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Abstract

This article focuses on a class of distributionally robust optimization (DRO) problems
where, unlike the growing body of the literature, the objective function is poten-
tially nonlinear in the distribution. Existing methods to optimize nonlinear functions
in probability space use the Frechet derivatives, which present both theoretical and
computational challenges. Motivated by this, we propose an alternative notion for
the derivative and corresponding smoothness based on Gateaux (G)-derivative for
generic risk measures. These concepts are explained via three running risk measure
examples of variance, entropic risk, and risk on finite support sets. We then propose
a G-derivative based Frank—Wolfe (FW) algorithm for generic nonlinear optimiza-
tion problems in probability spaces and establish its convergence under the proposed
notion of smoothness in a completely norm-independent manner. We use the set-up
of the FW algorithm to devise a methodology to compute a saddle point of the non-
linear DRO problem. Finally, we validate our theoretical results on two cases of the
entropic and variance risk measures in the context of portfolio selection problems. In
particular, we analyze their regularity conditions and “sufficient statistic”’, compute
the respective FW-oracle in various settings, and confirm the theoretical outcomes
through numerical validation.
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Saddle point
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1 Introduction

Modern-day decision problems involve uncertainty in the form of a random variable
& whose behavior is modeled via a probability distribution IP,. A central object to
formalize such decision-making problems under uncertainty is risk measures. The
most popular risk measure is arguably the expected loss, yielding the classical decision-
making problem of

Stochastic Program: mi}r} Ep,[¢(x, )] (D
xXe

where ¢ is the loss function of interest, and X’ being the set of feasible decisions. The
paradigm of stochastic programming (SP) relies on the assumption that the distribution
P, is available (or at least up to its sufficient statistics), thereby the expectation can be
computed for every decision x € X. A common practical challenge is, however, that
the complete information of IP, may not be available. Moreover, it might also be the
case that the distribution is varying over a period of time which could be difficult to
characterize. These limitations call for a more conservative risk measure to ameliorate
the decision performance in such situations.

An alternative framework is Robust Optimization (RO) where the decision-maker
has only access to the support of uncertainty and takes the most conservative approach:

Robust Optimization: mm rsnax L(x, ). 2)
P

For many interesting examples, the RO min-max problem admits tractable reformu-
lations that can be solved efficiently [1]. However, a generic RO problem is known
to be computationally formidable as the inner maximization over & can be NP-hard.
Moreover, if the support & of the distribution is “large”, the results of RO tend to be
extremely conservative.

Distributionally Robust Optimization (DRO) The SP and RO decision models
represent two extreme cases of having full or bare minimum distributional information,
respectively. In practice, however, we often have more information about the ground
truth distribution than just its support. A typical example is when we have sample
realizations {& : i = 1,2,..., N}. Looking at such settings through the lens of SP,
one may construct a nommal dzstrlbutzon P and use it as a proxy for P, in the SP (1).
A standard data-driven nominal distribution is the discrete distribution P = >N, 8-

The SP decision when P, = P in (1) often admits a poor out-of-sample performance
on a different dataset, a phenomenon that is also known as the “optimizer’s curse” or
“overfitting” [2]. On the other hand, the RO viewpoint in (2) completely disregards
the statistical information of P, available through the dataset @)i , or any other form
of prior information.

An attempt to bridge the SP and RO modeling frameworks gives rise to the paradigm
of Distributionally Robust Optimization (DRO), which dates back to the Scarf’s sem-
inal work on the ambiguity-averse newsvendor problem in 1958 [3]. The “ambiguity”
set P is a family of distributions that are close in some sense to the nominal distribu-
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Nonlinear distributionally robust optimization

tion P, potentially including the true unknown distribution IP,. With this in mind, the
DRO problem is formulated as

min sup Ep[t(x, §)]. A3)

On the one hand, if the ambiguity set is very big, possibly including all possible
distributions, the DRO problem (3) reduces to the RO problem (2). On the other hand,
if the ambiguity set P is very small, potentially a singleton containing the nominal
distribution, then the DRO problem reduces to the SP problem (1). In this light, the
DRO framework (3) provides flexibility for the decision-maker to fill the gap between
SP (1) and RO (2). The ambiguity set P in (3) is typically constructed either based
on the moments information [4-6], or a neighborhood of P with respect to a notion
of distance over probability distributions, e.g., Prohorov [7], Kullback—Leiber [8, 9],
Wasserstein [8, 10—13], Sinkhorn [14], to name but a few; see also the surveys [15,
16] and the references therein.

Linear DRO problems: An important feature of (3) is the linearity of the objective
function in the distribution IP, which is also shared among all the literature mentioned
above. The simplicity of this linearity in the inner maximization of (3) is the underlying
driving force to develop tractable convex reformulations and computational solutions
for various combinations of ambiguity sets and cost functions [17-21]. This line of
research effectively translates the original infinite-dimensional DRO problem (3) to a
tractable finite-dimensional one; see also the general optimal transport framework of
[22], and the case of mean-covariance risk measure [23] in a financial context.

Nonlinear DRO (NDRO): Our goal here is to generalize the linear setting (3) to

i F(x,P), 4
et @

where F : X x P — R is a generic, possibly nonlinear, function signifying a risk
measure. We refer to the decision-making problem (4) as Nonlinear Distributionally
Robust Optimization (NDRO). There are several interesting NDRO examples includ-
ing the variance [24], entropy [25, Example 1, p. 14], [26]. In this study, instead of
focusing only on the outer decision x in (4), we aim to compute an approximate saddle
point between the decision-maker and the nature presented by the distribution P. A
motivation supporting this effort is the fact that, unlike the worst-case distribution
computed for a given decision, the saddle point distributions (also called Nash equi-
libria) naturally retain more realistic features [27]. From a computational perspective,
the existing techniques deployed in linear DRO problems cannot be directly extended
for the NDRO (4). The objective of this work is to precisely tackle this challenge,
where we seek to devise a methodology along with mild regularity conditions under
which a saddle point solution exists and can be computed.

Frank—Wolfe (FW) algorithm It is a first-order method that only uses the informa-

tion of the gradient to solve a constrained optimization problem [28—30]. In a nutshell,
each iteration of the FW algorithm optimizes the linear function given by the gradient
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of the objective function and then takes a step towards the optimizer of the linear prob-
lem. On the contrary, other first-order methods like projected gradient descent require
a quadratic function to be minimized at each iteration. Since solving a linear problem
at each iteration is easier than a quadratic one, the iteration complexity of the FW algo-
rithm is much simpler than other first-order methods. This is crucial for optimization
problems over probability distributions since the complexity of projecting onto the
ambiguity set can be as challenging as solving the original NDRO problem. In com-
parison, optimizing a cost function that is linear in distributions admits strong duality
and tractable finite-dimensional reformulations for many interesting examples as seen
in linear DRO. Therefore, we seek to use the principles of the Frank—Wolfe algorithm
in the context of NDRO problems and devise an iterative procedure to compute a
saddle point of (4).

The FW algorithm for optimization problems over probability distributions has
already been introduced in [31], which uses Frechet derivatives and the associated
notion of smoothness to establish convergence. We would also like to highlight the
work of [32], where the canonical gradient ascent-descent algorithm [33, 34] for
min-max problems is extended to infinite-dimensional spaces involving probability
distributions using the Frechet derivatives and its smoothness. In a similar spirit, the
recent work of [35] proposes a mirror-descent algorithm [36] for constrained nonlin-
ear optimization problems over probability distributions using the Frechet derivative.
However, Frechet derivatives are difficult to deal with in practice due to several promi-
nent challenges including their (i) existence, (ii) finite representability, and (iii) norm
consistency; see Sect. 3.3 for more details on this. Our focus in this study is to remedy
this by proposing a FW algorithm based on an alternative G-derivative along with a
completely norm-independent convergence analysis.

Contributions The main contributions of this study are summarized as follows:

(i) Norm free smoothness in probability spaces. We propose a novel G-derivative
based notion of derivative for nonlinear risk measures (Definition 3.1), and the
associated notion of smoothness that is independent of the norm structure on
the ambiguity set (Definition 3.6). Moreover, we also derive conditions on the
function F (x, IP) such that the risk measure P — min,cy F (x, IP) is smooth
in the sense of the proposed notion (Lemma 5.5).

(i) G-derivative based Frank—Wolfe algorithm. We provide a Frank—Wolfe algo-
rithm based on the proposed notion of derivative for optimizing nonlinear risk
measures. Moreover, the classical proof techniques for the FW algorithm carry
forward under the proposed notion of derivative and smoothness, resulting in
apriori (Propositions 4.4) and aposteriori (Proposition 4.6) convergence guaran-
tees that exist for finite-dimensional problems.

(iii)) Saddle point seeking algorithm for NDRO problems. For the potentially
infinite-dimensional min-max problem of NDRO, we propose a FW-based algo-
rithm to compute a saddle point (Algorithm 1), and also quantify its convergence
properties (Theorem 5.6).

(iv) The entropic and variance risk measures. We study the NDRO problem and
our proposed algorithm for two cases of the entropic and variance risk mea-
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sures in Sects.6 and 7, respectively. An interesting difference between these
two examples is that in the context of portfolio selection, the variance preserves
its “sufficient statistic”” throughout the FW-algorithm while the entropic risk
requires the knowledge of the entire distribution. We establish the required con-
vex regularity conditions (Lemmas 6.3 and 7.2, respectively), and then provide a
complete description of the corresponding FW-oracle (Lemmas 6.4 and 7.4, 7.6,
respectively). Furthermore, for the minimum variance portfolio selection prob-
lem, in the special case of & = R” and the type-2 Wasserstein ambiguity set, we
slightly extend the results of [24] by explicitly describing the saddle point of the
minimum variance problem when the feasible portfolio set X' is any arbitrary
compact set (Proposition 7.5). To facilitate the reproducibility of the numerical
results, we also provide the open source repository [37] including the respective
MATLAB code.

The rest of the paper is organized as follows: In Sect.2, we discuss a generic non-
linear optimization problem over distributions with relevant examples. In Sect. 3, we
introduce the notion of a directional derivative and the associated notion of smoothness.
In Sect. 4, the FW-algorithm and its convergence guarantees are discussed. In Sect. 5,
we introduce the NDRO problem, discuss a solution concept, and provide an FW-based
algorithm to compute the solution. To illustrate the methodology (the required assump-
tions and algorithms), we discuss in detail the NDRO problems for two nonlinear risk
measures of entropic and variance, respectively, in Sects. 6 and 7. The numerical results
are provided for both risk measures in the context of optimal portfolio selection. All
of the technical proofs have been relegated towards the end of the article in Sect. 8.

Notations. The set of real-valued n x n matrices is denoted by R"*”. The trace of a
matrix M is denoted by tr(M) and being positive semi-definite is denoted by M > 0.
For a function r defined over a finite-dimensional space, its gradient at x is denoted
by Vr(x). For a multivariate distribution IP, the first and second moments are denoted
by the shorthand notation up := Ep[£] and Zp := Ep[££ ], respectively. Given
two probability distributions IP, Q, we also use Ep_gq[-] := Ep|[-] — Eg[-]. Other
notations shall be defined whenever necessary.

2 Worst-case nonlinear risk measures

In this section, we focus our attention to the potentially infinite-dimensional optimiza-
tion problem:

R* := sup R(IP), 5)

PeP

where R : P — R is a desired, possibly nonlinear, concave risk measure, and P
is the ambiguity set containing a family of probability distributions over E C R”.
Our main goal is to develop a framework with appropriate mathematical notions for
a Franke—Wolfe (FW) like algorithm to solve problem (5) and investigate its con-
vergence properties. Furthermore, since the FW algorithm for (5) operates in an
infinite-dimensional setting, we also seek to derive its tractable finite-dimensional
simplification to solve specific instances of (5).
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Definition 2.1 (Regular risk (RR) measures & sufficient statistic) A risk measure R
in (5) is regular if it can be described as R(P) = r(Ep[L(&)]), for some functions
L : E — R™ that is integrable for all P € P and r : R — R that is concave and
differentiable. We refer to Ep[L (§)] the “sufficient statistic” as the risk value depends
on the distribution P only through this vector.

A particular feature of the regular risks in Definition 2.1 is that its value is determined
based on a finite-dimensional vector IEp[L(&)]. This is a concept close to “sufficient
statistic”’, which is particularly appealing when it comes to the computation of the
worst-caserisk in (5). We will return to this in Sect. 4 when discussing the FW algorithm
in the space of probability distributions.

Example 2.2 (RR-examples) Throughout this study, we discuss three particular exam-
ples of the regular risk measures to showcase the concepts and our theoretical
statements:

(a) Variance: A popular risk measure is the variance associated with the distribution.
Formally, considering & to be a P-distributed random variable for P € P, the
associated variance is

V(P) = Ep[ns - Elpmn%}. (6a)

Considering the functions L : & - R™" x R" and r : R x R" — R

_ T
{ L(§) = (€7, §) (6b)

r(Z, w) = tr(2) — il

one can observe that the variance is indeed an RR measure, since

V(P) = E]p[nsn%] — IEp[€]I3 = tr <1E]P[55TD — IEp[£]13
= r(BelL@)).

(b) Entropic risk: Another interesting example of a nonlinear RR measure is the
entropic risk of a multivariate distribution [26, Section 5]. If P € P is a dis-
tribution with marginals IP; for j = 1,2, ..., n, (i.e., the j-th component §; is IP;
distributed). The entropic risk £(IP) associated with the distribution P is defined
as

n

1
EP@) =) 5 log (Ep,[e™%51]), (Ta)
j=1"7

where (0 j);?: | is a collection of positive real numbers referred to as the risk-

aversion parameters. This is indeed an RR measure, which can be seen by
introducing the functions
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Fig. 1 Pictorial representation of the risk surface and its directional derivative

L&) = (6—9151 , 6—9252’ e e—9n$n>
"o (7b)

= — log(z;).

r@ =2 g, o2

j=1

(c) Finite-support: The final example is the case of E being a finite set: 2 = {&; : i =
1,2, ..., N}.In this case, the simplex A" is the set of all probability distributions
on E, and the ambiguity set of distributions is a subset, 7 C A™. It turns out
that any arbitrary risk measure R can be characterized as an RR-measure in the
sense of Definition 2.1 by introducing appropriate functions r : RN — R, and
L : E — RV. To see this, we first observe that E being a finite set gives rise to
the enumerating bijectionb : € — {1,2, ..., N} deﬁnedby b)) =1{i:&£=¢&};
secondly, the matrix M € RNXN givenby [M];; :== (j/N)' fori, j =1,2,..., N,

is invertible. Then, considering the functions
LE) = (@/n), &2, ..., ee/mN)T ®

r(z) = R(M~'z) for z € M(P),

we have Ep[L(§)] = M - P (viewing P € A" as an element of R"), and as such,
R(P) = r(Ep[L(£)]) forall P € P.

3 Derivatives of risk measures

A well-defined notion of the gradient is a fundamental quantity in developing iterative
algorithms like that of FW to solve any optimization problem. For finite-dimensional
convex problems, the FW algorithm optimizes the linear functional given by the gradi-
ent of the objective function over the feasible set at each iteration. Naturally, devising a
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similar algorithm for (5) requires at least a well-defined notion of directional derivative
or G-derivative [38, (A.3), p. 152].

3.1 Gateaux directional derivatives

Definition 3.1 (G-derivative) Given P, Q € P, the Gateaux (G)-derivative dR (P; Q)
of the risk measure R at IP in the direction @ is defined as

1
dR(P; Q) :zlyli%;(R(]Py)—R(lp)), where P, =P +y(Q—-P). (9)

Whenever the above limit exists, we say that the function R is Q-directionally differ-
entiable at IP. Moreover, we say that the risk measure R is directionally differentiable
on P if it is Q-directionally differentiable at every IP € P and for all Q € P.

