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Chapter 1

Introduction

We investigate some aspects of the design of piecewise deterministic Markov pro-
cesses (PDMPs) for Monte Carlo simulation in Bayesian inference problems. The
aim of this chapter is to present the theory which motivates the study of PDMPs and
to highlight our contributions. In this chapter we show that PDMPs naturally arise
as limits of discrete time Markov chains and share remarkable properties which are
desirable for Monte Carlo simulations. The illustration in Section 1.5.1 summarises
many of the innovations. The presentation of the background material is largely in-
spired by Roberts and Rosenthal (2004), Geyer (1998), Diaconis, Holmes, and Neal
(2000) and Rosenthal (2003).

1.1 Motivation

For a given probabilty measure p on a measurable space X', consider the problem of
computing expectations
ni= [ 1@ (1.1)

for functions f: X +— R for which u(f) < oo. This problem is commonly encoun-
tered in Bayesian inference where X is a random variable that corresponds to the
unknown parameter in a statistical model and takes values on a parameter space
X. The Bayesian paradigm assigns to X a posterior measure p on X. The measure
i depends on the data, through a log-likelihood ¢(x) (with this notation, we omit
the dependence of ¢ on the data) and a prior measure p, which takes into account
information on model parameter prior to the data, such as the set of values that X
can take, sparsity and smoothness assumptions; the relation between pu, pg and ¢ is
obtained by applying the Bayes formula and here is assumed to be

pu(dx) = Cexp(£(x))po(dz), (1.2)

1



2 1.2. MARKOV CHAIN MONTE CARLO

with C' = ([, exp(€(x))po(dz))~" being the constant of normalization which does
not depend on x. The Bayesian inferential procedure requires point estimates which
are of the form of equation (1.1), e.g. the posterior mean (taking f(x) = z; for
i =1,2,...) and posterior probabilities of a given set A € B(&X') (with f(z) = 14(x),
1 being the indicator function). It is often the case that u(f) cannot be derived
analytically, hence numerical techniques must be employed. This is a frequently
encountered situation in Bayesian inference where, in most cases, the constant C' on
the right hand-side of equation (1.2) cannot be computed analytically. It becomes
now apparent that Bayesian inference problems are often strongly related to the
problem of numerical integration. Throughout the thesis, we often refer to u as
the target measure, which is a general probability measure from which we want to
estimate the right hand-side in equation (1.1) and we often do not make any explicit
connection with the posterior distribution in the Bayesian framework.

It is natural to think of applying ordinary numerical integration methods, for
example approximating p by evaluating p with a quadrature rule on a finite parti-
tion with elements in X' (see for example Thisted 1988, Chapter 5 for details). This
approach has several caveats and most notably it suffers from the curse of dimen-
sionality, i.e. if X C R? the number of discretization points needed for a given
numerical precision grows exponentially with the dimensions d.

Popular alternatives fall within the name of Monte Carlo methods, where Monte
Carlo refers to integration methods involving the simulation of random variables.

Remark 1.1.1. There are other important methods used for estimating pu(f) which
are not treated in this thesis. Most notably, methods based on importance sampling
(see e.g. Robert and Casella 1999, Section 3), Sequential Monte Carlo methods (see
e.g. Doucet, De Freitas, Gordon, et al. 2001) and Quasi-Monte Carlo methods (see
e.g. Niederreiter 1992).

1.2 Markov chain Monte Carlo

Monte Carlo methods are integration methods which are based on the simulation of
a sequence of random variables X7, Xs, ... jointly defined on a arbitrary probability
space and each one taking values on X. For a fixed N > 0, define sample averages
as

N
. 1
in(f) = D f(X), (1.3)
i=1
for functions f: X — R. Monte Carlo methods are devised such that the law of
large numbers and the central limit theorem holds as follow.

Definition 1.2.1. (Law of Large Numbers (LLN)) For a fized function f: X — R
and a measure p on (X,B(X)), with u(f) < oo, a sequence of random wvariables
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X1, Xo, ... satisfies the Law of Large Numbers (LLN) if
in(H) 5 u(f),  asN oo (1.4)

Definition 1.2.2. (Central Limit Theorem) For a fized function f: X — R and
a measure 1 such that 0]20 = u(f?) — u(f)?* < oo, a sequence of random variables
X1, Xo, ... satisfies the Central Limit Theorem (CLT) if

VN(jin (f) = u(f)) 5 N(0,0%(0c))  as N — oc, (1.5)
for some 0 < 0%(00) < o0,

If (X;)iz12..~ can be simulated by means of a computer, then, by the LLN,
we can use the sample average fiy(f) as an (asymptotically) unbiased estimator for
u(f) and we can use the CLT and choose N appropriately to control the statistical
error between fiy(f) and p(f). This is the core idea of Monte Carlo methods. We
are now ready to give the first concrete example of a sequence of random variables
satisfying CLT and LLN:

Example 1.2.3. (A sequence of i.i.d random variables) Consider a sequence of in-
dependent and identically distributed (i.i.d) X-valued random variables X1, Xo, .. .,
each distributed according to p. Provided that a]% < 00, the sequence trivially satisfies
both the LLN and CLT with 0%(c0) = 7.

Example 1.2.3 is very attractive in principle but often not applicable as it is
rarely possible to directly simulate a sequence of mutually independent random
variables with a given distribution p. Hence, we now weaken the conditions made
in Example 1.2.3 by considering a homogeneous Markov Chain (X;);—1 2. (allowing
now for a dependent sequence of random variables). A Markov chain is completely
characterized by the distribution of its initial value X; and the transition kernel
Q: X x B(X) — [0,1], where, for every x € X, Q(z,-) is a probability measure
on X with Q(z, A) being the probability to jump from x to the set A € B(X) in
one step. These two components also gives a simple recipe to simulate a trajectory:
simulate the first random variable 21 ~ £(X;) and iteratively z; 11 ~ Q(z;,-). Define
the n-step transition kernel Q"(x,-) = P(X,, € - | Xy = z) and the total variation
distance between two measures p and v on (X, B(X)) as

= vliry = ma |u(4) = v(A)].

In the context of MCMC methods, it is customary to consider Markov chains which
are geometrically ergodic.
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Definition 1.2.4. (Geometrically ergodic Markov chains) A Markov chain is gemo-
terically ergodic if

1Q"(x,-) — pllrv < M(z)p", p—as v€X (1.6)
for some p € [0,1) and with sup, M(z) < co.

Intuitively, this condition implies that the marginal distribution of the process
convergences to the target distribution as N — oo, so a straightforward implication
is that p© must be the unique stationary distribution of the process. The reason for
such customary assumption becomes evident with the following proposition (Ibrag-
imov and Linnik 1971, Theorem 18.5.3):

Proposition 1.2.5. (CLT for geometrically ergodic Markov chains) A geometrically
ergodic Markov chain satisfies the CLT (equation (1.5)) whenever u(|f*T°) < oo,
for some § > 0.

The connection between geometrically ergodic Markov chains and the CLT is
rather subtle and far from trivial, as the former result involves marginal measures
of a Markov chain, while the latter is a result of the whole chain, see Geyer (1998,
Chapter 4.1.) for a discussion and other similar results. An important research area
in MCMC is to assess the quantitative convergence of the marginal distributions
of Markov chains (see Roberts and Rosenthal 2004)). This analysis serves in prac-
tise as a guidance to choose the burn-in time which corresponds to the number of
iterations needed for the Markov chain to reach its stationary distribution and is
used in practise to exclude these first iterations when computing the estimator of
equation (1.3).

It remains unclear how to devise a geometrically ergodic Markov chain. A nec-
essary condition is that the transition kernel @ of the Markov chain is invariant to
a target u, that is

/ () Q) = p(dy).

We now introduce a simple recipe to construct a chain which is invariant to a target
4 which is based on the concept of reversibility:

Definition 1.2.6. (Reversible Markov chains) A Markov chain is p-reversible if

p(dz) Q(z, dy) = u(dy) Q(y, dz) (1.7)

Equation (1.7) is referred as the detailed balance condition and can be informally
interpreted as follows: the probability for the process to be at A and move to B, for
any two regions A, B € B(X), is equal to the probability to be at B and move to A.

