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Chapter 1

Introduction

We investigate some aspects of the design of piecewise deterministic Markov pro-
cesses (PDMPs) for Monte Carlo simulation in Bayesian inference problems. The
aim of this chapter is to present the theory which motivates the study of PDMPs and
to highlight our contributions. In this chapter we show that PDMPs naturally arise
as limits of discrete time Markov chains and share remarkable properties which are
desirable for Monte Carlo simulations. The illustration in Section 1.5.1 summarises
many of the innovations. The presentation of the background material is largely in-
spired by Roberts and Rosenthal (2004), Geyer (1998), Diaconis, Holmes, and Neal
(2000) and Rosenthal (2003).

1.1 Motivation

For a given probabilty measure µ on a measurable space X , consider the problem of
computing expectations

µ(f) :=

∫
X
f(x)µ(dx) (1.1)

for functions f : X 7→ R for which µ(f) < ∞. This problem is commonly encoun-
tered in Bayesian inference where X is a random variable that corresponds to the
unknown parameter in a statistical model and takes values on a parameter space
X . The Bayesian paradigm assigns to X a posterior measure µ on X . The measure
µ depends on the data, through a log-likelihood ℓ(x) (with this notation, we omit
the dependence of ℓ on the data) and a prior measure µ0, which takes into account
information on model parameter prior to the data, such as the set of values that X
can take, sparsity and smoothness assumptions; the relation between µ, µ0 and ℓ is
obtained by applying the Bayes formula and here is assumed to be

µ(dx) = C exp(ℓ(x))µ0(dx), (1.2)

1



2 1.2. MARKOV CHAIN MONTE CARLO

with C = (
∫
X exp(ℓ(x))µ0(dx))

−1 being the constant of normalization which does
not depend on x. The Bayesian inferential procedure requires point estimates which
are of the form of equation (1.1), e.g. the posterior mean (taking f(x) = xi for
i = 1, 2, . . . ) and posterior probabilities of a given set A ∈ B(X ) (with f(x) = 1A(x),
1 being the indicator function). It is often the case that µ(f) cannot be derived
analytically, hence numerical techniques must be employed. This is a frequently
encountered situation in Bayesian inference where, in most cases, the constant C on
the right hand-side of equation (1.2) cannot be computed analytically. It becomes
now apparent that Bayesian inference problems are often strongly related to the
problem of numerical integration. Throughout the thesis, we often refer to µ as
the target measure, which is a general probability measure from which we want to
estimate the right hand-side in equation (1.1) and we often do not make any explicit
connection with the posterior distribution in the Bayesian framework.

It is natural to think of applying ordinary numerical integration methods, for
example approximating µ by evaluating µ with a quadrature rule on a finite parti-
tion with elements in X (see for example Thisted 1988, Chapter 5 for details). This
approach has several caveats and most notably it suffers from the curse of dimen-
sionality, i.e. if X ⊂ Rd, the number of discretization points needed for a given
numerical precision grows exponentially with the dimensions d.

Popular alternatives fall within the name of Monte Carlo methods, where Monte
Carlo refers to integration methods involving the simulation of random variables.

Remark 1.1.1. There are other important methods used for estimating µ(f) which
are not treated in this thesis. Most notably, methods based on importance sampling
(see e.g. Robert and Casella 1999, Section 3), Sequential Monte Carlo methods (see
e.g. Doucet, De Freitas, Gordon, et al. 2001) and Quasi-Monte Carlo methods (see
e.g. Niederreiter 1992).

1.2 Markov chain Monte Carlo
Monte Carlo methods are integration methods which are based on the simulation of
a sequence of random variables X1, X2, . . . jointly defined on a arbitrary probability
space and each one taking values on X . For a fixed N > 0, define sample averages
as

µ̂N(f) :=
1

N

N∑
i=1

f(Xi), (1.3)

for functions f : X → R. Monte Carlo methods are devised such that the law of
large numbers and the central limit theorem holds as follow.

Definition 1.2.1. (Law of Large Numbers (LLN)) For a fixed function f : X → R
and a measure µ on (X ,B(X )), with µ(f) < ∞, a sequence of random variables
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X1, X2, . . . satisfies the Law of Large Numbers (LLN) if

µ̂N(f)
a.s−→ µ(f), as N →∞. (1.4)

Definition 1.2.2. (Central Limit Theorem) For a fixed function f : X → R and
a measure µ such that σ2

f = µ(f 2) − µ(f)2 < ∞, a sequence of random variables
X1, X2, . . . satisfies the Central Limit Theorem (CLT) if

√
N(µ̂N(f)− µ(f))

d−→ N (0, σ2
f (∞)) as N →∞, (1.5)

for some 0 < σ2
f (∞) <∞.

If (Xi)i=1,2,...,N can be simulated by means of a computer, then, by the LLN,
we can use the sample average µ̂N(f) as an (asymptotically) unbiased estimator for
µ(f) and we can use the CLT and choose N appropriately to control the statistical
error between µ̂N(f) and µ(f). This is the core idea of Monte Carlo methods. We
are now ready to give the first concrete example of a sequence of random variables
satisfying CLT and LLN:

Example 1.2.3. (A sequence of i.i.d random variables) Consider a sequence of in-
dependent and identically distributed (i.i.d) X -valued random variables X1, X2, . . . ,
each distributed according to µ. Provided that σ2

f <∞, the sequence trivially satisfies
both the LLN and CLT with σ2

f (∞) = σ2
f .

Example 1.2.3 is very attractive in principle but often not applicable as it is
rarely possible to directly simulate a sequence of mutually independent random
variables with a given distribution µ. Hence, we now weaken the conditions made
in Example 1.2.3 by considering a homogeneous Markov Chain (Xi)i=1,2,... (allowing
now for a dependent sequence of random variables). A Markov chain is completely
characterized by the distribution of its initial value X1 and the transition kernel
Q : X × B(X ) → [0, 1], where, for every x ∈ X , Q(x, ·) is a probability measure
on X with Q(x,A) being the probability to jump from x to the set A ∈ B(X ) in
one step. These two components also gives a simple recipe to simulate a trajectory:
simulate the first random variable x1 ∼ L(X1) and iteratively xi+1 ∼ Q(xi, ·). Define
the n-step transition kernel Qn(x, ·) = P(Xn ∈ · | X0 = x) and the total variation
distance between two measures µ and ν on (X ,B(X )) as

∥µ− ν∥TV := max
A∈B(X )

|µ(A)− ν(A)|.

In the context of MCMC methods, it is customary to consider Markov chains which
are geometrically ergodic.
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Definition 1.2.4. (Geometrically ergodic Markov chains) A Markov chain is gemo-
terically ergodic if

∥Qn(x, ·)− µ∥TV ≤M(x)ρn, µ− a.s. x ∈ X (1.6)

for some ρ ∈ [0, 1) and with supxM(x) <∞.

Intuitively, this condition implies that the marginal distribution of the process
convergences to the target distribution as N →∞, so a straightforward implication
is that µ must be the unique stationary distribution of the process. The reason for
such customary assumption becomes evident with the following proposition (Ibrag-
imov and Linnik 1971, Theorem 18.5.3):

Proposition 1.2.5. (CLT for geometrically ergodic Markov chains) A geometrically
ergodic Markov chain satisfies the CLT (equation (1.5)) whenever µ(|f |2+δ) < ∞,
for some δ > 0.

The connection between geometrically ergodic Markov chains and the CLT is
rather subtle and far from trivial, as the former result involves marginal measures
of a Markov chain, while the latter is a result of the whole chain, see Geyer (1998,
Chapter 4.1.) for a discussion and other similar results. An important research area
in MCMC is to assess the quantitative convergence of the marginal distributions
of Markov chains (see Roberts and Rosenthal 2004)). This analysis serves in prac-
tise as a guidance to choose the burn-in time which corresponds to the number of
iterations needed for the Markov chain to reach its stationary distribution and is
used in practise to exclude these first iterations when computing the estimator of
equation (1.3).

It remains unclear how to devise a geometrically ergodic Markov chain. A nec-
essary condition is that the transition kernel Q of the Markov chain is invariant to
a target µ, that is ∫

x∈X
µ(dx)Q(x, dy) = µ(dy).

We now introduce a simple recipe to construct a chain which is invariant to a target
µ which is based on the concept of reversibility :

Definition 1.2.6. (Reversible Markov chains) A Markov chain is µ-reversible if

µ(dx)Q(x, dy) = µ(dy)Q(y, dx) (1.7)

Equation (1.7) is referred as the detailed balance condition and can be informally
interpreted as follows: the probability for the process to be at A and move to B, for
any two regions A,B ∈ B(X ), is equal to the probability to be at B and move to A.

Proposition 1.2.7. A µ-reversible Markov chain is µ−invariant.
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This is straightforward as∫
x∈X

µ(dx)Q(x, dy) =

∫
x∈X

µ(dy)Q(y, dx) = µ(dy).

Hence, by devising Markov chains satisfying the detailed balance condition as in
equation (1.7), we automatically know that the process preserves the measure µ.
This is the starting point for many popular MCMC methods, most notably the
celebrated (and well studied) Metropolis-Hasting algorithm (Metropolis et al. 1953,
Hastings 1970) which turns out to be geometrically ergodic for targets µ with expo-
nentially light tails (Jarner and Hansen 2000). Reversible Markov chains also offer
a simplified theoretical analysis as Q in this case is a self-adjoint operator in the
Hilbert space L2

0(µ) = {f : X → R | π(f 2) < ∞ and π(f) = 0} with inner prod-
uct (f, g) =

∫
fgdµ and with a real spectrum which can be used to estimate the

asymptotic variance σ2(∞) in the CLT and the convergence rates of geometrically
ergodic chains (right hand-side of equation (1.6)). See Rosenthal (2003, Section 3)
for details. The point here is that Monte Carlo methods based on reversible Markov
chains are simple to devise and provide a simplified analysis, which explains why
they became so popular. However, in the past two decades it has been noticed (for
example in Diaconis, Holmes, and Neal (2000)) that the detailed balance condition
introduces “diffusive behaviour” of the underline process. Here, a process with ‘dif-
fusive behaviour’ refers to a process which locally resembles a Random Walk and it
requires a number of iterations of O(N2) in order to cross regions with distance of
O(N) (see Diaconis, Holmes, and Neal 2000, Section 1 for details).

As this was considered sub-optimal, a new class of more sophisticated Markov
chains referred as non-reversible (as opposed to the reversible) was proposed and
analysed; a far from exhaustive list of references is Geyer and Mira (2000), Diaconis,
Holmes, and Neal (2000), Chen and Hwang (2013), Bierkens and Roberts (2017),
Andrieu and Livingstone (2019). This new class of Markov chains does not exhibit
diffusive behaviour and satisfies the skew-detailed balanced condition:

Definition 1.2.8. (Skew-detailed balanced condition) For an involution S : X → X
and a measure µ on X , such that S ◦ S = I and µ(S−1(dx)) = µ(dx), a Markov
chain satisfies the skew-detailed balance condition relative to a measure µ, if

Q(x, dy)µ(dx) = Q(S−1(y),S−1(dx))µ(dy)

Proposition 1.2.9. A Markov chain satisfying the skew-detailed balance condition
relative to µ is µ-invariant.

The skew-detailed balance condition reduces to the detailed balance condition
upon taking S = I. However, the non-reversible Markov chains considered here
are defined on an augmented space of position x and velocity v and the involution
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considered in the literature is S(x, v) = {(x,−v)} which can be understood as a time
reversal operator. With this perspective, the skew-detailed balance condition can be
seen as a detailed balance condition with time reversal dynamics (for any two sets
A,B ∈ B(X ), the probability of the process to be in A and jump to B is equivalent
to the probability to be in B and jump in A for the time-reverted process).

Next, we look at a toy model which captures the fundamental differences between
reversible and non-reversible chains and anticipated the use of piecewise determin-
istic Markov processes for Monte Carlo sampling.

1.3 Random walks on a finite state space, a case
study

In this section we recall a simple example which was initially analyzed in Diaconis,
Holmes, and Neal (2000). This example is a pioneering work containing the funda-
mental idea which motivated the study and use of piecewise deterministic Markov
processes for Monte Carlo methods, that is lifting the state space of the underlying
Markov chain with a velocity component and breaking the detailed balance condi-
tion. When compared with their reversible counterpart, the lifted Markov chains
are shown to

• converge faster to their invariant measure in terms of the total variation dis-
tance between the marginal measures of the chain at any iteration n > 1 and
the target measure (Diaconis, Holmes, and Neal 2000);

• reduce the asymptotic variance σ2(∞) of the CLT (Chen and Hwang 2013).

1.3.1 Random walks

Consider a Random walk (Xi)i=1,2,... on the space X := {1, 2, . . . , N} i.e. a Markov
chain which starts at a given point x1 ∈ X and with transition probabilities Q(x, x±
1) = 1

2
for all x ∈ X \ {1, N} and Q(1, 1) = Q(1, 2) = Q(N,N) = Q(N,N − 1) = 1

2

as illustrated with this graph:

1 2 . . . N − 1 N1/2 1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

The Markov Chain satisfies the detailed balance condition relative to the measure
µ = Unif(X ) and it is geometrically ergodic (this can be easily checked as X is
finite, see Roberts and Rosenthal 2004, Section 3.4). The symmetry in the detailed
balance condition manifests itself on the trace of the chain with the process having
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a tendency of backtracking and exploring the state space in a diffusive manner (see
Figure 1.1, left panel). Ignoring the boundaries, by the central limit theorem, Xn is
approximately a Gaussian random variable centered at x1 and with variance equal
to n. Hence P(|Xn − x1| > c) = O(

√
n), for any c > 0. This heuristically implies

that the process takes O(N2) iterations to explore the full state space X which has
size |X | = N . Formal and quantitative results estimating convergence results of this
chain may be found in Levin and Peres 2017, Example 12.3.1 and Example 12.11
for a Markov chain which is topologically equivalent to the one considered here.

1.3.2 Lifted random walks

Consider the Markov Chain taking values on a lifted state space X ×{−,+}, where
the first component is intended as the position and the second the velocity of the
chain. The transition probabilities are shown by the following graph:

1,+ 2,+ . . . ,+ N − 1,+ N,+

1,− 2,− . . . ,− N − 1,− N,−

1
N

1
N

1− 1
N 1− 1

N
1− 1

N 1− 1
N

1− 1
N

1− 1
N1− 1

N
1− 1

N1− 1
N

1− 1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

1
N

Essentially, at every iteration, the chain keeps moving in the same direction with
high probability and switches direction with small probability or when hitting the
boundary {(1,−), (N,+)}. One can check that the transition kernel Q satisfies the
skew-detailed balance condition relative to the measure π⊗ρ with π = Unif(X ) and
ρ = Unif({−,+}), with involution S(x,±) = S(x,∓).

In contrast to the the Random Walk presented in Section 1.3.1, the lifted random
walk does not satisfy the detailed balance condition and, most importantly, it is
shown in Diaconis, Holmes, and Neal 2000 that it converges in total variation in
O(N) iterations (as opposed to O(N2) of its reversible counterpart, see Diaconis,
Holmes, and Neal 2000, Theorem 1 for details). The faster exploration of the lifted
random walk compared to the ordinary random walk is visible in Figure 1.1.

1.3.3 PDMPs as limits of lifted random walks

Consider the lifted random walk on the state space XN × {+,−} with

XN := { 1
N
,
2

N
, . . . , 1}, N > 1.
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Figure 1.1: 1000 iterations of the random walk (left) and lifted random walk (right)
on the space {1, 2, . . . , 50} and with initial position x = 3 (x = 3, v = + respec-
tively). Both chains are stationary to the measure Unif(X ).

The probability for this process to travel between two points (x, y) ∈ XN with
distance c := |x − y| without changing its velocity component is (1 − 1

N
)cN . By

taking the limit as N goes to infinity we have that

lim
N→∞

(
1− 1

N

)cN
= exp(−c) = P(Z > c) for Z ∼ Exp(1).

Heuristically, the limiting process for N going to infinity can be seen as a continuous-
time Markov process with position and velocity components (Xt, Vt) which moves
with piecewise constant velocity Vt ∈ {+1,−1} in the space [0, 1] and switches veloc-
ity sign at exponentially distributed times or when hitting the boundary {(0,−1), (1,+1)}.
As such, the limit of the lifted random walk has piecewise-deterministic trajectory
and a collection of random times which changes its velocity. Moreover, similarly as
before, by the LLN and CLT, the estimator

1

T

∫ T

0

f(Xs)ds

can be used to estimate expectations π(f). Here T is the final clock of the process
and f ∈ {g : X → R | π(g) < ∞}. This is the core of PDMP samplers, which
are continuous-time piecewise deterministic Markov processes on the augmented
space of position and velocity, characterised by deterministic trajectories and a finite
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collection of random times which act by changing the velocity component of process
in order to target the correct distribution. A rigorous derivation of this heuristic
limit is presented in Miclo and Monmarché (2013, Section 3). In a similar vein,
Bierkens and Roberts (2017) derived more sophisticated PDMPs as limits of a more
general class of 1 dimensional lifted Markov chains. For a general and detailed
treatment of PDMPs, see Davis (1993).

The algorithms used to simulate PDMPs are fundamentally different from the
algorithms used for the simulation of discrete-time Markov chains and in the liter-
ature (in particular in statistical mechanics, see Michel, Kapfer, and Krauth 2014)
takes the name of event-driven algorithms, as they simulate and save only the state
and the arrival time of the random events that modifies the deterministic dynamics
(in this case only the exponentially distributed random times). The full trajectory
can then be deterministically extrapolated from the saved events.

In the next section, we give a brief overview of the d-dimensional Zig-Zag sampler
(Bierkens, Fearnhead, and Roberts 2019), a prominent and successful example of a
PDMP sampler used for Monte Carlo integration. Although many results presented
in this thesis are valid for general PDMP samplers, most of them are stated only for
the Zig-Zag sampler and its extensions.

1.4 Standard d-dimensional Zig-Zag sampler
The standard d-dimensional Zig-Zag sampler is defined in the augmented space of
position and velocity Rd × {−1,+1}d with elements denoted by z = (x, v). The
process dynamics are defined recursively and can be decomposed coordinate-wise.
That is, for the process at time s and position (X(s), V (s)).

• Define the first random event time τ ≥ s as the minimum of d random event
times τ1, τ2, . . . , τd. The process moves with deterministic dynamics

(X(t), V (t)) = (X(s) + V (s)(t− s), V (s)) for s ≤ t < τ.

• At time τ , the process changes its velocity by setting for j = 1, 2, . . . , d,

Vj(τ) =

{
−Vj(τ−) if j = i,

Vj(τ−) otherwise,

with i = argminj(τj).

It can be shown (see for example Bierkens, Fearnhead, and Roberts 2019) that if
the inter-arrival times (τ1− s), . . . , (τd− s), are chosen to be the first event times of
inhomogeneous Poisson processes with distribution

P (τi − s ≥ t) = exp

(
−
∫ t

0

λ(X(s) + V (s)z, V (s))dz

)
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with
λi(x, v) = max(0, vi∂xiΨ(x)),

for a function Ψ ∈ C1(Rd), then the process is invariant to the measure µ(dx, dv) =
π(dx)⊗ ρ(dv), where ρ = Unif({−1,+1}d)

π(dx) = C exp(−Ψ(x))dx. (1.8)

Under mild assumptions on Ψ, the Zig-Zag is geometrically ergodic (see Bierkens,
Roberts, and Zitt 2019). Other theoretical results have been recently derived such
as i) a spectral analysis of the generator of the process (Bierkens and Lunel 2022)
which provides quantitative bounds on the convergence of the marginal measure of
the process to the target; ii) a large deviation principle of the process characterizing
the large deviations of the empirical measure of the process to its target (Bierkens,
Nyquist, and Schlottke 2021); iii) diffusion limit results (Bierkens, Kamatani, and
Roberts 2018) which show how the process scales (behaves) in high dimensions.

1.5 Contributions and outline of the thesis

1.5.1 Extensions of PDMPs for constrained spaces and dis-
continuous targets

PDMP samplers can be used for targeting a wide class of multi-dimensional mea-
sures. In this section, we give an example which informally illustrates the rich class
of PDMPs considered and highlights some of the contributions of this thesis.

We run the Zig-Zag sampler featuring a rich behaviour given by random events
of different nature. Figure 1.2 (cover of the thesis) displays the first two coordinates
of a simulated trajectory. Below, we informally distinguish and comment on each of
those random events and link them to their specific role in targeting an (artificially
chosen) measure on Rd, with piecewise-smooth density proportional to exp(Ψ(x))
with

Ψ(x) = −x′Γx+
d∑
i=1

1(xi>1/2)c+

⌊d/2⌋∑
i=1

log(x2i−1) (1.9)

relative to a reference measure

d∏
i=1

(
1(xi∈[0,1])dxi + δ0(dxi −

1

4
)

)
(1.10)

for a parameter c > 0 and a matrix Γ = 1.3I +C0.5, where each element Ci,j, i, j =
1, 2, . . . , d is 0 with probability 0.9 and an independent realization from N (0, 1)
otherwise. For this simulation, we fixed d the dimensionality d = 80.
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• (Random events and repelling walls) Analogously to the standard Zig-Zag sam-
plers, the process changes direction at random times by switching every time
the sign of only one velocity component as described in Section 1.4. This
produces changes in direction and allows the process to target the smooth
components of Ψ(x) (the first and the third term of (1.9)).

In this example, the position of the odd coordinates {(xi2−1, vi2−1)}i=1,2,... can
be arbitrarily close to 0, yet without ever touching 0 giving rise to repelling
walls. This is because the density vanishes on those hyper-planes.

• (Sticky floors) All coordinates {(xi, vi)}i=1,2,..., upon hitting 1
4
, “stick” in that

point for an exponentially distributed time. This corresponds to momentarily
setting the ith velocity component to 0 and allows the process to spend positive
time in hyper-planes of the form

d⊗
i=1

{Ei | Ei = {
1

4
} or Ei = R},

(with some coefficients exactly equal to 1/4). Sticky floors allow the process
to target mixtures of continuous and atomic components and, in this example,
allow to change the reference measure from a d-dimensional Lebesgue measure
to (1.10).

• (Soft walls) All coordinates {(xi, vi)}i=1,2,..., upon hitting 1
2

from below, switch
their velocity with some probability. This allows the process to target densities
which have discontinuities. In this example, the target density is discontinuous
at 1

2
in every component and the behaviour of the process at 1

2
allows the

process to target the second term in (1.9)).

• (Hard walls) The process switches always velocity at the boundaries {(xi2, vi2) =
(0,−1)}i=1,2,... and {((xi, vi) = (1,+1)}i=1,2,.... This allows the process to ex-
plore only the regions in Rd supported by the measure.

Each bullet point in this list will be formalized and described in details in the
subsequent chapters.

This is a constructed example which is of interest for multiple reasons: i) an
efficient and local implementation of the Zig-Zag sampler can be adopted which
greatly profits of the local dependence structure of µ implied by the sparse form of
Γ in (1.9) (see Chapter 2, Section 2.4 for more details); ii) the continuous and atomic
components of the reference measure (equation (1.10)) makes the sampling problem
not trivial. A mixture of atomic and continuous components arises naturally for ex-
ample in Bayesian variable selection with spike-and-slab priors. By including sticky
events, PDMPs can efficiently sample from such mixture measures, see Chapter 4
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for more details; iii) As limy↓0Ψ(x[2i : y]) =∞, for i = 1, 2, . . . , the gradient of the
log-likelihood explodes thus complicating the application of gradient-based Markov
chain Monte Carlo methods; iv) the discontinuities at 1/2 and boundaries at 0 and
1 deteriorate the performance of ordinary MCMC (see Neal et al. 2011) and com-
plicates the application of gradient-based methods, as the gradient is not defined at
discontinuity. In Section 5 we give a simple framework to address piecewise smooth
densities efficiently with PDMPs.

Figure 1.2: (x1-x2) phase space plot (left) and trace plots (right) of the first 2
coordinates of a Zig-Zag trajectory sampling a general density f supported in [0, 1]d

with discontinuity at 1/2 (yellow line) in each coordinate with density vanishing at
x2 = 0. The reference measure has a Dirac mass at 1/4 in each coordinate.

1.5.2 Overview of Chapter 2-3

In Chapter 2, we propose a method for sampling one-dimensional diffusion bridges
were the diffusion is defined as a solution to the Itô stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x, XT = y, t ∈ [0, T ],

where (Wt)t>0 is a standard one-dimensional Wiener process.
Similar to the Lévy-Ciesielski construction of a Brownian motion, we expand

the diffusion path in a Faber-Schauder basis (see Figure 2.3 in Chapter 2). The
coefficients within the basis are sampled using the Zig-Zag sampler, a particular
PDMP sampler. A key innovation is the use of the fully local algorithm for the Zig-
Zag sampler that allows to exploit the sparsity structure implied by the dependency
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graph of the coefficients. Furthermore we use the exact subsampling technique to
approximate the likelihood given by the Girsanov theorem which, in this setting,
does not have a closed from. This differs from the standard use of the subsampling
technique for PDMP samplers in regression problems for subsampling data points.
We illustrate the performance of the proposed methods in a number of examples.

In Chapter 3, we introduce the Boomerang sampler as a novel class of PDMP
samplers. The methodology begins by representing the target density as a den-
sity, e−U , with respect to a prescribed (usually) Gaussian measure and constructs a
continuous trajectory consisting of a piecewise elliptical path. The method moves
from one elliptical orbit to another according to a rate function which can be writ-
ten in terms of U . We demonstrate that the method is easy to implement and
demonstrate empirically that it can outperform existing benchmark piecewise deter-
ministic Markov processes such as the bouncy particle sampler and the Zig-Zag. We
demonstrate theoretically and empirically that we can construct a control-variate
subsampling boomerang sampler which is exact (i.e. target the correct distribution)
and which possesses remarkable scaling properties in the large data limit.

The Boomerang sampler is particularly well suited to sample diffusion bridges
with the methodology presented in Chapter 2. This is because the likelihood of a
diffusion bridge is expressed as a density relative to a high dimensional Gaussian
measure. As a key application, we illustrate a factorised version of the Boomerang
sampler for the simulation of diffusion bridges and we highlight the advantages of
this sampler compared to the standard Zig-Zag sampler, as used in Chapter 2.

1.5.3 Overview of Chapter 4

In chapter 4, we construct a new class of efficient Monte Carlo methods based
on PDMPs suitable for inference in high dimensional sparse models, i.e. models for
which there is prior knowledge that many coordinates are likely to be exactly 0. This
is achieved with the fairly simple idea of endowing existing PDMP samplers with
“sticky” coordinate axes, coordinate planes etc. Upon hitting those subspaces, an
event is triggered during which the process sticks to the subspace, this way spending
some time in a sub-model. This results in non-reversible jumps between different
(sub-)models. While we show that PDMP samplers in general can be made sticky,
we mainly focus on the Zig-Zag sampler. We show the method outperforms other
existing methods by comparing scaling results of the algorithm and mixing times
in relation with an established method for variable selection. The computational
efficiency of our method (and implementation) is established through numerical
experiments where both the sample size and the dimension of the parameter space
are large.
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1.5.4 Overview of Chapter 5

In Chapter 5 we include some results for the applications of PDMP samplers for
discontinuous densities and constrained spaces (spaces with particular boundary
conditions). We present the framework for using PDMPs in such setting and study
two important applications:

• (Spread of infectious diseases) The model considered is known as SINR (susceptible-
infected-notified-removed) and is used for modelling the spread of infectious
disease in a population (see Jewell et al. 2009). The goal is to sample the
posterior measure of infected times of a population of size N conditioned on
the observation of the notification and removal times of population individ-
uals up to a certain time horizon T . We combine the PDMP for piecewise
smooth densities with the framework presented in Bierkens et al. (2023) for
adding/removing efficiently in continuous time occult infected individuals (in-
fected individuals which have not been detected up to the time T ) by means
of introducing sticky events which are events after which the process sticks to
lower dimensional hyper-planes for some random time. In this case, the tar-
get density presents discontinuities relative to the order of the infection times,
notification times and removal times of each individual and have a reference
measure which is a mixture of Lebesgue and Dirac components.

• (Hard-spheres with teleportation) We consider a hard-sphere model in statis-
tical mechanics, see Krauth (2006, Chapter 2) for an overview. We take N
particles, each one taking values in Rd. Denote the configuration of all par-
ticles by x = {x(i) ∈ Rd : 1 ≤ i ≤ N} where we identify the ith particle as
x(i) = x[(i−1)d+1,id] and consider a given invariant measure µ⋆ supported on
RdN . We assume that each particle is a hard-sphere centered at x(i) with
radius ri > 0, i = 1, 2, . . . , N and consider the conditional invariant measure

µ(dx) ∝ µ⋆(dx)1x∈A.

with A =
⋂N
i=1

⋂
j=1,2,...,N,

j ̸=i
Ai,j and

Ai,j = {x ∈ RdN : ∥x(i) − x(j)∥ ≥ (ri + rj)},

that is, the measure µ⋆ conditioned on the space where all hard-spheres do
not overlap. The restriction for the process to be outside the region A creates
boundaries which slow down the exploration of the state space. In order to
enhance the exploration of the process, we modify the dynamics of PDMPs
by introducing teleportation schemes allowing the process to make jumps in
between boundaries of the space which are chosen conveniently in order to
enhance the exploration of the state space. Teleportation schemes such as
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the ones introduced here can be also used for applications where the target
is supported on disconnected regions or distant regions which are difficult to
reach with the standard PDMP dynamics which are continuous in space.

1.6 Publications and preprints
The results presented in Chapter 2 are joint work with Frank van der Meulen (TU
Delft), Joris Bierkens (TU Delft) and Moritz Schauer (Chalmers University of Tech-
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J. Bierkens, S. Grazzi, F. van der Meulen, and M. Schauer. “A piecewise
deterministic Monte Carlo method for diffusion bridges”. In: Statistics and
Computing 31.3 (2021), pp. 1–21.

Chapter 3 is written in collaboration with Joris Bierkens, Gareth Roberts (University
of Warwick) and Kengo Kamatani (Osaka University) and resulted in the publication

J. Bierkens, S. Grazzi, K. Kamatani, and G. Roberts. “The Boomerang
Sampler”. In: International conference on machine learning. PMLR. 2020,
pp. 908–918.

The material presented in Chapter 4 is joint work with Frank van der Meulen, Joris
Bierkens and Moritz Schauer and it is published as

J. Bierkens, S. Grazzi, F. v. d. Meulen, and M. Schauer. “Sticky PDMP sam-
plers for sparse and local inference problems”. In: Statistics and Computing
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J. Bierkens, S. Grazzi, M. Schauer, and G. Roberts. “Methods and applications
of PDMP samplers with boundary conditions”, In preparation.
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Chapter 2

A PDMP sampler for diffusion
bridges

2.1 Introduction
Diffusion processes are an important class of continuous time probability models
which find applications in many fields such as finance, physics and engineering.
They naturally arise by adding Gaussian random perturbations (white noise) to de-
terministic systems. We consider diffusions described by a one-dimensional stochas-
tic differential equation of the form

dXt = b(Xt)dt+ dWt, X0 = u, (2.1)

where (Wt)t≥0 is a driving scalar Wiener process defined in some probability space
and b is the drift of the process. The solution of equation (2.1), assuming it exists,
is an instance of one-dimensional time-homogeneous diffusion. We aim to sample X
on [0, T ] conditional on {XT = v}, also known as a diffusion bridge.

One driving motivation for studying this problem is estimation for discretely
observed diffusions. Here, one assumes observations D = {xt1 , . . . , xtN} at observa-
tions times t1 < . . . < tN are given and interest lies in estimation of a parameter θ
appearing in the drift b. It is well known that this problem can be viewed as a miss-
ing data problem as in Roberts and Stramer (2001), where one iteratively imputes
the missing paths conditional on the parameter and the observations, and then the
parameter conditional on the “full” continuous path. Due to the Markov property,
the missing paths in between subsequent observations can be sampled independently
and each of such segments constitutes a diffusion bridge. As this application requires
sampling iteratively many diffusion bridges, it is crucial to have a fast algorithm for
this step. We achieve this by adapting the Zig-Zag sampler for the simulation of
diffusion bridges. The Zig-Zag sampler is an innovative non-reversible and rejection-
free Markov process Monte Carlo algorithm which can exploit the structure present

17
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in this high-dimensional sampling problem. It is based on simulating a piecewise
deterministic Markov process (PDMP). To the best of our knowledge, this is the first
application of PDMPs for diffusion bridge simulation. This method also illustrates
the use of a local version of the Zig-Zag sampler in a genuinely high dimensional
setting (arguably even an infinite dimensional setting).

The problem of diffusion bridge simulation has received considerable attention
over the past two decades, see for example Bladt, Sørensen, et al. (2014), Beskos,
Papaspiliopoulos, Roberts, et al. (2006), Meulen and Schauer (2017), Mider et al.
(2019), Bierkens, Meulen, and Schauer (2020) and references therein. This far from
exhaustive list of references includes methods that apply to a more general setting
than considered here, such as multivariate diffusions, conditioning on partial obser-
vations and hypo-elliptic diffusions. Among the methods that can be applied, most
of the methodologies available are of the acceptance-rejection type and scale poorly
with respect to some parameters of the diffusion bridge. For example, if the pro-
posed path is not informed by the target distribution, the probability of accepting
the path depends strongly on the discrepancy between the proposed path and the
target diffusion bridge measure and usually scales poorly as the time horizon of the
diffusion bridge T grows. In contrast, gradient based techniques which compute
informed proposals (e.g. Metropolis-adjusted Langevin algorithm), require the eval-
uation of the gradient of the target distribution, which, in this case, is a path integral
that has to be generally computed numerically and its computational cost is of order
T , leading to computational limitations. The present work aims to alleviate such
restrictions through the use of a rejection-free method and an exact subsampling
technique which reduces the cost of evaluating the gradient. On a more abstract
level, our method can be viewed as targeting a probability distribution which is ob-
tained by a push-forward of Wiener measure through a change of measure. It then
becomes apparent that the studied problem of diffusion bridge simulation is a nicely
formulated non-trivial example problem within this setting to study the potential
of simulation based on PDMPs. Our results open new paths towards applications
of the Zig-Zag for high dimensional problems.

2.1.1 Approach

In this section we present the main ideas used in this paper.

Brownian motion expanded in the Faber-Schauder basis

Our starting point is the Lévy-Ciesielski construction of Brownian Motion. Define
ϕ̄(t) =

√
t, ϕ0,0(t) =

√
T
(
(t/T )1[0,T/2](t) + (1− t/T )1(1/2,1](t)

)
and set

ϕi,j(t) = 2−i/2ϕ0,0(2
it− jT ), for i = 0, 1, ..., j = 0, 1, ...2i − 1.
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If ξ̄ is standard normal and {ξi,j} is a sequence of independent standard normal
random variables (independent of ξ̄), then

XN(t) = ϕ̄(t)ξ̄ +
N∑
i=0

2i−1∑
j=0

ξi,jϕi,j(t) (2.2)

converges almost surely on [0, T ] (uniformly in t) to a Brownian motion as N →
∞ (see e.g. Section 1.2 of McKean 1969). The basis formed by ϕ̄ and {ϕi,j} is
known as the Faber-Schauder basis (see Figure 2.1). The larger i, the smaller the
support of ϕi,j, reflecting that higher order coefficients represent the fine details of
the process. A Brownian bridge starting in u and ending in v can be obtained by
fixing ξ̄ = v/

√
T and adding the function ¯̄ϕ(t)u = (1− t/T )u to (2.2). By sampling

ξN := (ξ0,0, ξ1,0, ..., ξN,2N−1) (which in this case are standard normal), approximate
realisations of a Brownian bridge can be obtained.

Zig-Zag sampler for diffusion bridges

Let Qu denote the Wiener measure on C[0, T ] with initial value X0 = u (cf. section
2.4 of Karatzas and Shreve 1991) and let Pu denote the law on C[0, T ] of the diffusion
in (2.1). Under mild conditions on b, the two measures are absolutely continuous
and their Radon-Nikodym derivative dPu

dQu is given by the Girsanov formula. Denote
by Pu,vT and Qu,vT the measures of the diffusion bridge and the Wiener bridge
respectively, both starting at u and conditioned to hit a point v at time T . Applying
the Bayes’ law for conditional expectations (Klebaner 2005, Chapter 10) we obtain:

dPu,vT
dQu,vT

(X) =
q(0, u, T, v)

p(0, u, T, v)

dPu

dQu
(X), (2.3)

where p and q are the transition densities of X under P,Q respectively so that for
s < t, p(s, x, t, y)dy = P (Xt ∈ dy | Xs = x). As p is intractable, the Radon-
Nikodym derivative for the diffusion bridge is only known up to proportionality
constant. The main idea now consists of rewriting the Radon-Nikodym derivative
in (2.3), evaluating it in XN and running the Zig-Zag sampler for ξN targeting this
density. Technicalities to actually get this to work are detailed in Section 2.3. A
novelty is the introduction of a local version of the Zig-Zag sampler, analogously to
the local bouncy particle sampler (Bouchard-Côté, Vollmer, and Doucet 2018). This
allows for exploiting the sparsity in the dependence structure of the coefficients of the
Faber-Schauder expansion efficiently, resulting in a reduction of the complexity of
the algorithm. The methodology we propose is derived for one dimensional diffusion
processes with unit diffusivity. However, diffusions with state-dependent diffusivity
can be transformed to this setting using the Lamperti transform (an example is given
in Subsection 2.5.3). In Subsection 2.6.1 we generalize the method to multivariate
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diffusion processes with unit diffusivity, assuming the drift to be a conservative
vector field.

2.1.2 Contributions of the paper

The Faber-Schauder basis offers a number of attractive properties:

(a) The coefficients of a diffusions have a structural conditional independence
property (see Section 2.4 and Appendix A.1) which can be exploited in nu-
merical algorithms to improve their efficiency.

(b) A diffusion bridge is obtained from the unconditioned process by simply fixing
the coefficient ξ̄.

(c) It will be shown (see for example Figure 2.8) that the non-linear component of
the diffusion process is typically captured by coefficients ξij in equation (2.2)
for which i is small. This allows for a low dimensional representation of the pro-
cess and yet a good approximation. Therefore, the approximation error caused
by leaving out fine details is equally divided over [0, T ], contrary to approaches
where a proxy for the diffusion bridge is simulated by Euler discretisation of
an SDE governing its dynamics. In the latter case, the discretisation error
accumulates over the interval on which the bridge is simulated.

(d) It is very convenient from a computational point of view as each function is
piecewise linear with compact support.

We adopt the Zig-Zag sampler (Bierkens, Fearnhead, and Roberts 2019) which
is a sampler based on the theory of piecewise deterministic Markov processes (see
Fearnhead et al. 2018, Bouchard-Côté, Vollmer, and Doucet 2018, Andrieu and
Livingstone 2019, Andrieu et al. 2018). The main reasons motivating this choice
are:

(a) The partial derivatives of the log-likelihood of a diffusion bridge measure usu-
ally appear as a path integral that has to be computed numerically (introduc-
ing consequently computational burden derived by this step and its bias). The
Zig-Zag sampler allows us to replace the gradient of the log-likelihood with an
unbiased estimate of it without introducing bias in the target measure. This
is done in Subsection 2.4.4 with the subsampling technique which was pre-
sented in Bierkens, Fearnhead, and Roberts (2019) for applications for which
the evaluation of the log-likelihood is expensive due to the size of the dataset.

(b) In the same spirit as the local Bouncy Particle Sampler of Bouchard-Côté,
Vollmer, and Doucet (2018) and Peters and With (2012), the local and the
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fully local Zig-Zag sampler introduced in Section 2.4 reduces the complexity
of the algorithm improving its efficiency with respect to the standard Zig-
Zag Algorithm as the dimensionality of the target distribution increases (see
Subsection 2.6.2). This opens the way to high dimensional applications of the
Zig-Zag sampler when the dependency graph of the target distribution is not
fully connected and when using subsampling. The factorization of the log-
likelihood and the local method we proposed is reminiscent of other work such
as e.g. Faulkner et al. (2018), Michel, Tan, and Deng (2019) and Monmarché
et al. (2020).

(c) The method is a rejection-free sampler, differing from most of the methodolo-
gies available for simulating diffusion bridges.

(d) The Zig-Zag sampler is defined and implemented in continuous time, elimi-
nating the choice of tuning parameters appearing for example in the proposal
density of the Metropolis-Hastings algorithm. This advantage comes at the
cost of a more complicated method which relies upon bounding from above
rates which are model specific and often difficult to derive (see Section 2.5 for
our specific applications).

(e) The process is non-reversible: as shown, for example, in Diaconis, Holmes, and
Neal (2000), non-reversibility generally enhances the speed of convergence to
the invariant measure and mixing properties of the sampler. For an advanced
analysis on convergences results for this class of non-reversible processes, we
refer to the articles Andrieu and Livingstone (2019) and Andrieu et al. (2018).

The local Zig-Zag sampler relies on the conditional independence structure of the
coefficients only. This translates to other settings than diffusion bridge sampling, or
other choices of basis functions. For this reason, Section 2.4 describes the algorithms
of the sampler in their full generality, without referring to our particular application.
A documented implementation of the algorithms used in this manuscript can be
found in Schauer and Grazzi (2021).

2.1.3 Outline

In Section 2.2 we set some notation and recap the Zig-Zag sampler. In Section 2.3
we expand a diffusion process in the Faber-Schauder basis and prove the aforemen-
tioned conditional dependence. The simulation of the coefficients ξN presents some
challenges as it is high dimensional and its density is expressed by an integral over
the path. We give two variants of the Zig-Zag algorithm which enables sampling
in a high dimensional setting. In particular, in Section 2.4 we present the local
and fully local Zig-Zag algorithms which exploit a factorization of the joint density
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(Appendix A.1) and a subsampling technique which, in this setting, is used to avoid
the evaluation of the path integral appearing in the density (which otherwise would
severely complicate the implementation of the sampler). In Section 2.5 we illustrate
our methodology using a variety of examples, validate our approach and compare
the Zig-Zag sampler with other benchmark MCMC algorithms. We conclude by
sketching the extension of our method to multi-dimensional diffusion bridges, carry-
ing out an informal scaling analysis and providing several remarks for future research
(Section 2.6 and Section 2.7).

2.2 Preliminaries
Throughout, we denote by ∂i the partial derivative with respect to the coefficient ξi,
the positive part of a function f by (f)+, the ith element and the Euclidean norm
of a vector x respectively by [x]i and ∥x∥. The cardinality of a countable set A is
denoted by |A|.

2.2.1 Notation for the Faber-Schauder basis

To graphically illustrate the Faber-Schauder basis, a construction of a Brownian
motion with the representation of the basis functions is given in Figure 2.1. The
Faber-Schauder functions are piecewise linear with compact support. The length of
the support and the height of the function is determined by the first index while
the second index determines the location. All basis functions with first index i are
referred to as level i basis functions. For convenience, we often swap between double
and single indexing of Faber-Schauder functions. Denote the double indexing with
(i, j) and the single indexing with n. We go from one to the other through the
transformations

i = ⌊log2(n)⌋, j = n− 2i, n = 2i + j;

where ⌊·⌋ denotes the floor function. The basis with truncation level N has M :=
2N+1 − 1 coefficients. Let ξN denote the vector of coefficients up to level N , i.e.

ξN := (ξ0,0, ξ1,0, ..., ξN,2N−1) ∈ RM (2.4)

and let XξN := XN when we want to stress the dependencies of XN on the coeffi-
cients ξN . Using double indexing, we denote by Si,j = suppϕi,j.