We note that the G-directional derivative in Definition 3.1 does not rely on any
metric underlying the space of probability distributions. This is in fact the main feature
with respect to the alternative F-derivative (Frechet derivative) that will be discussed
in Sect.3.3. Figure 1 visualizes this directional derivative. Next lemma provides an
explicit description of Definition 3.1 for RR measures.

Lemma 3.2 (Regular G-derivatives) Suppose that the risk measure is regular, i.e.,
R(]P) = r(Ep[L(&)]) with Vr denoting the gradient of function r. Then, for any
P, Q € P, we have

dR(P; Q)=Eq_p [(Vr(Ep[LE)]), LEN] =(Vr(Ep[LE)]), Eq_p[L®)]). (10)

Lemma 3.2 indicates that the G-derivative of an RR-measure is essentially charac-
terized by the “sufficient statistic” vectors IEp[L(§)] and IEq[L (§)] (cf. (10)). Thus, if
an algorithm optimizes an RR measure using only their directional derivatives, it then
requires tracking the evolution of this finite-dimensional sufficient statistic, allowing
them to be implemented efficiently.

Example 3.3 (Regular G-derivatives) The directional derivative of an RR measure

is completely characterized in terms of only a few finite-dimensional quantities that

depend on the moments of the distribution, and the functions r and L.

(a) Variance: With the underlying inner product (X, ), (X', 1)) = w(XT%') +
w' ', we recall from (6) that Vr(Z, u) = (]In, —2/1,>. Then the Q-directional
derivative of the variance V, at IP can be calculated from (10) as

dV(P; Q) = tr (Sq — Zp) — 2up(nq — ip). (11

(b) E-measure: With the canonical inner product (z, Z) = z 'z, we recall from (7)

that Vr(z) = ((01z1)71, (6222)71, ..., (Guzn)™") atevery z € R%. Thus, its Q-
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directional derivative at IP is

L Bq,—p,le”%5]

deP; = .
P: Q) ; 0, Fp, [e ]

(12)

(¢) Finite support: Recall from (8) that Ep[L(§)] = M - P for all P € P. Then with
the canonical inner product (z, z') = z'z/, we have Vr(z) = MY ' VR(M™7)
for all z € M (P). Substituting these quantities in (10) and simplifying, we get

dR(P; Q) = (VR(P))"(Q — P). (13)

It is to be observed that the matrix M has no relevance in the G-derivative as one
would expect since the risk measure R is defined independent of the matrix M.

The G-derivative enjoys inherent properties that will be helpful to devise compu-
tational solutions.

Proposition 3.4 (G-derivative: properties) For any P, Q € P, and y € [0, 1], let
P, = P+ y(Q — P), then the directional derivative dR(]P; ) in Definition 3.1
satisfies

Positively homogeneous:  dR(P;P,) = ydR(P; Q) (14a)
Upper bound for concave risk measures:  R(Q) — R(P) < dR(P; Q). (14b)

Remark 3.5 (Optimality conditions) Similar to KKT conditions, F-derivative based
first-order optimality conditions for both constrained and unconstrained versions of
(5) are given in [39, Section 3]. With G-derivatives, the upper bound (14b) for the
concave risk measure R immediately gives sufficient optimality conditions for (5).
More precisely, if P* € argmaxqep dR(IP*; Q), then applying (14b) for any Q € P
yields

R(Q) < R(P*)+dR(P*; Q) < R(P*)+dR(P*;P*) = R(P*),
which establishes the optimality P* € argmaxq.p R(Q).

3.2 Smoothness

The proposed approach to solve (5) builds on the Frank—Wolfe (FW) algorithm for
finite-dimensional convex optimization problems [29]. It is a well-known fact that
the primal sub-optimality in FW algorithm converges at a sub-linear rate O(l/k) for
optimization of “smooth” objective functions over compact feasible sets in finite-
dimensional problems. A convex function is said to be smooth if it has Lipschitz
continuous gradients with respect to some norm. The choice of norm in an infinite-
dimensional setting can be problematic, as all the norms are not equivalent (unlike
the finite-dimensional setting). To extend such convergence attributes for a FW like
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P

Fig.2 Concave-quadratic lower bound via smoothness

algorithm in the infinite-dimensional setting of (5), we first propose an appropriate
notion of smoothness in terms of the directional derivatives (as in Definition 3.1) that
is also norm-independent.

Definition 3.6 (G-smoothness) The risk measure R is C-smooth if there exists a con-
stant C > 0 such that for all P, Q € P and y € [0, 1], we have the inequality

dR(P,;P) +dR(P; P,) < y>C whereP, =P +y(Q—P). (1)

Connection to the existing notions of smoothness The notion of smoothness in
Definition 3.6 is a generalization of the canonical smoothness condition of Lipschitz
continuous gradients [40, Section 2.1.5]. Formally, a function f : D — R with a
finite-dimensional domain (D, ||-]|) and gradients V f is said to be B-smooth if

IVFx) = Vil < Blix =yl holds forall x, y € D. (16)

It is further generalized (or relaxed) by the notion of Holder-smoothness (particularly,
1-Holder smooth) where it is required that

<Vf(x) —-VIfQ),y— x) < Blx— y||2 holds for all x, y € D. (17)

Furthermore, if the set D is ||-||-bounded in addition, then the notion of Holder-
smoothness (17) is sufficient to the requirement that there exists some constant C > 0
such that for every x, y € D, y € [0, 1], the function f satisfies the inequality

(VF@) = Vf@x,),x, —x) < y°C where x, :=x+y(y—x). (18)

Expanding the left-hand side of (18) as (Vf(x) =V fxy), x, —x) = (Vf(x), Xy —x)—l—
(V f(xy), x—x, ), we see that the individual terms are simply the directional derivatives
of f; Definition 3.6 of the proposed notion of smoothness becomes apparent at once.
We also highlight that the notion of smoothness in Definition 3.6 is closely related to
the notion of “curvature coefficient” used in [28, (3)]. In fact, it can be easily shown that
afunction has a finite curvature coefficient if it is smooth in the sense of Definition 3.6.

@ Springer



Nonlinear distributionally robust optimization

Concave quadratic lower bound via smoothness It is well established that in
a finite-dimensional setting, smoothness conditions like (16) and (17) give rise to a
global convex (resp. concave) quadratic upper bound (resp. lower bound). For the risk
measure R specifically, a sample representation of such a quadratic lower bound is
shown in Fig.2. The existence of such bounds guarantees that the curvature of the
function is at most that of the quadratic bounds, which is crucial in concluding the
convergence of the FW algorithm. In other words, if a function f is S-canonically
smooth (as in (16)), then the following inequality holds:

—g ly — x> < f() = fF(x) = (Vf(x), y —x) < g ly —x||* forallx,y e D.

The notion of smoothness in Definition 3.6 imposes similar quadratic bounds, but
without using any norm. This is done by enforcing “quadratic-like” bounds to hold
uniformly over all directions. The following Lemma establishes the smoothness of the
class of RR measures.

Lemma 3.7 (Regular G-smoothness) Suppose the RR measure R(]P) =r(Ep[L(&)])
satisfies

(i) bounded diameter in expectationswithd = supp gep |Ep[L(E)] — EqlL(©)]|
< +o00o, and
(i1) it admits a smooth r in the canonical sense (16), i.e.,

IVr@) = Vr)l, < Bllu—vl forallu,ve{Ep[L()]: P eP}.

Then, it is (Bd?)-smooth in the sense of Definition 3.6.

Example 3.8 (Regular G-smoothness) For the RR measures in Examples 2.2 and 3.3
with the same underlying norms, the smoothness constant 8 of the respective r-
function is as follows:

(a) Variance: Recalling the function r from (6), and that Vr(Z, ) = (I, —2u), we
get f =2.

(b) Entropic risk: Assume that there exists b > 0 such that b < Ep,[e~%%/] for all
j=12,...,n,and P = (P;); € P, and letting 6pjn = min;g, 6;, we see
that the function r : [b, +00)" — R as given in (7) is B-canonically smooth for
B = (b%6min) .

(¢c) Finite support: Assuming that the risk measure R has B’-Lipschitz continuous
gradients on AN with respect to some norm ||-]|. It follows from (8), that 8 =

ﬂ/ HM—l

i’Whefea M7, = supy < |47l

One of the advantages of the proposed notion of smoothness is that it allows us
to employ inequalities and bound sets in a finite-dimensional space to guarantee the
smoothness of the risk measures. Since all norms on finite-dimensional spaces are
equivalent, establishing that 8, d < +o0o with respect to the same norm is not restric-
tive, even though this may give rise to dimension-dependent constants 8 and d.
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3.3 Frechet derivatives

An important observation to be made is that the Q-directional derivative dR(]P; Q)
of regular-risk measures is affine in Q.' In principle, without any further assumptions
on the risk measure R, its Q-directional derivative need not be affine in Q. Counter
examples of functions that have well defined G-derivatives in all directions but that
are nonlinear in the direction exist even among functions defined on R2, let alone the
infinite-dimensional setting of P. A sufficient condition for the directional derivative
to be affine in Q is the existence of a stronger notion of derivative called the Frechet-
derivative or F-derivative.

Definition 3.9 (Frechet-derivative) The Frechet(F)-derivative of the risk measure R
at IP € P associated with a given norm ||-||p on P, is a function £{p : E — R such
that the mapping P > P’ — Ep/[£p(§)] is continuous w.r.t. ||-||p and satisfies

0= lim R(E) — R(P) — Epr_pltr @] (19)
IP'—P|l 540 P —Plp

Smoothness with F-derivatives If the F-derivative £1p were to exist atevery P € P,
the canonical notion of smoothness (39) can be naturally extended into the infinite-
dimensional setting. The risk measure R is F-smooth if there exists some 8 > 0 such
that its F-derivative £1p satisfies

F-smoothness:  [[¢p — p/[p+ < B P — ]P’”P forall P,IP" € P, (20)

where |- || p« is the dual norm of ||-||p. If the risk measure in (5) is F-smooth, most of the
convergence analysis due to smoothness in finite-dimensional convex problems simply
carries forward to the infinite-dimensional setting right away. This provides a natural
recipe to extend the FW algorithm into the infinite-dimensional setting of probability
spaces and establish their convergence under F-smoothness. F-derivative based FW-
algorithms in probability spaces have already been studied in the literature [31] with a
slightly more general notion of smoothness than (20), and for a slightly more general
class of risk measures than the usual concavity assumption. Our approach differs from
[31] in the fact that we only make use of G-derivatives in both the development of
the FW-algorithm and also in establishing its convergence based on only G-derivative
based regularity conditions, which are simpler to deal with than F-derivatives.

Comparison with G-derivatives It is not necessary for a function to have
F-derivatives even if it has affine directional derivatives in all directions, such coun-
terexamples exist even in a finite-dimensional setting. On the contrary, if the risk
measure R has a well-defined F-derivative £p, then it can be shown that its Q-
directional derivatives also exist in all directions Q € P. This is easily seen by
considering P’ = P + y(Q — IP) for ¥ € [0, 1] in the definition (19) and observing

1 A function f:S —> Rissaidto affineif f(x +0(y —x)) = f(x) +0(f(y) — f(x)) forevery x,y € S
and 6 € [0, 1].
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that Epr_p[lp(§)] = yEq_pltp(§)]. When Q # P, the limit [P’ —P|, | 0is
achieved if and only if y | 0. Then it follows from (19) that

0 — 1 R(Py) = R(P) — yEq-pltp ()]
vio Y 1Q —Plip
(dR (P: Q) - EQ—P[EP@)]).

T IQ-Plp

Since @ # IP, we conclude that the Q-directional derivative exists and dR(]P; Q
Eq-p[¢p(§)]. Moreover, this equality holds even if Q = PP since dR(P; P) =
Ep_pltp€)].

The notion of F-derivative relies heavily on the underlying metric structure on P,
whereas, the notion (Definition 3.1) of G-derivatives is independent of it. To compare,
for a G-derivative to exist along a given direction, it is only required for the limit in
(9) to exist. However, the existence of an F-derivative requires that the limit in (9) is
achieved uniformly over all possible directions.

)
0_

Challenges with F-derivatives Even though the notion of F-smoothness (20) is
a natural extension of canonical smoothness (39) in an infinite-dimensional setting,
working with F-derivatives is potentially challenging due to the following reasons:

(1) Existence: It is a stronger requirement that the limit in (20) converges uniformly
(w.r.t.]|-|lp) in all directions, which often implies that an F-derivative might not
even exist.

(i1) Finite representability: An F-derivative is a function {p : E — R which is
an infinite-dimensional object, so apriori, it is not clear as to whether it can be
characterized in terms of a few finite-dimensional quantities.

(iii) Norm consistency: Most importantly, it is often very difficult to establish the
smoothness condition (20) of the F-derivatives in a specific norm. To elaborate
further, we know that the FW algorithm in a finite-dimensional convex problem
converges sub-linearly, if the feasible set is bounded and the objective function is
smooth. Since all norms on finite-dimensional vector spaces are equivalent, the
choices of norms for establishing the smoothness of the objective function, and
the boundedness of the feasibility set are irrelevant (even though this could poten-
tially give rise to dimensionally dependent constants). However, since no such
equivalence exists between norms on an infinite-dimensional space, it becomes
then necessary that the risk measure is F-smooth w.r.t. the same norm under which
the ambiguity set is bounded, which is a much stronger condition to expect.

We close this discussion by providing an example wherein a risk measure has
directional derivatives and is G-smooth, yet its F-derivatives do not exist. In particular,
we argue that all RR measures that satisfy conditions of Lemma 3.7 are G-smooth,
whereas their F-derivative does not exist if the corresponding L function (i.e., sufficient
statistic) is discontinuous.

Example 3.10 (G-derivative vs F-derivative) Suppose the supportsetis & = [—1, +1],
the ambiguity set P contains all possible distributions supported on E and itis equipped
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with a Wasserstein metric. Let the regular risk be defined by the sign function L(§) =
sgn(&) (with the convention that sgn(0) = 0) and r (z) = z,i.e., R(P) = Ep[sgn(&)].

(a) Existence of G-smoothness: We conclude from Lemma 3.2 that the G-derivatives
of the risk measure exist and are given by dR (IP; Q) = Eq_p[sgn(§)]. Moreover,
since the support E is bounded, condition (i) of Lemma 3.7 is satisfied withd = 2,
and since Vr(z) = 1 for all z € [—1, +1], condition (ii) of Lemma 3.7 is also
satisfied with 8 = 0. Consequently, the given regular risk is 0-smooth in the sense
of Definition 3.6.

(b) Non-existence of F-derivatives: Since dR(IP; Q) = Eq-plsgn(§)], if the F-
derivative of the risk measure R were to exist, the mapping Q — Eq_p[sgn(£)]
must be continuous. However, for the sequence of distributions Q,, (§) = §(§—1/n),
we see that Eq, _p[sgn(§)] = 1 — Ep[sgn(§)] foralln = 1,2,,..., and they
converge to the distribution = §(&¢) in the Wasserstein metric, for which we
have Eq_plsgn(¢)] = —Ep[sgn(®)] # 1 — Ep[sgn(¥)] = Eq,_plsgn(&)].
Therefore, the F-derivative of the risk measure does not exist.

More sophisticated examples of risk measures and ambiguity sets can be constructed
following the same underlying idea of discontinuity of function L. Example 3.10
highlights the relevance of different notions of derivatives and the resulting regular-
ity. The existence of F-derivatives and associated smoothness requires the derivative
object to be continuous w.r.t. more variations of distributions whereas the notion of
G-derivatives and smoothness considers variations only along a line joining any pair
of distributions. Luckily, since the FW algorithm operates by taking convex combina-
tions at each iteration, we only require the latter bounds which are considerably less
restrictive.