Proposition 1.2.7. A p-reversible Markov chain is p—invariant.



CHAPTER 1. INTRODUCTION )

This is straightforward as

[ nanQGdy) = [ )@y, de) = utay)
TEX reX

Hence, by devising Markov chains satisfying the detailed balance condition as in
equation (1.7), we automatically know that the process preserves the measure .
This is the starting point for many popular MCMC methods, most notably the
celebrated (and well studied) Metropolis-Hasting algorithm (Metropolis et al. 1953,
Hastings 1970) which turns out to be geometrically ergodic for targets p with expo-
nentially light tails (Jarner and Hansen 2000). Reversible Markov chains also offer
a simplified theoretical analysis as Q in this case is a self-adjoint operator in the
Hilbert space L3(u) = {f: X — R | n(f?) < oo and n(f) = 0} with inner prod-
uct (f,g) = [ fgdp and with a real spectrum which can be used to estimate the
asymptotic variance 0?(c0) in the CLT and the convergence rates of geometrically
ergodic chains (right hand-side of equation (1.6)). See Rosenthal (2003, Section 3)
for details. The point here is that Monte Carlo methods based on reversible Markov
chains are simple to devise and provide a simplified analysis, which explains why
they became so popular. However, in the past two decades it has been noticed (for
example in Diaconis, Holmes, and Neal (2000)) that the detailed balance condition
introduces “diffusive behaviour” of the underline process. Here, a process with ‘dif-
fusive behaviour’ refers to a process which locally resembles a Random Walk and it
requires a number of iterations of O(N?) in order to cross regions with distance of
O(N) (see Diaconis, Holmes, and Neal 2000, Section 1 for details).

As this was considered sub-optimal, a new class of more sophisticated Markov
chains referred as non-reversible (as opposed to the reversible) was proposed and
analysed; a far from exhaustive list of references is Geyer and Mira (2000), Diaconis,
Holmes, and Neal (2000), Chen and Hwang (2013), Bierkens and Roberts (2017),
Andrieu and Livingstone (2019). This new class of Markov chains does not exhibit
diffusive behaviour and satisfies the skew-detailed balanced condition:

Definition 1.2.8. (Skew-detailed balanced condition) For an involution S : X — X
and a measure p on X, such that SoS = I and p(S~(dz)) = u(dx), a Markov
chain satisfies the skew-detailed balance condition relative to a measure p, if

Q(x, dy)p(dz) = QS H(y), S ! (dx))u(dy)

Proposition 1.2.9. A Markov chain satisfying the skew-detailed balance condition
relative to p is p-invariant.

The skew-detailed balance condition reduces to the detailed balance condition
upon taking & = I. However, the non-reversible Markov chains considered here
are defined on an augmented space of position x and velocity v and the involution
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considered in the literature is S(z, v) = {(z, —v)} which can be understood as a time
reversal operator. With this perspective, the skew-detailed balance condition can be
seen as a detailed balance condition with time reversal dynamics (for any two sets
A, B € B(X), the probability of the process to be in A and jump to B is equivalent
to the probability to be in B and jump in A for the time-reverted process).

Next, we look at a toy model which captures the fundamental differences between
reversible and non-reversible chains and anticipated the use of piecewise determin-
istic Markov processes for Monte Carlo sampling.

1.3 Random walks on a finite state space, a case
study

In this section we recall a simple example which was initially analyzed in Diaconis,
Holmes, and Neal (2000). This example is a pioneering work containing the funda-
mental idea which motivated the study and use of piecewise deterministic Markov
processes for Monte Carlo methods, that is lifting the state space of the underlying
Markov chain with a velocity component and breaking the detailed balance condi-
tion. When compared with their reversible counterpart, the lifted Markov chains
are shown to

e converge faster to their invariant measure in terms of the total variation dis-
tance between the marginal measures of the chain at any iteration n > 1 and
the target measure (Diaconis, Holmes, and Neal 2000);

e reduce the asymptotic variance o?(0o) of the CLT (Chen and Hwang 2013).

1.3.1 Random walks

Consider a Random walk (X;);=12.. on the space X :={1,2,..., N} i.e. a Markov
chain which starts at a given point z; € X and with transition probabilities Q(z, x £
)=21forallz € X\ {1,N} and Q(1,1) = Q(1,2) = Q(N,N) = Q(N,N — 1) = %

2 2
as illustrated with this graph:

1/2 1/2 1/2 1/2
e0=0sQ=Ds O’

1/2 1/2 1/2 1/2
The Markov Chain satisfies the detailed balance condition relative to the measure
p = Unif(X) and it is geometrically ergodic (this can be easily checked as X is

finite, see Roberts and Rosenthal 2004, Section 3.4). The symmetry in the detailed
balance condition manifests itself on the trace of the chain with the process having
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a tendency of backtracking and exploring the state space in a diffusive manner (see
Figure 1.1, left panel). Ignoring the boundaries, by the central limit theorem, X, is
approximately a Gaussian random variable centered at x; and with variance equal
to n. Hence P(|X,, — z1| > ¢) = O(y/n), for any ¢ > 0. This heuristically implies
that the process takes O(N?) iterations to explore the full state space X which has
size |X| = N. Formal and quantitative results estimating convergence results of this
chain may be found in Levin and Peres 2017, Example 12.3.1 and Example 12.11
for a Markov chain which is topologically equivalent to the one considered here.

1.3.2 Lifted random walks

Consider the Markov Chain taking values on a lifted state space X x {—,+}, where
the first component is intended as the position and the second the velocity of the
chain. The transition probabilities are shown by the following graph:

Essentially, at every iteration, the chain keeps moving in the same direction with
high probability and switches direction with small probability or when hitting the
boundary {(1,—), (N, +)}. One can check that the transition kernel Q satisfies the
skew-detailed balance condition relative to the measure 7 ® p with 7 = Unif(X’) and
p = Unif({—, +}), with involution S(z, £) = S(z, F).

In contrast to the the Random Walk presented in Section 1.3.1, the lifted random
walk does not satisfy the detailed balance condition and, most importantly, it is
shown in Diaconis, Holmes, and Neal 2000 that it converges in total variation in
O(N) iterations (as opposed to O(N?) of its reversible counterpart, see Diaconis,
Holmes, and Neal 2000, Theorem 1 for details). The faster exploration of the lifted
random walk compared to the ordinary random walk is visible in Figure 1.1.

1.3.3 PDMPs as limits of lifted random walks
Consider the lifted random walk on the state space XV x {+, —} with

1
xN =1 L1V N > 1.
{N’ 7}7

2
N’
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Random Walk Lifted Random Walk
40+ 40-
> >
20+ 20-
U
.
0 0
I 1 T I 1 T
0 500 1000 0 500 1000

t t

Figure 1.1: 1000 iterations of the random walk (left) and lifted random walk (right)
on the space {1,2,...,50} and with initial position x = 3 (z = 3, v = + respec-
tively). Both chains are stationary to the measure Unif(X').

The probability for this process to travel between two points (z,y) € XY with
distance ¢ := |z — y| without changing its velocity component is (1 — +)V. By
taking the limit as N goes to infinity we have that

cN
lim (1 - i) = exp(—c) = P(Z > ¢) for Z ~ Exp(1).
N—oo N

Heuristically, the limiting process for N going to infinity can be seen as a continuous-

time Markov process with position and velocity components (X, V;) which moves
with piecewise constant velocity V; € {+1, —1} in the space [0, 1] and switches veloc-

ity sign at exponentially distributed times or when hitting the boundary {(0,—1), (1, +1)}.
As such, the limit of the lifted random walk has piecewise-deterministic trajectory

and a collection of random times which changes its velocity. Moreover, similarly as
before, by the LLN and CLT, the estimator

T
7| s

can be used to estimate expectations m(f). Here T is the final clock of the process
and f € {g: X - R | n(g9) < oo}. This is the core of PDMP samplers, which
are continuous-time piecewise deterministic Markov processes on the augmented
space of position and velocity, characterised by deterministic trajectories and a finite
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collection of random times which act by changing the velocity component of process
in order to target the correct distribution. A rigorous derivation of this heuristic
limit is presented in Miclo and Monmarché (2013, Section 3). In a similar vein,
Bierkens and Roberts (2017) derived more sophisticated PDMPs as limits of a more
general class of 1 dimensional lifted Markov chains. For a general and detailed
treatment of PDMPs, see Davis (1993).

