
CCS Reservoir
Simulation using
Graph Neural
Networks
Building ML solutions for efficient CO2 subsurface
modelling

Lucas Veeger

CCS Reservoir
Simulation using

Graph Neural
Networks

Building ML solutions for efficient CO2
subsurface modelling

by

Lucas Veeger
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on December 6th, 2023 at 11:00 AM.

Student number: 4459628
Project duration: April 17, 2023 – December 8, 2023
Thesis committee: Neil Yorke-Smith, TU Delft, supervisor

Kees Vuik, TU Delft, 2nd committee member
Company supervisors: Tom Jönsthövel, SLB

Soham Sheth, SLB

Cover: AI generated image (www.imagine.art) promted with ’Subsurface
Modelling’

Template: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This thesis project came with the beautiful opportunity to experience a new location. For the past 6
months I have been enjoying my time in Norway to great extents. Both the experiences in and out
of the office were very appreciated components of my life this year, centered around the greater goal
of graduating. I got to meet some great people in Oslo which I look forward to meeting again in the
years to come. I want to thank Diederik for unknowingly setting up this opportunity by introducing me
to Tom at their SLB networking event in Delft. A lot of thanks to Tom for putting in effort before and
during the project. He managed to find the right person within SLB with a lot of interesting data science
ideas in the new energy domain. I want to thank this person, Soham, for providing some key ideas
during the development of this research. Together with Tom’s inspiring translations to the mathematical
foundations I developed a profound interest in the computational technologies that can and should aid
CCS technology. I am sure CCS will be an essential technology transitioning our energy ecosystem,
and I hope this work will be a step in a longer path of creating machine learning technologies for a
sustainable future. For me this project has been a great means of growing as a data scientist, and I
look forward to the years ahead of me, hopefully filled with similarly inspiring challenges.

Lucas Veeger
Delft, November 2023

i

Abstract

Reducing cost and improving computability of reservoir simulation is an important goal in the process of
enabling CCS (Carbon Capture & Storage) as a large-scale technology for mitigating CO2 emissions.
In terms of computation time data-driven approaches have potential to outweigh the performance of
numerical reservoir simulators, learning instead of solving an approximation of the subsurface physics.
In this research a Graph Neural Network (GNN) is trained on 2D reservoir model samples to construct
a ML autoregressive reservoir simulator. As such the aim of the model is to integrate a spatiotemporal
learning task in a graph representation learning problem. Where GNNs have shown their potential in
various graph representation and node classification tasks, their use in a reservoir simulation setting is
practically unexplored. Graph methods are studied in this setting because of their potential to handle
data in non-Euclidean space, which is desired in reservoir simulation to efficiently handle unstructured
grids. A simple GNN autoencoder is introduced, implementing the common GCN (Graph Convolu-
tional Network) layer as a locally-operating message-passing operator. The model does not work with
spatial graph information, accepting arbitrary graph sizes and structures in 2D or 3D. The model is
trained, validated and tested against 2D simulated datasets, generated with the INTERSECT numeri-
cal reservoir simulator. The trained model remains numerically stable and makes correct predictions
for >140 autoregressive steps. It also shows capability to translate point-source information (the injec-
tion rate at the injection well) correctly into a CO2 saturation propagation pattern and corresponding
pressure field across the reservoir grid. The model exhibits the correct behaviour around geological
layers with variable permeability/porosity, indicating the model successfully adapts to geological vari-
ability in the subsurface. Finally the model shows it can infer on totally new reservoir structures. The
latter showcases the local method’s potential to train a ML reservoir simulator for arbitrary reservoir
grids by training it with small generalized subsurface samples, dismissing the need to fully (re)train on
usual reservoir grid sizes. Predicting using the GNN methods gives a 60x speed-up compared to the
numerical simulator on the small training grids, which likely improves for larger grids given the complex-
ity scaling of numerical simulators. As expected, capturing the elliptic behaviour of the PDE governing
pressure is challenging for the local GNN method. While the resulting expressiveness of pressure is
passable, ideas for improvement are suggested which can be incorporated using the same proposed
GNN architecture.

Visit https://lucasveeger.github.io/ for animated experimental results. This work has been ac-
cepted for presentation at the Geopublishing 2024 NEXT conference (23-25th January 2024, Bergen,
nextenergy.no)

ii

https://lucasveeger.github.io/
nextenergy.no

Contents

Preface i

Abstract ii

1 Introduction 1
CCS . 1
Reservoir Simulation . 2
Problem definition . 2
Graph methods . 2

1.1 Reservoir Simulation using Graph Neural Networks . 3
1.1.1 Expressivity . 4
1.1.2 Injectivity . 4
1.1.3 Transferability . 4

1.2 Related work . 5
1.3 Outline . 5

2 Reservoir Simulation 7
2.1 Subsurface physics . 7

2.1.1 Geological features . 8
2.1.2 Conservation equations . 8
2.1.3 Darcy’s law . 9
2.1.4 Thermodynamic equilibrium of fluid phases . 10

2.2 Solving the nonlinear system . 10
2.2.1 Discretization . 10
2.2.2 Newton-Raphson iterative method . 10
2.2.3 Solving the pressure system using Algebraic Multigrid 11

3 Graph Neural Networks 14
3.1 Message Passing Algorithms . 14
3.2 Spatial vs spectral graph convolutions . 16

3.2.1 Spatial graph convolutions . 16
3.2.2 Spectral graph convolutions . 16
3.2.3 GCN . 17

3.3 Network depth . 18
3.4 Over-smoothing . 18

3.4.1 Residual connection . 19
3.5 PyG . 20
3.6 GNN demo: structural learning . 20

4 Methods & Experimental Design 22
4.1 Autoregression . 22
4.2 Architecture . 22
4.3 Features . 23

4.3.1 Accumulation speed features . 25
4.3.2 Normalization . 25
4.3.3 Loss function . 26
4.3.4 Training procedure . 26
4.3.5 Hyper-parameters . 27

4.4 Data . 28
4.4.1 Ensemble 1: variable injection . 28
4.4.2 Ensemble 2: variable shale composition . 28

iii

Contents iv

4.4.3 Post-injection time steps . 28
4.4.4 Note on the training data . 29

4.5 Experimental Design . 29
4.5.1 Experiment 1: Single step prediction . 29
4.5.2 Experiment 2: Long-term autoregressive prediction 29
4.5.3 Experiment 3 & 4: Ensemble predictions . 30
4.5.4 Experiment 5: Unseen grid prediction . 30
4.5.5 Ray tune hyper-parameter searching . 30

5 Results 34
5.1 Animated experimental results available online . 35
5.2 Experiment 1: Single predictions . 36
5.3 Experiment 2: Multistep autoregressive predictions . 36
5.4 Experiment 3: variable injection ensemble . 36
5.5 Experiment 4: variable shale composition ensemble . 36
5.6 Training loss & roll-out evaluation . 37

5.6.1 Autoregressive value bouncing . 38
5.6.2 Post-injection phase . 39
5.6.3 Hyper-parameter tune . 39

5.7 Experiment 5: Transferability to unseen compositions 39

6 Discussion 47
6.1 Representation of the physical situation . 47

6.1.1 Pressure-saturation relation . 47
6.2 Training the post-injection phase . 48
6.3 Application to larger domains . 48

6.3.1 Variety of Training data . 48
6.3.2 Reservoir scale . 48
6.3.3 Reservoir complexity and well controls . 49

6.4 A local method on a global feature: pressure . 49
6.4.1 Multigrid approaches . 49
6.4.2 Feature specific aggregation . 49

6.5 Conclusion . 49

References 51

List of Figures

1.1 Current (2020) vs prospected (2050) yearly CCS storage capacity, with specification
of capture sources, based on technological advances and IPCC targets set out in 1.5
Special Report. Visual fromCCSGlobal Report 2020 [16], data from International Energy
Agency [1]. 2

1.2 Snapshot of a subsurface reservoir model constructed using an unstructured grid. Un-
structured grids are better in capturing the geological characteristics of subsurface rock
formations. Source: SLB Petrel hydraulic fracture modeling 3

2.1 Solution approximation during the Newton-Raphson iterative method. Every iteration a
∆X is calculated to update the solution vectors (Equation 2.2.2) that are used in the
next Newton iteration, until the solution Rt+1 ≈ 0 (Equation 2.5). Source: IX Technical
Documentation [46] . 11

2.2 The ’V-cycle’ multigrid approach. 12

3.1 Information spread of a) a single node b) three nodes during over multiple graph convo-
lutions. Message. a) After 3 convolutions, almost all the nodes have passed information
to the starting node and vice versa. b) Information mix increases as more graph convo-
lutions are performed, in practice happening for every node in the graph (only 3 nodes
shown for simplification). 15

3.2 Example of a) a directed graph with directed edges going in a defined direction and b)
an undirected graph where edges have no direction / all edges are bidirectional. 16

3.3 Simple experiment with L = 4, showing how network depth limits the flow of information in
amessage-passing GNN. The construction of the target shape in a) requires 4 edge hops
between nodes to reach the furthest node in the target (right top), the exact range over
which the model can propagate information. The model constructs the target shape, with
a slight over-smoothing discrepancy (see section 3.4). The target shape in b) requires
8 hops, more than the network depth, making it impossible to spread the information
far enough. The diagonal edge of the constructed shape appears as those cells are all
maximally 4 edge hops away from the input grid’s node. 19

3.4 Over-smoothing effect visible on the same construction task as shown in Figure 3.3, but
now with sufficient network depth to reach every node in the target. Still the shape is not
perfectly generated, which is due the dilution of information that gets worse with more
consecutive graph convolutions. 20

3.5 Experiment showing a) the over-smoothing effect on a circle-growing model, b) which is
perfectly achieved by adding a residual connection to the graph convolutions. 21

3.6 Simple autoencoder GNN that reconstructs a target graph structure. In this experiment,
the model is not used as a simulator but as a grid approximation method. 21

4.1 autoregressive flow of information duringmultistep training and long-term prediction. The
model outputs and their temporal derivatives are fed back into the model as input for the
next time step, together with the static features, the injection rate (IR) at time step t and
the time step size. For multistep training of time step t, T = [t, t+ 1, ..., t+ x]. 23

4.2 Network architecture used in this work. The model maps 12 input features to a 64-
dimensional latent space using a fully connected layer, where it applies L GCN2Conv
operators to perform message-passing and apply model weights. It then maps the final
feature state to the 2 output features saturation and pressure. The architecture accepts
any arbitrary graph size or structure. 24

4.3 Multistep training procedure for k = 4. For every data sample (i.e. time step starting at
t) the model is autoregressively iterated for k steps. 27

v

List of Figures vi

4.4 Static properties of a general P7 sample from the variable injection ensemble (constant
across the ensemble). It shows the general structure with horizontal shale layers found
in every P7 sample. PORV increases steadily in the x-direction. DEPTH increases in
the increasing z-direction. PORO influences the input property PORV. PERMY is pre-
configured nonzero, but is not encoded in any edge weight. Transmissibility depends
on the cell dimension in its specific direction, making TRANY zero in the xz-dimensional
grid. TRANX/TRANZ are influenced by PERMX/PERMZ, PORO and PORV. The vari-
able shale ensemble is identical in the non-shale surroundings, but has varying PORO
and randomly decaying PERMX/PERMZ in the shale layers. 31

4.5 Overview of the P7 reservoir grid: a) spatial and c) non-spatial view. 32
4.6 Accumulation of gas saturation (left) and pressure (middle) for a range of cases in the

variable injection ensemble. Injection rate (right) shows that when CO2 injection stops
(0.0275 ≈ 12 years), the dynamics of the system change. Pressure smooths out gradu-
ally over the grid, decreasing across the grid overall back to an equilibrium. Even though
no more CO2 is entering the system, gas saturation keeps increasing slightly. As pres-
sure decreases the volume of the gas is likely to increase, increasing saturation across
the grid cells overall. Note the y-axis does not represent the actual feature value, but the
sum of the normalized features over the whole grid. 32

4.7 Different porosity (PORO) and z-directional permeability (PERMZ) values in the variable
shale ensemble validation set. 33

4.8 Accumulation of gas saturation (left) and pressure (middle) for a range of cases in the
variable shale composition ensemble. Compared to the variable injection ensemble, the
cases with decreased porosity and permeability show higher pressure. This is the result
of more CO2 trapping under a shale layer, increasing pressure build-up. Injection rate in
this ensemble is also variable, but is determined by a maximum pressure metric based
on the bottom hole pressure (BHP, i.e. the pressure at the point of injection), simulated
in IX. 33

5.1 Single time step predictions on an ensemble trained model, case 45 (mid-range injection
rate). a) Early injection phase time step (8 months) b) Late injection phase time step (10
years). 35

5.2 Gas saturation (SGAS) simulation, roll-out prediction and error at t = 80 for the variable
injection ensemble. a) Low injection rate, b) medium injection rate, c) high injection rate 37

5.3 Pressure (PRES) simulation, roll-out prediction and error at t = 80 for the variable injec-
tion ensemble. a) Low injection rate, b) medium injection rate, c) high injection rate . . . 38

5.4 Gas saturation (SGAS) simulation, roll-out predictions and errors of 4 cases from the
validation set of the variable shale composition ensemble, in order of decreasing per-
meability. a) Permeability shale ≈14mD, b) Permeability shale ≈0.7mD, c) Permeability
shale ≈0.04mD, d Permeability shale ≈0.005mD) . 41

5.5 Pressure (PRES) simulation, roll-out predictions and errors of 4 cases from the valida-
tion set of the variable shale composition ensemble, in order of decreasing permeabil-
ity. a) Permeability shale ≈14mD, b) Permeability shale ≈0.7mD, c) Permeability shale
≈0.04mD, d Permeability shale ≈0.005mD) . 42

5.6 Training, validation and Raytune loss during model training on the variable shale ensem-
ble. Raytune loss corresponds to the evaluation metric, and is used during the hyper-
parameter searches as the optimizable metric. In the left plot, the training loss is a low
value flat line, properly depicted on the right. The validation loss and the evaluation met-
ric are calculated over the entire predicted timespan and generally a lot higher than the
multistep loss, which is minimized during training and only covers loss of the multistep
time range. The validation loss / evaluation metric show correlation with the training loss
globally, but contain great variations on intermediate epochs. The final trained model is
picked from the epoch with the minimal evaluation metric across the entire training. . . . 43

5.7 Dynamic feature progression during roll-out predictions at a particular grid cell near the
injection well. Left: velocity components at cell 1410, (close to the injection well). Right:
full grid average iteration loss, i.e. the unaveraged roll-out loss at every iterated time step. 43

List of Figures vii

5.8 Dynamic feature progression at particular grid cell during roll-out predictions of a case
expressing value bouncing of a dynamic feature, in this case the pressure accumulation
speed. Left: velocity components at cell 1410 (close to the injection well). Right: full grid
average iteration loss, i.e. the unaveraged roll-out loss at every iterated time step. . . . 43

5.9 Post-injection phase typical development at 3 time points: 1) start of post-injection phase
(left column, t = 143), 2) +1 year (middle column, t = 144) and 3) +88 years (right
column, t = 159). Simulation (TRUE, uneven rows) and roll-out prediction (PRED, even
rows) shown for saturation (SGAS) and pressure (PRES). The GNN model captures the
pressure smooth-out, but only eventually. For the saturation, it fails in modelling enough
buoyant force that concentrates the CO2 under the shale layers and instead seems to
continue the steady flow from the injection phase. 44

5.10 Permeability in z-direction (PERMZ) for structurally modified cases of the P7 dataset.
Reservoir A includes holes in the shale layers allowing easy propagation of CO2, com-
bined with zero permeability blocks resembling impermeable rock formations. Reservoir
B contains a diagonal shale layer to evaluate the diagonal flow. Reservoir C extends B
with a mirrored shale layer to evaluate the effect of the CO2 flow downward. 45

5.11 Simulation, roll-out predictions and errors of untrained reservoir case A at final injection
phase state at t = 143 (reservoir structure provided in Figure 5.10). 45

5.12 Simulation, roll-out predictions and errors at final injection phase state at t = 143. a) Un-
trained reservoir case B, b) untrained reservoir case C. Reservoir structures are shown
in Figure 5.10. 46

1
Introduction

Energy is abundantly required in society, and demandwill continue to rise as the world population grows,
societies develop and economies grow. On the other hand, systematic boundaries are reached by
the accumulating atmospheric concentration of a residual product of fossil energy production: carbon
dioxide or CO2. The heat-trapping greenhouse effect caused by CO2 is vital for life on earth, but
has become problematic as growing atmospheric CO2 concentrations increase global temperatures.
Recent measurements (Aug 2023) put global atmospheric CO2 concentration at 420 ppm (parts per
million) [4], which should be reduced to below 350 ppm for a normal climatological equilibrium [39].

Carbon Capture and Storage (CCS), a carbon dioxide removal (CDR) technology, is expected to play
a vital role in mitigating CO2 emissions. The Intergovernmental Panel on Climate Change (IPCC) has
set out strategies in the IPCC 1.5° Special Report to achieve net emission reductions [6]. CCS plays
an important role in these. Without CCS technology fossil emissions are required to reduce to near
zero by 2050, an increasingly challenging task given the estimated energy demand. The importance
of Carbon Capture and Storage (CCS) is emphasized by the knowledge that certain hard-to-abate
industries are not expected to vanish or easily transition to low-carbon alternatives (e.g. cement and
steel production). CCS can mitigate inevitable residual emissions required during and after the energy
transition. Figure 1.1 from the Global Status of CCS report [16] illustrates the up-scaling of CCS as
projected in the International Energy Agency’s Sustainable Development Scenario.