3.4 G-derivatives in non-flat spaces

In the following, we consider a slightly general setting wherein the ambiguity set
‘P may not be convex, e.g., when P C N (R") is the set of n multivariate Gaussian
distributions. In such a setting, given two distributions IP, Q € P, the line joining them
PP, = P + y(Q — P) is not contained in P. Even though such examples cannot be
directly handled in our setting, it turns out that a slight modification of the definition
of the derivative allows us to take care of such scenarios. To this end, we assume that
the ambiguity set P is equipped with

(a) Metric:d : P x P —> [0, +o0[
(b) Geodesics: For any P, Q € P, there exists a parametric curve [0, 1] > y >
P4 € P such that P§ = P, P{ = Q, and d(IP¢, Pg,) =y —y'|dP, Q).

For example, if P = N (R"), then each distribution is uniquely identified by its first and
second moments i and X respectively. Then, for given two distributions P = N (i, X)
and P’ = N (u/, ©'), we define the metric d (PP, P') := \/HpL — M’II% + 1z - E’||2F,

and the associated geodesic is IP;‘f = N(u,,, X,), where (uy, X)) = (1—-y)(u, )+
y(u', =,
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G-derivatives and smoothness. Given a geodesic structure on P, we define the asso-
ciated G-derivatives by

dR(P; Q) = y%i (R(EY) - R(P)).

Observe that the above definition is slightly different from that of (9) where the convex
combination IP,, of distributions IP and Q is replaced with its geodesic counterpart.
Consequently, we can also define G-smoothness on non-flat spaces in a geodesic sense
similar to Definition 3.6. We say that the risk measure R is C-smooth if there exists
some C > 0 such that the inequality holds

dR(IP; IP)‘f) +dR(IP)d/; IP) < y2C, forany P, Q € P and y € [0, 1].

Geodesic concavity. We can define a notion of concavity using the geodesic structure
that is slightly more general than the usual notion. We say that a risk measure R is
geodesically concave on P if the mapping [0, 1] > ¥y +——> R(IP;‘i) is concave for
every IP, Q € P. It turns out that both of the results from Proposition 3.4 hold true
for derivatives defined in a geodesic sense. This allows us to consider DRO problems
like

min sup Ep[f(x, )] — AG(P, P),
xeX IPGN

where G (P, @) is the Gelbrich distance (or any other moment-based distance). We
wish to emphasize that the FW algorithm must also be adapted to work with the
geodesic derivatives instead.

4 The Frank-Wolfe algorithm

Given the notion of G-derivative as in Definition 3.1, the Frank—Wolfe (FW) algorithm
for (5) is an iterative procedure that involves solving the optimization problem

sup dR(P; Q), 21)
QeP

for a given IP € P, at each iteration. The FW-problem (21) is linear if and only if the
G-derivative dR(]P; Q) is affine in @, for every P € P, translating the problem into
the linear DRO class in (3). This is indeed the case for many interesting risk measures
as seen in Example 3.3. Moreover, in all finite-dimensional optimization problems,
the corresponding FW-problem (21) is always linear, which need not be the case for
a generic infinite-dimensional optimization problem like (5).

Implementation of the FW algorithm only requires a well-defined notion of the
G-derivative, and as seen in Lemma 3.2, such objects can be computed by means
of a few finite-dimensional quantities in several problems of interest. Moreover, even
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Fig.3 Pictorial representation of the FW-oracle

though the FW-problem (21) is infinite-dimensional in nature, it admits tractable finite-
dimensional convex reformulations for many relevant applications similar to linear
DROs [16]. This is a compelling reason to investigate FW methods for optimiza-
tion problems over probability distributions, particularly in the case of nonlinear risk
measures as in (5).

4.1 FW oracle

The FW-oracle is a set-valued mapping F : P x [0, 1] — 2% defined as

F@P,y) = {Q/ € Psuchthat sup dR(P; Q) < y8C +dR(P; Q). (22)
QeP

Given the current iterate I € P, the FW algorithm involves solving the FW-problem
(21) to obtain its approximate solution Q' € P, then the current iterate IP is updated
by moving it towards Q' as shown in Fig. 3.

Additive accuracy of the oracle The parameter § > 0 is an arbitrary positive
number signifying the accuracy of the FW oracle, and C is the smoothness constant
of the risk measure R as in Definition 3.6. It must be observed that in an iterative
scheme to solve (5), it is typical that the stepsize sequence (k) is monotonically
decreasing and converges to 0. Therefore, it is also required that the FW-oracle solves
the sub-problems (21) up to a greater precision as the iterations progress.

The Frank-Wolfe-gap We refer to the quantity supgep dR(]P; Q) as the Frank—
Wolfe(FW)-gap at P, and it is crucial in defining aposteriori stopping criteria for

@ Springer



Nonlinear distributionally robust optimization

the FW-algorithm. Along with the distribution @', we assume that the FW-oracle also
provides access to the quantity dR (]P; Q’), which s an approximate of the FW-gap at IP.

Assumption 4.1 (Accessibility of FW oracle) We assume that the FW oracle (22)
is computationally available, i.e., there exists a tractable approach to find a feasible
solution from the set (22).

To develop our algorithm for NDRO problems, we assume the accessibility of the
FW oracle in Assumption 4.1. However, given a DRO problem at hand, one needs to
ensure that the corresponding FW oracle is indeed computationally available. When
the directional derivatives are linear in Q, the corresponding FW problem is a linear
worst-case distribution problem, akin to the linear DRO problems (3). The properties
of the loss function £(&) (suppressing the decision variable x in (3)) under which the
respective linear DRO enjoys a tractable reformulation have been extensively studied
in the literature. Next, we provide an example of this kind.

Remark 4.2 (Tractable FW oracle) For the RR measures in Definition 2.1, the FW
oracle is a lienar DRO (3) with the loss function £(§) = (Vr(IEp[L(§)]), L(&)) (cf.
(10)). If this loss can, for instance, be described as a sum of pointwise maximum
of concave functions (i.e., £(§) = Zth maxg <k £k (§)), we know that the linear
DRO (3) under the Wasserstein ambiguity set P and the norm transportation cost || - ||
has a tractable reformulation [10, Theorem 6.1]. In this light, a sufficient condition for
the RR measure is when each element of the sufficient statistic vector L (&) constitutes
a pointwise maximum of finitely many concave functions and Vr > 0.

We note that the sufficient statistics of the variance and entropic risks in Example 2.2
do not meet the piecewise concavity condition of Remark 4.2; they are convex quadratic
and exponential function, respectively, over the desired support sets. It is interesting
to see that in the case of entropic risk, the positivity Vr > 0 is, however, fulfilled
(see Example 3.3(b)). Besides the tractability setting of Remark 4.2, the literature
includes various other combinations of ambiguity sets and functionals of probability
distributions supported on finite support [ 17], the moment-based ambiguity sets [4—6],
and the metric-based ambiguity set [16, 41], to name but a few.

Lemma 4.3 (FW-one-step-bounds) Consider (5) with a risk measure that is C-smooth
in the sense of Definition 3.6 for some C > 0, and let R* be its optimal value. Let
F be the corresponding FW-oracle as in (22) with an arbitrary accuracy parameter
§>0. ForanyP € P,y €[0,1], and Q' € F(P,y), let P, =P + y(Q — P) be
the one-step-ahead FW update from P with a stepsize of y. Then we have

R~ R(P) < sup dR(P:Q) < +(R(P,) ~ R(P)) +yC(1+8). (23)
QeP 14

Rearranging the inequality (23), the one-step improvement in sub-optimality is seen
to be

R*—R(P)) < y*C1+8)+1—y)(R* — R(P)). (24)
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4.2 FW convergence guarantees

The FW-algorithm seeks to solve the optimization problem (5) by iteratively solving
the FW-problem (21) using a FW-oracle as in (22). More precisely, given a step size
sequence (yx)x C [0, 1] and a distribution Py € P, the FW-algorithm generates a
sequence of distributions (IPx)x such that

FW-algorithm: Pgy; = Py + % (Qx — Px), where Qi € F(Pk, v). (25)

It must be observed that the implementation of the FW algorithm (25) does not depend
on the choice of a norm on the ambiguity set P. Therefore, it is desirable to have a
norm-independent analysis of the FW algorithm. To this end, we take inspiration from
[28], which has a similar analysis for the convergence of FW-algorithm for finite-
dimensional problems by working with the notion of curvature co-efficient instead of
the canonical smoothness (16) used in [29]. It turns out that the notion of smoothness
defined in Definition 3.6 is also amenable to a similar analysis of the FW-algorithm;
with the advantage that (15) is more in-line as a generalized notion of smoothness
from (16) and (17).

Proposition 4.4 (Apriori bounds) Consider (5) with a risk measure that is C-smooth
in the sense of Definition 3.6 for some C € [0, +00), and let R* be its optimal value.
Fork =1,2,..., let (Py)k be the sequence of distributions obtained from the FW-
algorithm (25) with a step size sequence yy = é and some Py € P. Then

4C
R* — R(P) < m(1 +8) forallk > 1. (26)

Regarding the FW algorithm (25), an important observation to be made is that the
“complexity” of the distribution P may, in general, increase with each update of
F W -iteration. To make this more clear, suppose that the distributions of Py and Qx
are both discrete with potentially different support sets. Then, it is straightforward to
see that the support of the next iteration P41 is the union of the two supports, and as
such, its cardinality increases in each iteration. However, this issue can be avoided in
the case of regular risk measures.

Remark 4.5 [Sufficient statistics & reduced FW update] When the risk measure is
regular in the sense of Definition 2.1 (i.e., R(P) = r(Ep[L(£)])), we recall from
(10) that the G-derivative dR(IP; Q) is characterized entirely in terms of the finite-
dimensional sufficient statistic vector IEp[L(&)]. The FW algorithm (25) reduces to
the finite-dimensional update

pkr1=mi+vi(ve—pk),  where we{EqQIL(E)] €eR™ : Qe F(P,y)} (27)

in which F(IP, y) is the FW-oracle (22), and the initial condition is ;o = Es[L(§)].
When the FW-oracle (22) is computationally available (e.g., the tractable cases in
Remark 4.2), it suffices to follow the reduced finite-dimensional update rule (27),
instead of the infinite-dimensional update (25). In other words, the worst-case risk (5)
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can be solved via suppcp R(IP) = r(u*), where u* is the convergent point of the
reduced FW-algorithm in (27). Thus, the finite vector Ep[L ()] is indeed “sufficient”
for computing the worst-case risk via the FW algorithm.

We note that the sufficient statistics in Remark (4.5) becomes more involved when
an additional decision such as x in (4) must be determined. This shall be addressed in
the next section.

4.3 FW-gap based termination and aposteriori bounds

Suppose that we know some C” > 0 that satisfies the smoothness condition (15). Then

4C'(1+9)
B

for any given ¢ > 0, if the FW algorithm is run for K > ( —‘ — 2 iterations

with the stepsize sequence y; = ﬁ, then the last iterate Px is guaranteed to be
& sub-optimal in objective value. Thus, in principle, it suffices to only know some
upper bound C’ > C for the smoothness constant. However, if finding C exactly is
challenging, and the known upper bound C is not tight; the theoretically guaranteed
number of iterations required for e-sub-optimality may not be practical. In such a
setting, it turns out that the optimal value of the FW-problem (21) called the FW-gap
provides a good measure to define aposteriori stopping criteria. Moreover, we will also
see later for NDRO problems that terminating the FW algorithm when the FW-gap is
small provides worst-case performance bounds in the context of DRO problems. We
follow the analysis of [28, 30] by considering the FW algorithm under two regimes
of stepsize sequence to obtain provable upper bounds on the FW-gap towards later
iterations.

Since the oracle employed to solve the linear minimization sub-problems at each
iteration is only accurate to some specified precision, the actual value of the FW-gap
SUPQep dR(IP; Q) is never known exactly. However, at each iteration k, the FW-
oracle does provide its approximate estimate d R (IP; Qk), which satisfies the inequality
SUpQep dR(IP; Q) <y C + dR(IP; Qk). Thus, for a given value of ¢ > 0, we ter-
minate the FW procedure by examining the quantity dR (]P; Qk) such that the desired
FW-gap inequality: supgep dR (IP; Q) < &, is satisfied.

Proposition 4.6 (Aposteriori bounds) Consider (5) with a risk measure that is C-
smooth in the sense of Definition 3.6 for some C > 0, and let R* be its optimal
value. Let K > 1 and let (Py)y be the sequence obtained from the FW-algorithm (25)
using a diminishing stepsize yy = ﬁfor k=0,1,..., K — 1, and then a constant
stepsize Yy = = fork = K, K +1,...,2K + L. Finally, let gy = dR(P; Q)
fork = 1,2,...,2K + 1 be the sequence of approximate FW-gaps. There exists
ke{K,K+1,...,2K + 1} such that

R* —R(Pp) < sup dR(P3; Q) < € +39)

, 28
QeP K +2 (28)

and every such k is recognised by verifying the inequality g < I?—fz(l + 6).
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Remark 4.7 (Explicit error bounds) Consider the setting of Proposition 4.6 with K =
K(e) = [%C(Z +38)| — 2 for an ¢ > 0. Then, there exists k € {K(¢), K (¢) +
1,...,2K(e) 4+ 1} such that

sup dR(IP;; Q) <eg,
QeP

and every such k is recognised by verifying the inequality g < 5%.

4.4 FW stepsize selection

The last part of this section discusses two particular features of the stepsize rule (two-
regimes and diminishing behavior) in Proposition 4.6.

Two-regimes stepsize The two-regimes for y; in Proposition 4.6 turns out to be
crucial to obtain provable guarantees that the FW-gap is bounded above in the later
iterations. Even though such certificates are of independent interest in their own right,
having such upper bounds is also essential in the context of DRO problems. An upper
bound on the FW-gap at iteration k ensures that the performance of the decision xj
for the worst-case distribution is not “too-bad”.

Different stepsize selection for the FW algorithm For generic feasible sets, the
Frank—Wolfe algorithm requires that the stepsize sequence (yx ) be diminishing. Even
though the risk measure is smooth, the direction Q; may change dis-continuously
around the optimal solution if the ambiguity set P has flat faces (like Wasserstein-1
balls). Therefore, the Frank—Wolfe algorithm in general requires diminishing stepsize
to converge, and might not converge with constant stepsize unlike gradient descent
algorithms. Even with the standard diminishing stepsize of yx = 2/k+2, the canon-
ical FW algorithm is plagued with the zig-zag phenomena where the iterates keep
oscillating around the optimal solution. To remedy these challenges of FW in finite-
dimensional convex problems, various adaptive stepsize sequences have been proposed
in the literature with provably better guarantees under some additional assumptions.
In the following, we describe the main ideas of these stepsize selection rules in the
context of (5).

(a) Demyanov-Rubinov (DR) stepsize: A very interesting stepsize selection is due to
[42, 43]

ykzmin{f—é,ll, (29)

which adaptively tunes the stepsize yx using the current value of the FW-gap.

(b) Backtracking: Suppose, it is relatively easy to evaluate the risk measure R, then
one can employ the backtracking based DR step size due to [44, 45]. This stepsize
selection rule adaptive tunes the smoothness constant C locally along the line
segment (P, Q). This allows the backtracking step size to take larger steps
than other methods. Specific way to adaptively tune the smoothness constant may
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vary, the specific rule in [44] can be summarised as follows. For fixed constants
n € (0, 1), T > 1, at each iteration the stepsize rule is

. 81
=min{ ———, 1; for the largest ¢t = 1, 2, ... such that
Ve {ZT’Ck } g (30)

R(Py41) = R(Px) + vigk — y>7' Cx.