2.2.2 The Zig-Zag sampler

A piecewise deterministic Markov process (Davis 1993) is a continuous-time process
with behaviour governed by random jumps at points in time, but deterministic evo-
lution governed by an ordinary differential equation in between those times (yielding



CHAPTER 2. PDMPS FOR DIFFUSION BRIDGES 23

level 3

level 2

level 1

level 0

linear

0.00 0.25 0.50 0.75 1.00

0

1

0

1

0

1

0

1

0

1

Faber−Schauder basis

−1

0

1

0.25 0.50 0.75 1.00

level

linear

level 0

level 1

level 2

level 3

Coefficients

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

0.0

0.4

0.8

1.2

0.00 0.25 0.50 0.75 1.00

Approximated process

Figure 2.1: Lévy-Ciesielski construction of a Brownian motion on (0, 1). On the
left the Faber-Schauder basis functions up to level N = 3, on the top-right the
values of the corresponding coefficients located at the peak of their relative FS
basis function and on the bottom-right the resulting approximated Brownian path
XN (black line) compared with a finer approximation (red line). The truncated
sum defines the process in 2N+1 + 1 finite dyadic points (black dots) with linear
interpolation in between points. A finer approximation corresponds to Brownian
fill-in noise between any two neighboring dyadic points.

piecewise-continuous realizations). If the differential equation can be solved in closed
form and the random event times can be sampled exactly, then the process can be
simulated in continuous time without introducing any discretization error (up to
floating number precision) making it attractive from a computational point of view.

By a careful choice of the event times and deterministic evolution, it is possible to
create and simulate an ergodic and non-reversible process with a desired unique in-
variant distribution (Fearnhead et al. 2018). The Zig-Zag sampler (Bierkens, Fearn-
head, and Roberts 2019) is a successful construction of such a processes. We now
recap the intuition and the main steps behind the Zig-Zag sampler.

The one-dimensional Zig-Zag sampler is defined in the augmented space (ξ, θ) ∈
R × {+1,−1}, where the first coordinate is viewed as the position of a moving
particle and the second coordinate as its velocity. The dynamics of the process
t 7→ (ξ(t), θ(t)) (not to be confused with the time indexing the diffusion process) are
as follows: starting from (ξ(0), θ(0)),
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(a) its flow is deterministic and linear in its first component with direction θ(0)
and constant in its second component until an event at time τ occurs. That
is, (ξ(t), θ(t)) = (ξ(0) + tθ(0), θ(0)), 0 ≤ t ≤ τ .

(b) At an event time τ , the process changes the sign of its velocity, i.e. (ξ(τ), θ(τ)) =
(ξ(τ−),−θ(τ−)).

The event times are simulated from an inhomogeneous Poisson process with specified
rate λ : (R× {1,−1})→ R+ such that P (τ ∈ [t, t+ ϵ]) = λ(ξ(t), θ(t))ϵ+ o(ϵ), ϵ ↓ 0.

The d-dimensional Zig-Zag sampler is conceived as the combination of d one-
dimensional Zig-Zag samplers with rates λi(ξ, θ), i = 1, ..., d, where the rates create
a coupling of the independent coordinate processes. The following result provides
a sufficient condition for the d-dimensional Zig-Zag sampler to have a particular
d-dimensional target density π as invariant distribution. Assume that the target
d-dimensional distribution has strictly positive density with respect to the Lebesgue
measure i.e.

π(dξ) ∝ exp(−ψ(ξ))dξ, ξ ∈ Rd.

Define the flipping function as Fi(θ) = (θ1, ...,−θi, ..., θd), for θ ∈ {−1,+1}d. For
any i = 1, ..., d and (ξ, θ) ∈ Rd × {1,−1}d, the Zig-Zag process with Poisson rates
satisfying

λi(ξ, θ)− λi(ξ, Fi(θ)) = θi∂iψ(ξ), (2.5)

has π as invariant density. Condition (2.5) is derived in the supplementary material
of Bierkens, Fearnhead, and Roberts (2019). Condition (2.5) is equivalent to

λi(ξ, θ) = (θi∂iψ(ξ))
+ + γi(ξ) (2.6)

for some γi(ξ) ≥ 0. Throughout, we set γi(ξ) = 0 because generally the algorithm
is more efficient for lower Poisson event intensity (see for example Andrieu and
Livingstone 2019, Subsection 5.4).

Assume the target density is π(ξ) = cπ̃(ξ). The process targets the specific
distribution function through the Poisson rate λ which is a function of the gradient of
ξ 7→ ψ(ξ) = − log(π̃(ξ)), so that any proportionality factor of the density disappears.
Throughout we refer to the function ψ as the energy function. As opposed to
standard Markov chain Monte Carlo methods, the process is not reversible and it is
defined in continuous time.

Example 2.2.1. Consider a d-dimensional Gaussian random variable with mean
µ ∈ Rd and positive definite covariance matrix Σ ∈ Rd×d. Then

• π(ξ) ∝ exp (−(ξ − µ)′Σ−1(ξ − µ)/2),

• ∂kψ(ξ) = [Σ−1(ξ − µ)]k,
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• λk(ξ, θ) = (θk[Σ
−1(ξ − µ)]k)+ .

Notice that if Σ is diagonal, then λk(ξ, θ) = 0 whenever the process is directed
towards the mean so that no jump occurs in the kth component when one of the
following conditions is satisfied: (θk = −1, ξk − µk ≥ 0) or (θk = 1, ξk − µk ≤ 0). In
Figure 2.2 we simulate a realization of the Zig-Zag sampler targeting a univariate
standard normal random distribution.

Figure 2.2: One dimensional Zig-Zag targeting a Gaussian random variable N (0, 1).
Left: t 7→ ξ(t), right: t 7→ θ(t).

Algorithm 1 shows the standard implementation of the Zig-Zag sampler. Given
a fixed time t ≥ 0 and a position (ξ(t), θ(t)), the first event time τ ∗ after t is
determined by taking the minimum of event times τ1, τ2, . . . , τd simulated according
to the Poisson rates λi, i = 1, 2, ..., d. At event time τ ∗, the velocity vector becomes
θ(τ ∗) = Fi∗(θ(t)), with i∗ = argmin(τ1, . . . , τd). The algorithm iterates this step
moving forward each time until the next simulated event time exceeds the final
clock τfinal.

Although we consider the velocities for each dimension of a d-dimensional Zig-
Zag process to be either 1 or −1, these can be taken to be any non-zero values
(θi,−θi) for i = 1, ..., d. A finetuning of θ1, ..., θN can improve the performance of
the sampler. Note that the only challenge in implementing Algorithm 1 lies on the
simulation of the waiting times which correspond to the simulation of the first event
time of d inhomogeneous Poisson processes (IPPs) with rates λ1, λ2, ..., λd which are
functions of the state space (ξ, θ) of the process. Since the flow of the process is
linear and deterministic, the Poisson rates are known at each time and are equal to

λi(t; ξ, θ) = λi(ξ + tθ, θ), i = 1, 2, ..., d.
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To lighten the notation, we write λi(t) := λi(t; ξ, θ) when ξ, θ are fixed. Given an
initial position ξ and velocity θ, the waiting times τ1, ..., τd are computed by finding
the roots for x of the equations∫ x

0

λi(s)ds+ log(ui) = 0, i = 1, 2, ..., d, (2.7)

where (ui)i=1,2,...,d are independent realisations from the uniform distribution on
(0, 1). When it is not possible to find roots of equation (2.7) efficiently, for example
in closed form, it suffices to find upper bounds for the rate functions for which this is
possible; Subsection 2.4.4 treats this problem for our particular setting. The linear
evolution of the process and the jumps of the velocities are always trivially computed
and implemented.

Algorithm 1 returns a skeleton of values corresponding to the position of the
process at the event times. From these values, it is straightforward to reconstruct
the continuous path of the Zig-Zag sampler. Given a sample path of the Zig-Zag
sampler from 0 to τfinal, we can obtain a sample from the target distribution in the
following way:

• Denote by ξ(τ) the value of the vector ξ at the Zig-Zag clock τ < τfinal. Fixing
a sample frequency ∆τ , we can produce a sample from the density π by taking
the values of the random vector ξ at time τburn-in +∆τ, τburn-in + 2∆τ, ...., τfinal

where τburn-in is the initial burn-in time taken to ensure that the process has
reached its stationary regime. Throughout the paper, we create samples using
this approach.

2.2.3 Zig-Zag sampler for Brownian bridges

The previous subsections contain all ingredients necessary to run the Zig-Zag sampler
in a finite dimensional projection of the Brownian bridge measure Q0,v on the interval
[0, T ]. We fix ξ̄ to v and run the Zig-Zag sampler for ξN as defined in (2.4) targeting
a multivariate normal distribution. Figure 2.3 shows 100 samples obtained from one
sample run of the Zig-Zag sampler where the coefficients are mapped to samples
paths using (2.2). The final clock of the Zig-Zag is set to τfinal = 500 with initial
burning τburn-in = 10.

Both Brownian motion and the Brownian bridge are special in that all coefficients
in the Faber-Schauder basis are independent. Of course, these processes can directly
be simulated without need of a more advanced method like the Zig-Zag sampler.
However, for a diffusion process with nonzero drift this property is lost. Nevertheless,
we will see that when the process is expanded in the Faber-Schauder basis, many
coefficients are still conditionally independent. This implies that the dependency
graph of the joint density of the coefficients is sparse. We will show in Section 2.4
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Algorithm 1 Standard d-dimensional Zig-Zag sampler (Bierkens, Fearnhead, and
Roberts 2019)

procedure ZigZag(τfinal, ξ, θ)
Initialise k = 1, t = 0
τj ∼ IPP(λj(·; ξ, θ)), j = 1, ..., d ▷ Draw from Inhomogeneous Poisson

process (IPP)
while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, .., τd)
Update: ξ ← ξ + θ(τ ∗ − t)
Update: θi∗ ← −θi∗ ; t← τ ∗

Save ξ(k) ← ξ; t(k) ← t
for j = 1, ..., d do

τj ∼ t+ IPP(λj(·; ξ, θ))
end for
k ← k + 1

end while
return Skeletons (ξ(l), t(l))l=1,...,k−1

end procedure

how this property can be exploited efficiently using the Zig-Zag sampler in its local
version.

2.3 Faber-Schauder expansion of diffusion processes

We extend the results of Section 2.2 to one-dimensional diffusions governed by the
SDE in (2.1). Although the density is defined in infinite dimensional space, in this
section we justify both intuitively and formally that the diffusion can be approxi-
mated to arbitrary precision by considering a finite dimensional projection of it.

The intuition behind using the Faber-Schauder basis is that, under mild assump-
tions on the drift function b, any diffusion process behaves locally as a Brownian
motion. Expanding the diffusion process with the Faber-Schauder functions, this
notion translates to the existence of a level N such that the random coefficients at
higher levels which are associated to the Faber-Schauder basis are approximately
independent standard normal and independent from ξN under the measure P.

Define the function Zt : R+ × C[0, T ]→ R+ given by

Zt(X) = exp

(∫ t

0

b(Xs)dXs −
1

2

∫ t

0

b2(Xs)ds

)
(2.8)

where the first integral is understood in the Itô sense and X ≡ (Xs, s ∈ [0, T ]).
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Figure 2.3: 100 samples from the Brownian bridge measure starting at 0 and hitting
0 at time 1 obtained by one run of the Zig-Zag sampler targeting the coefficients
relative to the measure expanded with the Faber-Schauder basis. The resolution
level is fixed to N = 6 and the Zig-Zag clock to τfinal = 500 and initial burn in
τburn-in = 10.

Assumption 2.3.1. Zt is a Q-martingale.

For sufficient conditions for verifying that this assumption applies, we refer to
Remark 2.3.6, Remark 2.3.9 and Liptser, Aries, and Shiryaev (2013), Chapter 6.

Theorem 2.3.2. (Girsanov’s theorem) If Assumption 2.3.1 is satisfied,

dPu

dQu
(X) = ZT (X). (2.9)

Moreover, a weak solution of the stochastic differential equation exists which is
unique in law.

Proof. This is a standard result in stochastic calculus (see Liptser, Aries, and
Shiryaev 2013, Section 6).
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As we consider diffusions on [0, T ] with T fixed, we denote Z(X) := ZT (X). Due
to the appearance of the stochastic Itô integral in Z(X), we cannot substitute for X
its truncated expansion in the Faber-Schauder basis. Clearly, whereas the approxi-
mation has finite quadratic variation, X has not. Assuming that b is differentiable
and applying Itô’s lemma to the function B(x) =

∫ x
0
b(s)ds, the stochastic integral

can be replaced and equation (2.8) is rewritten as

Z(X) = exp

(
B(XT )−B(X0)−

1

2

∫ T

0

(
b2(Xs) + b′(Xs)

)
ds

)
, (2.10)

where b′ is the derivative of b.

Definition 2.3.3. Let X be a diffusion governed by (2.1). Let XN be the process
derived from X by setting to zero all coefficients of level exceeding N in its Faber-
Schauder expansion (see equation (2.2)). Set

ZN(X) = exp

(
B
(
XN
T

)
−B

(
XN

0

)
− 1

2

∫ T

0

[
b2
(
XN
s

)
+ b′

(
XN
s

)]
ds

)
.

We define the approximating measure PN by the change of measure

dPuN
dQu

(X) =
ZN(X)

cN
, (2.11)

where cN = EQ
(
ZN(X)

)
.

Note that the measure PuN associated to the approximated stochastic process is
still on an infinite dimensional space and such that the joint measure of random
coefficients ξN is different from the one under Qu while the remaining coefficients
stay independent standard normal and independent from ξN . This is equivalent
to approximating the diffusion process at finite dyadic points with Brownian noise
fill-in in between every two points. We now fix the final point vT by setting ξ̄ = vT .
Define the approximated stochastic bridge with measure Pu,vTN in an analogous way
of equation (2.11), so that

dPu,vTN

dQu,vT
(X) =

ZN(X)

cvTN
. (2.12)

where cvTN = EQu,vT

(
ZN(X)

)
. The following is the main assumption made.

Assumption 2.3.4. The drift b is continuously differentiable and b2+ b′ is bounded
from below.

Theorem 2.3.5. If Assumptions 2.3.1 and 2.3.4 are satisfied, then Pu,vTN converges
weakly to Pu,vT as N →∞.



30 2.3. FS EXPANSION OF DIFFUSION PROCESSES

Proof. In the following we lighten the notation by omitting the initial point u from
the notation, which will be assumed fixed to u = x0. We wish to show that
PvTN converges weakly to PvT as N → ∞. This is equivalent to showing that∫
fdPvTN →

∫
fdPvT for all bounded and continuous functions f . Write cvT∞ =

p(0, x0, T, vT )/q(0, x0, T, vT ). By equation (2.3) and (2.9),

EQvT Z(X) = EQvT

dPx0
dQx0

= cvT∞EQvT

[
dPvT
dQvT

]
= cvT∞

and we have that∣∣∣∣∫ fdPvTN −
∫
fdPvT

∣∣∣∣
=

∣∣∣∣∫ f

(
ZN

cvTN
− Z

cvT∞

)
dQvT

∣∣∣∣
≤ ∥f∥∞

∫ ∣∣∣∣ZN(X)

cvTN
− Z(X)

cvT∞

∣∣∣∣ dQvT (X)

≤ ∥f∥∞
(

1

cvTN

∫ ∣∣ZN(X)− Z(X)
∣∣ dQvT (X) +

∫
Z(X)

∣∣∣∣ 1

cvTN
− 1

cvT∞

∣∣∣∣ dQvT (X)

)
≤ ∥f∥∞

(
1

cvTN

∫ ∣∣ZN(X)− Z(X)
∣∣ dQvT (X) +

∣∣∣∣cvT∞cvTN − 1

∣∣∣∣) (2.13)

where we used Assumption 2.3.1 for applying the change of measure between the
conditional measures. Notice that ZN(X) = Z(XN). The mapping X 7→ Z(X), as
a function acting on C(0, T ) with uniform norm, is continuous, since B, b, and b′ are
continuous. Therefore, it follows from the Lévy-Ciesielski construction of Brownian
motion (see Section 2.1.1) and the continuous mapping theorem that

ZN(X)→ Z(X) QvT − a.s.

Now notice that, under conditional measures QvT and PvT , the term B(XT )−B(X0)
is fixed. By the assumptions on b and b′, Z is a bounded function and by dominated
convergence we get that

lim
N→∞

EvTQ |Z
N(X)− Z(X)| = 0

giving convergence to zero of the first term in (2.13). This implies that also the
constant cN := EvTQ |ZN(X)| converges to EvTQ |Z(X)| = cvT∞ so that all the terms in
(2.13) converge to 0.

We now list some technical conditions for the process to satisfy Assumptions
2.3.1 and 2.3.4.
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Remark 2.3.6. If |b(x)| ≤ c(1 + |x|), for some positive constant c, then Assump-
tion 2.3.1 is satisfied.

Proof. See Liptser, Aries, and Shiryaev (2013), Section 6, Example 3 (b).

Remark 2.3.7. If b is globally Lipschitz and continuously differentiable, then As-
sumptions 2.3.1 and 2.3.4 are satisfied.

Proof. Assumption 2.3.4 is trivially satisfied. By Remark 2.3.6, also Assumption 2.3.1
is satisfied.

In Subsection 2.5.3 we will present an example where the drift b is not globally
Lipschitz, yet Assumption 2.3.4 is satisfied.

Assumption 2.3.8. There exists a non-decreasing function h : [0,∞) → [0,∞)
such that B(x) ≤ h(|x|) and∫ ∞

0

exp(h(x)− x2/(2T )) dx <∞.

The above integrability condition is for example satisfied if h(|x|) = c(1 + |x|)
for some c > 0.

Remark 2.3.9. If Assumptions 2.3.4 and 2.3.8 hold, then Assumption 2.3.1 is
satisfied.

Proof. By Subsection 3.5 in Karatzas and Shreve (1991), (Zt) is a local martingale.
Say b′(x) + b2(x) ≥ −2C, where C ≥ 0. Using the assumptions, we have

Zt = exp

(
B(Xt)−B(X0)− 1

2

∫ t

0

{b′(Xs) + b2(Xs)} ds
)
≤ A exp(Ct) exp(h(|Xt|)),

with constant A = exp(−B(X0)). Then

sup
t∈[0,T ]

Zt ≤ A sup
t∈[0,T ]

exp(Ct) exp(h(|Xt|)) ≤ A exp(CT ) exp

(
h

(
max
t∈[0,T ]

|Xt|
))

.

By Lemma 2.3.10, below

E sup
t∈[0,T ]

Zt ≤ A exp(CT )E exp(h( max
t∈[0,T ]

|Xt|)) <∞.

Then for a sequence of stopping times (τk) diverging to infinity such that (Zτk
t )0≤t≤T

is a martingale for all k, we have

EZ0 = EZτk
0 = EZτk

t → EZt

as k →∞ by dominated convergence.
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Lemma 2.3.10. Suppose h : [0,∞)→ [0,∞) is non-decreasing. Let NT = max0≤t≤T |Xt|
where (Xt) is a Brownian motion. Then

E exph(NT ) ≤ 4

∫ ∞

0

1√
2πT

exp(h(x)− x2/(2T )) dx.

Proof. The maximum MT = max0≤t≤T Xt of a Brownian motion is distributed as the
absolute value of a Brownian motion and thus has density function 2√

2πT
exp(−x2/(2T )),

see Karatzas and Shreve (1991), Subsection 2.8. We have P(NT ≥ y) ≤ 2P(MT ≥ y)
from which the result follows.

Finally we mention that Theorem 2.3.5 can be generalized in the following way
to diffusions without a fixed end point.

Proposition 2.3.11. If Assumption 2.3.4 is satisfied and B is bounded, then PN
converges weakly to P.

The proof follows the same steps of the one of Theorem 2.3.5. In this case we
need to pay attention on B, as for unconditioned process, the final point is not
fixed. If B is bounded, then Assumption 2.3.8 is satisfied. By Remark 2.3.9 also
Assumption 2.3.1 is satisfied so that we can apply Theorem 2.3.2 for the change of
measure. Finally, by the assumptions on b and B, the function Z is bounded and
by dominated convergence we get that

lim
N→∞

EQ|ZN(X)− Z(X)| = 0.

2.4 A local Zig-Zag algorithm with subsampling for
high-dimensional structured target densities

In Subsection 2.4.4 we will show that the task of sampling diffusion bridges boils
down to the task of sampling a high-dimensional vector ξN ∈ RM under the measure
Pu,vTN . Define by PξN the distribution of the vector ξN . Under the target measure,

PξN (dξ
N) = π(ξN)dξN .

We take the density π to be the M -dimensional invariant density (target density) for
the Zig-Zag sampler. An efficient implementation of piecewise deterministic Monte
Carlo methods, including the local and fully local Zig-Zag sampler can be found in
Schauer and Grazzi (2021).
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2.4.1 Subsampling technique

In our setting, the integral appearing in the Girsanov formula (2.10) poses difficulties
when finding the root of equation (2.7) and would require numerical evaluation of
the integral, hence also introducing a bias. By adapting the subsampling technique
presented in Bierkens, Fearnhead, and Roberts (2019) (Section 4) we avoid this
problem altogether (see Subsection 2.4.4). In general this technique requires

(a) unbiased estimators for ∂iψ i.e. random functions ∂iψ̃i(ξ, Ui) such that

EUi
[∂iψ̃i(ξ, Ui)] = ∂iψ(ξ),

for all i and ξ. These random functions create new (random) Poisson rates
given by

λ̃i(t; ξ, θ;Ui) = (θi∂iψ̃(ξ(t), Ui))
+, i = 1, 2, ..., d, (2.14)

whose evaluation becomes feasible and computationally more efficient com-
pared to the original Poisson rates given by equation (2.6).

(b) upper bounds λ̄i : (R+ × Rd × {−1,+1}d) → R+ for all i = 1, ..., d such that
for any point (ξ, θ) and t ≥ 0 we have

P
(
λ̃i(t; ξ, θ;Ui) ≤ λ̄i(t; ξ, θ)

)
= 1. (2.15)

As we show in Algorithm 2 and in Section 2.5, these upper bounds are used
for finding the roots of equation (2.7).

Algorithm 2 gives the algorithm for the Zig-Zag sampler with subsampling. It can be
proved (see Bierkens, Fearnhead, and Roberts 2019) that the Zig-Zag sampler with
subsampling has the same invariant distribution as its original and therefore does
not introduce any bias. Note that we slightly modified the algorithm from Bierkens,
Fearnhead, and Roberts (2019) in order to reduce its complexity. In particular it is
sufficient to draw new waiting times and to save the coordinates only when the if
condition at the subsampling step of Algorithm 2 is true.

2.4.2 Local Zig-Zag sampler

Subsection 3.1 of Bouchard-Côté, Vollmer, and Doucet (2018) proposes a local al-
gorithm for the Bouncy Particle Sampler which is a process belonging to the class
of piecewise deterministic Markov processes. Similar ideas apply to our setting.

Assumption 2.4.1. The Poisson rate λi for a d-dimensional target distribution is
a function of the coordinates Ni ⊂ {1, . . . , d},

λi(s; ξ, θ) = λi(s; ξk, θk : k ∈ Ni).
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Algorithm 2 d-dimensional Zig-Zag sampler with subsampling
procedure ZigZag_ws(τfinal, ξ, θ)

Initialise k = 1, t = 0
τj ∼ IPP(λ̄j(·; ξ, θ)), j = 1, ..., d
while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, ..., τd)
ξold ← ξ
Update: ξ ← ξ + θ(τ ∗ − t)
Update: ∆t← τ ∗ − t; t← τ ∗

Ui∗ ∼ Law(Ui∗), V ∼ Unif(0, 1)

if V ≤ λ̃i∗(0, ξ, θ, Ui∗)/λ̄i∗(∆t; ξ
old, θ) then ▷ Subsampling step

Save ξ(k) ← ξ, t(k) ← t
k ← k + 1
θi∗ ← −θi∗
for j ∈ {1, . . . , d} \ {i∗} do

τj ∼ t+ IPP(λ̄j(·; ξ, θ))
end for

else
τi∗ ∼ t+ IPP(λ̄i∗(·; ξ, θ))

end if
end while
return Skeletons (ξ(l), t(l))l=1,2,...,k−1

end procedure

Recall that by the definition of λi (see equation (2.6)), the ith partial derivative
of the negative loglikelihood determines the sets Ni. Now let us suppose that the
first event time τ is triggered by the coordinate i so that at event time, the velocity
θi is flipped. For all λk which are not function of this coordinate (k ̸∈ Ni), we have

λoldk (τ + s) = λnewk (s),

which implies that the waiting times drawn before τ , are still valid after switching the
velocity i. This allows us to rescale the previous waiting time and reduce the number
of computations at each step. The sets N1, ..., Nd are connected to the factorisation
of the target distribution and define its conditional dependence structure. Indeed,
take a d-dimensional target distribution with the following decomposition

π(ξ) =
N∏
i=1

πi(ξ
(i))
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where ξ(i) := {ξj : j ∈ Γi} and Γi ⊂ {1, 2, ..., N} defines a subset of indices. We
have that

−∂k log(π(ξ)) = −
N∑
i=1

∂k log πi(ξ
(i)), k = 1, ..., d

where the ith term in the sum is equal to 0 if k /∈ Γi. Since the Poisson rates
(2.6) are defined through the partial derivatives, the factorisation defines the sets
N1, ..., Nd of Assumption 2.4.1.

Algorithm 3 shows the implementation of the local sampler which exploits any
conditional independence structure so that the complexity of the algorithm scales
well with the number of dimensions.

The local Zig-Zag sampler simplifies to independent one-dimensional Zig-Zag
processes if the coefficients are pairwise independent coefficients, as it was the case
in the example of sampling a Brownian motion or Brownian bridge (see Subsec-
tion 2.2.3). On the other hand, it defaults to Algorithm 1 when the dependency
graph is fully connected, that is if Ni = {1, . . . , d},∀i.

Algorithm 3 d-dimensional local Zig-Zag sampler
Input : The bounds λ̄i depend only on ξk, θk, for k ∈ Ni

procedure ZigZag_local(τfinal, ξ, θ)
Initialise k = 1, t = 0
τj ∼ IPP(λj(·; ξ, θ)), j = 1, ..., d
while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, ..., τd)
Update: ξ ← ξ + θ(τ ∗ − t)
Update: θi∗ ← −θi∗ ; t← τ ∗

Save ξ(k) ← ξ; t(k) ← t
k ← k + 1
for j in Ni∗ do ▷ Local step

τj ∼ t+ IPP(λj(·; ξ, θ))
end for

end while
return Skeletons (ξ(l), t(l))l=1,...,k−1

end procedure

2.4.3 Fully local Zig-Zag sampler

Combining the subsampling technique and the local ZZ can lead to a further reduc-
tion of the complexity of the algorithm. Indeed the bounds for the Poisson rates
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might induce sparsity as λ̄i can be function of few coordinates (see for example Sub-
section 2.5.2). This means that, after flipping θi, λ̄oldj (τ + t) = λ̄newj (t) for almost all
j ̸= i making the if statement in the local step of Algorithm 3 almost always satisfied
and improving the efficiency of the algorithm. This means that, after flipping θi, we
have that λ̄oldj (τ+ t) = λ̄newj (t) for almost all j ̸= i or, in other words, the cardinality
of the set Ni in the local step of Algorithm 3 is small. Furthermore, the evaluation
of λ̃i(t, ξ, θ) and λ̄i(t, ξ, θ) for i = 1, 2, ..., d does not necessarily require to access the
location of all the coordinates ξj so that, by assigning an independent time for each
coordinate and updating only the coordinates needed for the evaluation of λ̃i and λ̄i,
the algorithm can be made more efficient. This is shown in the fully local ZZ sam-
pler (Algorithm 4) where N̄i, Ñi(Ui) define respectively the subset and the random
subset of the coordinates required for the evaluation of λ̄i(·; ξ, θ) and λ̃i(·; ξ, θ;Ui).

2.4.4 Sampling diffusion bridges

In order to employ the Zig-Zag sampler to simulate from the bridge measure we
choose the truncation level N in equation (2.2). Then, under Pu,vTN

π(dξN) ∝ ZN(X) exp

(
−∥ξN∥2

2

)
dξN .

This is a straightforward consequence of the change of measure in (2.12) and the
Lévy-Ciesielski construction.

We need to make one further assumption:

Assumption 2.4.2. The drift b of the diffusion process is twice differentiable.

Assumption 2.4.2 is necessary in order to compute the ξk-partial derivative of
the energy function, which becomes

∂kψ(ξ
N) =

1

2

∫
Sk

hk(s; ξ
N)ds+ ξk, (2.16)

where
hk(s; ξ

N) = ϕk(s)
(
2b(XN

s )b′(XN
s ) + b′′(XN

s )
)
.

As the index k in the Faber-Schauder basis function gets larger, both the magnitude
of ϕk and the size of its support decrease so that typically

∫
hk(s; ξ

N)ds gets smaller
and ∂kψ(ξ) ≈ ξk which corresponds to the partial derivative of the energy function
of a standardized Gaussian random variable with independent components. This
justifies one more time the intuition that for high levels i, the random variables ξij,
j = 1, ..., 2i − 1 are approximately normally distributed and almost independent
from the other random coefficients.
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In order to avoid the evaluation of the integral appearing in (2.16) and the
difficulty of drawing a Poisson time from its corresponding rate (2.6), we employ
the subsampling technique. Considering ξN nonrandom, we take as an unbiased
estimator for ∂kψ(ξN) the (random) function

1

2
|Sk|hk(Uk; ξN) + ξk, (2.17)

where Uk ∼ Unif(Sk) and as the bounding intensity rate

λ̄k(t, ξ
N , θN) =

1

2
|Sk||θk|Φ̄kf(ξ

N(t)) + (θkξk(t))
+ , ξN ∈ RM , (2.18)

where Φ̄k = maxs(ϕk(s)) and f(ξN) ≥
∣∣∣2b(XξN

s )b′(XξN

s ) + b′′(XξN

s )
∣∣∣ , ∀s ∈ [0, T ], ξN ∈

RM . The subsampling technique avoids the numerical computation of the time in-
tegral (2.16), thus avoiding a numerical bias and reducing the computational effort
from O(T ) (for fixed discretization size) to O(1). The variance of this unbiased
estimator can be reduced by averaging over multiple independent uniform draws or
similar strategies (see for example Section 2.5.4), albeit at the cost of additional
computations. In Section 2.5 we show specifically for each numerical experiment
how we derived the Poisson upper bounds λ̄i.

The compact support of the Faber-Schauder functions induce a sparse depen-
dency structure on the target measure π. Indeed, Xt only depends on those values
of ξl,k for which t ∈ Sl,k. See Figure 2.4 for an illustration. It is easy to see that this
implies that ∂ψ(ξN )

∂ξ(i,j)
depends only on those ξ(k,l) for which the interior of Si,j ∩ Sk,l

is non-empty. In particular, define the relation ξi,j ≪ ξk,l to hold if Sk,l ⊂ Si,j. If
this happens, then we refer to ξi,j as the ancestor of ξk,l (and conversely ξk,l as the
descendant). Then the sets in Assumption 2.4.1 (using double indexing) can be cho-
sen as Ni,j = {ξh,d : ξh,d ≪ ξi,j ∨ ξh,d ≫ ξi,j} with cardinality |Ni,j| = 2N−i+1 + i− 1,
where N is the truncation level. Formally, Ni,j are the neighborhoods of the inter-
val graph induced by ((Si,j : i ∈ {1, 2, . . . , N}, j ∈ {0, 1, . . . , 2i − 1})) with vertices
{(i, j) : i ∈ {1, 2, . . . , N}, j ∈ {0, 1, . . . , 2i−1}}, where there is an edge between (i, j)
and (l, k) if the interior of Si,j∩Sk,l is non-empty (see Figure A.1). The factorization
of the partial derivatives leads to a specific dependency structure of the coefficients
under the target diffusion bridge measure: the coefficient ξi,j is conditionally inde-
pendent of the coefficient ξk,l if Si,j ∩ Sk,l = ∅ conditionally on the set of common
ancestors (ξm,n : ξm,n ≪ ξi,j ∧ ξm,n ≪ ξk,l). This argument is made more formal by
decomposing the likelihood function in Appendix A.1.

2.5 Numerical results
We show numerical results for three representative examples. In general, when
applying our method, we start from a model (2.1), devise a representation of the
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0 T

S3,0 S3,1 S3,2 S3,3 S3,4 S3,5 S3,6 S3,7

S2,0 S2,1 S2,2 S2,3

S1,0 S1,1

S0,0

Figure 2.4: Support of the Faber-Schauder functions (ϕi,j : i ∈ {0, 1, . . . , N}, j =
{0, 1, . . . , 2i−1} with N = 3. The coefficient ξi,j is independent of the coefficient ξk,l
conditionally on the set of common ancestors (ξm,n : Sm,n∩Si,j ̸= ∅∧Sm,n∩Sk,l ̸= ∅)
if Si,j ∩ Sk,l = ∅.

approximate diffusion bridge (2.12), that we sample using generic implementations
of algorithms 1-4 from our package, which are easily adapted to the task of sampling
the coefficients of the Faber-Schauder expansion. To this end, we provide the k-th
partial derivative of the energy function (2.16) or an upper bound to the Poisson
rate (2.18) as argument for the sampler, as well as the sets Ni,j as given in Section
2.4.4. The reader is referred to the file faberschauder.jl in the public repository
https://github.com/SebaGraz/ZZDiffusionBridge/src for the implementation
of the expansion and for the generic implementation of the different variants of the
Zig-Zag sampler to our package (Schauer and Grazzi 2021).

The first class of diffusion processes considered are diffusions with linear drift
function (Subsection 2.5.1). This is a special case, where our method does not require
the subsampling technique described in Subsection 2.4.1 and only Algorithm 3 has
been employed. Notice that for this class, the transition kernel of the conditioned
process is known. In Subsection 2.5.2, we apply our method for diffusions which
substantially differ from Brownian motions, being highly non-linear and multimodal
and therefore creating challenging bridge distributions for standard MCMC. Here
we use the the fully local algorithm (Algorithm 4). In the specific example consid-
ered, the implementation of the Zig-Zag sampler is facilitated by the drift function
and its derivatives being bounded and therefore a bounded Poisson rate for the sub-
sampling technique is available. In view of this, we choose for the third numerical
experiment a diffusion with unbounded drift (Subsection 2.5.3). For all the models,
Assumptions 2.3.1, 2.3.4 and 2.4.2 are immediate to verify and Assumption 2.4.1 is
satisfied. For each experiment, the burn-in τburn-in and final clock τfinal are manually
tuned by inspecting the trace of ξN and ensuring that the process reached station-

https://github.com/SebaGraz/ZZDiffusionBridge/src
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arity before τburn-in and fully explore the state space before the final clock τfinal. The
computations are performed with a conventional laptop with a 1.8GHz intel core i7-
8550U processor and 8GB DDR4 RAM. We wrote the program in Julia 1.4.2 which
allows profiling and optimizing the code for high performance. The program is pub-
licly available on GitHub at https://github.com/SebaGraz/ZZDiffusionBridge
where the reader can follow the documentation to reproduce the results.

2.5.1 Linear diffusions

A linear stochastic differential equation conditioned to hit a final point vT has the
form

dXt = (α + βXt)dt+ dWt, X0 = u,XT = vT (2.19)

for some (α, β) ∈ R2. Assumptions 2.3.1, 2.3.4 and 2.4.2 can be easily verified. In
this case the energy function of the target distribution is

ψ(ξN) = C1−ln(ZN(X))+
∥ξN∥2

2
= C2+

1

2

∫ T

0

(
β2
(
XξN

t

)2
+ 2αβXξN

t

)
dt+
∥ξN∥2

2
,

for some constant C1, C2. Note that ψ is a quadratic function of ξ, which means
that the target density is still Gaussian under Pu,vTN . It follows that

∂ξkψ(ξ
N) =

∫
t∈Sk

ϕk(t)

(
β2

(
¯̄ϕ(t)u+ ϕ̄(t)vT/

√
T +

∑
j∈Nk

ϕjξj

)
+ αβ)

)
dt+ ξk.

Interchanging the integral and the sum, this becomes

∂ξkψ(ξ
N) = β2

(
¯̄Φku+ Φ̄kvT/

√
T +

∑
j∈Nk

Φjkξj

)
+ αβΦk + ξk,

where Φk =
∫
ϕkdt, Φjk =

∫
ϕkϕjdt, Φ̄k =

∫
ϕ̄ϕkdt and ¯̄Φ =

∫ ¯̄ϕϕkdt. This is a
linear function of ξN and, for each i, the event times with rates λi, see (2.6), can
be directly simulated without upper bounds. Figure 2.5 shows samples from the
resulting diffusion bridge measure with α = −5, β = −1 obtained with this method
running the Zig-Zag sampler for τfinal = 1000, with a burn-in time of τburn-in = 10.
The closed form of the expansion of linear processes, or more generally, reciprocal
linear processes, with the Faber-Schauder basis was also found and used in Meulen,
Schauer, and Waaij (2018) for the problem of nonparametric drift estimation of
diffusion processes. The results are validated by computing analytically the density
of the random variable XT/2 (which, for the linear case, is known in close form) and
comparing this with its empirical density obtained from one sample of the Zig-Zag
process (see Figure 2.7, left panel).

https://github.com/SebaGraz/ZZDiffusionBridge
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Figure 2.5: Simulation of the diffusion bridge measure (100 samples) given by equa-
tion (2.19) starting at−1.0 and conditioned to hit 2.0 at T = 10. α = −5.0, β = −1.0
which is equivalent to a mean reverting process with mean reversion at x = −5
(straight line). The truncation level is N = 6, final clock τfinal = 1000 and burn-in
τburn-in = 10.

2.5.2 Non-linear multi-modal diffusions

The stochastic differential equation considered here has the form

dXt = α sin(Xt)dt+ dWt, X0 = u,XT = vT (2.20)

for some α ≥ 0. When α = 0 the process is a standard Brownian motion while
for positive α, the process is attracted to its stable points (2k − 1)π, k ∈ N. As-
sumption 2.3.1, 2.3.4, 2.4.2 follow from drift, its primitive and its derivative being
globally bounded. Fixing N , the energy function is given by

ψ(ξN) =
α

2

∫ T

0

(
α sin2(XξN

t ) + cos(XξN

t )
)
dt+

∥ξN∥2

2
.

Using trigonometric identities, we obtain that

∂ξkψ(ξ
N) =

1

2

∫
Sk

ϕk(t)
(
α2 sin

(
2XξN ,k

t

)
− α sin

(
XξN ,k
t

))
dt+ ξk
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where XξN ,k
t := ¯̄ϕ(t)u + ϕ̄(t)vT/

√
T +

∑
j∈Nk

ϕj(t)ξj. To avoid the need to find the
roots of equation (2.7) we apply the subsampling technique described in Subsec-
tion 2.4.1. Since the drift and its derivatives are bounded, we can easily find the
following upper bound for (2.14):

λ̄k(t) = |θk|a1 + (θkξk(t))
+, (2.21)

with a1 = Φ̄kSk(α
2+α)/2, Φ̄k = max(ϕk) and ξk(t) = ξk+θkt. In this case, the upper

bound λ̄i is a function only of the coefficient ξi. Figure 2.6 shows the results obtained
with this method setting α = 0.7. For this diffusion, the non-linearity and multiple
modes make the mixing of the Zig-Zag sampler slower so we set τfinal = 10000 and
burn-in τburn-in = 10.

Figure 2.6: Simulation of the diffusion bridge measure (200 samples) given by equa-
tion (2.20) with α = 0.7 starting at −π at time 0 and hitting 3π at T = 50.
Truncation level N = 6, final clock τfinal = 10000 and burn-in 10. The straight
horizontal lines are the attraction points of the process.

Analysing the goodness of the empirical diffusion bridge distribution obtained is
a difficult task since the true conditional distribution is not known in a tractable
form. We start by checking if some geometrical properties of the diffusion bridge
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distributions are preserved in the simulations. For example, in Figure 2.6, it can
be noticed that the diffusion is attracted to the stable points ±π,±3π, ..., and sym-
metric (geometrically speaking, after rotation) around the vertical axes t = T/2.
We furthermore validate our method by simulating forward diffusion processes, us-
ing Euler discretization in a fine grid, and retaining only the paths which end in
a ϵ-ball of a certain point at time T (ϵ-ball forward simulation). If the final point
is such that the probability of ending in this ϵ-ball is high enough, we can create
in this way a sample from the approximated bridge and compare it to the samples
obtained from the Zig-Zag. The right panel of Figure 2.7 shows the joint empirical
distribution with the two methods of the first quarter and third quarter random
variables. Finally, Figure 2.8 illustrates that the marginal distribution of the coeffi-
cients in higher levels is approximately Gaussian and the non-linearity of the process
is absorbed by the coefficients in low levels.

Figure 2.7: On the left panel: comparison between empirical distribution (blue line,
computed with a kernel estimator) and the exact distribution (red line) of the mid-
point random variable X5 for the linear diffusion (equation 2.19) with a = −5 and
b = −1. The empirical distribution has been extracted from the same experiment
shown in Figure 2.5. On the right panel: comparison between the joint distribution
of the variables XT/4 and X3T/4 of the process given in equation (2.20) starting at
−π and hitting π at T = 50. The scatter plot with red dots are obtained with
ϵ-ball Euler simulation with ϵ = 0.1 and discretization ∆t = 0.0005 while the blue
continuous path is the Zig-Zag path.

2.5.3 Diffusions with unbounded drift

Here we consider stochastic exponential logistic models. For this class, the process
grows exponentially with rate r until it reaches its saturation point K. Its dynamics
are perturbed by noise which grows as the population grows. The resulting stochastic
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Figure 2.8: Q-Q (quantile-quantile) plot against standard normal distributions of
the sample path of 7 coefficients respectively at level 0, 1, 2, 3, 4, 5, 6 targeting the
conditional bridge measure given by equation (2.20) with α = 0.7 and initial point
u = 0 and final point v = 0 at T = 100. On the bottom right panel, the heatmap
of the absolute value of the sample correlation between the coefficients at different
levels. The blue straight lines correspond to the marginal measures of the coefficients
relatively to a Brownian bridge.

differential equation takes the form

dYt = rYt(1− Yt/K)dt+ βYtdWt, X0 = u > 0, XT = vT > 0. (2.22)

We can transform the process in order to get a new process with unitary diffusivity
σ = 1 (Lamperti transform with Xt = − log(Yt)/β). The transformed differential
equation becomes

dXt = (c1 + c2e
−βXt)dt+ dWt, X0 = − log(u)/β, XT = − log(v)/β.

with c1 = β/2 − r/β and c2 = r/(βK). Note that the drift function b of the trans-
formed process is not global Lipschitz continuous. Nevertheless Assumptions 2.3.4
and 2.4.2 are satisfied and by Remark 2.3.9, also Assumption 2.3.1 is verified. In
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this case, the partial derivative of the energy function is given by

∂kψ(ξ
N) =

1

2

∫
Sk

ϕk(s)

(
a1e

−βXξN

s − a2e−2βXξN

s

)
ds+ ξk,

where a1 = 2r2/(βK), a2 = a1/K. As before, it is not possible to simulate directly
the first event time using the Poisson rates given by equation (2.6). The subsampling
technique requires an upper bound for the unbiased estimator (2.14). Define the
following quantities

b
(1)
k := inf

s∈Sk

{
¯̄ϕ(s)u0 + ϕ̄(s)vT/

√
T +

∑
i∈Nk

ϕi(s)ξi

}
, b

(2)
k := inf

s∈Sk

{∑
i∈Nk

ϕi(s)θi

}
.