CCS
Carbon Capture & Storage is a carbon dioxide removal technology. Initially, CO2 is (chemically) cap-
tured as the residual product of a (large-scale) production process, e.g. a coal power plant or cement
production factory. Instead of atmospherically emitting the CO2 it is filtered, contained and transported
to a permanent storage location for injection. After injection the CO2 should remain contained indef-
initely to ensure an effective emission reduction. Logical containers for CO2 are previously explored
subsurface porous rock formations (i.e. depleted oil/gas fields), which have successfully contained
hydrocarbons for millions of years, and they generally are already mapped and studied [16]. Saline
aquifers (subsurface salt water volumes) are also capable of storing large amounts of CO2 and are
generally located closer to CO2 capturing sources. However, injection and CO2 storage characteris-
tics have been studied less in such reservoirs [16].

For testing and for specific EOR (enhanced oil recovery) purposes, the injection of CO2 has been
implemented successfully over a surprisingly large time span (1972 - now) [32, 16], indicating technical
potential and feasibility of the injection component of CCS. Furthermore, a significant amount of domain
knowledge and technology in the current energy field will help to facilitate large scale deployment of
CCS installations. An important dynamic modelling technology is reservoir simulation.

1

2

Figure 1.1: Current (2020) vs prospected (2050) yearly CCS storage capacity, with specification of capture sources, based on
technological advances and IPCC targets set out in 1.5 Special Report. Visual from CCS Global Report 2020 [16], data from

International Energy Agency [1].

Reservoir Simulation
Reservoir simulation is a computational technology to model behaviour of components in subsurface
’reservoirs’, i.e. subsurface porous rock formations that allow fluid (i.e. liquids and/or gasses) flow.
Subsurface reservoirs have been the subject of extensive research for decades because of their hy-
drocarbon contents. With the rise of computing power, the capabilities of reservoir simulation have
progressively shaped engineering decisions in this field. Current reservoir simulators are numerical
mathematical models that numerically solve the underlying physical systems. In the case of CCS
reservoir simulators will be used to model flow, migration and saturation of injected CO2 and deter-
mine the associated pressure across the reservoir. Such simulations assist in determining reservoir
capacity, optimal well placement(s) and safe injection rate(s). Despite their great informative poten-
tial, numerical reservoir simulators are costly in time and computational resources. This results in a
trade-off between more simulations for optimization or less for time and cost efficiency.

Problem definition
The constrained simulation speed of existing reservoir simulators imposes limitations on the variability
during optimization. To maximize the efficiency of CCS installations, exploration of various injection
scenarios is crucial. Additionally, to ensure long-term containment CCS simulations should cover ex-
tended time frames up to 1000 years, well beyond the typical time span of a hydrocarbon extraction
reservoir simulation (1-10 years). Lastly, CCS projects will likely be commercially driven and prioritize
cost-effectiveness. These aspects encourage accelerated approaches for reservoir simulation. Ma-
chine learning methods are being studied in the reservoir simulation field and show growing accuracy
and reliability, but the technology has no effective role yet in industry applications as challenges remain
[43, 53].

Scope: Graph methods for unstructured reservoir grids
One of the challenges for machine learning in the context of reservoir simulation lies in the data format
popular in modern subsurface models: unstructured grids. Unstructured grids (or meshes) are use-
ful in subsurface modelling because they are unordered, adaptable and allow for better abstractions
of arbitrary complex subsurface geometries compared to structured (e.g. cartesian) grids. As such
they represent a more logical geometrical framework for solving physical processes around complex

1.1. Reservoir Simulation using Graph Neural Networks 3

shapes. However, many ML methods require data to be in a structured format (e.g. Convolutional
Neural Networks). Converting unstructured grids to structured grids using interpolations is theoretically
challenging and computational complexity scales with grid size. In reservoir simulation, reservoir grids
can become especially large at the relevant resolutions, containing millions of cells to simulate. An
example of an unstructured reservoir grid is shown in figure 1.2.

A more efficient way of handling unstructured grids are methods that handle data as graphs, where grid
cells form the nodes/vertices, and neighbouring grid cells are connected using edges. Such methods
generally operate on the node level and process information in the node’s neighbourhood, accessible
through the node’s edges. In the context of reservoir simulation such methods could be considered as
a network flow model, predicting the flow between discretized cells of the porous media. Different node
and edge types, edge weights, aggregation functions and physics-inspired boundaries (more details
about these methods in chapter 3) can be incorporated to integrate domain-specific knowledge. This
work will present a data-driven ML approach for predicting CO2 flow by converting reservoir data to
graph data and using this to train a Graph Neural Network that can predict consecutive graph states.

Figure 1.2: Snapshot of a subsurface reservoir model constructed using an unstructured grid. Unstructured grids are better in
capturing the geological characteristics of subsurface rock formations. Source: SLB Petrel hydraulic fracture modeling

1.1. Reservoir Simulation using Graph Neural Networks
As described above Carbon Capture & Storage (CCS) technology will strive for technological advances
that reduce cost and increase operational efficiency and safety. Accelerated surrogate ML models can
enhance the potential of reservoir simulation for CCS target reservoir exploration. A key objective in
achieving this goal is to identify a method capable of making inferences on large reservoir grids without
the need for extensive training on each, as this is likely to be computationally expensive.

This work focuses on testing an increasingly recognized methodology, Graph Neural Networks (GNNs),
to evaluate if this method has such potential. GNNs have not been extensively applied in such types of
tasks yet, which can be described as a spatiotemporal graph representation learning task. The problem
combines graph representation / reconstruction learning with learning temporal system dynamics. In
this case, the system represents a subsurface physical system represented by different dynamic and
static features, with underlying physical principles governing the development of the dynamic features.
It is known from numerical methods that certain physical properties are better described using local
methods, where others are derived better with more expensive global methods (this will be described
in chapter 2). The proposed method operates locally, processing nodes using information in the nodes’
neighbourhoods, often referred to asmessage-passing. This works test certain hypotheses on the use

1.1. Reservoir Simulation using Graph Neural Networks 4

of GNNs in the reservoir simulation domain, described in the following sections.

1.1.1. Expressivity
For the use in spatiotemporal prediction, GNNs should be capable of transforming an input reservoir at
a certain state t to the grid at state t+x : x ∈ T , where T is the time span to simulate (e.g. 1000 years).
Based on the specific objective or phase of the simulation the time intervals in T can be days, months,
years or any arbitrary combination. This work focuses on a GNN autoencoder architecture with limited
local reach, forcing it to predict autoregressively (more about this in chapter 3, section 3.3).

RQ1.
Can simple GNNs autoregressively capture the dynamic behaviour of CO2 saturation and pres-
sure in a perturbed subsurface reservoir?

This question addresses the hypothesis that a GNN has the ability to learn and express relationships
between the static and dynamic features of a subsurface physical system, using a non-spatial repre-
sentation (i.e. a graph representation without encoding of the nodes’ coordinates). As the saturation
and pressure features are linked in a physical sense (see chapter 2), a successful GNN model should
learn and express the right correlations between them.

1.1.2. Injectivity
For successful use in CCS reservoir simulation, the learned model should have acquired the skill to
differentiate on the amount of CO2 injected into the system. Increasing the injection rate is expected to
accelerate both saturation propagation and pressure build-up. This relationship is likely nonlinear and
influenced by a multitude of factors.

RQ2.
Can locally operating GNNs correctly express nonlinear variations in injection rate across the
reservoir grid?

While it is theoretically known that nonlinearity can be captured in MLmodels through use of appropriate
activation functions, it has to be tested whether a local method like GNN can effectively propagate the
perturbation’s scale (i.e. injection rate) away from the injection node (i.e. where the injection well is
located) to the rest of the grid.

1.1.3. Transferability
To evaluate the greater potential of GNN models for reservoir simulation, the transferability or gener-
alizability of a GNN model to unseen grids is desired. Most GNNs are local (convolutional) methods
operating on every graph node, and the computational complexity of training GNNs on reservoir grids
scales linearly with the amount of cells in the reservoir. As reservoir grids can contain millions of cells at
the relevant scale, training on common reservoir grids is expected to be costly and counter-productive
in achieving any computational speedups.

RQ3.
AreGNNs capable of transferring their expressivity to unseen subsurface physical systemswith
different static composition?

The hypothesized GNN method will be local, i.e. it will process every node with the same learned
parameters, differentiating on the feature information gathered in the node’s neighbourhood. Ideally the
model is trained on a set of relatively small but ’sufficiently’ informative grids so that its parameters are
learned a proper generalization of the physics featured in geological systems. This way a model can be
trained on a complete set of geological variations, without fitting to a single large reservoir’s composition.
If successful then ultimately the model should be applicable to any arbitrarily sized reservoir graph
(keeping in mind the scale of the features in the inferred graph has to be similar to the training samples)
and be capable of inferring the next dynamic feature states with decent prediction times.

1.2. Related work 5

1.2. Related work
Machine learning technologies have been tested in the reservoir simulation domain over the years.
Most work aids reservoir simulation and engineering in a hybrid approach using ML models or ML
metaheuristic algorithms on subtasks like well placement or certain enhanced oil recovery (EOR) meth-
ods, e.g. using CO2 injection [37, 59]. In CCS related context, ML algorithms have been explored to
predict reservoir geological features (e.g. permeability, porosity) [61, 62], chemical characteristics of
injected CO2 [36, 52, 50] and development of dynamic reservoir features (pressure, CO2 flow) [58, 55,
54]. As described in the previous sections, the focus of this work is also modelling the CO2 saturation
and corresponding pressure.

Physics-Informed Neural Networks (PINN) and more generally Physics-Informed Machine Learning
(PIML) have created an environment of physics inspired approaches around subsurface flow machine
learning [10], some particularly applied in the CCS domain [47, 34]. These approaches leverage phys-
ical principles by integrating the governing PDEs in loss calculations and apply other domain-specific
knowledge to design neural network reservoir simulators. Another approach using Fourier Neural Oper-
ators (FNOs) has also shown potential, using FNOs in a U-Net architecture [55, 19], resembling CNN’s
U-Net [40]. Notable for this approach is the resemblance of such methods with the numerical multigrid
methods used in numerical simulators, which tackle the problem by solving the system on a coarsened
representation first (like the bottleneck in U-Net) and pass on the solution to increasingly finer represen-
tations until the required output dimensionality and resolution is reached. A similar encoding-decoding
approach using a embed-to-control framework is also seen in various subsurface flow studies [20, 2,
17]

In the comparable field of weather forecasting, which models systems using similar physical dogmas
(e.g. the Navier-Stokes equations, a set of PDEs describing fluid and gas behaviour), a GNN autoen-
coder architecture managed to forecast geopotential height, temperature and humidity reasonably well
for several days (weather systems are much larger and more parametrically complex to solve than
subsurface systems) [21]. Another study on weather prediction shows unprecedented predictive per-
formance using a GNN autoencoder multi-levelled in a multigrid approach, creating exceptionally accu-
rate 10-day global weather predictions [24]. Other fields that have integrated GNNs in spatiotemporal
settings include traffic forecasting [18], COVID forecasting and solar plant power prediction [42].

GraphNeural Networks have not yet been studied widely in the context of reservoir simulation. Recently,
a hybrid computational framework combined the U-Net architecture to predict the pressure field with a
GNN to infer the fluid flow [56]. In a very recent study aGNN-LSTM deep learningmodel is implemented
to predict oil and water rates under variable well controls [15]. In another recent study, a 2D grid-based
autogregressiveGNN predicts oil and water saturation development in a constant pressure field, reliably
predicting for several years [49]. This type of spatiotemporal modelling and problem setting resemble
closely the problem setting and autoregressive prediction studied in this work. No work is published
yet specifically on subsurface CO2 flow modelling using GNNs.

1.3. Outline
This work is divided into the following chapters:

Chapter 2: Reservoir Simulation
The current technology of reservoir simulation relies on mathematical and physical foundations that are
relevant and analogous to elements in the GNN methods applied later in the work. The geophysical
variables are discussed and a high-level description of the numerical methods is given.

Chapter 3: Graph Neural Networks
The principles of the proposed machine learning approach are discussed in this chapter. The chapter
introduces Graph Neural Networks as message-passing algorithms. A distinction between spatial and
spectral graph convolutions is provided, and the common GCN layer is formulated and demonstrated.

1.3. Outline 6

Chapter 4: Methods & Experimental Design
Using the introduced GCN layer from chapter 3 an autoencoder architecture is constructed for autore-
gressive prediction. Feature pre-processing, data generation and the model hyper-parameters are
discussed. Lastly, the experiments are formulated based on the research questions formulated in the
Introduction chapter.

Chapter 5: Results
The results of the experiments are presented and discussed. The expressiveness of the GNN model
is assessed, and observed side effects are highlighted and discussed. Animations of the results pre-
sented in the chapter are available at https://lucasveeger.github.io/.

Chapter 6: Discussion
The last chapter present an evaluating discussion of the created model and the problem it is solving. It
compares characteristics of the machine learning model with the numerical reservoir simulation meth-
ods from chapter 2 and suggests improvements for the created GNN model. The work is finished with
a brief conclusion.

https://lucasveeger.github.io/

2
Reservoir Simulation

To get an intuition of what a data-driven reservoir simulation model has to learn, this chapter will briefly
go into reservoir models and reservoir simulation. The latter technology forms the motivation for this
research. Without going in depth, important physical aspects and equations are covered, as well as the
underlyingmathematical concepts of reservoir simulators. The numerical methods used in INTERSECT
(IX) reservoir simulators will be taken as a base for this. Certain components are intentionally left out,
refer to the IX Technical Documentation [46] for a detailed description.

Operating in the subsurface is a blind process. Without any visual reference and with limited physical
access, analysis of the subsurface relies predominantly on intelligent processing of seismic/acoustic
sensory inputs. Combined with geophysics, mathematics and computation a translation is made to a
subsurface reservoir model. These models determine reservoir characteristics like volume, capacity
and structure. Numerous reservoir modelling software tools have been developed through the years,
e.g. Petrel subsurface software. Proper modelling of subsurface reservoirs has proven vital for modern-
day oil/gas field exploration and operation. In the CCS context, such models will be equally relevant.

On top of static modelling of the reservoir, modelling a reservoir system dynamically has become
paramount for operational planning and execution. For CCS operation, the temporal modelling of CO2
injected in a reservoir will be highly relevant. It helps to determine the CO2 storage capacity, a safe
injection rate and the security of containment. Temporal reservoir modelling, commonly known as
reservoir simulation, has become very effective in approximating the dynamics of perturbed reservoir
systems. In a CCS related context, injection of CO2 has already been part of reservoir simulations for
the sake of Enhanced Oil Recovery (EOR) technologies, where CO2 is injected in a reservoir to create
an over-pressure that drives hydrocarbons to separate extraction wells. Certain reservoir simulation
software is capable of simulating CO2 behaviour, e.g. ECLIPSE and INTERSECT (IX). In this thesis,
the IX reservoir simulator is used to generate (i.e. simulate) training data for the introduced GNNmodel.

2.1. Subsurface physics
Reservoir simulation software implements mathematical methods to model the physical relations in a
(perturbed) reservoir. For every reservoir cell it restricts the variables to a set of equations. The 3
important physical concepts constraining these variables are

• Conservation of mass
• Darcy’s law
• Thermodynamic equilibrium of the fluid phases

Before going into these topics, it is good to be familiarized with some geological units and quantities.

7

2.1. Subsurface physics 8

2.1.1. Geological features
The give an introduction of geophysical entities used in the sections below and in the rest of this work,
this section lists some important quantities and units encountered in reservoir simulation.

Porosity
quantifies the capacity of a rock or sediment to contain and transmit fluids. It is the ratio of a pore volume
within a geological material to its total volume, and it is expressed using a fraction or percentage. As it
defines a ratio, it is unitless.

Pore volume
is the value calculated by multiplying a total rock or sediment volume with its porosity. It defines the
volume of fluid that can be present in the the larger volume it is part of. E.g. a 1 m3 rock with a porosity
of 0.2 has a pore volume of 200 liters.

Permeability
is a measure of a material’s ability to transmit fluids through its pore volumes. It quantifies the ease
with which fluids can flow through a porous medium. It is not strictly dependent on pore volume. Some
sedimentary rocks can have high pore volume due to many small pores, but the permeability can be
low because these pores are small and interconnected in a way that restricts fluid flow. Permeability in
geology is often denoted in millidarcy (mD), 1 mD = 9.869233×10−16 m2.

Transmissibility
describes the ability for fluid flow within the plane of the material and is defined as the in-plane perme-
ability multiplied by the material thickness [38]. Its unit can vary, a variant is m∙mD/mPa∙s [35].

Saturation
refers to the unitless fraction of a (pore) volume that is occupied by a particular fluid or a fluid phase.
In the rest of this work the CO2 saturation is referred to when the term saturation is used, unless noted
otherwise.

Pressure
The force exerted by fluids (such as oil, gas, or water) within a subsurface reservoir, acting on the
rock/sediment. Typical units are Pa, psi and bar. This work uses bar.