The smoothness constant is also updated as Cy11 = nt’Cy. Another variant [45,
Assumption 6.1, Algorithm 1] of backtracking-based step size selection in the FW
algorithm gives rise to linear/geometric convergence with further assumptions on
the feasible set.

(c) Exact line search: If it is easier to optimize the risk measure R on the line segment
(Pg, Q;), then one can also select the stepsize by exactly maximizing

v = argmax  R(Py 4 y(Q; — Pyp)). €1y
yelo,1]

5 Nonlinear distributionally robust optimization
Let us recall that a generic DRO problem is formulated as the min-max problem

F*:= inf sup F(x,P), (32)
xeX pep

where X C R” is a closed convex set, denoting the set of feasible decisions, and P
denotes a given ambiguity set of distributions. A DRO problem is said to be feasible
if F* < 400, which happens if and only if there exists some x € X such that
suppep F (x, IP) < +00. Our objective is to develop a framework to solve a generic
DRO problem (32). Particularly, with emphasis on the case when F (x, IP) is nonlinear
in P for every x € X, to which we refer to (32) as a nonlinear distributionally robust
optimization (NDRO) problem.

The way the variable x enters the risk F in (32) may have an impact on the scala-
bility of the proposed FW algorithm. In particular, in the case of the regular risks in
Definition 2.1, the important feature is whether the decision x influences the sufficient
statistics of the risk (cf. Remark 4.5). This consideration leads to two classes of regular
risk measures:

() F(x, P) = r(x, Ep[L(£)]) and (i) F(x,P) = r(Ep[L(x,£)]).  (33)

It should be noted that class (i) in (33) is a special form of class (ii). For regular risk
measures in class (i), the sufficient statistic I5p[L (§)] is not influenced by the decision
x, whereas this is not the case for general regular risk measures in class (ii). This subtle
difference makes a significant impact on whether the FW algorithm can benefit from
the notion of sufficient statistic described in Remark 4.5. The variance and entropic
risks investigated in this article are indeed different in view of this feature.
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Example 5.1 (Regular NDRO examples) The analogous examples of Example 2.2 in
the NDRO context are the following:

(a) Variance: The variance V (x, IP) (cf. (6)) associated with the distribution IP and a
decision x is

V(x,P):=x"(Zp — upup)x, where Ep:=Ep[£& ] and up = Ep[&].
(34)

(b) Entropic risk measure: The entropic risk measure £(x, IP) (cf. (7)) of a multivari-
ate distribution IP and decision x. If IP is a distribution with marginals IP; for
Jj=12,...,n, (e, the j-th component §; is IP; distributed). For a given set
of positive risk-aversion parameters (0 J').r;:l in (0, 400), the associated risk is
defined as

n

Ex.P) =) Ql log (Ep, [e~%1%i517). (35)
J

j=1

It is straightforward to see that the NDRO variance risk (34) belongs to the class

(i) in (33), and thus keeping its sufficient statistic (i.e., the first two moments) intact,

while the NDRO entropic risk (35) belongs to the class (ii) in (33) where the vec-

tor L(x, &) depends inseparably on x. Looking ahead at (64), we see that the proposed

FW Algorithm 1 applied to variance risk measure simplifies to iterations over only
sufficient statistic («, X) and x.

NDRO dual problem Associated with the DRO problem (32) is its dual problem:

Dual problem: F, := sup inf F(x,P). (36)
Pep¥eX

In general, we have weak-duality F, < F* relating the optimal values of the primal
problem (32) and its dual (36). If F, = F* specifically, we say that strong duality
holds between (32) and (36). Moreover, suppose the DRO problem (32) and its dual
(36) admit the solutions x* and IP*, i.e.,

x* € argmin sup F(x,P) and P* € argmax inf F(x,P),
xeX PeP Pep YeX

Then, the pair (x*, P*) is said to be a saddle point solution to the problems (32) and
(36), which is also characterized by the condition

* _ * R) . *
glEa%F(x ,IP) = F(x ,IP) = ){I;%F(x,IP )

The existence of a saddle point is sufficient for strong duality to hold, however, it is not
necessary. Therefore, whenever strong duality holds, we consider the slightly relaxed
notion of an e-sub-optimal saddle points as a solution concept for (32).
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Definition 5.2 (e-saddle point) Given ¢ > 0, a pair (xg, IPg) € X x P is an e-saddle
point of the DRO problem (32), if it satisfies

— &+ sup F(xg,IP) < F(xg,IPg) < e+ inf F(X,IPE). (37)
PeP xeX

It is worth noting that if (xs, IPg) is an e-saddle point, then we have the inequalities:

sup F(xe, Q) < 28+yig£(F(y,IP5) < 2+ inf sup F(y,Q) = 2&+ F*, and

QeP YeX QeP
inf F(y,Pe) > —2¢+ sup F(x¢, Q) > —2e+ sup inf F(y, Q)= —2c+ Fy.
yeXx QeP QeP yeX

In other words, if (x¢, P;) is an e-saddle point, then both x, and P, are at most 2¢-
sub-optimal to the DRO problem (32) and its dual (36) respectively. Consequently,
the decision x; is guaranteed to be at most 2e worse from the best decision that could
have been made in a DRO framework.

Solving the minimization over x in the dual-problem (36) results in a maximization
problem (potentially nonlinear) over the distributions

sup R(IP), where R(IP) = inf F(x, IP). (38)
PeP xeX

Denoting x(IP) := argmin, .y F (x, IP) (whenever a minimizer exists), for every P €
‘P, the proposed method to compute an e-saddle point of the DRO problem generates
a sequence (xg, IPr)r, where x; € x(IPx) for each k, and the sequence of distributions
(P« ) is obtained by applying the FW algorithm to the maximization problem (38). If a
pair (x’, P’) satisfies P’ € argmaxp.p R (]P) and x’ € x(IP’), then it is not guaranteed
that x’ € argmin, .y SUppcp F(y, IP) unless x(IP’) is unique. It so turns out that
the regularity assumptions on F and P, required for the algorithm convergence, also
ensure uniqueness.

5.1 NDRO: continuity, derivatives and smoothness

Our proposed method to solve the NDRO problem (32) by applying the FW algorithm
to (38) requires that the risk measure R therein has well defined G-derivatives that
are also smooth in the sense of Definition 3.6. This is not guaranteed apriori. In the
following, we impose some regularity assumptions on the function F that guarantee
the required smoothness of the risk measure R.

Assumption 5.3 (NDRO smoothness) Let Py, := P + y(Q — IP) as in (9) and denote
F.() = F (x, -), for every x € X. We assume that there exists positive constants
«, C1, Cy such that

(1) Continuous function: The mapping X x [0, 1] > (x, y) +—> F (x, IPV) is proper,
convex-concave, and continuous for all P, Q € P.

(i) Continuous derivatives: The function Fy(IP) is directionally differentiable on
‘P, and the G-derivative d Fy (IP; Q) is C-Lipschitz continuous in x uniformly
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overP,Q € P, ie.,

dF,(P; Q) —dFyP; Q) < Cillx—yl, Vx,yeX VP,QeP.
(39)

(iii) Smoothness: The function F (IP) is Ca-smooth in the sense of Definition 3.6,
uniformly over x € X.

(iv) Strong convexity: The function F' (x, IP) is «-strongly convex in x w.r.t. the norm
||-Il, uniformly over all P € P, i.e.,?

% e — yI2 < F(y, P) = F(x, P) — (Vi F(x, P), y — x),
Vx,yeX, VP, QeP. (40)

Remark 5.4 (Choice of norm on X') It must be noted that the norm ||-|| considered in
the strong convexity assumption (40) and the continuity assumption (39) is identical.
Considering an identical norm is not restrictive since all norms on X are equivalent.
However, using such equivalence often makes the resulting constants o, C; to be
dimension dependent (of X’). We emphasize here that the smoothness constant given
in Lemma 5.5, requires that the constants «, and C; that satisfy conditions (39) and
(40), to satisfy with an identical norm.

For now, we assume that these conditions for the abstract problem (32) are satisfied.
However, for specific problems like the entropic or variance risk minimization (Sects. 6
and 7, respectively), we will determine verifiable conditions whenever possible so that
the conditions in Assumption 5.3 are indeed satisfied, (see

Lemma 5.5 (NDRO-derivative properties) Let the function F satisfy Assumptions 5.3
with constants a > 0, and C1, C2 > 0, then the following holds for the risk measure
R as defined in (38)

(i) Danskin’s theorem: The risk measure R is directionally differentiable on P, and
forany P, Q € P its Q-directional derivative dR(]P; Q) at P, is given by

dR(P; Q) = dFy(p)(P; Q). 1)

(i) Smoothness: The risk measure R is C-smooth in the sense of Definition 3.6 for

Cq >
C:C2+2— C1++/Cy+4aCr .
(07

5.2 Frank-Wolfe based algorithm for the NDRO problem

LetP; fork =0, 1, 2, ..., be the sequence of iterates generated by the FW-algorithm
(25) for R as defined in (38). Assume that the FW oracle is §-accurate, for some

2 ViF(x,P) = (BF/ax) (x, IP) denotes the partial derivative of F w.r.t. x evaluated at (x, IP).
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arbitrary 6 > 0. To produce a solution x, to the NDRO problem (32) for a given
¢ > 0, one must decide the number of iterations K (¢), the stepsize sequence y; for
k=0,1,..., K(¢), and the stopping criteria for the FW-algorithm. Algorithm 1 and
the related next theorem present the main result of the article that provides a solution
to the NDRO problem (32).

Algorithm 1: FW algorithm for NDRO problem (32)

Input: A distribution IP € P, positive real numbers ¢ and C, and access to a FW-oracle
corresponding to the function F'.

Output: The final decision variable x; and worst case distribution Py .

Initialization: Py .= P

diminishing stepsize regime

for:k=0,1,2,....K(e) = [ 2£ 2 +38)| -2

-

N

stepsize: y; = %
find (xz, Q) € X x P such that

F(xg, Py) = miny F(x,Py) and gu};j dFy, (Pr; Q) < 8y C +dFy (Pr; Q) (42)
€

gk = dFy (Pr; Q) and Py =P + yi(Qr — Py)
end for
constant stepsize regime
fork=K()+1,...,2K(e) + 1
stepsize: y; = ﬁ
if gx > s%, do
find (xz, Q) € X x P based on (42)
gk = dFy (Pr; Q) and Py =P + yx(Qr — Py)
else
Output: x; = x; and P, := 1P} and end for.
end for

w

S

wn

Theorem 5.6 (NDRO solution) Consider the Nonlinear DRO problem (32) under the
setting of Assumptions 5.3. Then the following holds

(i) Strong duality:

F* = min sup F(x, IP) = sup min F(x,IP) = F, (43)
xeX pep PepP e

(i) Saddle point computation: Given any ¢ > 0, the pair (xz, P;) computed from
Algorithm 1 is an g-saddle point in the sense of Definition 5.2.

Approaching an NDRO problem via the FW-based approach in Algorithm 1 requires
the following three key ingredients:

(1) Regularity conditions of Assumption (5.3): To ensure the convergence of the FW
algorithm, we must ensure that the corresponding G-derivatives exist, and satisfy
regularity conditions of Assumption 5.3, particularly (ii) continuous derivatives
and (iii) smoothness.
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(i1) Solverformin,cx F (x, IP) in(42): Since itis a finite-dimensional convex problem,
any well known first-order methods like ISTA, FISTA [46], Nesterov’s Accelerated
Gradient Descent [47], Extra Gradient [48] can be applied. Moreover, since the risk
function F is assumed to be strongly convex in x (or at least with a regulariser),
these first-order methods solve the corresponding minimization problems with
geometric convergence.

(iii) Feasibility of the FW oracle (42): The FW worst-case distribution problem must
admit tractable reformulations. In fact, when the directional derivatives are linear
in the distribution, the corresponding FW problem is indeed tractable for several
interesting choices of risk measures and ambiguity sets, as discussed in [16, 17,
41].

5.3 Slower convergence without strong-convexity

In this case, we assume that the function F satisfies conditions (ii) and (iii) of Assump-
tion 5.3. However, it may not be necessarily strongly convex in x. For example, the
variance risk measure is strongly convex if and only if the smallest eigenvalue of the
matrix (EP — UPp u%) is bounded away from 0 uniformly over IP € P, which might
not be the case. Even in such a setting, we desire to develop methods that compute an
e-saddle point of F using the setup of Algorithm 1 for any ¢ > 0. We take inspiration
from the smoothing techniques in the optimization literature [49] for smoothing a
non-smooth convex function and devise similar techniques that work with a suitable
strongly-convex approximation Fg, of F, and still use Algorithm 1 to compute an
e-saddle point of F. To this end, we assume that the set X is also bounded in addition
to being closed and, thus, compact. Many common examples of X like the simplex
A", satisfy the compactness assumption.

Forany givenane > 0,x € X,and P € P, let F . (x, P) = F(x, IP) + (S/Bf) llx]|%.
We propose to solve the following min-max problem in place of (32)

min sup F(x, P), (44)
YeX pep
where B, = maX,cy ||x||. It is apparent at once that F¢(x, IP) is (2¢/B2)-strongly

convex in x, uniformly over P € P, and consequently satisfies all the conditions in
Assumption 5.3. Thus, employing Algorithm 1 with F, computes a pair (x’, P’) that
satisfies the inequalities

—e+sup F,(x', Q) < F,(x',\P') < e+ inf F,(y,P). (45)
QeP yeX

It turns out that such a pair (x’, P’) is an ¢-saddle point of F as well. This is easily
seen by observing that on the one hand, we have

(+/82) IIX’||2+5u1;; F(¥.Q) = swp F(x'.Q) < e+ R, P) (from (45)
€ €

e+ (/82) | '|)* + F(x', ).
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Thus, we immediately get supgep F (x', Q) < &+ F(x/,IP’). On the other hand,
since the minimization over x is solved exactly in Algorithm 1, we have

F.(x',P") = min F.(y,P") = min F(y, P") + (¢/B2 2
(', P min (v, P") min (v, ') + (¢/B2) Iyl

< 8+mi)r§F(y,IP’) since ||y|| < By forally € X
ye

Thus, it is apparent that the pair (x’, P’) is an g-saddle point of the function F as well.

Corollary 5.7 (Slower convergence) Consider a function F (x, IP) that is not neces-
sarily strongly convex in x. Then for any desired precision ¢ > 0, an g-saddle point

of F can be computed by applying Algorithm 1 with K (¢) = {%(2 + 38)—‘ -2,

2
to the strongly convex approximate function F¢, where C, = Cp + Cif’” <C1 +

/C12 + %Cz).

Since the strong convexity parameter of F; itself depends on &, we conclude from
Lemma 5.5 that the risk measure R, (IP) := min,cy F¢(y, IP), also has an ¢ dependent
Cé"f-g (Cl + /Cf + %Cz). Now, Algorithm 1 ter-
minates in O (K (¢)) iterations, where K (¢) = O (C¢/e). Since C; = O(1/¢), it is easily
seen that for non-strongly convex functions F', applying Algorithm 1 to its regularized
strongly-convex approximation Fy takes O(1/¢?) iterations to compute an g-saddle
point of F. To compare, recall that for a strongly-convex function F, Algorithm 1
takes O (1/¢) iterations to compute an ¢-saddle point. This trade-off between speed of
convergence and precision in the approximation is a typical occurrence in standard

smoothing techniques as well.

smoothness constant C, = Cp +

6 Entropic risk portfolio selection

This section is dedicated to study the proposed methodology and its required conditions
for the entropic risk (35). To thisend, let£(¢),t = 1,2, ..., T bei.i.d. samples drawn
from some unknown underlying distribution IP,, supported on E = R". We assume that
the individual components &@),i=1,2,...,n,are independentlz\ distributeg from
each other. Let P; = % Z;T:1 8(i(t)) fori =1,2,...,n,andlet P = IT7_, IP;. For
¢ > 0 and any two distributions IP, Q supported on R, let WD, (IP, Q) be a Wasserstein
distance between them defined as

sup Er [eclu_”‘] where (u, v) are m-jointly distributed
m

WD (P, Q) = (46)

subject to IP(u):/n(u,v)dv and Q(v) =/n(u,v)du.