For any a, b, c ∈ R, (a+ b+ c)+ ≤ (a)++(b)++(c)+ and hence a valid upper bound
for the Poisson rate (2.14) is given by

λ̄k(t) = λ
(1)
k (t) + λ

(2)
k (t) + λ

(3)
k (t) (2.23)

with
λ
(1)
k (t) = max (0, θkξk(t)) ,

λ
(2)
k (t) = max

(
0,

1

2
θkϕ̄kSkz

(1)
k e−β

⋆
k t

)
,

λ
(3)
k (t) = max

(
0,−1

2
θkϕ̄kSkz

(2)
k e2β

⋆
k t

)
and

z
(1)
k = a1 exp(−βb(1)k ), z

(2)
k = z

(1)
k exp(−βb(1)k ), β⋆k = −βb

(2)
k , ϕ̄i = max

s
ϕi(s).

Using the superposition theorem (see for example Grimmett and Stirzaker 2001),
we can simulate a waiting time with Poisson rate (2.23) by means of simulating
three waiting times according to the Poisson rates λ(1)k , λ

(2)
k , λ

(3)
k and then take the

minimum of the three realizations. Since at any time t > 0, either λ(2)k (t) or λ(3)k (t) is
0, we just need to evaluate two waiting times. Figure 2.9 shows the results obtained
with our method for this process. The final clock of the Zig-Zag sampler is set to
T ⋆ = 1000 and initial burn-in time τburn-in = 10.

2.5.4 Numerical comparisons

In this section we benchmark the fully local Zig-Zag sampler against the Metropolis-
adjusted Langevin algorithm (MALA) (Roberts and Tweedie 1996), Hamiltonian
Monte Carlo (HMC) (Duane et al. 1987) and another well known PDMP, the Bouncy
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Figure 2.9: Simulation of the diffusion bridge measure (100 samples) given by the
logistic growth model (equation (2.22)) with parameters K = 2000, r = 0.08, β =
0.1, starting at the value 50 and hitting 1000 at time 200. Truncation level N = 6,
final clock τfinal = 1000 and burn-in τburn-in = 10 . The blue smooth line is the
solution of the deterministic logistic model without final condition.

particle sampler (Bouchard-Côté, Vollmer, and Doucet 2018). The Bouncy Particle
sampler can use the exact subsampling technique in a very similar way as explained
in Subsection 2.4.1. According to the scaling limit results obtained in Bierkens, Ka-
matani, and Roberts (2018), the Zig-Zag is more efficient compared to the Bouncy
Particle sampler in a high dimensional setting when the conditional dependency
graph corresponding to the target measure exhibits sparsity (which clearly is the
case here). The MALA sampler is a well known discrete-time Markov chain Monte
Carlo method which performs informed updates through the gradient of the target
distribution. HMC is considered a state-of-the-art algorithm. In contrast to PDMPs,
for HMC and MALA the gradient needs to be fully evaluated and no subsampling
methods can be exploited. Thus, the integral in (2.16) needs to be computed nu-
merically, introducing bias. Furthermore, contrary to PDMPs, the resulting Markov
chain is reversible. We study the performance of the samplers for the stochastic dif-
ferential equation (2.20) with u, v = 0 and the time horizon T = 100 and we let
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α vary. As α increases, the target distribution on the coefficients presents higher
peaks and valleys and is therefore a challenging distribution for general Markov
chain Monte Carlo methods. We fix the refreshment rate of the Bouncy Particle
sampler to 1 to avoid a degenerate behaviour and implement the MALA algorithm
with adaptive step size over 250,000 iterations. We used the automatically tuned
dynamic integration time HMC Algorithm (Betancourt 2018) with 3, 000 iterations
and with diagonal mass matrix and integrator step size both adaptively tuned in a
warm-up phase of 2, 000 iterations, with the latter adapted using a dual-averaging
algorithm (Hoffman and Gelman 2014) with target acceptance statistic of 0.8. The
algorithm is provided in the package AdvancedHMC.jl (Ge, Xu, and Ghahramani
2018). The integral appearing in the gradient of the energy function is computed
for the MALA sampler and for the HMC sampler numerically with a simple Euler
integration scheme over 2N+1 points, where N is the truncation level which is fixed
to 6 for all the experiments. The final clock for the PDMPs is T ′ = 25, 000. We also
include the numerical results of two variants of the Zig-Zag sampler:

(ZZv1) where the partial derivative in (2.16) is estimated by averaging over multiple
independent realizations of (2.17), with the number of realizations is propor-
tional to the length of the range of the integral in (2.16);

(ZZv2) where the partial derivative in (2.16) is estimated by decomposing the range
of the integral into N subintervals (with N proportional to the length of the
range of the integral) and evaluating the integrand at a random point drawn
inside each subinterval.

These variants of the Zig-Zag have been proposed after noticing that the coeffi-
cients at low levels are the ones deviating the most from normality and the partial
derivative with respect to those coefficients have larger support. This suggests that
refining the estimates of the partial derivative of the energy function only with re-
spect to those coefficients can be beneficial and improve the performances of the
PDMPs. Figure 2.10 shows the results obtained. The fully local Zig-Zag and its
variants always outperform the Bouncy Particle sampler, the MALA and the HMC
with respect to the statistics considered, namely the mean, median and minimum
of the effective sample size computed for each coefficient of the Faber-Schauder ex-
pansion and the effective sample size of the coefficient ξ0,0, which gives the middle
point XT/2 and, as shown in Figure 2.10, is one of the most difficult coefficients to
sample.

2.6 Extensions
In this section we briefly sketch the extension of the approach presented in Sec-
tion 2.3 to a class of multi-dimensional diffusion bridges. Then we study the scaling
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Figure 2.10: Performance comparison of the fully local Zig-ZaZ (ZZ), its variants
(ZZv1 and ZZv2), the Bouncy Particle sampler with Subsampling (refreshment rate
set to 1), MALA and HMC sampler. The performance measure considered here
are respectively the effective sample size (ESS) of the middle point XT/2, the me-
dian and the minimum of the ESS over the dimension of the coefficients of the
expansion. The target diffusion bridge with drift b(x) = α sin(x) with u, v = 0
and T = 50 and truncation level N = 6. The final clock for the PDMPs is set to
T ′ = 25000, the number of iterations for the MALA is set to be 250000 with adap-
tive time step targeting the acceptance rate 0.6 (Roberts and Rosenthal 1998) and
the number of iteration for the HMC is 3000 with the algorithm fine-tuned by the
package AdvancedHMC.jl. All the quantities are normalized by the runtime of exe-
cution. The asymptotic variance estimate used for computing the ESS is obtained
using batch means. Notice that, while the subsampling technique adopted for the
piecewise deterministic Monte Carlo methods does not introduce bias on the target
distribution, the numerical integration adopted for the MALA and HMC samplers
introduces bias on the target distribution.

properties of the algorithm with respect to three quantities: the time horizon of the
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diffusion bridge T , the truncation level N and the dimensionality of the diffusion
bridge d.

2.6.1 Multivariate diffusion bridge

Consider a d-dimensional diffusion bridge given the stochastic differential equation

dXt = ∇B(Xt)dt+ dWt, X0 = u,XT = vT , u, vT ∈ Rd,

where (Wt)t≥0 is a d-dimensional Wiener process and∇B : Rd 7→ Rd is a conservative
vector field, i.e. the gradient of some scalar-valued function B. Denote its law by
Pu,vT . Similarly to equation (2.10), under mild assumption on ∇B(Xt), we can write
the change of measure between Pu,vT and the standard d dimensional Wiener bridge
measure Qu,vT as

dPu,vT
dQu,vT

(X) = C exp

{
B(XT )−B(X0)−

1

2

∫ T

0

∥b(Xt)∥2 +∆B(Xt) dt

}
,

where b = ∇B, ∆B is the Laplacian of B and C is a normalization constant
which depends on u, vT and T . It is straightforward to derive an equivalent ap-
proximated measure as done in equation (2.12) and prove Theorem 2.3.11 in the
multi-dimensional setting. In this case the d dimensional diffusion bridge measure
is approximated by the same truncated expansion of equation (2.2) with coefficients
ξi,j, i = 0, ..., N ; j = 0, ..., 2N which now are d dimensional random vectors. The
total dimensionality of the target density for diffusion bridges becomes d(2N+1 − 1)
. Similarly to the one dimensional case, Proposition A.1.1 holds (the proof follows
in a similar fashion of the proof of Proposition A.1.1 and is omitted for brevity).
The Poisson rates λki,j (where, k ∈ {1, ..., d} defines the coordinate of the d dimen-
sional process) are functions of the sets Nk

i,j which have maximum admissible size
|Nk

i,j| = d(2N−i+1 + i− 1) ≤ d(2N+1 − 1) so that Assumption 2.4.1 holds.

2.6.2 Scaling for large T,N, d

The following scaling analysis serves as preliminary work for future explorations.
The expected run time of the fully local Zig-Zag sampler (Algorithm 4) is intimately
related with the number of Poisson event times for a fixed final clock τfinal and the
conditional independence structure appearing in the target measure. The former
is determined by the size of the Poisson bounding rates λ̄1, ..., λ̄M while the latter
is defined by the sets N1, ..., NM and determine the complexity of the local step of
Algorithm 3.

Remark 2.6.1. For a fixed position and velocity, the Poisson bounding rates used
in the Zig-Zag sampler with subsampling (Algorithm 2) for diffusion bridges are of
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the form λ̄i,j = C1T
3/22−3i/2 + C2, i = 0, 1, ..., N ; j = 0, 1, ..., 2i − 1, for some terms

C1 and C2 which do not depend on i and T .

Proof. For every i = 0, 1, ..., N ; j = 0, 1, ..., 2i − 1, the time horizon T and scaling
index i enter in the bounding rates of (2.18) through the terms Si,j and ϕ̄i,j. The
first term is of O(T2−i) and the second one is of O(

√
T2−i/2).

Proposition 2.6.1 helps understanding how the complexity of the algorithm scales
as T grows and as the truncation level N grows. As T grows, the Poisson rates
increase with order T 3/2 so that the total number of Poisson events for a fixed
Zig-Zag clock increases with the same order.

Furthermore, as the truncation level N grows, the change of measure affects less
and less the coefficients in high levels and the partial derivative of the energy function
goes to zero with rate 2−3N/2) implying that the for large N , λ̄N,j ≈ C2 = (ξN,jθN,j)

+

(which is the Poisson rate for the Brownian bridge). As a consequence, the Poisson
processes of the coefficients in high levels (i large) will be approximately independent
with all the other coefficients and not function of the level i so that the complexity
of Algorithm 4 scales approximately linearly with the number of mesh points. This
is opposed to the standard Zig-Zag algorithm (Algorithm 1) which does not take
advantage of the approximate independence of the coefficients in high levels so that
the 2N+1−1 waiting times have to be renovated at every reflection of each coefficient.

The scaling result under mesh refinement (when N grows) is unsatisfactory as
the algorithm deteriorates when the resolution of the path increases. A partial
solution can be obtained by letting the absolute value of the marginal velocities |θN,j|
decrease as N increases. This would enhance the scaling property of the algorithm
under mesh refinement at the cost of a slow mixing of high level components. An
alternative solution is considered in Bierkens et al. (2020) where the authors enhance
the scaling property of the algorithm by replacing the Zig-Zag algorithm with the
Factorised Boomerang sampler. The Factorised Boomerang sampler differs form the
Zig-Zag by having curved trajectories which are invariant to a prescribed Gaussian
measure. This allows the process to sample from the Gaussian measure (Brownian
bridge measure) at barely no cost. However, the main drawback of the factorized
Boomerang sampler is the current limiting techniques for simulating Poisson times
given the curved trajectories which lead to Poisson upper bounds which are not
tight.

Finally, when the dimensionality of the diffusion bridge is d ≫ 1, both the
dimensionality of the target density of the Zig-Zag sampler and the sets Nk

i,j for
i = 0, ..., N ; j = 0, ..., 2i − 1; k = 1, ..., d grow linearly with d so that, in general,
we expect the computational time to grow with rate d2. When the drift of the
multidimensional bridge presents a sparse structure, i.e. not all coordinates of the
differential equation interact directly with each other, as common in the high di-
mensional case arising from discretized stochastic partial differential equations (e.g.
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Mider, Schauer, and Meulen 2020, Section 6), the size of those sets reduces consid-
erably until the extreme case of d independent diffusion bridges where the sets Nk

i,j

are not anymore a function of d and clearly the complexity grows linearly with the
dimensionality d.

2.7 Conclusions

In this paper we have introduced a new method for the simulation of diffusion bridges
which substantially differs from existing methods by using the Zig-Zag sampler and
the basis of representation adopted. We motivated both choices and presented the
method and its implementation. The resulting simulated bridge measures are shown
to be close to the real measures, even for low dimensional approximations and bridges
which are highly non-linear. We took advantage of the subsampling technique and
a local version of the Zig-Zag to sample high dimensional approximation to condi-
tional measures of diffusions with intractable transition densities. The subsampling
technique is a key property in favour of using piecewise deterministic Monte Carlo
methods for diffusion bridges (and whenever the target measure is expressed as an
integral that requires numerical evaluation). However, the main limitation found
for these methods is that they rely on upper bounds of the Poisson rates which are
model-specific. Upper bounds for PDMC are easily derived in situations where the
log-likelihood has a bounded Hessian. In our setting this means that we wish for
the function b2(x) − b′(x) to have bounded second derivative. In other cases, tai-
lor made bounds need to be derived which can be substantially more complicated.
Furthermore, the performance of these samplers can be affected if the upper bounds
are too large.

In conclusion, this is the first time (to our knowledge) the Zig-Zag has been
employed in a high dimensional practical setting. We claim that the promising
results will open research toward applications of the Zig-Zag for high dimensional
problems. We mention below some possible extensions of the methodology proposed
which are left for future research:

(a) The hierarchical structure of the Faber-Schauder basis suggests that the Zig-
Zag should explore the space at different velocities to achieve optimal perfor-
mance. Unfortunately, it is not immediately clear how to tune the velocity
vector;

(b) In Section 2.6 we anticipated the possibility to simulate multidimensional dif-
fusion bridges. In order to generalize the results presented in this paper, we
assumed the drift being a conservative vector field. In order to relax this
limiting assumption, new convergence results have to be derived which deal
explicitly with the stochastic integral appearing in equation (2.8).
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(c) The driving motivation for proposing this methodology is to perform param-
eter estimation of a discretely observed diffusion model. For this purpose,
the Zig-Zag sampler runs jointly on the augmented path space given by the
coefficients ξ and the parameter space Θ.
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Algorithm 4 Implementation of the d-dimensional fully local Zig-Zag sampler
Input : The bounds λ̄i depend only on ξk, θk, for k ∈ N̄i and the random Poisson
rates λ̃i (eq. (2.14)) depends only on Ui (the randomizing argument of ∂̃iψ) and
ξk, θk for k ∈ Ñi(Ui)
procedure ZigZag_fully_local(τfinal, ξ, θ)

Initialise: k = 1, t = 0 ∈ Rd, τ ∗ = 0
τj ∼ IPP(λ̄j(·; ξ, θ)), j = 1, ..., d
while max(t) ≤ τfinal do

τ oldi∗ ← τ ∗, ξoldi∗ ← ξi∗
τ ∗, i∗ ← findmin(τ1, ..., τd)
Ui∗ ∼ Law(Ui∗)

for j in N̄i∗ ∪ Ñi∗(Ui∗) do
Update: ξj ← ξj + θj(τ

∗ − tj)
Update: tj ← τ ∗

end for
V ∼ Unif(0, 1)

if V ≤ λ̃i∗(0; ξ, θ;Ui∗)/λ̄i∗(τ
∗ − τ oldi∗ ; ξold, θ) then

Update: θi∗ ← −θi∗
Update: k ← k + 1
Save: i(k) ← i∗, s(k) ← τ ∗, ξ(k) ← ξi∗

for n in
(⋃

j∈N̄i∗
N̄j

)
\
(
N̄i∗ ∪ Ñi∗(Ui∗)

)
do

Update: ξn ← ξn + θn(τ
∗ − tn)

Update: tn ← τ ∗

end for
for j in N̄i∗\{i∗} do

τj ∼ τ ∗ + IPP(λ̄j(·; ξ, θ))
τ oldj ← τ ∗, ξoldj ← ξj

end for
end if
τi∗ ∼ τ ∗ + IPP(λ̄i∗(·; ξ, θ))

end while
return reflection tuples ((i(l), s(l), ξ(l)))l=1,...,k

end procedure



Chapter 3

The Boomerang sampler

3.1 Introduction

Markov chain Monte Carlo remains the gold standard for asymptotically exact (ie
bias-free) Bayesian inference for complex problems in Statistics and Machine Learn-
ing; see for example Brooks et al. 2011. Yet a major impediment to its routine
implementation for large data sets is the need to evaluate the target density (and
possibly other related functionals) at each algorithm iteration.

Partly motivated by this, in recent years there has been a surge in the devel-
opment of innovative piecewise deterministic Monte Carlo methods (PDMC, most
notably the Bouncy Particle Sampler (BPS) Bouchard-Côté, Vollmer, and Doucet
2018 and the Zig-Zag Sampler (ZZ) Bierkens, Fearnhead, and Roberts 2019), as a
competitor for classical MCMC algorithms such as Metropolis-Hastings and Gibbs
sampling. We refer to Fearnhead et al. 2018 for an accessible introduction to the
PDMC setting. The primary benefits of these methods are the possibility of exact
subsampling and non-reversibility. Exact subsampling refers to the possibility of
using only a subset of the full data set (or even just a single observation) at each
iteration of the algorithm, without introducing bias in the output of the algorithm
Fearnhead et al. 2018. Non-reversibility is a property of MCMC algorithms related
to a notion of direction of the algorithm, reducing the number of backtracking steps,
thus reducing the diffusivity of the algorithm and reducing the asymptotic variance;
as analyzed e.g. in Diaconis, Holmes, and Neal 2000; Andrieu and Livingstone 2019.

The current key proponents BPS and ZZ of the PDMC paradigm share the
following description of their dynamics. The process moves continuously in time
according to a constant velocity over random time intervals, which are separated
by ‘switching events’. These switching events occur at stochastic times at which
the velocity, or a component of it, is either reflected, or randomly refreshed. The
direction of a reflection, and the random time at which it occurs, is influenced by
the target probability distribution.

53
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In this paper we explore the effect of modifying the property of constant velocity.
By doing so we introduce the Boomerang Sampler which has dynamics of the simple
form dx

dt
= v, dv

dt
= −x. Similar ideas were introduced in Vanetti et al. 2017 and

termed Hamiltonian-BPS, a method which can be seen as a special case of our
approach. We generalise the Hamiltonian-BPS algorithm in three important ways.

1. We relax a condition which restricts the covariance function of the auxiliary
velocity process to be isotropic. This generalisation is crucial to ensure good
convergence properties of the algorithm.

2. Furthermore we extend the Boomerang Sampler to allow for exact subsampling
(as introduced above), thus permitting its application efficiently for large data
sets.

3. We also introduce a factorised extension of the sampler which has important
computational advantages in the common situation where the statistical model
exhibits suitable conditional dependence structure.

Our method also has echoes of the elliptical slice sampler Murray, Adams, and
MacKay 2010 which has been a successful discrete-time MCMC method especially
within machine learning applications. Both methods are strongly motivated by
Hamiltonian dynamics although there are also major differences in the two ap-
proaches. Finally we mention some other PDMP methods with non-linear dynamics
such as Randomized HMC Bou-Rabee and Sanz-Serna 2017; Deligiannidis, Paulin,
and Doucet 2018, and others Markovic and Sepehri 2018; Terenin and Thorngren
2018.

We shall study the Boomerang Sampler and two subsampling alternatives the-
oretically by analysing the interaction of Bayesian posterior contraction, data size
(n) and subsampling schemes in the regular (smooth density) case. We shall show
that no matter the rate of posterior contraction, a suitably constructed subsampled
Boomerang sampler achieves an O(n) advantage over non-subsampled algorithms.

At the same time, we show that for the (non-subsampled) Boomerang Sampler,
the number of switching events, and thus the computational cost, can be reduced
by factor O(1/d) (where d is the number of dimensions) relative to other piecewise
deterministic methods, thanks to the deterministic Hamiltonian dynamics of the
Boomerang Sampler.

We illustrate these analyses with empirical investigations in which we compare
the properties of Boomerang samplers against other PDMC benchmarks demon-
strating the superiority of subsampled Boomerang for sufficiently large data size for
any fixed dimension in the setting of logistic regression. We shall also give an em-
pirical study to compare the Boomerang Sampler with its competitors as dimension
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increases. Finally, as a potentially very useful application we describe the simula-
tion of diffusion bridges using the Factorised Boomerang Sampler, demonstrating
substantial computational advantages compared to its natural alternatives.

Notation

For a ∈ Rd and Σ a positive definite matrix in Rd×d we write N (a,Σ) for the
Gaussian distribution in Rd with mean a and covariance matrix Σ. Let ⟨·, ·⟩ denote
the Euclidean inner product in Rd. We write (a)+ := max(a, 0) for the positive part
of a ∈ R, and we write ⟨·, ·⟩+ := (⟨·, ·⟩)+ for the positive part of the inner product.

3.2 The Boomerang Sampler

The Boomerang Sampler is a continuous time, piecewise deterministic Markov pro-
cess (PDMP) with state space S = Rd × Rd. The two copies of Rd will be referred
to as the position space and the velocity space, respectively. Our primary interest is
in sampling the position coordinate, for which the auxiliary velocity coordinate is a
useful tool for us.

Let µ0 denote a Gaussian measure on S specified by µ0 = N (x⋆,Σ)⊗N (0,Σ),
where Σ is a positive definite matrix in Rd×d. Often we take x⋆ = 0 to shorten
expressions, which can be done without loss of generality by a shift in the position
coordinate. The measure µ0 will be referred to as the reference measure. The
Boomerang Sampler is designed in such a way that it has stationary probability
distribution µ with density exp(−U(x)) relative to µ0. Equivalently, it has density

exp
(
−U(x)− 1

2
(x− x⋆)

⊤Σ−1(x− x⋆)− 1
2
v⊤Σ−1v

)
relative to the Lebesgue measure dx⊗ dv on Rd×Rd. We assume that this density
has a finite integral. The marginal distribution of µ with respect to x is denoted by
Π.

The Boomerang process moves along deterministic trajectories (xt,vt) ∈ Rd×Rd

which change direction at random times. The deterministic trajectories satisfy the
following simple ordinary differential equation:

dxt
dt

= vt,
dvt
dt

= −(xt − x⋆), (3.1)

with explicit solution xt = x⋆+(x0−x⋆) cos(t)+v0 sin(t), vt = −(x0−x⋆) sin(t)+
v0 cos(t). Note that (x,v) 7→ ⟨x − x⋆,Q(x − x⋆)⟩ + ⟨v,Qv⟩ is invariant with
respect to the flow of (3.1) for any symmetric matrix Q. In particular the flow
of (3.1) preserves the Gaussian measure µ0 on S.
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Given an initial position (x0,v0) ∈ S, the process moves according to the motion
specified by (3.1), resulting in a trajectory (xt,vt)t≥0, until the first event occurs.
The distribution of the first reflection event time T is specified by

P(T ≥ t) = exp

(
−
∫ t

0

λ(xs,vs) ds

)
,

where λ : S → [0,∞) is the event rate and is specified as

λ(x,v) = ⟨v,∇U(x)⟩+. (3.2)

For x ∈ Rd we define the contour reflection R(x) to be the linear operator from Rd

to Rd given, for (x,v) ∈ S, by

R(x)v = v − 2⟨∇U(x),v⟩
|Σ1/2∇U(x)|2

Σ∇U(x). (3.3)

Importantly the reflection satisfies

⟨R(x)v,∇U(x)⟩ = −⟨v,∇U(x)⟩ (3.4)

and
|Σ−1/2R(x)v| = |Σ−1/2v|, (3.5)

which are key in establishing that the resulting Boomerang Sampler has the correct
stationary distribution.

At the random time T at which a switch occurs, we put vT := R(xT−)vT−,
where we use the notation yt− := lims↑t ys. The process then starts afresh according
to the dynamics (3.1) from the new position (xT ,vT ). Additionally, at random
times generated by a homogeneous Poisson process with rate λrefr > 0 the velocity is
refreshed, i.e. at such a random time T we independently draw vT ∼ N (0,Σ). This
additional input of randomness guarantees that the Boomerang Sampler can visit the
full state space and is therefore ergodic, as is the case for e.g. BPS Bouchard-Côté,
Vollmer, and Doucet 2018.

In Section 1 of the Supplement we define the generator of the Boomerang Sam-
pler, which can in particular be used to prove that µ is a stationary distribution for
the Boomerang process, and which can be used in subsequent studies to understand
its probabilistic properties.

Remark 3.2.1 (On the choice of the reference measure). In principle we can express
any probability distribution Π(dx) ∝ exp(−E(x)) dx as a density relative to µ0 by
defining

U(x) = E(x)− 1
2
(x− x⋆)

⊤Σ−1(x− x⋆). (3.6)
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As mentioned before we can take µ0 to be identical to a Gaussian prior measure in
the Bayesian setting. Alternatively, and this is an approach which we will adopt
in this paper, we may choose µ0 to be a Gaussian approximation of the measure Π
which may be obtained at relatively small computational cost in a preconditioning
step.

3.2.1 Factorised Boomerang Sampler

As a variation to the Boomerang Sampler introduced above we introduce the Fac-
torised Boomerang Sampler (FBS), which is designed to perform well in situations
where the conditional dependencies in the target distribution are sparse. For simplic-
ity we restrict to the case with a diagonal reference covariance Σ = diag(σ2

1, . . . , σ
2
d).

The deterministic dynamics of the FBS are identical to those of the standard
Boomerang Sampler, and given by (3.1). The difference is that every component
of the velocity has its own switching intensity. This is fully analogous with the
difference between BPS and ZZ, where the latter can be seen as a factorised Bouncy
Particle Sampler. In the current case, this means that as switching intensity for the
i-th component of the velocity we take

λi(x,v) = (vi∂iU(x))+,

and once an event occurs, the velocity changes according to the operator Fi(v) given
by

Fi(v) =
(
v1, . . . , vi−1,−vi, vi+1, . . . , vd

)⊤
.

Also, the velocity of each component is refreshed according to vi ∼ N (0, σ2
i ) at rate

λrefr,i > 0.
Note that the computation of the reflections has a computational cost of O(1),

compared to the reflections in (3.3) being at least of O(d), depending upon the spar-
sity of Σ. The sparse conditional dependence structure implies that the individual
switching intensities λi(x) are in fact functions of a subset of the components of x,
contributing to a fast computation. This feature can be exploited by an efficient
‘local’ implementation of the FBS algorithm which reduces the number of Poisson
times simulated by the algorithm (similar in spirit to the local Bouncy Particle
Sampler Bouchard-Côté, Vollmer, and Doucet 2018 and the local Zig-Zag sampler
in Bierkens et al. 2021). In Section 3.3.2 we will briefly comment on the dimen-
sional scaling of FBS. As an illustration of a realistic use, FBS will be applied to
the simulation of diffusion bridges in Section 3.4.2.
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3.2.2 Subsampling with control variates

Let E(x) be the energy function, i.e., negative log density of Π with respect to the
Lebesgue measure. Consider the setting where E(x) = 1

n

∑n
i=1E

i(x), as is often
the case in e.g. Bayesian statistics or computational physics. (Let us stress that n
represents a quantity such as the number of interactions or the size of the data, and
not the dimensionality of x, which is instead denoted by d.) Using this structure,
we introduce a subsampling method using the Gaussian reference measure as a tool
for the efficient construction of the Monte Carlo method.

Relative to a Gaussian reference measure with covariance Σ centred at x⋆, the
negative log density is given by (3.6). Let us assume

Σ = [∇2E(x⋆)]
−1 (3.7)

for a reference point x⋆. In words, the curvature of the reference measure will agree
around x⋆ with the curvature of the target distribution. We can think of x⋆ as the
mean or mode of an appropriate Gaussian approximation used for the Boomerang
Sampler. Note however that we shall not require that ∇E(x⋆) = 0 for the sampler
and its subsampling alternatives to work well, although some restrictions will be im-
posed in Section 3.3.1. In this setting it is possible to employ a subsampling method
which is exact, in the sense that it targets the correct stationary distribution. This is
an extension of methodology used for subsampling in other piecewise deterministic
methods, see e.g. Fearnhead et al. 2018 for an overview.

Assume for notational convenience that x⋆ = 0. As an unbiased estimator for
the log density gradient of U we could simply take

∇̃U(x) = ∇EI(x)−∇2E(0)x, (3.8)

where I is a random variable with uniform distribution over {1, . . . , n}. We shall
see in Proposition 3.3.1 that this estimator will lead to weights which increase with
n and therefore we shall consider a control variate alternative.

Therefore also consider the control variate gradient estimator ∇̂U(x) = GI(x),
where, for i = 1, . . . , n,

Gi(x) = ∇Ei(x)−∇2Ei(0)x−∇Ei(0) +∇E(0). (3.9)

Taking the expectation with respect to I,

EI∇̂U(x)

=
1

n

n∑
i=1

{
∇Ei(x)−∇2Ei(0)x−∇Ei(0) +∇E(0)

}
= ∇E(x)−∇2E(0)x = ∇U(x),
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so that ∇̂U(x) is indeed an unbiased estimator for ∇U(x). In Section 3.3 we
shall show that ∇̂U(x) has significantly superior scaling properties for large n than
∇̃U(x).

Remark 3.2.2. In various situations we can find a reference point x⋆ such that
∇E(x⋆) = 0, in which case the final term in (3.9) vanishes. We include the term
here so that it can accommodate the general situation in which ∇E(x⋆) ̸= 0.

Upon reflection, conditional on the random draw I, we reflect according to

RI(x)v = v − 2⟨GI(x),v⟩
|Σ1/2GI(x)|2

ΣGI(x).

The Boomerang Sampler that switches at the random rate λ̂(x,v) = ⟨v, ∇̂U(x)⟩+,
and reflects according to RI will preserve the desired target distribution in analogy
to the argument found in Bierkens, Fearnhead, and Roberts 2019.

3.2.3 Simulation

The implementation of the Boomerang Sampler depends crucially on the ability to
simulate from a nonhomogeneous Poisson process with a prescribed rate. In this
section we will make a few general comments on how to achieve these tasks for the
Boomerang Sampler and for the Subsampled Boomerang Sampler.

Suppose we wish to generate the first event according to a switching intensity
λ(xt,vt) where (xt,vt) satisfy (3.1). This is challenging because it is non-trivial
to generate points according to time inhomogeneous Poisson process, but also the
function λ(xt,vt) may be expensive to evaluate. It is customary in simulation of
PDMPs to employ the technique of Poisson thinning to generate an event according
to a deterministic rate function λ(t) ≥ 0, referred to as computational bound, such
that λ(xt,vt) ≤ λ(t) for all t ≥ 0. The function λ(t) should be suitable in the sense
that we can explicitly simulate T according to the law

P(T ≥ t) = exp

(
−
∫ t

0

λ(s) ds

)
.

After generating T from this distribution, we accept T as a true switching event with
probability λ(xT ,vT )/λ(T ). As a consequence of this procedure, the first time T
that gets accepted in this way is a Poisson event with associated intensity λ(xt,vt).

In this paper we will only consider bounds λ(t) of the form λ(t;x0,v0) =
a(x0,v0)+tb(x0,v0). We will call the bound constant if b(x,v) = 0 for all (x,v), and
affine otherwise. As a simple example, consider the situation in which |∇U(x)| ≤ m
for all x. In this case we have

λ(x,v) = ⟨v,∇U(x)⟩+ ≤ m|v| ≤ m
√
|x|2 + |v|2.
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Since the final expression is invariant under the dynamics (3.1), we find that

λ(xt,vt) ≤ m
√
|x0|2 + |v0|2, t ≥ 0,

which gives us a simple constant bound.
In the case of subsampling the switching intensity λ̂(x,v) is random. Still, the

bound λ(t;x0,v0) needs to be an upper bound for all random realizations of λ̂(x,v).
In the case we use the unbiased gradient estimator ∇̂U(x) = GI of (3.9), we can
bound e.g.

λ̂(x,v) ≤ sup
i,x
|Gi(x)||v| ≤ sup

i,x
|Gi(x)|

√
|x|2 + |v|2,

assuming all gradient estimators Gi are globally bounded. We will introduce differ-
ent bounds in detail in Section 2 of the Supplement.

3.3 Scaling for large data sets and large dimension

3.3.1 Robustness to large n

In this section, we shall investigate the variability of the rates induced by the
Boomerang Sampler and its subsampling options. The size of these rates is re-
lated to the size of the upper bounding rate Poisson process used to simulate them.
Moreover, the rate of the upper bounding Poisson rate is proportional to the number
of density evaluations, which in turn is a sensible surrogate for the computing cost
of running the algorithm.

As in Section 3.2.2, we describe E as a sum of n constituent negative log-
likelihood terms: E(x) = −

∑n
i=1 ℓi(x). (In the notation above we are just setting

ℓi(x) = −nEi(x).) Under suitable regularity conditions, the target probability mea-
sure Π satisfies posterior contraction around x = 0 at the rate η, that is for all ϵ
there exists δ > 0 such that Π(Bn−ηδ(0)) > 1 − ϵ where Br(0) denotes the ball of
radius r centred at 0. As a result of this, we typically have velocities of order n−η

ensuring that the dynamics in (3.1) circles the state space in O(1) time.
The various algorithms will have computational times roughly proportional to

the number of likelihood evaluations, which in turn depends on the event rate (and
its upper bound). Therefore we shall introduce explicitly the subsampling bounce
rates corresponding to the use of the unbiased estimators in (3.8) and (3.9).

λ̃(x,v) = ⟨v, ∇̃U(x)⟩+ ; λ̂(x,v) = ⟨v, ∇̂U(x)⟩+ .

To simplify the arguments below, we also assume that ℓi has all its third derivatives
uniformly bounded, implying that all third derivative terms of E are bounded by a
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constant multiple of n. This allows us to write down the expansion

∇U(x) = ∇E(0) +∇2E(0)x−Σ−1x+O(n|x|2)
= ∇E(x)
= ∇E(0) +O(n|x|2) . (3.10)

Similarly we can write

∇̂U(x) = n∇ℓI(x)− n∇2ℓI(0)x− nℓI(0)
+∇E(0)−Σ−1x

= ∇E(0) +O(n|x|2) . (3.11)

using the same Taylor series expansion.
We can now use this estimate directly to obtain bounds on the event rates. We

summarise this discussion in the following result.

Proposition 3.3.1. Suppose that x, v ∈ Bn−ηδ(0) for some δ, and under the
assumptions described above, we have that

λ(x,v) ≤ O
(
n−η(|∇E(0)|+ n1−2η)

)
(3.12)

λ̃(x,v) ≤ O (|∇E(0)|) +O(n)) (3.13)

λ̂(x,v) ≤ O
(
n−η(|∇E(0)|+ n1−2η)

)
(3.14)

Thus the use of ∇̂U(x) does not result in an increased event rate (in order of
magnitude). There is therefore an O(n) computational advantage obtained from
using subsampling due to each target density valuation being O(n) quicker.

Proposition 3.3.1 shows that as long as the reference point x∗ (chosen to be 0
here for convenience) is chosen to be sufficiently close to the mode so that |∇E(0)|
is at most O(n1−2η), then we have that

λ(x,v) = λ̂(x,v) = O
(
n1−3η

)
.

Note that this rate can go to 0 when η > 1/3. In particular in the regular case
where Bernstein von-Mises theorem holds, we have η = 1/2. In this case the rate
of jumps for the Boomerang can recede to 0 at rate n−1/2 so long as |∇E(0)| is at
most O(1)).

3.3.2 Scaling with dimension

In this section, we will discuss how the Boomerang Sampler has an attractive scaling
property for high dimension. This property is qualitatively similar to the precon-
ditioned Crank-Nicolson algorithm Diaconis, Holmes, and Neal 2000; Beskos et al.
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2008 and the elliptical slice sampler Murray, Adams, and MacKay 2010 which take
advantage of the reference Gaussian distribution.

The dimensional complexity of BPS and ZZ was studied in Bierkens, Kamatani,
and Roberts 2018; Deligiannidis, Paulin, and Doucet 2018; Andrieu et al. 2018. For
the case of an isotropic target distribution, the rate of reflections per unit of time
is constant for BPS and proportional to d for ZZ with unit speeds in all directions.
On the other hand, the time until convergence is of order d for the BPS and 1 for
ZZ. Therefore, the total number of reflections required for convergence of these two
algorithms is of the same order which grows linearly with dimension.

For the Boomerang Sampler we consider the following setting. Consider reference
measures µ0,d(dx, dv) = N (0,Σd)⊗N (0,Σd) for increasing dimension d, where for
every d = 1, 2, . . . , Σd is a d-dimensional positive definite matrix. Relative to these
reference measures we consider a sequence of potential functions Ud(x). Thus rela-
tive to Lebesgue measure our target distribution Πd(dx) has density exp(−Ed(x)),
where Ed(x) = Ud(x) +

1
2
⟨x,Σ−1

d x⟩. Let Ed denote expectation with respect to
Πd(dx)⊗N (0,Σd)(dv). We assume that the sequence (Ud) satisfies

sup
d=1,2,...

Ed[|Σ1/2
d ∇Ud(x)|

2] <∞, (3.15)

The condition (3.15) arises naturally for instance in the context of Gaussian re-
gression, spatial statistics, Bayesian inverse problems as well as the setting of the
diffusion bridge simulation example described in detail in Section 3.4.2.

Furthermore we assume that the following form of the Poincaré inequality holds,

Ed[fd(x)2] ≤
1

C2
Ed[|Σ1/2

d ∇fd(x)|
2] (3.16)

with constant C > 0 independent of dimension, and where fd : Rd → R is any mean
zero differentiable function. A sufficient condition for (3.16) to hold is

C2I ⪯ Σ
1/2
d ∇

2Ed(x)Σ
1/2
d = Σ

1/2
d ∇

2Ud(x)Σ
1/2
d + I

by the classical Brascamp-Lieb inequality Brascamp and Lieb 1976; Bakry, Gentil,
and Ledoux 2014; note that it may also hold in the non-convex case, see e.g. Lorenzi
and Bertoldi 2007, Section 8.6.

Under the stated assumptions we argue that (i) the expected number of reflec-
tions per unit time scales as O(1) with respect to dimension, and (ii) within a
continuous time interval that scales as O(1), the Boomerang Sampler mixes well.
Claims (i) and (ii) are provided with a heuristic motivation in the Supplement. A
rigorous proof for this claim remains part of our future work.

In the ideal but non-sparse scenario, the computational cost of the event time
calculation for the Boomerang Sampler is thus expected to be a factor d smaller
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compared to BPS and ZZ assuming that the cost per event is the same for these
algorithms. However, this comparison is unrealistic since in general we can not
simulate reflections directly. In practice, we need to use the thinning method as
discussed in Section 3.2.3. The thinning method introduces a significant amount
of shadow events (which are rejected after inspection), and the true events usually
represent a small portion relative to the number of shadow events. As a result there
can be a high cost for calculating shadow events even when the number of true
events is small.

For the FBS, the expected number of events per unit of time is
∑d

i=1 Ed[(vi∂iU(x))+].
Under the hypothesis above, this is of O(d1/2). Thus, the number of events is much
bigger than that of the Boomerang. However, as in the case of ZZ, under a sparse
model assumption, the cost of calculation per jump is of constant order whereas it is
of the order of d for the Boomerang Sampler. Therefore, the Factorised Boomerang
Sampler should outperform the Boomerang Sampler for this sparse setup.

3.4 Applications and experiments

3.4.1 Logistic regression

As a suitable test bed we consider the logistic regression inference problem. Given
predictors y(1), . . . ,y(n) in Rd, and outcomes z(1), . . . , z(n) in {0, 1}, we define the
log likelihood function as

ℓ(x) = −
n∑
i=1

{
log(1 + ex

⊤y(i)

)− z(i)x⊤y(i)
}
.

Furthermore we impose a Gaussian prior distribution over x which for simplicity we
keep fixed to be a standard normal distribution throughout these experiments. As
a result we arrive at the negative log target density

E(x) =
n∑
i=1

{
log(1 + ex

⊤y(i)

)− z(i)x⊤y(i)
}
+ 1

2
x⊤x.

As a preprocessing step when applying the Boomerang Sampler, and all subsampled
methods, we find the mode x⋆ of the posterior distribution and define Σ by (3.7).
We apply the Boomerang Sampler, with and without subsampling. These samplers
are equipped with an affine computational bound and a constant computational
bound respectively, both discussed in Section 2 of the Supplement (the affine bound
is usually preferred over a constant bound, but a useful affine bound is not available
in the subsampling case).

We compare the Boomerang to both BPS and ZZ with and without subsampling.
In all subsampling applications we employ appropriate control variance techniques
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to reduce the variability of the random switching intensities, as discussed in Sec-
tion 3.2.2. Furthermore in the dimension dependent study we include the Metropolis
adjusted Langevin algorithm (MALA) for comparison. Throughout these exper-
iments we use Effective Sample Size (ESS) per second of CPU time as measure
of the efficiency of the methods used. ESS is estimated using the Batch Means
method, where we take a fixed number of 50 batches for all our estimates. ESS is
averaged over the dimensions of the simulation and then divided by the runtime
of the algorithm to obtain “average ESS per second” (other ESS summaries could
also have been used). The time horizon is throughout fixed at 10, 000 (with 10,000
iterations for MALA). For ZZ and BPS the magnitude of the velocities is rescaled
to be comparable on average with Boomerang, to avoid unbalanced runtimes of the
different algorithms. In Figures 3.1 and 3.2 the boxplots are taken over 20 randomly
generated experiments, where each experiment corresponds to a logistic regression
problem with a random (standard normal) parameter, based on randomly generated
data from the model.1 The refreshment rates for BPS and the Boomerang Samplers
are taken to be 0.1.
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Figure 3.1: Scaling of Boomerang Sampler compared to other PDMC methods for
the logistic regression problem of Section 3.4.1 as a function of the number of ob-
servations. Here d = 2.

1The code used to carry out all of the experiments of this paper may be found online at
https://github.com/jbierkens/ICML-boomerang.

https://github.com/jbierkens/ICML-boomerang


CHAPTER 3. THE BOOMERANG SAMPLER 65

The Boomerang Sampler is seen to outperform the other algorithms, both in
terms of scaling with dimension as with respect to an increase in the number of
observations. For a fixed dimension, the subsampling algorithms will clearly out-
perform the non-subsampling algorithms as number of observations n grows. In
particular, the ESS/sec stays fixed for the subsampled algorithms, and decreases as
O(n) for the non-subsampled versions. In this case, we did not include the MALA
algorithm since we observed its complexity strongly deteriorating as the number of
observations increases. For a large number of observations (n ≥ 10, 000, d = 2) we
see that the Boomerang Sampler (with and without subsampling) accepts almost
none of the proposed switches. This means that effectively we are sampling from
the Gaussian reference measure. This observed behaviour is in line with the scaling
analysis in Section 3.3.1.