The algorithms used to simulate PDMPs are fundamentally different from the
algorithms used for the simulation of discrete-time Markov chains and in the liter-
ature (in particular in statistical mechanics, see Michel, Kapfer, and Krauth 2014)
takes the name of event-driven algorithms, as they simulate and save only the state
and the arrival time of the random events that modifies the deterministic dynamics
(in this case only the exponentially distributed random times). The full trajectory
can then be deterministically extrapolated from the saved events.

In the next section, we give a brief overview of the d-dimensional Zig-Zag sampler
(Bierkens, Fearnhead, and Roberts 2019), a prominent and successful example of a
PDMP sampler used for Monte Carlo integration. Although many results presented
in this thesis are valid for general PDMP samplers, most of them are stated only for
the Zig-Zag sampler and its extensions.

1.4 Standard d-dimensional Zig-Zag sampler

The standard d-dimensional Zig-Zag sampler is defined in the augmented space of
position and velocity R? x {—1,+1}¢ with elements denoted by z = (z,v). The
process dynamics are defined recursively and can be decomposed coordinate-wise.
That is, for the process at time s and position (X (s), V (s)).

e Define the first random event time 7 > s as the minimum of d random event
times 7y, 7o, ..., 74. The process moves with deterministic dynamics

(X(),V(t) =(X(s)+V(s)(t—s),V(s) fors<t<rT.

e At time 7, the process changes its velocity by setting for j =1,2,...,d,
—Vi(r—) if j =1,
Vj(7_> — ]( ) .] .
Vi(t—) otherwise,
with ¢ = arg min;(7;).

It can be shown (see for example Bierkens, Fearnhead, and Roberts 2019) that if
the inter-arrival times (77 — s), ..., (74 — s), are chosen to be the first event times of
inhomogeneous Poisson processes with distribution

P(r;— s> t) = exp (- /Ot MX () + V(s)z, V(s))dz)
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with
Ai(z,v) = max(0, v;0,, ¥ (1)),

for a function ¥ € C'(RY), then the process is invariant to the measure y(dz,dv) =
7(dz) ® p(dv), where p = Unif({—1, +1}%)

m(dz) = Cexp(—V(x))dx. (1.8)

Under mild assumptions on ¥, the Zig-Zag is geometrically ergodic (see Bierkens,
Roberts, and Zitt 2019). Other theoretical results have been recently derived such
as i) a spectral analysis of the generator of the process (Bierkens and Lunel 2022)
which provides quantitative bounds on the convergence of the marginal measure of
the process to the target; ii) a large deviation principle of the process characterizing
the large deviations of the empirical measure of the process to its target (Bierkens,
Nyquist, and Schlottke 2021); 44) diffusion limit results (Bierkens, Kamatani, and
Roberts 2018) which show how the process scales (behaves) in high dimensions.

1.5 Contributions and outline of the thesis

1.5.1 Extensions of PDMPs for constrained spaces and dis-
continuous targets

PDMP samplers can be used for targeting a wide class of multi-dimensional mea-
sures. In this section, we give an example which informally illustrates the rich class
of PDMPs considered and highlights some of the contributions of this thesis.

We run the Zig-Zag sampler featuring a rich behaviour given by random events
of different nature. Figure 1.2 (cover of the thesis) displays the first two coordinates
of a simulated trajectory. Below, we informally distinguish and comment on each of
those random events and link them to their specific role in targeting an (artificially
chosen) measure on R? with piecewise-smooth density proportional to exp(¥(z))
with

d Ld/2]
\If(gj) = —gj/F.'L' + Z 1(17i>1/2)c + Z 10g<$2i,1) (19)
i=1 i=1
relative to a reference measure
a 1
H (1(116[0,1])(1551‘ + 0o (d; — Z)) (1.10)
i=1

for a parameter ¢ > 0 and a matrix I' = 1.3] + C0.5, where each element C; ;, ¢, 7 =
1,2,...,d is 0 with probability 0.9 and an independent realization from N(0,1)
otherwise. For this simulation, we fixed d the dimensionality d = 80.
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e (Random events and repelling walls) Analogously to the standard Zig-Zag sam-
plers, the process changes direction at random times by switching every time
the sign of only one velocity component as described in Section 1.4. This
produces changes in direction and allows the process to target the smooth
components of ¥(z) (the first and the third term of (1.9)).

In this example, the position of the odd coordinates {(z;o—1, vio—1) }i=1,2,.. can
be arbitrarily close to 0, yet without ever touching 0 giving rise to repelling
walls. This is because the density vanishes on those hyper-planes.

e (Sticky floors) All coordinates {(z;,v;)}i—12..., upon hitting i, “stick” in that
point for an exponentially distributed time. This corresponds to momentarily
setting the ith velocity component to 0 and allows the process to spend positive
time in hyper-planes of the form

d
1
Q{E: | E: = {7} or B: =R},
=1

(with some coefficients exactly equal to 1/4). Sticky floors allow the process
to target mixtures of continuous and atomic components and, in this example,
allow to change the reference measure from a d-dimensional Lebesgue measure
to (1.10).

e (Soft walls) All coordinates {(z;,v;)}i=1 2., upon hitting % from below, switch
their velocity with some probability. This allows the process to target densities
which have discontinuities. In this example, the target density is discontinuous
at % in every component and the behaviour of the process at % allows the
process to target the second term in (1.9)).

e (Hard walls) The process switches always velocity at the boundaries {(z;2, v2) =
(0,—=1)}iz12... and {((x;,v;) = (1,41)};210,.. This allows the process to ex-
plore only the regions in R? supported by the measure.

Each bullet point in this list will be formalized and described in details in the
subsequent chapters.

This is a constructed example which is of interest for multiple reasons: i) an
efficient and local implementation of the Zig-Zag sampler can be adopted which
greatly profits of the local dependence structure of i implied by the sparse form of
['in (1.9) (see Chapter 2, Section 2.4 for more details); i) the continuous and atomic
components of the reference measure (equation (1.10)) makes the sampling problem
not trivial. A mixture of atomic and continuous components arises naturally for ex-
ample in Bayesian variable selection with spike-and-slab priors. By including sticky
events, PDMPs can efficiently sample from such mixture measures, see Chapter 4
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for more details; #7) As lim, o W(z[2i: y]) = oo, for i = 1,2, ..., the gradient of the
log-likelihood explodes thus complicating the application of gradient-based Markov
chain Monte Carlo methods; ) the discontinuities at 1/2 and boundaries at 0 and
1 deteriorate the performance of ordinary MCMC (see Neal et al. 2011) and com-
plicates the application of gradient-based methods, as the gradient is not defined at
discontinuity. In Section 5 we give a simple framework to address piecewise smooth
densities efficiently with PDMPs.

Zig-Zag sampler on a constrained space and discontinuous target

: |
T

T T
0 50 150

I
i

Figure 1.2: (x;-z5) phase space plot (left) and trace plots (right) of the first 2
coordinates of a Zig-Zag trajectory sampling a general density f supported in [0, 1]¢
with discontinuity at 1/2 (yellow line) in each coordinate with density vanishing at
x9 = 0. The reference measure has a Dirac mass at 1/4 in each coordinate.

1.0

t

K

0.0

T T
100 150

1.5.2 Overview of Chapter 2-3

In Chapter 2, we propose a method for sampling one-dimensional diffusion bridges
were the diffusion is defined as a solution to the It6 stochastic differential equation

dXt = b(Xt)dt + O'(Xt)th, XO =T, XT =Y, t e [O,T],

where (W});~0 is a standard one-dimensional Wiener process.