Quantities not used in the rest of this work but mentioned in the next sections are

• Molar density ρ: number of moles per volume (n/m3)
• Mole fraction: fraction of moles of component c among total amount of moles present (unitless)
• Viscosity: a fluid’s internal resistance to flow (Pa∙s)

2.1.2. Conservation equations
Conservation of mass represents the principle that in any volume the change of mass equates the
difference between the mass leaving and the mass entering the volume. This equality is applied in
reservoir simulation to balance the flow of every component in every reservoir cell. In a reservoir with
multiphase CO2 and water flow there will be 2 conservation equations applicable to each cell j:



ϕV

∆t
δ

Np,CO2∑
p

ρpSpxp,CO2

+ qinjCO2 −
Faces∑

i

Ti

(
Np,CO2∑

p

ρp
krp(Sp)

µp
xp,CO2∆p

)
= 0

ϕV

∆t
δ

(
Np,water∑

p

ρpSpxp,water

)
+ qinjwater −

Faces∑
i

Ti

(
Np,water∑

p

ρp
krp(Sp)

µp
xp,water∆p

)
= 0

(2.1)

where

ϕV = porosity × cell volume = pore volume

2.1. Subsurface physics 9

∆t = time interval
Np,CO2 = number of different phases CO2 has in system
Np,water = number of different phases water has in system
ρp = molar density of phase p

Sp = saturation of phase p

xp,CO2/xp,water = mole fraction of CO2 / water in phase p

qinjCO2 = CO2 inflow rate (entering the system, i.e. through injection) at specific cell
qinjwater = Water inflow rate at specific cell
Ti = transmissibility of ith cell face
krp = relative permeability, dependent on Sp

µp = viscosity of phase p

∆p = pressure potential between cell and neighbours

These balance equations are the discretized version (as used in IX) of the general formulation for
modelling phase-component partitioning [3], ignoring gravitational and capillary terms present in the
original formulation. To simplify the look of these equations, they can be reduced to the variables that
will be used later in this work. In the first term, the saturation term, CO2 and water saturation can be
formulated as

SCO2 = V

Np,CO2∑
p

ρpSpxp,CO2, Swater = V

Np,water∑
p

ρpSpxp,water.

For the second term, the injection term, we can assume qinjwater = 0 (i.e. no water is injected), and note
that qinjCO2 will be nonzero only for cells connected to injection wells. In the third term, the flow term, the
component mobility λc is introduced as a function of the phase mobility λp =

krp(Sp)
µp

, the cell’s absolute
permeability kj (derived from Ti),

λc(Sc) = kj

Np,c∑
p

ρp
krp(Sp)

µp
xp,c.

The sum
∑Faces

i ∆p can be written in the continuous form as the divergence of the pressure differences
with respect to all the cell neighbours, i.e. div p⃗Faces = ∇ · ∇p. In continuous form this gives the
conservation equations as 

ϕ
∂SCO2

∂t
+∇ · (λCO2∇p) + qinjCO2 = 0

ϕ
∂Swater

∂t
+∇ · (λwater∇p) = 0

(2.2)

Given that the components’ saturations have a constant unit sum SCO2+Swater = 1, adding the conser-
vation equations gives an elliptic partial differential equation for the pressure, coupled with saturation
through the mobility term:

∇ · (λCO2 + λwater)∇p = −qinjCO2 (2.3)
Note that the operation ∇ · ∇p resembles the Laplace operator. In the graph theory discussed in
subsection 3.2.2 the graph Laplacian will be used to exploit the gradient in feature values between
different nodes. The graph Laplacian can be seen as the discrete analogue of the continuous Laplacian
operator, with the graph nodes as spatial discretization.

2.1.3. Darcy's law
Equation 2.3 can be solved for p, and using the new pressure the fluid flow can be computed according
to the adapted version of Darcy’s law applicable to multi-phase flow:

qp = −kj · λp · ∇p, q =

Np∑
p

qp. (2.4)

This produces a flow term q per phase. Note this equation also dismisses gravitational and capillary
forces (to account for capillary forces p is solved phase dependent as pa [27]). Using the solution for p
and q, the updated saturations can be derived reversely.

2.2. Solving the nonlinear system 10

2.1.4. Thermodynamic equilibrium of fluid phases
The thermodynamic equilibrium or phase equilibrium dictates that any chemical component i present
in multiple phases is in some phase equilibrium determined by the component’s fugacity. Fugacity f
describes a chemical potential of transitioning to another phase. f is calculated using a component’s
fugacity coefficient ϕi, the pressure P and the component’s mole fraction xi (the latter only when it is in
the aqueous phase). Without going into this concept further, it is good to note that the phase equilibrium
is relevant in the CCS context. In the first place because CO2 can dissolve in water, described as the
aqueous phase. Secondly, across the typical CCS trajectory (transport, pipe flow, reservoir flow), CO2
phase transitions are likely triggered due to typical pressure and temperature changes in the processes.

2.2. Solving the nonlinear system
The system described in Equation 2.3 is continuous and nonlinear. To solve it numerically on a com-
puter, it has to be made discrete in time and space. Furthermore, to make computational simulation
efficient, the nonlinear system has to be described as a sum of linear systems using a linearization
method. This section summarizes these steps as performed in IX (see the Formulation and solution
method chapter in the IX Technical Documentation [46] for more details).

2.2.1. Discretization
First, the system is temporally discretized. For simplicity, assume the governing equations are dis-
cretized using a fully implicit time stepping scheme. This makes every next state (n+1) dependent on
its previous state(s) (n, n − 1, ...). In practice, IX applies an adaptive implicit method (AIM), which will
not be covered here. Either method aims to select a time step size that minimizes overall simulation
time by balancing the amount of time steps with the expected amount of Newton-Raphson iterations
(discussed below) required per time step. Spatial discretization is performed by applying the finite vol-
ume method on the conversation equations and reservoir grid. The finite volume method is typically
used in CFD and also translates properly to unstructured grids. It is calculated using the two-point flux
approximation (TPFA) method, which linearizes the conservation equations given in Equation 2.2.

2.2.2. Newton-Raphson iterative method
Given the discretized system of nonlinear equationsR, the aim is to construct the solution vectorsX (i.e.
the CO2 saturation and pressure) at the next state n+1 for which the system is solved as Rt+1(X) ≈ 0.
IX uses the Newton-Raphson iterative method to linearize the nonlinear system, solve it using a linear
solver, update the solution vectors and test if the solution has converged.

Linearization
At the start of each Newton iteration the system is linearized using a first-order Taylor expansion the
nonlinear system:

Rt+1(X) ≈ Rv+1(X) = Rv(X) +

(
∂R

∂X

)
v

·∆X = 0, (2.5)

ignoring any higher order terms of the Taylor expansion. v indicates the iteration number, giving
Rt+1(X) ≈ Rv+1(X) when the solution vectors converge after v iterations. ∂R/∂X is the first-order
derivative of the system with respect to the solution vectors, i.e. the first-order Jacobian matrix of dis-
cretized R(X). The Jacobian will not be further elaborated here, but it is good to note that the con-
struction of this Jacobian constitutes a large part of the computational load during reservoir simulation.
Since Xv+1 is updated after every Newton iteration, (∂R/∂X)v has to be recomputed as well.

∆X resembles the solution update vectors and is the solution of the linear system given by Equation 2.5.
At the end of the iteration the solution vectors are updated:

Xv+1 = Xv +∆X. (2.6)

At the start of the iterative method the solution vectors are approximated by the previous time step
solution vector, Xv=0 = Xt.

2.2. Solving the nonlinear system 11

Figure 2.1: Solution approximation during the Newton-Raphson iterative method. Every iteration a ∆X is calculated to update
the solution vectors (Equation 2.2.2) that are used in the next Newton iteration, until the solution Rt+1 ≈ 0 (Equation 2.5).

Source: IX Technical Documentation [46]

linear solver
Solving the linear system forms another computationally intensive part of the simulation algorithm. To
solve the linear system, the flexible generalized minimum residual (FGMRES) method, used with a
multistage constrained pressure residual (CPR) preconditioner. These concepts will not be explained
in this work, but it is good to mention that this preconditioner is used to decouple the pressure and sat-
uration solution vectors in order to reserve computational resources. The CPR preconditioner includes
the AMG preconditioner, which focusses on solving the global-type solution of the pressure solution
vector. This will be elaborated in section 2.2.3.

Convergence
Every Newton iteration creates an improved linear approximation of the nonlinear system. To decide
when the approximation is sufficiently good and can be stopped, the iteration checks for convergence.
The convergence criteria include

• Solution deltas: for each solution vector, the values in the solution update vectors must be lower
than a user-defined ϵ∆.

• Rv(X) in Equation 2.5 is called the residual, and it should tend to go to zero as v increases. It is
used to determine a mass conservation error which must be below a user-defined ϵmass.

2.2.3. Solving the pressure system using Algebraic Multigrid
In reservoir simulation, the system’s behaviour is a mix of different feature characteristics. Typically,
the pressure gradient is long-range, which can be mathematically described using a PDE with elliptic
behaviour. The PDEs for saturations (i.e. all possible fluids in the system) have hyperbolic traits with
sharp local changes. Explained simply, a change in pressure at any given point propagates much
further into a domain than changes in saturation. The elliptic type of PDE has a strong global coupling
and is more complex to solve accurately due to its long-range character. Computational methods

2.2. Solving the nonlinear system 12

for global-type solutions are expensive and not relevant to use on the hyperbolic parts of a system.
As mentioned in the previous section, IX uses the CPR preconditioner to decouple the pressure and
saturation system. The decoupled pressure linear system is then solved using the algebraic multigrid
preconditioner. The concept of algebraic multigrid is relevant as it can recognized in certain ML auto-
encoder methods, and it will linked to certain concepts in this work. It is also part of the discussion at
the end of this work (see subsection 6.4.1).

Geometric multigrid
To intuitively understand the idea of algebraic multigrid, explaining the original method geometric multi-
grid is helpful. Geometric multigrid is a numerical technique developed to solve partial differential
equations (PDEs), particularly in the context of simulating physical phenomena like fluid flow or heat
transfer. Without going into the mathematical formulation, consider the following explanation. First,
a hierarchy of grids is created, where each grid represents the same system (i.e. reservoir grid) at a
decreasing level of detail, i.e. increasing level of coarseness. The values per coarsened grid cell are
derived from its finer grid equivalents using a restriction function. Then an iterative method (e.g. Jacobi
or Gauss-Seidel method) is used to solve the linear system (to the next state t + 1) on the coarsest
grid, where the problem is simpler, and that solution is used to inform the same problem on the finer
grids, ultimately reaching the original level of detail. The upsampling is often referred to as prolongation.
This method has shown to accelerate solving the eventual fine grid solution from O(N2) to O(N). The
framework is visually shown in Figure 2.2.

Figure 2.2: The ’V-cycle’ multigrid approach.

Algebraic multigrid
In contrast to geometric multigrid, which is based on the structure of the underlying grid, algebraic
multigrid (AMG) operates directly on the linear system of equations without explicit knowledge of the
grid. AMG is a more general multigrid approach for a wider range of problems, e.g. when dealing with
complex geometry (i.e. unstructured grids). AMG is used to solve a linear system of equations like the
one from Equation 2.5:

Au = f (2.7)
like the rewritten from Equation 2.5: (

∂R

∂X

)
v

·∆X = −Rv(X). (2.8)

Here A equals the Jacobian matrix in RN×N . In reality, the CPR preconditioner decomposes the pres-
sure components in the Jacobian and inserts that for A. u remains to be the update vectors ∆X to
solve for, and f is the residual Rv of the nonlinear system at the vth Newton iteration.

2.2. Solving the nonlinear system 13

To solve u, AMG implements a coarsening hierarchy by using restriction and prolongation operators Ri

and Pi, where Ri = P ⊺
i for each hierarchical layer i. Then every next coarsening is given as Ai+1 =

RiAiPi according to the Galerkin principle. Restriction of ui and fi is derived as respectively ui+1 =
Riui and fi+1 = Rifi. Similarly, prolongations bring back ui = Pui+1 and fi = Pfi+1. Derivations
of the prolongation operator P can vary, but it is generally composed using a heuristic method bases
on the values in Ai. It summarizes to coarsening in directions where the algebraically smooth error
changes slowly [48]. This will not be further discussed here. Using an iterative method the solution
is found on the coarsest level and interpolated to the original grid. By default, smoothing (relaxation)
iterations like Jacobi / Gauss-Seidel are also applied on every restriction/prolongation level.

The overall idea of solving the problem has remained the same compared to geometric multigrid, i.e.
decreasing the size of the problem and gradually solving a more detailed version of the system. The
iterative methods, usually the Jacobi or the Gauss-Seidel method, act as smoothers that reduce high-
frequency errors in the linear system, which take a long time to smooth (i.e. solve) on the ’finer’ levels.
This way, the solution of the linear system as part of the Newton iteration is computed much faster (and
thus allows for lower error thresholds) than without the AMG preconditioner.

3
Graph Neural Networks

Graphs are a versatile tool for representing data. Certain types of data naturally focus on connections
and as such intuitively map to graph representations. Examples are molecular structures [8], social net-
works [29] and traffic systems [18]. Less apparent examples of data that can be effectively represented
as graphs include images [13], text [57] and interacting particles in physical systems [44]. Graph-based
representations are useful as they allow data to be unstructured. This flexibility means graphs can be
represent data in a non-Euclidean space, which can be useful when using graph representations for
unstructured subsurface 3D grids, as will be discussed later.

Graph Neural Network (GNNs) principles were introduced in 2005 [11] and 2009 [45], based of Recur-
rent Neural Networks (RNNs). Most research interest has come in recent years after the widespread
success of Deep Learning (DL) [26] and Convolutional Neural Networks (CNNs) [25]. Kipf & Welling
(2017) [23] introduced the Graph Convolutional Network (GCN), which has become widely recognized
and applied. Other important GNN extensions introduced are the Gated Graph Sequential Neural Net-
work [30], a sequential output GNN using Gated Recurrent Units (GRUs), and the Graph Attention
Network [51].

Most of theGNNmethods follow amessage passing paradigm, aggregating information from neighbour-
ing nodes to spread information between graph nodes, creating an updated graph state, and repeating
such aggregation several times. Various aggregation functions have been proposed in conjunction with
different GNN architectures to suit specific graph representation learning problems like node classifi-
cation, node/edge prediction and clustering. The following sections describe basic concepts in Graph
Neural Network algorithms, which are then used to formulate the GCN layer [23].

3.1. Message Passing Algorithms
GNNs rely on a principle called message-passing to exploit relations between nodes in the network. A
message-passing algorithm is a type of propagation algorithm that passes on the state of a node to
another connected node. In the simplest form, a node receives information from every node it is con-
nected with, and based on the combined information a node has received it creates a new node state.
For that reason, message-passing is also termed neighbourhood aggregation. In a structured domain,
e.g. an image, such an operation resembles a convolution. As such message-passing algorithms can
be seen as convolution operators generalized to the irregular domain. For this reason, some message-
passing graph operations have been named graph convolutions. To get an intuition of what happens
during a message-passing operation, Figure 3.1a shows the information propagation from and to a sin-
gle node during a series of graph convolutions, and figure Figure 3.1b shows the aggregated build-up
of passed node states from 3 different starting nodes.

Adjacency Matrix
Graph connections or edges can be described in an adjacency matrix A ∈ RN×N for a graph of N
nodes, using a binary encoding for an edge in a given direction. Graphs can be directional / directed,

14

3.1. Message Passing Algorithms 15

Figure 3.1: Information spread of a) a single node b) three nodes during over multiple graph convolutions. Message. a) After 3
convolutions, almost all the nodes have passed information to the starting node and vice versa. b) Information mix increases as

more graph convolutions are performed, in practice happening for every node in the graph (only 3 nodes shown for
simplification).

meaning the edges are one-way. This determines the direction in which a node can propagate infor-
mation. Graphs can also be bidirectional / undirected, i.e. edges are both ways and information can
propagate in either direction. Essentially bidirectional graphs are directional graphs where every edge
has a duplicate in the opposite direction. This can be clearly seen using the adjacency matrix, which
treats every graph as a directed one. Given the example graphs in figure Figure 3.2, examine the
corresponding adjacency matrices. Observe the symmetry in the adjacency matrix for the undirected
graph. Any undirected graph will have a symmetrical adjacency matrix, mirroring each edge.

Aa =


0 1 1 0
0 0 1 1
0 0 0 0
0 0 0 0

 (3.1)

Ab =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 (3.2)

Degree
In graph theory, the degree of a node defines the number of edges connecting to a node. In a directed
graph every node will have a separate in- and outgoing degree. This explanation considers the situation
of an undirected graph, which is the type of graph used in the rest of this work. A degree matrix
D ∈ RNxN denotes each node’s degree in its diagonal. For graph b in figure Figure 3.2, observe the
degree matrix.

Db =


2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

 (3.3)

Note that this matrix can be constructed by taking the sum of either the corresponding row or column
in A and filling its value on the diagonal. The sum of the diagonal is twice the amount of undirected
edges in the graph, as the formalization still considers that every undirected edge is made up from two
mirrored directed edges.

3.2. Spatial vs spectral graph convolutions 16

Figure 3.2: Example of a) a directed graph with directed edges going in a defined direction and b) an undirected graph where
edges have no direction / all edges are bidirectional.

Self-connections
In the context of the reservoir simulation problem in this study, a node’s saturation and pressure state of
the next time step will depend on the state of its neighbouring grid cells. But the node’s own saturation
and pressure state will also be relevant for this. Like many graph problems, the message passing
procedure should process the node’s own value as well. To include this information in a message
passing algorithm, self-connections (or self-loops) are introduced that represent an edge for every
node with itself. It can be formalized in the adjacency matrix by adding an identity matrix [23]:

Ã = A+ IN , (3.4)

In the adjacencymatrix, this comes down to replacing themain diagonal with all ones. A self-connection
has itself as source node and target, and thus does not have to be defined two-way for undirected
graphs. In fact, this is not even possible looking at the adjacency matrix, as the edge is defined on the
main diagonal.

3.2. Spatial vs spectral graph convolutions
There are two types of graph convolutions: spatial and spectral graph convolutions. In practice it can
be difficult to define whether a specific type of graph convolution operates fully spatial or spectral, as will
be made clarified below. The GCN layer formalized later in the chapter combines spatial and spectral
characteristics.