In the second experiment we let the dimension d grow for a fixed number of
observations. The subsampling algorithms currently do not scale as well as the
non-subsampled versions. For practical purposes we therefore only consider non-
subsampled algorithms for the comparison with respect to dimensional dependence.
For the dimensions d ≤ 32 we tested the Boomerang outperforms MALA, but it
seems empirically that MALA has a better scaling behaviour with dimension. Note
that MALA needs careful tuning to exhibit this good scaling. We remark that the
beneficial scaling properties of the underlying Boomerang Process as discussed in
Section 3.3.2 may be adversely affected by suboptimal computational bounds. We
are optimistic that the dimensional scaling of subsampled algorithms can be further
improved by designing better computational bounds.

In all cases the necessary preprocessing steps can be done very quickly. In par-
ticular the plots are not affected by including (or excluding) the preprocessing time
in the computation of ESS/sec.

3.4.2 Diffusion bridges

In Bierkens et al. 2021 the authors introduce a framework for the simulation of
diffusion bridges (diffusion processes conditioned to hit a prescribed endpoint) taking
strong advantage of the use of factorised piecewise deterministic samplers. This
invites the use of the Factorised Boomerang Sampler (FBS). We consider time-
homogeneous one-dimensional conditional diffusion processes (diffusion bridges) of
the form

dXt = b(Xt)dt+ dWt, X0 = u, XT = v

where W is a scalar Brownian motion and b satisfies some mild regularity condi-
tions (see Bierkens et al. 2021 for details). This simulation problem is an essential
building block in Bayesian analysis of non-linear diffusion models with low frequency
observations Roberts and Stramer 2001.
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Figure 3.2: Scaling of Boomerang Sampler compared to other PDMC methods and
MALA for the logistic regression problem of Section 3.4.1 as a function of the number
of dimensions. Here the number of observations is n = 1, 000.

We consider the approach of Bierkens et al. 2021 where the diffusion path on
[0, T ] is expanded with a truncated Faber Schauder basis as

XN
t = ¯̄ϕ(t)u+ ϕ̄(t)v +

N∑
i=0

2i−1∑
j=0

ϕi,j(t)xi,j.

Here,

ϕ̄(t) = t/T, ¯̄ϕ(t) = 1− t/T,
ϕ0,0(t) =

√
T
(
(t/T )1[0,T/2](t) + (1− t/T )1(T/2,T ](t)

)
,

ϕi,j(t) = 2−i/2ϕ0,0(2
it− jT ) i ≥ 0, 0 ≤ j ≤ 2i − 1,

are the Faber-Schauder functions and N is the truncation of the expansion. In
Bierkens et al. 2021, ZZ is used to sample the corresponding coefficients x :=
(x0,0, ..., xN,2N−1) which have a density measure written with respect to a standard
Gaussian reference measure (corresponding to a Brownian bridge measure in the
path space, see Bierkens et al. 2021 for details). In particular we have that

dµ

dµ0

(x,v) ∝ exp

{
−1

2

∫ T

0

(
b2(XN

s ) + b′(XN
s )
)
ds

}
(3.17)

where b′ is the derivative of b and µ0 = N (0, I)⊗N (0, I) with I the 2N+1−1 dimen-
sional identity matrix. The measure given by (3.17) has a remarkable conditional
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independence property (Proposition 2, Bierkens et al. 2021) and the coefficients xi,j,
for i large, responsible for the local behaviour of the process, are approximately
independent standard Gaussian, reflecting the fact that, locally, the process behaves
as a Brownian motion.

In Bierkens et al. 2021 the authors device a local implementation of ZZ which
optimally exploits the sparse conditional independence structure of the target dis-
tribution, alleviating the computational costs in high dimensional setting (e.g. of
a high truncation level N). Since the Girsanov density (3.17) is expressed relative
to a standard normal distribution on the coefficients x, the Factorised Boomerang
Sampler is a natural candidate for a further reduction in computational cost, by
reducing the required number of simulated events, in particular at the higher levels
where the coefficients have approximately a Gaussian distribution. This will allow
for a further increase of the truncation level N and/or faster computations at a fixed
truncation levels.

We consider the the class of diffusion bridges with drift equal to

b(x) = α sin(x), α ≥ 0. (3.18)

The higher α, the stronger is the attraction of the diffusion paths to the stable points
(2k − 1)π, k ∈ N while for α = 0 the process reduces to a Brownian bridge with
µ = µ0. Equivalently to Bierkens et al. 2021, we use subsampling as the gradient of
the log density in (3.17) involves a time integral that cannot be solved analytically in
most of the cases. The unbiased estimator for ∂xi,jU(x) is the integrand evaluated
at a uniform random point multiplied by the range of the integral. The Poisson
bounding rates used for the subsampling can be found in the Supplement, Section
5.

Figure 3.3 shows the resulting bridges for α = 1, starting at u = −π and hitting
v = 3π at final time T = 50 after running the FBS with clock T ⋆ = 20000, as
simulated on a standard desktop computer. The refreshment rate relative to each
coefficient xi,j is fixed to λrefr,i,j = 0.01 and the truncation of the expansion is N = 6.

In Figure 3.4, we compare the performances of the Boomerang Sampler and
ZZ by computing the average number of reflections (y-axis on a log-scale) for the
coefficients xi,j at each level (x-axis). The number of reflections is understood as a
measure of complexity of the algorithm. We repeat the experiment for α = 0.5 and
α = 0 (where µ = µ0) and fix the truncation level to be N = 10 which corresponds
to a 2047 + 2047 dimensional space for (x,v). For a fair comparison we set the
expected ℓ1 norm of the velocities and the time horizon of the two samplers to be
the same. In both cases, the average number of reflections converges to the average
number of reflections under µ0 (dashed lines) indicating that the coefficients at high
levels are approximately standard normally distributed but while ZZ requires a fixed
number of reflections for sampling from µ = µ0, the Boomerang does not, allowing
to high resolutions of the diffusion bridges at lower computational cost.
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Figure 3.3: 1000 diffusion bridges with drift equal to (3.18) with α = 1, u = −π, v =
3π, T = 50, L = 6 sampled with the FBS with time horizon T ⋆ = 20, 000 and re-
freshment rates λrefr,i = 0.01 for all i. The straight horizontal lines are the attraction
points.
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Figure 3.4: Average number of reflections (on a log-scale) for the coefficients xi,j
at the level i = 0, 1, .., 10 for the diffusion bridge given by (3.18) with α = 0.5
(solid lines) and α = 0.0 (dashed lines) for the Zig-Zag Sampler (blue lines) and
the Factorised Boomerang Sampler (red lines) with T ⋆ = 2, 000 and Boomerang
refreshment rates λrefr,i = 0.01 for all i.

3.4.3 Dependence upon reference measure

In a final experiment we investigate the dependence of the performance of the
Boomerang Sampler upon the choice of reference measure. For this we consider
a simple setting in which the target distribution is a standard normal distribution



CHAPTER 3. THE BOOMERANG SAMPLER 69

in d dimensions. However, instead of using the standard normal distribution as ref-
erence measure, we perturb it in two ways: (i) we vary the component-wise variance
σ2 of the reference measure, and (ii) we vary the mean x⋆ of the reference measure.
Specifically, we choose a reference measure N (x⋆,Σ) ⊗ N (0,Σ), which we choose
in case (i) to be x⋆ = 0,Σ = σ2I, and in case (ii), x⋆ = α(1, . . . , 1)⊤, Σ = I.
As performance measure we use the ESS per second for the quantity |x|2. We use
refreshment rate 0.1 for Boomerang, and we compare to the Bouncy Particle Sam-
pler, with refreshment 1.0, with both samplers run over a time horizon of 10,000.
In Figure 3.5 the results of this experiment are displayed for varying σ2, and in
Figure 3.6 the results are displayed for varying x⋆. The box plots are taken over 20
experiments of the Boomerang Sampler, which are compared to a single run of the
Bouncy Particle Sampler (dashed line).
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Figure 3.5: Effect of perturbing the variance of the reference measure. As reference
measure we choose N (0, σ2I)⊗N (0, σ2I), where σ2 is varied from 0.5 to 2.0.

In this setting, the Boomerang Sampler significantly outperforms the BPS, al-
though the performance is seen to depend upon the choice of reference measure. Note
however that the dependencies of Σ on σ2 and of x⋆ upon α scale as traceΣ = σ2d
and ∥x⋆∥ = αd1/2 respectively, so that in high dimensional cases the sensitivity on
x⋆ and Σ may be more moderate than might appear from Figures 3.5 and 3.6.
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Figure 3.6: Effect of perturbing the mean of the reference measure. As reference
measure we choose N (α1, I)⊗N (0, I), where α is varied from 0.0 to 2.0.

3.5 Conclusion

We presented the Boomerang Sampler as a new and promising methodology, outper-
forming other piecewise deterministic methods in the large n, moderate d setting,
as explained theoretically and by performing a suitable benchmark test. The theo-
retical properties of the underlying Boomerang Sampler in high dimension are very
good. However currently a large computational bound and therefore a large number
of rejected switches are hampering the efficiency. We gave a numerical comparison
which demonstrates that Boomerang performs well against its natural competitors;
however one should be cautious about drawing too many conclusions about the
performance of the Boomerang without a more comprehensive simulation study.
Further research is required to understand in more detail the dependence upon
e.g. reference covariance Σ, centering position x⋆, refreshment rate, computational
bounds and the choice of efficiency measure.

We furthermore introduced the Factorised Boomerang Sampler and illustrated
its ability to tackle a challenging simulation problem using an underlying sparse
structure.

An important direction for further research is the improvement of the computa-
tional bounds, in particular with the aim of having good scaling with dimension of
subsampled algorithms. Related to this it is important to gain a better understand-
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ing of the relative optimality of subsampled versus non-subsampled algorithms in
the large n, large d case.
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Chapter 4

Sticky PDMPs for variable selection

4.1 Introduction

4.1.1 Overview

Consider the problem of simulating from a measure µ on Rd that is a mixture of
atomic and continuous components. A key application is Bayesian inference for
sparse problems and variable selection under a spike-and-slab prior µ0 of the form

µ0(dx) =
d∏
i=1

(wiπi(xi)dxi + (1− wi)δ0(dxi)) . (4.1)

Here, wi ∈ [0, 1], π1, π2, . . . , πd are densities with respect to the Lebesgue measure
referred to as slabs and δ0 denotes the Dirac measure at zero. For sampling from
µ, it is common to construct and simulate a Markov process with µ as invariant
measure. Routinely used samplers such as the Hamiltonian Monte Carlo sampler
(Duane et al. 1987) cannot be applied directly due to the degenerate nature of µ. We
show that “ordinary” samplers based on piecewise deterministic Markov processes
(PDMPs) can be adapted to sample from µ by introducing stickiness.

In piecewise deterministic Markov processes, the state space is augmented by
adding to each coordinate xi a velocity component vi, doubling the dimension of the
state space. They are characterized by piecewise deterministic dynamics between
event times, where event times correspond to changes of velocities. PDMPs have
received recent attention because they have good mixing properties (they are non-
reversible and have ‘momentum’, see e.g. Andrieu and Livingstone 2019), they
take gradient information into account and they are attractive in Bayesian inference
scenarios with a large number of observations because they allow for subsampling
of the observations without creating bias (Bierkens, Fearnhead, and Roberts 2019,
Bierkens et al. 2020).

73



74 4.1. INTRODUCTION

We introduce “sticking event times”, which occur every time a coordinate of the
process state hits 0. At such a time that particular component of the state freezes for
an independent exponentially distributed time with a specifically chosen rate equal
to |vi|κi, for some κi > 0 which depends on µ. This corresponds to temporarily
setting the marginal velocity to 0: the process “sticks to (or freezes at) 0” in that
coordinate, while the other coordinates keep moving, as long as they are not stuck
themselves. After the exponentially distributed time the coordinate moves again
with its original velocity, see Figure 4.1 for an illustration of the sticky version of
the Zig-Zag sampler (Bierkens, Fearnhead, and Roberts 2019). By this we mean
that the dynamics of a ordinary PDMP are adjusted such that the process can
spend a positive amount of time at the origin, at the coordinate axes and at the
coordinate (hyper-)planes by sticking to 0 in each coordinate for a random time span
whenever the process hits 0 in that particular coordinate. By restoring the original
velocity of each coordinate after sticking at 0, we effectively generate non-reversible
jumps between states with different sets of non-zero coordinates. In the Bayesian
context this corresponds to having non-reversible jumps between models of varying
dimensionality.

This allows us to construct a piecewise deterministic process that has a pre-
specified measure µ as invariant measure, which we assume to be of the form

µ(dx) = Cµ exp(−Ψ(x))
d∏
i=1

(
dxi +

1

κi
δ0(dxi)

)
(4.2)

for some differentiable function Ψ, normalising constant Cµ > 0 and positive pa-
rameters κ1, κ2, . . . , κd. Here the Dirac masses are located at 0, but generalizations
are straightforward. The resulting samplers and processes are referred to as sticky
samplers and sticky piecewise deterministic Markov processes respectively. The pro-
portionality constant Cµ is assumed to be unknown while (κi)i=1,...,d are known.
This is a natural assumption; suppose a statistical model with parameter x and
log-likelihood ℓ(x) (notationally, we drop the dependence of ℓ on the data). Under
the spike-and-slab prior defined in Equation (4.1), the posterior measure is of the
form of Equation (4.2) with

Ψ(x) = C − ℓ(x)−
d∑
i=1

log(πi(xi)), κi =
wi

1− wi
πi(0) (4.3)

where C, independent of x, can be chosen freely for convenience. A popular choice
for πi is a Gaussian density centered at 0 with standard deviation σi. In this case,
as w/(1− w) ≈ w for w ≈ 0, κi depends linearly on wi/σi in the sparse setting.
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Figure 4.1: 2-dimensional Sticky Zig-Zag sampler with initial position (−0.75,−0.4)
and initial velocity (+1,−1). On the left panel, a trajectory on the (x, y)-plane of
the Sticky Zig-Zag sampler. The sticky event times relative to the x (respectively
y) coordinate and the trajectories with the x (respectively y) stuck at 0 are marked
with a blue (respectively red) cross and line. On the right panel, the trajectories of
each coordinate against the time using the same (color-) scheme. The trajectory of
y is dashed.

Relevant quantities useful for model selection, such as the posterior probability
of a model excluding the first variable

µ({0} × Rd−1) = Cµ

∫
exp(−Ψ(x))

1

κ1
δ0(dx1)

d∏
i=2

(
dxi +

1

κ i
δ0(dxi)

)
cannot be directly computed if Cµ is unknown. However, given a trajectory (x(t))0≤t≤T
of a PDMP with invariant measure µ, the quantity µ({0} × Rd−1) can be approxi-
mated by the ratio T0/T where T0 = Leb{0 ≤ t ≤ T : x1(t) = 0}. This simple, yet
general idea requires the user only to specify {κi}di=1 and Ψ as in Equation (4.2).
Moreover, the posterior probability that a collection of variables are all jointly equal
to zero can be estimated in a similar way by computing the fraction of time that all
corresponding coordinates of the process are simultaneously zero and, more gener-
ally, expectations of functionals with respect to the posterior can be estimated from
the simulated trajectory.

4.1.2 Related literature

The main purpose of this paper is to show how “ordinary” PDMPs can be adjusted
to sample from the measure µ as defined in (4.2). The numerical examples illustrate
its applicability in a wide range of applications. One specific application that has
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received much attention in the statistical literature is variable selection using a
spike-and-slab prior. For the linear model, early contributions include Mitchell and
Beauchamp (1988) and George and McCulloch (1993). Some later contributions
for hierarchical models derived from the linear model are Ishwaran and Rao (2005),
Guan and Stephens (2011), Zanella and Roberts (2019) and Liang, Livingstone, and
Griffin (2021). These works have in common that samples from the posterior are
obtained from Gibbs sampling and can be implemented in practise only in specific
cases (when the Bayes factors between (sub-)models can be explicitly computed).
A general and common framework for MCMC methods for variable selection was
introduced in Green (1995) and Green and Hastie (2009) and referred to as reversible
jump MCMC.

Methods that scale better (compared to Gibbs sampling) with either the sam-
ple size or dimension of the parameter can be obtained in different ways. Firstly,
rather than sampling from the posterior one can approximate the posterior within
a specified class, for example using variational inference. As an example, Ray, Sz-
abo, and Clara (2020) adopt this approach in a logistic regression problem with
spike-and-slab prior. Secondly, one can try to obtain sparsity using a prior which is
not of spike-and-slab type. For example, Griffin and Brown (2021) consider Gibbs
sampling algorithms for the linear model with priors that are designed to promote
sparseness, such as the Laplace or horseshoe prior (on the parameter vector). While
such methods scale well with dimension of data and parameter, these target a differ-
ent problem: the posterior is not of the form (4.2). That is, the posterior itself is not
sparse (though derived point estimates may be sparse and the posterior itself may
have good properties when viewed from a frequentist perspective). Moreover, part
of the computational efficiency is related to the specific model considered (linear or
logistic regression model) and, arguably, a generic gradient-based MCMC method
would perform poorly on such measures since the gradient of the (log-)density near
0 in each coordinate explodes to account for the change of mass in the neighborhood
of 0 induced by the continuous spike component of the prior.

A recent related work by Chevallier, Fearnhead, and Sutton (2020) addresses
variable selection problems using PDMP samplers. The different approach taken in
that paper is based on the framework of reversible jump (RJ) MCMC as proposed
in Green (1995). A comparison between Chevallier, Fearnhead, and Sutton (2020)
and our work may be found in Appendix C.3.

4.1.3 Contributions

• We show how to construct sticky PDMP samplers from ordinary PDMP sam-
plers for sampling from the measure in Equation (4.2). This extension allows
for informed exploration of sparse models and does not require any additional
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tuning parameter. We rigorously characterise the stationary measure of the
sticky Zig-Zag sampler.

• We analyse the computational efficiency of the sticky Zig-Zag sampler by
studying its complexity and mixing time.

• We demonstrate the performance of the sticky Zig-Zag sampler on a variety
of high dimensional statistical examples (e.g. the example in Section 4.4.2 has
dimensionality 106).

The Julia package ZigZagBoomerang.jl (Schauer and Grazzi 2021) implements ef-
ficiently the sticky PDMP samplers from this article for general use.

4.1.4 Outline

Section 4.2 formally introduces sticky PDMP samplers and gives the main theoretical
results for the sticky Zig-Zag sampler. In Section 4.2.4 we explain how the sticky Zig-
Zag sampler may be applied to subsampled data, allowing the algorithm to access
only a fraction of data at each iteration, hence reducing the computational cost
from O(N) to O(1), where N is the sample size. In Section 4.3 we extend the Gibbs
sampler for variable selection for target measures of the form of Equation (4.2).
We analyse and compare the computational complexity and the mixing times of
both the sticky Zig-Zag sampler and the Gibbs sampler. Section 4.4 presents five
statistical examples with simulated data and analyses the outputs after applying the
algorithms considered in this article. In Section 4.5 both limitations and promising
research directions are discussed.

There are five appendices. The derivation of our theoretical results is given in
Appendix C.1. Appendix C.2 extends some of the theoretical results for two other
sticky samplers: the sticky version of the Bouncy particle sampler (Bouchard-Côté,
Vollmer, and Doucet 2018) and the Boomerang sampler (Bierkens et al. 2020), the
latter having Hamiltonian deterministic dynamics invariant to a prescribed Gaus-
sian measure. Appendix C.3 contains a self-contained discussion with heuristic ar-
guments and simulations which highlight the differences between the sticky PDMPs
and the method of Chevallier, Fearnhead, and Sutton (2020). Appendix C.4 com-
plements Section 4.3 with the details of the derivations of the main results and by
presenting local implementations of the sticky Zig-Zag sampler that benefit of a
sparse dependence structure between the coordinates of the target measure. Ap-
pendix C.5 contains some of the details of the numerical examples of Section 4.4.
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4.1.5 Notation

The ith element of the vector x ∈ Rd is denoted by xi. We denote

x−i := (x1, x2, . . . , xi−1, xi+1, . . . , xd) ∈ Rd−1

. Write

(x[k : y])i :=

{
xi i ̸= k,

y i = k.

and [x]A := (xi)i∈A ∈ R|A| for a set of indices A ⊂ {1, 2, . . . , d} with cardinality |A|.
We denote by ⊔ the disjoint union between sets and the positive and negative part of
a real-valued function f by f+ := max(0, f) and f− := max(0,−f) respectively so
that f = f+ − f−. For a topological space E, let B(E) denote the Borel σ-algebra
on E. Denote by M(E) the class of Borel measurable functions f : E → R and
let C(E) = {f ∈ M(E) : f is continuous }. For a measure µ(dx, dy) on a product
space X ,Y , we write the marginal measure on X by µ(dx) =

∫
Y µ(dx, dy).

4.2 Sticky PDMP samplers

In what follows, we formally describe the sticky PDMP samplers (Section 4.2.1)
and give the main theoretical results obtained for the sticky Zig-Zag sampler (Sec-
tion 4.2.3). Section 4.2.4 extends the sticky Zig-Zag sampler with subsampling
methods.

4.2.1 Construction of sticky PDMP samplers

The state space of the the sticky PDMPs contains two copies of zero for each co-
ordinate position. This construction allows a coordinate process arriving at zero
from below (or above) to spend an exponentially distributed time at zero before
jumping to the “other” zero and continuing the dynamics. Formally, let R be the
disjoint union R = (−∞, 0−] ⊔ [0+,∞) with the natural topology1 τ , where we use
the notation 0−, 0+ to distinguish the zero element in (−∞, 0] from the zero element
in [0,∞). The process has càdlàg2 trajectories in the locally compact state space
E = Rd×V , where V ⊂ Rd. Pairs of position and velocity will typically be denoted
by (x, v) ∈ Rd × V . A trajectory reaching zero in a coordinate from below (with
positive velocity) or from above (with negative velocity) spends time at the closed

1A function f : R→ R is continuous if both restrictions to (∞, 0−] and [0+,∞) are continuous.
If f(0−) = f(0+), we write f(0).

2I.e., trajectories that are continuous from the right, with existing limits from the left.
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end of the half open interval (−∞, 0−] or [0+,∞), respectively. For i = 1, . . . , d we
define the associated ‘frozen boundary’ Fi ⊂ E for the ith coordinate as

Fi := {(x, v) ∈ E : xi = 0−, vi > 0 or xi = 0+, vi < 0}.

Thus the ith coordinate of the particle is sticking to zero (or frozen), if the state of
the particle belongs to the ith frozen boundary Fi.

Sometimes, we abuse notation by writing (xi, vi) ∈ Fi when (x, v) ∈ Fi as the set
Fi has restrictions only on xi, vi. The closed endpoints of the half-open intervals are
somewhat reminiscent of sticky boundaries in the sense of Liggett (2010, Example
5.59). Denote by α ≡ α(x, v) the set of indices of active coordinates corresponding
to state (x, v), defined by

α(x, v) = {i ∈ {1, 2, . . . , d} : (x, v) /∈ Fi} (4.4)

and its complement αc = {1, 2, . . . , d} \ α. Furthermore define a jump or transfer
mapping Ti : Fi → E by

Ti(x, v) =

{
(x[i : 0+], v) if xi = 0−, vi > 0,

(x[i : 0−], v) if xi = 0+, vi < 0.

The sticky PDMPs on the space E are determined by their infinitesimal charac-
teristics: their dynamics are determined by random state changes happening at
random jump times of a time inhomogeneous Poisson process with intensity de-
pending on the state of the process, and a deterministic flow governed by a differ-
ential equation in between. The state changes are characterised by a Markov kernel
Q : E × B(E) → [0, 1], at random times sampled with state dependent intensity
λ : E → [0,∞). The deterministic dynamics are determined coordinate-wise by the
integral equation

(xi(t), vi(t)) = (xi(s), vi(s)) +

∫ t

s

ξi(xi(r), vi(r))dr, i = 1, 2, . . . , d, (4.5)

with ξi being state dependent with form

ξi(x, v) =

{
ξ̄i(xi, vi) (xi, vi) /∈ Fi

(0, 0) (xi, vi) ∈ Fi,
(4.6)

for functions ξ̄i : R × R → R × R which depend on the specific PDMP chosen
and corresponds to the coordinate-wise dynamics of the ordinary PDMP while the
second case in Equation (4.6) captures the behaviour of the ith coordinate when it
sticks at 0.
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For PDMP samplers, we typically have ξ̄i = ξ̄j for all i, j ∈ 1, . . . , d and we have
different types of state changes given by Markov kernels Q1, Q2, . . . , for example
refreshments of the velocity, reflections of the velocity, unfreezing of a coordinate
etc. If each transition is triggered by its individual independent Poisson clock with
intensity λ1, λ2, . . ., then λ =

∑
i λi, and Q itself can be written as the mixture

Q((x, v), ·) =
∑
i

λi((x, v))

λ((x, v))
Qi((x, v), ·).

With that, the dynamics of the sticky PDMP sampler t 7→ (X(t), V (t)) are as
follows: starting from (x, v) ∈ E,

1. its flow in each coordinate is deterministic and continuous until an event hap-
pens. The deterministic dynamics are given by (4.5). Upon hitting Fi, the ith
coordinate process freezes, captured by the state dependence of (4.6).

2. A frozen coordinate “unfreezes” or “thaws” at rate equal to κi|vi| by jumping
according to the transfer mapping Ti to the location (0+, vi) (or (0−, vi)) out-
side Fi and continuing with the same velocity as before. That is, on hitting Fi,
the ith coordinate process freezes for an independent exponentially distributed
time with rate κi|vi|. This constitutes a non-reversible move between models of
different dimension. The corresponding transition Qi,thaw is the Dirac measure
at δTi(x,v) and the intensity component λi,thaw equals κi|vi|1Fi

.

3. An inhomogeneous Poisson process λrefl with rate depending on Ψ triggers the
reflection events. At a reflection event time, the process changes its velocities
according to its reflection rule Qrefl in such a way that the process is invariant
to the measure µ.

4. Refreshment events can be added, where, at exponentially distributed inter-
arrival times, the velocity changes according to a refreshment rule leaving the
measure µ invariant. Refreshments are sometimes necessary for the process to
be ergodic.

The resulting stochastic process (Xt, Vt) is a sticky PDMP with dynamics Q,
λ, φ, initialised in (X(τ0), V (τ0)). Let s → φ(s, x, v) be the deterministic solution
of (4.5) starting in (x, v). Set τ0 = 0 and the initial state (X(τ0), V (τ0)) ∈ E. A
sample of a sticky PDMP is given by the recursive construction in Algorithm 5.

In what follows, we focus our attention on the Sticky Zig-Zag sampler and defer
to Appendix C.2 the details of the Bouncy Particle sampler and the Boomerang
samplers.
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Algorithm 5 PDMP samplers: recursive construction
Given the current state (X(τk), V (τk)) at time τk

1. Sample independently ∆k as the first event time of an inhomogeneous Poisson
process. We denote ∆k ∼ IPP(s→ λ(φ(s,X(τk), V (τk))), for

P (∆k ≥ t) = exp

(
−
∫ t

0

λ(φ(s,X(τk), V (τk))ds

)
. (4.7)

2. Let τk+1 = τk +∆k and set for t ∈ [τk, τk+1)

(X(t), V (t)) = φ(t− τk, X(τk), V (τk)).

3. Let
(X(τk+1), V (τk+1)) ∼ Q(φ(∆k, X(τk), V (τk)), ·).

4.2.2 Sticky Zig-Zag sampler

A trajectory of the Sticky Zig-Zag sampler has piecewise constant velocity which is
an element of the set V = {v : |vi| = ai,∀i ∈ {1, 2, . . . , d}} for a fixed vector a. For
each index i, the deterministic dynamics of Equation (4.6) are determined by the
function ξ̄i(xi, vi) = (vi, 0). The reflection rate λrefl is factorised coordinate-wise and
the reflection event for the ith coordinate is determined by the inhomogeneous rate

λi,refl(x, v) = 1i∈α(x,v)(vi∂iΨ(x))+. (4.8)

At reflection time of the ith coordinate, the transition kernel Qi,refl acts de-
terministically by flipping the sign of the ith velocity component of the state:
(xi, vi) → (xi,−vi). As shown in Bierkens, Roberts, and Zitt (2019), the Zig-Zag
sampler does not require refreshment events in general to be ergodic.

4.2.3 Theoretical aspects of the Sticky Zig-Zag sampler

A theoretical analysis of the sticky Zig-Zag sampler is given in Appendix C.1.1. In
this section we review key concepts and state the main results.

The stationary measure of a PDMP is studied by looking at the extended gener-
ator of the process which is an operator characterising the process in terms of local
martingales - see Davis (1993, Section 14 ) for details. The extended generator is
- as the name suggests - an extension of the infinitesimal generator of the process
(defined for example in Liggett 2010, Theorem 3.16) in the sense that it acts on a
larger class of functions than the infinitesimal generator and it coincides with the
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infinitesimal generator when applied to functions in the domain of the infinitesimal
generator.

A general representation of the extended generator of PDMPs is given in Davis
(1993, Section 26), while the infinitesimal generator of the ordinary Zig-Zag sampler
is given in the supplementary material of Bierkens, Fearnhead, and Roberts (2019).
Here, we highlight the main results we have derived for the sticky Zig-Zag sampler.

Recall t→ φ(t, x, v) denotes the deterministic solution of (4.5) starting in (x, v)
and τ is the natural topology on E. Define the operator A with domain

D(A) = {f ∈M(E) : t 7→ f(φ(t, x, v)) τ -absolutely continuous ∀(x, v) and
∀i : lim

t↓0
f(x[i : 0+ + t], ·) = f(x[i : 0+], ·), lim

t↓0
f(x[i : 0− − t], ·) = f(x[i : 0−], ·)}

by Af(x, v) =
∑d

i=1Aif(x, v) with

Aif(x, v) =

{
aiκi (f(Ti(x, v))− f(x, v)) (x, v) ∈ Fi,

vi∂xif(x, v) + λi(x, v) (f(x, v[i : −vi])− f(x, v)) else.

Proposition 4.2.1. The extended generator of the d-dimensional Sticky Zig-Zag
process is given by A with domain D(A).

Proof. See Appendix C.1.4.

Notice that, the operator A restricted on D = {f ∈ C1
c (E),Af ∈ Cb(E)}

coincides with the infinitesiaml generator of the ordinary Zig-Zag process restricted
on D, see Proposition C.1.5, Appendix C.1.4 for details.

Theorem 4.2.2. The d-dimensional Sticky Zig-Zag sampler is a Feller process and
a strong Markov process in the topological space (E, τ) with stationary measure

µ(dx, dv) =
1

C

∑
u∈V

exp(−Ψ(x))
d∏
i=1

(
dxi +

1

κi
(1vi>0 δ0−(dxi) + 1vi<0 δ0+(dxi)) δu(dv)

)
,

(4.9)
for some normalization constant C > 0.

Proof. The construction of the process and the characterization of the extended
generator and its domain of the d-dimensional Sticky Zig-Zag process can be found
in Appendix C.1.1. We then prove that the process is Feller and strong Markov
(Appendix C.1.2 and Appendix C.1.3). By Liggett (2010, Theorem 3.37), µ is a
stationary measure if, for all f ∈ D,

∫
Lfdµ = 0. This last equality is derived in

Appendix C.1.5.

Theorem 4.2.3. Suppose Ψ satisfies Assumption C.1.2. Then the sticky Zig-Zag
process is ergodic and µ is its unique stationary measure.



CHAPTER 4. STICKY PDMPS FOR VARIABLE SELECTION 83

Proof. See Appendix C.1.6.

The following remark establishes a formula for the recurrence time of the Sticky
Zig-Zag to the null model, and may serve as guidance in design of the probabilistic
model or the choice of the parameter κi, here assumed for simplicity to be all equal.

Remark 4.2.4. (Recurrence time of the Sticky Zig-Zag to zero) The expected time
to leave the position 0 = (0, 0, . . . , 0) for a d-dimensional Sticky Zig-Zag with unit
velocity components is 1

κd
(since each coordinate leaves 0 according to an exponential

random variable with parameter κ). A simple argument given in Appendix C.1.7
shows that the expected time of the process to return to the null model is

1− µ({0})
dκµ({0})

. (4.10)

4.2.4 Extension: sticky Zig-Zag sampler with subsampling
method

Here we address the problem of sampling a d-dimensional target measure when
the log-likelihood is a sum of N terms, when d and N are large. Consider for
example a regression problem where both the number of covariates and the number
of experimental units in the dataset are large. In this situation full evaluation of
the log-likelihood and its gradient is prohibitive. However, PDMP samplers can
still be used with the exact subsampling technique (e.g. Bierkens, Fearnhead, and
Roberts 2019) as this allows for substituting the gradient of the log-likelihood (which
is required for deriving the reflection times) by an estimate of it which is cheaper to
evaluate, without introducing any bias on the output of the sampler.

The subsampling technique for Sticky Zig-Zag samplers requires to find an un-
biased estimate of the gradient of Ψ in (4.2). To that end, assume the following
decomposition:

∂xiΨ(x) =

(
Ni∑
j=1

S(x, i, j)

)
, ∀x ∈ Rd

, i = 1, 2, . . . , d, (4.11)

for some scalar valued function S. This assumption on Ψ is satisfied for example for
the setting with a spike-and-slab prior and a likelihood that is a product of factors,
such as for likelihoods of (conditionally) independent observations.

For fixed (x, v) and x∗ ∈ Rd, for each i ∈ α(x, v) the random variable

Ni (S(x, i, J)− S(x∗, i, J)) + ∂xiΨ(x∗), J ∼ Unif({1, 2, . . . , Ni})

is an unbiased estimator for ∂xiΨ(x). Define the Poisson rates

λ̃i,j(x, v) = (viNi(S(x, i, j)− S(x∗, i, j)) + vi∂xiΨ(x∗))+
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and, for each i ∈ α, define the bounding rate

λi(t, x, v) ≥ λ̃i,j(φ(t, x, v)), t ≥ 0, ∀j ∈ {1, 2, . . . , Ni},

which is specified by the user and such that Poisson times with inhomogeneous rate
τ ∼ IPP(s → λi(s, x, v)) can be simulated (see Appendix C.4.2 for details on the
simulation of Poisson times).

The Sticky Zig-Zag with subsampling has the following dynamics:

• the deterministic dynamics and the sticky events are identical to the ones of
the Sticky Zig-Zag sampler presented in Section 4.2.3;

• a proposed reflection time equals mini∈α(x,v) τi, with {τi}i∈α(x,v) being indepen-
dent inhomogeneous Poisson times with rates s→ λi(s, x, v);

• at the proposed reflection time τ triggered by the ith Poisson clock, the process
reflects its velocity according to the rule (x, v)→ (x, v[i,−vi]) with probability
λ̃i,J(φ(τ, x, v))/λi(τ, x, v) where J ∼ Unif({1, 2, . . . , Ni}).

Proposition 4.2.5. The Sticky Zig-Zag with subsampling has a unique stationary
measure given by Equation (4.9).

The proof of Proposition 4.2.5 follows with a similar argument made in the
proof of Bierkens, Fearnhead, and Roberts (2019, Theorem 4.1). The number of
computations required by the Sticky Zig-Zag with subsampling to compute the next
event time with respect to the quantity N is O(1) (since ∂xiΨ(x∗) can be pre-
computed). This advantage comes at the cost of introducing ‘shadow event times’,
which are event times where the velocity component does not reflect. In case the
posterior density satisfies a Bernstein-von-Mises theorem, the advantage of using
subsampling over the standard samplers has been empirically shown and informally
argued for in Bierkens, Fearnhead, and Roberts (2019, Section 5) and Bierkens et al.
(2020, Section 3) for large N and when choosing x∗ to be the mode of the posterior
density.

4.3 Performance comparisons for Gaussian models

In this section we discuss the performance of the Sticky Zig-Zag sampler in compar-
ison with a Gibbs sampler. The sticky Zig-Zag sampler includes new coordinates
randomly but uses gradient information to find which coordinates are zero. By
comparing to a Gibbs sampler that just proposes models at random, we show that
it is an efficient scheme of exploration. As the Gibbs sampler requires closed form
expression of Bayes factors between different (sub-)models (Equation (4.12) below),
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we consider Gaussian models. The comparison is motivated by considering two sam-
plers that do not require model specific proposals or other tuning parameters. In
specific cases such as the target models considered below, the Gibbs sampler could
be improved by carefully choosing a problem-specific proposal kernel in between
(sub-)models, see for example Zanella and Roberts (2019) and Liang, Livingstone,
and Griffin (2021) – something we don’t consider here.

The comparison is primarily in relation to the dimension d, average number of
active particles and sample size N of the problem. It is well known that the perfor-
mance of a Markov chain Monte Carlo method is given by both the computational
cost of simulating the algorithm and the convergence properties of the underlying
process. In Section 4.3.2 we consider both these aspects and compare the results
obtained for the sticky Zig-Zag sampler with those relative to the Gibbs sampler.
The results are summarised in Table 4.1 and Table 4.2. The technical details of this
section are given in Appendix C.4.

4.3.1 Gibbs sampler

We can use a set of active indices α to define a model, as the corresponding set of
non-zero values in Rd:

Mα := {x ∈ Rd : xi = 0, i /∈ α} for α ⊂ {1, 2, . . . , d}.

For every set of indices α ⊂ {1, 2, . . . , d} and for every j, the Bayes factors relative to
two neighbouring (sub-)models (those differing by only one coefficient) for a measure
as in Equation (4.2) are given by

Bj(α) =
µ(Mα∪{j})

µ(Mα\{j})
=
κj
∫
R|α∪{j}| exp(−Ψ(y))dxα∪{j}∫

R|α\{j}| exp(−Ψ(z))dxα\{j}
, (4.12)

where y = {x ∈ Rd : xi = 0, i /∈ (α∪{j})}, z = {x ∈ Rd : xi = 0, i /∈ (α \ {j})]. The
Gibbs sampler starting in (x, α), with xi ̸= 0 only if i ∈ α for some set of indices
α ⊂ {1, 2, . . . , d}, iterates the following two steps:

1. Update α by choosing randomly j ∼ Unif({1, 2, . . . , d}) and set α ← α ∪ {j}
with probability pj where pj satisfies pj/(1− pj) = Bj(α), otherwise set α ←
α \ {j}.

2. Update the free coefficients xα according to the marginal probability of xα
conditioned on xi = 0 for all i ∈ αc.

In Appendix C.4.1, we give an analytical expressions for the right hand-side of
Equation (4.12) and the conditional probability in step 2 when Ψ is a quadratic
function of x. For logistic regression models, neither step 1 nor step 2 can be
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directly derived and the Gibbs samplers makes use of a further auxiliary Pólya-
Gamma random variable ω which has to be simulated at every iteration and makes
the computations of step 1 and step 2 tractable, conditionally on ω (see Polson,
Scott, and Windle 2013 for details).

4.3.2 Runtime analysis and mixing times

The ordinary Zig-Zag sampler can greatly profit in the case of models with a sparse
conditional dependence structure between coordinates by employing local versions
of the standard algorithm as presented in Bierkens et al. (2021). In Appendix C.4.2
we discuss how to simulate sticky PDMPs and derive similar local algorithms rel-
ative to the sticky Zig-Zag. Also the Gibbs sampler algorithm, as described in
Section 4.3.1, benefits when the conditional dependence structure of the target is
sparse. In Appendix C.4.3 we analyse the computational complexity of both algo-
rithms. In the analysis, we drop the dependence on (x, v) and we assume that the
size of α(t) := {i : xi(t) ̸= 0} fluctuates around a typical value p in stationarity.
Thus p represents the number of non-zero components in a typical model, and can
be much smaller than d in sparse models.

Table 4.1 summarises the results obtained of both algorithms in terms of the
sample size N and p when the conditional dependence structure between the coor-
dinates of the target is full and the sub-sampling method presented in Section 4.2.4
cannot be employed (left-column) and when there is sparse dependence structure
and subsampling can be employed (right-column). Our findings are validated by
numerical experiments in Section 4.4 (Figure 4.5, Figure 4.9).

Algorithm Worst case Best case

Sticky Zig-Zag p2N p

Gibbs sampler p(p2 +N) p(
√
p+N)

Table 4.1: Computational scaling of the Sticky Zig-Zag algorithm and the Gibbs
sampler for variable selection for p and sample size N . Worst case is when the
target density does not present any conditional independence structure and the sub-
sampling method for the Sticky Zig-Zag cannot be employed; best case when the
target measure presents a relevant conditional independence structure and subsam-
pling can be employed.

We now turn our focus on the mixing time of both the underlying processes.
Given the different nature of dependencies of the two algorithms, a rigorous and
theoretical comparison of their mixing times is difficult and outside the scope of this
work. We therefore provide an heuristic argument for two specific scenarios where
we let both algorithms be initialized at x ∼ Nd(0, I) ∈ Rd, hence in the full model,
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and assume that the target µ assigns most of its probability mass to the null model
M∅. Then we derive the expected hitting time to M∅ for both processes. The
two scenarios differ as in the former case the target µ is supported in every sub-
model so that the process can reach the point (0, 0, . . . , 0) by visiting any sequence
of sub-models while in the latter case the measure µ is supported in a single nested
sequence of sub-models. Details of the two scenarios are given in Appendix C.4.4.
Table 4.2 summarizes the scaling results (in terms of dimensions d) derived in the
two cases considered.

Algorithm µ supported on every model µ supported on a nested sequence

Sticky Zig-Zag log(d) d

Gibbs sampler d log(d) d2

q

Table 4.2: Scaling relative to the dimension d of the expected time (number of iter-
ation for the Gibbs sampler) to travel from the full model (initialized as a standard
Gaussian random variable) to the null model (which is the mode of the target). The
results are for targets which are supported in every model and for targets supported
on a single sequence of nested sub-models.

4.4 Examples
In this section we apply the Sticky Zig-Zag sampler and, when possible, compare
its performance with the Gibbs sampler in five different problems of varying nature
and difficulty:

4.4.1 (Learning networks of stochastic differential equations) A system of interacting
agents where the dynamics of each agent are given by a stochastic differential
equation. We aim to infer the interactions among agents. This is an example
where the likelihood does not factorise and the number of parameters increases
quadratically with the number of agents. We demonstrate the Sticky Zig-
Zag sampler under a spike-and-slab prior on the parameters that govern the
interaction and compare this with the Gibbs sampler.

4.4.2 (Spatially structured sparsity) An image denoising problem where the prior
incorporates that a large part of the image is black (corresponding to sparsity),
but also promotes positive correlation among neighbouring pixels. Specifically,
this examples illustrates that the Sticky Zig-Zag sampler can be employed in
high dimensional regimes (the showcase is in dimension one million) and for
sparsity promoting priors other than factorised priors such as spike-and-slab
priors.
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4.4.3 (Sampling from a bimodal target) A multi-modal model based on Gaussian
increments of an unknown parameter; this is a constructed example where the
Gibbs sampler fails to mix while the Sticky Zig-Zag sampler mixes well.

4.4.4 (Logistic regression) The logistic regression model where both the number of
covariates and the sample size are large, while assuming the coefficient vector
to be sparse. This is an non-Gaussian optimal scenario where the Sticky
Zig-Zag sampler can be employed with subsampling technique achieving O(1)
scaling with respect to the sample size.

4.4.5 (Estimating a sparse precision matrix) The setting where N realisations of
independent Gaussian vectors with precision matrix of the form XX ′ are ob-
served. Sparsity is assumed on the off-diagonal elements of the lower-triangular
matrix X. What makes this example particularly interesting is that the gra-
dient of the log-likelihood explodes in some hyper-planes, complicating the
application of gradient-based Markov chain Monte Carlo methods.