Similar to the Lévy-Ciesielski construction of a Brownian motion, we expand
the diffusion path in a Faber-Schauder basis (see Figure 2.3 in Chapter 2). The
coefficients within the basis are sampled using the Zig-Zag sampler, a particular
PDMP sampler. A key innovation is the use of the fully local algorithm for the Zig-
Zag sampler that allows to exploit the sparsity structure implied by the dependency
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graph of the coefficients. Furthermore we use the exact subsampling technique to
approximate the likelihood given by the Girsanov theorem which, in this setting,
does not have a closed from. This differs from the standard use of the subsampling
technique for PDMP samplers in regression problems for subsampling data points.
We illustrate the performance of the proposed methods in a number of examples.

In Chapter 3, we introduce the Boomerang sampler as a novel class of PDMP
samplers. The methodology begins by representing the target density as a den-
sity, e~V with respect to a prescribed (usually) Gaussian measure and constructs a
continuous trajectory consisting of a piecewise elliptical path. The method moves
from one elliptical orbit to another according to a rate function which can be writ-
ten in terms of U. We demonstrate that the method is easy to implement and
demonstrate empirically that it can outperform existing benchmark piecewise deter-
ministic Markov processes such as the bouncy particle sampler and the Zig-Zag. We
demonstrate theoretically and empirically that we can construct a control-variate
subsampling boomerang sampler which is exact (i.e. target the correct distribution)
and which possesses remarkable scaling properties in the large data limit.

The Boomerang sampler is particularly well suited to sample diffusion bridges
with the methodology presented in Chapter 2. This is because the likelihood of a
diffusion bridge is expressed as a density relative to a high dimensional Gaussian
measure. As a key application, we illustrate a factorised version of the Boomerang
sampler for the simulation of diffusion bridges and we highlight the advantages of
this sampler compared to the standard Zig-Zag sampler, as used in Chapter 2.

1.5.3 Overview of Chapter 4

In chapter 4, we construct a new class of efficient Monte Carlo methods based
on PDMPs suitable for inference in high dimensional sparse models, i.e. models for
which there is prior knowledge that many coordinates are likely to be exactly 0. This
is achieved with the fairly simple idea of endowing existing PDMP samplers with
“sticky” coordinate axes, coordinate planes etc. Upon hitting those subspaces, an
event is triggered during which the process sticks to the subspace, this way spending
some time in a sub-model. This results in non-reversible jumps between different
(sub-)models. While we show that PDMP samplers in general can be made sticky,
we mainly focus on the Zig-Zag sampler. We show the method outperforms other
existing methods by comparing scaling results of the algorithm and mixing times
in relation with an established method for variable selection. The computational
efficiency of our method (and implementation) is established through numerical
experiments where both the sample size and the dimension of the parameter space
are large.
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1.5.4 Overview of Chapter 5

In Chapter 5 we include some results for the applications of PDMP samplers for
discontinuous densities and constrained spaces (spaces with particular boundary
conditions). We present the framework for using PDMPs in such setting and study
two important applications:

o (Spread of infectious diseases) The model considered is known as SINR (susceptible-
infected-notified-removed) and is used for modelling the spread of infectious
disease in a population (see Jewell et al. 2009). The goal is to sample the
posterior measure of infected times of a population of size N conditioned on
the observation of the notification and removal times of population individ-
uals up to a certain time horizon T'. We combine the PDMP for piecewise
smooth densities with the framework presented in Bierkens et al. (2023) for
adding/removing efficiently in continuous time occult infected individuals (in-
fected individuals which have not been detected up to the time 7") by means
of introducing sticky events which are events after which the process sticks to
lower dimensional hyper-planes for some random time. In this case, the tar-
get density presents discontinuities relative to the order of the infection times,
notification times and removal times of each individual and have a reference
measure which is a mixture of Lebesgue and Dirac components.

e (Hard-spheres with teleportation) We consider a hard-sphere model in statis-
tical mechanics, see Krauth (2006, Chapter 2) for an overview. We take N
particles, each one taking values in R?. Denote the configuration of all par-
ticles by = {#(® € R?: 1 < i < N} where we identify the ith particle as
z® = T[(i-1)d+1,4 and consider a given invariant measure p* supported on
R, We assume that each particle is a hard-sphere centered at z( with
radius r; > 0,7 =1,2,..., N and consider the conditional invariant measure

p(dz) oc p*(dz)1eeq.
with A = ﬂfvzl ﬂj:l,?,.:-,N, A;j and

JF#i
Aiy =z € R™N: 2 a0 2 (ri+ 1)),

that is, the measure p* conditioned on the space where all hard-spheres do
not overlap. The restriction for the process to be outside the region A creates
boundaries which slow down the exploration of the state space. In order to
enhance the exploration of the process, we modify the dynamics of PDMPs
by introducing teleportation schemes allowing the process to make jumps in
between boundaries of the space which are chosen conveniently in order to
enhance the exploration of the state space. Teleportation schemes such as
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the ones introduced here can be also used for applications where the target
is supported on disconnected regions or distant regions which are difficult to
reach with the standard PDMP dynamics which are continuous in space.

1.6 Publications and preprints

The results presented in Chapter 2 are joint work with Frank van der Meulen (TU
Delft), Joris Bierkens (TU Delft) and Moritz Schauer (Chalmers University of Tech-
nology and University of Gothenburg) and are published as

J. Bierkens, S. Grazzi, F. van der Meulen, and M. Schauer. “A piecewise
deterministic Monte Carlo method for diffusion bridges”. In: Statistics and
Computing 31.3 (2021), pp. 1-21.

Chapter 3 is written in collaboration with Joris Bierkens, Gareth Roberts (University
of Warwick) and Kengo Kamatani (Osaka University) and resulted in the publication

J. Bierkens, S. Grazzi, K. Kamatani, and G. Roberts. “The Boomerang
Sampler”. In: International conference on machine learning. PMLR. 2020,
pp- 908-918.

The material presented in Chapter 4 is joint work with Frank van der Meulen, Joris
Bierkens and Moritz Schauer and it is published as

J. Bierkens, S. Grazzi, F. v. d. Meulen, and M. Schauer. “Sticky PDMP sam-
plers for sparse and local inference problems”. In: Statistics and Computing
33.1 (2023), p. 8. To appear in: Statistics and Computing.

Chapter 5 derived in the paper

J. Bierkens, S. Grazzi, M. Schauer, and G. Roberts. “Methods and applications
of PDMP samplers with boundary conditions”, In preparation.

The paper is currently in preparation.
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Chapter 2

A PDMP sampler for diffusion
bridges

2.1 Introduction

Diffusion processes are an important class of continuous time probability models
which find applications in many fields such as finance, physics and engineering.
They naturally arise by adding Gaussian random perturbations (white noise) to de-
terministic systems. We consider diffusions described by a one-dimensional stochas-
tic differential equation of the form

dXt = b(Xt)dt "‘ th, X() = U, (21)

where (W;);>0 is a driving scalar Wiener process defined in some probability space
and b is the drift of the process. The solution of equation (2.1), assuming it exists,
is an instance of one-dimensional time-homogeneous diffusion. We aim to sample X
on [0, 7] conditional on {Xr = v}, also known as a diffusion bridge.

One driving motivation for studying this problem is estimation for discretely
observed diffusions. Here, one assumes observations D = {xy,, ..., 2, } at observa-
tions times t; < ... < ty are given and interest lies in estimation of a parameter 6
appearing in the drift b. It is well known that this problem can be viewed as a miss-
ing data problem as in Roberts and Stramer (2001), where one iteratively imputes
the missing paths conditional on the parameter and the observations, and then the
parameter conditional on the “full” continuous path. Due to the Markov property,
the missing paths in between subsequent observations can be sampled independently
and each of such segments constitutes a diffusion bridge. As this application requires
sampling iteratively many diffusion bridges, it is crucial to have a fast algorithm for
this step. We achieve this by adapting the Zig-Zag sampler for the simulation of
diffusion bridges. The Zig-Zag sampler is an innovative non-reversible and rejection-
free Markov process Monte Carlo algorithm which can exploit the structure present

17
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in this high-dimensional sampling problem. It is based on simulating a piecewise
deterministic Markov process (PDMP). To the best of our knowledge, this is the first
application of PDMPs for diffusion bridge simulation. This method also illustrates
the use of a local version of the Zig-Zag sampler in a genuinely high dimensional
setting (arguably even an infinite dimensional setting).