3.2.1. Spatial graph convolutions
In spatial graph convolutions, feature information from a node’s neighbours is aggregated to produce
a new feature representation for that node. This can be done using a variety of aggregation operators,
such as mean, sum, max, or a specific aggregation function. Classic CNNs for image classification
can be seen as spatial convolution methods as the convolution kernels (i.e. the aggregation function)
operate on a spatially encoded grid in the neighbourhood of the kernel center [60]. As such most spatial
graph methods operate locally by spreading information in their local node neighbourhood. Complexity
for spatial methods tends to scale linearly with the amount of nodes and edges. Despite their origin
in spatial graph theory, where not only the graph’s topology is relevant (i.e. the adjacency matrix A)
but also the spatial ordering, spatial graph convolutions are used for many non-spatial problems. An
example of this is GraphSage, a successful spatial graph convolutional method applied to citation and
Reddit data [12].

3.2.2. Spectral graph convolutions
Spectral graph theory approaches graphs as matrices (i.e. the adjacency matrix A), and leverages
A, the graph Laplacian LG and its eigendecompositions to perform analysis and permutations in the

3.2. Spatial vs spectral graph convolutions 17

spectral domain (i.e. the Fourier domain). The graph Laplacian of a graph G is given as

LG = D −A, (3.5)

where D and A are the degree and adjacency matrix. In most literature, it is simply written as L.

To formalize a spectral convolution, we first find the eigendecomposition of L, which is necessary for
the (reverse) translation of the node features to the Fourier domain. Since D and A are symmetrical
matrices, so is L. In this symmetrical case the eigendecomposition can be written as

L = UΛU−1 = UΛU⊤. (3.6)

Using the Laplacian’s eigenvalues Λ = diag([λ0, ..., λn−1]) ∈ RN×N and eigenvectors U ∈ RN×N as
the Fourier basis [7], U⊤x translates every node’s features x ∈ RN to the Fourier domain. Since this
convolution is spectral, the convolution filter (analogous to a spatial kernel in CNNs) gθ = diag(θ) is
parameterized by θ ∈ RN in the Fourier domain by definition. The convolution theorem states that a
convolution in the real domain can be described as the point-wise multiplication in the Fourier domain,
so the spectral convolution becomes

gθ ∗ x = UgθU
⊤x, (3.7)

which translates back to the real domain using U . As Λ = diag([λ0, ..., λn−1]) ∈ RN×N and gθ =
diag(θ) ∈ RN×N , gθ can then be seen as a function of the eigenvalues of L, i.e. gθ(Λ).

The complexity of matrix multiplications with the eigenvector matrix U is O(N2), and eigendecomposi-
tion can be expensive for large graphs. Spectral convolutions are powerful in their ability to aggregate
information across the entire graph, but costly as graph size increases. The next section discusses a
computationally cheaper variation of the spectral graph convolution introduced by Kipf & Welling [23].

3.2.3. GCN
To create a computationally cheaper version of the spectral graph convolution, the eigendecomposition
and the matrix multiplications have to be taken out of the computation. To do this, Kipf & Welling [23]
proposed to use a 1st-order Chebyshev polynomial approximation of the spectral convolution:

θ
′

0x− θ
′

1(L− IN)x, (3.8)

for every node state x ∈ RN . Using the 1st-order approximation provides a localized graph convolution,
reaching only the direct neighbours of the convoluted node. Its complexity is O(|E|), where |E| is the
number of edges in the graph. Like in spatial approaches, a higher-order convolutional filter (analogous
to kernel size in CNNs) can be regained by stacking these convolutions in series.

Renormalization trick
In order for neural networks to be effective, normalization is usually essential to ensure numerical
stability and prevent exploding or vanishing gradients. A normalizing operator could be created by
multiplying the inverse of the degree matrix with the adjacency matrixD−1A, averaging the aggregated
node state based on the outgoing degree. Another way of normalizing would be to use the normalized
graph Laplacian

L = IN −D−1/2AD−1/2, (3.9)

in combination with the self-connected adjacency matrix Ã from Equation 3.4, which Kipf & Welling [23]
proposed as the renormalization trick:

IN +D−1/2AD−1/2 −→ D̃−1/2ÃD̃−1/2. (3.10)

This squeezes the self-connections between the square roots of the inverse of the degree matrix D̃
(calculated from the self-connected Ã). This way of normalizing takes into account the degree of the
source node degree as well as the degree of the destination node, whereas D̃−1Ã would only utilize
the degree of the source node. Using this method tends to give better numerical stability [23].

3.3. Network depth 18

Finally, by constraining θ = θ
′

1 = −θ
′

0 and using the renormalization trick the convolution becomes

θ
(
IN +D−1/2AD−1/2

)
x = θ

(
D̃−1/2ÃD̃−1/2

)
x. (3.11)

where N is the number of nodes in the graph.

Given the proposed graph convolution in Equation 3.11, the formalization of the Graph Convolutional
Network (GCN) layer becomes

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l)) [23], (3.12)

where the network input H(0) = X andH(l) is the result of the convolution at the lth network layer after
processing by an activation function σ. The learned parameters are stored and updated in the weight
matrix W (l) of each layer.

The convolutional layer proposed in Equation 3.12 has gained a lot of reputation in the field of GNNs.
Often when mentioned in online sources ’GCN’ refers to this type of convolutional layer, and it also
is the convolutional layer integrated in the network architecture proposed in this work. However, it is
good to note the GCN layer formulated here is not necessarily a generalization of graph convolutions.
There are various other types of graph convolutional methods in use for different types of problems.
In section 3.5 an online PyTorch graph library is covered that has out-of-the-box implementations for
many graph convolutional methods.

3.3. Network depth
Amessage passing algorithm passes node information to connected nodes. A message passing model
needs to perform minimally L message passes to propagate information L node connections away,
taking the shortest path from the information’s source node. For a GCN this corresponds to the amount
of graph convolutional layers it implements, defining its network depth L (refer to Figure 4.2 for a visual
example of a GCN network architecture). Do not confuse Lwith the graph Laplacian Lmentioned in the
previous sections. The limit on the information propagation across the graph is given by this network
depth [8]. This is demonstrated in an experiment shown in figure Figure 3.3, where it can be clearly
seen that the L = 4 is sufficient to propagate the starting node state to all the nodes of a 3 × 3 target
square shape, but not a 5×5 target square shape. For the 3×3 grid, the network requires 4 node hops
to reach the furthest node. For the 5 × 5 grid it requires 8 edge hops. In other words, the amount of
connections it has to pass a message through is larger than the network depth, making it impossible
to reach and construct the complete target shape.

This effect should be kept in mind when predicting spatiotemporal changes on an input grid given the
time step size dt. If the change happening during dt is greater than the reach of the network, then the
network is not be able to express it. How well the network is trained does has no impact on this.

In the context of the graph reconstruction problem in this work, the long-term samples with large dt
(post-injection, >10 years) and the early samples (start injection) with heavy saturation changes are at
risk of this network depth clipping. The used time intervals dt have to be chosen accordingly. Similarly,
the pressure modelling is inherently limited by this effect. As put forward in subsection 2.2.3, pressure
is described as an elliptic long-range effect. The network depth imposes a limit on this range in the
GNN model.

3.4. Over-smoothing
Another effect that has to be accounted for when using GNNs is over-smoothing. It can be described
as the exponential convergence of all node features to a constant value as network depth increases,
and as such it limits the expressiveness of deep-layered GNN architectures [41]. In graph reconstruc-
tion problems, the over-smoothing effect can easily be observed. In the experiment shown in figure

3.4. Over-smoothing 19

Figure 3.3: Simple experiment with L = 4, showing how network depth limits the flow of information in a message-passing
GNN. The construction of the target shape in a) requires 4 edge hops between nodes to reach the furthest node in the target
(right top), the exact range over which the model can propagate information. The model constructs the target shape, with a
slight over-smoothing discrepancy (see section 3.4). The target shape in b) requires 8 hops, more than the network depth,

making it impossible to spread the information far enough. The diagonal edge of the constructed shape appears as those cells
are all maximally 4 edge hops away from the input grid’s node.

Figure 3.4 the network depth L = 10 should is sufficient to reach every node of the target shape, but the
features average as they propagate further from the input shape’s source node, creating a smoothed
edge around the pattern. The larger the network depth L, the stronger the over-smoothing effect will
be.

3.4.1. Residual connection
To mitigate the effect of over-smoothing, residual connections are often added to the network layers.
Residual connections feed part of the layer input straight to the output, skipping the message-passing
in that layer. As such the layer output will be composed of a portion of the input feature state and the
aggregated feature state before the learned weight vector W l is applied to it. A famous architecture
built using residual principles is ResNet [14], designed to train very deep network architectures used
for e.g. image recognition. While using residual connections in GNNs is useful for different type of
graph problems that require deep network architectures [5], for reconstruction problems it also makes
intuitive sense as we expect our output to be a changed version of the input. Feeding part of the input
to the output helps to reconstruct basic feature characteristics that will likely re-appear in the next state.
Residual connections usually skip the lth input to its output, but a better option for graph reconstruction
might be to skip the initial input H0 to every layer, as proposed by Chen et al. (2020) [5]. Figure
Figure 3.5 shows how well such residual connections help to construct the target shape. Using this
type of residual connection the formalization of the GCN layer becomes

H(l+1) = σ
(
(1− αl)D̃

−1/2ÃD̃−1/2H(l) + αlH
(0))W (l)

)
[23], (3.13)

Note the weight vector is multiplied only after adding the input residual to the aggregated feature state.
This means the learnable weights of the layer are still trained to combine the input residual with the

3.5. PyG 20

Figure 3.4: Over-smoothing effect visible on the same construction task as shown in Figure 3.3, but now with sufficient network
depth to reach every node in the target. Still the shape is not perfectly generated, which is due the dilution of information that

gets worse with more consecutive graph convolutions.

aggregated feature state. Another option would be to add the the input residual (or the entire input)
after the layers’ weight multiplication (or all of them), as shown by Keisler [21]. The model then learns
to predict the change mask or feature changes compared to the previous state, and add that on top of
the previous state.

To show the effectiveness of residual connections, observe the results in figure Figure 3.5. Not only
are edges very hard to capture without the residual connections, the surface consistency of the input
also really suffers. Besides the blurred edge, the over-smoothing effect creates artificial geometrical
variations induced by information propagated from the input shape’s nodes. Adding residual connec-
tions helps the model to reconstruct the original consistency and edge gradient perfectly in this simple
case.

3.5. PyG
PyTorch Geometric (PyG) is a Python library for machine learning and deep learning on graphs [9].
It is built on top of PyTorch and provides a variety of features for working with graph data out-of-the-
box. It provides an extensive set of tools and functionalities that make it a good choice for researchers
intending to work with graph neural networks (GNNs). It offers a rich set of data transformation and
pre-processing functions, and allows users to efficiently load, manipulate, and preprocess graph data.
It also allows for efficient mini-batching, combining multiple data samples together in a larger discon-
nected graph. The library supports various types of graphs, i.e. homogeneous graphs (where all nodes
and edges share the same attributes) and heterogeneous graphs (where nodes and edges can have
distinct types and attributes). It facilitates (multi-)GPU training with NVIDIA RAPIDS™ support (a suite
of GPU-accelerated Python libraries). Custom convolution operators, aggregation functions and net-
work architectures can be constructed, but it offers many implemented graph convolutions, aggregation
funtions and network models out-of-the-box with good documentation, referencing the original research
papers. Visit https://pyg.org/ for more information.

3.6. GNN demo: structural learning
To demonstrate the (re)constructive power of a simple GNN in a 3D context, a simple model (similar
to the one used in this work, see section 4.2) was trained to learn the unstructured shape shown in
Figure 3.6. It is trained on a portion (< 0.5) of the nodes from the target shape, and has to infer the rest
of the structure, as if constructing a reservoir grid from a set of seismically gathered data points. It shows
the GNN is capable of approximating the general shape of the target to a good extent. It has to be noted
that this experiment concerns constructing the reservoir grid, whereas the main research in this work
assumes a known reservoir grid and tries to solve a reservoir simulation problem (revisit the introduction
in chapter 2 for a clear distinction on this). Also, if such a reservoir construction model would be applied
in practice it would assume there are structural characteristics in reservoir grids that generalize to other

3.6. GNN demo: structural learning 21

Figure 3.5: Experiment showing a) the over-smoothing effect on a circle-growing model, b) which is perfectly achieved by
adding a residual connection to the graph convolutions.

reservoir grids. While this may be true, this experiment does not claim this and the rest of this work
does not cover this hypothesis. A related hypothesis is covered, testing the generalization of CO2 flow
to differently structured grids (subsection 1.1.3, subsection 4.5.4).

Figure 3.6: Simple autoencoder GNN that reconstructs a target graph structure. In this experiment, the model is not used as a
simulator but as a grid approximation method.

4
Methods & Experimental Design

This chapter conceptualizes how GNNs are applied to reservoir simulation. It first covers the proposed
methods, and then lays out the experimental design used to answer the research questions formulated
in section 1.1. It covers the network architecture using the GCN operator introduced in chapter 3, its
autoregressive usage and feature pre-processing. Then it discusses the generated datasets used in
this work and the experimental design with corresponding results following in chapter 5.

4.1. Autoregression
In the introduced method, the goal is to produce the sequential feature states YT = [Yt+1, Yt+2, ..., Yt+x]
for a time range T = [t, t + x]. Generally, a simulation will start from the equilibrium feature state
Xt=0, which represents the reservoir before CO2 injection. Given the limited spatial reach of the graph
convolutional network introduced in the previous chapter, the proposed GNN method can not be used
to produce a highly variated state Yt+x instantly (see section 3.3 for explanation). The network is
used autoregressively, i.e. iteratively feeding the predicted state as input for the next prediction. This
approach resembles numerical reservoir simulators in the sense that the GNN solves a non-linear
system in a discretized time step. Discretization is essential in numerical methods to approximate
solutions to the governing PDEs in the continuous time domain. Similar to the numerical approach,
time discretization simplifies the nonlinear system to a smaller domain and allows the neural model
to learn a generalization of the physics instead of solving the entire continuous time range at once.
Besides the numerical similarity, a series of predicted feature states is analytically also more relevant
than producing just a final state. On the downside, long-term reservoir simulation predictions involve
many iterations to ensure a sufficient time step resolution. The model requires a sufficiently small error
on single iterations in order to provide meaningful predictions. Figure 4.1 shows the flow of information
in the autoregressive loop. The features in the state vectors Xt and Yt will be discussed further in this
chapter.

4.2. Architecture
The network architecture used in this work is based of the paper: ”Simple and Deep Graph Convolu-
tional Networks” by Chen et al. (2020) [5], implementing their version of the GCN operator with included
residual connection. The architecture can be seen as a simple autoencoder with an encoder, processor
and decoder structure. As encoder It uses a regular fully-connected linear layer (i.e. dense layer) to
map the input features to a larger latent dimension. As processor it applies L GCN layers (see subsec-
tion 3.2.3), performing the the message-passing. The used convolution includes a residual connection
(explained in subsection 3.4.1 in chapter 3) with strength α. The resulting feature states in the latent
dimension are mapped back to the output dimension using another fully-connected layer as decoder.
See figure Figure 4.2 for a visualization of the architecture. The output dimension represents Yt, the 2
predicted output features CO2 gas saturation (SGAS) and pressure (PRES). To introduce non-linearity,
after every layer (except the last linear layer) a (leaky) ReLu activation function is applied. More about
the optional leaky ReLu coefficient in subsection 4.3.5.

22

4.3. Features 23

Figure 4.1: autoregressive flow of information during multistep training and long-term prediction. The model outputs and their
temporal derivatives are fed back into the model as input for the next time step, together with the static features, the injection

rate (IR) at time step t and the time step size. For multistep training of time step t, T = [t, t+ 1, ..., t+ x].

This simple architecture operates node-wise and does not include any pooling or upsampling on the
nodes |V| in the graph G = (V, E), where V and E respectively define the vertices and edges. This
means the architecture relies on the success of message-passing in the L-local node neighbourhood,
making the architecture spatial in nature. The complexity of the graph convolution strictly does not rely
on the amount of nodes |V|, but on the amount of edges |E| that have to be passed. However, in the
reservoir grid context we can expect |V| and |E| to be linearly related (every grid cell will only have so
many neighbouring cells, even in an unstructured grid), so network complexity can be described as
either O(|E| ·L) or O(|V| ·L). Simply put, the network complexity scales with the input size of the graph
and the amount of convolutional layers.

4.3. Features
A simulated CCS reservoir model contains various geological (i.e. static) variables, as well as dynamic
parameters (e.g. CO2 injection rate, saturation and pressure), which are referred to as features in
the rest of this work. Static features encode the geological structure of the reservoir system. They are
constant during the entire simulation, so they do not have to be updated or predicted. Dynamic features
encode the changing variables of the reservoir system, influenced by their own state and CO2 entering
the system through injection. The dynamic features gas saturation and pressure are the target features
to predict. As their development is determined by the combined static and dynamic feature state, both
static and dynamic parameters are used as input features in the GNN. The features are encoded per
grid cell in the reservoir model, encoding them per graph node in the graph translation of the reservoir
model. The dynamic features are predicted by the model on every network iteration and used to update
the dynamic features’ input of the next iteration, as depicted in Figure 4.1. Finally, externally controlled
variable features (injection rate, time step size) are known for every time step and do not have to be
updated based on the predicted states.

The static input features are

• PORV: pore volume, i.e. cell fluid capacity. Determined by the rock volume and associated poros-
ity (PORO).

• DEPTH: cell depth, i.e. relative depth of cell. Relevant for upward buoyancy forces acting on
injected CO2.

