHR-FRA Discount Economy 13358 20 18%
FRA-LHR Discount Economy 14755 20 21%
LHR-AMS Business 843 20 24%
MAD-LHR Discount Economy 9292 20 26%
AMS-LHR Business 938 20 28%
AMS-LHR Discount Economy 20788 20 30%
FRA-LHR Full Y 711 20 31%
LHR-MAD Discount Economy 11199 20 33%
MAD-CDG Discount Economy 9604 20 34%
FRA-LHR Business 1349 20 34%
LHR-FRA Business 1483 20 35%
CPH-AMS Full Y 241 17 38%
CDG-MAD Discount Economy 10719 20 39%
CPH-AMS Discount Economy 14235 20 49%
CPH-CDG Discount Economy 15159 20 51%
AMS-CPH Discount Economy 15113 20 51%
CDG-CPH Discount Economy 15757 20 52%
LHR-AMS Premium Economy 2067 20 52%
CPH-MAD Discount Economy 2779 20 53%
AMS-CPH Full Y 355 14 55%
MAD-CPH Premium Economy 348 13 56%
AMS-MAD Full Y 308 14 57%
LHR-AMS Full Y 2837 20 58%
LHR-FRA Full Y 1067 20 59%
MAD-CDG Premium Economy 1947 20 62%
LHR-MAD Business 2662 20 64%
MAD-LHR Business 2226 20 65%
AMS-CPH First 1209 18 65%
CPH-AMS First 1381 19 65%
MAD-LHR Full Y 1575 20 66%
MAD-LHR Premium Economy 1396 20 67%
CDG-MAD Premium Economy 2148 20 68%
LHR-MAD Full Y 1798 20 68%
AMS-CPH Premium Economy 502 17 69%
AMS-LHR Full Y 5216 20 69%
MAD-AMS Premium Economy 1623 19 70%
CDG-CPH Premium Economy 619 20 70%
CPH-CDG Premium Economy 490 19 73%
AMS-MAD First 5026 20 73%
MAD-AMS First 5124 20 73%
AMS-MAD Premium Economy 1460 18 73%
CPH-MAD First 362 9 74%
AMS-LHR Premium Economy 2603 20 75%
MAD-CDG First 4393 20 75%
MAD-CPH Discount Economy 3517 20 75%
CDG-MAD First 4754 20 76%
CPH-AMS Premium Economy 449 16 77%
FRA-LHR Premium Economy 12399 20 77%
LHR-AMS First 3963 19 78%
LHR-FRA Premium Economy 13207 20 79%
LHR-MAD Premium Economy 2444 20 81%
CPH-MAD Premium Economy 572 11 87%
CPH-CDG First 2496 20 90%
MAD-AMS Full Y 436 14 102%
CDG-CPH First 2910 19 103%
CDG-MAD Business 1012 10 124%
CDG-CPH Business 379 3 126%
AMS-LHR First 4841 19 131%
LHR-MAD First 2463 3 131%
MAD-CPH First 463 10 138%
CDG-CPH Full Y 311 5 145%
AMS-CPH Business 337 2 160%
MAD-CDG Business 1034 9 185%
CPH-CDG Business 465 1 195%
CPH-CDG Full Y 371 2 224%
MAD-LHR First 2986 6 245%
CPH-AMS Business 440 6 256%
MAD-CDG Full Y 895 5 270%
CDG-MAD Full Y 942 6 288%
FRA-LHR First 6815 5 600%
LHR-FRA First 6984 5 746%
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Figure C.22: Gravity Model Performance MAD-FRA OLS

Cabin x-min x-max

Business 0 0
Discount Economy 1 20

First 21 38
Full Y 39 44

Premium Economy 45 64

Table C.23: Cabin Ranges MAD-
FRA OLS

Figure C.23: Gravity Model Performance LHR-CPH OLS

Cabin x-min x-max

Business 0 19
Discount Economy 20 39

First 40 49
Full Y 50 69

Premium Economy 70 89

Table C.24: Cabin Ranges LHR-
CPH OLS

Figure C.24: Gravity Model Performance FRA-MAD OLS

Cabin x-min x-max

Discount Economy 0 19
First 20 38

Full Y 39 41
Premium Economy 42 61

Table C.25: Cabin Ranges FRA-
MAD OLS
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Figure C.25: Gravity Model Performance FRA-CPH OLS