The problem of diffusion bridge simulation has received considerable attention
over the past two decades, see for example Bladt, Sgrensen, et al. (2014), Beskos,
Papaspiliopoulos, Roberts, et al. (2006), Meulen and Schauer (2017), Mider et al.
(2019), Bierkens, Meulen, and Schauer (2020) and references therein. This far from
exhaustive list of references includes methods that apply to a more general setting
than considered here, such as multivariate diffusions, conditioning on partial obser-
vations and hypo-elliptic diffusions. Among the methods that can be applied, most
of the methodologies available are of the acceptance-rejection type and scale poorly
with respect to some parameters of the diffusion bridge. For example, if the pro-
posed path is not informed by the target distribution, the probability of accepting
the path depends strongly on the discrepancy between the proposed path and the
target diffusion bridge measure and usually scales poorly as the time horizon of the
diffusion bridge 7" grows. In contrast, gradient based techniques which compute
informed proposals (e.g. Metropolis-adjusted Langevin algorithm), require the eval-
uation of the gradient of the target distribution, which, in this case, is a path integral
that has to be generally computed numerically and its computational cost is of order
T, leading to computational limitations. The present work aims to alleviate such
restrictions through the use of a rejection-free method and an exact subsampling
technique which reduces the cost of evaluating the gradient. On a more abstract
level, our method can be viewed as targeting a probability distribution which is ob-
tained by a push-forward of Wiener measure through a change of measure. It then
becomes apparent that the studied problem of diffusion bridge simulation is a nicely
formulated non-trivial example problem within this setting to study the potential
of simulation based on PDMPs. Our results open new paths towards applications
of the Zig-Zag for high dimensional problems.

2.1.1 Approach

In this section we present the main ideas used in this paper.

Brownian motion expanded in the Faber-Schauder basis

Our starting point is the Lévy-Ciesielski construction of Brownian Motion. Define

o(t) = V1, doo(t) = VT ((t/T) Loz (t) + (1 = t/T) 11 21 (t)) and set

Gi (1) =272 poo(2't — 5T), for i=0,1,..., j=0,1,..2"—1.
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If £ is standard normal and {&;;} is a sequence of independent standard normal
random variables (independent of ), then

XN() = GOE+ DD s 22

converges almost surely on [0,7] (uniformly in ) to a Brownian motion as N —
o (see e.g. Section 1.2 of McKean 1969). The basis formed by ¢ and {¢;,;} is
known as the Faber-Schauder basis (see Figure 2.1). The larger ¢, the smaller the
support of ¢; ;, reflecting that higher order coefficients represent the fine details of
the process. A Brownian bridge starting in v and ending in v can be obtained by
fixing € = v/v/T and adding the function ¢(t)u = (1 —t/T)u to (2.2). By sampling
&N = (£,0, 1,0, - Enav_1) (which in this case are standard normal), approximate
realisations of a Brownian bridge can be obtained.

Zig-Zag sampler for diffusion bridges

Let Q" denote the Wiener measure on C[0, 7] with initial value Xy = u (cf. section
2.4 of Karatzas and Shreve 1991) and let P* denote the law on C[0, T of the diffusion
in (2.1). Under mild conditions on b, the two measures are absolutely continuous
and their Radon-Nikodym derivative % is given by the Girsanov formula. Denote
by P“*T and Q""" the measures of the diffusion bridge and the Wiener bridge
respectively, both starting at v and conditioned to hit a point v at time 7. Applying
the Bayes’ law for conditional expectations (Klebaner 2005, Chapter 10) we obtain:

d]P’“’“T< ) = q(0,u, T, v) dP"
dQuvr ~ p(0,u, T, v) dQv

where p and ¢ are the transition densities of X under P, Q respectively so that for
s < t, p(s,x,t,y)dy = P(X; € dy | Xy = z). As p is intractable, the Radon-
Nikodym derivative for the diffusion bridge is only known up to proportionality
constant. The main idea now consists of rewriting the Radon-Nikodym derivative
in (2.3), evaluating it in X" and running the Zig-Zag sampler for £V targeting this
density. Technicalities to actually get this to work are detailed in Section 2.3. A
novelty is the introduction of a local version of the Zig-Zag sampler, analogously to
the local bouncy particle sampler (Bouchard-Coté, Vollmer, and Doucet 2018). This
allows for exploiting the sparsity in the dependence structure of the coefficients of the
Faber-Schauder expansion efficiently, resulting in a reduction of the complexity of
the algorithm. The methodology we propose is derived for one dimensional diffusion
processes with unit diffusivity. However, diffusions with state-dependent diffusivity
can be transformed to this setting using the Lamperti transform (an example is given
in Subsection 2.5.3). In Subsection 2.6.1 we generalize the method to multivariate

(X), (2.3)
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diffusion processes with unit diffusivity, assuming the drift to be a conservative
vector field.

2.1.2 Contributions of the paper

The Faber-Schauder basis offers a number of attractive properties:

(a)

(b)

(d)

The coefficients of a diffusions have a structural conditional independence
property (see Section 2.4 and Appendix A.1) which can be exploited in nu-
merical algorithms to improve their efficiency.

A diffusion bridge is obtained from the unconditioned process by simply fixing
the coefficient &.

It will be shown (see for example Figure 2.8) that the non-linear component of
the diffusion process is typically captured by coefficients ;; in equation (2.2)
for which 7 is small. This allows for a low dimensional representation of the pro-
cess and yet a good approximation. Therefore, the approximation error caused
by leaving out fine details is equally divided over [0, 7], contrary to approaches
where a proxy for the diffusion bridge is simulated by Euler discretisation of
an SDE governing its dynamics. In the latter case, the discretisation error
accumulates over the interval on which the bridge is simulated.

It is very convenient from a computational point of view as each function is
piecewise linear with compact support.

We adopt the Zig-Zag sampler (Bierkens, Fearnhead, and Roberts 2019) which
is a sampler based on the theory of piecewise deterministic Markov processes (see
Fearnhead et al. 2018, Bouchard-Coté, Vollmer, and Doucet 2018, Andrieu and
Livingstone 2019, Andrieu et al. 2018). The main reasons motivating this choice

are:

(a)

The partial derivatives of the log-likelihood of a diffusion bridge measure usu-
ally appear as a path integral that has to be computed numerically (introduc-
ing consequently computational burden derived by this step and its bias). The
Zig-Zag sampler allows us to replace the gradient of the log-likelihood with an
unbiased estimate of it without introducing bias in the target measure. This
is done in Subsection 2.4.4 with the subsampling technique which was pre-
sented in Bierkens, Fearnhead, and Roberts (2019) for applications for which
the evaluation of the log-likelihood is expensive due to the size of the dataset.

In the same spirit as the local Bouncy Particle Sampler of Bouchard-Coté,
Vollmer, and Doucet (2018) and Peters and With (2012), the local and the
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fully local Zig-Zag sampler introduced in Section 2.4 reduces the complexity
of the algorithm improving its efficiency with respect to the standard Zig-
Zag Algorithm as the dimensionality of the target distribution increases (see
Subsection 2.6.2). This opens the way to high dimensional applications of the
Zig-Zag sampler when the dependency graph of the target distribution is not
fully connected and when using subsampling. The factorization of the log-
likelihood and the local method we proposed is reminiscent of other work such
as e.g. Faulkner et al. (2018), Michel, Tan, and Deng (2019) and Monmarché
et al. (2020).

(c) The method is a rejection-free sampler, differing from most of the methodolo-
gies available for simulating diffusion bridges.

(d) The Zig-Zag sampler is defined and implemented in continuous time, elimi-
nating the choice of tuning parameters appearing for example in the proposal
density of the Metropolis-Hastings algorithm. This advantage comes at the
cost of a more complicated method which relies upon bounding from above
rates which are model specific and often difficult to derive (see Section 2.5 for
our specific applications).