For each j = 1,2/;..,11, consider WC((ﬁj,p)) ={P: WDC(P,@j) < p} and let
P, = H'}=1Wc((]Pjv p)). Let0; € (0,1) for j = 1,2,...,n be the risk aversion
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parameters, and for ¢ > max{f; : j = 1,2, ..., n}, we seek to solve
|
min sup E(x,P) =Y — log (Ep,[e%%5). (47)
xeA" IPGPC jgl 9] ( J )

We will study (47) in detail for the various notions of the directional derivative, smooth-
ness, and the resulting FW-oracle with its tractable formulations.

6.1 Regularity conditions

Recalling the entropic risk (7), we note that in the optimization (47) the mapping
P — &(x, P) is an RR measure in the sense of Definition 2.1 with functions L and
r given by

n

1
L(.X, S) — (6791x1§1 , 6*92)(2'52’ o efenxmén) and r(Z) — Z 9_ IOg(Zj)
j=1"

Thus, in view of Lemma 3.2 and using the short-hand notation &, () := £(x, -), we
can write the directional derivatives of the risk measure £, as

n

d&(P; Q) =)

j=1

Eq—p, e~/
0,Ep;[e~ii4i]

forevery P, Q € P. (48)

It turns out that for any saddle point (x*, IP*) of the problem (47), IP* belongs to
a strictly smaller set P, contained in P, and is of bounded support. The following
Definition characterizes the smaller ambiguity set and the subsequent Lemma 6.2
formalizes this assertion.

Definition 6.1 (Restricted ambiguity set) Foreach j = 1,2, ..., n, let

log(T
E =—p— ox( )—i— min
=J c t=1

5 and Ej= max &),

,,,,,,,,,,

let W} C Wc((ﬁ j» 0)) be the collection of distributions supported on |:§ i E j], and
let 'Pé = H’}Z]W}.

Lemma 6.2 (Restricted ambiguity set) A pair (x*, P*) is a saddle point of (47) if and
only if it is also a saddle point of

min sup &(x, P), 49)
xeX pepr

The crucial consequence of Lemma 6.2 is that it allows us to conclude regularity
conditions for the risk measure & (x, IP) by restricting our analysis to the smaller
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ambiguity set P... It turns out that the continuous derivatives and smoothness conditions
(ii) and (iii) of Assumption 5.3 respectively, are not satisfied for the entropic risk
portfolio optimization problem (47) on the entire ambiguity set P but only on the
smaller set P,.. Lemma 6.2 ensures that we can indeed restrict the ambiguity set from
P, to P, without losing any optimal solution. The following lemma establishes the
regularity conditions.

Lemma 6.3 (Entropic risk regularity conditions) Consider the entropic risk portfolio
optimization problem (47). Let £, (-) = E(x, -) for every x € X, then the following
assertions hold

(i) Continuous derivatives: The directional derivatives A€, (IP; Q), satisfy

n _
= 46,5, —¢ .
A& (P; Q) —dE(Q:P) < llx = ylly | Y E; — )25,
j=1
Vx,yeX VP, QeP.

(ii) Smoothness: The risk measure E is C-smooth in the sense of Definition 3.6 on P..

and uniformly over x € X for C = Zl 19, ( %8 1)2.

Besides the smoothness and continuity conditions, the uniform strong-convexity
assumption is extremely difficult to verify for the entropic risk measure. Therefore, as
discussed in Sect. 5.3, we add a strongly-convex regularizer of x to apply Algorithm 1.

6.2 The FW oracle

The FW problem for minimum entropic risk portfolio selection (47), at a given distri-
bution P is

w31l "
QeP, j=1 Qj [ Gngj]

Since Q = H'}lej and Q; € WC((ﬁj, p)), the FW problem (50) for entropic risk
is separable into n different problems, and foreach j = 1, 2, ..., n, we have

sup Eq; [e_efxfsf]. (5D
Q;eWe((P}.p))

Lemma 6.4 (Entropicrisk FW oracle) Let6 > 0, x € [0 1], andz(t) t=1,2,.

be any arbitrary collection of real numbers and let P = T Zt 18(z(t)) be a glven
discrete distribution. Consider the following problem

sup  BEgle "], (52)
QEW((P,p))
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Let (Z(t))t be a non-increasing permutation of (z(t))t, ie., we have Z(1) >
Z2) = -+ = Z(T). Let T' € {1,2,...,T} be the smallest integer such that

, —cOxZ(T") T —cOxZ(t)
(Te? —Te e=ox— =3 | 1 e <ox , define

c—6x
T 6x
0 1 —cOxZ(t)
n* ::_x m e c—bx and
S\ T s (53)
cz(t) + log(cn*/ox)

Z*(t) := min {z(t), } fort=1,2,...,T.

c—0x

(1) Optimal slution: The discrete distribution Q* = % erzl 8(z*(t)) is the optimal
solution Q* to the linear worst-case distribution problem (52).

(i) Lower and upper bounds: Foranyt = 1,2, ..., T we have
log(T) . . .
Z=—p— + min z(t) <z°(t) <zZ:= max z(1).
c t=1,...,T t=1,..,T

Corollary 6.5 (FW restricted ambiguity set) For any x € A" and P € P, we have
arg max d&, (IP; = arg max d&(P; Q). 54
e max A€ (P; Q)  Jua, 46, (P; Q) (54)

6.3 Simulation results

We validate the convergence properties of Algorithm 1 for the NDRO problem of the
entropic risk portfolio selection (47) with unrestricted support (i.e., 2 = R"). For each
Jj=1,2,...,n, the samples &;(¢), fort = 1,2,...,T = 2n, are drawn randomly
from bi-exponential distribution with density f;(-) = A je’)‘i 'l ' with each parameter
A j drawn uniformly from [0, 1], and the distribution IP is uniformly distributed over
the samples drawn. The risk aversion parameter 6; are drawn uniformly from [0, 1] for
each j = 1,2,...,n, and we select ¢ = 1 to define the Wasserstein distance in (46)
and the resulting ambiguity set P. For n = 250 and various values of p (the radius of
the ambiguity set), we solve (47). The proposed FW-based method (Algorithm 1 with
the FW-oracle of Proposition 6.4) is implemented in MATLAB on a Macbook Air (M1
with 8GB RAM), wherein the minimization problem: minycan £(x, Pg) is solved by
running the FISTA algorithm [46] until convergence.

For three distinct values of p = 1, 5, and 10, Fig. 4 shows the convergence of Algo-
rithm 1 with K (&) = 350, on the entropic risk portfolio selection problem (47).% The
plots on the top show the evolution of the Primal and Dual functions: minyean € (x, Py)
and suppp, € (xx, IP) respectively, w.r.t. the iteration k of the algorithm. Whereas, the

3 The coloured figures are available in online version.
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Fig.4 Convergence plots for Algorithm 1 with K (¢) = 350, applied to (47)

plots at the bottom of the figure show the evolution of the two sub-optimality metrics:

primal sub-optimality : " — mkn E(x,Pr) and
xeA"
duality gap . sup E(xx,P) — min E(x, Py).
PeP. xeAr

Since Algorithm 1 explicitly solves the minimization over x in each iteration (see
(42)), the primal function is readily available. However, this is not the case with the
dual function which needs to be computed independently at each iteration by solving
suppep, Ex (IP) while keeping the current iterate xy fixed.

With explicit regularization of x We observe in Fig.4 that, as the value of p
increases, the convergence of the algorithm becomes extremely slow. This can be
attributed to the fact that the strong-convexity parameter becomes extremely small, and
thus the resulting smoothness constant is prohibitively large, making the convergence
slow. To remedy this, as suggested in Sect.5.3, we compute an approximate saddle
point of (47) by applying the FW-algorithm to the explicitly regularized min-sup
problem

min sup = |3 + Ex, P). (55)
AN pep 2

Since ||x]l, < [lx]l; = 1 for all x € A", we know that an e-saddle point of (70) can
be computed for any ¢ > 0 by applying Algorithm 1 to (71) with o = 2e.
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Fig.5 Convergence plots for Algorithm 1 with K (¢) = 350, applied to (55)

In Fig. 5, we show the convergence plots of Algorithm 1 when applied to the explic-
itly regularized problem (55). We consider the same data set from Fig.4 but with a
slightly larger value of p = 15, making the conditioning of the problem even worse
than that for p = 10. We show the convergence plots of the algorithm for three differ-
ent values of @ = 0, 5, 10. Clearly, for « = 0, the problem is not regularized, and the
convergence is bad (even worse than that for p = 10 from Fig.4c). Then the effect
of explicit regularization and how it improves the regularity and convergence can be
clearly seen in Fig.5b and c.

7 Minimum variance portfolio selection

The minimum variance portfolio selection (34) is one of the textbook examples of
NDRO [23, 24, 50, 51]. This section is dedicated to studying the NDRO regularity
of this example and the different aspects of the proposed algorithm in this context.
To this end, let E i =1,2,...,N be ii.d. samples drawn from some unknown
underlying distribution IP,, and let P be the nominal distribution that is uniformly
distributed over the samples (’S\,'),'. Let P =W, (ﬁ p) = {Q : WD,, (ﬁ Q) < p},
where WD, is the m-th order Wasserstein distance between the distributions, induced
by the transportation cost coming from a norm ||-|| on E. More specifically, we have

WD, (P, Q)
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Vim
sup (]E,,[nu — u||m]) where (i, v) are 7-jointly distributed
s

subject to  P(u) = /n(u,v)dv and Q(v) = /n(u,v)du.

v u

Associated with the distribution IP, let Xp = Ep[£E T and up = Ep[£] denote its
first and second moments respectively. Finally, let X C A" denote the set of feasible
actions, then we seek to investigate the min-sup problem:

min sup Vx,P) = xT(Elp — mpug)x. (56)
YEX PeW, (P.p)

We shall study in detail the notion of the directional derivative, smoothness, and the
resulting FW-oracle with its tractable formulations for (56) under different conditions.

7.1 Regularity conditions

We recall that the variance risk (6) and note that the mapping P —— V. (IP) is an RR
measure in the sense of Definition 2.1 with the respective sufficient statistic L and the
function r

LE) = EET, &) and r(x, (T, 0) = x Zx— (x p)".

Unlike the risk entropic in Sect. 6, the variance sufficient statistic L above is not influ-
enced by the decision x (cf.the two regular risk classes in (33)). This is a particularly
useful feature to control the complexity of the FW iteration (25) by only tracing the
finite-dimensional sufficient statistic; see also Remark 4.5. In view of Lemma 3.2 and
using the risk functions the short-hand notation V. (-) := V (x, -), we can describe the
directional derivatives of V, as

dVe(P; Q) = Eq_p[x' (¢ —2up)g " x] forevery P,Q € Wu(P, p). (57)
Assumption 7.1 (Moments bound) There exists constants By, B;, > 0 such that
|2q—%p|,<Bs and |uq—up|,<B. forall P,QeW,(P®. p) (58

where Xp = Ep[£€ "] and up = Ep[£].

Lemma 7.2 (Variance regularity conditions) Consider the minimum variance portfolio
optimization problem (56), and suppose that Assumption 7.1 holds with constants
By, By,. Let Vi (-) .= V(x, ) for every x € X, then the following assertions hold

(i) Continuous derivatives: For C; = Z(Bz + Z(Bu + 1zl )2 + Bi) the directional
derivatives AV, (P; Q), satisfy

dVi(P; Q) —dVy(Q; P) < Crllx —yll,, Vx,yeX VP,QeP.
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(ii) Smoothness: The risk measure V. is (ZBI%)-smooth in the sense of Definition 3.6,
uniformly over x € X.

If Assumption 7.1 holds, then Lemma 7.2 ensures that the continuous derivatives
and smoothness conditions (ii) and (iii) of Assumption 5.3 respectively, are satisfied
for the minimum variance portfolio optimization problem (56). However, the uniform
strong-convexity assumption need not hold in general. For instance, if the ambiguity
set is large (i.e., if p is large), then all the data points &; can be perturbed within their
respective p-neighborhoods such that the variance corresponding to the perturbed
points is rank deficient. Thus, the strong-convexity condition in Assumption 5.3 is not
satisfied at the distribution supported over the perturbed points. In such cases, adding
an explicit strongly-convex regularizer to apply Algorithm 1 (as discussed in Sect. 5.3)
not only provides theoretical guarantees for convergence but also improves the speed
of the algorithm in our observation; see the numerical simulations concerning Fig.7.

7.2 The Frank-Wolfe algorithm

The FW-oracle Let us consider the FW-problem arising in the NDRO problem of
minimum variance portfolio selection (56),

sup  dVi(P; Q). (59
QEW (P, p)

Since the directional derivatives dV,(IP; Q) are affine in Q for every pair (x, P),
the corresponding FW-problem is linear. However, the existence and characterization
results of the solution to the FW-problem (59) change depending on the interplay
of (i) the Wasserstein distance type m, (ii) the transportation cost || - ||, and (iii) the
support set Z (unbounded, or compact). Therefore, the specific settings for which
the corresponding FW-oracle is easy to describe are discussed later in the section.
To this end, we simplify (59), and study its dual problem which is used later in the
characterization of a solution to (59).
It is a simple algebraic exercise to verify that

dvi(P; Q)

Eq-p[+"((6 - 2up)g 1]

Eq[€ = um T (xxT)& — up)] = x7(Sp - ppuf)x.

Since the distribution IP is constant in (59), eliminating terms that only depend on IP
does not affect the set of maximizers. Thus, we have

argmax dV,(P; Q) = argmax T [ — pp) (vx7)(E — pp)| . (60)
QeWn (P, p) QeW, (P, p)
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We now focus on a generic version of the linear worst-case distribution problem:

sup_ EQ[@ — )" (xx ") (E - v)}, (61)
QEWm(]P,P)

for any given x, v € R". We known that [16, Theorem 7] (61) admits an equivalent
dual formulation given by

1 N sup @i +& —v) (xx") (g +& —v) —nllgl"
inf np™ + —-EZ: ai (62)
n=0 N i=1 | subjectto ¢; +& € E forall i =1,2,...,N.

Forn > 0and ¢ € E, let

argmax  ((x'q) +x' (& — U)T)2 —nlql™
g.gv) =1 4 (63)
subjectto ¢+ & € E,

whenever an optimal solution exists. If the dual problem (62) admits an optimal solu-
tion 1, and g (ny, &, v) exists foreachi = 1,2, ..., N; then for any collection ql.’ S
q(ny, &, v),i =1,2,..., N,thediscrete distribution Q, (§) = % ZINZI S(E—Si—q;)
is a maximizer for the linear worst-case distribution problem (61).

Tractable one step FW-update 'We observe that in the minimum variance problem
(56), the only information needed pertaining to a distribution Q € W,, (IP, p) is its first
and second order moments g = Eql], Zq = Eql[&4 T respectively. Thus, in order
to solve the DRO problem (56) via the FW-algorithm (Algorithm 1), it is apparent that
it suffices to track the evolution of these moments rather than the entire distribution
(which gets increasingly difficult with the iterations). To this end, a single FW-update
(42), in Algorithm 1, for the minimum-variance problem (56) can be summarised in
terms of the finite-dimensional quantities:

Solve for x I Xp € argmin xT(Ek — /Lk/,LkT)X
xeX
Nk =nx, and q; € q(ng, &, uy) forall i =1,2,...,N,
N N
FW-oracle : 1 1
we= 2 G ta) and Bp= 13 (6 +a)E )
i=1 i=1
FW-update @ ppyr = pg + k(g — ), Tart = ke + (B — T

(64)

The tractable formulation (64) of the FW algorithm for variance particularly highlights
the discussion in Remark 4.5 and (33) on the sufficient statistic for variance. In par-
ticular, it must be noted that the entire information of the distribution is characterized
by (u, ¥), and therefore, the FW algorithm (Algorithm 1) can be simplified as (64)
which is an iteration over only finite-dimensional quantities (u, ) and x.
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We now focus on specific settings of (56) for which the FW-oracle is easily char-
acterized.