Cabin x-min x-max

Discount Economy 0 19
First 20 20

Premium Economy 21 40

Table C.26: Cabin Ranges FRA-
CPH OLS

Figure C.26: Gravity Model Performance CPH-LHR OLS

Cabin x-min x-max

Business 0 19
Discount Economy 20 39

First 40 47
Full Y 48 66

Premium Economy 67 86

Table C.27: Cabin Ranges CPH-
LHR OLS

Figure C.27: Gravity Model Performance CPH-FRA OLS

Cabin x-min x-max

Discount Economy 0 19
First 20 21

Premium Economy 22 41

Table C.28: Cabin Ranges CPH-
FRA OLS
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Figure C.28: Gravity Model Performance Premium Economy OLS Validation

Route x-min x-max

CPH-FRA 0 19
CPH-LHR 20 39
FRA-CPH 40 59
FRA-MAD 60 79
LHR-CPH 80 99
MAD-FRA 100 119

Table C.29: Route Ranges Pre-
mium Economy OLS

Figure C.29: Gravity Model Performance Full Y OLS Validation

Route x-min x-max

CPH-LHR 0 18
FRA-MAD 19 21
LHR-CPH 22 41
MAD-FRA 42 47

Table C.30: Route Ranges Full Y
OLS Validation

Figure C.30: Gravity Model Performance First OLS Validation

Route x-min x-max

CPH-FRA 0 1
CPH-LHR 2 9
FRA-CPH 10 10
FRA-MAD 11 29
LHR-CPH 30 39
MAD-FRA 40 57

Table C.31: Route Ranges First
OLS Validation
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Figure C.31: Gravity Model Performance Discount Economy OLS Validation

Route x-min x-max

CPH-FRA 0 19
CPH-LHR 20 39
FRA-CPH 40 59
FRA-MAD 60 79
LHR-CPH 80 99
MAD-FRA 100 119

Table C.32: Route Ranges Dis-
count Economy OLS Validation

Figure C.32: Gravity Model Performance Business OLS Validation

Route x-min x-max

CPH-LHR 0 19
LHR-CPH 20 39
MAD-FRA 40 40

Table C.33: Route Ranges Busi-
ness OLS Validation

Table C.34: Gravity Model Performance Validation per Route per Class

Route Cabin Sum of Squared Residuals Std. Error of Estimate Data Entries Perc. Of Average Demand

CPH-FRA Discount Economy 528910722 5143 20 0.40
FRA-CPH Discount Economy 601320579 5483 20 0.44
CPH-FRA Premium Economy 6401163 566 20 0.51
FRA-CPH Premium Economy 10904454 738 20 0.52
CPH-LHR Discount Economy 11963294485 24457 20 0.56
CPH-LHR Premium Economy 31299439 1251 20 0.57
FRA-MAD Premium Economy 96083380 2192 20 0.60
MAD-FRA Premium Economy 111615315 2362 20 0.61
LHR-CPH Discount Economy 18265579945 30221 20 0.61
CPH-LHR Business 37999860 1378 20 0.66
LHR-CPH Premium Economy 76456055 1955 20 0.68
LHR-CPH Business 52156128 1615 20 0.69
MAD-FRA Discount Economy 4537747112 15063 20 0.94
LHR-CPH Full Y 16216987 900 20 0.96
CPH-LHR Full Y 18419407 985 19 0.97
FRA-MAD Discount Economy 4896341084 15647 20 1.02
MAD-FRA First 66761639 1926 18 1.32
FRA-MAD First 83603494 2098 19 1.62
LHR-CPH First 24578895 1568 10 3.44
FRA-MAD Full Y 1466595 699 3 3.60
MAD-FRA Full Y 3789811 795 6 5.32
CPH-LHR First 24155524 1738 8 5.38
FRA-CPH First 2701809 1644 1 8.02
MAD-FRA Business 1533390 1238 1 8.66
CPH-FRA First 4458589 1493 2 13.51
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D
Demand Allocation Performance

Figure D.1: Demand Allocation Performance LHR-FRA
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Figure D.2: Demand Allocation Performance LHR-AMS

Figure D.3: Demand Allocation Performance FRA-LHR
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Figure D.4: Demand Allocation Performance CPH-MAD

Figure D.5: Demand Allocation Performance CPH-CDG
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Figure D.6: Demand Allocation Performance CPH-AMS

Figure D.7: Demand Allocation Performance CDG-MAD
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Figure D.8: Demand Allocation Performance CDG-CPH