In all cases we simulate data from the model and assume the parameter to be sparse
(i.e. most of its elements are assumed to be zero) and high dimensional. In case a
spike-and-slab prior is used, the slabs are always chosen to be zero-mean Gaussian
with (large) variance σ2

0. The sample sizes, parameter dimensions and additional
difficulties such as correlated parameters or non-linearities which are considered in
this section illustrate the computational efficiency of our method (and implemen-
tation) in a wide range of settings. In all examples we used either the local or the
fully local algorithm of the Sticky Zig-Zag as detailed in Appendix C.4.2 with ve-
locities in the set V = {−1,+1}d. Comparisons with the Gibbs sampler are possible
for Gaussian models and the logistic regression model. Our implementation of the
Gibbs sampler is taking advantage of model sparsity. Because of its computational
overhead, when such comparisons are included, the dimensionality of the problems
considered has been reduced. The performance of the two algorithms is compared
by running the two algorithms for approximately the same computing time. As
performance measure we consider the squared error as a function of the computing
time:

c 7→ Es(c) :=
d∑
i=1

(ps
i(c)− pi)2, (4.13)

where c denotes computing time (we use c rather than t as the latter is used as time
index for the Zig-Zag sampler). In the displayed expression, we first compute pi,
which is an approximation to the posterior probability of the ith coordinate being
nonzero. This quantity can either be obtained by running the Sticky Zig-Zag sampler
or the Gibbs sampler (if applicable) for a very long time. As we show the Sticky
Zig-Zag sampler to converge faster, especially in high dimensional problems, we use
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this sampler in approximating this value. We stress that the same result could be
obtained by running the Gibbs sampler for a very long time. More precisely, we
compute for each coordinate of the Sticky Zig-Zag sampler the fraction of time it
is nonzero. In Es(c), the value of pi is compared to ps

i(c) which is the fraction of
time (or fraction of samples in case of the Gibbs sampler) where xi is nonzero using
computational budget c and sampler ‘s’. All the experiments were carried out with
a conventional laptop with Intel core i5-10310 processor and 16GB DDR4 RAM.
Pre-processing time and memory allocation of both algorithms are comparable.

4.4.1 Learning networks of stochastic differential equations.

In this example we consider a stochastic model for p autonomously moving agents
(“boids”) in the plane. The dynamics of the location of the ith agent is assumed to
satisfy the stochastic differential equation

dUi(s) = −λUi(s)ds+
∑
j ̸=i

xi,j(Uj(s)− Ui(s))ds+ σdWi(s), 1 ≤ i ≤ p (4.14)

where, for each i, (Wi(s))0≤s≤T is an independent 2-dimensional Wiener process. We
assume the trajectory of each agent is observed continuously over a fixed interval
[0, T ]. This implies σ > 0 can be considered known, as it can be recovered without
error from the quadratic variation of the observed path. For simplicity we will also
assume the mean-reversion parameter λ > 0 to be known. Let x = {xi,j : i ̸=
j} ∈ Rp2−p denote the unknown parameter. If xi,j > 0, agent i has the tendency
to follow agent j, on the other hand, if xi,j < 0, agent i tends to avoid agent j.
Hence, estimation of x aims at inferring which agent follows/avoids other agents.
We will study this problem from a Bayesian point of view assuming sparsity of x,
incorporated via the prior using a spike and slab prior. This problem has been
studied previously in Bento, Ibrahimi, and Montanari (2010) using ℓ1-regularised
least squares estimation.

Motivation for studying this problem can be found in Reynolds (1987) and the
presentation at JuliaCon 2020 by Jesse Bettencourt (2020). An animation of the
trajectories of the agents in time can be found at Grazzi and Schauer (2021).

Suppose Ui(s) = (Ui,1(s), Ui,2(s)) and let

Y (s) = (U1,1(s), . . . , Up,1(s), U1,2(s), . . . , Up,2(s))

denote the vector obtained upon concatenation of all x-coordinates and y-coordinates
of all agents. Then, it follows from Equation (4.14) that dY (s) = C(x)Y (s)ds +
σdW (s), where W (s) is a Wiener process in R2p. Here, C(x) = diag(A(x), A(x))
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where

A(x) =


−λ− x1 x1,2 x1,3 . . .

x2,1 −λ− x2 x2,3

x3,1
. . .

...


with xi =

∑
j ̸=i xi,j. If Px denotes the measure on path space of YT := (Y (s), s ∈

[0, T ]) and P0 denotes the Wiener-measure on R2p, then it follows from Girsanov’s
theorem that

ℓ(x) := log
Px
P0

(YT ) =
1

σ2

∫ T

0

(C(x)Y (s))′dY (s)− 1

2σ2

∫ T

0

∥C(x)Y (s)∥2ds. (4.15)

As we will numerically only be able to store the observed sample path on a fine grid,
we approximate the integrals appearing in the log-likelihood ℓ(x) using a standard
Riemann-sum approximation of Itô integrals (see e.g. Rogers and Williams 2000a,
Ch. IV, sec. 47) and time integrals. We assume x to be sparse which is incorporated
by choosing a spike-and-slab prior for x as in Equation (4.1). The posterior measure
is of the form of (4.2) with κ and Ψ(x) as in (4.3). As x 7→ Ψ(x) is quadratic, the
reflection times of the Sticky Zig-Zag sampler can be computed in closed form.

Numerical experiments: In our numerical experiments we fix p = 50 (number
of agents), T = 200 (length of time-interval), σ = 0.1 (noise-level) and λ = 0.2
(mean-reversion coefficient). We set the parameter x such that each agent has one
agent that tends to follow and one agent that tends to avoid. Hence, for every i, we
set xi,j to be zero for all j ̸= i, except for 2 distinct indices j1, j2 ∼ Unif({1, 2, . . . , d}\
i) with xi,j1xi,j2 < 0. The parameter x is very sparse and it is highly nontrivial to
recover its value. We then simulate YT using Euler forward discretization scheme,
with step-size equal to 0.1 and initial configuration Y (0) ∼ N2p(0, I).

The prior weights w1 = w2 = · · · = wd (wi being the prior probability of the
ith coordinate to be nonzero) are conveniently chosen to equal the proportion of
non-zero elements in the true (data-generating) parameter vector x. The variance
of each slab was taken to be σ2

0 = 50. We ran the Sticky Zig-Zag sampler with final
clock 500, where the algorithm was initialized in the full-model with no coordinate
frozen at 0 at the posterior mean of the Gaussian density proportional to Ψ.

Figure 4.2 shows the discrepancy between the parameters used during simulation
(ground truth) and the estimated posterior median. In this figure, from the (sticky)
Zig-Zag trajectory of each element xi,j (i ̸= j) we collected their values at time
ti = i0.1 and subsequently computed the median of the those values. We conclude
that all parameters which are strictly positive (coloured in pink) are recovered well.
At the bottom of the figure (black points and crosses), 25 are incorrectly identified
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as either being zero or negative. In this experiment, the Sticky Zig-Zag sampler
outperforms the Gibbs sampler considerably.

In Figure 4.3 we compare the performance of the Sticky Zig-Zag sampler with
the Gibbs sampler. Here, all the parameters (including initialisation) are as above,
except now the number of agents is taken as p = 20. Both c 7→ EZig-Zag(c) and c 7→
EGibbs(c), with c denoting the computational budget, are computed for c ∈ [0, 10].
For this, the final clock of the Zig-Zag was set to 104 and the number of iterations for
the Gibbs sampler was set to 1.2× 104. For obtaining p̄i the Sticky Zig-Zag sampler
was run with final clock 5× 104 (taking approximately 50 seconds computing time).

Figure 4.2: Posterior median estimate of xk (where k can be identified with (i, j))
versus k computed using the Sticky Zig-Zag sampler. Thin vertical lines indicate
distance to the truth. True zeros are plotted with the symbol ×, others are plotted
as points. With p = 50 agents, the dimension of the problem is d = 2450

4.4.2 Spatially structured sparsity

We consider the problem of denoising a spatially correlated, sparse signal. The
signal is assumed to be an n×n-image. Denote the observed pixel value at location
(i, j) by Yi,j and assume

Yi,j = xi,j + Zi,j, Zi,j
i.i.d.∼ N(0, σ2), i, j ∈ {1, . . . , n}.

The “true signal” is given by x = {xi,j}i,j and this is the parameter we aim to infer,
while assuming σ2 to be known. We view x as a vector in Rd, with d = n2 but
use both linear indexing xk and Cartesian indexing xi,j to refer to the component
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Figure 4.3: Squared error of the marginal inclusion probabilities (Equation 4.13)
c→ Ezig-zag(c) (red) and c→ Egibbs(c)(green) where c represent the computing time
in seconds. With p = 20 agents the dimension of the problem is p(p− 1)/2 = 380.

at index k = n(i − 1) + j. The log-likelihood of the parameter x is given by
ℓ(x) = C + σ−2

∑n
i=1

∑n
j=1 |xi,j − Yi,j|2, with C a constant not depending on x.

We consider the following prior measure

µ0(dx) = exp

(
−1

2
x′Γx

) d∏
i=1

(
dxi +

1

κ
δ0(dxi)

)
.

The Dirac masses in the prior encapsulate sparseness in the underlying signal and
an appropriate choice of Γ can promote smoothness. Overall, the prior encourages
smoothness, sparsity and local clustering of zero entries and non-zero entries. As
a concrete example, consider Γ = c1Λ + c2I where Λ is the graph Laplacian of the
pixel neighbourhood graph: the pixel indices i, j are identified with the vertices
V = {(i, j) : (i, j) ∈ {1, . . . , n}2} of the n × n -lattice with edges E = {{v, v′} :
(v, v′) = ((i, j), (i′, j′)) ∈ V 2, |i− i′|+ |j− j′| = 1} (using the set notation for edges).
Thus, edges connect a pixel to its vertical and horizontal neighbours. Then

λv,v′ =


degree(v) v = v′

−1 {v, v′} ∈ E
0 otherwise

and Λ = (Λk,l)k,l∈{1,...,n2} with Λ(i−1)n+j,(k−1)n+l = λ(i,j),(k,l), for i, j, k, l ∈ {1, . . . , n}.
This is a prior which is applicable in similar situations as the fused Lasso in

Tibshirani et al. (2005).

Numerical experiments: We assume that pixel (i, j) corresponds to a physical
location of size ∆1 ×∆2 centered at u(i, j) = u0 + (i∆1, j∆2) ∈ R2. To numerically
illustrate our approach, we use a heart shaped region given by xi,j = 5max(1 −
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h(u(i, j)), 0) where h : R2 → [0,∞) is defined by h(u1, u2) = u21 +
(

5u2
4
−
√
|u1|
)2

,
u0 = (−4.5,−4.1), n = 103 and ∆1 = ∆2 = 9/n. In the example, about 97% of the
pixels of the truth are black. The dimension of the parameter equals 106. Figure 4.4,
top-left, shows the observation Y with σ2 = 0.5 and the ground truth.

As the ordinary Sticky Zig-Zag sampler would require storing and ordering 1
million elements in the priority queue we ran the Sticky Zig-Zag sampler with sparse
implementation as detailed in Remark C.4.1. For this example, we have Ψ(x) =
ℓ(x) + 0.5x′Γx. We took c1 = 2, c2 = 0.1 in the definition of Γ and chose the
parameters κ1 = κ2 = · · · = κd = 0.15 for the smoothing prior. The reflection times
are computed by means of a thinning scheme, see Appendix C.5.2 for details. We
set the final clock of the Sticky Zig-Zag sampler to 500. Results from running the
sampler are summarized in Figure 4.4.

In Figure 4.5, the runtimes of the Sticky Zig-Zag sampler and Gibbs sampler are
shown (in a log-log scale) for different values of n2 (dimensionality of the problem),
the final clock was fixed to T = 500 (103 iteration for the Gibbs sampler). All the
other parameters are kept fixed as described above. The results agree well with the
scaling results of Table 4.1, rightmost column.

In Figure 4.6 we show t → EZig-Zag(t) and t → EGibbs(t) for t ranging from 0
to 5, in case n = 20. Both samplers were initialized at the posterior mean of the
Gaussian density proportional to Ψ (hence, in the full-model with no coordinates
set to 0). In this experiment, the Sticky Zig-Zag sampler outperforms the Gibbs
sampler considerably.

4.4.3 Sampling from a bimodal target

In this section we present an example where the Gibbs sampler has substantial
difficulties exploring the state-space, while the Sticky Zig-Zag sampler performs
well. Fix the functions µ(j) : R → R with j = 1, 2, 3 and grid points t0 < t1 <
· · · < tn. Let xi,j = µ(j)(ti). Rather than considering the statistical model with
observations Yi,j ∼ N (xi,j, σ

2) (corresponding to a standard linear regression) we
consider the model with observations Ȳi,j ∼ N (xi,j − xi−1,j, σ

2), corresponding to
observing increments of each µ(j) with error. The likelihood of {Ȳ1,j, . . . , Ȳn,j}j=1,2,3

is given by (we omit dependence on the observations in the notation)

ℓ(x) = C − 1

2σ2

n∑
j=1

n∑
i=1

(xi,j − xi−1,j − Ȳi,j)2, x = (x0, x1, . . . , xn),

for some constant C which does not depend on x. As the likelihood is invariant under
mapping each xi,j to xi,j+ cj, it is clear that there is no unique maximum likelihood
estimator. However, upon specification of a prior distribution, the posterior distri-
bution is well defined. We impose a spike-and-slab prior on x (equation (4.1)), with
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Figure 4.4: Top-left: observed 1 000 × 1 000 image of a heart corrupted with white
noise, with part of the ground truth inset. Top-right, left half: posterior mean
estimated from the trace of the Sticky Zig-Zag sampler (detail). Top-right, right half:
mirror image showing the absolute error between the posterior mean and the ground
truth in the same scale (color gradient between blue (0) and yellow (maximum
error)). Bottom: trace plot of 3 coordinates; on the left the full trajectory is shown
whereas on the right only the final 60 time units are displayed. The traces marked
with blue and orange lines belong to neighbouring coordinates (highly correlated)
from the center, the trace marked with green belongs to a coordinate outside the
region of interest.

each slab centered at zero and with variance σ2
0, thereby encouraging that flat parts

of the curves t 7→ µ(j)(t) are located at the horizontal axis. Suppose the ground
truth for µ := (µ(1), µ(2), µ(3)) is given by

µ(j)(ti) = cj +

{
0 if j ̸= 2

6ti + 2π cos(ti) if j = 2
, ti = 0,

1

n
2π, . . . ,

n− 1

n
2π, 2π.

for values cj ∈ R, j = 1, 2, 3. It is clear from the description that with this choice of
µ and prior, the blocks of coordinates {xi,1}i=0,1...,n and {xi,3}i=0,1...,n are likely to be
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Figure 4.5: Runtime comparison of the Sticky Zig-Zag sampler (green) and the Gibbs
sampler (red) for the example in Subsection 4.4.2. The horizontal axis displays the
dimension of the problem, which is n2. The vertical axis shows runtime in seconds.
The runtime is evaluated at n2 = 502, 1002, . . . , 6002 for the sticky Zig-Zag sampler
and at n2 = 402, 452, . . . , 702 for the Gibbs sampler. Both plots are on a log-log
scale. The dashed curves shows the theoretical scaling (including a log-factor for
the priority queue insertion): x 7→ c1x log(x) (green) and x 7→ c2x

3/2 (orange), with
c1 and c2 chosen conveniently.

Figure 4.6: Squared error of the marginal inclusion probabilities (Equation 4.13)
c → Ezig-zag(c) (red) and t → Egibbs(c)(green) where c represent the computational
time in seconds; right-panel: zoom-in near 0. Here the dimension of the problem is
n2 = 400.

0 and are mutually independent from the block {xi,2}i=0,1...,n and therefore acting as
‘background’ noise under the posterior (similarly to the black pixel in Section 4.4.2).
The block {xi,2}i=0,1...,n will present bi-modality under the posterior as t → µ(2)(t)
has 2 flat parts and the corresponding coefficients of each flat part are individually
encouraged to concentrate aposteriori at the horizontal axis. Moreover, traversing
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from one mode to the other mode requires many parameters to be changed from zero
to nonzero (and vice versa) simultaneously. The Gibbs sampler proposes a new (sub-
)model uniformly at random, i.e., without using information from the data, and has
difficulties to explore the posterior in this example. In contrast, this example shows
that the Sticky Zig-Zag uses data information in exploring the models and tends
to set those variables to zero which are small under the model currently explored
(compare to the discussion in Section 4.3).

Numerical experiment: We set n = 39 and simulated data Ȳi,j with σ = 0
(hence Ȳi,j = µ(j)(ti) − µ(j)(ti−1)) for all i = 1, 2, . . . , n and j = 1, 2, 3, whereas in
the likelihood we took σ = 0.6. The variance of the prior slabs are set to σ2

0 = 6.0.
The dimension of the problem is 3(n + 1) = 120. Figure 4.7 shows the results
for the Sticky Zig-Zag sampler (with T = 5 × 105) and the Gibbs sampler (with
7 × 104 iterations) which have been simulated for a similar computing time with
burn-in of the first 0.3 segment of the trajectory for the Sticky Zig-Zag (first 0.3
fraction of iterations for the Gibbs sampler). Both algorithms were initialized at
x(0) ∼ N3(n+1)(0, I).

4.4.4 Logistic regression

Suppose {0, 1} ∋ Yi | x ∼ Ber(ψ(xTai)) with ψ(u) = (1 + e−u)−1. ai ∈ Rd denotes
a vector of covariates and x ∈ Rd a parameter vector. Assume Y1, . . . , YN are
independent, conditionally on x. The log-likelihood is equal to

ℓ(x) =
N∑
j=1

(
log
(
1 + e⟨aj ,x⟩

)
− yj⟨aj, x⟩

)
We assume a spike-and-slab prior of (4.1) with zeromean Gaussian slabs and (large)
variance σ2

0. Then the posterior can be written as in Equation (4.2), with Ψ and κ
as in Equation (4.3).

Numerical experiments: We consider two categorical features with 30 levels
each and 5 continuous features. For each observation, an independent random level
of each discrete feature and a random value of the continuous features, N (0, 0.12)
is drawn. Let the design matrix A ∈ RN×d be the matrix where the i-th row is
the vector ai. A includes the levels of the discrete features in dummy encoding
and the interaction terms between them also in dummy encoding scaled by 0.3 (960
columns), and the continuous features in the final 5 columns. This implies that the
dimension of the parameter equals d = 965. We then generate N = 50d = 48250
observations using as ground truth sparse coefficients obtained by setting xi = ziξi

where zi
i.i.d.∼ Bern(0.1) and ξi

i.i.d.∼ N (0, 52), where {zi} and {ξi} are independent.
We run the sticky ZigZag with subsampling and bounding rates derived in Ap-

pendix C.5.1. We chose w1 = w2 = · · · = wd = 0.1 and σ2
0 = 102 and ran the
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Figure 4.7: Visualization of the output of model with Gaussian increments. Top:
Sticky Zig-Zag sampler. Bottom: Gibbs sampler. Left: trace of the vector
({xi,1}i=0,1,...,n, {xi,2}i=0,1,...,n, {xi,3}i=0,1,...,n) (the color gradient from yellow to blue
indicates the sampling time). Center: (x48-x49) phase portrait (for clarity, we sub-
sampled points of the Zig-Zag trajectories at every 250 unit times and sub-sampled
points of the Gibbs sampler at every 70 iterations). Right: traces of x48(blue) and
x49(red). Here, the dimension of the problem is 3(n + 1) = 120. Here it is clear
that, with the given computational budget, the Gibbs sampler fails to mix between
different sub-models.

Sticky Zig-Zag sampler for 100 time-units. The implementation makes use of a
sparse matrix representation of A, speeding up the computation of inner products
⟨aj, x⟩. Figure 4.8 reveals that while perfect recovery is not obtained (as was to be
expected), most nonzero/zero features are recovered correctly.

In a second numerical experiment we compare the computing time of the Sticky
Zig-Zag sampler and Gibbs sampler (as proposed in Polson, Scott, and Windle 2013)
as we vary the number of observations (N). In this case, we reduce the dimension
of the parameter by restricting to 2 categorical variables, including their pairwise
interactions, augmented by 3 “continuous” predictors (leading to the parameter vec-
tor x ∈ R9). For each sample size N we ran the Gibbs sampler for 1000 iterations
and the Sticky Zig-Zag sampler for 1000 time units. Our interest here is not to
compare the computing time of the samplers for a fixed value of N , but rather the
scaling of each algorithm with N . Figure 4.9 shows that the computing time for the
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Sticky Zig-Zag sampler is roughly constant when varying N . On the contrary, the
computing time increases linearly with N for the Gibbs sampler. This is consistent
with the theoretical scaling results presented in Table 4.1 (rightmost column). We
remark that qualitatively similar results would be obtained if we would have fixed
the number of iterations of the Gibbs sampler and endtime of the Zig-Zag sampler
to different values.

Figure 4.8: Results for the logistic regression
coefficients derived with the Sticky Zig-Zag
sampler with subsampling. Description as in
caption of Figure 4.2. The dimension of this
problem is d = 965.

Figure 4.9: Logistic regression ex-
ample: computing time in sec-
onds versus number of observa-
tions. Solid red line: Gibbs sam-
plers with 103 iterations. Solid
blue line: Sticky Zig-Zag sam-
plers with subsampling ran for
103 time units. The dashed lines
correspond to the scaling results
displayed in Table 4.1. Here, the
dimension of the problem is fixed
to d = 9.

4.4.5 Estimating a sparse precision matrix

Consider
Yi | X

i.i.d.∼ Np
(
0, (XX ′)−1

)
, i = 1, 2, . . . , N

for some unknown lower triangular sparse matrix X ∈ Rp×p. We aim to infer the
lower-triangular elements of X which we concatenate to obtain the parameter vector



CHAPTER 4. STICKY PDMPS FOR VARIABLE SELECTION 99

x := {Xi,j : 1 ≤ j ≤ i ≤ p} ∈ Rp(p+1)/2. This class of problems is important as the
precision matrix XX ′ unveils the conditional independence structure of Y , see for
example Shi, Ghosal, and Martin (2021), and reference therein, for details.

We impose a prior measure on x of the product form µ0(dx) =
⊗p

i=1

⊗i
j=1 µi,j(dxi,j)

where

µi,j(dxi,j) =

{
πi,j(xi,j)1(xi,j>0)dxi,j i = j,

wπi,j(xi,j)dxi,j + (1− w)δ0(dxi,j) i ̸= j,

and πi,j is the univariate Gaussian density with mean ci,j ∈ R and variance σ2
0 > 0.

This prior induces sparsity on the lower-triangular off-diagonal elements of X
while preserving strict positive definiteness of XX ′ (as the elements on the diagonal
are restricted to be positive).

The posterior in this example is of the form

µ(dx) ∝ exp(−Ψ(x))
( p⊗

i=1

i−1⊗
j=1

(dxi,j +
1

κi,j
δ0(dxi,j))

) p⊗
k=1

dxk,k

with

Ψ(x) =
1

2

N∑
i=1

Y ′
iXX

′Yi −N
p∑
i=1

log(xi,i) +

p∑
i=1

i−1∑
j=1

(xi,j − ci,j)2

2σ2
0

+

p∑
i=1

(xi,i − ci,i)2

2σ2
0

and κi,j = πi,j(0)w/(1 − w). In particular, the posterior density is not of the form
as given in Equation (4.2), as the diagonal elements cannot be zero and have a
marginal density relative to the Lebesgue measure, while the off-diagonal elements
are marginally mixtures of a Dirac and a continuous component. Notice that, for
any i = 1, 2, . . . , p, as xi,i ↓ 0, exp(−Ψ(x)) vanishes and ∇Ψ(x) → ∞. This makes
the sampling problem challenging for gradient-based algorithms.

Numerical experiments: We apply the Sticky Zig-Zag sampler where the
reflection times are computed by using a thinning and superposition scheme for
inhomogeneous Poisson processes, see Appendix C.5.3 for the details.

We simulate realisations y1, . . . , yN with precision matrix XX ′ a tri-diagonal ma-
trix with diagonal (0.5, 1, 1, . . . , 1, 1, 0.5) ∈ Rp and off-diagonal (−0.3,−0.3, . . . ,−0.3) ∈
Rp−1. In the prior we chose σ2

0 = 10 and ci,j = 1(i=j) and for 1 ≤ j ≤ i ≤ p and
w = 0.2.

We fixed N = 103 and p = 200 and ran the Sticky Zig-Zag sampler for 600 time-
units. We initialized the algorithm at x(0) ∼ Np(p+1)/2(0, I) and set a burn-in of 10
unit-time. The left panel of Figure 4.10 shows the error between XX ′ (the ground
truth) and X X

′ where X is posterior mean of the lower triangular matrix estimated
with the sampler. The error is concentrated on the non-zero elements of the matrix
while the zero elements are estimated with essentially no error. The right panel
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of Figure 4.10 shows the trajectories of two representative non-zero elements of X.
The traces show qualitatively that the process converges quickly to its stationary
measure. In this case, comparisons with the Gibbs sampler are not possible as there
is no closed form expression for the Bayes factors of Equation (4.12).

Figure 4.10: Left: error between the true precision matrix and the precision matrix
obtained with the estimated posterior mean of the lower-triangular matrix (colour
gradient between white (no error) and black (maximum error)). Right: traces of
two non-zero coefficients (x1,1 in red and x2,1 in pink) of the lower triangular matrix.
Dashed green lines are the ground truth. Here, the dimension of each vector Yi is
p = 200 and the dimension of the problem is p(p+ 1)/2 = 20 100.

4.5 Discussion

The sticky Zig-Zag sampler inherits some limitations from the ordinary Zig-Zag
sampler:

Firstly, if it is not possible to simulate the reflection times according to the
Poisson rates in Equation (4.8), the user needs to find and specify upper bounds
of the Poisson rates from which it is possible to simulate the first event time (see
Appendix C.4.2 for details). This procedure is referred to as thinning and remains
the main challenge when simulating the Zig-Zag sampler. Furthermore, the efficiency
of the algorithm deteriorates if the upper bounds are not tight.
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Secondly, the Sticky Zig-Zag sampler, due to its continuous dynamics, can expe-
rience difficulty traversing regions of low density, in particular it will have difficulty
reaching 0 in a coordinate if that requires passing through such a region.

Finally, the process can set to 0 (and not 0) only one coordinate at a time, hence
failing to be ergodic for measures not supported on neighbouring sub-models. For
example, consider the space R2 and assumes that the process can visit either the
origin (0, 0) or the full space R2 but not the coordinate axes {0} × R ∪ R × {0}.
Then the process started in R2 hits the origin with probability 0, hence failing to
explore the subspace (0, 0).

In what follows, we outline promising research directions deferred to future work.

4.5.1 Sticky Hamiltonian Monte Carlo

The ordinary Hamiltonian Monte Carlo (HMC) process as presented by Neal et al.
(2011) can be seen as a piecewise deterministic Markov processes with deterministic
dynamics equal to

ẋ = v, v̇ = −∇Ψ(x) (4.16)

where ∇Ψ is the gradient of the negated log-density relative to the Lebesgue mea-
sure. At random exponential times with constant rate, the velocity component is
refreshed as v ∼ N (0, I) (similarly to the refreshment events in the bouncy particle
sampler). By applying the same principles outlined in Section 4.2, such process can
be made sticky with Equation (4.2) as its stationary measure.

Unfortunately, in most cases, the dynamics in (4.16) cannot be integrated an-
alytically so that a sophisticated numerical integrator is usually employed and a
Metropolis-Hasting steps compensates for the bias of the numerical integrator (see
Neal et al. 2011 for details). These two last steps makes the process effectively a
discrete-time process and its generalization with sticky dynamics is not anymore
trivial.

4.5.2 Extensions

The setting considered in this work does not incorporate some relevant classes of
measures:

• Posteriors given by prior measures which freely choose prior weights for each
(sub-)model. This limitation is mainly imputed to the parameter κ = (κ1, κ2, . . . , κd)
which here does not depend on the location component x of the state space.
While the theoretical framework built can be easily adapted for letting κ de-
pend on x, it is currently unclear to us the exact relationship between κ and
the posterior measure in this more general setting.
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• Measures which are not supported on neighbouring sub-models are also not
covered here. To solve this problem, different dynamics for the process should
be developed which allow the process to jump in space and set multiple coor-
dinates to 0 (and not 0) at a time.



Chapter 5

Methods and applications of PDMP
samplers with boundary conditions

5.1 Overview

5.1.1 Introduction

Markov Chain Monte Carlo (MCMC) methods are central tools used to derive
asymptotically exact posterior measures in Bayesian inference and consist of sim-
ulating Markov chains which converge to the desired target measure. The perfor-
mance of the method is determined by the convergence property of the chain and
the computational cost of simulating it. Recent attention has been drawn by Monte
Carlo methods based on continuous-time piecewise deterministic Markov processes
(PDMP samplers), see Vanetti et al. (2017) for an overview. PDMP samplers are
non-reversible Markov processes endowed with momentum and characterized by de-
terministic dynamics and a collection of random events. This results in a class of
processes which have good mixing (fast convergence to the target measure, see for
example Diaconis, Holmes, and Neal 2000), have lower asymptotic variance (see for
example Chen and Hwang 2013), and can be simulated exactly in continuous time
(up to floating point precision). Another attractive feature of PDMP samplers is
that they allow to substitute the gradient of the target log-density with an unbi-
ased estimate of it without introducing bias. This technique is refereed as exact
subsampling and leads to efficient simulations in difficult scenarios e.g. it has been
exploited in regression problems with large sample size (Bierkens, Fearnhead, and
Roberts 2019, Bierkens et al. 2020, Bierkens et al. 2023) or for high dimensional
problems with intractable densities (Bierkens et al. 2021).

103
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5.1.2 Contribution

In this work

• We give a simple sufficient condition at the boundary in terms of skew-detailed
balance for PDMP samplers to target efficiently measures with densities which
are discontinuous over the boundary and measures supported on a constrained
space. The framework considered allows the process to speed-up and to jump
in space upon crossing a boundary. We demonstrate that every coordinate can
be endowed by sticky points for targeting measures which are also mixtures of
continuous and atomic components.

• We apply PDMP samplers with boundary conditions in two examples: for
sampling the latent space of infected times with unknown infected population
size in the SIR model with notifications and for sampling the invariant measure
in hard-sphere models.

5.1.3 Related literature

Our approach generalizes Bierkens et al. (2018) which defines the Bouncy Particle
Sampler for target densities on restricted domains. The use of speed-up functions
was initially considered in Vasdekis and Roberts (2021) for sampling efficiently heavy
tailed distributions with PDMP samplers. We extend speed-up functions by con-
sidering piecewise discontinuous functions. We combine our framework with the
sticky events presented in Bierkens et al. 2023 for targeting measures which are also
mixture of continuous and atomic component. The framework considered allows to
define a boundary which acts as teleportation portals, allowing the process to jump
in space along the given boundary. The teleportation portals defined in this work
are reminiscent to the approach presented in Moriarty, Vogrinc, and Zocca (2020)
for sampling measures in a non-convex and disconnected space with a Metropolis-
Hastings algorithm. Another approach based on Hamiltonian Monte Carlo (HMC)
sampler for sampling discontinuous densities is given by Nishimura, Dunson, and
Lu (2020). In contrast with HMC, the PDMPs presented here can be simulated in
continuous time, without relying on discretization methods.

A relevant related work is given by Chevallier et al. (2021). In this work, PDMPs
for piecewise-smooth densities are presented together with a detailed and rigorous
theory for PDMPs with boundary conditions. Our work and this paper complement
each other as our focus is on applications of these methods.
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5.2 PDMP samplers with boundaries

In this section, we present an overview of PDMP samplers with boundary conditions,
we review the known sufficient conditions which allow the process to target the
smooth components of the density and establish general conditions at the boundary
based on skew-detailed balance to target the discontinuity of the density at the
boundary and to define teleportation portals.

We consider the problem of sampling from a measure µ on Rd = ⊔i∈KΩi where
Ωi, i ∈ K are disjoint subsets of Rd indexed by a countable set K and µ is of the
form

µ(dx) = C exp(−Ψ(x))dx (5.1)

for some constant of proportionality C and a function Ψ(x) which is assumed to be
differentiable on the interior of each Ωi, i ∈ K. For some region A ⊂ Rd, Ψ(x) can
be infinity for x ∈ A, corresponding to a region which is not supported by µ.

We assume that each boundary ∂Ωi, i ∈ K is a (d − 1)-dimensional piecewise-
smooth manifold. For every point x ∈ ∂Ωj, j ∈ K, we denote Ψ(x, j) = limt↓0Ψ(γj(t))
where t→ γj(t) is any curve in Ωj with γj(0) = x and assume that these limits exist
and do not depend on the curve γj. We denote the corresponding outward normal
vector by n(x, j). With this setting, for x ∈ {∂Ωj ∩ ∂Ωi, i, j ∈ K} we have that
n(x, i) = −n(x, j) and if Ψ is discontinuous at that point, then Ψ(x, i) ̸= Ψ(x, j).

Next, we build PDMP samplers which can target µ.

5.2.1 Building blocks of PDMPs with boundaries

Denote the space of possible velocities of the process by V ⊂ Rd and, for all i ∈ K,
the augmented spaces E◦ = (

⊔
i∈K Ωi \ ∂Ωi) × V and ∂E = (

⋃
i∈K ∂Ωi) × V , with

elements given by the tuple z = (x, v). PDMPs takes values in the state space

E =
(
E◦ ⊔ ∂E−)

with
∂E− = {(x, v) ∈ ∂E : ⟨v, n(x)⟩ < 0} (5.2)

and boundary
∂E+ = {(x, v) ∈ ∂E : ⟨v, n(x)⟩ > 0}. (5.3)

Note that ∂E+ is the set of position and velocity for which the process reaches the
boundary, while the elements of ∂E− are those for which the process leaves the
boundary.

PDMPs are characterized by a finite collection of random events and determin-
istic dynamics in between those events as follows:
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• Let ϕ : E × R → E be the deterministic flow of the process with differential
form

dϕ(z0, t)

dt
= (vs(ϕx(z0, t)), 0), ϕ(z0, 0) = z0 (5.4)

with ϕx being the position component of ϕ and for a speed-up function s.

The dynamics in equation (5.4) generate straight lines in the position coordi-
nate with speed proportional to the function s : Rd → R+. Generalization to
dynamics other than straight lines are possible, for example one might consider
PDMPs with Hamiltonian dynamics invariant to Gaussian measures (Bierkens
et al. 2020).

• A collection of random event times τ1, τ2, . . . determines the times where the
process changes velocity component. These are computed recursively and are
determined by a rate function λ : E → R+. The first event time τ1 of the pro-
cess starting at z0 ∈ E coincides with the first event time of an inhomogeneous
Poisson process with rate t→ λ(ϕ(z0, t)) and therefore satisfies

P(τ1 > t) = exp

(
−
∫ t

0

λ(ϕ(z0, s))ds

)
. (5.5)

Hereafter, we write τ1 ∼ IPP(t→ λ(ϕ(z0, t))).

• Two kernels Q∂E+ ,QE determine the behaviour of the process respectively
when approaching the boundary and at random event times. The two kernels
are combined in a Markov kernel Q : E ⊔ ∂E+ × B(E)→ [0, 1] defined as

Q(z, ·) =

{
QE(z, ·) z ∈ E
Q∂E+(z, ·) z ∈ ∂E+.

Similar to Vasdekis and Roberts (2021), the speed-up function s(x) is allowed
to generate exploding dynamics, that is dynamics for which the process escape to
infinity in finite time. This will not be problematic, as long as we make sure that a
random event switches velocity before the process escapes to infinity. This condition
is reflected by the following assumption:

Assumption 5.2.1. (speed growth condition, Vasdekis and Roberts 2021, Assump-
tion 3.1) lim∥x∥→∞ exp(−Ψ(x))s(x) = 0.

We assume a speed-up function s(x) of the form

s(x) = sc(x)sj(x)

where sc(x) is continusly differentiable while sj(x) is piecewise constant with jumps
at the boundaries ∂Ω.



CHAPTER 5. PDMPS WITH BOUNDARY CONDITIONS 107

A necessary condition for PDMPs to target the measure µ ⊗ ρ, where ρ is the
marginal invariant measure of the velocity component while µ is the target measure
we are interested to sample from, is that, for functions in

A = {f ∈ Cc(E); t→ f(ϕ(z, t)) is absolutely continuous ∀z ∈ E;

f(z) =

∫
∂E−

f(z′)Q∂E+(z, dz′), ∀z ∈ ∂E+} (5.6)

the following equality holds ∫
E

Lf d(µ⊗ ρ) = 0 (5.7)

where L is the extended generator of the process. For PDMPs, L is known and its
expression is given in Appendix D.1. For a more detailed derivation of the invariant
measure of PDMP samplers with boundary conditions, see Chevallier et al. (2021).

Next we impose sufficient conditions for (5.7) to hold. In particular we will see
that conditions on different components of PDMPs serve to target different compo-
nents of the measure in equation (5.1). In particular, in Section 5.2.2, we present
standard conditions on (λ, sc,QE◦) imposed for ordinary PDMPs (see for example
Vasdekis and Roberts 2021) which allow the process to target the differentiable part
of the density, while in Section 5.2.3, new conditions on (sj,Q∂E+) are imposed
which allow to define teleportation portals and to target discontinuous densities.

Remark 5.2.1. (Extensions with sticky components) The methodology can be ex-
tended for targeting a measure on Rd which has a piecewise-smooth density relative
to a reference measures which is a mixture of Dirac and Lebesgue components of the
form

d∏
i=1

(
dxi +

1

κi
δci(dxi)

)
for some elements ci ∈ R, κi > 0, i = 1, 2, . . . , d. This is achieved by combining
the behaviour at discontinuity with sticky events which are triggered when each co-
ordinate xi hits ci and during which the coordinate xi sticks at ci for an exponential
time with rate κi. After this time, the dynamics of that coordinate are restored. The
sticky components are introduced and presented in detail Bierkens et al. (2023).

5.2.2 Review of sufficient conditions on the interior

For our PDMP samplers the kernel QE acts by only changing the velocity com-
ponent, while leaving the position unchanged. Hence, with abuse of notation, we
let QE : E × B(V) → [0, 1] be a kernel acting only on the velocity component.
Throughout, we distinguish between two different classes of events: reflections and
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refreshments, which are defined by rates and kernels (λb,QE,b) and (λr,QE,r), re-
spectively. The former ensures that the process targets the right measure while the
latter ensures ergodicity of the process. Then, for z ∈ E, λ(z) = λr(z) + λb(z) and

QE(z, ·) =
λr(z)

λr(z) + λb(z)
QE,r(z, ·) +

λb(z)

λr(z) + λb(z)
QE,b(z, ·).

Next, we makes assumptions on both the refreshment and the reflection events.
Recall that the desired target measure of the process takes the form C exp(−Ψ(x))dxρ(dv),
for some constant of normalization C.

Assumption 5.2.2. (Conditions on refreshments) Let λr(x, v) ≥ 0 be a positive
function which does not depend on its second argument. Furthermore, let QE,r be
invariant to ρ, i.e.∫

v∈V
ρ(dv)QE,r((x, v), dv′) = ρ(dv′), ∀x ∈ {y ∈ Rd : (y, v) ∈ E}.

It is customary for PDMP samplers to set QE,r((x, v), ·) = ρ(·) and a fixed rate
λr(x, v) = c ≥ 0.

Assumption 5.2.3. (Conditions on reflections) For all (x, v) ∈ E and for a PDMP
with continuous speed-up function sc(x), let λb : E → R+ satisfy

λb(x, v)− λb(x,−v) = ⟨v,A(x)⟩

with
A(x) = sc(x)∇Ψ(x)−∇sc(x).

Let QE,b satisfy∫
v∈V

ρ(dv)λ(x, v)QE,b((x, v), dv′) = λ(x,−v′)ρ(dv′), ∀x ∈ {y ∈ Rd : (y, v) ∈ E}.

(5.8)

The next proposition shows that if we make the assumptions above and compute
the left-hand side of equation (5.7), we are left with an integral over ∂E.

Proposition 5.2.2. Consider a PDMP sampler satisfying Assumption 5.2.2-5.2.3.
Then∫

E

Lfd(µ⊗ ρ) =
∫
(x,v)∈∂E

f(x, v)⟨n(x), v⟩sj(x)µ(dx)ρ(dv), f ∈ A, (5.9)

where L is the extended generator of the process and A is given in (5.6).

Proof. See Appendix D.1.1.

Next, we will show that the right hand-side of equation (5.9) can be made equal
to 0 by detailing the behaviour of PDMPs at the boundary ∂E+.
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5.2.3 Sufficient conditions at the boundary

Here, we state a fairly general condition for the kernel Q∂E+ which guarantees that
the process is invariant at the boundary to the target density given in equation (5.1).

Recall that a map S : X → X is an involution if S ◦ S = I, where I stands
for the identity map. We now give an important definition, followed by the main
assumption made at the boundary:

Definition 5.2.4. (Skew detailed balance condition) For an involution S : X → X ,
a kernel Q : (X ,B(X ))→ [0, 1] satisfies the skew detailed balance condition relative
to a measure µ on X , if

Q(z, dz′)µ(dz) = Q(S−1(z′),S−1(dz))µ(S−1(dz′)).

Assumption 5.2.5. Let Q∂E+ : ∂E+×B(∂E−)→ [0, 1] satisfy the skew detailed bal-
ance condition relative to the signed measure ν(dx, dv) = ⟨n(x), v⟩sj(x)µ(dx)ρ(dv)
defined on ∂E with involution S(x, v) = (x,−v).

Notice that, contrary to the ordinary application of skew detailed balance, ν is
a signed measure and ν(dz) = −ν(S−1(dz)).

Proposition 5.2.3. Consider a PDMP sampler satisfying Assumption 5.2.2-5.2.3-
5.2.5. Then µ⊗ ρ is a stationary measure of the process.

Proof. If µ ⊗ ρ is a stationary measure of the PDMP, then we must have that∫
Lfd(µ⊗ρ) = 0, f ∈ A. By Proposition 5.2.2 and the boundary condition in (5.6),

we have that∫
E

Lfd(µ⊗ ρ) =
∫
z∈∂E+

∫
p∈∂E−

Q∂E(z, dp)f(p)ν(dz)

+

∫
∂E−

f(z)ν(dz)

=

∫
p∈∂E−

f(p)

∫
z∈∂E+

Q∂E+(z, dp)ν(dz) (5.10)

+

∫
∂E−

f(z)ν(dz)

=

∫
∂E−

f(p)ν(S(dp)) +
∫
∂E−

f(z)ν(dz) = 0 (5.11)

where in (5.10) we applied Fubini for interchanging integrals and in (5.11) we
used Assumption 5.2.5.
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For simplicity, in this article, we focus on specific transition kernels at the bound-
ary which satisfy Assumption 5.2.5 and will be used for the two main applications
in Section 5.3. The transition kernels considered take the form

Q∂E+((x, v), d(y, w)) = α(x, y)T (x, dy)R1((x, v), y, dw)

+

(
1−

∫
α(x, y)T (x, dy)

)
δx(dy)R2((x, v), dw).

(5.12)

In this setting, the process, upon hitting a boundary (x, v) ∈ ∂E+, jumps to (y, w)
with y ∼ T (x, ·) and w ∼ R1((x, v), y, ·) with probability α(x, y) and reflects at
the boundary otherwise, by setting a new velocity according to q ∼ R2((x, v), ·),
see Algorithm 6 for its implementation. We now specify in details each term in
equation (5.12).