Case 1: unconstrained support. We consider the setting: £ = R”, X € A" being any
compact subset, and the transportation cost ||-|| to define the Wasserstein ambiguity
set (and let |- ||, be the associated dual norm).

Lemma 7.3 Consider the maximization problem (63) for 2 = R", andn > 0, x, v, &
€ R", and let J denote its optimal value. Then the following assertions hold

(1) (Unbounded): J = +o00, and no optimal solution exists for (63) in the following
cases: (m < 2), (m > 2,n =0), m = 2,n < ||x||$), and (m = 2,n =

%113, x T (€ —v) # 0).
(i) (Bounded): J < 400, and the optimal solution q(n, &, v) exists for (63) in all
other cases, and in particular,

@ (m>2,n>0),bothJ < +oo, and q(n, &, v) exists.
b)) m=2,n> ||x||£), then we have

ke -wf
n— Ilx|?

lxlls (xT (& = v)) _ B} .
7 qx for g, € argmin x
n—lxll Izl <1

T

q(n,§,v) = q.

) m=2,n= ||x||i,xT(§ —v) =0), then J =0 and

q(,§,v) = {sqx : s = 0}.

Lemma 7.4 (Variance FW-oracle: unconstrained support) Consider the linear worst-
case-distribution problem (61) and its dual (62), under the setting, 2 = R, m = 2,
and any x € X. The solutions (Qy, ny) to (61) and its dual (62) are given by

2
)

X

2 4 1l %]thg_m
P Z
i=1 (65)

N

1 .

~ 2 0(E = & +4)) foranyq] € q(ne, &, v), i =1,2,..., N.
i=1

Q«(8)

It turns out that for the special case of m = 2, the problem (56) with unconstrained
support reduces to a simple empirical risk minimization problem. This was already
discovered in [24] specifically for the case when X = X' (@) := {x € A" : IEQ[xTE 1>
a, forall Q € P}, for any &. We generalize it slightly by showing that a similar
conclusion holds for any compact set X C A’. Moreover, we provide an alternate
proof completely based on first-order optimality conditions and the FW-oracle, for the
min-max problem (56). We emphasize here that since it is shown explicitly that the

@ Springer



Nonlinear distributionally robust optimization

min-max problem (56) reduces to an empirical minimization problem, a solution can be
computed without the need to run the FW-algorithm (64) iteratively. More importantly,
this also alleviates the need to ensure that the convex regularity assumptions hold for
this special case of (56).

Proposition 7.5 (Variance saddle point) Consider the minimum variance portfolio
optimization problem (56) in the setting of m = 2, and B = R". Let

x* € argmin \/(x, (Z — AAx) + p llx]l,. (66)

xeX

then there exists some §,+ € argmax g <1 (x*, q) such that for

al 10<X*7 %‘i 7ﬁ>
E (=G +4q). where gqf= — g+ Yi<N, (67)
i=1 frr, (E-am )

the pair (x*, P*) is a saddle point to (56).

Case 2: Ellipsoidal support. We consider the setting: & = &y = {£ : (§, M§&) <
1} for some M > 0, m = 2, and the underlying transportation cost defining the
Wasserstein distance to be ||-|| = ||-||,. Under this setting, the FW problem in (42)
involves maximizing a quadratic function subject to convex ellipsoidal constraints.
Even if this problem is non-convex in general, it admits a tractable reformulation as
an SDP via the celebrated S-procedure [52, Appendix B], [53].

Lemma 7.6 (Variance FW-oracle: ellipsoidal support) Consider the minimum vari-
ance portfolio optimization problem (56) under the setting of the ellipsoidal support.
The corresponding dual problem (62) of the linear worst-case-distribution problem
(61) is equivalent to the SDP

| N
: 2

min np- — — 0;
neR, r,0eRN N ; !

n>0, andrj >0Vi <N, (68)
subject to nly —xx T + M (xx Vv — ng; )
Ty T _ el 2 (T2 z0. VisN.
Gx v =g nl&lls — v -4 —6;

Moreover, for any solution (n*, \*, 0*), to the SDP (68), the pair (Qy, nx) given by
1< 1
=, and Qu@)=x D 8(6—(n li—xx T +27M) " ("6 —xxTv) ). (69)

i=1

is a solution to (61) and its dual (62) respectively.
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7.3 Simulation results

We validate the convergence attributes of Algorithm 1 for the NDRO problem of the
minimum variance portfolio selection (56) with ellipsoidal support (i.e., E = &y C
R™). The positive definite matrix M that characterizes the support £y, is generated
randomly and it is ensured to be reasonably well conditioned. The samples &;, for
i = 1,2,..., N = 2n, are drawn randomly from &y, and the distribution P is
uniformly distributed over the samples. Then for n = 25 and various values of p (the
radius of the ambiguity set), we solve

V* = mil}’ sup  V(x,P). (70)
xeA PeW,(P,p)

The proposed FW-based method (Algorithm 1 with the simplified FW-update (64)) is
implemented in MATLAB, wherein the SDP (68) corresponding to the FW-oracle and
the minimization problem: minyecar V (x, IPx) are solved using the cvx solver.

First, Fig. 6 shows the convergence of Algorithm 1 for K (¢) = 75 iterations, and
for three distinct values of p = 0.1, 0.5, and 1. The plots on the top show the evolu-
tion of the primal and dual functions: minyea» V (x, Py) and SUPp e, (B p) V(xg, IP)
respectively, w.r.t. the iteration k of the algorithm. Whereas, the plots at the bottom of
the figure show the evolution of the two sub-optimality metrics:

primal sub-optimality : V* — an V(x,P;) and
xeA”"
duality gap sup  V(xg, P) — mir}l V(x, Pyg).
PeWs (P, p) XEA

Since Algorithm 1 explicitly solves the minimization over x in each iteration (see
(42)), the primal function is readily available. However, this is not the case with the
dual function which needs to be computed independently at each iteration for the
current iterate x;. We compute it by running the FW-update (64) for several iterations
(~ K (&)) independently with x; held fixed, this amounts to applying the FW-algorithm
(25) for the risk measure Vy, (-).

With explicit regularization of x We observe in Fig.6 that, as the value of p
increases, the convergence of the algorithm becomes less smooth, and also slower.
Perhaps, this can be attributed to the fact that the strong-convexity assumption in
Assumption 5.3 fails. This is so because, a larger value of p allows the samples (&;);
to be perturbed in such a way that the variance matrix of the perturbed points is rank
deficient. Thus, the function V (x, IP) is not strongly convex in x for IP corresponding
to the perturbed points.

To remedy this, as suggested in Sect. 5.3, we compute an approximate saddle point
of (70) by applying the FW-algorithm to the explicitly regularized min-sup problem

min  sup o |x[3+ Vx, P). (71)
XEA By, (B, p)

@ Springer



Nonlinear distributionally robust optimization

10° 24
005
sk |
1 0045 22
|
o wl | \
1 ‘ ‘ 2
+ 7 s
] 008 o f
| & |
0025 I
16t |
¢ 002 . f
35 oorsff ”
- min V(z, P oo} ——min V(z, 2 ——min &(z, P,
B min V(z, P) ‘ min V(z, P) 12 min £(z, Pr)
| sup V(z, P) 0005 sup V(zy, P) | sup & (., P)
25 PeP | PeP. . Pep
3
0 2 4 6 e 10 120 40 160 0 2 4 6 w0 10 120 10 160 0 0 a0 0 a0 0 w0 700
erations, k Tierations, Nerations k
—— Primal sub optimality —— Primal sub optimality 100 —— Primal sub optimality
A’, —— Duality gap —— Duality gap \ —— Duality gap
10

0 20 40 60 8 100 120 140 160 o 20 40 6 8 50 600 700

100 120 140 160 0 100 200 300 400
Terations, k Iterations, k Terations, k

(A) p=01,a=0 (B) p=05, =0 (c)p=1,a=0

Fig.6 Convergence plots for Algorithm 1 with K (¢) = 75, applied to (70)

Since ||x|l, < (x| 1 for all x € A", we know that an g-saddle point of (70)
can be computed for any ¢ > 0 by applying Algorithm 1 to (71) with o« = 2¢. We
emphasize that both the primal function: minyea» V (x, Pg) and the dual function:
SUPp B, p) V (Xk, IP) are not accessible in the implementation of Algorithm 1 for
the explicitly regularized objective function. Thus, these quantities are computed sep-
arately at each iteration of the algorithm to record the primal sub-optimality and the
duality gap.

In Fig. 7, we show the convergence plots of Algorithm 1 when applied to the explic-
itly regularized problem (71). We consider the same data set from Fig.6 but with a
slightly larger value of p = 1.5, making the conditioning of the problem even worse
than that for p = 1.

We show the convergence plots of the algorithm for three different values of o =
0, 0.1, 1. Clearly, for ¢ = 0, the problem is not regularized, and the convergence
is bad (even worse than that for p = 1 from Fig.6c). Then the effect of explicit
regularization and how it improves the regularity and convergence can be clearly seen
in Fig.7. For « = 0.1 and 1, we see that the solution computed is an e-saddle point
for the respective value of ¢ (i.e., ¢ = 0.05 fora = 0.1 and ¢ = 0.5 for ¢ = 1). In
addition, Figs.7b and c highlight the trade-off between the speed of convergence and
worst-case performance metrics. For the larger value of « = 1, due to better regularity,
the algorithm is faster which can be seen in Fig. 7c that both the curves of primal (blue)
and dual (red) functions achieve within one percent of their final value in less than 20
iterations. Whereas, with @ = 0.1, even after 60 iterations, the primal function (blue
curve) is only within 3.5 percent of its final value. However, this improved speed comes
at a cost as clearly evident from Figs.7b and c that the worst-case cost for ¢ = 0.1
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Fig. 7 Convergence plots for Algorithm 1 with K (¢) = 75, applied to the explicitly regularized approxi-
mation (71)

(0.11731) is smaller than that for « = 1 (0.117403). Furthermore, even though the
solution computed with both « = 0, 1 and 1, is within the respective sub-optimality
levels, the duality gap however, actually goes to zero for « = 0.1, which is not the
case fora = 1.

8 Technical proofs

8.1 Proofs of Sect. 3 (derivatives)

In this part, we cover the technical proofs of the theoretical statements in Sect. 3.

Proof of Lemma 3.2 From the definition 3.1, we see that

dR(P; Q) = 181&1) é (R(P +£(Q — IP)) — R(PP))

1
= lim (r (Bplg) + ¢ (Vr(BpILED. BqplLE)]) + 0l ~r (Bpl£D)

=(Vr(Ep[L©&)]), Eq_pIL&)])
=Eq_p [(VF(Ep[LE)D, LE)]. o
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Proof of Proposition 3.4 From Definition 3.1, we have

1
dR(P; Py ) = lim E(R(]P +e(P, — P)) - R(P))

= tlim (R(P+2y(@—P) - R(P))
.1 /

- yl}%;(R(IP—FS(Q—IP))—R(IP))

= ydR(P; Q),

which establishes (14a). To establish (14b), we see that
1
aR(P; Q) = lim ~(R(P+2@—P) - R(P))
& &

> tim ©(R(P) +£(R(Q) — R(P)) — R(P))

el0 &

> R(Q) - R(P).

where the first inequality is due to concavity of P +— R(]P). This completes the
proof. O

Proof of Lemma 3.7 For any P, Q € P with P, =P + y(Q —P) and y € [0, 1] we
see that

dR(P,; P) +dR(P; P,)
= (Vr(EBp[L©)]). Bp, [LE)] - Ep[L(E)])
+ (Vr(Bp, [LE)]). Ep[LE)] - Ep, [LE)])
= (Vr(Ep[LE)]) — Vr(Bp, [LE)), Bp, [LE)] - BplLE)])
< B[ Bp, [LE] - BplL©)]] < v*8 [BalL@)] - BplL®]]* < y*(Bd?).

O

8.2 Proofs of Sect. 4 (FW-algorithm)

In this part, we cover the technical proofs of the theoretical statements in Sect. 4.

Proof of Lemma 4.3 For IP and IP,,, we see that the inequalities hold.

R(P) — R(Py) < dR(PPy; P) from (14b)
= dR(Py:P) +dR(P; Py) — dR(P; Py)
< yic - ydR(P; Q) from smoothness (15), and (14a)
< y2CcU+6) — y dR(P; Q) from (22).
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Rearranging terms and using (14b), we get

RQ —R(P) < dR(P;Q) < %(R(IP),)—R(IP)>+J/C(1+5),

wherein, by considering the supremum over Q € P, the inequalities in (23) follow at
once. O

Proof of Proposition 4.4 Let (IPy)x be the sequence of Frank—Wolfe iterates updated as
in (25). From the one-step inequality (24), we have

R* — R(]Pk+1) < ysz(l +8)+(1— yk)(R* - R(IPk)) for every k > 0. (72)

Using (72), we prove the primal convergence of FW-algorithm following the classical
approach [28, 30] by the method of induction.

Base case: For k = 1, since P; = Py + y(Qo — Pg) we deduce from (72) using
y =y = | that

4
R* = R(P)) <C(1+8) < TC(1+3).

Thus, (26) holds for k = 1.
Induction step: Now, assuming that (26) holds for some k > 1, we deduce from
(72) that

R* = R(Piy1) < y2C(1+8) + (1 — y)(R* — R(Py))

4C(1 4 8) k 4AC(1+8) 4C(1+8)1+k
k+2?2 " k+2 k+2  k+2 k+2
4C(1 +9)
k4+3 7

<

since (k +2)% < (k + D(k + 3).

~

Thus, we conclude that (26) indeed holds for every k > 1. The proof is now
complete. O

Proof of Proposition 4.6 Following the ideas of [28, 30], we first prove by the method
of contradiction that there exists k such that

4C(1 + 6 ~
sup dR( ;;(Q)ég forsome k € {K,...,2K + 1}. (73)

QeP K+2

Suppose that supgep dR(IPk; Q) > % for every k € {K,...,2K + 1},

then by considering y = KL+2 in (23) and rearranging terms, we see that for every
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k e{K,...,2K + 1}, we have the inequality

2
R(Py) — R(Pk41) < (KJF—Z)2C(1+5) e 51;% dR(Py; Q)
4 8
S &Y T G U

4
— ———C(1+49).
< K+2(+)

Summing these inequalities for k = K, ..., 2K + 1, we get R(IPK) — R(IP2K+2) <
— (4&+2)C(1 + §). Combining this with the sub-optimality of R(Px) from (26)
finally gives

4 4
R* — R(P ——C(1+5$ ——C(1+36 0,
(Pag42) < K+2(+)+K+2(+)<

which is a contradiction. Therefore, there must exist some k € {K,...,2K 4+ 1}, such
that (73) hol@g
For every k such that (73) holds, we also necessarily have

4C(1+4
gt = dR(Pg: Q) < sup dR(P3; Q) < % (74)
QeP +2

We emphasize that at each iteration k, the FW-oracle solves the FW-problems upto
an additive accuracy of §y;C. Therefore, we do not have access to the exact value of
SUPQep dR(]Pk; Q), but only its approximation gi. Consequently, it is only possible
to verify whether the upper bound (74) for gz is satisfied for some %, and impossible to
verify whether (73) holds. Moreover, even if (74) holds for some 7<\, it is not necessary
that (73) also holds since gz < supgep dR(]P@; Q). However, since gz is approxi-
mately equal to the FW-gap, an upper bound on gz gives the following slightly worse
upper bound on the FW-gap

28C  4C(1+8) _ 2C(2C +35)
dR(Pg; Q) < 8y;C +dR (P Qp) < <
Oop (Pz: Q) < 8y2C + dR(Pr: Q) K12 K12 K+2

Finally, since R(Q) — R(P) < dR(IP; Q) for every Q € P (follows from (14b)),
taking supremum over Q € P immediately gives the inequality

R* — R(IP) < sup dR(]P;;; Q).
QeP

This completes the proof of the proposition. O

@ Springer



M. R. Sheriff, P. Mohajerin Esfahani

8.3 Proofs of Sect. 5 (NDRO)

In this part we cover the technical proofs of the theoretical statements in Sect. 5.