(e) The process is non-reversible: as shown, for example, in Diaconis, Holmes, and
Neal (2000), non-reversibility generally enhances the speed of convergence to
the invariant measure and mixing properties of the sampler. For an advanced
analysis on convergences results for this class of non-reversible processes, we
refer to the articles Andrieu and Livingstone (2019) and Andrieu et al. (2018).

The local Zig-Zag sampler relies on the conditional independence structure of the
coefficients only. This translates to other settings than diffusion bridge sampling, or
other choices of basis functions. For this reason, Section 2.4 describes the algorithms
of the sampler in their full generality, without referring to our particular application.
A documented implementation of the algorithms used in this manuscript can be
found in Schauer and Grazzi (2021).

2.1.3 Outline

In Section 2.2 we set some notation and recap the Zig-Zag sampler. In Section 2.3
we expand a diffusion process in the Faber-Schauder basis and prove the aforemen-
tioned conditional dependence. The simulation of the coefficients ¢V presents some
challenges as it is high dimensional and its density is expressed by an integral over
the path. We give two variants of the Zig-Zag algorithm which enables sampling
in a high dimensional setting. In particular, in Section 2.4 we present the local
and fully local Zig-Zag algorithms which exploit a factorization of the joint density
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(Appendix A.1) and a subsampling technique which, in this setting, is used to avoid
the evaluation of the path integral appearing in the density (which otherwise would
severely complicate the implementation of the sampler). In Section 2.5 we illustrate
our methodology using a variety of examples, validate our approach and compare
the Zig-Zag sampler with other benchmark MCMC algorithms. We conclude by
sketching the extension of our method to multi-dimensional diffusion bridges, carry-
ing out an informal scaling analysis and providing several remarks for future research
(Section 2.6 and Section 2.7).

2.2 Preliminaries

Throughout, we denote by 0; the partial derivative with respect to the coefficient &;,
the positive part of a function f by (f)T, the ith element and the Euclidean norm
of a vector x respectively by [z]; and ||z||. The cardinality of a countable set A is

denoted by |A].

2.2.1 Notation for the Faber-Schauder basis

To graphically illustrate the Faber-Schauder basis, a construction of a Brownian
motion with the representation of the basis functions is given in Figure 2.1. The
Faber-Schauder functions are piecewise linear with compact support. The length of
the support and the height of the function is determined by the first index while
the second index determines the location. All basis functions with first index ¢ are
referred to as level 7 basis functions. For convenience, we often swap between double
and single indexing of Faber-Schauder functions. Denote the double indexing with
(i,7) and the single indexing with n. We go from one to the other through the
transformations

i = |logy(n)], j=n-—2" n =2+ j;

where |-| denotes the floor function. The basis with truncation level N has M :=
2N+ 1 coefficients. Let £V denote the vector of coefficients up to level N, i.e.

N = (0,051,050 - Enav_y) € RY (2.4)

and let X¢" := XV when we want to stress the dependencies of XV on the coeffi-
cients V. Using double indexing, we denote by S; ; = supp ¢; ;.

2.2.2 The Zig-Zag sampler

A piecewise deterministic Markov process (Davis 1993) is a continuous-time process
with behaviour governed by random jumps at points in time, but deterministic evo-
lution governed by an ordinary differential equation in between those times (yielding
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Figure 2.1: Lévy-Ciesielski construction of a Brownian motion on (0,1). On the
left the Faber-Schauder basis functions up to level N = 3, on the top-right the
values of the corresponding coefficients located at the peak of their relative FS
basis function and on the bottom-right the resulting approximated Brownian path
XN (black line) compared with a finer approximation (red line). The truncated
sum defines the process in 2¥*1 + 1 finite dyadic points (black dots) with linear
interpolation in between points. A finer approximation corresponds to Brownian
fill-in noise between any two neighboring dyadic points.

piecewise-continuous realizations). If the differential equation can be solved in closed
form and the random event times can be sampled exactly, then the process can be
simulated in continuous time without introducing any discretization error (up to
floating number precision) making it attractive from a computational point of view.

By a careful choice of the event times and deterministic evolution, it is possible to
create and simulate an ergodic and non-reversible process with a desired unique in-
variant distribution (Fearnhead et al. 2018). The Zig-Zag sampler (Bierkens, Fearn-
head, and Roberts 2019) is a successful construction of such a processes. We now
recap the intuition and the main steps behind the Zig-Zag sampler.

The one-dimensional Zig-Zag sampler is defined in the augmented space (&,0) €
R x {41, —1}, where the first coordinate is viewed as the position of a moving
particle and the second coordinate as its velocity. The dynamics of the process
t— (&(t),0(t)) (not to be confused with the time indexing the diffusion process) are
as follows: starting from (£(0),6(0)),
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(a) its flow is deterministic and linear in its first component with direction 6(0)
and constant in its second component until an event at time 7 occurs. That

is, (£(1).6(t)) = (£(0) + t(0),6(0)), 0 < t < 7.

(b) At an event time 7, the process changes the sign of its velocity, i.e. ({(7),0(T)) =

(E(r=), =0(7—))-

The event times are simulated from an inhomogeneous Poisson process with specified
rate A\: (R x {1,—1}) — R such that P(r € [t,t + €]) = A(&(t),0(t))e + o(e), € | 0.

The d-dimensional Zig-Zag sampler is conceived as the combination of d one-
dimensional Zig-Zag samplers with rates \;(£,0), i = 1, ..., d, where the rates create
a coupling of the independent coordinate processes. The following result provides
a sufficient condition for the d-dimensional Zig-Zag sampler to have a particular
d-dimensional target density m as invariant distribution. Assume that the target
d-dimensional distribution has strictly positive density with respect to the Lebesgue
measure i.e.

m(d¢) oc exp(—(€))d¢, €€ RY

Define the flipping function as F;(0) = (0y,...,—0;,...,0,), for € {—1,+1}%. For
any i = 1,...,d and (£,0) € R? x {1, —1}4, the Zig-Zag process with Poisson rates
satisfying

)\i(57 9) - )\i(§7 Fz(@) = 9i@¢(§)7 (2-5)

has 7 as invariant density. Condition (2.5) is derived in the supplementary material
of Bierkens, Fearnhead, and Roberts (2019). Condition (2.5) is equivalent to

Ail€,0) = (0:,04(6)" + () (2.6)

for some ~;(£) > 0. Throughout, we set 7;(§) = 0 because generally the algorithm
is more efficient for lower Poisson event intensity (see for example Andrieu and
Livingstone 2019, Subsection 5.4).

Assume the target density is w(§) = em(§). The process targets the specific
distribution function through the Poisson rate A which is a function of the gradient of
&= (&) = —log(m(€)), so that any proportionality factor of the density disappears.
Throughout we refer to the function v as the energy function. As opposed to
standard Markov chain Monte Carlo methods, the process is not reversible and it is
defined in continuous time.

Example 2.2.1. Consider a d-dimensional Gaussian random variable with mean
€ R and positive definite covariance matriz ¥ € R, Then

o m(§) ocexp (—(& — p)E7HE —p)/2),
o O(&) = 271 — Wl
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o M(6,0) = (B[S — )"

Notice that if ¥ is diagonal, then \i(§,0) = 0 whenever the process is directed
towards the mean so that no jump occurs in the kth component when one of the
following conditions is satisfied: (O = —1,& — g > 0) or (0 = 1,& — ux, < 0). In
Figure 2.2 we simulate a realization of the Zig-Zag sampler targeting a univariate
standard normal random distribution.

10 M M/ —nE A
2-
| 0.5}
WS > 0.0
-1 -0.5}
-2t
. . . . . ot 2 U0 L UL U
0 10 20 30 40 0 10 20 30 40
t t

Figure 2.2: One dimensional Zig-Zag targeting a Gaussian random variable N (0, 1).
Left: ¢t — £(t), right: t — 0(t).