• TRANX: transmissibility in x-axis, determines the rate by which CO2 can propagate through the
cell in the x direction.

• TRANY: transmissibility in y-axis, not relevant for the used 2D case but relevant when transferring
to a 3D model.

• TRANZ: transmissibility in z-axis

The updated dynamic input features are

• SGAS: CO2 gas saturation

4.3. Features 24

Figure 4.2: Network architecture used in this work. The model maps 12 input features to a 64-dimensional latent space using
a fully connected layer, where it applies L GCN2Conv operators to perform message-passing and apply model weights. It then
maps the final feature state to the 2 output features saturation and pressure. The architecture accepts any arbitrary graph size

or structure.

• PRES: pressure
• dSGAS/dt: saturation accumulation speed
• dPres/dt: pressure accumulation speed

The non-updated variable input features are

• IR: injection rate, nonzero only for cells at which an injector well is located.
• dt: time step size

Permeability edge weights
Adding static features representing geological properties is essential, but some are more straightfor-
ward than others. Features like depth and pore volume are distinct grid cell characteristics, but direc-
tional features like TRANX, TRANY, TRANZ could be less informative in message-passing based on
the direction they are passed in. They might be better represented in the edges between nodes. To
test this, another directional feature, permeability, is used to encode edge weights on every edge in the
grid. Permeability defines fluid flow potential through a plane of porous media. It relates to transmis-
sibility, but is more suitable for use on the edges as it does not depend on the cell’s own dimensions
like transmissibility does. For a rectangular structured case, every edge weight becomes the harmonic
mean between the relevant directional permeability: PERMX, PERMZ, PERMY. For unstructured grids
this would be trickier, requiring a multi-directional transform for edges spanning multiple dimensions.
For the 2D structured cases used in this work (no edges in the y-direction) the edge weights for the

4.3. Features 25

graph G = (V, E) become:

w(i,j) =


2

1
PERMXi

+ 1
PERMXj

if x-directional

2
1

PERMZi
+ 1

PERMZj

if z-directional
for every edge (i, j) ∈ E (4.1)

The implemented GCN convolution allows for a single weight. The permeability edge weight will likely
help modelling the local effect of gas saturation, but the weighted information propagation will also
affect the pressure components in the message passes. Despite the fact pressure is also affected by
permeability, it is likely the weights will induce high-frequency errors (i.e. local errors) disturbing the
elliptic long-range effect of pressure (see subsection 2.2.3 for more details). Having separate edge
weights (i.e. multiple edge features) might solve this, but it adds extra model complexity. The network
would have to learn a mapping in the latent space between node and edge features to utilize this extra
information. A GNN architecture that allows this is a Graph Attention Network (GAT) [51], but these
architectures are computationally considerably more expensive. This work focuses on using single
edge weights and evaluates if the learned model is able to adapt its parameters for the pressure output
feature.

The 'spatial' contradiction
It is good to note that even though the architecture and the used convolutions can be characterized
as ’spatial’ methods, the network does not take the actual spatial information from the reservoir grid
cells (i.e. the cell center/edge/face or other geometric coordinates) as input features. From a macro
perspective this may be logical, as the location of a group a grid cells should not differentiate the physical
behaviour inside it. But from a local perspective any such geometric information could be relevant for
the physical behaviour in and around the grid cell. However, note that the model does actually not
omit all the spatial information, as spatial characteristics are still encoded deeper in the other static
features. Pore volumes, permeabilities, and transmissibilities are outcomes derived from relationships
that incorporate geometric data from grid cells and geophysical principles (see subsection 2.1.1 for
more details). The potential benefit that follows from this approach is that the implemented model
should be able to learn to handle reservoir grids at different scales, given that the geological features
are properly coarsened / refined and the model is properly trained at different scales as well.

4.3.1. Accumulation speed features
A challenging aspect for a local message-passing algorithm is to propagate the scale of injection across
the grid. As the injection rate feature defines the speed at which CO2 enters the system, this information
is valuable for proper spatiotemporal development. However, the injection rate feature is only nonzero
at the grid cell where the injector well is located, out of the message-passing reach for most of the grid.
Given the network depth limitation (see section 3.3), this information will not spread further than the lo-
cal injector node’s neighbourhood. To solve this, temporal derivative features per cell are added to act
as ’change rates’ for every cell, adding extra information in a message pass about the state changes
neighbouring cells are experiencing. In the GNN model, two separate features are added to facilitate
this, dSGAS/dt and dPres/dt. They represent the features’ previous time step accumulation speed,
calculating the saturation/pressure change with respect to the time step’s dt value. Experimenting with
and without these features learned they are beneficial for the expressiveness of different injection rates.
Adding spatial gradients has also been explored, but the performance compared to the temporal deriva-
tives was generally considered worse. It can be reasoned that using the features’ temporal derivatives
per cell in a message passing context is like using spatial gradients, but with added information about
the rate of change of the gradient.

4.3.2. Normalization
In order for a numerically stable model, feature normalization is implemented to bring every feature in
the range [0, 1]. As different features have different numeric ranges, specific normalization is applied
per feature.

• PORV: natural logarithm + fixed max

4.3. Features 26

• DEPTH: min-max scaling
• TRANX/Y/Z: natural logarithm + max value (max across all dimensions).
• PERMX/Y/Z: natural logarithm + max value (max across all dimensions).
• SGAS: normalized by default
• Pres: min-max scaling using fixed values
• dSGAS/dt min-max scaling using fixed min-max values
• dPRES/dt: min-max scaling using fixed min-max values
• IR: fixed max

Feature ln() Min Max
PORV x 0 10
DEPTH min(DEPTH) max(DEPTH)

TRANX/Y/Z x 1 max(TRANX/Y/Z)
PERMX/Y/Z x 1 max(PERMX/Y/Z)

SGAS 0 1
Pres 90 350

dSGAS/dt -1e3 3e3
dPRES/dt -1e3 3e3

IR 2e4

Table 4.1: Used scaling factors per feature and whether the natural logarithm is applied before scaling. The factors are based
on the limits of the features’ numeric ranges across both ensembles, ensuring all features are numerically close to a [0, 1] range.

Two notes on the normalization methods used for this data. First, for use on realistic datasets, the
use of the natural logarithm should be re-evaluated since some artificially created static properties in
the generated datasets are not entirely representative of numeric ranges in standard geological data.
Second, if a model were to be applied to different reservoirs, fixed normalization values should be
applied on all features to avoid different feature scaling on separate reservoir datasets.

4.3.3. Loss function
A loss metric is required to backpropagate and optimize the learnable parameters of the neural model.
The loss function used in the final model is the MSE (Mean Squared Error) loss on the accumulation
speed features dSGAS

dt and dPres
dt of the predicted time step:

L =
1

|V|

(∑
v∈V

(
dSGASv,true

dt
− dSGASv,pred

dt
) +

∑
v∈V

(
dPresv,true

dt
− dPresv,pred

dt
)

)
(4.2)

This loss penalizes the predicted difference of the output features’ temporal derivatives, which arguably
stimulates the model to optimize the rate of change (i.e. the system dynamics) more than the actual
grid values itself. This loss has shown to give better expressivity than simply taking the MSE(Yt),
especially when predicting variable injection rates (which will be discussed in subsection 4.4.1).

4.3.4. Training procedure
To train the model, a selection of cases in split into a training and validation set (ratio 0.8/0.2). Every
time step of each training case is a trainable data sample (i.e. 167 data sample per training case).
Mini-batching is used to accelerate the training. Using larger batches has shown to give slower conver-
gence, so small batch sizes (8 or 16) are used which also increases generalization [33]. Batches are
shuffled to increase generalization, i.e. each batch contains a random selection of time steps from ran-
domly selected training cases. The mean loss across the batch is backpropagated though the model
to calculate the gradients with respect to the changes in the model’s parameters. The Adam optimizer
[22] then uses these gradients to update the model’s learnable parameters. A training epoch is finished
after all training samples have passed trough the model.

4.3. Features 27

Multistep training
To stimulate the model’s autoregressive behaviour, multistep training is introduced. Instead of predict-
ing only t+ 1, the model is iterated multiple times to simulate multiple steps [t+ 1, t+ 2, ..., t+ k] for a
chosen multistep hyper-parameter k.

Figure 4.3: Multistep training procedure for k = 4. For every data sample (i.e. time step starting at t) the model is
autoregressively iterated for k steps.

The resulting loss depends on the multistep loss aggregation method hyper-parameter, either ’sum’,
’mean’ or ’last’:

L =


∑k Lk if ′sum′

1
k

∑k Lk if ′mean′

Lk if ′last′
(4.3)

The idea of summarizing or averaging the losses is to learn the model to correct for mistakes it might
make on single time steps, whereas using only the last loss would exclude this learning behaviour by
only focussing on the correct prediction of the kth multistep. This multistep loss is used as the training
loss.

Model performance evaluation metric
The loss function is only used to calculate loss over the multistep prediction of each training sample.
By minimizing the loss on the multistep intervals, the goal is learn the physical dynamics of the system
to the model. However, to evaluate the performance of the model as a simulator, the autoregressive
prediction over an entire timespan T is imperative. To express the autoregressive performance, the
same Ldt loss from Equation 4.3.3 can be used. The MSE on the output features Yt is added for
completeness:

LT =
1

|T |

T∑
t=1

Lt, Lt = Ldt,t +MSE(Yt) (4.4)

4.3.5. Hyper-parameters
The model implements the following set of non-learnable hyper-parameters:

• learning rate
• batch size
• residual strength α

• leaky ReLu slope coefficient θ
• amount of GCN layers L, i.e. network depth
• multisteps k, i.e. how many time steps the network predicts ahead for every trained time step t,
see subsection 4.3.4.

• multistep loss aggregation method, either ’sum’, ’mean’ or ’last’

4.4. Data 28

• latent (hidden) dimensions, i.e. feature dimension in message-passing layers

Initially, these parameters have been chosen using common practices or theoretical motivations. At a
later stage, they are empirically optimized using the hyper-parameter tuning as discussed in subsec-
tion 4.5.5.

4.4. Data
To study whether GNNs are suitable for reservoir simulation, which has not been extensively tested,
a simple data model is a logical choice to start testing the proposed hypotheses about expressivity,
injectivity and transferability (see subsection 1.1.1 - subsection 1.1.3). A 2D dummy reservoir is used
in this work, referred to as the ’P7’ reservoir. Using the INTERSECT numerical reservoir simulator and
the P7 reservoir grid, two different ensembles are parameterized and simulated for 1000 years over
167 time steps, i.e. T = [0, 167].

P7 reservoir
The P7 reservoir is a 2D dummy reservoir containing 1850 rectangular grid cells of variable size. The
1850 cells are arranged in a rectangular 37 × 50 grid. Technically the grid is structured, having a
fixed amount of neighbours (upper, lower, left, right). Despite the aim to test graph methods for the
sake of processing unstructured grids, testing the validity on structured grids is a valid first step, also
provided that the method does not rely on the structural (i.e. geometric) information. Furthermore, as
unstructured grids are a generalization of structured grids, a graph method that works on unstructured
grids should function on structured grids as well.

Shale layers
The P7 reservoir contains so called shale layers, layers with lower porosity and permeability than the
average grid cells. These shale layers resemble possible variability in subsurface rock formation and
influence the propagation pattern of the CO2 saturation. The reservoir has one injection well, located at
cell (31, 0). In Figure 4.5a, the original reservoir shape can be observed. As mentioned in Equation 4.3,
the network does not consider the geometric grid shape, but rather a ’simplified’ version like the grid
shown in Figure 4.5c. This spatially-invariant abstraction is used in the rest of this work for visualizing
predictions.

4.4.1. Ensemble 1: variable injection
An essential method in CCS reservoir simulation for making correct operational decisions is the ability
to model different CO2 injection rates. Thus, a training set resembling different injection rate scenarios
is required to create an effective predictive model. Using a uniform distribution, cases with variable
constant injection rates are sampled and simulated using IX. All resulting samples have an identical
injection phase (12 years, 143 monthly time steps) and are sampled with identical static composition.
See Figure 4.6 for the progression of true output features in the training data, summed over the entire
grid.

4.4.2. Ensemble 2: variable shale composition
Any reservoir simulator model requires the ability to handle geological variations. To train this, an
ensemble of the P7 reservoir is sampled with variable permeability and variable porosity in the shale
layers. Porosity directly scales the pore volume (PORV) input feature, and permeability influences the
edge weights as well as the transmissibility features. PERMX and PORO are independently uniformly
sampled, then PERMZ is calculated by multiplication of PERMX with a decreasing coefficient (PERMY
is irrelevant and thus zero in the 2D case). The surrounding non-shale reservoir properties are equal
for every sample. The resulting gas propagation and pressure build-up across the shale layers varies
per parametric combination, resembling different geological barriers present in reservoir data.

4.4.3. Post-injection time steps
Both ensembles feature the same 12-year injection phase with constant time step size of 1 month
(28-31 days) for 143 time steps. The post-injection phase time steps increase progressively to 1, 10,
100 and eventually 500 years. As prolonged containment of CO2 is essential for the success of CCS,

4.5. Experimental Design 29

modelling the long-term behaviour is important. However, in the P7 simulations only the last 24 time
steps account for this variety of larger time steps, forming only ~15% of the data points. Given the
sparsity of these data points, the model is likely to struggle expressing them correctly. Another potential
problem are the potentially larger state changes during larger time steps, which could be out of the
message-passing reach given the network depth (see section 3.3). For these reasons, performance
of the model in expressing this time step variety is not a primary research objective, however it will be
evaluated. Potential solutions for these problems are discussed in chapter 6.

4.4.4. Note on the training data
Readers without geological background might wonder to what extent the simulated data from INTER-
SECT resembles the subsurface reality. Given that we train a model on the simulated data, the ML
surrogate model predictions will only get as good as the numerical simulations. For that reason. train-
ing a simulator on simulations might seem redundant. To understand why this is the objective, it is good
to take into consideration that 1) the goal of building a ML surrogate model is not to exceed current
reservoir simulation’s performance but to accelerate it, 2) numerical reservoir simulation has shown
validity through years of usage and reservoir models can be calibrated during operation through history
matching1, 3) the process of reservoir modelling (i.e. translating raw subsurface data into usable sub-
surface models) is a complex research field itself and beyond the research scope of most ML reservoir
simulation research.

4.5. Experimental Design
To test the hypotheses set out in the research questions, an overview of the implemented experiments
is listed below. Relevant details of the experiments and hyper-parameter choices are highlighted in the
sections that follow.

RQ1: Expressivity
• Experiment 1: Single time step prediction
• Experiment 2: Long-term autoregressive prediction

RQ2: Injectivity
• Experiment 3: Variable injection ensemble prediction

RQ3: Transferability
• Experiment 4: Variable shale ensemble prediction
• Experiment 5: Unseen grid prediction

4.5.1. Experiment 1: Single step prediction
To test basic expressive capability of the implemented GNN architecture, a single case is taken from
the variable injection ensemble. A model is trained on this case to construct time step t + 1 ∀t ∈ T .
The model only trains on 167 data points (every available time step), and evaluated is whether the
architecture is capable of expressing the output feature behaviour at different time steps correctly. One
model is trained with multistep parameter set to k = 1, to focus on single time steps. Another model is
trained with k = 6, meaning the model already trains autoregressively. This way the effect of applying
the multistep training can be evaluated.

4.5.2. Experiment 2: Long-term autoregressive prediction
For long-term autoregressive predictions, the model with multisteps k = 6 is used. Instead of modelling
every time step separately, the model starts at t = 0 and autoregressively predicts the full time range
T . As shown in Figure 4.1, every iteration the previous output features Yt = [SGASpred,t,PRESpred,t]
are used to update the next iteration’s dynamic feature inputs: SGAS, PRES, dSGAS/dt, dPRES/dt.

1Process of rebuilding a reservoir model with updated information, generally from wellbore measurements

4.5. Experimental Design 30

4.5.3. Experiment 3 & 4: Ensemble predictions
If the long-term expressiveness is confirmed, experimentation can be expanded to a more realistic
setting by training on ensembles. For the variable injection ensemble, the goal is testing the model’s
capability to scale the progressive behaviour accordingly with the CO2 injection rate. Instead of using
all the cases in the ensemble, the model is trained on 25 cases (4000 data points) with uniformly
distributed injection rate. Early experimentation has shown that adding more cases does not improve
expressiveness significantly, while it does linearly increase training time. For experimental efficiency
the training set is kept limited. The variable shale ensemble is similarly treated, manually sampling 25
cases where porosity and permeability are distributed as uniform as possible. 6 cases with uniformly
distributed features of interest are picked per ensemble as validation set.

4.5.4. Experiment 5: Unseen grid prediction
As the used network architecture implements a method operating in the local node neighbourhood, it
is hypothesized (subsection 1.1.3) that a well-trained model can handle reservoir grid samples with
untrained compositions, i.e. data samples within the trained parametric ranges but varying in grid size
and geological structure. As the used GNN architecture can process any graph input size, a model
trained on enough small but geologically characteristic samples should theoretically be able to accu-
rately process any arbitrary reservoir grid. In the last experiment the model is tested on 3 grids where
the geological structure of the grid has been modified (Figure 5.10). In structure A, gaps have been
made in the shale layers by removing the low porosity and permeability, and some areas are made
impermeable. In structures B and C, diagonal shale layers are constructed. The modified structures
are not extensively geologically motivated, but the blocks in A and the (diagonal) layers in B and C
could be interpreted as impermeable (cap)rock formations. Note that the model is not trained on these
structures. The results are used in the final assessment of the model’s transferability.