Proof of Lemma 5.5 Since the set X is closed and the function F(x, P) is continu-
ous and a-strongly convex in x for every IP € P, we conclude that the minimizer
argmin, .y F (x, IP) exists and unique. Consequently, x (IP) := argmin, .y F (x, IP)
is a singleton for every IP € P.

Proof of Lemma 5.5(i): Danskin’s theorem. LettingIP), == P+y (Q—IP) fory € [0, 1],
consider the mappings

X x[0,1]3 (x,y) — f(x,y) = F(x,IPV) and
0,115y — g(y) = )rcrél)l} fxp).

It is easily seen that g(y) = R(]Py). Moreover, for the one sided derivatives of g at
y € [0, 1) defined: dg(y; 1) = limgyo %(g(y +6) — g(y)), we easily verify that
dR(IP; Q) = dg(0; 1). Using the short-hand notation f,(-) := f(x, -), we also verify
similarly that d £, (0; 1) = dF,(IP, Q), for every x € X. For every y € [0, 1], let
Xy =argmin,y f(x,y), we know from the Danskin’s theorem [38, (A.22), p. 154]
that the one sided derivatives dg(y; 1) at y, are given by

1
dg(y: ) =dfy, (i 1) = lim g(f(xy, Y +8) — fxy. 7).

Collecting everything, we have dR(P; Q) = dg(0; 1) = d fy,(0; 1) = dFy(p)(P; Q).
Proof of Lemma 5.5(ii): Smoothness. Recall that Vi F(x,P) = (3F/ax)(x,IP)
denotes the partial derivative of F w.r.t.x evaluated at (x,IP). Since x(P) =
argmin, . y F (x, IP), the first-order optimality conditions give

(ViF(x(P),P), y—x(P)) > 0 forally € X. (75)
Due to a-strong-convexity of F (y, ]P) in y, we have

%le(lP)—x(Q)llz < F(x(Q).P) = F(x(P), P) — (Vi F(x(P), P), x(Q) — x(IP))
< F(x(Q),P) — F(x(P),P) from (75) with y = x(Q).

Similarly, a-strong-convexity of F ( Q) gives us

% Ix(Q) — x(P)I? < F(x(P), Q) — F(x(Q), Q).
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Combining the two inequalities, we infer that the inequality

allx(P) —x(@]? < F(x(Q).P) - F(x(P), P) + F(x(P), Q) — F(x(Q). Q)
F(x(Q),P) — F(x(Q), Q) + F(x(P), Q) — F(x(P), P)
dFy @) (Q; P) + dFyp)(P; Q) from (14b)
dR(Q: P) +dR(P; Q) from (41),

VAl

(76)

holds for every IP, Q € P. On the one hand, for P, =P + y(Q —P), y € [0, 1], we
have

dR(P;P,) + dR(P,: P)
dFyp)(P; Py) + dFX(]pV)(IPy; P) from (41)
dFypy(P; Py) — dFyp, (P Py) + dFye,(P; Py) + dFyp,)(Py; P)

7 (4R (Pi Q) = dFie, (P Q) + (dFue, (P P)) + dFuw,)(P,i ) from (142)
yCi|x®y) —x®)| + vCa.

N

(77)

where the last inequality is due to (39) and the smoothness condition (iii) of Assump-
tion 5.3. On the other hand, considering Q = IP,, in (76), we have

a|x(®,) —x(P)|* <dR(P,; P) + dR(P; P,). (78)

Collecting (77) and (78) together, we see that

o [x(P) = x(Py) |* <y Cy [x(@) — x (@) + y2Ca.

On rearranging and simplifying terms, it is now easily verified that

Y
(||x(IP) — x| - ﬂ(cl —/C3 +40{C2))
x <||x(IP) —x(P)| - %(cl +\/m)> <o,

which is only true if

7 (€= et raacs) < Ja®) x| < L (1 [cF 4 acs).

The lower bound is irrelevant since it is negative. However, the upper bound is non-
trivial, and employing it in (77) finally gives

2—1(C + 1/C1 + 405C2) +12C,
< C1 +,/c? +4aC2))
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Since C, + 2% (C1 +4/ Cf + 4ozC2> < 400, we conclude that the risk measure R is

C-smooth in the sense of Definition 3.6 forevery C > C>+ % (C1 +./ C12 + 405C2).
The proof is now complete. O

Proof of Theorem 5.6 We establish assertion (i) of the theorem assuming assertion (ii)
holds which is independently proved later.
Proof of Theorem 5.6 (i): Strong duality. Assuming assertion (ii) holds, we see that

min sup F(x, Q) < sup F(xe, Q) < &+ min F(x, IPs) < &+ sup min F(x, Q),
xeX Qep QeP xeX QeP *eX

holds forevery & > 0,and thus, wehavemin,cxy sup F(x, Q) < sup min F(x, Q).
QeP Qep xeX

This, together with weak duality: sup min F(x, Q) < min sup F(x, Q) proves
Qep XX xeX Qep

assertion (i).

Proof of Theorem 5.6 (ii): Saddle point computation. Let us recall that

R(]P) = min F(x, IP) and x(PP) = argmin F(x,lP).

xeX xeX

From (41), since dR(IP; Q) = dFyp)(P; Q), the iterates (IP); obtained from Algo-
rithm 1 can be equivalently regarded as the ones obtained from the FW-algorithm (25)
for the maximization problem: suppp R(IP) under the setting of Proposition 4.6.
Therefore, we conclude from Proposition 4.6, and more specifically from Remark 4.7,
we know that there exists a K (&) < k< 2K (&) + 1 such that dR(IPg; Q;) < 8%.

We also conclude from Remark 4.7 that supgep dR(Pz; Q) < & for any K (¢) <
3 < 2K (e) + 1 satisfying dR (IP;; Qg) < 8%. In particular, for (x,, IP,) to be the
output of Algorithm 1, we know that

sup dFy, (P,; Q) = sup dR(P,; Q) <.
QeP QeP

Consequently, for any Q € P, we have
F(xsa Q) - F('x{;" ]PS) <dF, (Pe; Q) < e,

where the first inequality follows from (14b) for F (xg, ) Finally, taking the supremum
over Q € P we conclude supgep F(xe, Q) < &+ F(xe, Pe); which together with
the fact that F(x;,P;) = minyex F(x,P;) implies (x,, P,) being indeed an é-
saddle point in the sense of Definition 5.2. The proof is now complete. O
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8.4 Proof of Sect. 6 (entropic risk)

We first prove the results on the FW oracle (Lemma 6.4) for the entropic risk portfolio
selection problem (47) and then prove the results on regularity conditions (Lemma 6.2
and 6.3).

Proofs for the FW-oracle We shall first establish two key lemmas that will be later
used to prove Lemma 6.4.

Lemma8.1 Letc >0 >0,n>0,x €0, 1], and & € R. Consider

sup L(n, q) = e”"*EFD — peclal, (79)
geR

The following assertions hold:

(1) Ifn = 0, the maximization problem (79) is unbounded.
(ii) Ifn > O, the maximization problem admits a unique optimal solution qy, given by
0 log(cn/o
g = min {O, M} . (80)
c—0x
Proof of Lemma 8.1 We emphasize that the maximization problem (79) is non-convex.
Even then, we shall establish the conditions for (79) to admit an optimal solution and
also explicitly characterize it. To this end, if n = 0, we see that

lim L@, ¢q) =e %% lim ¢ = +4o0.
g—>—00 q—>—

Therefore, assertion (i) of the lemma follows at once.
Now, if n > 0, then we see that

,Am L) = lim em D — et = 0 = n(+o0) = —o0,
lim LOng) = lim e (e~ ) = (+o0) (0 —n) = —cc.

Therefore, we conclude that whenever n > 0, (79) admits an optimal solution ¢,, € R.
Moreover, at the optimal solution g,,, we know that the necessary optimality conditions
must be satisfied

—0x(z+qy)

9 clan]
0e —L(n, qy) = —bOxe — neell sgn(qy). (81)

dq
From (81), it is immediately evident that g,, < 0. Moreover, we also see that

o If (cn/ox) > e~9**—we see that

3
L1, q) = fxe " ((Cn/ex)e_(c_ex)q — e—“Z) > 0forallg < 0, and
q
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0e %L(n, 0) = ne[—1, +1] — Oxe—0%_ Therefore, gy = 0 is the only point
satisfying the necessary optimality condition (81), and consequently the unique
optimal solution to (52).

o Similarly if (cn/ox) < e=®*% - itis easily verified that for g, = P82 i the
unique point which satisfies the necessary first-order optimality condition (81),
and consequently, is the unique optimal solution to (52).

Ox

c—0x
The proof is now complete. O

We finally note that the cases above can be compressed as ¢, = min {O, Oxz+log(ie/ox) } .

Lemma8.2 Letc, 0, and x be asin Lemma 8.1, andlet Z(t),t = 1,2, ..., T be anon-
decreasing sequence of real numbers. Consider the following minimization problem

T
. 1
inf  J(n) :=ne® + = E sup e
n=>0 T = gier

—0x(Z()+q (1)) _ nec\!{(l)\' (82)

The minimization problem (82) admits a unique optimal solution n* given by

0 1 d o
s =
e o I w
t=T"+1
/ . . c , —cHxZ(T))
where T € {1,2, ..., T} is the smallest integer such that (TeP — T')e ™ c—ox

T —cOxZ(1)
Dimripr€ O

Proof of Lemma 8.2 Since n +—— log(cn/ox) is monotonically increasing and even-
tually positive, we observe from (80) that lim,_, - g, = 0. Consequently, we see
that

T
1
. . cp —Oxz(1) _
77111}_1 J(n) = nhr_irrl n(e 1)+ T ;_1 e +00.

Similarly, as n | 0, we conclude from assertion (i) of Lemma 8.1 that ¢, < 0,
consequently, we see

—0x C c 1
1. J = 1 cp c—6x (— — 1) 0x/¢c) c—0x — c—0x = .
nlf% (m) nli% ne’” +n o (0x/c) T L e +o0

Since the mapping n — J (1) is convex, we know that there exists some n* > 0 such
that n* = argmin, > J (1), i.e., an optimal solution to (82) exists. To characterise an
optimal solution 1*, we observe that g, is unique for any > 0, and from Danskin’s

theorem, we conclude that %J (n) = eP — % Zthl eClan®] Therefore, the optimal

solution n* is such that Te” = Zthl eclay o], Finding such an n* where the equality
holds is not straightforward.
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For n(t) = (0x/c)e™0%2® t =1,2,..., T, itis easily verified that g,, (s) = 0 for
all s < ¢. Thus,

d 1 T 02(Z(1)~Z(s))
il _h po T
dnJ(m)_e T<t+ E e 0 )

s=t+1

Let T’ € {1,2,..., T} be the smallest integer such that %J(n(t)) > 0. Since J(n)

is convex, %J (n) is non-decreasing. Consequently, with ng = 0, we know that n* €

Inr7—1, n/1, and therefore, g, (t) = 0 for all + < T, and g,+(t) = %W

fort = T"+1,..., T. Substituting, these values of ¢,+(¢) in the equation Te“’ =
ZL] e<lar ] and simplifying for n* gives (83). The proof of the lemma is complete.
O

Proof of Lemma 6.4 The dual problem of (52) is given by
T

1
inf  J(n) =ne® + — sup e
n=0 T ; q(HeR

~0xG0+g) _ poclg®] (84)

Proof of Lemma 6.4 (i): Optimal solution. Since the maximization over ¢(¢) is sepa-
rable over t we see that

T

1
J(n) =ne? + — sup e
r ;q’(weﬂ%

—0x(Z(s)+4'(s)) _ neC|q’(S)| ,

where the sequence (Z(s)); is non-increasing. Consequently, we conclude from
Lemma 8.2 that (84) admits a unique optimal solution n* given by (83). Given n*, the
optimal solution g,«(¢) for eacht = 1,2, ..., T is obtained from (80). Substituting
for ¢,+(¢) from (80) and simplifying, we easily verify that z*(¢r) = z(t) + g, (2).
Consequently, Q* = %ZITZI 8(z*(t)) is the optimal solution to (52). This proves
assertion (i) of the lemma.

Proof of Lemma 6.4 (ii): Lower and upper bounds. To prove assertion (ii) of the
lemma, we first see that since n* > 0, the first-order optimality conditions imply

0= dd—nj(n*) = P — % Zszl ec}qﬂ*(’)‘.Therefore, foranys =1,2,..., T, wehave

~

ec|qn*(s)| < Zec\qn* 0] _ TeP.
=1

Taking log, () on both sides of the inequality, we obtain }qn* (s)} <p+ @. Since
gy (s) < 0, we have —p — @ < qp<(s) <Oforalls =1,...,T. Combining this
with z*(s) = z(s) + ¢, (s) and z < z(s) < 7, assertion (ii) follows. O
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Proofs for regularity of the entropic risk

Proof of Lemma 6.2 For any x € A", we shall first show that

argmax &(x, P) = argmax & (x, P’). (85)
PeP. PeP;

Toshow argmaxpep, €(x, P) C argmaxp/ep, €(x, P'),letPy € argmaxpep, E(x, P),
due to the first-order optimality conditions together with (54), we see that

P, = argmax d&; (Py; Q) = argmax d&, (P,; Q'), and thus, P, € argmax £(x, P').
QeP. QeP, PeP.

Similarly, to show that argmaxpcp Ex,PP) C argmaxpp, E(x, P), let P, €
argmaxp:cp; E(x, P’), then from again the first-order optimality conditions together
with (54), we have

P’ = argmax d&; (P; Q) = argmax d€;(P); Q), and thus, P, € argmax &(x, P).
QeP; QeP. PeP,

Now, for (x*, P*) to be a saddle-point of (47), we have

x* € argmin £(x, P*) and P* € argmax £(x*, P) = argmax £(x*, P'),
xeX PeP, P'eP.

where the last equality is due to (85). Thus, (x*, IP*) is also a saddle point of (49), and
vice versa. The proof is now complete. O

Proof of Lemma 6.3 Forevery j = 1,2, ..., n,since §j <§; < E, IP j-almost surely
forall P; € WC((ﬁj, 0)), we have

e OE B [ %5 ] < ¢ 5 forall Py e We((Bj, p)). (86)

Proof of Lemma 6.3(i): Continuous derivatives. Let P, Q € Pé, and x,y € A", we
have

d&;(P; Q) — d&,(P; Q)

Xn: 1 [ Eq, [e‘ejxigj] Eq, [e=0iviki] )

. Ep, [e—erjS}] Ep, [e—ej,vf‘é}]
n Eq, [e /%] - E -5 _ R -0,vi§71. | —0;x;§;
Z Q; (€ ' P; (€ : Q‘[e /] P; (€
=i Ep, [e™799] - Ep, [
Eq, P, [6*9/'()‘/5#)’/'5}) _ e*H.f(Y./$j+X.f§}):|

J J

e [ ]

—_

>

=

\QD"—‘

~.
I
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Due to convexity of (-) —> e®) for anya, b € R, we have eb—et < b —al emax{a,b}
which gives

08D _ 08 +xjE

0, min{x;&;+yE] x;E+yiE))
§9j‘ijjJr)’jf}*ij/'*ijj‘e jmintx8 Y &) X848
) ince xj, y; € [0, Hand g, &) € [¢ . &1

£ >e’9f‘2§f).