Algorithm 1 shows the standard implementation of the Zig-Zag sampler. Given
a fixed time ¢ > 0 and a position (£(t),6(t)), the first event time 7 after ¢ is
determined by taking the minimum of event times 71, 75, ..., 74 simulated according
to the Poisson rates \;,;i = 1,2, ...,d. At event time 7, the velocity vector becomes
O(t*) = Fi«(0(t)), with i* = argmin(7y,...,74). The algorithm iterates this step
moving forward each time until the next simulated event time exceeds the final
clock Tgpal-

Although we consider the velocities for each dimension of a d-dimensional Zig-
Zag process to be either 1 or —1, these can be taken to be any non-zero values
(0;,—0;) for i = 1,...,d. A finetuning of 6, ...,0y can improve the performance of
the sampler. Note that the only challenge in implementing Algorithm 1 lies on the
simulation of the waiting times which correspond to the simulation of the first event
time of d inhomogeneous Poisson processes (IPPs) with rates A1, Ao, ..., Ay which are
functions of the state space (§,0) of the process. Since the flow of the process is
linear and deterministic, the Poisson rates are known at each time and are equal to

)\Z(t,f’,&):)\z({—i—t@,@), 221,2,,d
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To lighten the notation, we write \;(t) := \;(¢;&,0) when &, 60 are fixed. Given an
initial position £ and velocity 6, the waiting times 74, ..., 7y are computed by finding
the roots for x of the equations

/)\Z-(s)ds—i—log(ui)zo, P=1,2,..d, 2.7)
0

where (u;)i=12,.. 4 are independent realisations from the uniform distribution on
(0,1). When it is not possible to find roots of equation (2.7) efficiently, for example
in closed form, it suffices to find upper bounds for the rate functions for which this is
possible; Subsection 2.4.4 treats this problem for our particular setting. The linear
evolution of the process and the jumps of the velocities are always trivially computed
and implemented.

Algorithm 1 returns a skeleton of values corresponding to the position of the
process at the event times. From these values, it is straightforward to reconstruct
the continuous path of the Zig-Zag sampler. Given a sample path of the Zig-Zag
sampler from 0 to 7q,., We can obtain a sample from the target distribution in the
following way:

e Denote by £(7) the value of the vector £ at the Zig-Zag clock 7 < Tgpa. Fixing
a sample frequency A7, we can produce a sample from the density 7 by taking
the values of the random vector £ at time Tyymoin + AT, Thurn-in + 247, ...., Thnal
where Tyum.in 18 the initial burn-in time taken to ensure that the process has
reached its stationary regime. Throughout the paper, we create samples using
this approach.

2.2.3 Zig-Zag sampler for Brownian bridges

The previous subsections contain all ingredients necessary to run the Zig-Zag sampler
in a finite dimensional projection of the Brownian bridge measure Q%" on the interval
[0,T]. We fix € to v and run the Zig-Zag sampler for £V as defined in (2.4) targeting
a multivariate normal distribution. Figure 2.3 shows 100 samples obtained from one
sample run of the Zig-Zag sampler where the coefficients are mapped to samples
paths using (2.2). The final clock of the Zig-Zag is set to Txua = 500 with initial
burning 7,urn-in = 10.

Both Brownian motion and the Brownian bridge are special in that all coefficients
in the Faber-Schauder basis are independent. Of course, these processes can directly
be simulated without need of a more advanced method like the Zig-Zag sampler.
However, for a diffusion process with nonzero drift this property is lost. Nevertheless,
we will see that when the process is expanded in the Faber-Schauder basis, many
coefficients are still conditionally independent. This implies that the dependency
graph of the joint density of the coefficients is sparse. We will show in Section 2.4
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Algorithm 1 Standard d-dimensional Zig-Zag sampler (Bierkens, Fearnhead, and
Roberts 2019)

procedure ZIGZAG(Txpal, &, 6)
Initialise k =1,t =0
7; ~ IPP(\;(€,0)), i=1,...,d > Draw from Inhomogeneous Poisson
process (IPP)
while ¢ S Tfinal do
7*,1* + findmin(7y, .., 74)
Update: £ < £+ 0(7" — 1)
Update: 0;« < —0;«; t+ 7*
Save ) « & ) ¢
for y=1,...,d do
7y ~ £+ IPP(\, (€, 0))
end for
k+—Fk+1
end while

Ly

end procedure

how this property can be exploited efficiently using the Zig-Zag sampler in its local
version.

2.3 Faber-Schauder expansion of diffusion processes

We extend the results of Section 2.2 to one-dimensional diffusions governed by the
SDE in (2.1). Although the density is defined in infinite dimensional space, in this
section we justify both intuitively and formally that the diffusion can be approxi-
mated to arbitrary precision by considering a finite dimensional projection of it.
The intuition behind using the Faber-Schauder basis is that, under mild assump-
tions on the drift function b, any diffusion process behaves locally as a Brownian
motion. Expanding the diffusion process with the Faber-Schauder functions, this
notion translates to the existence of a level N such that the random coefficients at
higher levels which are associated to the Faber-Schauder basis are approximately
independent standard normal and independent from &V under the measure P.
Define the function Z;: Rt x C[0,T] — R* given by

Zy(X) = exp (/Ot b(X,)dX, — %/t bQ(XS)ds) (2.8)

0

where the first integral is understood in the It6 sense and X = (X, s € [0,7).
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Figure 2.3: 100 samples from the Brownian bridge measure starting at 0 and hitting
0 at time 1 obtained by one run of the Zig-Zag sampler targeting the coefficients
relative to the measure expanded with the Faber-Schauder basis. The resolution
level is fixed to N = 6 and the Zig-Zag clock to 74 = 500 and initial burn in
Thurn-in = 10.

Assumption 2.3.1. Z; is a Q-martingale.

For sufficient conditions for verifying that this assumption applies, we refer to
Remark 2.3.6, Remark 2.3.9 and Liptser, Aries, and Shiryaev (2013), Chapter 6.

Theorem 2.3.2. (Girsanov’s theorem) If Assumption 2.3.1 is satisfied,

dp
dQu

Moreover, a weak solution of the stochastic differential equation exists which is
unique in law.

(X) = Zr(X). (2.9)

Proof. This is a standard result in stochastic calculus (see Liptser, Aries, and
Shiryaev 2013, Section 6). a
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As we consider diffusions on [0, 7] with 7T fixed, we denote Z(X) := Z7(X). Due
to the appearance of the stochastic Itd integral in Z(X), we cannot substitute for X
its truncated expansion in the Faber-Schauder basis. Clearly, whereas the approxi-
mation has finite quadratic variation, X has not. Assuming that b is differentiable
and applying It0’s lemma to the function B(z) = [ b(s)ds, the stochastic integral
can be replaced and equation (2.8) is rewritten as

1

Z(X) = exp (B(XT) — B(Xp) — 5/0 (V*(Xs) +V'(Xs)) ds) : (2.10)

where V' is the derivative of b.

Definition 2.3.3. Let X be a diffusion governed by (2.1). Let X~ be the process
derwwed from X by setting to zero all coefficients of level exceeding N in its Faber-
Schauder expansion (see equation (2.2)). Set

1 [T
ZY(X) = exp (3 () = B () =5 [ () 0 () ds) |
0
We define the approzimating measure Py by the change of measure
dPy, ZN(X)
—(X) = 2.11
=== (211)

where cy = Eqg (ZV(X)).

Note that the measure P} associated to the approximated stochastic process is
still on an infinite dimensional space and such that the joint measure of random
coefficients ¢V is different from the one under Q" while the remaining coefficients
stay independent standard normal and independent from &V. This is equivalent
to approximating the diffusion process at finite dyadic points with Brownian noise
fill-in in between every two points. We now fix the final point vy by setting & = vp.
Define the approzimated stochastic bridge with measure P;"" in an analogous way
of equation (2.11), so that

APy o ZN(X)
dQU,UT< ) o T

(2.12)

where ¢ = Eguer (ZV(X)). The following is the main assumption made.

Assumption 2.3.4. The drift b is continuously differentiable and b*+ b is bounded
from below.