The kernel T : ∂Ω × B(∂Ω) → [0, 1] acts on the boundary of the position com-
ponent of the process and such that for every x ∈ ∂Ω, T (x, )̇ is absolutely con-
tinuous with respect to T (y, ·), almost surely for every y ∼ T (x, ·). α(x, y) =
min(1, R(x, y)) and R(·, ·) is the Radon-Nikodym derivative on the product space
(∂Ω× ∂Ω,B(∂Ω× ∂Ω)) defined as

R(x, y) =
ν(dy)T (y, dx)
ν(dx)T (x, dy)

(5.13)

where ν(dx) = exp(−Ψ(x))sj(x)dx. Finally, for every (x, v) ∈ ∂E+ and y ∈ T (x, ·),
we define two kernels acting on the velocity components: R1 : {(x, v) ∈ ∂E+}×{y ∈
∂Ω} × B(∂V−(y)) → [0, 1] and R2 : {(x, v) ∈ ∂E+} × B(∂V−(x)) → [0, 1], with
∂V−(x) = {v ∈ V : (x, v) ∈ ∂E−}, which satisfy

⟨n(x), v⟩ = −⟨n(y),W ⟩, a.s. for W ∼ R1((x, v), y, ·)

and
⟨n(x), v⟩ = −⟨n(x),W ⟩, a.s. for W ∼ R2((x, v), ·).

Remark 5.2.4. The jump component of the speed-up function sj can be tuned in
order to reduce the probability to reflect at the boundary (see equation (5.13)) and
in some cases can be chosen to completely off-set that probability so that the process
always crosses the boundary. In this case, there is no need to specify a reflection
rule of the velocity at the boundary. This is key whenever there is no good choice
to reflect the velocity at the boundary rather than flipping completely the velocity
vector, hence generating undesirable back-tracking effects of the underlying Markov
process.

Next, we give two concrete examples of PDMP samplers with boundaries that
will be used in the applications of Section 5.3.
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Algorithm 6 Behaviour of PDMPs at the Boundary
For (x, v) ∈ ∂E+:

• Propose a point y ∈ ∂Ω as y ∼ T (x, ·).

• Simulate u ∼ Unif([0, 1]).

• If α(x, y) > u, set the new state to (x′, v′) = (y, w) with w ∼ R1((x, v), y, ·).

• Otherwise set the state (x′, v′) = (x, q) with q ∼ R2((x, v), ·).

• return the new state (x′, v′).

5.2.4 Example: d-dimensional Zig-Zag sampler for discontin-
uous densities

The d-dimensional Zig-Zag sampler is a PDMP sampler defined in the augmented
space of position and velocity Rd × {−1,+1}d. For the process in the state z ∈ E,
the first random reflection time is given by τ = min(τ1, τ2, . . . , τd) where for i =
1, 2, . . . , d, τi ∼ IPP(t→ λi,b(ϕ(z, t))) and

λi,b(x, v) = max(vi(sc(x)∂xiΨ(x)− ∂xisc(x)), 0). (5.14)

At random time τ , the velocity component changes as v → v[k;−vk] where k =
argmin(τ1, τ2, . . . , τd). For more details on the standard Zig-Zag sampler see Bierkens
et al. (2018) and Vasdekis and Roberts (2021).

Here we extend the process for target densities which are discontinuous at the
boundary as given by equation (5.1). The invariant measure of the process is then
µ(dx) × Unif({−1,+1}d). We assume that for every (x, i) ∈ ∂Ωi, i ∈ K there is
a unique j ∈ K such that the point (x, j) ∈ ∂Ωj. This assumption is similar to
Chevallier et al. (2021, Assumption 1, (iii)).

We link those points by the function κ : ∂Ω → ∂Ω with κ(x, i) = (x, j). We set
T ((x, i), ·) = δκ(x,i)(·). As in this case n(x, i) = −n(κ(x, i)) we set

R1((x, i, v), κ(x, i), dw) = δv(dw)

and R2((x, i, v), ·) = δv′(·) with

v′ℓ =

{
−vℓ nℓ(x) ̸= 0,

vℓ nℓ(x) = 0.

The process, upon hitting a boundary (x, i) ∈ ∂Ω, crosses the boundary with prob-
ability α((x, i), κ(x, i)) without changing the velocity component and reflects oth-
erwise by switching the sign of only the components which are not orthogonal to
n(x, i).
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5.2.5 Example: d-dimensional Bouncy Particle Sampler with
teleportation on constrained spaces

The d-dimensional Bouncy Particle Sampler (BPS) is defined in the space of position
and velocity Rd × Rd. The velocity component has a marginal invariant measure
equal to ρ(·) = Nd(0, I). For an initial state z ∈ E, the first random reflection time
is distributed as τ ∼ IPP(t→ λb(ϕ(z, t))) with

λb(x, v) = max(⟨v,∇Ψ(x)⟩sc(x)− ⟨v,∇sc(x)⟩, 0).

At reflection time, the process changes velocity according to the kernelQE,b((x, v), ·) =
δRΨ(x,v) for

RΨ(x, v) = v − 2
⟨v,Ψ(x)⟩
∥Ψ(x)∥

Ψ(x).

At random exponential times with rate λr(x, v) = c > 0, the process refreshes its
velocity by drawing a new velocity v′ ∼ ρ. See Bouchard-Côté, Vollmer, and Doucet
(2018) for an overview of the standard BPS. In this example, we extend the BPS
for targets of the form

µ(dx) = exp(−Ψ(x))1Adx (5.15)

for a set A with a (d−1) piecewise-smooth boundary ∂A and a function Ψ ∈ C1(Rd).
This corresponds to a smooth target density on a constrained space given by the set
A.

While the standard BPS for constrained spaces as presented in Bierkens et al.
(2018) would reflect the velocity every time the process reaches the boundary ∂A,
in our setting, the kernel T : ∂Ω × B(∂Ω) → [0, 1], for some ∂Ω ⊇ ∂A allows the
process to jump in space when hitting ∂A, effectively creating teleportation portals.
To that end, we set R2(z, ·) = δRn(z)(·) with

Rn(x, v) = v − 2
⟨v, n(x)⟩
∥n(x)∥

n(x) (5.16)

while R1((x, v), y, ·) = δv′(·) with v′(x, y, v) = U(n(x),−n(y))v. Here, for any v ∈
Rd, U : Rd × Rd → SO(d) is a measurable function taking values in the rotation
group SO(d) := {U ∈ Rd×d : U ′U = 1, det(U) = 1}, such that |U(q, w)v| = |v| and
⟨v, q⟩ = ⟨U(q, w)v, w⟩, for every q, w ∈ Rd.

This framework allows the process to make jumps in ∂Ω and to visit disconnected
regions or distant regions which are difficult to reach with continuous paths. The
problem of sampling from a conditional measure as in equation (5.15) arises for
example in the simulation of extreme events. In this case, standard Markov Chain
Monte Carlo methods can fail to explore the full measure because of the inability of
the chain to traverse subsets of measure (close to) 0.
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5.3 Applications

In this section we motivate our work by applying the PDMPs with boundaries
as described in Section 5.2 for sampling the latent space of infection times in the
SIR model with notifications and for sampling the invariant measure of hard-sphere
problems.

5.3.1 SIR model with notifications

The model presented here is inspired by the setting established in Jewell et al.
(2009) for modelling the spread of infectious disease in a population. Here we
combine the PDMP for piecewise smooth densities with the framework presented
in Bierkens et al. (2023) for adding/removing efficiently in continuous time occult
infected individuals (infected individuals which have not been notified up to the
observation time) by means of introducing sticky events which are events after which
the process sticks to lower dimensional hyper-planes for some random time.

Consider an infection process {Y (t) ∈ {S, I,N,R}d : 0 < t < T} on a population
of size d. Each coordinate Yi(t) takes values

yi(t) =


S if i is susceptible at time t,
I if i is infected at time t,
N if i is notified at time t,
R if i is removed at time t.

Each coordinate-process (Yi(t))t>0 is allowed to change state in the following direc-
tion: S → I → N → R.

For every individuals on i = 1, 2, . . . , d, define

τi = inf{t > 0: yi(t) = I}, τ ⋆i = inf{t > 0: yi(t) = N}, τ ◦i = inf{t > 0: yi(t) = R}

respectively for the first infection time, notification time, removing time of individual
i with the convention that τ ⋆i (τ ◦i ) =∞ if τ ⋆i (τ ◦i ) ≥ T . We observe τ ⋆ (the notification
times) and τ ◦ (the removing times) and we are interested on recovering the minimum
between the infection times and the observation time T : x := (xi = τi ∧ T : i =
1, 2, . . . , d). We this convention, xi = T when an individual i has not been infected
before observation time T , hence is susceptible at observation time.

For every i = 1, 2, . . . , d, individual i changes its state from S to I accord-
ing to an inhomogeneous Poisson process with rate t → βi(y(t)) for a function
βi : {S, I, R,N}d → R+ usually referred as the infectious pressure on i. As {y(t) : 0 ≤
t ≤ T} can be recovered by knowing (x, τ ⋆, τ ◦), we write βi(x) := βi(y(xi)) (with
this notation, we omit the dependence of βi(x) on (τ ⋆, τ ◦) which are known and
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fixed throughout). For each pair (i, j) with i ̸= j, define the infection rate

βi,j(x) =


Ci,j, xi < xj ≤ τ ⋆i
γCi,j τ ⋆i < xj ≤ τ ◦i
0 otherwise,

where γ ∈ (0, 1) is the factor of reduction of the infectivity after notification time and
Ci,j := d(i, j)ϑiξj is a measure of infectivity of i towards j. Here d : {1, 2, . . . , d}2 →
R+ is an inverse distance metric between two individuals and ϑi, ξi > 0 are seen
respectively as the infectivity and susceptibility baselines of individual i (see Jewell
et al. 2009 for more details). The infectious pressure on individual i is given by

βj(x) =
∑
i ̸=j

βi,j(x).

Denote the set of individuals which have been notified before time T by NT− :=
{i : τ ⋆i < T} and by N c

T− := {1, 2, . . . , d} \ NT its complementary. We assume that
the delay between infection and notification (τ ⋆i − τi) of individual i is a random
variable with density f and distribution F .

The population infection time x = (x1, x2, . . . , xd) is then distributed according
to

µ(dx) ∝
d⊗
i=1

ρi(x)µi(dxi). (5.17)

where ρi(x)µi(dxi) can be heuristically interpreted as the distribution of the ith
infection time. For i ∈ N c

T− ,

ρi(x) = (1− F (T − xi))βi(x) exp (−Bi(x)) ,

µi(dxi) = 1(0≤xi≤T )dxi + κi(x)δT (dxi) (5.18)

with κi(x) =
1

βi(x)
and Bi(x) =

∫ T
0
βi(x[i; s])ds. See Appendix D.2.1 for the details

of the derivation of the measure above. Here the point mass at xi = T absorbs the
event that individual i has not been infected before time T while the remaining part
of the density represents the event for the individual i to be infected but not notified
before time T (in such case the infected individual i is often referred as occult). For
i ∈ NT− ,

ρi(x) = βi(x) exp (−Bi(x)) f(τ
⋆
i − xi),

µi(dxi) = 1(0≤xi≤τ⋆i )dxi, (5.19)

see Appendix D.2.1 for details.
We apply the Zig-Zag sampler for discontinuous densities as presented in Sec-

tion 5.2.4, with no speed-up function (s(x) = 1) and with sticky events (Re-
mark 5.2.1) to target the measure µ. Below, we summarize the behaviour of the
process:
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• The process reflects velocity randomly in space according to the gradient of
the continuous component of the density of µ. The reader may find in Ap-
pendix D.2.2 the explicit computations of the reflection times.

• For every i = 1, 2, . . . , d, the process hits the boundary when the coordinate xi
hits a element of the vectors x−i, τ ⋆, τ ◦. This is because xi → βi(x) is discon-
tinuous on those points. For the boundary corresponding to two coordinates
of x colliding, the process bounces off the discontinuity with some probability
by changing the sign of the velocity of both coordinates, while if the discon-
tinuity corresponds to a coordinate of x colliding with a notification/removal
time, the process bounces off just by changing the sign of the velocity of that
coordinate. Upon hitting a given boundary, the process traverses the dis-
continuity without changing its velocity with some probability. In particular,
each coordinate-process (xi, vi) for i = 1, 2, . . . , d never crosses the boundary
(xi, vi) = (τ ⋆i ,+1) and (xi, vi) = (0,−1).

• Each particle (xi, vi) with i ∈ N c
T sticks at T for an exponential time with rate

equal to βi(x)/2 (the factor 1
2

originates since the Dirac measure is located
at the boundary of the interval), upon hitting T . The sticking time of the
particle xi corresponds to the individual indexed by i being susceptible and
not infected.

Numerical experiment

We fix d = 50 and set ξ1, ξ2, . . . , ξd, ϑ1, . . . , ϑd to be the realization of i.i.d. random
variables distributed according to Unif([0, 1])0.9+0.7 and set d(i, j) = 0.4(1(|i−j|≤5)).
We assume that the τ ⋆i − τi ∼ Exp(0.3).

To generate a synthetic dataset, we simulated forward the model up to time T =
5.0, setting τ25 = 0, see Figure 5.1 for visualizing the dynamics of each individual.
Before time T , 47 individuals have been infected, 28 individual have been notified,
18 individuals have been removed.

We fix x25 = τ25 = 0 and simulate the (d− 1)-sticky Zig-Zag sampler with final
clock T ⋆ = 500. Figure 5.2 shows the marginal posterior densities and the final
segment of the Zig-Zag trajectory relative to coordinates 11, 13, 38, 49. Those
individuals have a different status at time T : susceptible, occult (infected but not
notified), notified and removed.

5.3.2 Hard-sphere models

As an application for teleportation which is relevant in statistical mechanics, we con-
sider the sampling problem in hard-sphere models. This class of models motivated
the first Markov chain Monte Carlo method in the pioneering work of Metropolis
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Figure 5.1: Simulated data from the SINR model of the population y-axis (condi-
tional on the infection time of individual 25 to be 0). The symbols ×, ⋆, ◦ indicates
respectively the unobserved infection times, the observed notification times and the
observed removal times for each individual. The dotted lines indicate the unob-
served time between infection and notification times.

et al. (1953). More recently, PDMP samplers have been employed for this class of
problems for example in Michel, Tan, and Deng (2019) and Monemvassitis, Guillin,
and Michel (2022). For an overview of hard-sphere models, see Krauth (2006, Chap-
ter 2). For a survey of MCMC methods used for sampling from hard-sphere models,
see Faulkner and Livingstone (2022). For related models, see Møller, Huber, and
Wolpert (2010).

We consider N particles, each one taking values in Rd. Denote the configuration
of all particles by x = {x(i) ∈ Rd : 1 ≤ i ≤ N} where we identify the location of the
ith particles by x(i) = x[(i−1)d+1,id]. Consider a measure µ⋆(dx) = exp(−Ψ(x))dx,
where Ψ(x) =

∑N
i=1Ψ0(x

(i)), for a smooth function Ψ0 supported on Rd. We assume
that each particle i = 1, 2, . . . , d is a hard-sphere centered in x(i) and with radius
ri > 0 and consider the conditional invariant measure

µ(dx) ∝ µ⋆(dx)1x∈A
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Figure 5.2: Top panel: Final 25 time units of the coordinate-process relative to the
infection times of individuals 11 (pink), 13 (orange), 38 (green), 49 (blue) which,
at observation time T had a different status (susceptible, infected but not notified,
notified and removed). Dashed lines corresponds to the notification times, dotted
lines corresponds to the removing time. Bottom panel: marginal densities of the
infection times of those individuals estimated with the full trajectory of the Zig-Zag.

with A =
⋂N
i=1

⋂N
j=1,
j ̸=i

Ai,j and

Ai,j = {x ∈ RdN : ∥x(i) − x(j)∥ ≥ (ri + rj)},

that is the measure µ⋆ conditioned on the space where all the hard-spheres do not
overlap. The restriction for the process to in A creates boundaries which slow down
the exploration of the state space for standard PDMP samplers as they must reflect
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the velocity vector when hitting the set Ac, thus never crossing the boundary, see
Bierkens et al. (2018) for a detailed description of standard PDMPs on restricted
domains.

We apply the (Nd)-dimensional Bouncy Particle Sampler described in Section 5.2.5
with no speed-up (s(x) = 1). To that end, we define the boundary of the process

∂E+ = {(x, v) ∈ ∂Ω× RdN : ⟨n(x), v⟩ > 0}

where ∂Ω =
⋃N
i=1

⋃N
j=1
j ̸=i

∂Ωi,j and

∂Ωi,j = {x ∈ RdN : |x(i) − x(j)| = (ri + rj)}.

We define the kernel T (x, ·) = δκ(x)(·) for a function κ : ∂Ω → ∂Ω. For x ∈ ∂Ωi,j,
we set

[κ(x)](ℓ) =


x(j) + x(i)−x(j)

ri+rj
(ri − rj) if ℓ = i

x(i) + x(j)−x(i)
ri+rj

(rj − ri) if ℓ = j

x(ℓ) otherwise

which attempt to swap the location of the balls i and j by moving the smaller
hard-sphere more than the larger hard-sphere, while preserving the location of the
extremities of the two hard-spheres. The teleportation is successful with non-zero
probability only if κ(x) ∈ A, that is, if after teleportation, no hard-spheres overlaps,
see Figure 5.3 for an illustration. Other possible choices of teleportation portals are
possible, see Appendix D.3 for a discussion.

The Bouncy Particle Sampler with teleportation at the boundary behaves as
follows. For any point (x, v) ∈ ∂E+ and for ℓ = 1, 2, . . . , N :

• propose to teleport to y = κ(x);

• if κ(x) ∈ A, then with probability α(x, κ(x)), set the new state equal to
(κ(x), w) with w = Rn(κ(x),−v);

• otherwise reflect the velocity at the boundary and set the new state equal to
(x,w) with w = Rn(x, v),

where Rn is defined in equation (5.16).

Numerical experiment

We fix N = 6 and d = 2. We let ri ∼ 2.0 + 1.5Unif([0, 1]). We set

Ψ0(x) =
1

4
∥x∥2, x ∈ Rd
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Figure 5.3: Illustration of the teleportation portals. Left panels: two configurations
x : (x, v) ∈ ∂E+. Right panels: y = τ(x). Top panels: the proposed state after
teleportation is valid, i.e. τ(x) ∈ A. Bottom panels: the proposed state after
teleportation is not valid i.e. τ(x) ∈ Ac.

and compare the performance of the standard BPS on constrained space as pre-
sented in Bierkens et al. (2018) and the BPS with teleportation as presented in Sec-
tion 5.2.5. We initialize both the samplers in a valid configuration, see Figure 5.4.
Both samplers have refreshment rate λr,E(z) = 0.01.

Figure 5.5 compares the trace of the functional ⟨xi, xj⟩ where i, j ∈ {1, 2, . . . , N}
are the indices of the hard-spheres with largest radius: ri = max(r), rj =
max(r−i) obtained when running the two samplers with final clock equal to
2,000. The animations showing the evolution of the hard-spheres according to
the dynamics of the standard BPS and BPS with teleportation may be found at
https://github.com/SebaGraz/hard-sphere-model.

5.4 Discussion

The material presented in this chapter offers some open problems.
Firstly, the theoretical framework presented in Section 5.2 introduces a piecewise

constant speed-up function sj which, as discussed in Remark 5.2.4, can be tuned
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Figure 5.4: Initial configuration x(0) for the standard BPS and BPS with telepor-
tation. Here x(0) ∈ A.

Figure 5.5: trace t → ⟨xi(t), xj(t)⟩ where t is the clock of the Bouncy Particle
Sampler (BPS) and i, j are the indices of the two hard-sphere with largest radius.
Left: BPS without teleportation. Right: BPS with teleportation.

to increase the probability to cross the boundary (provided that Assumption 5.2.1
is satisfied). In Section 5.3 we set sj(x) = 1 and we do investigate the benefits of
tuning the speed-up function. It was proven in Vasdekis and Roberts (2021) that
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the speed-up function is beneficial for heavy tailed distribution and we expect it can
improve the performance of the sampler for multi-modal densities.

Secondly, in Section 5.3.1, we use PDMPs for sampling the latent space of in-
fection times in the SINR model. In contrast with the method proposed for exam-
ple in Jewell et al. 2009, this framework allows to set the state of each individual
in N c

T from susceptible to infected (and vice-versa) continuously in time, without
an acceptance-rejection step and furthermore without any tailored proposal kernel.
Mixing times of the Zig-Zag sampler and scaling of the algorithm’s complexity used
for this application are not analyzed and numerical comparisons with other existing
MCMC methods are not performed.

Finally, in Appendix D.3, we discuss some possible choices of teleportation por-
tals for hard-sphere models. The list of teleportation portals considered is far from
exhaustive and a rigorous study on the choice of teleportation portals for hard-sphere
models is not present.
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Appendix A

Supplement of Chapter 2

A.1 Factorization of the diffusion bridge measure
Here we derive rigorously the conditional independence structure of the coefficients
which arise from the compact support of the Faber-Schauder functions as shown in
Figure 2.4. Recall that the relation ξi,j ≪ ξk,l holds if Sk,l ⊂ Si,j and in that case
we refer to ξi,j as the ancestor of ξk,l (and conversely ξk,l as the descendant). Notice
that each coefficient is both descendant and ancestor of itself.

Proposition A.1.1. (Conditional independence structure) Denote the set of com-
mon ancestors of ξi,j and ξk,l by A(i,j;k,l) := {ξh,d : ξh,d ≪ ξk,l ∧ ξh,d ≪ ξi,j}. Under
PvTN , ξi,j is conditionally independent from ξk,l, given the set A(i,j;k,l), whenever the
interior of the supports of their basis function are disjoint that is neither ξi,j ≪ ξk,l
nor ξk,l ≪ ξi,j is satisfied.

Proof. For i = 1, ..., N ; j = 1, ..., 2i − 1, define the vectors of ancestors and de-
scendants of ξi,j as ξ(i,j) := {ξm,n : ξm,n ≪ ξi,j ∨ ξm,n ≫ ξi,j}. Assume, without
loss of generality, that i ≤ k and consider two coefficients ξi,j, ξk,l. We factorize
ZN(X) by partitioning the integration interval [0, T ] in a sequence of sub-intervals
Sk,0, Sk,1, ..., Sk,2k−1 so that

ZN(X) =
2k−1∏
p=1

fk,p(ξ
(k,p)). (A.1)

Here

fk,p(ξ
(k,p)) = exp

(
B(XN

maxSk,p
)−B(XN

minSk,p
)− 1

2

∫
Sk,p

b2
(
XN ;k,p
s

)
+ b′

(
XN ;k,p
s

)
ds

)
.

with
XN ;k,p
s = ¯̄ϕ(s)u+ ϕ̄(s)vT/

√
T +

∑
(i,j) : ξi,j≪ξk,p

ϕi,j(s)ξi,j
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ξ0,0

Dependency structure

ξ1,0 ξ1,1

ξ2,0

ξ2,1

ξ3,0

ξ3,1

ξ3,2

ξ3,3

ξ2,2

ξ2,3

ξ3,4

ξ3,5

ξ3,6

ξ3,7

Figure A.1: Graphical representation of the dependency structure of the random
vector of the coefficients under Pu,vTN . ξi,j ⊥⊥ ξk,l conditionally on the vertices which
have a direct hedge to both ξi,j and ξk,l if ξi,j does not have a direct edge to ξk,l.
The dependency graph is a chordal graph.

and we used that XN
s = XN ;i,j

s when s ∈ Si,j, X
N
T = ϕ̄(T )vT/

√
T and XN

0 =
¯̄ϕ(0)u. Now just notice that, under this factorization, the only factor which is a
function of ξk,l is fk,l(ξ(k,l)). Here, if ξi,j ̸≪ ξk,l then ξ(k,l) does not contain ξi,j.
Conversely, the factors containing ξi,j are those fk,p(ξ(k,p)) such that ξi,j ≪ ξk,p with
p = 0, 1, ..., 2k − 1. If ξi,j ̸≪ ξk,l, none of the vectors ξ(k,p) contains ξk,l. Since, under
the measure Qu,vT , the random variables in the vector ξN are pairwise independent,
the factorization on ZN(X) defines the dependency structure of the vector ξN under
PvTN so that ξi,j and ξk,l are independent conditionally on their common coefficients
given by the set A(i,j;k,l).

More intuitively, the factorization of Z(X) gives rise to the dependency graph
displayed in Figure A.1 which shows that the coefficients in high levels (i large) are
coupled with just few other coefficients and conditionally independent from all the
remaining. The conditional independence of the coefficients implies that the partial
derivatives of the energy function (and consequently the Poisson rates given by
equation (2.6)) are functions of only few coefficients in the sense of Assumption 2.4.1.
In particular the sets in Assumption 2.4.1 (using double indexing) can be chosen as
Ni,j = {ξh,d : ξh,d ≪ ξi,j ∨ ξh,d ≫ ξi,j} with size |Ni,j| = 2N−i+1 + i − 1, where N is
the truncation level.



Appendix B

Supplement of Chapter 3

B.1 Generator and stationary distribution

B.1.1 Boomerang Sampler

For simplicity take x⋆ = 0. The generator of the Boomerang Sampler is defined by

Lψ(x,v) = ⟨v,∇xψ(x,v)⟩ − ⟨x,∇vψ(x,v)⟩
+ λ(x,v) (ψ(x,R(x)v)− ψ(x,v))

+ λrefr

(∫
Rd

ψ(x,w)ϕ(w) dw − ψ(x,v)
)
,

for any compactly supported differentiable function ψ on S, where ϕ is the proba-
bility density function of N (0,Σ).

Taking λ(x,v) and R(x) as in Eqs. (2) and (3) of the paper respectively, we will
now verify that

∫
S
Lψ dµ = 0 for all such functions ψ, and for µ being the measure on

S with density exp(−U(x)) relative to µ0. This then establishes that the Boomerang
Sampler has stationary distribution µ. A complete proof also requires verification
that the compactly supported, differentiable functions form a core for the generator,
which is beyond the scope of this paper. For a discussion of this topic for archetypal
PDMPs see Holderrieth 2019.

First we consider the terms involving the partial derivatives of ψ. By partial
integration, we find∫

S

⟨v,∇xψ(x,v)⟩ − ⟨x,∇vψ(x,v)⟩µ(dx, dv)

=

∫
S

ψ(x,v)⟨v,∇U(x)⟩µ(dx, dv)

Next we inspect the term representing the switches occurring at rate λ(x,v). By
Eq. (5) of the paper, the coordinate transform w = R(x)v (for fixed x) leaves the
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measure N (0,Σ) over the velocity component invariant. Using this observation, we
find that ∫

S

λ(x,v)(ψ(x,R(x)v)− ψ(x,v))µ(dx, dv)

=

∫
S

λ(x,R(x)w)ψ(x,w)µ(dx, dw)

−
∫
S

λ(x,v)ψ(x,v)µ(dx, dv)

=

∫
S

[λ(x,R(x)v)− λ(x,v)]ψ(x,v)µ(dx, dv).

Using Eq. (2) and (4) of the paper, and the identity (−a)+ − (a)+ = −a, it follows
that this expression is equal to∫

S

[⟨R(x)v,∇U(x)⟩+ − ⟨v,∇U(x)⟩+]ψ(x,v)µ(dx, dv)

= −
∫
S

⟨v,∇U(x)⟩ψ(x,v)µ(dx, dv).

Finally by changing the order of integration, it can be shown that∫
S

λrefr

(∫
Rd

ψ(x,v)ϕ(v) dv − ψ(x,v)
)
µ0(dx, dv) = 0.

Adding all terms yields that
∫
S
Lψ dµ = 0.

B.1.2 Factorised Boomerang Sampler

The Factorised Boomerang Sampler has generator

Lψ(x,v) = ⟨v,∇xψ(x,v)⟩ − ⟨x,∇vψ(x,v)⟩

+
d∑
i=1

λi(x,v)(ψ(x,Fi(v))− ψ(x,v))

+ λrefr

(∫
ψ(x,w)ϕ(w) dw − ψ(x,v)

)
.

Verifying stationarity of µ is done analogously to the case of the non-factorised
Boomerang Sampler, but now has to be carried out componentwise.
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B.2 Computational bounds
Suppose (xt,vt) satisfies the Hamiltonian dynamics ODE of Eq. (1) in the paper,
starting from (x0,v0) in Rd × Rd. Throughout we assume U : Rd → R is a twice
continuously differentiable function with Hessian matrix ∇2U . Furthermore we as-
sume without loss of generality that x⋆ = 0. First we consider bounds for switching
intensities of the form λ(x,v) = ⟨v,∇U(x)⟩+. For a matrix A ∈ Rd×d we use ∥A∥
to denote the matrix norm induced by the Euclidean metric.

Lemma B.2.1 (Constant bound). Suppose there exists a constant M > 0 such that
for all x ∈ Rd we have the global bound

∥∇2U(x)∥ ≤M.

Define m := |∇U(0)|. Then for all t ≥ 0,

λ(xt,vt) ≤
M

2
(|x0|2 + |v0|2) +m

√
|x0|2 + |v0|2. (B.1)

Proof. We have the following estimate on the switching intensity.

λ(x,v) = ⟨v,∇U(x)⟩+

≤ ⟨v,∇U(0)⟩+ +

∫ 1

0

|⟨v,∇2U(xs)x⟩| ds.

We may bound the inner product in the integrand as follows.

|⟨v,∇2U(y)x⟩| ≤ ∥∇2U(x)∥ |v| |x|

≤M

(
|v|2 + |x|2

2

)
by the Cauchy–Schwarz inequality. Also

|⟨v,∇U(0)⟩| ≤ m|v| ≤ m
√
|x|2 + |v|2.

Combining these estimates and the fact that |xt|2 + |vt|2 is invariant under the
dynamics of Eq. (1) in the paper yields the stated result.

Lemma B.2.2 (Affine bound). Suppose ∥∇2U(x)∥ ≤ M for all x ∈ Rd, and let
m = |∇U(0)|. Then for a solution (xt,vt) to Eq. (1) of the paper with λ(x,v) =
⟨v,∇U(x)⟩+, we have for all t ≥ 0

λ(xt,vt) ≤ (a(x0,v0) + tb(x0,v0))+ ,

where

a(x,v) = ⟨v,∇U(x)⟩+, and

b(x,v) =M
(
|x|2 + |v|2

)
+m

√
|x|2 + |v|2.
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Proof. By the Hamiltonian dynamics,

d

dt
⟨vt,∇U(xt)⟩

= −⟨xt,∇U(xt)⟩+ ⟨vt,∇2U(xt)vt⟩

= −⟨xt,∇U(0)⟩ −
∫ 1

0

⟨xt,∇2U(sxt)xt⟩ ds

+ ⟨vt,∇2U(xt)vt⟩
≤ |xt||∇U(0)|+M

(
|xt|2 + |vt|2

)
.

Using that |xt|2 + |vt|2 is invariant under the dynamics yields the stated result.

Lemma B.2.3. Suppose |∇U(y)| ≤ C for all y ∈ Rd. Then, for all trajectories
(xt,vt) satisfying Eq. (1) of the paper we have

λ(xt,vt) ≤ C
√
|x0|2 + |v0|2.

Proof. We have
λ(x,v) ≤ C|v| ≤ C

√
|x|2 + |v|2,

and the latter expression is constant along trajectories.

Analogously we have the following useful bound for the Factorized Boomerang
Sampler.

Lemma B.2.4. Suppose U : Rd → R is differentiable. Suppose there exist constants
c1, . . . , cd such that, for all y ∈ Rd and i = 1, . . . , d, we have

|∂iU(x)| ≤ ci for all x, i.

Then
λi(xt,vt) ≤ ci

√
|xi0|2 + |vi0|2.

Lemma B.2.5. Suppose for all i we have that√∑
j

∂i∂jU(x)2 ≤Mi,

and
|∂iU(0)| ≤ mi.

Then
λi(xt,vt) ≤ (ai(x0,v0) + bi(x0,v0)t)

+
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where
ai(x,v) = (vi∂iU(x))

+

bi(x,v)

=
√
(xi)2 + (vi)2

(
mi +Mi

√
|x|2 + |v|2

)
.

Proof. We compute

d

dt
vit∂iU(xt)

= −xit∂iU(xt) + vit

d∑
j=1

∂i∂jU(xt)v
j
t

= −xit∂iU(0)−
∫ 1

0

xit

d∑
j=1

∂i∂jU(sxt)x
j
tds

+ vit

d∑
j=1

∂i∂jU(xt)v
j
t

≤
√
(xit)

2 + (vit)
2|∂iU(0)|+Mi|xit||xt|+Mi|vit||vt|

≤
√

(xit)
2 + (vit)

2|∂iU(0)|

+Mi/2
(
α(|xit|2 + |vit|2) + (1/α)(|xt|2 + |vt|2)

)
.

Optimising over α, and using that |xit|2+|vit|2 is constant along Factorised Boomerang
Trajectories, yields the stated result.

B.2.1 Computational bounds for subsampling

In the case of subsampling we use the unbiased estimator of Eq. (9) of the paper.

Lemma B.2.6. Suppose that for some positive definite matrix Q we have that, for
all i, and y1,y2 ∈ Rd,

∇2Ei(y1)−∇2Ei(y2) ⪯ Q, (B.2)

where A ⪯ B means B − A is positive semidefinite. Suppose ∇̂U(x) is given by
Eq. (9) of the paper, and ∇E(0) = 0. Along a trajectory (xt,vt) satisfying the
Hamiltonian dynamics of Eq. (1) of the paper, we have, for all t ≥ 0, that

⟨vt, ∇̂U(xt)⟩ ≤ 1
2
(|Q1/2x0|2 + |Q1/2v0|2), a.s.

where the almost sure statement is with respect to all random (subsampling) realisa-
tions of the switching intensity.
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Remark B.2.1. Lemma (B.2.6) is easily extended to the case in which ∇E(0) ̸= 0.
In this case we have

⟨vt, Û(xt)⟩ ≤ 1
2
(|Q1/2x0|2 + |Q1/2v0|2)

+ (|v0|2 + |x0|2)1/2|∇E(0)|, a.s.

Remark B.2.2. In practice one may wish to take Q to be a diagonal matrix, which
reduces the computation of the computational bound to a O(d) computation instead
of O(d2). For example one could take Q = cI for a suitable constant c > 0 such
that (B.2) is satisfied.

Remark B.2.3 (Affine bound for subsampling is strictly worse). When we try to
obtain an affine bound, of the form

̂λ(xt,vt) ≤ a(x0,v0) + b(x0,v0),

then it seems we cannot avoid an expression for a of the form of the bound in
Lemma B.2.6. As a consequence, the affine bound is strictly worse than the constant
bound.

Proof (of Lemma B.2.6). Suppose we have I = i for the random index I in Eq. (9)
of the paper. We compute

⟨vt, ∇̂U(xt)⟩
= ⟨vt,∇Ei(xt)−∇2Ei(0)xt −∇Ei(0)⟩

= ⟨vt,
∫ 1

0

∇2Ei(sxt)xt ds−∇2Ei(0)xt⟩.

Then we may continue the above computation to find, using Lemma B.2.7 below,
that

⟨vt, ∇̂U(xt)⟩ =
∫ 1

0

⟨vt, [∇2Ei(sxt)−∇2Ei(0)]xt⟩ ds

≤
∫ 1

0

|Q1/2vt| |Q1/2xt| ds

≤ 1
2
(|Q1/2vt|2 + |Q1/2xt|2).

Since 1
2
(|Q1/2vt|2 + |Q1/2xt|2) is invariant under the dynamics, the stated con-

clusion follows.

Lemma B.2.7. Suppose M ,P ∈ Rd×d are symmetric matrices with P positive
definite and such that −P ⪯ M ⪯ P . Then ⟨My, z⟩ ≤ |P 1/2y| |P 1/2z| for all
y, z ∈ Rd×d.
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Proof. Taking y = P−1/2x, we find

|⟨P−1/2MP−1/2x,x⟩| = |⟨My,y⟩| ≤ ⟨Py,y⟩ = |x|2,

which establishes that ∥P−1/2MP−1/2∥ ≤ 1. Using this observation we arrive at

⟨My, z⟩ ≤ ∥P−1/2MP−1/2∥︸ ︷︷ ︸
≤1

|P 1/2y| |P 1/2z|.

B.3 Scaling with dimension

In Section 3.2 of the paper, we discuss the scaling of the Boomerang Sampler with
dimension. The argument in that section is self contained, but relies on the obser-
vation that the change of Ed(xt) over a time interval of order 1 is at least of order
d1/2. Here we motivate this observation.

In the following arguments, we assume stationarity of the process for simplicity.
Let Ud, Σd, Ed, Πd, Ed be as described in Section 3.2 of the manuscript. For
simplicity and without loss of generality we assume that Ed(x) is normalised as
Ed[Ed(x)] = 0. Furthermore, for simplicity we assume that Ed[x] = 0 although this
condition can be relaxed.

As discussed we suppose that the sequence (Ud) satisfies

sup
d∈N

Ed[|Σ1/2
d ∇Ud(x)|

2] ≤ κ (B.3)

for some κ > 0. Furthermore, we assume that the following form of the Poincaré
inequality is satisfied for Πd(dx) ∝ exp(−Ed(x))dx:

C Ed
[
fd(x)

2
]1/2 ≤ Ed

[
|Σ1/2

d ∇fd(x)|
2
]1/2

(B.4)

for some constant C > 0 not depending on d, and any differentiable function fd :
Rd → R with mean 0 and finite variance.

By (B.3) the expected number of reflections per unit time Ed[⟨v,∇Ud(x)⟩+] is
bounded with respect to dimension. However the process mixes well in a single time
unit under suitable regularity conditions as we will discuss now.

By applying (B.4) to fd(x) = (Σ
−1/2
d x)i, where vi denotes the i-th coordinate

of v, we have C2Ed[|Σ−1/2
d x|2] ≤ Ed[trace(Σ−1/2

d ΣdΣ
−1/2
d )] = d, using the stated

assumption Ed[x] = 0.
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Also by (B.4) and by Minkowski’s inequality,

Ed[Ed(x)2]1/2 ≤ C−1Ed[|Σ1/2
d ∇Ed(x)|

2]1/2

= C−1Ed[|Σ1/2
d ∇Ud(x) +Σ

−1/2
d x|2]1/2

= C−1(κ1/2 + C−1d1/2) = O(d1/2).

If (xt,vt) satisfies the ODE Eq. (1) of the paper, the unit time difference Ed(xt)−
Ed(x0) is ∫ t

0

⟨∇Ed(xs),vs⟩ds ≈
∫ t

0

⟨Σ−1
d xs,vs⟩ds.

Here, the difference between the left- and the right-hand sides is∫ t
0
⟨Σ1/2

d ∇U(xs),Σ
−1/2
d vs⟩ds which is of order d1/2 under the assumption of station-

arity by (B.3) and the Cauchy-Schwarz inequality, using that Ed[|Σ−1/2
d vs|2] = d.

The right-hand may be simplified to∫ t

0

⟨Σ−1
d (x0 cos s+ v0 sin s),−x0 sin s+ v0 cos s⟩ds

= A0

∫ t

0

2 sin s cos s ds+B0

∫ t

0

(cos2 s− sin2 s)ds

= A0(1− cos 2t)/2 +B0(sin 2t)/2

where A0 = (⟨v0,Σ
−1
d v0⟩ − ⟨x0,Σ

−1
d x0⟩)/2 and B0 = ⟨x0,Σ

−1
d v0⟩. Then A0 and

B0 are uncorrelated since Σ
−1/2
d v0 follows the standard normal distribution. Also,

Ed[A2
0] ≥ Var(A0) ≥ Var(⟨v0,Σ

−1
d v0⟩) = 2d. Therefore,

Ed[|Ed(xt)− Ed(x0)|2] ≳ Ed[A2
0]

(
1− cos 2t

2

)2

≥ 2d

(
1− cos 2t

2

)2

.

Thus the change of Ed(xt) over a term interval of O(1) is of order d1/2 whereas
Ed(xt) itself has the same order. These informal arguments suggest that dynamics of
the Boomerang sampler in a finite time interval sufficiently changes the log density
even in high dimension. However, further study should be made in this direction.

B.4 Logistic regression
We assume a prior distribution π0(x) ∼ N (0, σ2I) on Rd. Given predictors
y(1), . . . ,y(n) in Rd, and outcomes z(1), . . . , z(n) in {0, 1}, we obtain the negative
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log posterior distribution as

E(x) =
n∑
i=1

{
log(1 + ex

⊤y(i)

)− z(i)x⊤y(i)
}
+ |x|2/2σ2.

We then have

∇E(x) = x/σ2 +
n∑
i=1

y(i)

[
ex

⊤y(i)

1 + ex⊤y(i)
− z(i)

]
,

∇2E(x) = I/σ2 +
n∑
i=1

y(i)(y(i))⊤ex
⊤y(i)(

1 + ex⊤y(i)
)2 .

In the experiments in this paper we take a flat prior, i.e. σ2 =∞.
Let

x⋆ = argmin
x∈Rd

E(x).

We take Σ−1 = ∇2E(x⋆). We have U(x) = E(x)− (x− x⋆)
⊤∇2E(x⋆)(x− x⋆)/2,

which is a difference of two positive definite matrices. Using the general inequality
a 7→ |a|/(1 + a)2 ≤ 1/4, we find

−1
4

n∑
i=1

y(i)(y(i))⊤ ⪯ ∇2U(x) ⪯ 1
4

n∑
i=1

y(i)(y(i))⊤.

We then simply have

∥∇2U(y)∥ ≤M := 1
4
∥

n∑
i=1

y(i)(y(i))⊤∥.

These observations may be applied in conjunction with the lemmas of Section 2
in this supplement to obtain useful constant and affine computational bounds for
the switching intensities.

B.5 Diffusion bridge simulation
We consider diffusion bridges of the form

dXt = α sin(Xt)dt+ dWt, X0 = u,XT = v, t ∈ [0, T ] (B.5)

where W is a scalar Brownian motion and α ≥ 0. The diffusion path is expanded
with a truncated Faber-Schauder basis such that

XN
t = ¯̄ϕ(t)u+ ϕ̄(t)v +

N∑
i=0

2i−1∑
j=0

ϕi,j(t)xi,j,
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where N is the truncation of the expansion and

ϕ̄(t) = t/T, ¯̄ϕ(t) = 1− t/T,
ϕ0,0(t) =

√
T
(
(t/T )1[0,T/2](t) + (1− t/T )1(T/2,T ](t)

)
,

ϕi,j(t) = 2−i/2ϕ0,0(2
it− jT ) i ≥ 0, 0 ≤ j ≤ 2i − 1,

are the Faber-Schauder functions. As shown in Bierkens et al. 2021, the measure
of the coefficients corresponding to (B.5) is derived from the Girsanov formula and
given by

dµ

dµ0

(x,v) ∝ exp

{
−α
2

∫ T

0

(
α sin2(XN

s ) + cos(XN
s )
)
ds

}
where µ0 = N (0, I)⊗N (0, I) with I the 2N+1− 1 dimensional identity matrix. By
standard trigonometric identities we have that

∂xi,jU(x) =
α

2

∫
Si,j

ϕi,j(t)
(
α sin

(
2XN

t

)
− sin

(
XN
t

))
dt

where Si,j is the support of the basis function ϕi,j. Similarly to Bierkens et al. 2021,
for each i, j, we use subsampling and consider the unbiased estimator for ∂xi,jU(x)
given by

̂∂xi,jU(x) = Si,jϕi,j(τi,j)
(
α2 sin

(
2XN

τi,j

)
− α sin

(
XN
τi,j

))
where τi,j is a uniform random variable on Si,j. This gives Poisson rates ̂λi,j(x,v) =
⟨v, ̂∂xi,jU(x)⟩+. In this case, for all i, j, | ̂∂xi,jU(x)| is globally bounded, say by mi,j.
We use the constant Poisson bounding rates given, in similar spirit as in Section 2.3
of the paper, by

λi,j(xt,vt) = mi,j

√
|xi,j0 |2 + |v

i,j
0 |2,

where we used that t→ |xi,jt |2 + |v
i,j
t |2 is constant under the Factorised Boomerang

trajectories. Similarly to Bierkens et al. 2021, the FBS gains computational efficiency
by a local implementation which exploits the fact that each λi,j(x,v) is a function
of just the coefficient xi,j (see Bierkens et al. 2021, Algorithm 3, for an algorithmic
description of the local implementation of a factorised PDMP).