<0 ’(x]' -y —

<0j|xj —vjl G -
This together with (86) finally gives

= —0;(2¢ .
105 [xi =y G =g e ")

d&, (P —d&, (P; < — -
£.(Pi Q) — &, (P Q) < 3 - 7

j=1

n —
=D i =il G - §,’)629"(§"_§f)

n —
£ 40, )
Sl =yly | Do —§ 2,

j=1

where the last inequality is due to Cauchy-Schwartz. This establishes assertion (i) of
the lemma.

Proof of Lemma 6.3(ii): Smoothness. For every x € A", and P, Q € P., we recall
that

qQ,—p;le "i%i%]
Ep,[e %% ]

1 E
dE(P: Q) = Z 5
=1

Then for any y € [0,1] and P, = P + y(Q — P), we have from (14a) that
d&,(P; P)) = yd&, (IP; Q). Moreover, using the relations Ep_p,['1=—-yEq-r[l]
we also verify that

1 _)/EijIP,- [e—ejxjfj]

d&c(Py; P) = ~
o j=1 0 E]Pj+V(Qj_IPj)[e_0}xJ§j]
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Thus, we obtain

A&, (P; P)) + d&(P,; P)

n 0jx;& —0ix;i&;
Eq,-p,le %81 Eq,_p,le %]
_VE: < Jj . i
J

eIt B 4y (- ple 5]

=y Z Eq;-p; [eiejxjéj] (EPJ'+V(Q/—1P]')[€g'ix-ié-i] — Ep, [eejx-fg-f]>

j=1 0; Ep, [e—0i%iti] - EIPI+V(QJ*]P_1')[8_0'/XJISJI]

o TN
— Vi Ep,[

le=0itiy EIP,w(ijIP_,-)[E_GWS"]
Since P;, P; + y(Q; — P;) € WC((@j, p)), employing (86) gives

(E]pj [e_ajxjgj])_l <
(E]Pj+V(Qj—]Pj)[e_ejxj;/]) See S, and
<

Eq,—p, [e %60

Putting things together, we finally obtain

A&, (P; P,) + A (P P) < Z R e )

Thus, assertion (ii) of the lemma follows and the proof is now complete. O

8.5 Proofs of Sect. 7 (variance risk)

In this part, we cover the technical proofs of the theoretical statements in Sect. 7. The
first proof is concerned with the regularity of the min-variance portfolio selection
problem.

Proofs for regularity conditions (Variance)

Proof of Lemma 7.2 For any x € X, since V, is an RR measure, we simplify (57) to
get

dVi(P; Q) = x"(Zq — Tp)x — 2(x " up)(x " (nq — ) (87a)
= x' (Zq—2p) - X+ up)*+(x (ng—up)’—(x"ug)*.  (87b)
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Proof of Lemma 7.2(i): Continuous derivatives. Firstly, we begin by showing that the
inequality

x 'Mx—y "My <2|M|,|lx —yll, holdsforanyx,y e A" and M € S"",
(88)

where, [|M||, = maxy|,=1 [{v, Mv)|, is the operator norm. This follows since

x Mx — yTMy = (x+ y)TM(x —y)
<lx =yl IMx + ), from the Cauchy-Schwartz inequality
<lx =yl lx +ylla IM]l, from the definition of |||,
<2Mll, lIx — vl since |1zl < |zl = 1 forall z € A"

Now, for any x, y € A", we conclude from (87b) that

dVx(P; Q) —dVy(P;Q) = x'(Eg—Zp)x — y' (5 — Tp)y
+ @Tup)? + (g —pp)? — T ug)?
— 0Tup)? = 6 g —up)* + 6 e
Employing (88) for M = (Sq — p), up/ip, 1Qig, and (up — 1Q)(up — 141Q) ' ;
we have the inequalities
x'(Zq—Zp)x — y' (Zq— Zp)y
T up)? — (& pp)?

2||2q - Zp|, Ix - yl,
2[lupl lIx =yl
2 o3k = il
2| uq — mp| llx = i,

(89)
O u)? — 0" ne?
2

INCININ N

T (ng — up))? — 0T (ng — up))

where we have used the fact that |[vv = ||v|3 for any v. These inequalities give

us the upper bound

N

dvy(P; Q) —dV,(P; Q)

< 2( 2o - e, + kel + |ual’ + [1na - uel3 ) Ix = vl

Since ||upll, < |lup — &llo + I72ll5, and P, P € P, we conclude from (58) that
lurll, < By + lIZXll,, (and similarly for j1q). This together with the condition
|£q — =p|, < B from (58), finally gives

dV(P; Q) = AV, (P Q) < 2(Bx +2(Bu + I17l2)° + B2) Ix = ¥l

The constant Cj in the assertion (i) of the Lemma is immediately picked as C1 =
~ 2
2(Bs +2(B, + I7lL)* + B
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Proof of Lemma 7.2(ii): Smoothness. Consider any x € X, P, Q € W, (ﬂs, p), and
let P, := P+ y(Q —P) for y € [0, 1]. Using p, = Zp + y(Xq — Zp) and
Hp, = pp + )/(,uQ - mp), we conclude from (87a), that
dVe(P; Py) = x T (Tp, — Zp)x + 2(x " pp)(x " (e, — pp)
= V(xT(EQ —Zp)x — 2(x " pup)(x " (ng — M]P))).
Similarly, we also have
dVe(Py; P) = xT(Zp — Tp,)x + 2(x pw, ) (x " (e — pp,))
2
272 (x T (nq — mp))
+ v (20T (e - ) (x Tip) — 2T(Zq - Te)x).

Combining the two equalities, we get

2
dVe(P; Py) + dVi(Py; P) = 2% (x (g — 1))

<22 1213 g — up |3 < v2(2B).

The last inequality follows from (58) and the fact that ||x|, < |[x|l; = 1, for every
x € A", Thus, the risk measure V, is (EBI%)-smooth, uniformly over x € X. This
proves assertion (ii) of the Lemma and the proof is now complete. O

Proofs for the case of unconstrained support, (= = R").

Proof of Lemma 7.3 Substituting ¢ = sq for s > 0 and ||g]| = 1 in (63), it is equiva-
lently reformulated as

T- Tie N2 _ . om
A (') +x E—v) — ns 00)
subject to  |lg]| = 1.

Observe that (s(x ") + x T (& — v))2 < (sfxTq| +|xTE—v) )2, where, equality
holds if and only if sgn(x "g) = sgn(x " (§ — v)). Moreover, applying the Holder’s
inequality [x 7G| < 1G]l x|, = llx]|, yields

(GTd + xTE =) < (sl + [T —wl) oD

The upper bound (91) is achieved if and only if § = sgn(x " (¢ — v))§y, for any g, €
argmax | <1 x T G. Thus, every such g is an optimal solution to (90), irrespective of
s. Simplifying the optimization over ¢ in (90), the problem reduces to

max (s [l +1x" € —v)[)” = ns™. (92)

sZ
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Now, an optimal solution to (63) exists if and only if (92) admits an optimal solution
s*; in which case, we have ¢ (1, £) = s* sgn(x | (§ — v))qy.

Optimal solution to (92) under different settings. If m < 2, it is straightforward to see
that the optimal value of (92) is unbounded irrespective of . Consequently, no optimal
solution exists for the maximization problem (63) in this setting. On the contrary, if
m > 2, it is also easily seen that the objective function of (92) is coercive if and only
if n > 0. Therefore, the maximal value of (92) (and Consequently (63)), is bounded
and achieved.

For m = 2, the objective function of (92) can be simplified to

=52 (n = IIx1) + 25 lxll 1x TG =)l +1x7E = v
It is clear that the optimal value of (92) is unbounded if n < ||x||§. Whereas, if

n > ||x|| , it is bounded, in which case, equating the derivative w.r.t.s equal to
0, glves that the optimal value of (92) (and consequently, also J(n, £)) is equal to

T(E—
- ”tz |x (& Which is achieved at s* = W Finally, if n = ||x||2,
the optimal value of (92) is unbounded if x T (& — v) # 0; otherwise, it is bounded
and equal to O which is achieved for any s > 0. O

Proof of Lemma 7.4 On the one hand, if [x T (§ —v)| = 0foralli = 1,2,..., N, we
now see that the dual problem (62) reduces to

inf 77,02,
n > |xlI
which admits the optimal solution n* = ||x ||ﬁ with an optimal value ||x ||§ ,02. On the
other hand, if |xT(§,~ — v)| > 0 for at least some i € {1, 2, ..., N}, the dual problem

(62) reduces to

2
n> llxllx

. 2
i "p2+n—||x||2( Z‘ _v)‘)' >

It is easily verified that the first-order optimality conditions for (93) are satisfied at

= Ixl2 + ”x”* LS 7 - of?
Ni:l l '

Thus, n, is the unique optimal solution to (93), and consequently, to the dual prob-
lem (62). Moreover, due to strong duality of (62), we also know that Q,(§) =
% Zf\’: 10 (S - & +q] )) is an optimal solution to the linear worst case distribution
problem (61) for any collection ¢/ € g(n, &),i =1,2,..., N. O
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Proof of Proposition 7.5 We first see that if x* € argmin,cy (o Xl + +/{x, VX)),
then the first-order necessary optimality conditions imply that there exists a sub-
gradient g of the function (p [|xl, + +/{x, Vx)) at x* for which the inclusion x* €
argminy. y (g, y) holds. A quick look reveals that ¢ must be of the form pg.« +
(I/W) Vx*, where g+ € argmax <1 (x*, q). Therefore, there exists some
gx+ € argmax(z; <1y (X, q) such that x* satisfies the inclusion

. . , (x*, V) )
, gxt)  —] . 94
x* e ar)geln;n <p (¥, Gx+) v ©4)

Selecting such a g+ to define P* in (67), we also verify that

py Y s -
\/(x*’ (f —/’IﬁT)x*)

gx = K

N
1 ~
Upx = NE](&"‘“I?) = n+
=

Now, we establish that the pair (x*, IP*) is a saddle point by proving that both x* and
IP* are optimal solutions to their respective problems while the other is held fixed.

Optimality of x* for the minimization condition. We begin by showing that the inclu-
sion x* € argmincy V (y, P*) holds, by showing that the corresponding first-order
optimality condition

x* € argmin (V; V (x*, P¥), y) = argmin((EIP* - ﬁﬁT)x*, y>, (95)
yeX yeX

is satisfied. This condition is also sufficient for optimality since V (y, IP*) is convex
in y. Simplifying the cost function in (95) yields

<(21P* —aa ), y)
i (W, & +a7) (0. & +af) - (", @)

z| =
T

Il
z| -
.MZ

I
—_

(%, @ —mmTy)+ (% &) s g+ x5 g s 8 + x5 @) (s ).
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Letting V = S — Aa’, we see that V. = % ZlNzl(éi — ﬁ)él.T, and %Z,Nﬂ
l(x*, & — W)|> = (x*, Vx*), from which we simplify

N LN % —~ "
1 * g *\ - NZ,‘ZI()C ,Si—ﬂ)(fi,x ) B o . _
ﬁ;(x &) af) = ey, de) TSRES) = p(y, qx*>m,
N LN % —
! * % N o N i ¥ & R ) B . (x*, vy)
R e N Ca = ol
N LN |f* 2
1 * % W 2l e - N it [ & A o e s
N ;(x cai )y qf) = o7 ||x ”*(% G+ . Vat) = p”|x ||*(), Gur)

Employing the above relations, we see that the objective function in (94) simplifies to

PN (x*, Vy)
Tpr — AR )x¥, >= *, o IR S
((zer A" )x", y) = (e Voo 7], e

+ 0y, @) VIS V) + 07 |25, (v, @)
= (Vo Vi) 4o | ||*)<m+p(y, s >).

In view of the inclusion (94), the sufficient optimality condition (95) follows imme-
diately. Consequently, the inclusion x* € argmin, .y V (x, IP*) also holds.

Optimality of P* for the maximization condition. Similar to the proof of the mini-
mization condition, we establish the maximization condition of the saddle point by
showing that the first-order optimality conditions are satisfied. We first recall from
(65) (with v = up+ = 1) that

*
e = I+ 0 e & - )

On the one hand, if (x*, (/E\ - ;’IﬁT)x*> = 0, we have n« = ||x* ||i, in which case,
we conclude from assertion (ii-c) of Lemma 7.3 that 0 € g(ny+, &, 1) for all i =
1,2,..., N. Moreover, (x*, (f — i ")x*) = 0 also implies that (x*, & — 1) = 0,
and hence g = O foralli =1,2,..., N. Thus, we have g} € g(ny, &, up~) for all
i=1,2,...,N.

On the other hand, if (x*, (i — it ")x*) # 0, we have nes > lx*||2, in which
case, we see

q* — 1Y <-X*7 Ei - ﬁ)
Jis € - aaTix)

el & -

2
Maer — ¥ I3

QX*

Ge € q(ns, &, ) foralli=1,2,.... N,

where the last inclusion follows from assertion (ii-b) of Lemma 7.3 since g, €
argmaxz<; (x*, ). Finally, noting that I = pup+, we have g € q(n,+, &, pup+)
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for all i < N. Since P* = % ZlNzl 8(5 — & — ¢q), we conclude from Lemma 7.4
that P* € argmaxgep dV«(P*; Q). Thus, IP* satisfies the first-order optimality
conditions which are also sufficient. Hence, in view of Remark 3.5, we conclude that
the inclusion IP* € argmaxp.p V(x*, IP) also holds. Therefore, (x*, IP*) is indeed a
saddle point of (56). The proof is now complete. O

Proofs for the case of ellipsoidal support (= = £y)

Proof of Lemma 7.6 Letting ¢’ := g + &, the maximization problem (63) can be equiv-
alently written in terms of ¢’ as

sip (g, (e =)'} +2{q/, ng — exTyv)+ (T = 13).
{a":(q", Mq") <1}
(96)

Even though M > 0, which makes the feasible set of (96) convex; it is to be observed
that the objective function is concave if and only if n > ||x||%. Therefore, (96) is
not a convex problem in general. However, we observe that (96) is a quadratically
constrained quadratic program, that is strictly feasible. For such problems, the S-
procedure guarantees an equivalent reformulation as a tractable SDP

min
1€[0,+00), OeR

L — T M T _ (97)
subject to |:n” X (xx )y —ng :|§O,

x ol —ng" plEl3 —xTv)2 =1 -6

with the optimal values of (97) and (96) being equal. Moreover, if (6%, A*) is
a solution to the SDP (97), we also conclude from the S-procedure that ¢’ =
(nl, — xxT + A*M)_] (n€ — xxTv), is an optimal solution to the maximization
problem (96). Consequently, for every n > 0, we conclude

q(n.6) = & + (nly — xx T +2*M) ™" (ng — xxTv).

is a solution to the maximization problem (96). Substituting foreachi = 1,2, ..., N,
the maximization problem over g; in (62) with its equivalent SDP (97), we immediately
arrive at (68). Now, suppose (n*, 1*, 6*) is a solution to the SDP (68). Then, the
pair (Qy, 1) as given by (69) is a solution to the FW problem (61) and its dual (62),
respectively. This concludes the proof. O
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