Theorem 2.3.5. If Assumptions 2.3.1 and 2.3./ are satisfied, then Py’ converges
weakly to P**T as N — o0.
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Proof. In the following we lighten the notation by omitting the initial point u from
the notation, which will be assumed fixed to © = x3. We wish to show that
Py converges weakly to P as N — oo. This is equivalent to showing that
[ fdPYF — [ fdP'7 for all bounded and continuous functions f. Write ¢22 =
p(0, 0, T, v7)/q(0, 20, T, vr). By equation (2.3) and (2.9),

dP*o dpPvr
Eqor Z(X) = Egor aQ oo Eqrr L@W} =l
and we have that
' / FdPYr — / FdpUT
zN Z
-|[1 (5 - &) aer
N 00
ZN(X Z(X
<l [ |Z - 252 o)
1 1 1
<l (7 [ 12900 - 200 a@nx) + [ 200 | 27 - | n)
N N 00
1 or
<l (57 [ 12700 - 20| a@r () + | 5 - 1) 2.13

where we used Assumption 2.3.1 for applying the change of measure between the
conditional measures. Notice that ZV(X) = Z(X?"). The mapping X — Z(X), as
a function acting on C(0,7") with uniform norm, is continuous, since B, b, and V' are
continuous. Therefore, it follows from the Lévy-Ciesielski construction of Brownian
motion (see Section 2.1.1) and the continuous mapping theorem that

ZN(X) = Z(X) Q' —a.s.

Now notice that, under conditional measures Q7 and P7, the term B(Xr)— B(X)
is fixed. By the assumptions on b and ', Z is a bounded function and by dominated
convergence we get that
: vT N o —
]VllinwEQ 1ZY(X)—Z(X)| =0
giving convergence to zero of the first term in (2.13). This implies that also the

constant cy := Eg'|ZV (X)| converges to Egf | Z(X)| = ¢ so that all the terms in
(2.13) converge to 0. O

We now list some technical conditions for the process to satisfy Assumptions
2.3.1 and 2.3.4.



CHAPTER 2. PDMPS FOR DIFFUSION BRIDGES 31

Remark 2.3.6. If |b(x)| < ¢(1 + |z]), for some positive constant c, then Assump-
tion 2.5.1 is satisfied.

Proof. See Liptser, Aries, and Shiryaev (2013), Section 6, Example 3 (b). O

Remark 2.3.7. If b is globally Lipschitz and continuously differentiable, then As-
sumptions 2.5.1 and 2.3./ are satisfied.

Proof. Assumption 2.3.4 is trivially satisfied. By Remark 2.3.6, also Assumption 2.3.1
is satisfied. O

In Subsection 2.5.3 we will present an example where the drift b is not globally
Lipschitz, yet Assumption 2.3.4 is satisfied.

Assumption 2.3.8. There exists a non-decreasing function h : [0,00) — [0, 00)
such that B(x) < h(|z|) and

/ exp(h(x) — 2?/(2T)) dr < .
0
The above integrability condition is for example satisfied if h(|z|) = ¢(1 + |z])

for some ¢ > 0.

Remark 2.3.9. If Assumptions 2.5.4 and 2.3.8 hold, then Assumption 2.5.1 is
satisfied.

Proof. By Subsection 3.5 in Karatzas and Shreve (1991), (Z;) is a local martingale.
Say /' (z) + b*(z) > —2C, where C > 0. Using the assumptions, we have

2= oxp (BX) = BOX) ~ § [ (H0X) + (X)) ds) < Aexp(CO) exp(h(1:]),

with constant A = exp(—B(Xj)). Then

sup Z; < A sup exp(Ct)exp(h(|X:|)) < Aexp(CT) exp (h (max |Xt|)> .

t€[0,T] t€[0,T] te[0,7
By Lemma 2.3.10, below

E sup Z; < Aexp(CT)Eexp(h(max |X;|)) < oo.
te[0,7) t€[0,7]

Then for a sequence of stopping times (7) diverging to infinity such that (Z;*)o<i<r
is a martingale for all k, we have

EZy=EZ}) =EZ]* - EZ,

as k — oo by dominated convergence. O
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Lemma 2.3.10. Suppose h: [0,00) — [0, 00) is non-decreasing. Let Ny = maxo<i<r | X¢|
where (X3;) is a Brownian motion. Then

exp(h(z) — 2?/(27T)) dz.

E exp h(N- <4/
ph(Nr) < 0 27T

Proof. The maximum My = maxo<;<7 X; of a Brownian motion is distributed as the
absolute value of a Brownian motion and thus has density function \/227TT exp(—x?/(2T)),
see Karatzas and Shreve (1991), Subsection 2.8. We have P(Np > y) < 2P(Mr > y)
from which the result follows. O

Finally we mention that Theorem 2.3.5 can be generalized in the following way
to diffusions without a fixed end point.

Proposition 2.3.11. If Assumption 2.5.) is satisfied and B is bounded, then Py
converges weakly to IP.

The proof follows the same steps of the one of Theorem 2.3.5. In this case we
need to pay attention on B, as for unconditioned process, the final point is not
fixed. If B is bounded, then Assumption 2.3.8 is satisfied. By Remark 2.3.9 also
Assumption 2.3.1 is satisfied so that we can apply Theorem 2.3.2 for the change of
measure. Finally, by the assumptions on b and B, the function Z is bounded and
by dominated convergence we get that

lim Eg|ZY(X) — Z(X)| = 0.

N—oo

2.4 A local Zig-Zag algorithm with subsampling for
high-dimensional structured target densities

In Subsection 2.4.4 we will show that the task of sampling diffusion bridges boils
down to the task of sampling a high-dimensional vector £V € RM under the measure
Py"". Define by P~ the distribution of the vector £V. Under the target measure,

Pen (d€™) = m(€V)dg™.

We take the density 7 to be the M-dimensional invariant density (target density) for
the Zig-Zag sampler. An efficient implementation of piecewise deterministic Monte
Carlo methods, including the local and fully local Zig-Zag sampler can be found in
Schauer and Grazzi (2021).
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2.4.1 Subsampling technique

In our setting, the integral appearing in the Girsanov formula (2.10) poses difficulties
when finding the root of equation (2.7) and would require numerical evaluation of
the integral, hence also introducing a bias. By adapting the subsampling technique
presented in Bierkens, Fearnhead, and Roberts (2019) (Section 4) we avoid this
problem altogether (see Subsection 2.4.4). In general this technique requires

(a) unbiased estimators for ;1 i.e. random functions (‘)Z%({“ ,U;) such that

EUi [aﬂZi(ﬁ Uz)] = &w(f‘),

for all 4 and £&. These random functions create new (random) Poisson rates
given by

N €,0,U;) = (0:040(€(0),U)T,  i=1,2,...d, (2.14)

whose evaluation becomes feasible and computationally more efficient com-
pared to the original Poisson rates given by equation (2.6).

(b) upper bounds A; : (R* x R? x {—1,4+1}4) — R* for all i = 1,...,d such that
for any point (§,6) and ¢ > 0 we have

P (N(:6,6:U:) < M(:6,0)) = 1 (2.15)

As we show in Algorithm 2 and in Section 2.5, these upper bounds are used
for finding the roots of equation (2.7).

Algorithm 2 gives the algorithm for the Zig-Zag sampler with subsampling. It can be
proved (see Bierkens, Fearnhead, and Roberts 2019) that the Zig-Zag sampler with
subsampling has the same invariant distribution as its original and therefore does
not introduce any bias. Note that we slightly modified the algorithm from Bierkens,
Fearnhead, and Roberts (2019) in order to reduce its complexity. In particular it is
sufficient to draw new waiting times and to save the coordinates only when the if
condition at the subsampling step of Algorithm 2 is true.

2.4.2 Local Zig-Zag sampler

Subsection 3.1 of Bouchard-Coté, Vollmer, and Doucet (2018) proposes a local al-
gorithm for the Bouncy Particle Sampler which is a process belonging to the class
of piecewise deterministic Markov processes. Similar ideas apply to our setting.

Assumption 2.4.1. The Poisson rate \; for a d-dimensional target distribution is
a function of the coordinates N; C {1,...,d},

Ni(8:6,0) = Ni(s:&k, 0 - k € IN;).
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Algorithm 2 d-dimensional Zig-Zag sampler with subsampling

procedure ZIGZAG WS(Tqpal, &, 0)

Initialise k =1,t