Appendix C

Supplement of Chapter 4

C.1 Details of the Sticky Zig-Zag sampler

C.1.1 Construction

In this section we discuss how the Sticky Zig-Zag can be constructed as a standard
PDMP in the sense of Davis (1993). The construction is a bit tedious, but the
underlying idea is simple: the Sticky Zig-Zag process has the dynamics of a ordinary
Zig-Zag process until it reaches a freezing boundary Fi = {(x, v) ∈ E : xi = 0−, vi >

0 or xi = 0+, vi < 0} of E = Rd × V , with R = (−∞, 0−] ⊔ [0+,∞) which has
two copies of 0. Then it immediately changes dynamics and evolves as a lower
dimensional ordinary Zig-Zag process on the boundary, at least until an unfreezing
event happens or upon reaching yet another freezing boundary in the domain of the
restricted process.

Davis’ construction allows a standard PDMP to make instantaneous jumps at
boundaries of open sets, but puts restrictions on further behaviour at that bound-
ary. We circumvent these restrictions by first splitting up the space Rd × V into
disconnected components in a way somewhat different than the construction of E
as presented in Section 4.2. Only at a later stage we recover the definition of E.

Define the set

K = {�◦, ◦�,�◦, ◦�, �◦, �◦}

and

|K| = {◦,�◦�,�◦�}

(note that |K| does not denote the cardinality of the set K). Define the functions
k : R× R→ K and |k| : R× R→ |K| by

135
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(x, v) k(x, v) at (x, v) the process is... |k|(x, v)

x > 0, v > 0 ◦� ...moving away from 0 with positive velocity �◦�
x < 0, v < 0 �◦ ...moving away from 0 with negative velocity �◦�
x > 0, v < 0 ◦� ...moving toward 0 with negative velocity �◦�
x < 0, v > 0 �◦ ...moving toward 0 with positive velocity �◦�
x = 0, v > 0

�◦ ...at 0 with positive velocity ◦
x = 0, v < 0

�◦ ...at 0 with negative velocity ◦

If (x, v) ∈ Rd × V , then extend k : Rd × V → Kd and |k| : Rd × V → |K|d by
applying the map k and |k| coordinatewise.

For each ℓ ∈ Kd define

Ẽ◦
ℓ = {(ℓ, x, v) : k(x, v) = ℓ}

Note that for ℓ ̸= ℓ′ the sets Ẽ◦
ℓ and Ẽ◦

ℓ′ are disjoint. The set Ẽ◦
ℓ is open under

the metric introduced in Davis (1993), p.58, which sets the distance between two
points (ℓ, x, v) and (ℓ′, x′, v′) to 1 if ℓ ̸= ℓ′. We denote the induced topology on Ẽ

by τ̃ . Ẽ◦
ℓ is a subset of R2d of dimension dℓ =

∑d
i=1 1|ℓi|̸=◦, since the velocities are

constant in E◦
ℓ and the position of the components i where ℓi = ◦ are constant as

well in Ẽ◦
ℓ (Ẽ◦

ℓ is isomorphic to an open subset of Rdℓ).
The sets which contain a singleton, i.e. |Ẽ◦

ℓ | = 1, are those sets Ẽ◦
ℓ such that

|ℓi(x, v)| = ◦ for all i = 1, 2, . . . , d and are open as they contain one isolated point,
but will have to be treated a bit differently. Then Ẽ◦ =

⋃
ℓ∈Kd Ẽ◦

ℓ is the tagged
space of open subsets of Rdℓ used in Davis (1993, Section 24).

Ẽ◦ separates the space into isolated components of varying dimension. In each
component, the Sticky Zig-Zag process behaves differently and essentially as a lower
dimensional Zig-Zag process.

Let ∂Ẽ◦
ℓ denote the boundary of Ẽ◦

ℓ in the embedding space Rdℓ (where the
velocity components are constant in Ẽ◦

ℓ ), with elements written (ℓ, x, v). Some
points in ∂Ẽ◦

ℓ will also belong to the state space Ẽ of the Sticky Zig-Zag process,
but only the entrance-non-exit boundary points:

Ẽ =
⋃
ℓ

Ẽℓ, Ẽℓ = Ẽ◦
ℓ ∪ {(ℓ, x, v) ∈ ∂Ẽ◦

ℓ : xi = 0⇒ |ℓi| ≠�◦� for all i}.

(This corresponds to the definition of the state space in Davis 1993, Section 24, only
that we use knowledge of the flow.)

The remaining part of the boundary is

Γ =
⋃
ℓ

Γℓ ⊂
⋃
ℓ

∂Ẽ◦
ℓ , Γℓ = {(ℓ, x, v) ∈ ∂Ẽ◦

ℓ ,∃i : xi = 0, |ℓi| =�◦�},
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with Ẽ∩Γ = ∅ so that Γ is not part of the state space Ẽ. Any trajectory approaching
Γ, jumps back into Ẽ just before hitting Γ. If Ẽ◦

ℓ is a singleton (|Ẽ◦
ℓ | = 1), then

Γℓ = ∅ and Ẽℓ = Ẽ◦
ℓ (atoms).

Lemma C.1.1. A bijection ι : Ẽ → E is given by

ι((ℓ, x̃, v)) = (x, v)

where

xi =


0+ (0−) ℓi =

�◦ (ℓi =
�◦)

0+ (0−) ℓi = ◦� (ℓi =�◦), x̃i = 0

x̃i otherwise.

Proof. Recall that α(x, v) := {i ∈ {1, 2, . . . , d} : (x, v) /∈ Fi} and αc denotes its
complement. First of all, notice that ι(Ẽ) ⊂ E. Now let (x, v) ∈ E be given.
We construct e ∈ Ẽ such that (x, v) = ι(e). If there is at least one xj = 0±

with j /∈ α(x, v), then take e = (ℓ, x̃, v) ∈ Ẽ \ Ẽ◦ as follows (entrance-non-exit
boundary): for i ∈ αC we have |ℓi| = ◦, x̃i = 0, while for all i ∈ α with xi = 0±, we
have |ℓi| =� ◦�, x̃i = 0. Then ι(e) = (x, v). Otherwise, e = (k(x̃, v), x̃, v)) ∈ Ẽ◦

(interior of an open set) and ι(e) = (x, v) where x̃i = 0 for all i ∈ α(x, v) and x̃i = xi
otherwise.

Having constructed the state space, we proceed with the process dynamics.
Firstly, the deterministic flow (locally Lipschitz for every ℓ ∈ K) is determined
by the functions ϕ̃ℓ : [0,∞)× Ẽ◦

ℓ → Ẽ◦
ℓ which for the sticky ZigZag process are given

by
ϕ̃(t, ℓ, x, v) = (ℓ, x′, v), ∀(ℓ, x, v) ∈ E,

with xi + vit(1|ℓi|̸=◦), i = 1, 2, . . . , d and determines the vector fields

Xℓf̃(ℓ, x, v) =
d∑
i=1

1|ℓi|̸=◦vi∂xif(ℓ, x, v), f ∈ C1(Ẽ).

Sometimes we write ϕ̃k(t, x, v) = ϕ̃(t, k, x, v) for convenience. Next, further state
changes of the process are instantaneous, deterministic jumps from the boundary Γ
into Ẽ

Qf(((ℓ, x, v), ·)) = δ(k(x,v),x,v), (ℓ, x, v) ∈ Γ

and random jumps at random times corresponding to unfreezing events

Qs((ℓ, x, v), ·) =
∑

i λ
s
i(ℓ, x, v)δ(ℓ[i : ℓ′i],x,v)∑

i λ
s
i(i, x, v)
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with ℓ′i = ◦� if ℓi =
�◦ and ℓ′i =�◦ if ℓi =

�◦, and random reflections

Qr((ℓ, x, v), ·) =
∑

i λ
r
i(ℓ, x, v)δxδv[i : −vi]δℓ∑

i λ
r
i(ℓ, x, v)

with
λsi(ℓ, x, v) = 1|ℓi|=◦κi

and
λri(ℓ, x, v) = 1ℓi ̸=◦

(
(vi∂iΨ(x))+ + λ0,i(x)

)
, i = 1, 2, . . . , d.

Then λ : Ẽ → R+

λ(ℓ, x, v) =
d∑
i=1

λri(ℓ, x, v) + λsi(i, x, v)

and a Markov kernel Q : (Ẽ ∪ Γ,B(Ẽ ∪ Γ))→ [0, 1] by

Q((ℓ, x, v), .) =

{∑
i λ

r
i(ℓ,x,v)

λ(ℓ,x,v)
Qr((ℓ, x, v), .) +

∑
i λ

s
i(ℓ,x,v)

λ(ℓ,x,v)
Qs((ℓ, x, v), .) (ℓ, x, v) ∈ Ẽ,

Qf((ℓ, x, v), .) (ℓ, x, v) ∈ Γ.

Proposition C.1.1. X, λ,Q satisfy the standard conditions given in Davis (1993,
Section 24.8), namely

• For each ℓ ∈ K, Xℓ is a locally Lipschitz continuous vector field and determines
the deterministic flow ϕ̃ℓ : Ẽℓ → Ẽℓ of the PDMP.

• λ : Ẽ → R+ is measurable and such that t → λ(ϕ̃ℓ(t, x, v)) is integrable on
[0, ϵ(ℓ, x, v)), for some ϵ > 0, for each ℓ, x, v.

• Q is measurable and such that Q((ℓ, x, v), {(ℓ, x, v)}) = 0

• The expected number of events up to time t, starting at (ℓ, x, v) is finite for
each t > 0,∀(ℓ, x, v) ∈ Ẽ

To see the latter, remember that for any initial point (ℓ, x, v) ∈ Ẽ, the determin-
istic flow (without any random event) hits Γ at most d times before reaching the
singleton (0, 0, . . . , 0) and being constant there.

C.1.2 Strong Markov property

Proposition C.1.2. (Part of Theorem 4.2.2) Let (Z̃t) be a Zig-Zag process on Ẽ

with characteristics X, λ,Q. Then Zt = ι(Z̃t) is a strong Markov process.
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Proof. By Davis (1993), Theorem 26.14, the domain of the extended generator of
the process (Z̃t) with characteristics X, λ,Q is

D(Ã) = {f ∈M(Ẽ); t→ f(ϕ̃ℓ(t, x, v)) τ̃ -absolutely continuous ∀(ℓ, x, v) ∈ Ẽ,
t = [0, tΓ(ℓ, x, v)); f(ℓ, x, v) = f(κ(x, v), x, v), (ℓ, x, v) ∈ Γ},

with
tΓ(ℓ, x, v) = inf{0 ≤ t : ϕ̃ℓ(t, x, v) ∈ Γ̃}

and

Ãf(ℓ, x, v) = Xℓf(ℓ, x, v) + λ(ℓ, x, v)

∫
Ẽ

(f(ℓ′, x′, v′)− f(ℓ, x, v))Q(ℓ, x, v, d(ℓ, x, v)).

The strong Markov property of (Z̃t) follows by Davis (1993), Theorem 25.5.
Denote by (P̃t)t≥0 the Markov transition semigroup of (Z̃t) and let (Pt)t≥0 be a family
of probability kernels on E and such that for any bounded measurable function
f : E → R and any t ≥ 0,

P̃t(f ◦ ι) = (Ptf) ◦ ι.

Then (Pt)t≥0 is the Markov transition semigroup of the process Zt = (ι(Z̃t)). By
Rogers and Williams (2000b), Lemma 14.1, and since any stopping time for the
filtration of (Z̃t) is a stopping time for the filtration of (Zt), Zt is a strong Markov
process.

C.1.3 Feller property

Given an initial point ℓ, x, v ∈ Ẽ, let

tΓ1(ℓ, x, v) = inf{0 ≤ t : ϕ̃ℓ(t, x, v) ∈ Γ̃}

and define the extended deterministic flow φ̃ : Ẽ → Ẽ by setting φ(0, ℓ, x, v) =
(ℓ, x, v) and recursively by

φ̃(t, ℓ, x, v) =

{
φ̃ℓ(t, x, v) t < tΓ1 ,

φ̃(t− tΓ1 , k(x
′, v′), x′, v′) t ≥ tΓ1

with (ℓ′, x′, v′) = limt→tΓ1
φ̃ℓ(t, x, v) ∈ Γ.

Observe that t→ ι(φ̃(t, ℓ, x, v)) is continuous on (E, τ). Define also

Λ(t, ℓ, x, v) =

∫ t

0

λ(φ̃(s, ℓ, x, v))ds.
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Notice that, while (ℓ, x, v) → λ(ℓ, x, v) has discontinuities at the boundaries Γ,
(ℓ, x, v)→ Λ(ℓ, x, v) is continuous. Denote by T1 the first random event (so excluding
the deterministic jumps). Then for functions f ∈ B(Ẽ) and ψ ∈ B(R+ × Ẽ), set
z(t) = (ℓ(t), x(t), v(t)) and define

G̃ψ(t, ℓ, x, v) = E[f(z(t))1t<T1 + ψ(t− T1, z(t))1t≥T1 ].

We have that
G̃ψ(t, ℓ, x, v) = f(φ̃(t, ℓ, x, v))× T (C.1)

with

T =
∑
i

∫ t

0

1t∈[tΓi ,tΓi+1)

∫
x′,v′

ψ(t− s, ℓ, x, v)Q((ℓ, dx′, dv′), φ̃(s, ℓ, x, v))

λ(φ̃(s, ℓ, x, v))e−Λ(s,ℓ,x,v)ds.

The Feller property holds if, for each fixed t and for f ∈ Cb(E), we have that
(x, v) → Ptf(x, v) is continuous (and bounded follows easily). This is what we are
going to prove below, by making a detour in the space Ẽ, using the bijection ι and
adapting some results found in Davis (1993, Section 27), for the process Z̃t.

Theorem C.1.3. (Part of Theorem 4.2.2) Zt is a Feller process.

Proof. Take f ∈ Cb(Ẽ) such that f ◦ ι ∈ Cb(E). Call those functions on Ẽ

τ -continuous. We want to show that P̃ preserves τ -continuity. Notice that τ -
continuous functions on Ẽ are such that

lim
t→tΓ

f(φ̃(t, ℓ, x, v)) = f(φ̃(tΓ, ℓ, x, v))), (ℓ, x, v) ∈ Ẽ.

For τ -continuous functions f and for a fixed t, the first term on the right hand side
of (C.1) (ℓ, x, v) → f(φ̃(t, ℓ, x, v)) is clearly continuous. Also the second term is
continuous since is of the form of an integral of a piecewise continuous function.
Therefore, for any t ≥ 0, ψ(t, ·) ∈ B(Ẽ) and τ -continuous function f , we have that
(ℓ, x, v)→ G̃ψ(t, ℓ, x, v) is continuous. Clearly, the (similar) operator

G̃nψℓ(t, x, v) = Ex[f(φ̃ℓ(t, x, v))1t<Tn + ψ(t− Tn, φ̃ℓ(t, x, v))1t≥Tn ],

with Tn denoting the nth random time, is continuous as well for any fixed
n, t, ψ(t, ·) ∈ B(Ẽ) and τ -continuous function f . By applying Lemma 27.3 in Davis
(1993) we have that for any ψ(t, ·) ∈ B(Ẽ)

|G̃nψℓ(t, x, v)− P̃tf(x, v)| ≤ 2max(∥ψ∥∥f∥)P (t ≥ Tn).

Finally, if λ is bounded, then we can bound P (t ≥ Tn) by something which does
not depend on (ℓ, x, v) and goes to 0 as n → ∞ so that G̃nψ → P̃tf uniformly on
ℓ, x, v ∈ Ẽ under the supremum norm. This shows that, for any t, P̃t (and therefore
Pt) preserves τ -continuity.
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Remark C.1.4. The proof of the Feller and Markov property follow similarly for
the Bouncy Particle and the Boomerang sampler.

C.1.4 The extended generator of Zt

Let f ∈ D(A) if f̃ ∈ D(Ã) and f◦ι = f̃ . Then f ∈ D(A) are τ -absolutely continuous
functions along full deterministic trajectories on E:

D(A) = {f ∈M(E); t→ f(φ(t, x, v)) τ -absolutely continuous ∀(x, v);
lim
t→0

f(x[i : 0+ + t], v) = f(x[i : 0+], v);

lim
t→0

f(x[i : 0− − t], v) = f(x[i : 0−], v)}.

For those functions f ∈ D(A) with f ◦ ι = f̃ we have that

Ãf̃(ℓ, x̃, v) = Af(x, v) =
N∑
i=1

Aif(x, v)

with

Aif(x, v) =

{
κi(f(Ti(x, v))− f(x, v)) (x, v) ∈ Fi,

vi∂xif(x, v) + λi(x, v)(f(x, v[i : − vi])− f(x, v)), otherwise,

and
λi(x, v) = (vi∂iΨ(x))+ + λ0,i(x), i = 1, 2, . . . , d,

for positive functions λ0,i.
Denote the space of compactly supported functions on E which are contin-

uously differentiable in their first argument by C1
c (E). Define Cb(E) = {f ∈

C(E) : f is bounded} and D = {f ∈ C1
c (E),Af ∈ Cb(E)}. The following propo-

sition shows that the operator A restricted to D coincides with the infinitesimal
generator of the ordinary Zig-Zag process restricted to D.

Proposition C.1.5. We have

D = {f ∈ C1
c (E) : viκi (f(Ti(x, v))− f(x, v))

= vi∂if(x, v)+λi(x, v)(f(x, v[i : −vi]))−f(x, v)), (x, v) ∈ Fi for all i = 1, . . . , d}.

For f ∈ D, Af = Lf , where Lf =
∑d

i=1 Lif with

Lif(x, v) = vi∂xif(x, v) + λi(x, v) (f(x, v[i : − vi])− f(x, v)) .

Proposition C.1.6. (Proposition 4.2.1) The extended generator of the process
(Z(t)) is given by A with domain D(A).
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Proof. This is to verify that if f ∈ D(Ã) and Ã solve the martingale problem, i.e
are such that

f(ℓ(t), x(t), v(t))− f(ℓ, x, v) +
∫ t

0

Af(ℓ(s), x(s), v(s)ds, ∀(ℓ, x, v) ∈ Ẽ

is a local martingale (Davis 1993, Section 24) on Ẽ, then f ◦ ι : f ∈ D(Ã) and A
solve the martingale problem on E (for any local martingale Zt on Ẽ, ι(Zt) is a local
martingale on E).

By the Feller property, the extended generator is an extension of the generator
defined as

Lf(x, v) := lim
t↓0

E[f(Xt, Vt) | X0 = x, V0 = v]− f(x, v)
t

for a sufficient regular class of functions f for which this limit exists uniformly in
x (see Liggett 2010, Section 3, for more details). Then, D = {f ∈ D(A) : f ∈
C1
b , Af ∈ Cb(E)} is a core for A (as in Liggett 2010, Definition 3.31). Let L be the

restriction of A on D. By Liggett (2010, Theorem 3.37), µ is a stationary measure
if, for all f ∈ D: ∫

Lfdµ = 0.

C.1.5 Remaining part of the proof

Invariant measure of the Sticky Zig-Zag process: We check here that the
sticky d-dimensional Zig-Zag process as presented in Section 4.2.3 taking values in
E with discrete velocities in V = {v : |vi| = ai,∀i ∈ {1, 2, . . . , d}} and with extended
generator A is such that ∫

Lf(x, v)µ(dx, dv) = 0

for all f ∈ D = {f ∈ C1
c (E),Af ∈ Cb(E)}. Here, L is the extended gen-

erator A restricted to D (See Poposition (C.1.5)). For any-1 f ∈ D, define
λ+i := λi(x, v[i : , ai]), λ

−
i := λi(x, v[i : ,−ai]), f+

i := f(x, v[i : ai]), f
−
i := f(x, v[i : −

ai]), f
+
i (y) := f(x[i : y], v[i : ai]), f

−
i (y) := f(x[i : y], v[i : −ai]), . Also write the mea-

sure ρ(dxi, vi) := dxi +
1
κ

(
1vi<0δ

+
0 (dxi) + 1vi>0δ

−
0 (dxi)

)
. We see that
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∫
Lifdµ =

∑
v∈V−i

(∫
Rd−1

(∫ ∞

0+
+

∫ 0−

−∞

)(
ai∂xif

+
i + λ+i (f

−
i − f+

i )
)
exp(−Ψ(x))dxi

∏
j ̸=i

ρ(dxj, vj)

)

+
∑
v∈V−i

(∫
Rd−1

(∫ ∞

0+
+

∫ 0−

−∞

)(
−ai∂xif−

i + λ−i (f
+
i − f−

i )
)
exp(−Ψ(x))dxi

∏
j ̸=i

ρ(dxj, vj)

)

+
∑
v∈V−i

(∫
Rd−1

ai
(
f+
i (0

+)− f+
i (0

−)
)
exp(−Ψ(x[i : 0]))

∏
j ̸=i

ρ(dxj, vj)

)

+
∑
v∈V−i

(∫
Rd−1

−ai
(
f−
i (0

−)− f−
i (0

+)
)
exp(−Ψ(x[i : 0]))

∏
j ̸=i

ρ(dxj, vj)

)
.

By integration by parts we have that
(∫∞

0+
+
∫ 0−

−∞

)
(∂xif(x, v) exp(−Ψ(x))) dxi is

equal to(
f(x[i : 0−], v)− f(x[i : 0+], v)

)
exp(−Ψ(x[i : 0]))

+

(∫ ∞

0+
+

∫ 0−

−∞

)
(∂iΨ(x)f(x, v) exp(−Ψ(x))) dxi

so that
∫
Lifdµ is equal to∑

v∈V−i

(∫
Rd−1

(∫ ∞

0+
+

∫ 0−

−∞

)(
ai∂xiΨ(x) + λ+i − λ−i

)
f−
i exp(−Ψ(x))dxi

∏
j ̸=i

ρ(dxj, vj)

)

+
∑
v∈V−i

(∫
Rd−1

(∫ ∞

0+
+

∫ 0−

−∞

)(
−ai∂xiΨ(x) + λ−i − λ+i

)
f+
i exp(−Ψ(x))dxi

∏
j ̸=i

ρ(dxj, vj)

)

+
∑
v∈V−i

(∫
Rd−1

ai
(
f+
i (0

+)− f+
i (0

−)
)
exp(−Ψ(x[i : 0]))

∏
j ̸=i

ρ(dxj, vj)

)

+
∑
v∈V−i

(∫
Rd−1

−ai
(
f−
i (0

−)− f−
i (0

+)
)
exp(−Ψ(x[i : 0]))

∏
j ̸=i

ρ(dxj, vj)

)

+
∑
v∈V−i

(∫
Rd−1

ai
(
f+
i (0

−)− f+
i (0

+)
)
exp(−Ψ(x[i : 0]))

∏
j ̸=i

ρ(dxj, vj)

)

+
∑
v∈V−i

(∫
Rd−1

−ai
(
f−
i (0

+)− f−
i (0

−)
)
exp(−Ψ(x[i : 0]))

∏
j ̸=i

ρ(dxj, vj)

)
= 0,
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where we used that −vi∂iΨ(x) + λi(x, v)− λi(x, Fi(v)) = 0, ∀(x, v) ∈ E.

C.1.6 Ergodicity of the sticky Zig-Zag process

In this section, we prove that the sticky Zig-Zag is ergodic. As the argument partially
relies on the ergodicity results of the ordinary Zig-Zag sampler (Bierkens, Roberts,
and Zitt 2019), we start by making similar assumptions on Ψ as appearing in that
paper.

Assumption C.1.2. (Assumptions of Bierkens, Roberts, and Zitt 2019, Theorem 1)
Let Ψ satisfy the following conditions:

• Ψ ∈ C3(Rd),

• Ψ has a non degenerate local-minimum,

• For some constants c > d, c′ ∈ R, Ψ(x) > c ln(|x|)− c′, for all x ∈ Rd.

For every set α ⊂ {1, 2, . . . , d}, we define the sub-space Mα = {x ∈ Rd : xi =

0, i /∈ α} and define the |α|-dimensional ordinary Zig-Zag process (Z
(α)
t )t≥0, with

|α| ≤ d, on the sub-space Mα × {−1,+1}α and with reflection rates λi(x, v) =
max(0, vi∂iΨ(x)), x ∈Mα, i ∈ α.

Proposition C.1.7. Suppose Ψ satisfies Assumption C.1.2. Then for every set
α ⊂ {1, 2, . . . , d}, (Z

(α)
t )t≥0 is ergodic with unique invariant measure with density

exp(−Ψ(x))|Mα
relative to Leb(Mα)(dx)⊗Uniform({−1,+1}α)(dv). Furthermore,

some skeleton chain of each process is irreducible.

Proof. If Assumption C.1.2 holds on Rd, then it holds on any the sub-spaceMα, α ⊂
{1, 2, . . . , d}, for functions x 7→ Ψ(x), x ∈ Mα. Proposition C.1.7 follows from the
ergodic theorem of ordinary Zig-Zag processes (Bierkens, Roberts, and Zitt 2019,
Theorem 1 and Theorem 5).

Next, we show that, for any initial position (x, v) ∈ E, the sticky Zig-Zag process
is Harris recurrent to the set where all coordinates are stuck at 0. Denote the measure
δ0(dx, dv) =

⊗d
i=1(δ0+,−1(dxi, dvi) + δ0−,+1(dxi, dvi)), the set S = ∩di=1Fi and the

first hitting time τA = inf{t > 0: Zt ∈ A}, where Zt = (Xt, Vt) is the sticky Zig-Zag
process.

Proposition C.1.8. (Harris recurrence) Suppose Ψ satisfies Assumption C.1.2.
Then for any initial state Z0 = z0 ∈ E, we have that P(τS <∞) = 1, for any
S ⊂ S.
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Proof. Let x0 ∈ Mα for an arbitrary α ⊂ {1, 2, . . . , d}. Denote the random time
of the first stuck coordinate xi, i ∈ αc leaving zero by T1 ∼ Exp(

∑
j∈αc κj) > 0.

Denote the random time of the first ‘free’ coordinate xi, i ∈ α hitting zero by T2.
Notice that T1 is independent of the trajectory on the subspace Mα. and the

sticky Zig-Zag process behaves as an ordinary |α|-dimensional Zig-Zag process in
the subspaceMα for time t ∈ [0,min(T2, T1)]. By Proposition C.1.7, T2 is finite and
P(T2 < T1) > 0. By using the Markov structure of the process and iterating the
same argument for a sequence of sub-modelsMα2 ,Mα3 , . . . ,Mα|α|−1

, with |αj|+1 =
|αj+1|, we conclude that P (τS <∞) = 1.

Now, consider a subset S ⊂ S and a random element from S. Without loss
of generality, we may assume this element to be s0 = ((0−, . . . , 0−), (+1, . . . ,+1)).
Next, we show that P(τ{s0} <∞) = 1.

Let τS be the hitting time to the set S of the sticky Zig-Zag Z(t)t>0. Denote by
β := {i : Zi(τS) ̸= [s0]i} ⊂ {1, 2, . . . , d} the set of indices for which the coordinate
Zi(τS) is stuck on the other copy of zero. At time Z(τS) the process will stay in the
null model for a time ∆T ∼ Exp(

∑d
j=1 κj). At time T + ∆T a coordinate i ∈ β is

released with positive probability κi/
∑

j κj. Conditional on ∆T and on the event
that the coordinate i is released at time T +∆T , the sticky Zig-Zag behaves as a 1
dimensional ordinary Zig-Zag sampler until time τS +∆T +min(∆T1,∆T2), where,
similarly as before, ∆T1 ∼ Exp(

∑
j ̸=i κj) (and it is independent from the trajectory

of the free coordinate) and ∆T2 is the hitting time to 0 of the coordinate process
Zi(τS + ∆T + t)t>0. By Proposition C.1.7, ∆T2 is finite and P(∆T2 < ∆T1) > 0.
By using the Markovian structure of the process and iterating this argument for all
i ∈ β we conclude that P(τ{s0} <∞) = 1, hence P(τS <∞) = 1.

By Meyn and Tweedie (1993, Theorem 6.1), the sticky Zig-Zag sampler is ergodic
if it is Harris recurrent with invariant probability µ and if some skeleton of the chain
is irreducible. For the latter condition, notice that once the process reaches the null
model, it will stay there for a time ∆T ∼ Exp(

∑d
j=1 κj) and P(∆T > ∆) > 0 for

any ∆ > 0. Hence, any skeleton Z(∆) = (Z(0)), Z(∆), Z(2∆), . . . ) (with ∆ > 0) is
irreducible relative to the measure δ0.

C.1.7 Recurrence time of the sticky Zig-Zag to 0

The recurrent time to the point 0 = (0, 0, . . . , 0) is derived with a simple heuristic
argument. We assume the sticky Zig-Zag to have unit velocity components and
to be ergodic with stationary measure µ. Clearly, the expected time to leave 0
is (κd)−1 since each coordinate leaves 0 according to an independent exponential
random variable with parameter κ. Denote by τ0 the recurrent time to 0, i.e. the
random time spent outside 0 before returning to 0. By ergodicity, the expectation
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of τ0 must satisfy the following equation

(κd)−1

µ({0})
=

E[τ0]
1− µ({0})

.
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C.2 Other sticky PDMP samplers
Here we extend the results presented in Section 4.2.3 for two other Sticky PDMP
samplers: the sticky version of the Bouncy particle sampler (Bouchard-Côté,
Vollmer, and Doucet 2018) and the Boomerang sampler (Bierkens et al. 2020), the
latter having Hamiltonian deterministic dynamics invariant to a prescribed Gaussian
measure. To visually assess the difference in sample paths, we show in Figure C.1
a typical realization of the Sticky Zig-Zag sampler, Sticky Bouncy particle sampler
and Sticky Boomerang sampler.

Figure C.1: (x-y) phase portraits, of 3 different sticky PDMP samplers targeting the
measure of Equation (4.2) with exp(−Ψ) being a mixture of two bivariate Gaussian
densities centred respectively in the first and the third quadrant of the x-y axes. Left:
Sticky Zig-Zag sampler. Middle: sticky Bouncy Particle sampler with refreshment
rate equal to 0.1. Right: sticky Boomerang sampler with refreshment rate equal to
0.1. For all the samplers, κ1 = κ2 = 0.1 and the final clock was set to T = 103. As
the sticky Bouncy Particle sampler and the Boomerang sampler don’t have constant
speed, we marked their continuous trajectories in the phase plots with dots. The
distance of dots indicates the speed of traversal.

C.2.1 Sticky Bouncy Particle sampler

The inner product and the norm operator in the subspace determined byA is denoted
by ⟨x, v⟩A :=

∑
i∈A xivi and ∥x∥A :=

∑
i∈A x

2
i with the convention that ⟨·, ·⟩{1,2,...,d} =

⟨·, ·⟩ and ∥·∥{1,2,...,d} = ∥·∥. The deterministic dynamics of the sticky Bouncy Particle
process are identical to that of the Sticky Zig-Zag process, having piecewise constant
velocity. For each i ∈ {1, 2, . . . , d}, when the process hits a state (x, v) ∈ Fi, the
ith coordinate (xi, vi) sticks for an exponentially distributed time with rate equal to
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κi|vi| while the other coordinates continue their flow until a reflection or refreshment
event happens. A reflection occurs with an inhomogeneous rate equal to

λ(x, v) = max(0, ⟨v,∇Ψ(x)⟩α),

where α is as defined in Equation (4.4). At reflection time the process jumps with
a contour reflection of the active velocities with respect to ∇Ψ:

(RΨ(x, v)v)i =

{
vi i /∈ α(x, v)
vi − 2 ⟨∇Ψ(x),v⟩α

∥∇Ψ(x))∥2α
∂iΨ(x) else.

Similarly to the ordinary Bouncy Particle sampler, the sticky Bouncy Particle sam-
pler refreshes its velocity component at exponentially distributed times with homo-
geneous rate equal to λref . This is necessary for avoiding pathological behaviour
of the process (see Bouchard-Côté, Vollmer, and Doucet 2018). At refreshment
times, each coordinate renews its velocity component independently according to
the following refreshment rule

v′i ∼

{
Zi (x, v) /∈ Fi,

sign(vi)|Zi| (x, v) ∈ Fi,
(C.2)

where Zi
i.i.d.∼ N (0, 1), independently of all random quantities. The refreshment rule

coincides with the refreshment rule given in the ordinary Bouncy Particle sampler
algorithm Bouchard-Côté, Vollmer, and Doucet (2018) for the coordinates whose
index is in the set α. For the components which are stuck at 0, the refreshment rule
renews the velocity without changing its sign. This prevents the possibility for the
ith stuck component to jump out the set Fi (changing its label from frozen to active
at refreshment time).

The extended generator of the sticky Bouncy Particle sampler is given by

Af(x, v) =
d∑
i=1

Gif(x, v) + λ(x, v)(f(x,RΨ(x, v)v)− f(x, v))

+ λref

∫
(f(x,w)− f(x, v)) ϱx,v(w)dw

and

Gif(x, v) =

{
|vi|κi (f(Ti(x, v))− f(x, v)) (x, v) ∈ Fi

vi∂xif(x, v) else,

where
ϱx,v(w) = ρ(wα(x,v))

∏
i∈α(x,v)c

2ρ(wi)1viwi>0,

for sufficient regular functions f : E → R in the extended domain of the generator.
Here, ρ(y) is the standard normal density function evaluated at y.
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Proposition C.2.1. The d-dimensional sticky Bouncy Particle sampler is invariant
to the measure

µ(dx, dv) =
1

C
ρ(v)dv exp(−Ψ(x))

d∏
i=1

(
dxi +

1

κi
(1vi>0δ0−(dxi) + 1vi<0δ0+(dxi))

)
(C.3)

for some normalization constant C.

Proof. The transition kernel RΨ(x) satisfies the following properties:

⟨∇Ψ(x), RΨ(x, v)v⟩α = −⟨∇Ψ(x), v⟩α

and

∥RΨ(x, v)v∥2 = ∥v∥2αc + ∥RΨ(x, v)v∥2α = ∥v∥2αc + ∥v∥2α = ∥v∥2

so, ρ(RA
Ψ(x)v) = ρ(v) (ρ(x) here denotes the standard Gaussian density evaluated

at x). Furthermore λ satisfies

−⟨v,∇Ψ(x)⟩α + λ(x, v)− λ(x,RΨ(x, v)v) = 0, ∀(x, v) ∈ E. (C.4)

Let us check that the process satisfies
∫
Lf(x, v)µ(dx, dv) = 0, for all f ∈ D = {f ∈

C1
c (E),Af ∈ Cb(E)} where L is the extended generator A restricted to D.

First let us fix some notation: denote fi(y) = f(x[i : y], v), Rf(x, v) =
f(x,RΨ(x, v)v) and Rλ(x, v) = λ(x,RΨ(x, v)v). Also write δ0(dxi, vi) :=
1vi<0δ0+(dxi) + 1vi>0δ0−(dxi) and ∆if(x, v) := f(x[i : 0+], v) − f(x[i : 0−], v)). We
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have this preliminary result:∫ d∑
i=1

Gifdµ =
1

C

∑
i

∫ (
Gif exp(−Ψ(x))(dxi +

1

κi
δ0(dxi))

)
∏
j ̸=i

(
dxj +

1

κj
δ0(dxj, vj)

)
ρ(v)dv

=
1

C

∑
i

∫
(vi∂xif exp(−Ψ(x))dxi + vi∆if exp(−Ψ(x))δ0(dxi))

∏
j ̸=i

(
dxj +

1

κj
δ0(dxj, vj)

)
ρ(v)dv

(C.5)

=
1

C

∑
i

∫
(vi∂xiΨ(x)f(x, v) exp(−Ψ(x))dxi)

∏
j ̸=i

(
dxj +

1

κj
δ0(dxj, vj)

)
ρ(v)dv

(C.6)

=
1

C

∑
A⊂{1,...,d}

(∑
i∈A

(∫
vi∂xiΨ(x)f(x, v) exp(−Ψ(x))dxA

) ∏
j∈Ac,

1

κj
δ0(dxj, vj)

)
(C.7)

=
1

C

∑
A⊂{1...,d}

∫
⟨v,∇Ψ(x[Ac : 0])⟩Af(x[Ac : 0], v) exp(−Ψ(x[Ac : 0]))dxA

∏
j∈Ac

1

κj
ρ(v)dv

Here from (C.5) to (C.6) we used integration by parts in the two half planes (∞, 0+]
and [0−,−∞). For the equivalence of (C.6) to (C.7) note that placing |A| balls in
d numbered boxes and marking one of them (say the ball in box i) is equivalent to
placing a marked ball in box i and distributing the remaining unmarked balls over
the remaining boxes. Also notice that∫

λref

∫
(f(x,w)− f(x, v))ϱ(w)dwdµ =

1

C

∑
A⊂{1,2,...,d}

λref

∫
(f(x,w)− f(x, v)) exp(−Ψ(x))dxA

×
∏
i∈Ac

1

κi
δ0−(dxi)1vi>01wi>02

|Ac|ρ(v)ρ(w)dvdw

+
1

C

∑
A⊂{1,2,...,d}

λref

∫
(f(x,w)− f(x, v)) exp(−Ψ(x))dxA

×
∏
i∈Ac

1

κi
δ0+(dxi)1vi<01wi<02

|Ac|ρ(v)ρ(w)dvdw,
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which is equal to 0 by symmetry between v and w. Then∫
Lfdµ =

1

C

∑
A⊂{1...,d}

∫
⟨v,∇Ψ(x[Ac : 0])⟩A exp(−Ψ(x[Ac : 0]))f(x[Ac : 0], v)dxA

∏
j∈Ac

1

κj
ρ(v)dv +

∫
(λ(x,RΨ(x, v))− λ(x, v))f(x, v)µ(dx, dv)

=
1

C

∑
A⊂{1...,d}

∫
⟨v,∇Ψ(x[Ac : 0])⟩A exp(−Ψ(x[Ac : 0]))

f(x[Ac : 0], v)dxA
∏
j∈Ac

1

κj
ρ(v)dv

(C.8)

+
1

C

∑
A⊂{1,...,d}

∫
(λ(x[Ac : 0], RΨv)− λ(x[Ac : 0], v)) f(x[Ac : 0], v)

exp(−Ψ(x[Ac : 0]))dxA
∏
j∈Ac

1

κj
ρ(v)dv

(C.9)

= 0,

where in Equation (C.8)-(C.9) we used a change of variable v′ = RΨ(x, v)v and
property (C.4).

Remark C.2.2. In more generality, the transition kernel at refreshment times can
be chosen as follows: with two refreshment transition densities qA and qF such that
qA(wA | vA)ρ(vA) and qF (wF | vF )ρ(vF ) for each A ⊔ F = {1, . . . , d} are symmetric
densities in w, v, the refreshment kernel

ϱx,v(dy, dw) = qA(wα(x,v) | wα(x,v))qF (wαc(x,v) | wαc(c,v))δF(x,v,w)(dy)dw

where

(F(x, v, w))i =


0− if xi = 0+, vi < 0, wi > 0,

0+ if xi = 0−, vi > 0, wi < 0,

xi else

leaves the target measure µ invariant.

The transition kernels given in Remark C.2.2 satisfy the Equation λref
∫
f(x,w)−

x(x, v)ϱx,wdwdµ = 0 and therefore, by similar computations as in the proof of Propo-
sition C.2.1, leave µ invariant. For example, the preconditioned Crank-Nicolson
scheme Cotter et al. (2013) falls withing this setting.
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C.2.2 Sticky Boomerang sampler

The sticky Boomerang sampler has Hamiltonian dynamics prescribed by the vector
field ξ̄i(xi, vi) = (vi,−xi) with close-form solution

(xi(t), vi(t)) = (cos(t)xi(0) + sin(t)vi(0),−xi(0) sin(t) + cos(t)vi(0)), (C.10)

and is invariant to a prescribed Gaussian measure centered in 0. Define U(x) such
that

U(x) = Ψ(x)− 1

2
x′Σ−1x

for a positive semi-definite matrix Σ ∈ Rd×d. Consider for example the ap-
plication in Bayesian inference with spike-and-slab prior (Equation (4.1)) where
{πi}di=1 are centered Gaussian densities with variance σ2

i . Then a natural choice is
Σ = Diag(σ2

1, σ
2
2, . . . , σ

2
n).

Similarly to the sticky Bouncy Particle sampler, the process reflects its velocity
at an inhomogeneous rate given by

λ(x, v) = ⟨v,∇U(x)⟩+α

with reflection specified by the transition kernel

(RU(x, v)v)i =

{
vi i /∈ α
vi − 2 ⟨∇U(x),v⟩α

∥∇Σ1/2U(x)),∥2α
⟨Σ[i,:],∇U(x)⟩α else

and refreshes the velocity at exponentially distributed times with rate equal to λref
according to the rule given in Equation (C.2).

Proposition C.2.3. The d-dimensional sticky Boomerang sampler is invariant to
the measure in Equation (C.3).

Proof. The extended generator of the sticky d-dimensional Boomerang process is
given by

Af(x, v) =
d∑
i=1

Gif(x, v) + λ(x, v)(f(x,RU(x, v)v)− f(x, v))+

λref

∫
(f(x,w)− f(x, v)) ϱx,v(w)dw

and

Gif(x, v) =

{
|vi|κi (f(Ti(x, v))− f(x, v)) (x, v) ∈ Fi

vi∂xif(x, v) + xi∂vif(x, v) else,
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where
ϱx,v(w) = ρ(wα(x,v))

∏
i∈α(x,v)c

2ρ(wi)1viwi>0,

ρ(y) being the standard normal density function evaluated at y and for sufficient
regular functions f : E → R in the extended domain of the generator. Then, define
D = {f ∈ C1

c (E),Af ∈ Cb(E)} and L as the extended generator A restricted to D.
The component of the extended generator (x, v)→ ∂xif(x, v)+xi∂vif(x, v) produces
Hamiltonian dynamics (see Equation (C.10)) preserving any Gaussian measure cen-
tered on 0. Notice that the RU(x) satisfies

⟨∇U(x), RU(x)v⟩α(x,v) = −⟨∇U(x), v⟩α(x,v)

and that
∥Σ−1/2RU(x)v∥ = ∥Σ−1/2v∥.

Then one can check that
∫
Lf(x, v)µ(dx, dv) = 0 by carrying out similar computa-

tions as in the proof of Proposition C.2.1.