4.5.5. Ray tune hyper-parameter searching
To ensure the model’s performance, a proper selection of hyper-parameters is required. Initially the
hyper-parameters are selected and tuned during development using common practices and theoretical
choices. A more structured approach is considered by implementing Ray Tune, an automated tool for
distributed model training and hyper-parameter searching [31]. It initially samples hyper-parameters
uniformly from pre-configured ranges, and uses the ASHA scheduler [28] to gradually further explore
well performing parameter combinations. Using this framework a hyper-parameter selection is chosen
for experimentation, given in Table 4.2.

Parameter Value
Learning rate 0.0005
Batch size 8
Res. α 0.15
LReLu θ 0.1
GCN L 6
Mult. k 3
Mult. aggr. ’sum’
Hidden dim 128

Table 4.2: Selected model hyper-parameters selected using Ray Tune hyper-parameter searching.

4.5. Experimental Design 31

Figure 4.4: Static properties of a general P7 sample from the variable injection ensemble (constant across the ensemble). It
shows the general structure with horizontal shale layers found in every P7 sample. PORV increases steadily in the x-direction.
DEPTH increases in the increasing z-direction. PORO influences the input property PORV. PERMY is preconfigured nonzero,
but is not encoded in any edge weight. Transmissibility depends on the cell dimension in its specific direction, making TRANY
zero in the xz-dimensional grid. TRANX/TRANZ are influenced by PERMX/PERMZ, PORO and PORV. The variable shale
ensemble is identical in the non-shale surroundings, but has varying PORO and randomly decaying PERMX/PERMZ in the

shale layers.

4.5. Experimental Design 32

(a) Original geometric shapes of the P7 reservoir, showing gas saturation for cases at t = 155

Specification Value
Size 1850
Shape 37 x 50
Shale Layers 4
Injector Wells 1
Injector well loc. (31, 0)

(b) P7 reservoir specifications
(c) Abstracted spatial-invariant reservoir view as used by the model at t = 155. The red dot indicates
the injector well location. The shale layers are located horizontally in the areas with lower saturation.

Figure 4.5: Overview of the P7 reservoir grid: a) spatial and c) non-spatial view.

Figure 4.6: Accumulation of gas saturation (left) and pressure (middle) for a range of cases in the variable injection ensemble.
Injection rate (right) shows that when CO2 injection stops (0.0275 ≈ 12 years), the dynamics of the system change. Pressure
smooths out gradually over the grid, decreasing across the grid overall back to an equilibrium. Even though no more CO2 is

entering the system, gas saturation keeps increasing slightly. As pressure decreases the volume of the gas is likely to increase,
increasing saturation across the grid cells overall. Note the y-axis does not represent the actual feature value, but the sum of

the normalized features over the whole grid.

4.5. Experimental Design 33

Figure 4.7: Different porosity (PORO) and z-directional permeability (PERMZ) values in the variable shale ensemble validation
set.

Figure 4.8: Accumulation of gas saturation (left) and pressure (middle) for a range of cases in the variable shale composition
ensemble. Compared to the variable injection ensemble, the cases with decreased porosity and permeability show higher
pressure. This is the result of more CO2 trapping under a shale layer, increasing pressure build-up. Injection rate in this

ensemble is also variable, but is determined by a maximum pressure metric based on the bottom hole pressure (BHP, i.e. the
pressure at the point of injection), simulated in IX.

5
Results

In the previous chapter the experimental methods are introduced. Using these methods the research
hypotheses on expressivity, injectivity and transferability (subsection 1.1.1 - subsection 1.1.3) are eval-
uated through experimental results presented in this chapter. The covered experiments evaluate (in-
creasingly complex) objectives:

• Single time step predictions
• Roll-out (multistep) predictions
• Ensemble training
• Hyper-parameter optimization
• Untrained data: variable static compositions

In the process of doing these experiments, the model’s loss function, input features and graph edge
weights have been adapted gradually to improve the model’s performance. All the results shown in
this chapter have been created using the optimized feature, hyper-parameter and loss selection. The
motivation of these selections are covered in chapter 4:

• Input features: section 4.3
• Edge weights: permeability edge weights subsection in section 4.3
• Loss function: subsection 4.3.3
• Hyper-parameters: subsection 4.5.5

The reader will often come across the term ’long-term’ predictions, which is defined in this work as
autoregressive predictions covering more network iterations than the multisteps hyper-parameter k
(subsection 4.3.4). Another introduced term is ’roll-out’ prediction, generally indicating the prediction
of a full timespan T = [0, 167], or another specifically mentioned large interval like, e.g. the injection
phase T = [0, 143].

Visualizations like the one in Figure 5.1 are used several times in this chapter. To get a better intuition
of this figure, take the following remarks in mind when observing it. The diagram generally contains 3
subplots of the reservoir grid per row, featuring an output feature for a given time step:

• Left: ground truth output (INTERSECT reservoir simulation data)
• Middle: GNN (roll-out) prediction
• Right: error between ground truth and prediction (ground truth minus prediction)
• e.g. Figure 5.1a Upper row: CO2 saturation (SGAS) at t = 10

• e.g. Figure 5.1a Lower row: Pressure (PRES) at t = 10

Keep in mind both output features can only take on positive values and are normalized between 0 and
1 (saturation by default, for pressure see subsection 4.3.2 for the normalization procedures). Assuming
the model remains numerically stable, the error should thus not exceed the range [−1, 1], visualized
using the colour gradient [red, blue] in the error plot (i.e. red: over-prediction, blue: under-prediction).

34

5.1. Animated experimental results available online 35

Figure 5.1: Single time step predictions on an ensemble trained model, case 45 (mid-range injection rate). a) Early injection
phase time step (8 months) b) Late injection phase time step (10 years).

5.1. Animated experimental results available online
To complement the figures in this chapter, corresponding animations have been made available online
at https://lucasveeger.github.io/. This webpage displays all shown roll-out experimental results
in an animated format for the entire simulated time spans.

https://lucasveeger.github.io/

5.2. Experiment 1: Single predictions 36

5.2. Experiment 1: Single predictions
To evaluate whether the GNN is capable of graph re(construction), the initial test is to construct the
updated Yt state from an input state graph Xt at any given t with a minimal error. A minimal error is de-
sired for numerical stability in follow-up autoregressive experiments. Trained on the variable injection
ensemble, Figure 5.1 shows that the model is capable of producing these target states with minimal vis-
ible error. Both the model trained with k = 1 and k = 6 produce equally well predicted states, indicating
the multistep procedure does not negatively affect the model’s single step predictive behaviour.

5.3. Experiment 2: Multistep autoregressive predictions
Given that the model can accurately construct every next target state in single step predictions, the
next objective to confirm RQ1: Expressivity is to evaluate the autoregressive predictive capability. In
Figure 5.2 and Figure 5.3 results are shown from a model trained on the variable injection ensemble.

Without going into the injection variations in this section, it can be seen the model shows good autore-
gressive behaviour. The roll-out states resemble visually realistic progressions for the gas saturation.
Pressure predictions are numerically stable and decently low in error (Figure 5.7), but visually show the
appearance of a slightly different field compared to the true pressure gradient that perfectly diverges
from the injection well.

The true pressure gradient is largely unaffected by the shale layers in the injection ensemble, although
some slight discontinuity is visible. Larger discontinuities can be seen in the variable shale ensemble
(Figure 5.5). The elliptic nature of pressure, the network depth limitation (section 3.3) and the high-
frequency effect of the permeability encoded edge weights (section 4.3) are likely to complicate the
pressure prediction. Despite these inconsistencies, the model captures the global pressure gradient
reasonably well. In chapter 6 model additions are discussed to possibly improve the pressure expres-
sivity further.

5.4. Experiment 3: variable injection ensemble
Given the model’s capability to express a time series realistically in a roll-out prediction, the model is
tested for its ability to capture parametric variability of the CO2 injection rate. Results in Figure 5.2 and
Figure 5.3 show the model captures the injection rate variability properly, supporting the hypothesis
set out by RQ2: Injectivity. This injective expressivity is largely attributed to the introduction of the
accumulation speed features (see subsection 4.3.1). Without them, models initially tended to converge
to a more or less fixed propagation speed. In those models, a node likely struggled to spread its state
rate of change to neighbouring nodes during message-passing. And given that the injection rate feature
is only nonzero at the injector node, only the injector node’s neighbourhood would aggregate relevant
injection rate feature information. Message-passing of the accumulation features (subsection 4.3.1
enables the nodes to pass around their state’s rate of change, providing all the grid nodes with a sense
of how quickly CO2 is entering and saturating the system.

5.5. Experiment 4: variable shale composition ensemble
Besides good injective expressivity, a proper reservoir simulation model should be capable of handling
geological variability. Trained on the variable shale composition ensemble, Figure 5.4 and Figure 5.5
show that the model can predict validation cases correctly. The model limits the CO2 flow through the
shale layers for the cases with lower porosity/permeability, and builds up more pressure in the areas
with high saturation under the shale layers. In some cases (e.g. Figure 5.7) the model tends to ’lag’ at
the start of the injection and builds up some underexpressive error. The model then corrects for this
and produces a stable flow. The error generally increases gradually during the stable flow, as some
parts of the saturation front become slightly over- or under-expressed.

The overal results in this experiment show the model responds correctly to parametric variability in the
geological features. This conclusion is a first step in confirmation the hypothesis ofRQ3: Transferability.
The next experimental step (unseen structural compositions) is covered in section 5.7.

5.6. Training loss & roll-out evaluation 37

Figure 5.2: Gas saturation (SGAS) simulation, roll-out prediction and error at t = 80 for the variable injection ensemble. a)
Low injection rate, b) medium injection rate, c) high injection rate

5.6. Training loss & roll-out evaluation
In the process of training and improving the model, it was noticed that identical hyper-parameter selec-
tions gives different performances per training. Model performance is measured using a validation loss
and a roll-out evaluation metric. The validation loss is the roll-out version of the ’mean’ multistep loss,
calculated over the entire predicted timespan T . The evaluation metric is the validation loss plus the
average squared reconstruction loss across the predicted roll-out states (Equation 4.3.4). The recon-
struction term adds extra information and introduces slight variations with respect to the validation loss,
which can be seen in Figure 5.6. Although the average validation loss / evaluation metric decreases
as the training loss converges, they are very unstable. Small changes in the model’s parameters can
result in a large improvement or deterioration of the model’s performance. The result is that only every
so many epochs a newminimal validation loss or evaluation metric is reached. The model’s parameters
are saved on every new minimum in case the model does no longer improve (around 150-200 epochs
in practice). Summarizing, training for the optimal model relies on marking the specific epochs that
have the lowest roll-out evaluation metric loss. Training multiple identical models also showed different
training runs have different success rates, possibly due to the model’s parameters getting trapped in a
local minimum.

5.6. Training loss & roll-out evaluation 38

Figure 5.3: Pressure (PRES) simulation, roll-out prediction and error at t = 80 for the variable injection ensemble. a) Low
injection rate, b) medium injection rate, c) high injection rate

5.6.1. Autoregressive value bouncing
The introduction of the accumulation speed components introduced an expressive anomaly. For a sig-
nificant portion of the trained models one or more predicted features started to exhibit an increasingly
strong oscillatory effect, like the model training depicted in Figure 5.8. This effect occurred for sub-
optimally trained models as well as optimally trained models (i.e. having the lowest training/validation
losses). For suboptimal models, this effect generally causes an explosive gradient. However, for the
optimal models, the model remains numerically stable within the predicted timespan and the resulting
error can be significantly lower than optimal models with stable feature progressions. Comparing the
error progressions in Figure 5.7 and Figure 5.8, the stable model error gradually diverges while the
bouncing model actually converges.

Interestingly, any trained model exhibits small oscillatory errors between time steps. Possibly the cou-
pling in the model of the speed components with their antiderivative features is approximating some
trigonomic function that approximates the continuous system. Despite the lower error of the value
bouncing models, the stable models have been selected for experimentation. Given that the accumu-
lation features are more stable, it is assumed they will generalize better to untrained samples.

5.7. Experiment 5: Transferability to unseen compositions 39

5.6.2. Post-injection phase
A part of the simulation that has been neglected so far is the post-injection phase. As mentioned in
subsection 4.4.3, the data availability is scarce, the time step sizes increase by orders of magnitude
and the system’s dynamics are imperatively different compared to the injection phase (the injection
term from Equation 2.2 goes to 0). In Figure 5.9, the model behaviour representative of every post-
injection phase prediction is shown. The model learns to smooth out the pressure, but much slower
than simulated (i.e. 1 or 2 time steps in the IX simulation). While the model decouples the saturation
properly from the pressure, the true saturation development becomes mainly dependent on buoyant
forces. The model does not capture this, and instead it continues a steady flow similar to the injection
phase. It raises the question whether the model has enough intuition of buoyancy effects relevant in
CCS models. In section 6.2 this is further discussed.

5.6.3. Hyper-parameter tune
Using Ray tune, model training and evaluation was automated to study the effect of different hyper-
parameters. Over 500 models were trained with different hyper-parameter sets. Where most training
runs were stopped early due to poor performance, 80 well performing models were trained to the 200
epoch limit (where validation loss usually diverges). Interestingly, similarly good results were achieved
on various hyper-parameter sets. More interestingly, a model retrained with a well performing hyper-
parameter set would not necessarily perform as well again within the same epoch range. As mentioned
in section 5.6, strong local minima might trap the model’s learning progression during the gradient
descent optimization.

5.7. Experiment 5: Transferability to unseen compositions
Using the variable shale composition (experiment 4) it is shown GNNs are expressive enough to handle
parametric differences of the geological structure. The last experiment tests transferability of the GNN
model, assessing its learned behaviour on unseen geological structures. The model from experiment
4 is used to predict the grids shown in Figure 5.10. The results are shown in Figure 5.11 & Figure 5.12.

For all structures, the saturation is well captured across all reservoirs A, B and C. Errors are generally
higher than in the common shale layer cases, but this can be expected considering the added complex-
ity. An effect the GNN model does not capture is clearly visible in the IX simulations. At the location of
the original shale layers, the cells are less saturated. The x-directional transmissibility in these cells is
lower due to their cell volume (which can be observed in Figure 4.5a), affecting saturation development
in the IX simulation. However, the model has never trained on such transmissibility values in combina-
tion with the modified (i.e. increased) porosity and permeability values, making misinterpretation likely.
It can be expected that a model can predict this effect without any issue if the parametric combination
is present in the training data.

The accuracy of the predicted pressure fields are best discussed separately. In reservoir A, the pressure
gradient is high in local errors. The CO2 flow is redirected multiple times, which likely complicates a
smooth pressure field. The model also decouples pressure from the CO2 flow in the middle sections
somewhat (rows 12-24), under-expressing pressure towards the right. Still, the overall presence and
smoothness of the pressure field is reasonably captured.

The pressure fields in reservoirs B and C are reasonably smooth, and the reach of both pressure fields
is accurate. However, the structural differences between reservoir B and C reveal a limitation of the
model. In C, the flow is forced down upon hitting the second diagonal layer, increasing the pressure
significantly compared to B. Where the model captures the pressure field of simulated reservoir B very
accurately, it does not capture the increased pressure from the simulation of reservoir C. While the
diagonal shale layers in C are similar to the horizontal shale layers in the training data, the orientation
of the diagonal layer and the large (non-local) span of nodes in an open space possibly complicates
the right expression of pressure.

Summarizing, the modified reservoirs demonstrate the model can utilize its local knowledge to predict
saturation and pressure in unseen structural settings. With certain limitations present, the main hy-

5.7. Experiment 5: Transferability to unseen compositions 40

pothesis on RQ3: Transferability can be demonstrated and confirmed in this experimental setup. In
chapter 6 future steps will be discussed to test the hypothesis on larger domains.

5.7. Experiment 5: Transferability to unseen compositions 41

Figure 5.4: Gas saturation (SGAS) simulation, roll-out predictions and errors of 4 cases from the validation set of the variable
shale composition ensemble, in order of decreasing permeability. a) Permeability shale ≈14mD, b) Permeability shale

≈0.7mD, c) Permeability shale ≈0.04mD, d Permeability shale ≈0.005mD)

5.7. Experiment 5: Transferability to unseen compositions 42

Figure 5.5: Pressure (PRES) simulation, roll-out predictions and errors of 4 cases from the validation set of the variable shale
composition ensemble, in order of decreasing permeability. a) Permeability shale ≈14mD, b) Permeability shale ≈0.7mD, c)

Permeability shale ≈0.04mD, d Permeability shale ≈0.005mD)

5.7. Experiment 5: Transferability to unseen compositions 43

Figure 5.6: Training, validation and Raytune loss during model training on the variable shale ensemble. Raytune loss
corresponds to the evaluation metric, and is used during the hyper-parameter searches as the optimizable metric. In the left
plot, the training loss is a low value flat line, properly depicted on the right. The validation loss and the evaluation metric are
calculated over the entire predicted timespan and generally a lot higher than the multistep loss, which is minimized during
training and only covers loss of the multistep time range. The validation loss / evaluation metric show correlation with the

training loss globally, but contain great variations on intermediate epochs. The final trained model is picked from the epoch with
the minimal evaluation metric across the entire training.

Figure 5.7: Dynamic feature progression during roll-out predictions at a particular grid cell near the injection well. Left: velocity
components at cell 1410, (close to the injection well). Right: full grid average iteration loss, i.e. the unaveraged roll-out loss at

every iterated time step.

Figure 5.8: Dynamic feature progression at particular grid cell during roll-out predictions of a case expressing value bouncing
of a dynamic feature, in this case the pressure accumulation speed. Left: velocity components at cell 1410 (close to the

injection well). Right: full grid average iteration loss, i.e. the unaveraged roll-out loss at every iterated time step.