Figure D.9: Demand Allocation Performance AMS-MAD
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Figure D.10: Demand Allocation Performance AMS-LHR

Figure D.11: Demand Allocation Performance AMS-CPH
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Figure D.12: Demand Allocation Performance MAD-LHR

Figure D.13: Demand Allocation Performance MAD-CPH
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Figure D.14: Demand Allocation Performance MAD-CDG

Figure D.15: Demand Allocation Performance MAD-AMS
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Figure D.16: Demand Allocation Performance LHR-MAD

Figure D.17: Demand Allocation Performance LHR- CPH
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Table D.1: Multinomial Logit Model Performance per Route per Class

Route Cabin Sum of Squared Residuals Std. Error of Estimate Data Count Perc. Of Average Share

MAD-LHR Discount Economy 0.07 0.04 40 10.1%
LHR-MAD Discount Economy 0.15 0.07 26 12.6%
CPH-CDG Discount Economy 0.14 0.06 41 13.4%
CDG-CPH Discount Economy 0.22 0.07 41 16.7%
AMS-LHR Discount Economy 0.17 0.07 40 16.7%
LHR-AMS Discount Economy 0.19 0.07 40 17.0%
AMS-CPH Discount Economy 0.28 0.08 45 19.4%
CPH-AMS Discount Economy 0.33 0.09 43 20.9%
MAD-CPH Full Y 0.00 0.01 1 26.1%
FRA-LHR Discount Economy 0.40 0.10 40 26.4%
LHR-FRA Discount Economy 0.44 0.11 40 27.7%
AMS-MAD Discount Economy 0.39 0.09 53 29.9%
CDG-MAD Discount Economy 0.60 0.12 41 33.2%
MAD-AMS Discount Economy 0.51 0.09 57 35.7%
MAD-CDG Discount Economy 0.72 0.13 42 36.3%
MAD-CPH First 0.00 0.02 12 41.8%
CPH-AMS Full Y 0.00 0.01 21 44.2%
CPH-MAD First 0.01 0.03 13 47.6%
LHR-MAD Full Y 0.01 0.02 25 47.8%
LHR-FRA Business 0.01 0.01 40 50.3%
LHR-MAD Business 0.04 0.04 25 50.6%
FRA-LHR Full Y 0.00 0.01 36 52.6%
AMS-CPH Full Y 0.00 0.01 18 53.3%
FRA-LHR Business 0.01 0.01 40 55.7%
MAD-CPH Discount Economy 1.78 0.18 57 56.1%
CPH-MAD Discount Economy 2.18 0.21 49 56.7%
CPH-AMS First 0.03 0.04 20 57.1%
AMS-MAD Full Y 0.00 0.01 14 58.1%
LHR-AMS First 0.02 0.03 19 59.4%
MAD-CDG Full Y 0.00 0.01 5 59.5%
LHR-AMS Premium Economy 0.01 0.01 40 63.0%
MAD-LHR Business 0.02 0.02 40 63.6%
AMS-CPH First 0.02 0.03 20 63.7%
MAD-LHR Full Y 0.01 0.02 39 65.9%
CPH-CDG First 0.06 0.05 20 66.0%
AMS-LHR Premium Economy 0.01 0.02 38 69.7%
AMS-MAD First 0.13 0.05 51 71.3%
MAD-AMS First 0.14 0.05 50 72.1%
MAD-AMS Full Y 0.00 0.01 14 73.6%
LHR-AMS Full Y 0.02 0.02 39 74.4%
CDG-CPH First 0.06 0.06 19 74.4%
MAD-AMS Premium Economy 0.02 0.02 40 76.5%
AMS-MAD Premium Economy 0.01 0.02 36 77.3%
AMS-CPH Premium Economy 0.00 0.01 24 80.4%
LHR-MAD First 0.00 0.03 3 80.8%
MAD-LHR Premium Economy 0.02 0.02 37 82.2%
LHR-AMS Business 0.01 0.02 40 82.5%
CDG-MAD Full Y 0.00 0.01 6 84.4%
LHR-FRA Full Y 0.00 0.01 36 86.7%
CDG-CPH Premium Economy 0.01 0.01 33 86.9%
MAD-CDG First 0.19 0.07 35 87.0%
CDG-MAD Business 0.00 0.02 12 88.0%
CPH-AMS Premium Economy 0.00 0.01 21 88.3%
CPH-CDG Business 0.00 0.01 1 89.7%
AMS-LHR First 0.03 0.04 19 90.0%
CDG-MAD First 0.25 0.09 34 90.4%
AMS-LHR Business 0.01 0.02 39 91.3%
LHR-MAD Premium Economy 0.07 0.05 25 91.8%
FRA-LHR Premium Economy 0.27 0.08 40 94.6%
CPH-MAD Premium Economy 0.08 0.08 12 96.9%
MAD-CDG Premium Economy 0.08 0.05 35 97.1%
LHR-FRA Premium Economy 0.29 0.08 40 97.8%
AMS-LHR Full Y 0.08 0.04 39 98.4%
MAD-CPH Premium Economy 0.14 0.09 16 101.2%
CDG-MAD Premium Economy 0.08 0.05 34 101.6%
CPH-CDG Premium Economy 0.01 0.01 32 110.3%
CDG-CPH Business 0.00 0.01 3 113.6%
MAD-CDG Business 0.00 0.02 10 120.4%
MAD-LHR First 0.01 0.03 6 123.3%
CPH-CDG Full Y 0.00 0.01 2 176.3%
CDG-CPH Full Y 0.00 0.01 5 184.1%
AMS-CPH Business 0.00 0.02 2 216.3%
CPH-AMS Business 0.00 0.01 6 271.9%
FRA-LHR First 0.01 0.05 5 423.8%
LHR-FRA First 0.02 0.05 5 538.2%
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Figure D.18: Demand Allocation Performance CPH - LHR