A variant of the sticky Boomerang sampler is the sticky factorised Boomerang
sampler (being the sticky version of the factorised Boomerang sampler introduced
in Bierkens et al. 2020). Here the process has the same dynamics, refreshment rule
and sticky events of the sticky Boomerang process but has a different reflection rate
and reflection rule. Similarly to the Sticky Zig-Zag process, the first reflection time
of the sticky factorised Boomerang sampler is given by the minimum of |α(x, v)|
Poisson times {τj : j ∈ α(x, v)} with τj ∼ IPP(t → λj(φ(t, x, v)) and λj(x, v) =
(∂xjU(x)vj)

+. Likewise the Sticky Zig-Zag process, at the reflection time the process
reflects its velocity by changing the sign of the ith component v → v[i : − vi] where
i = argmin{τj : j ∈ α(x, v)}. As shown in Bierkens et al. (2020) the factorised
Boomerang sampler can outperform the Boomerang sampler when ∂xiU is function
of few coordinates.
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C.3 Comparison between reversible jump PDMPs
and sticky PDMPs

In this appendix, we discuss the differences between the sticky PDMPs and RJ
(Reversible Jumps) PDMPs presented in Chevallier, Fearnhead, and Sutton (2020)
which, similarly to us, addresses variable selection problems using PDMP samplers.

The approach taken in Chevallier, Fearnhead, and Sutton (2020) is based on
the framework of reversible jump (RJ) MCMC as proposed in Green (1995) and
its derivation is therefore substantially different from our approach. Nonetheless,
the samplers have certain similarities. The dynamics of both the RJ PDMPs in
Chevallier, Fearnhead, and Sutton (2020) and the sticky PDMPs proposed in this
paper allow each coordinate to stick at 0 for an exponential time. The rate of the
exponential time of the sticky PDMPs depends only on the velocity component of
each coordinate, while the rate of RJ PDMPs can depend on the current state of the
process. The latter is slightly more general as it allows to choose freely a prior weight
on the Dirac measure for each possible model (while our approach allows to choose
freely a prior weight on the Dirac measure of each possible coordinate). An impor-
tant difference between the two methods is the behaviour of the process after the
particle sticks at 0: the velocity of the coordinate of the sticky PDMPs is restored to
its previous value while for RJ PDMPs, a new velocity is drawn independently to the
previous one. The former action introduces non-reversible jumps between models
while the latter reversible jumps and a random walk behaviour when jumping be-
tween models. This simple, yet substantial, difference leads to two different limiting
behaviour of the two processes when the number of Dirac measures increases. The
limiting behaviour of both processes is unvelied below in Appendix C.3.2 through
numerical simulations: while the Sticky Zig-Zag converges to ordinary Zig-Zag, the
RJ Zig-Zag asymptotically exhibits diffusive behaviour.

For RJ PDMPs, the random walk behaviour is mitigated by introducing a tuning
parameter p which allows each coordinate to stick at 0 only a fraction of times when
hitting 0 (and compensating for this by down-scaling the rate of the exponential
waiting time when the coordinate sticks). The parameter p is tuned to be equal to
0.6 based on empirical criteria. In Appendix C.3.1 we investigate the possibility to
introduce the tuning parameter p in the Sticky Zig-Zag sampler and, based on a
heuristic argument and a simulation study, we concluded that it is not beneficial for
us.

C.3.1 Heuristics for the choice of p

Here we investigate the possibility of introducing the parameter p to the Sticky Zig-
Zag sampler. This parameter was originally introduced in Chevallier, Fearnhead,
and Sutton (2020). Based on the heuristic argument and the simulation study given
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below, we conclude that the introduction of p does not improve the performance of
the Sticky Zig-Zag sampler.

The parameter p defines the probability for a coordinate to stick at 0 when it
hits 0. By introducing this parameter, the times of the particles stuck at 0 has to
be rescaled by a factor of p in order target the right measure.

Consider a trajectory {zt : 0 < t < T} of the one dimensional ordinary Zig-Zag
sampler (without stickiness) targeting a given measure. In this case, one could create
a trajectory of the Sticky Zig-Zag process retrospectively just by adding constant
segments equal to 0, every time the process hits 0 with random length equal to
XY , with X ∼ Ber(p) and Y ∼ Exp(κ/p), X independent from Y . Then, if the
trajectory zt hits 0 N -times, the total occupation time of the sticky process in 0
is Gamma-distributed with shape parameters N

p
and inverse scale parameter pκ (in

variable selection, this would correspond to the posterior probability of the sub-
model without the coefficient). While the mean of this random variable is constant
for every p, its variance is N

κp
and is minimized when p = 1.

Based on the aforementioned heuristics, it appears not useful to introduce the
parameter p for the Sticky Zig-Zag. This claim is supported by simulations presented
in Figure C.2, where we vary p from 0.1 (top) to 1.0 (bottom) for a 20 dimensional
Gaussian density with pairwise correlation equal to 0.99 and relative to the measure

d∏
i=1

(
dxi + c

∑
j∈N

δj∗0.01(dxi)
)
, (C.11)

with c = 1.0. In Figure C.2, left panels, the traces are more erratic when p is small
and the process traverses the space in less time when p is large (notice the different
ranges of the vertical axis). In Figure C.2, right panels, the phase portrait of the
first two coordinates is shown. By visual inspection it is possible to notice that
the phase portrait fails to be symmetric on the axis x1 = −x2 for p small while it
succeeds for p = 1 (notice again the different ranges of the axes), hence suggesting
that Zig-Zag sampler has a better mixing for p = 1.

C.3.2 Limiting behaviour

Here we show the different limiting behaviour between the RJ-PDMP samplers and
the sticky PDMP samplers as the number of Dirac measures increases.

The limiting behaviour of the two samplers significantly differ because after ev-
ery time a coordinate sticks at a point mass, the sticky PDMP sampler preserves
the velocity component while RJ PDMP sampler has to refresh a new independent
velocity. We illustrate the limiting behaviour of the two samplers through simula-
tions where we let the Sticky Zig-Zag and the RJ-Zig-Zag sampler (with p = 0.6)
target a 20-dimensional measure with a Gaussian density with pairwise correlation
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Figure C.2: x1 trace plots (left) and x1-x2 phase portraits (right) of the Sticky
Zig-Zag samplers with final clock T = 503 with p equal to 0.1 (top), 0.5 (center),
1.0 (bottom). The target measure has a Gaussian density with pairwise correlation
equal to 0.99 relative to the reference measure of Equation (C.11). By comparing
the symmetry of the empirical measures along the diagonal and the range of the
coordinates, one can conclude that the algorithm performs best for p = 1.

equal to 0 (Figure C.3) and 0.99 (Figure C.4) relative to the reference measure of
Equation (C.11) with c = 10. While the Sticky Zig-Zag sampler resemble an ordi-
nary Zig-Zag sampler, the RJ-PDMP sampler has a limiting diffusive behaviour and
appears to explore the space less efficiently than the sticky PDMP sampler (see the
range of the axes and the symmetries of the measure around the axis x2 = −x1 ).
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Figure C.3: Comparison between RJ Zig-Zag samplers (first row) and Sticky Zig-Zag
samplers (second row) targeting a 20 dimensional measure with Gaussian density
with pairwise correlation equal to 0.0 and relative to the reference measure in Equa-
tion (C.11). Column 1: trace plot of the first coordinate. Column 2: trace plot of
the second column. In all cases T = 104. By looking at the range of each coordinate,
it is clear that the Sticky Zig-Zag mixes faster than its reversible counterpart.
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Figure C.4: Same description as in Figure C.3, except now for a Gaussian measure
with pairwise correlation equal to 0.99. By looking for example at the symmetry
along the axis x2 = −x1 and the ranges of the coordinates, it is clear that the Sticky
Zig-Zag outperforms the RJ Zig-Zag.
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C.4 Details of Section 4.3

C.4.1 Bayes factors for Gaussian models

Let (X, Y ) ∼ N(µ,Γ−1), written in block form as

µ =

[
µx

µy

]
, Γ =

[
Γx Γxy

Γ′
xy Γy

]
.

Denote the density of (X, Y ) evaluated at (x, y) by ϕ([x, y]; µ, Γ−1). Let

X | (Y = y) ∼ N (µx|y, Γ
−1
x ) (C.12)

be the marginal density of X given Y = y, where µx|y = µx − Γ−1
x Γxy(y − µy).

Assume Γx to be positive definite and let the marginal density of Y be∫
ϕ([x, y]; µ, Γ−1)dx = (2π)

dx−d
2 |Γ|

1
2 |Γx|−

1
2

exp

(
1

2
µ′
x|yΓxµx|y −

1

2
[−µx, y − µy]′Γ[−µx, y − µy]

)
(C.13)

where dx is the size of X.
We are now ready to compute the corresponding Bayes factors of two neighbour-

ing (sub-)models as in Equation (4.12) when Ψ is a quadratic function. For every
set of indices α ⊂ {1, 2, . . . , d} and for every j, the Bayes factors relative to two
neighbouring (sub-)models (those differing by only one coefficient) for a measure as
in Equation (4.2) are given by

Bj(α) =
µ(Mα∪{j})

µ(Mα\{j})
=
κi
∫
R|α∪{j}| exp(−Ψ(y))dxα∪{j}∫

R|α\{j}| exp(−Ψ(z))dxα\{j}
, (C.14)

where y = {x ∈ Rd : xi = 0, i /∈ (α ∪ {j})}, z = {x ∈ Rd : xi = 0, i /∈ (α \ {j})].
Since Ψ is quadratic, we can write exp(−Ψ(x)) = Cϕ(x; µ, Γ−1) for some parameters
C, µ,Γ. By using both Equation C.12 and Equation C.13 we have that the right
hand side of Equation (C.14) is equal to

κi

√
2π|Γx1|
|Γx2|

exp

(
1

2
(µ′

x1|y1=0Γx1µx1|y1=0 − µ′
x2|y2=0Γx2µx2|y2=0)

)
where x1 = xα−j∪{j}, x2 = xα−j\{j}, y1 = xαc

−j\{j}, y2 = xαc
−j∪{j}. Furthermore, by

Equation C.12, the random variable at step 2 of the Gibbs sampler presented in
Section 4.3.1 can be simulated as Xα|(Xαc = 0) ∼ N (µxα|xαc=0,Γxα).
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C.4.2 Simulating sticky PDMPs and sticky Zig-Zag samplers

Sticky samplers can be implemented recursively by modifying appropriately the
ordinary PDMP samplers so to include sticky events as introduced in Section 4.2.
We discuss how to integrate local implementations of the algorithms to increase
the sampler’s performance in case of a sparse dependence structure in the target
measure and in case of local upper bounding rates.

Although PDMPs have continuous trajectories, the algorithm computes and
saves only a finite collection of points (which we refer to as the skeleton of the
continuous trajectory) corresponding to the positions, velocities and times where
the deterministic dynamics of the process change. In between those points, the
continuous trajectory can be deterministically interpolated.

In case the ith partial derivative of the negative score function is a sum of Ni

terms, which is the case for example in regression problems, subsampling techniques
can be employed as described in Section 4.2.4.

Computing Poisson times for PDMPs

As PDMPs move deterministically (and with simple dynamics) in between event
times, the main computational challenge consists of simulating those times. Given
an initial position (x, v), the distribution of the time until the next event is specified
in (4.7). A sample from this distribution can be found by solving for τ ′ in the
equation ∫ τ ′

0

λ(φ(s, x, v))ds = t, t = Exp(1). (C.15)

We then write that τ ′ ∼ IPP(λ(φ(·, x, v)). When it is not possible to find the root
of Equation (C.15) in closed form, it suffices to find upper bounds λ for the rate
functions which satisfies, for any (x, v) ∈ E and for some ∆ = ∆(x, v) > 0

λ(t, x, v) ≥ λ(φ(t, x, v)), ∆ ≥ t ≥ 0, (C.16)

for which this is possible and use the thinning scheme: Let τ ′ ∼ IPP(λ̄(·, x, v));
if τ ′ > ∆ then the proposed time is rejected and a new time has to be drawn
as τ ′ ∼ IPP(λ̄(·, ϕ(∆, x, v))). We accept the proposed time with probability
λ(ϕ(τ ′, x, v))/λ̄(τ ′, x, v). This scheme is referred as adaptive thinning in Bouchard-
Côté, Vollmer, and Doucet (2018). More sophisticated and potentially efficient
thinning schemes have been proposed, see Sutton and Fearnhead (2021). The simu-
lation of unfreezing times is easier: once the i-th component hits zero then it sticks
at zero for a time that is exponentially distributed with parameter κi|vi|.

For the ordinary d-dimensional Zig-Zag and the factorised Boomerang sampler
(these samplers are called factorised PDMPs in Bierkens et al. 2020), the reflection
time is factorised as the minimum of d independent clocks τ1, τ2, . . . , τd where τi ∼
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IPP(λi(φ(·, x, v)) for i = 1, 2, . . . , d. The first reflection time of the d-dimensional
sticky factorised samplers is obtained instead by finding the minimum of |α| < d
independent clocks with the same rates λi of the ordinary factorised sampler, but
only for the active coordinates i ∈ α(x, v).

If ∂xiΨ (an estimate of ∂xiΨ when using subsampling) or the upper bound λ
depends on fewer coordinates, then the evaluation of each reflection time is cheaper.
The fully local implementation presented in Bierkens et al. (2021) exploits these
two features once in proposing the reflection time and once for deciding whether to
accept. Below, we discuss in more details the algorithm of Sticky Zig-Zag sampler
with local upper bounds and with subsampling.

Local implementation:

Assume that the sets Ai and λi are such that

λi(t, x, v) = fi(t, xAi
), ∀x, for i = 1, 2, . . . , d

for some fi : R+ × R|Ai| → R+ with Ai ⊂ {1, 2, . . . , d}. Given an initial posi-
tion (x, v) and random times τj ∼ IPP(t → λj(t, x, v)), for i ∈ α, denote by
i = argminj∈α(x,v) τj and τ = minj∈α(x,v) τj the first proposed reflection time. Ac-
cording to the thinning procedure for Poisson processes, the process flips the ith
coordinate with probability λi(φ(τ, x, v))/λi(τ, x, v). If the process flips the ith ve-
locity, then the Poisson rates {λj : j ∈ α, Aj ̸∋ i} continue to be valid upper bounds
so that the corresponding reflection times do not need to be renewed (see Bierkens
et al. 2021, Section 4, for implementation details).

In general, when the ith particle freezes at 0 or was stuck at 0 and gets released,
the reflection times {τj : i ∈ Aj} have to be renewed. However this is not always
the case, as there are applications, such as the one in Section 4.4.4, for which the
upper bounding rates {λi}di=1 continue to be valid upper bounds when one or more
particles hit 0 and therefore the waiting times computed before the particles hit 0
are still valid.

Fully local implementation:

Consider now the decomposition of ∂xiΨ, i = 1, 2, . . . , d given in Equation (4.11)
and such that

S(x, i, j) = fi,j(xÃi,j
), ∀x, for (i, j) ∈ {1, 2, . . . , d} × {1, 2, . . . , Ni}

for some fi,j : R|Ãi,j | → R with Ãi,j ⊂ {1, 2, . . . , d}.
The fully local implementation of the Sticky Zig-Zag with subsampling profits

from local upper bounds and local gradient estimators by assigning an independent
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time for each coordinate, thus evolving the flow of only the coordinates which are
required at each step and by stacking {τj ∧ τ ⋆j : j ∈ α}, with τj being a proposed
reflection time and τ ⋆j the hitting time to 0, and the unfreezing times {τ ◦j : j ∈ αc}
in an ordered queue. For a documented implementation, see Schauer and Grazzi
(2021).

Given an initial point (x, v) and if i = argmin(τj : j ∈ α(x, v)) is the coordinate
of the first proposed reflection time τ = min(τj : j ∈ α(x, v)), the sampler reflects
the velocity of the ith coordinate with probability λ̃i,J(xÃi

(τ), v)/λ(τ, x, v) with
J ∼ Unif({1, 2, . . . , Ni}). Hence, it is only required to update the position of the
coordinates with index in Ãi,J \ αc(x, v). Then,

• if the ith velocity flips, then the algorithm needs to update only the wait-
ing times {τj : j ∈ α,Aj ∋ i} (as described in Appendix C.4.2) and, to
this end, needs to update the position of the coordinates with index {k ∈
Aj \ αc(x, v) : i ∈ Aj};

• in the other case, when the ith velocity does not change (shadow event), only
τi has to be renewed so that only the particles in Ai have to be updated.

Remark C.4.1. (Sparse implementation.) When the dimensionality d is large,
inserting each waiting time in a ordered queue and initializing the state space can
be computationally expensive. If for example the product ki|vi| is equal for all i, an
alternative efficient and sparse implementation is possible. Here we simulate the
sticky time for each frozen coordinate by means of simulating the overall sticky time
from the exponential distribution with rate

∑
i∈αc κi|vi| (which has to be renewed

every time a new particle sticks at 0) and selecting the particle to unfreeze uniformly
from the set αc. A further improvement can be obtained by representing x as a sparse
vector and saving only the location of the active particles {xi : i ∈ α}.

C.4.3 Runtimes of the algorithms

We will now compute typical runtimes for the Gaussian model, assuming a decom-
position

Ψ(x) = (x− µ)′Γ(x− µ) =
N∑
i=1

(x− µi)′Γi(x− µi) + c,

so that N captures the dependence on the number of observations in a Bayesian
setting.

Sticky Zig-Zag sampler:

The computational cost of simulating PDMP samplers is intimately related with the
number of random times generated. This, in turn, depends on the intensity of the
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rate λ of the underlying Poisson process. For any initial position and velocity (x, v),
the total rate of the Sticky Zig-Zag sampler is equal to

λ(x, v) =
∑
i∈α

λi(x, v) +
∑
i∈αc

|vi|κi (C.17)

where, as before, α = {i : xi ̸= 0}. In the following analysis, we drop the dependence
on (x, v) and we assume that the size of α(t) := {i : xi(t) ̸= 0} fluctuates around a
typical value p in stationarity. Thus p represents the number of non-zero components
in a typical model, and can be much smaller than d in sparse models.

We consider the sticky Zig-Zag with local implementation as in Remark C.4.1
where we assume κ := κ1 = κ2 = · · · = κd. We ignore logarithmic factors, e.g., for
priority queue insertion. In the analysis below we distinguish between the compu-
tational costs of reflection events and unfreezing events.

The number of reflection and unfreezing events per unit time interval are re-
spectively O(p) and O((d − p)κ) per unit time; see Equation (C.17). Once either
a reflection or unfreezing event happens, we have to recompute between O(1) and
O(p) new reflection event times (depending on the elements of Ai ∩ α; see Ap-
pendix C.4.2). Finally, each newly computed reflection event time for the particles
i ∈ α requires a computation ranging from O(1) to O(N). The complexity O(1)
can be achieved using the subsampling technique (Section 4.2.4) in ideal scenarios
(Bierkens, Fearnhead, and Roberts 2019). Table 4.1 in Section 4.3 summarizes the
overall scaling complexity of the Sticky Zig-Zag algorithm for the quantities p and
N .

Gibbs sampler:

At each iteration, the Gibbs sampler algorithm requires the evaluation of the Bayes
factors which involves the inversion of a square matrix of dimension p× p. This can
be efficiently obtained with a Cholesky decomposition of a sub-matrix of Γ. This is a
computation of O(p3) when Γ is full; a lower order is possible when Γ is sparse. For
example, in the example in Section 4.4.2, the complexity of this operation is O(p3/2).
This is followed by computing sufficient statistics in step 2 of Section 4.3.1 which
involves the inversion of a triangular matrix which is O(|α2|) (O(1) if the Cholesky
factor is sparse) in addition to an operation of order pN (for example in linear or
logistic regression). It is important to notice that if Γ is sparse, its Cholesky factors
might not be. Our finding are summarized in Table 4.1 in Section 4.3 and validated
by the numerical experiments of Section 4.4 (Figure 4.5, Figure 4.9).

C.4.4 Mixing

Next to the complexity per iteration, we should also understand the time the under-
lying process needs to explore the state space and to reach its stationary measure.
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Given the different nature of dependencies of the two algorithms, a rigorous and
theoretical comparison of their mixing times is difficult. We therefore provide a
heuristic argument for two specific scenarios.

Let both algorithms be initialized at x ∼ Nd(0, I) with all non-zero coordinates
(αc = ∅) and assume that the target µ assigns most of its probability mass to the
null modelM∅. Consider the following scenarios:

• A measure supported in every model and such that for any two models Mαi

and Mαj
with αi ̸= αj, we have µ(Mαi

) > µ(Mαj
) if |αi| < |αj|. The Sticky

Zig-Zag will be directed to the null model, each coordinate with speed 1, so
that the first visit of the null set happens with an expected time O(maxi(|xi|))
which is of O(log d) if x is standard Gaussian. On the other hand, the Gibbs
sampler, at every iteration, randomly picks a coordinate and, if this is a non-
zero coordinate, succeeds to set that coordinate to zero. Denote by τα the
(random) number of iterations needed for the algorithm to set any non-zero
coordinate to zero, when exploring a model Mα. Then E(τα) = d/|α| which
ranges from 1 (whenMα is the full model) to d (for any sub-model with only
one non-zero coordinate). Consider any sequence Mα1 ,Mα2 , . . . ,Mαd−1

of
models with |αj| + 1 = |αj+1| (decreasing size) and with Mα1 begin the full
model. By adding the expected number of iterations at each of those model,
we conclude that the process started at x in the full model, is expected to
reach the null model in

∑d
i=1 d/i iterations which is of O(d log(d)).

• A measure supported on a single nested sequence of sub-models, up to the full
model: i.e. for a model Mαj

, with µ(Mαj
) ̸= 0 there is only one sub-model

Mαi
⊂ Mαj

with |αi| + 1 = |αj| and the smaller model again has more
probability mass µ(Mαi

) > µ(Mαj
). By a similar argument as above, the

first expected visit time of the null model is of O(
∑d

i=1 |xi|) = O(d) for the
Sticky Zig-Zag, while for the Gibbs sampler the expected number of steps is
d2.

Table 4.2 in Section 4.3 summarizes the scaling results derived in the two cases
considered above.
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C.5 Details of Section 4.4

C.5.1 Logistic regression

Similar computations for the bounds of the Poisson rates of the Zig-Zag sampler ap-
plied to logistic regressions can be found in the supplementary material of Bierkens,
Fearnhead, and Roberts (2019). Given a posterior density of the form of Equa-
tion (4.2) with

Ψ(x) =
N∑
j=1

(
log
(
1 + e⟨A[j,:],x⟩

)
− yj⟨A[j,:], x⟩

)
+

1

2σ2
∥x∥2

we use the Sticky Zig-Zag subsampler presented in Section 4.2.4. To that end, define
U(x) = Ψ(x)− 1

2σ2∥x∥2. We decompose the partial derivatives of U as follow:

∂xiU(x) =
∑
j∈Γi

S(x, i, j)

with sets Γi = {j ∈ {1, 2, . . . , N} : Aj,i ̸= 0} and

S(x, i, j) =

(
A[j,i]e

⟨A[j,:],x⟩

1 + e⟨A[j,:],x⟩
− yjA[j,i]

)
.

Then, for all i = 1, 2, . . . , p and any x′ ∈ Rp, if J ∼ Unif(Γk), the estimator
[|Γi|(S(x, i, J)− S(x

′
, i, J)] + ∂xiU(x

∗) + σ−2xi is unbiased for ∂xiΨ(x). Notice that
the partial derivative of S(x, k, j) is bounded:

∂xi(S(x, k, j)) =
A[j,k]A[j,i]e

⟨A[j,:],x⟩(
1 + e⟨A[j,:],x⟩

)2 ≤ 1

4
A[j,k]A[j,i],

which means that for i = 1, 2, . . . , d

|S(x, i, j)− S(x′, i, j)| ≤ Ci∥x− x′∥p, p ≥ 1, j ∈ Γi, x, x
′ ∈ Rd,

with
Ck =

1

4
max
j=1,..,N

|A[j,k]| ∥Aj,:∥2.

Then given an initial position (x, v) ∈ E, tuning parameter x′ and for any t ≥ 0,
write (x(t), v(t)) = φ(t, x, v) with i ∈ α(x, v) :

λ̃i(x(t), v(t)) =
(
vi
(
∂xiU(x

′) + σ−2xi(t) + |Γi|(S(x(t), i, j)− S(x′, i, j))
))+

≤ (vi(∂xiU(x
′) + σ−2(xi + vit)))

+

+ |vi||Γi| (|S(x(t), i, j)− S(x, i, j)|+ |S(x, i, j)− S(x′, i, j)|)
≤ (vi(∂xiU(x

′) + σ−2(xi + vit))
+ + |vi||Γi|Ci (t∥v∥p + ∥x− x′∥p) .
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Thus we set
λi(t, x, v) = vi(ai(x, v) + bi(x, v)t)

where ai(x, v) = (vi(∂iU(x
′) + σ−2xi))

+ + Ci|Γi||vi|∥x − x′∥p and bi(x, v) =
|vi|Ci|Γi|∥v∥p + v2i σ

−2. We choose x′ to be the posterior mode of exp(−Ψ), which
in this case is unique and easily found with the Newton’s method since the func-
tion exp(−Ψ) is convex. Given an initial position (x, v), suppose the particle
j ̸= i gets frozen at time τ ≥ 0. Then for t ≥ τ we have that ∥

∫ t
0
v(t)dt∥p =

τ∥v∥p + (t− τ)∥v′∥p ≤ t∥v∥p, with v′ = v[j : 0]. This implies that the Poisson times
drawn before the jth coordinate gets stuck are still valid upper bounds after time
τ . The same argument follows easily for n ≥ 1 coordinates getting stuck at 0.

C.5.2 Spatially structured sparsity

For this application, we use the thinning scheme as presented in Appendix C.4.2.
The bounding rates are of the form

λ̄i(t, x(t0), v(t0)) = (c+ vi(t0)∂xiΨ(x(t0))
+ (C.18)

for t ∈ [0,∆] with ∆ = 1/c. To see this, define the Lipschitz growth bound Lx,v,∆ as

P ( sup
0<t<∆

1

t
|Vi(t)∂xiΨ(X(t))| ≤ Lx,∆ | X(0) = 0, V (0) = v) = 1, i = 1, 2, . . . , d,

which gives an explicit expression for c in Equation (C.18) as

c− L∆∆ = 0 ⇒ ∆ = 1/c,

such that the inequality (C.16) holds. With L∆ = supx Lx,v,∆, in this application
we have that

L∆ = sup
v,t
|∂t∂xiΨ(x+ tv)| = c2 + 8c1 + 1/σ2

with c1, c2 defined in Section 4.4.2. With this given choice, in the simulations of
Section 4.4.2, the ratio between the accepted reflection times and the proposed
reflection times was 0.357. Here we used the local implementation of the Sticky
Zig-Zag given by Appendix C.4.2 (with sets Ai = i for all i) in conjunction with the
sparse algorithm as in Remark C.4.1.

C.5.3 Sparse precision matrix

By write Ψ(x)
⊗p

i=1

⊗i
j=1(dxi,j +

1
κ
δ0(dxi,j)1(i ̸=j)) and we have that

∂xi,jΨ(x) = (Y Y ′)(i,:)X(:,j) + γi,j(xi,j − ci,j)− 1(i=j)

(
N

xi,j

)
. (C.19)
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Note that, for any initial position and velocity (x, v), the reflection times of
the Sticky Zig-Zag with rates λi,j(ϕ(t, x, v)) = (vi∂xi,jΨ(x+ vt))+ can be computed
exactly for the off-diagonal elements and via a thinning scheme for the diagonal
elements where

λi,i(ϕ(t, x, v) ≤ λi,i(t, x, v) + λi,i(t, x, v), t > 0,∀i.

Here λi,i(t, x, v) = (vi,i(Y Y
′
i,:(X:,i + vt) + γi,i(xi,i + vt − ci,i)))

+ and λi,i(t, x, v) =(
−vi,i N

xi,i+vi,it

)
and a Poisson time form the bounding rate is simulated as min(τ1, τ2)

where τ1 ∼ IPP(s→ λi,i(s, x, v)) and τ2 ∼ IPP(s→ λi,i(s, x, v)).
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Appendix D

Supplement of Chapter 5

D.1 Extended generator of PDMPs with bound-
aries

The extended generator for PDMPs with boundaries is given in Davis (1993, Section
26) and, for the PDMP samplers considered in Section 5.2, takes the form

Lf(x, v) = ⟨v,∇f(x)⟩s(x) + λb(x, v)

∫
QE,b((x, v), dz)(f(z)− f(x, v))

+λr(x, v)

∫
QE,r((x, v), dz)(f(z)− f(x, v)).

Here we let L act on functions f in the set

A = {f ∈ Cc(E); t→ f(ϕ(z, t)) is absolutely continuous ∀z ∈ E;

f(z) =

∫
∂E−

f(z′)Q∂E+(z, dz′), ∀z ∈ ∂E+}.

The set A is contained in the domain of the extended generator D(L) given in Davis
(1993, Section 26).
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D.1.1 Proof Proposition 5.2.2

By applying the divergence theorem, we have that, for f ∈ A,

∫
E

Lfd(µ⊗ ρ) =
∫
E

(⟨v, sc(x)∇Ψ(x)−∇sc(x)⟩ − λb(x, v)) f(x, v)ρ(dv)µ(dx)

(D.1)

+

∫
E

∫
E

λb(z)QE,b(z, dz′)f(z′)(ρ⊗ µ)(dz) (D.2)

+

∫
E

λr(z)

∫
E

QE,r(z, dz′)(f(z′)− f(z))(ρ⊗ µ)(dz) (D.3)

+

∫
∂E

⟨v, n(x)⟩f(x, v)s(x)ρ(dv)µ(dx). (D.4)

Then, by Assumption 5.2.3, the right hand-side of (D.1) cancel with the term in
(D.2). Furthermore, by Assumption 5.2.2, the refreshment kernel is invariant to ρ
so the term in (D.3) is also equal to 0. We are left with the term in (D.4), proving
Proposition 5.2.2.

D.2 SIR with notifications

D.2.1 Derivation of the measure in Section 5.3.1

We now derive the terms ρi(x)µi(dxi) (equation (5.18) and equation (5.19)), which
can be heuristically interpreted as the distribution of the infection times Xi relative
to those individuals i ∈ {1, 2, . . . , d} which have not been notified up to time T and
those which have been notified before time T . To ease the notation, we drop the
index i and consider random times X ∈ R+, τ ⋆ ∈ R+, where τ ⋆ = x+σ, with σ ≥ 0
a random variable independent of x. Suppose X has density g(t) = β(t) exp(−B(t)),
where B(t) =

∫ t
0
β(s) ds, and σ has cdf F and pdf f , both with support on [0,∞).

We wish to determine, for t ≥ 0, T ≥ 0,

P(X ∧ T ≤ t | τ ⋆ ≥ T ).

Clearly if t ≥ T then this conditional probability is equal to one. It remains to
compute, for t < T

P(X ≤ t | τ ⋆ ≥ T ).
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We compute

P(X ≤ t | τ ⋆ ≥ T ) =
P(X < t, τ ⋆ ≥ T )

P(τ ⋆ ≥ T )

=
P(X < t,X + σ ≥ T )

P(X + σ ≥ T )

=

∫ t
0
g(r)P(σ > T − r) dr∫ T

0
g(r)P(σ > T − r) dr +

∫∞
T
g(r) dr

=

∫ t
0
g(r)(1− F (T − r)) dr∫ T

0
g(r)(1− F (T − r)) dr +

∫∞
T
g(r) dr

=

∫ t
0
β(r) exp(−B(r))(1− F (T − r)) dr∫ T

0
β(r) exp(−B(r))(1− F (T − r)) dr + exp(−B(T ))

.

We see that the random variable x ∧ T , conditional on τ ⋆ ≥ T , has a Lebesgue
density

h(t) =
β(t) exp(−B(t))(1− F (T − t))∫ T

0
β(r) exp(−B(r))(1− F (T − r)) dr + exp(−B(T ))

on [0, T ], and an atomic component of mass

1−
∫ T

0

h(t) dt =
exp(−B(T ))∫ T

0
β(r) exp(−B(r))(1− F (T − r)) dr + exp(−B(T ))

at T . This measure is equal to the measure in equation (5.18).
The measure in equation (5.19) of the infection times for notified individuals is

easy to derive as

P (X < t | τ ⋆ = c) =


0 t < 0,

C
∫ t
0
g(s)f(c− s)ds 0 ≤ t < c,

1 c ≤ t,

for some constant C, giving the desired result.

D.2.2 Computing reflections times

The target measure in equation 5.17 can be rewritten as

µ(dx) ∝ L(x)µ0(dx)
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where

L(x) ∝ exp

(
−

N∑
i=1

Bi(x)

)(∏
i∈NT

f(τ ⋆i − xi)βi(x)

)∏
i∈N c

T

(1− F (T − xi))βi(x)


and

µ0(dx) =

(∏
i∈NT

(
1(0≤xi≤T )dxi + κiδT (dxi)

))∏
i∈N c

T

1(0≤xi≤τ⋆i )dxi

 .

In the experiments in Section 5.3.1 we assumed that f and F are respectively
the density and the distribution of an exponential r.v. with parameter β. Then
∂xi log(f(τ

⋆
i − xi)) = ∂xi log(1− F (T − xi)) = β.

The first event time of the ith clock of the Zig-Zag process is a Poisson clock
with rate βi,b = (vi∂xi(− logL(x)))+ where

∂xk(− logL(x)) =
∑
j

∂τkBj(x)−
∑
i∈NT

∂xk log f(τ
⋆
i − xi)−

∑
i∈N c

T

∂xk log(1− F (T − xi))

=
∑
j

∂xkBj(x)− β

where

Bj(x) =
∑
i ̸=j

∫ T

0

βi,j(x[j; t])dt =
∑
i ̸=j

Ci,j((τ
⋆
i ∧ xj − xi ∧ xj) + γ(τ ◦i ∧ xj − τ ⋆i ∧ xj).

Hence the partial derivative of the negative log-likleihood is

∂xk(− logL(x)) =
∑
i

∂xkBi(x)−β =
∑
i ̸=k

∂xk (Bk,i(x) +Bi,k(x))−β =
∑
i ̸=k

Gi,k(x)−β

with

Gi,k(x) =


−Ck,i τk < xi,

Ci,k xi < xk < τ ⋆i ,

γCi,k τ ⋆i < xk < τ ◦i ,

0 τ ◦i < xk.

Conditioned on the process not hitting a boundary (a discontinuity), the rates
t→ λi,b(ϕ(t, z)), i = 1, 2, . . . , d (equation 5.14) of the Zig-Zag sampler are constant.
Hence, if the process is at z ∈ E, we can efficiently simulate the first reflection time
simply as τ = min(τ1, τ2, . . . , τd), where τi ∼ IPP(t→ λi,b(ϕ(z, t)), for i = 1, 2, . . . , d.
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D.3 Teleportation rules for hard-sphere models
Recall that we aim to sample from the measure

µ(dx) ∝ exp(−
N∑
i=1

Ψ0(x
(i)))1A(x)dx, Ψ ∈ C1(Rd)

with A =
⋂N
i=1

⋂
j=1,2,...,N,

j ̸=i
Ai,j and

Ai,j = {x ∈ RdN : ∥x(i) − x(j)∥ ≥ (ri + rj)}.

We define the boundary for the process as

∂E+ = {(x, v) ∈ ∂Ω× RdN : ⟨n(x), v⟩ > 0}

where ∂Ω =
⋃N
i=1

⋃N
j=1
j ̸=i

∂Ωi,j and

∂Ωi,j = {x ∈ RdN : |x(i) − x(j)| = (ri + rj)}.

We consider only deterministic teleportation rules of the form T (x, ·) = δκ(x)(·)
for (x, v) ∈ ∂E+ and informally discuss 3 different choices for κ, each one being
efficient in different scenarios. Here for efficient teleportation rules we mean those
that accept the new proposed points with high probability. To that end, we want
the teleportation rule

• to swap the centers of two colliding hard-spheres and, after that, to move their
center as little as possible to have high acceptance probability,

• to move the total volume of hard-spheres as little as possible in order to reduce
the probability that some hard-spheres overlap after teleportation.

In the following, we let (x, v) ∈ ∂E+ with |x(i) − x(j)| = ri + rj for some i, j.

D.3.1 Swap the centers

Set, for ℓ = 1, 2, . . . , N

[κ(x)](ℓ) =


x(j) if ℓ = i

x(i) if ℓ = j

x(ℓ) otherwise

This teleportation swaps x(i) with x(j) (see Figure D.1, top panels) and has the
advantage that if κ(x) ∈ A, then the new point is accepted with probability 1 as
α(x, κ(x)) = 1.
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When the size of two hard-spheres substantially differs, as it is the case when
ri ≈ 0 and rj is large, the large hard-sphere has to be moved as much as the small
hard-sphere so that the total volume of hard-spheres which is moved when applying
κ is large. In the scenario of many hard-spheres surrounding these two hard-spheres,
this teleportation rule leads to invalid proposed configurations with κ(y) /∈ A with
high probability.

We describe another teleportation rule which is effective when ri ≈ 0 and rj is
large.

D.3.2 Move only the smaller hard-sphere

When ri ≪ rj, we propose to move only the smaller hard-sphere by setting, for
ℓ = 1, 2, . . . , N

[κ(x)](ℓ) =

{
2x(j) − x(i) if ℓ = i

x(ℓ) otherwise

see Figure D.1, middle panels for an illustration. The aim here is to not move the
larger hard-sphere and therefore maximize the probability that κ(x) ∈ A when the
two hard-spheres are surrounded by other hard-spheres. This comes at the cost of
having possibly low probability to accept the new points.

Finally we introduce a third teleportation rule, which is the one used in Sec-
tion 5.3.2 and can bee seen as a compromise between the teleportation rules de-
scribed in Section D.3.1 and Section D.3.2.

D.3.3 Move the smaller hard-sphere more than the larger one

For ℓ = 1, 2, . . . , N , we set

[κ(x)](ℓ) =


x(j) + x(i)−x(j)

ri+rj
(ri − rj) if ℓ = i

x(i) + x(j)−x(i)
ri+rj

(rj − ri) if ℓ = j

x(ℓ) otherwise,

for α ∈ [0, 1]. This teleportation rule moves the smaller hard-sphere more and the
larger hard-sphere in order to increase the probability that κ(x) ∈ A while trying
to move as little as possible the center of the hard-spheres, see Figure D.1, bottom
panel. Notice that, if ri = rj, this teleportation coincides with the teleportation in
Section D.3.1.
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Figure D.1: Illustration of 3 different teleportation rules (from Top to Bottom panel).
Left panels: configuration before teleportation; right panels: configuration after
teleportation. Top panels: teleportation by swapping the centers of 2 hard-spheres.
Middle panels: teleportation by moving only the smaller hard-sphere. Bottom-panel:
teleportation which moves more the smaller hard-sphere than the bigger one.
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Summary (Dutch)

Markov Chain Monte Carlo methoden zijn de meest gebruikte algoritmen voor
exacte Bayesiaanse inferentie. Deze methoden bestaan uit het simuleren van een
Markov-keten die convergeert naar een gewenste Bayesiaanse a-posteriori kansmaat.
Het gesimuleerde traject van deze Markov-keten kan vervolgens ook gebruikt worden
om verwachtingen van functies ten opzichte van die gewenste maat te benaderen. Wij
beschouwen Monte Carlo methoden gebaseerd op Piecewise deterministic Markov
processes (PDMP samplers). PDMP samplers zijn continue-tijd stochastische pro-
cessen die per constructie niet reversibel zijn. Deze niet-reversibiliteitseigenschap
kan de prestaties van simulatiemethoden verbeteren, zowel wat betreft convergentie
naar stationariteit als in termen van asymptotische variantie. In Hoofdstuk 1 intro-
duceren wij PDMPs. Hoofdstuk 2 gaat over de simulatie van een-dimensionale dif-
fusiebruggen. De voorgestelde methodologie berust op het uitbreiden van de ruimte
van de diffusiebruggen met een geschikte afgeknotte basis en het toepassen van de
Zig-Zag sampler op de hoog-dimensionale coëfficiëntenruimte. In Hoofdstuk 3 intro-
duceeen we de Boomerang-sampler, een nieuwe PDMP-sampler die beter presteert
dan bestaande PDMP-samplers voor stationaire verdelingen uitgedrukt in termen
van hoog-dimensionale Gaussische kansmaten. De Boomerang sampler volgt ellip-
tische deterministische trajecten wat voordelig is voor verdelingen met een Gaussis-
che referentiemaat. Een belangrijke toepassing is de simulatie van diffusiebruggen
met de in Hoofdstuk 2 geïntroduceerde methode, aangezien de niet-genormaliseerde
dichtheid een hoog-dimensionale Gaussische referentiemaat heeft. In Hoofdstuk 4
construeren we een nieuwe klasse efficiënte Monte Carlo methoden op basis van
PDMP’s die geschikt zijn voor inferentie van hoog-dimensionale verdelingen met
zowel continue als atomaire componenten. Dit wordt bereikt met het vrij eenvoudige
idee om bestaande PDMP-samplers te voorzien van “plakkende” coördinaat-assen,
coördinaatvlakken. Bij het raken van die deelruimten treedt een gebeurtenis op
waarbij het proces in die deelruimte vast blijft, waardoor het proces enige tijd in
een deelmodel doorbrengt. Tenslotte presenteert Hoofdstuk 5 enkele resultaten over
de toepassing van PDMP-samplers met randvoorwaarden. De belangrijkste motiv-
erende toepassingen zijn gebaseerd op het SIR-model in de epidemiologie, dat wordt
gebruikt om de verspreiding van ziekten te beschrijven, en op modellen van harde
bollen die van belang zijn in de statistische mechanica.
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Summary (English)

Markov Chain Monte Carlo methods are the most popular algorithms used for exact
Bayesian inference problems. These methods consist of simulating a Markov chain
which converges to a desired Bayesian posterior measure and use the simulated
trajectory to approximate expectations of functionals relative to that measure.
We consider Monte Carlo methods based on Piecewise deterministic Markov
processes (PDMP samplers). PDMP samplers are continuous-time processes that
are non-reversible by construction. Non-reversibility may improve the performance
of sampling methods, both in terms of convergence to stationarity and asymptotic
variance. In Chapter 1 we give a concise presentation which motivates and
introduces PDMPs. Chapter 2 is about the simulation of one-dimensional diffusion
bridges. The methodology proposed relies on expanding the space of diffusion
bridges with a suitable truncated basis and applying the Zig-Zag sampler on the
high-dimensional coefficient space. In Chapter 3 we introduce the Boomerang
sampler as a new PDMP sampler which outperforms existing PDMP samplers for
target measures expressed in terms of high dimensional Gaussian measures. The
Boomerang sampler has elliptical deterministic dynamics which preserves Gaussian
measures at barely no cost. A key application is the simulation of diffusion bridges
with the method introduced in Chapter 2 as the unnormalised density is relative
to a high dimensional Gaussian measure. In chapter 4, we construct a new class
of efficient Monte Carlo methods based on PDMPs suitable for inference in high
dimensional mixtures of continuous and atomic components. This is achieved with
the fairly simple idea of endowing existing PDMP samplers with “sticky” coordinate
axes and coordinate hyper-planes. Upon hitting those subspaces, an event is
triggered during which the process sticks to the subspace, this way spending some
time in a sub-model. Finally, Chapter 5 presents some results on the application of
PDMP samplers with boundary conditions. The key motivating applications are
based on the SIR model in epidemiology used for describing the spread of diseases
and hard-spheres models which are of interest in statistical mechanics.
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