5.7. Experiment 5: Transferability to unseen compositions 44

Figure 5.9: Post-injection phase typical development at 3 time points: 1) start of post-injection phase (left column, t = 143), 2)
+1 year (middle column, t = 144) and 3) +88 years (right column, t = 159). Simulation (TRUE, uneven rows) and roll-out
prediction (PRED, even rows) shown for saturation (SGAS) and pressure (PRES). The GNN model captures the pressure

smooth-out, but only eventually. For the saturation, it fails in modelling enough buoyant force that concentrates the CO2 under
the shale layers and instead seems to continue the steady flow from the injection phase.

5.7. Experiment 5: Transferability to unseen compositions 45

Figure 5.10: Permeability in z-direction (PERMZ) for structurally modified cases of the P7 dataset. Reservoir A includes holes
in the shale layers allowing easy propagation of CO2, combined with zero permeability blocks resembling impermeable rock
formations. Reservoir B contains a diagonal shale layer to evaluate the diagonal flow. Reservoir C extends B with a mirrored

shale layer to evaluate the effect of the CO2 flow downward.

Figure 5.11: Simulation, roll-out predictions and errors of untrained reservoir case A at final injection phase state at t = 143
(reservoir structure provided in Figure 5.10).

5.7. Experiment 5: Transferability to unseen compositions 46

(a) Reservoir B, t = 143 (reservoir structure provided in Figure 5.10).

(b) Reservoir C, t = 143 (reservoir structure provided in Figure 5.10).

Figure 5.12: Simulation, roll-out predictions and errors at final injection phase state at t = 143. a) Untrained reservoir case B,
b) untrained reservoir case C. Reservoir structures are shown in Figure 5.10.

6
Discussion

In the last chapter it has been confirmed that a GNN can be expressive using an autoregressive method.
The autoencodingmodel can reliably construct a series of output feature states, it is able to scale feature
progression according to the injection rate and it can handle geological variability. This confirms all
three research questions. However, the considered experimental domain does not yet resemble the
domain of real reservoir models and it is inconsiderate of certain practical aspects. While reviewing
experimental results, this chapter discusses such aspects, provides ideas for model improvements and
makes suggestions for follow-up research.

6.1. Representation of the physical situation
Finding the right loss to capture the physical system correctly has been one of the challenging aspects in
this study. Use of the MSE error of the output features did not express enough variability. Different loss
terms were explored before implementing the accumulation speed loss. Using the graph Laplacian a
spatial gradient loss was constructed, as well as a more complex ’continuity’ loss that connected output
feature graphs sequentially to add the temporal dimension in the graph Laplacian. However, these
losses did not significantly improve performance. As their computation required matrix multiplications
with O(|V|2), these losses were abandoned and replaced with the less complex accumulation speed
loss with O(|V|). This loss is only temporal, but by including the accumulation speed as input features
their optimized feature state is also spreading spatially.

A linear constraint for saturation, calculated using the injection rate, has also been considered as extra
loss term. The feature progression of saturation in Figure 4.6 can be linearly approximated during
the injection phase. However, such a linear constraint is simplistic and does not account for other
physical effects. To properly put constraints on saturation (or pressure) development, the model could
be made physics-informed by factoring in (components of) the conservation equations (Equation 2.2,
Equation 2.2). While this may be more costly in terms of computing the loss, studies in the field of
physics-informed machine learning and CCS indicate models can be made more expressive this way
(see Related Work in section 1.2 for some examples).

6.1.1. Pressure-saturation relation
In the P7 ensembles, all trained cases show a clear relation between the development of pressure and
saturation, where pressure seems to act as a driving force of the saturation propagation. An added loss
term initially increased performance by calculating for every node the Pythagorean distance between
these features’ true and predicted values:√

(SGAStrue − SGASpred)2 + (PREStrue − PRESpred)2.

However, this relation is only partly relevant for the propagation of CO2. Under typical injection condi-
tions, a portion of the CO2 will be in the gas or supercritical phase1. In these phases buoyant forces

1In the supercritical phase, CO2 is in a highly compressed state where it combines the properties of gases and liquids

47

6.2. Training the post-injection phase 48

act on the CO2, forcing it upwards. This makes the saturation-pressure relation less relevant in the
z-dimension. In the final model, the saturation-pressure loss is abandoned entirely as the performance
of the accumulation speed loss dismissed its effect all together.

6.2. Training the post-injection phase
The current model can not express the post-injection phase properly. This is due to the limited avail-
ability of data samples for variable time steps, the size of the time steps and the changed dynamics in
the post-injection phase. A few simple solutions could improve the model.

Time step interpolation & permutation
First, training on smaller time step sizes would decrease the amount of change that has to be expressed.
This might even be essential for the longest time steps (500 years) to capture the largest state changes.
Considering it is costly to use the reservoir simulator to generate more ’shorter’ time steps for such
long time spans (e.g. 1 year steps for 1000 years), the given post-injection training samples could be
interpolated as a data pre-processing step to generate more data samples in the post-injection phase.
Alternatively, the given time steps could be permuted to generate many different time step sizes and
corresponding training samples. This approach would also help the model to generalize, and could
similarly be applied to the injection-phase time steps. Similar to the numerical reservoir simulator, a
trade-off could then be optimized between the maximal time step size (i.e. amount of network iterations
required) and the expressive performance.

Added post-injection cases
Secondly, during training extra cases could be added where the injection phase time steps are excluded.
This way, the amount of injection and non-injection time steps fed to the model can be balanced, but
still unique training samples are used.

Separate post-injection model
Lastly, an alternative is to train a separate model to capture the post-injection phase, and switch models
when injection stops. Given the pressure field quickly smooths out (as seen in Figure 5.9), the physical
system is changed to be governed by just capillary, gravitational and buoyant forces. A separate model
might distinguish this situation better. Testing how effectively the buoyancy effects can be captured in
the GNN model separately from the already learned physics is important in this consideration.

6.3. Application to larger domains
It is hypothesized in this research that the proposed GNN model is transferable to unseen grids. This
hypothesis is supported by the experimental results, but further research is required to confirm its valid-
ity on arbitrary reservoir grids. The term ’arbitrary’ used here might be too vague, as there are distinct
target types of reservoirs for CCS: saline aquifers and depleted oil/gas reservoirs. In the IX reservoir
simulator, different algorithmic methods are applied for these reservoir types. Different reservoir types
might require different models in practice. A few more aspects of constructing an effective ML model
using the implemented GNN methods are mentioned in the sections below.

6.3.1. Variety of Training data
The used training data is synthetic and unlikely to be representative of arbitrary geological formations.
It is trained on 2D data, and when given a 3D input the model may become numerically unstable
because of the increase in message-passed information. A properly generalized GNN model should
be trained on an abundantly large set of unstructured 3D models with parametric and structural variety.
Characteristics of geological structures in the reservoir type (e.g. caprock, shale layers, wellbores,
fractures, faults) should be well represented in these. To optimize training time, the minimally required
graph size required to train and learn the physical behaviour around all such structures should be
determined.

6.3.2. Reservoir scale
A GNN model would become widely applicable if it has the ability to handle different reservoir scales.
Reservoir grids come in different resolutions, meaning grids can be very coarse but also very fine

6.4. A local method on a global feature: pressure 49

depending on how precisely it has been constructed. Since the proposed method already operates
spatially-invariant, it should be able to process any scale (within reasonable ranges), provided that the
model has been trained properly on the scale it is handling. A training suggestion is to train the model
on different resolutions of the same grid to help it learn the scaling of the features involved. The IX
reservoir simulator software has built-in coarsening operations for reservoir grids.

6.3.3. Reservoir complexity and well controls
Industry reservoirs cases are certain to contain more complexity than the P7 model used for training.
An ignored detail from reservoir models is that they often include bended surfaces (i.e. non-flat surface
horizons). Also, the entire reservoir model can be rotated under a ’dipping angle’. These aspects
make the orientation of grid cells relevant, as it will influence the buoyancy effects of CO2, among other
potential effects. Ideally, every node or edge (i.e. cell face) in the model would include its orientation.
This addition will be highly relevant considering unstructured grids, where cells can be connected in
any direction.

Well controls
In the current training method, the well controls (i.e. injection rate) are provided upfront. As seen in
Figure 4.8, the injection rates are variable per case as a result of a maximum allowed pressure around
the injector. In reservoir simulators, the injection rate of the next time step is determined using the
pressure data of the simulated system. A proper ML reservoir simulator used on untrained reservoirs
should similarly adapt any dynamically changing well controls.

6.4. A local method on a global feature: pressure
The results show saturations are generally better captured than the pressure field. This is not surpris-
ing given the mathematical foundations provided in chapter 2, subsection 2.2.3. The saturations are
described by hyperbolic PDEs with local effects, whereas the pressure is governed by an elliptic PDE
with long-range effects. The performance on the experimented data is remarkable in the light of this
theoretical deficit, but it is unsure if it will hold for much larger and more complex grids. To improve the
pressure predictive quality in the implemented method, there are a few suggestions.

6.4.1. Multigrid approaches
In subsection 2.2.3 we discussed the use of AMG in IX. While the implemented GNN model shows
some resemblance with multigrid in terms of iterative smoothing and feature aggregation, the multigrid
concept of solving on coarsened grids can also be integrated. A weather forecasting study (see sec-
tion 1.2) implementing this approach has shown to be very effective [24]. IX provides grid coarsening
out-of -the-box, meaning derivation of the restriction/prolongation matrices can be omitted. Training the
same model on different coarsening levels can improve the models generalization as well as improve
the scale robustness.

6.4.2. Feature specific aggregation
The current model implements edge weights as a function of the permeability properties (section 4.3).
While this is not necessarily incorrect with respect to pressure (lower permeability gives less pressure
propagation), it does create local error effects in the pressure field (high-frequency errors as discussed
in subsection 2.2.3). An alternative would be a custom aggregation operator. Where the current method
implements sum aggregation, summing all message-passed features, a custom aggregation function
could impose a different function on every aggregated feature. This way a locally governed feature
can be handled differently than a global feature or static feature. However, in latent space (where the
aggregation takes place) the features are already in a mixed state. The aggregation operator would
require learnable parameters that optimize the aggregation, effectively learning a custom aggregation
function.

6.5. Conclusion
This work aims to test whether Graph Neural Network models can be applied to reservoir simulation.
The motivation for testing GNNs is because of their potential to handle unstructured grids, a prevalent

6.5. Conclusion 50

data format in reservoir simulation. Despite this, the use of GNNs for grid feature prediction is novel
in the ML reservoir simulation field. An autoregressive GNN autoencoder is introduced, implementing
the common Graph Convolutional Network layer, a local message-passing method. The model shows
good reconstructive capability, constructing a series of reservoir states in an autoregressive manner
accurately over a complete time span relevant for CCS simulations. It also exhibits good injective
expressibility, differentiating properly to the amount of perturbation introduced to the physical system.
Lastly, the locally operating model shows it can adapt to geological variation, ranging from simple
parametric variations to structurally different reservoirs. The next suggested research goal is training
the model on diverse small unstructured reservoir models and testing these on larger industry reservoir
models. Given the model operates spatially invariant, the model can be trained on different scales
to increase generalization. Model enhancements derived from concepts used in numerical reservoir
simulation can be used to further improve the GNN’s expressiveness of elliptic features like pressure.

References

[1] International Energy Agency. Energy Technology Perspectives 2020. 2020, p. 400. DOI: https:
//doi.org/https://doi.org/10.1787/d07136f0-en. URL: https://www.oecd-ilibrary.
org/content/publication/d07136f0-en.

[2] A. Atadeger et al. “Deep Learning-Based Proxy Models to Simulate Subsurface Flow of Three-
Dimensional Reservoir Systems”. In: 2022.1 (2022), pp. 1–32. ISSN: 2214-4609. DOI: https:
//doi.org/10.3997/2214-4609.202244049. URL: https://www.earthdoc.org/content/
papers/10.3997/2214-4609.202244049.

[3] Efficient General Formulation Approach For Modeling Complex Physics. Vol. All Days. SPE
Reservoir Simulation Conference. Feb. 2009, SPE-119165–MS. DOI: 10 . 2118 / 119165 - MS.
eprint: https://onepetro.org/spersc/proceedings-pdf/09RSS/All-09RSS/SPE-119165-
MS/2721565/spe-119165-ms.pdf. URL: https://doi.org/10.2118/119165-MS.

[4] NASAGlobal Climate Change.Carbon Dioxide. 2023. URL: https://climate.nasa.gov/vital-
signs/carbon-dioxide/ (visited on 09/26/2023).

[5] Ming Chen et al. Simple and Deep Graph Convolutional Networks. 2020. arXiv: 2007.02133
[cs.LG].

[6] Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C: IPCC Special
Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strength-
ening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty.
2022. DOI: 10.1017/9781009157940.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering. 2017. arXiv: 1606.09375 [cs.LG].

[8] David Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints.
2015. arXiv: 1509.09292 [cs.LG].

[9] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geomet-
ric. 2019. arXiv: 1903.02428 [cs.LG].

[10] Physics InformedDeep Learning for Flow and Transport in PorousMedia. Vol. Day 1 Tue, October
26, 2021. SPE Reservoir Simulation Conference. Oct. 2021, D011S006R002. DOI: 10.2118/
203934 - MS. eprint: https : / / onepetro . org / spersc / proceedings - pdf / 21RSC / 1 - 21RSC /
D011S006R002/2508046/spe-203934-ms.pdf. URL: https://doi.org/10.2118/203934-MS.

[11] M. Gori, G. Monfardini, and F. Scarselli. “A new model for learning in graph domains”. In: Pro-
ceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. Vol. 2. 2005,
729–734 vol. 2. DOI: 10.1109/IJCNN.2005.1555942.

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. 2018. arXiv: 1706.02216 [cs.SI].

[13] Kai Han et al. Vision GNN: An Image is Worth Graph of Nodes. 2022. arXiv: 2206.00272 [cs.CV].
[14] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512 . 03385

[cs.CV].
[15] Hu Huang, Bin Gong, and Wenyue Sun. A Deep-Learning-Based Graph Neural Network-Long-

Short-TermMemory Model for Reservoir Simulation and Optimization With Varying Well Controls.
July 2023. DOI: 10.2118/215842-PA. eprint: https://onepetro.org/SJ/article-pdf/doi/10.
2118/215842-PA/3151001/spe-215842-pa.pdf. URL: https://doi.org/10.2118/215842-PA.

[16] Global CCS Institute. GLOBAL STATUS OF CCS 2020. 2022. URL: https://www.globalccsin
stitute.com/previous-reports/.

51

https://doi.org/https://doi.org/https://doi.org/10.1787/d07136f0-en
https://doi.org/https://doi.org/https://doi.org/10.1787/d07136f0-en
https://www.oecd-ilibrary.org/content/publication/d07136f0-en
https://www.oecd-ilibrary.org/content/publication/d07136f0-en
https://doi.org/https://doi.org/10.3997/2214-4609.202244049
https://doi.org/https://doi.org/10.3997/2214-4609.202244049
https://www.earthdoc.org/content/papers/10.3997/2214-4609.202244049
https://www.earthdoc.org/content/papers/10.3997/2214-4609.202244049
https://doi.org/10.2118/119165-MS
https://onepetro.org/spersc/proceedings-pdf/09RSS/All-09RSS/SPE-119165-MS/2721565/spe-119165-ms.pdf
https://onepetro.org/spersc/proceedings-pdf/09RSS/All-09RSS/SPE-119165-MS/2721565/spe-119165-ms.pdf
https://doi.org/10.2118/119165-MS
https://climate.nasa.gov/vital-signs/carbon-dioxide/
https://climate.nasa.gov/vital-signs/carbon-dioxide/
https://arxiv.org/abs/2007.02133
https://arxiv.org/abs/2007.02133
https://doi.org/10.1017/9781009157940
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1903.02428
https://doi.org/10.2118/203934-MS
https://doi.org/10.2118/203934-MS
https://onepetro.org/spersc/proceedings-pdf/21RSC/1-21RSC/D011S006R002/2508046/spe-203934-ms.pdf
https://onepetro.org/spersc/proceedings-pdf/21RSC/1-21RSC/D011S006R002/2508046/spe-203934-ms.pdf
https://doi.org/10.2118/203934-MS
https://doi.org/10.1109/IJCNN.2005.1555942
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2206.00272
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.2118/215842-PA
https://onepetro.org/SJ/article-pdf/doi/10.2118/215842-PA/3151001/spe-215842-pa.pdf
https://onepetro.org/SJ/article-pdf/doi/10.2118/215842-PA/3151001/spe-215842-pa.pdf
https://doi.org/10.2118/215842-PA
https://www.globalccsinstitute.com/previous-reports/
https://www.globalccsinstitute.com/previous-reports/

References 52

[17] Physics-Aware Deep-Learning-Based Proxy Reservoir Simulation Model Equipped with State
and Well Output Prediction. Vol. Day 1 Tue, October 26, 2021. SPE Reservoir Simulation Con-
ference. Oct. 2021, D011S008R002. DOI: 10.2118/203994-MS. eprint: https://onepetro.org/
spersc/proceedings- pdf/21RSC/1- 21RSC/D011S008R002/2686824/spe- 203994- ms.pdf.
URL: https://doi.org/10.2118/203994-MS.

[18] Weiwei Jiang and Jiayun Luo. “Graph neural network for traffic forecasting: A survey”. In: Expert
Systems with Applications 207 (Nov. 2022), p. 117921. DOI: 10.1016/j.eswa.2022.117921.
URL: https://doi.org/10.1016%2Fj.eswa.2022.117921.

[19] Zhongyi Jiang et al. Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multi-
phase modeling of geological carbon sequestration. 2023. arXiv: 2303.04778 [cs.LG].