Figure D.19: Demand Allocation Performance MAD - FRA
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Figure D.20: Demand Allocation Performance FRA - MAD

Figure D.21: Demand Allocation Performance FRA - CPH
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Figure D.22: Demand Allocation Performance CPH - FRA

Table D.2: Multinomial Logit Model Performance Validation per Cabin Class

Cabin Sum of Squared Residuals Std. Error of Estimate perc Data Count Perc. Of Average Share

Discount Economy 2.85 0.10 264 26.9%
Business 0.01 0.01 80 49.6%
Premium Economy 0.52 0.05 248 87.2%
Full Y 0.01 0.01 73 88.8%
First 0.13 0.04 71 121.7%

Table D.3: Multinomial Logit Model Performance Validation per Route

Route Sum of Squared Residuals Std. Error of Estimate Data Entries Perc. Of Average Share

CPH-LHR 0.19 0.03 158 14.0%
LHR-CPH 0.21 0.04 162 15.4%
MAD-FRA 0.64 0.07 129 28.4%
FRA-MAD 0.59 0.07 129 29.1%
FRA-CPH 0.85 0.10 79 40.9%
CPH-FRA 1.03 0.11 79 45.1%
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Table D.4: Multinomial Logit Model Performance Validation per Route per Class

Route Cabin Sum of Squared Residuals Std. Error of Estimate Data Count Perc. Of Average Demand

CPH-LHR Discount Economy 0.16 0.06 40 14.1%
LHR-CPH Discount Economy 0.18 0.07 40 15.0%
FRA-MAD Discount Economy 0.37 0.08 52 29.0%
MAD-FRA Discount Economy 0.39 0.09 52 29.8%
FRA-CPH Discount Economy 0.77 0.14 40 31.0%
CPH-LHR First 0.01 0.04 8 34.2%
CPH-FRA Discount Economy 0.99 0.16 40 34.2%
CPH-LHR Business 0.00 0.01 39 45.2%
LHR-CPH Business 0.00 0.01 40 52.9%
LHR-CPH Premium Economy 0.01 0.02 39 58.6%
FRA-MAD Full Y 0.00 0.01 3 63.4%
CPH-LHR Premium Economy 0.01 0.02 40 69.0%
CPH-LHR Full Y 0.00 0.01 31 76.6%
CPH-FRA Premium Economy 0.04 0.03 37 77.6%
FRA-MAD Premium Economy 0.17 0.06 49 78.2%
MAD-FRA Premium Economy 0.21 0.07 45 82.6%
FRA-CPH Premium Economy 0.08 0.05 38 83.4%
MAD-FRA First 0.05 0.04 25 89.9%
FRA-MAD First 0.05 0.05 25 98.3%
LHR-CPH Full Y 0.00 0.01 33 100.2%
MAD-FRA Full Y 0.00 0.01 6 117.5%
MAD-FRA Business 0.00 0.01 1 173.2%
FRA-CPH First 0.00 0.03 1 227.7%
CPH-FRA First 0.00 0.03 2 365.6%
LHR-CPH First 0.02 0.04 10 506.9%
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E
Simulation Game Results
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Figure E.1: Game 2 Revenue, Cost and Profit Development
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Figure E.2: Game 2 RASK, CASK, Yield and Load Factor Development
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Figure E.3: Game 2 ASK and RPK Development