[20] Zhaoyang Larry Jin, Yimin Liu, and Louis J. Durlofsky. “Deep-learning-based surrogate model
for reservoir simulation with time-varying well controls”. In: Journal of Petroleum Science and
Engineering 192 (2020), p. 107273. ISSN: 0920-4105. DOI: https://doi.org/10.1016/j.
petrol . 2020 . 107273. URL: https : / / www . sciencedirect . com / science / article / pii /
S0920410520303533.

[21] Ryan Keisler. Forecasting Global Weather with Graph Neural Networks. 2022. arXiv: 2202.07575
[physics.ao-ph].

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG].

[23] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. 2017. arXiv: 1609.02907 [cs.LG].

[24] Remi Lam et al. “Learning skillful medium-range global weather forecasting”. In: Science 0.0 (),
eadi2336. DOI: 10.1126/science.adi2336. eprint: https://www.science.org/doi/pdf/
10.1126/science.adi2336. URL: https://www.science.org/doi/abs/10.1126/science.
adi2336.

[25] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the
IEEE 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

[26] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521 (May 2015),
pp. 436–44. DOI: 10.1038/nature14539.

[27] M.C. Leverett. “Capillary Behavior in Porous Solids”. In: Transactions of the AIME 142.01 (Dec.
1941), pp. 152–169. ISSN: 0081-1696. DOI: 10.2118/941152- G. eprint: https://onepetro.
org/TRANS/article-pdf/142/01/152/2178004/spe-941152-g.pdf. URL: https://doi.org/
10.2118/941152-G.

[28] Liam Li et al. A System for Massively Parallel Hyperparameter Tuning. 2020. arXiv: 1810.05934
[cs.LG].

[29] Xiao Li et al. “A survey of graph neural network based recommendation in social networks”. In:
Neurocomputing 549 (2023), p. 126441. ISSN: 0925-2312. DOI: https://doi.org/10.1016/
j.neucom.2023.126441. URL: https://www.sciencedirect.com/science/article/pii/
S0925231223005647.

[30] Yujia Li et al. Gated Graph Sequence Neural Networks. 2017. arXiv: 1511.05493 [cs.LG].
[31] Richard Liaw et al. Tune: A Research Platform for Distributed Model Selection and Training. 2018.

arXiv: 1807.05118 [cs.LG].
[32] Patricia Loria andMatthew B.H. Bright. “Lessons captured from 50 years of CCS projects”. In: The

Electricity Journal 34.7 (2021). Special Issue: Carbon Capture and Storage Today: Applications,
Needs, Perceptions and Barriers, p. 106998. ISSN: 1040-6190. DOI: https://doi.org/10.
1016/j.tej.2021.106998. URL: https://www.sciencedirect.com/science/article/pii/
S1040619021000890.

[33] Dominic Masters and Carlo Luschi. Revisiting Small Batch Training for Deep Neural Networks.
2018. arXiv: 1804.07612 [cs.LG].

https://doi.org/10.2118/203994-MS
https://onepetro.org/spersc/proceedings-pdf/21RSC/1-21RSC/D011S008R002/2686824/spe-203994-ms.pdf
https://onepetro.org/spersc/proceedings-pdf/21RSC/1-21RSC/D011S008R002/2686824/spe-203994-ms.pdf
https://doi.org/10.2118/203994-MS
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1016%2Fj.eswa.2022.117921
https://arxiv.org/abs/2303.04778
https://doi.org/https://doi.org/10.1016/j.petrol.2020.107273
https://doi.org/https://doi.org/10.1016/j.petrol.2020.107273
https://www.sciencedirect.com/science/article/pii/S0920410520303533
https://www.sciencedirect.com/science/article/pii/S0920410520303533
https://arxiv.org/abs/2202.07575
https://arxiv.org/abs/2202.07575
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://doi.org/10.1126/science.adi2336
https://www.science.org/doi/pdf/10.1126/science.adi2336
https://www.science.org/doi/pdf/10.1126/science.adi2336
https://www.science.org/doi/abs/10.1126/science.adi2336
https://www.science.org/doi/abs/10.1126/science.adi2336
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
https://doi.org/10.2118/941152-G
https://onepetro.org/TRANS/article-pdf/142/01/152/2178004/spe-941152-g.pdf
https://onepetro.org/TRANS/article-pdf/142/01/152/2178004/spe-941152-g.pdf
https://doi.org/10.2118/941152-G
https://doi.org/10.2118/941152-G
https://arxiv.org/abs/1810.05934
https://arxiv.org/abs/1810.05934
https://doi.org/https://doi.org/10.1016/j.neucom.2023.126441
https://doi.org/https://doi.org/10.1016/j.neucom.2023.126441
https://www.sciencedirect.com/science/article/pii/S0925231223005647
https://www.sciencedirect.com/science/article/pii/S0925231223005647
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1807.05118
https://doi.org/https://doi.org/10.1016/j.tej.2021.106998
https://doi.org/https://doi.org/10.1016/j.tej.2021.106998
https://www.sciencedirect.com/science/article/pii/S1040619021000890
https://www.sciencedirect.com/science/article/pii/S1040619021000890
https://arxiv.org/abs/1804.07612

References 53

[34] Saro Meguerdijian et al. “Physics-informed machine learning for fault-leakage reduced-order
modeling”. In: International Journal of Greenhouse Gas Control 125 (2023), p. 103873. ISSN:
1750-5836. DOI: https://doi.org/10.1016/j.ijggc.2023.103873. URL: https://www.
sciencedirect.com/science/article/pii/S1750583623000439.

[35] Robert F. Meldau, Robert G. Shipley, and Keith H. Coats. “Cyclic Gas/SteamStimulation of Heavy-
Oil Wells”. In: Journal of Petroleum Technology 33.10 (Oct. 1981), pp. 1990–1998. ISSN: 0149-
2136. DOI: 10.2118/8911-PA. eprint: https://onepetro.org/JPT/article-pdf/33/10/1990/
2227565/spe-8911-pa.pdf. URL: https://doi.org/10.2118/8911-PA.

[36] Erfan Mohammadian et al. “Application of extreme learning machine for prediction of aqueous
solubility of carbon dioxide”. In: Environmental Earth Sciences 75 (2016), pp. 1–11.

[37] Cuthbert Shang Wui Ng et al. “A Survey on the Application of Machine Learning and Metaheuris-
tic Algorithms for Intelligent Proxy Modeling in Reservoir Simulation”. In: Computers Chemical
Engineering 170 (2023), p. 108107. ISSN: 0098-1354. DOI: https://doi.org/10.1016/j.
compchemeng.2022.108107. URL: https://www.sciencedirect.com/science/article/pii/
S0098135422004409.

[38] S.W. Perkins. 2 - Thematerial properties of geosynthetics. Ed. by R.W. Sarsby. 2007. DOI: https:
//doi.org/10.1533/9781845692490.1.19. URL: https://www.sciencedirect.com/science/
article/pii/B9781855736078500023.

[39] Johan Rockström et al. “A safe operating space for humanity”. In: Nature, v.461, 472-475 (2009)
46 (Jan. 2013).

[40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[41] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on Oversmoothing
in Graph Neural Networks. 2023. arXiv: 2303.10993 [cs.LG].

[42] Zahraa Al Sahili and Mariette Awad. Spatio-Temporal Graph Neural Networks: A Survey. 2023.
arXiv: 2301.10569 [cs.LG].

[43] Anna Samnioti and Vassilis Gaganis. “Applications of Machine Learning in Subsurface Reservoir
Simulationmdash;A Reviewmdash;Part I”. In: Energies 16.16 (2023). ISSN: 1996-1073. DOI: 10.
3390/en16166079. URL: https://www.mdpi.com/1996-1073/16/16/6079.

[44] Alvaro Sanchez-Gonzalez et al. Learning to Simulate Complex Physics with Graph Networks.
2020. arXiv: 2002.09405 [cs.LG].

[45] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transactions on Neural Net-
works 20.1 (2009), pp. 61–80. DOI: 10.1109/TNN.2008.2005605.

[46] Chevron Schlumberger and Total. Intersect Version 2013.1 Technical Description. Tech. rep.
Houston, TX: Schlumberger, 2013.

[47] Parisa Shokouhi et al. “Physics-informed deep learning for prediction of CO2 storage site re-
sponse”. In: Journal of Contaminant Hydrology 241 (2021), p. 103835. ISSN: 0169-7722. DOI:
https://doi.org/10.1016/j.jconhyd.2021.103835. URL: https://www.sciencedirect.
com/science/article/pii/S0169772221000747.

[48] K. Stüben. Algebraic Multigrid (AMG): An Introduction with Applications ; Updated Version of
GMD Report No 53, March 1999. 1999. URL: https://books.google.no/books?id=rzLiGwAA
CAAJ.

[49] Haoyu Tang and Wennan Long. A Graph Neural Network Framework for Grid-Based Simulation.
2022. arXiv: 2202.02652 [cs.LG].

[50] George Truc, Nejat Rahmanian, and Mahboubeh Pishnamazi. “Assessment of cubic equations of
state: machine learning for rich carbon-dioxide systems”. In: Sustainability 13.5 (2021), p. 2527.

[51] Petar Veličković et al. Graph Attention Networks. 2018. arXiv: 1710.10903 [stat.ML].
[52] Vishwesh Venkatraman and Bjørn Kåre Alsberg. “Predicting CO2 capture of ionic liquids using

machine learning”. In: Journal of CO2 Utilization 21 (2017), pp. 162–168.

https://doi.org/https://doi.org/10.1016/j.ijggc.2023.103873
https://www.sciencedirect.com/science/article/pii/S1750583623000439
https://www.sciencedirect.com/science/article/pii/S1750583623000439
https://doi.org/10.2118/8911-PA
https://onepetro.org/JPT/article-pdf/33/10/1990/2227565/spe-8911-pa.pdf
https://onepetro.org/JPT/article-pdf/33/10/1990/2227565/spe-8911-pa.pdf
https://doi.org/10.2118/8911-PA
https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.108107
https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.108107
https://www.sciencedirect.com/science/article/pii/S0098135422004409
https://www.sciencedirect.com/science/article/pii/S0098135422004409
https://doi.org/https://doi.org/10.1533/9781845692490.1.19
https://doi.org/https://doi.org/10.1533/9781845692490.1.19
https://www.sciencedirect.com/science/article/pii/B9781855736078500023
https://www.sciencedirect.com/science/article/pii/B9781855736078500023
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2301.10569
https://doi.org/10.3390/en16166079
https://doi.org/10.3390/en16166079
https://www.mdpi.com/1996-1073/16/16/6079
https://arxiv.org/abs/2002.09405
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/https://doi.org/10.1016/j.jconhyd.2021.103835
https://www.sciencedirect.com/science/article/pii/S0169772221000747
https://www.sciencedirect.com/science/article/pii/S0169772221000747
https://books.google.no/books?id=rzLiGwAACAAJ
https://books.google.no/books?id=rzLiGwAACAAJ
https://arxiv.org/abs/2202.02652
https://arxiv.org/abs/1710.10903

References 54

[53] Hai Wang and Shengnan Chen. “Insights into the Application of Machine Learning in Reservoir
Engineering: Current Developments and Future Trends”. In: Energies 16.3 (2023). ISSN: 1996-
1073. DOI: 10.3390/en16031392. URL: https://www.mdpi.com/1996-1073/16/3/1392.

[54] Gege Wen, Catherine Hay, and Sally M Benson. “CCSNet: a deep learning modeling suite for
CO2 storage”. In: Advances in Water Resources 155 (2021), p. 104009.

[55] Gege Wen et al. “U-FNO—An enhanced Fourier neural operator-based deep-learning model for
multiphase flow”. In: Advances in Water Resources 163 (2022), p. 104180. ISSN: 0309-1708.
DOI: https://doi.org/10.1016/j.advwatres.2022.104180. URL: https://www.sciencedir
ect.com/science/article/pii/S0309170822000562.

[56] Tailin Wu et al. “Learning Large-scale Subsurface Simulations with a Hybrid Graph Network Sim-
ulator”. In: Proceedings of the 28th ACMSIGKDDConference on Knowledge Discovery and Data
Mining. ACM, Aug. 2022. DOI: 10.1145/3534678.3539045. URL: https://doi.org/10.1145%
2F3534678.3539045.

[57] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph Convolutional Networks for Text Classifica-
tion. 2018. arXiv: 1809.05679 [cs.CL].

[58] Peiyi Yao et al. “Application of machine learning in carbon capture and storage: An in-depth
insight from the perspective of geoscience”. In: Fuel 333 (2023), p. 126296. ISSN: 0016-2361.
DOI: https://doi.org/10.1016/j.fuel.2022.126296. URL: https://www.sciencedirect.
com/science/article/pii/S0016236122031209.

[59] Junyu You et al. “Machine learning based co-optimization of carbon dioxide sequestration and oil
recovery in CO2-EOR project”. In: Journal of Cleaner Production 260 (2020), p. 120866. ISSN:
0959-6526. DOI: 10.1016/j.jclepro.2020.120866.

[60] Si Zhang et al. “Graph convolutional networks: a comprehensive review”. In: Computational So-
cial Networks 6 (Nov. 2019). DOI: 10.1186/s40649-019-0069-y.

[61] Zhi Zhong and Timothy R. Carr. “Geostatistical 3D geological model construction to estimate the
capacity of commercial scale injection and storage of CO2 in Jacksonburg-Stringtown oil field,
West Virginia, USA”. In: International Journal of Greenhouse Gas Control 80 (2019), pp. 61–75.
ISSN: 1750-5836. DOI: https://doi.org/10.1016/j.ijggc.2018.10.011. URL: https:
//www.sciencedirect.com/science/article/pii/S1750583618301567.

[62] Zhi Zhong et al. “Application of a convolutional neural network in permeability prediction: A case
study in the Jacksonburg-Stringtown oil field, West Virginia, USA”. In: Geophysics 84.6 (Oct.
2019), B363–B373. ISSN: 0016-8033. DOI: 10.1190/geo2018-0588.1. eprint: https://pubs.
geoscienceworld.org/geophysics/article-pdf/84/6/B363/4933558/geo-2018-0588.1.
pdf. URL: https://doi.org/10.1190/geo2018-0588.1.

https://doi.org/10.3390/en16031392
https://www.mdpi.com/1996-1073/16/3/1392
https://doi.org/https://doi.org/10.1016/j.advwatres.2022.104180
https://www.sciencedirect.com/science/article/pii/S0309170822000562
https://www.sciencedirect.com/science/article/pii/S0309170822000562
https://doi.org/10.1145/3534678.3539045
https://doi.org/10.1145%2F3534678.3539045
https://doi.org/10.1145%2F3534678.3539045
https://arxiv.org/abs/1809.05679
https://doi.org/https://doi.org/10.1016/j.fuel.2022.126296
https://www.sciencedirect.com/science/article/pii/S0016236122031209
https://www.sciencedirect.com/science/article/pii/S0016236122031209
https://doi.org/10.1016/j.jclepro.2020.120866
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/https://doi.org/10.1016/j.ijggc.2018.10.011
https://www.sciencedirect.com/science/article/pii/S1750583618301567
https://www.sciencedirect.com/science/article/pii/S1750583618301567
https://doi.org/10.1190/geo2018-0588.1
https://pubs.geoscienceworld.org/geophysics/article-pdf/84/6/B363/4933558/geo-2018-0588.1.pdf
https://pubs.geoscienceworld.org/geophysics/article-pdf/84/6/B363/4933558/geo-2018-0588.1.pdf
https://pubs.geoscienceworld.org/geophysics/article-pdf/84/6/B363/4933558/geo-2018-0588.1.pdf
https://doi.org/10.1190/geo2018-0588.1

	Preface
	Abstract
	Introduction
	CCS
	Reservoir Simulation
	Problem definition
	Graph methods

	Reservoir Simulation using Graph Neural Networks
	Expressivity
	Injectivity
	Transferability

	Related work
	Outline

	Reservoir Simulation
	Subsurface physics
	Geological features
	Conservation equations
	Darcy's law
	Thermodynamic equilibrium of fluid phases

	Solving the nonlinear system
	Discretization
	Newton-Raphson iterative method
	Solving the pressure system using Algebraic Multigrid

	Graph Neural Networks
	Message Passing Algorithms
	Spatial vs spectral graph convolutions
	Spatial graph convolutions
	Spectral graph convolutions
	GCN

	Network depth
	Over-smoothing
	Residual connection

	PyG
	GNN demo: structural learning

	Methods & Experimental Design
	Autoregression
	Architecture
	Features
	Accumulation speed features
	Normalization
	Loss function
	Training procedure
	Hyper-parameters

	Data
	Ensemble 1: variable injection
	Ensemble 2: variable shale composition
	Post-injection time steps
	Note on the training data

	Experimental Design
	Experiment 1: Single step prediction
	Experiment 2: Long-term autoregressive prediction
	Experiment 3 & 4: Ensemble predictions
	Experiment 5: Unseen grid prediction
	Ray tune hyper-parameter searching

	Results
	Animated experimental results available online
	Experiment 1: Single predictions
	Experiment 2: Multistep autoregressive predictions
	Experiment 3: variable injection ensemble
	Experiment 4: variable shale composition ensemble
	Training loss & roll-out evaluation
	Autoregressive value bouncing
	Post-injection phase
	Hyper-parameter tune

	Experiment 5: Transferability to unseen compositions

	Discussion
	Representation of the physical situation
	Pressure-saturation relation

	Training the post-injection phase
	Application to larger domains
	Variety of Training data
	Reservoir scale
	Reservoir complexity and well controls

	A local method on a global feature: pressure
	Multigrid approaches
	Feature specific aggregation

	Conclusion

	References