136



-40

-20

0

20

40

60

80

100

120

Y0 Y1
Y1

O
P Y2

Y2
O

P Y3
Y3

O
P Y0 Y1

Y1
O

P Y2
Y2

O
P Y3

Y3
O

P Y0 Y1
Y1

O
P Y2

Y2
O

P Y3
Y3

O
P Y0 Y1

Y1
O

P Y2
Y2

O
P Y3

Y3
O

P Y0 Y1
Y1

O
P Y2

Y2
O

P Y3
Y3

O
P

Business Discount Economy First Full Y Premium Economy

Se
at

s 
Av

ai
la

bl
e 

pe
r F

lig
ht

AMS-MAD Q1

LCC

Computer

Figure E.4: Game 2 Seat Availability per Flight Development
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Figure E.5: Game 3 Revenue, Cost and Profit Development
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Figure E.6: Game 3 Revenue, Cost and Profit Development
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Figure E.7: Game 3 ASK and RPK Development
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Table E.1: Block Times ’Super’ Competitor

Route Avg. Block Time Max. Block Time Min Block Time Avg. Freq. Max. Freq Min. Freq Flight time

AMS-CPH 871 1075 538 824 1017 509 1.057
AMS-LHR 1203 1312 965 1603 1748 1286 0.750
AMS-MAD 1761 2261 1135 886 1137 571 1.988
CDG-CPH 912 1174 587 616 793 397 1.480
CDG-MAD 983 1395 661 639 906 429 1.539
CPH-AMS 868 1027 547 821 971 517 1.057
CPH-CDG 916 1167 631 619 789 426 1.480
CPH-FRA 728 909 509 652 814 456 1.116
CPH-LHR 1254 1479 918 868 1024 635 1.445
CPH-MAD 827 1080 488 309 403 182 2.680
FRA-CPH 755 916 516 676 821 462 1.116
FRA-LHR 1706 1889 1406 1586 1757 1307 1.075
FRA-MAD 1780 2219 1264 915 1141 650 1.945
LHR-AMS 1210 1312 965 1613 1748 1286 0.750
LHR-CPH 1279 1472 1067 885 1019 739 1.445
LHR-FRA 1716 1889 1403 1596 1757 1305 1.075
LHR-MAD 2804 3357 1555 1607 1924 891 1.745
MAD-AMS 1756 2322 912 883 1168 459 1.988
MAD-CDG 995 1380 730 647 897 474 1.539
MAD-CPH 797 1076 468 297 402 175 2.680
MAD-FRA 1765 2315 1196 908 1190 615 1.945
MAD-LHR 1793 2075 1438 1028 1189 824 1.745
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Figure E.8: Game 4 Yield Development AMS-CPH
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Figure E.9: Game 4 Null Yield Development AMS-CPH
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Figure E.10: Game 4 Null Yield Development AMS-LHR
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Figure E.11: Game 4 Yield Development AMS-MAD
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Figure E.12: Game 4 Null Yield Development AMS-MAD
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Figure E.13: Game 4 Null Frequency Development
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Figure E.14: Game 4 Market Share Development AMS-CPH
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Figure E.15: Game 4 Null Market Share Development
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Figure E.16: Game 4 Null Market Share Development AMS-LHR
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Figure E.17: Game 4 Null Market Share Development AMS-MAD
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Figure E.18: Game 4 Market Share Development AMS-MAD
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Figure E.19: Game 4 Profit Development
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Figure E.20: Game 4 Load Factor Development
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Figure E.21: Game 4 Null Load Factor Development
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Figure E.22: Game 4 Seat Availability per Flight Development AMS-CPH
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Figure E.23: Game 4 Null Seat Availability per Flight Development AMS-CPH
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Figure E.24: Game 4 Seat Availability per Flight Development AMS-LHR
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Figure E.25: Game 4 Null Seat Availability per Flight Development AMS-LHR
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Figure E.26: Game 4 Seat Availability per Flight Development AMS-MAD
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Figure E.27: Game 4 Null Seat Availability per Flight Development AMS-MAD
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