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Abstract

Purpose — This paper aims to improve Reynolds-averaged Navier Stokes (RANS) turbulence models using
a data-driven approach based on machine learning (ML). A special focus is put on determining the optimal
input features used for the ML model.

Design/methodology/approach — The field inversion and machine learning (FIML) approach is applied
to the negative Spalart-Allmaras turbulence model for transonic flows over an airfoil where shock-induced
separation occurs.

Findings — Optimal input features and an ML model are developed, which improve the existing negative
Spalart-Allmaras turbulence model with respect to shock-induced flow separation.

Originality/value — A comprehensive workflow is demonstrated that yields insights on which input
features and which ML model should be used in the context of the FIML approach

Keywords RANS, Data-driven turbulence modeling, Machine learning, Feature selection,
Flow separation, Transonic flows

Paper type Research paper

Abbreviations
CFD = computational fluid dynamics;
DNS = direct numerical simulation;

FIML = field inversion and machine learning;

LES  =large Eddy simulation;

ML = machine learning;

pETW = pilot facility European transonic windtunnel;
RANS = Reynolds-averaged Navier Stokes;

SA-neg = Spalart-Allmaras negative turbulence model; and

SFS = sequential feature selection.
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1. Introduction

Turbulent flows are fully characterized by the Navier-Stokes equations. Simulating
turbulent flows hence requires solving these equations. Direct numerical simulations (DNS)
resolve all turbulent scales and are exact, however, at the expense of enormous
computational cost (Probst et al., 2020). Hence, they are unfeasible for daily simulation tasks.
Time-averaging the Navier-Stokes equations yields the Reynolds-Averaged Navier Stokes
(RANS) equations, which can be solved with today’s computational power as no small
scales must be resolved. Time-averaging, however, introduces a new, unknown term, which
includes the Reynolds stresses and represents the impact of the turbulent fluctuations on the
mean flow.

The Reynolds stresses must be modeled using a turbulence model. A common approach
is to introduce the Boussinesq hypothesis, which relates the Reynolds stresses to the
strainrate via a scalar quantity, the eddy viscosity. For the eddy viscosity, a multitude of
algebraic, 1-equation and 2-equation models exist. Common to RANS models is that they
deliver precise predictions at design conditions, but their reliability greatly deteriorates
toward flow conditions at the border of the flight envelope. For example, flow separation is
often not captured correctly leading to severely false predictions of lift coefficients close to
maximum lift.

In recent years and with maturing machine learning (ML) methods, data-driven
approaches to improve existing turbulence models have gained interest (Beck and Kurz,
2021; Duraisamy, 2021; Schmelzer et al., 2020; Weatheritt and Sandberg, 2016). Here, readily
available high-fidelity reference data stemming from DNS, large Eddy simulations (LES) or
wind tunnel measurements are used to train an ML model to improve a given turbulence
model. The present study uses the field inversion and machine learning (FIML) (Singh and
Duraisamy, 2016) approach, which gained popularity in the field (Ferrero et al, 2020,
Holland et al, 2019; Jackel, 2022). The FIML approach introduces a correction term as a
multiplier to the production term of the turbulence model. Via inverse modeling, the ideal
form of the correction term is determined and an ML model is trained to approximate this
ideal form.

We apply FIML to the one-equation negative Spalart-Allmaras turbulence model (SA-
neg) (Allmaras et al, 2012). In particular, we use a database of wind tunnel measurements
for the transonic RAE2822 (Cook et al., 1979) airfoil and aim to improve SA-neg for shock-
induced separation. A focus of this work is the engineering and selection of flow features
used as inputs for the ML model, building a feature selection pipeline that can easily be
adapted to new features and different flow phenomena. This brings together individual
aspects of data-driven turbulence modeling covered by other authors (Holland ef al., 2019,
Ling et al, 2016; Wu et al, 2018) for transonic flight conditions and shock-induced
separation.

2. Methodology

2.1 Field inversion and machine learning

The first generation FIML ansatz (Singh and Duraisamy, 2016) is used, termed FIML
Classic in later publications (Holland ef al., 2019). In the first step, the field inversion,
the optimal values for the correction term B are determined using inverse modeling.
Here, the spatially varying B is multiplied to the turbulence production term P of the
SA-neg turbulence model, see equation (1). In the second step, an ML model is trained to
approximate the values of the correction term depending on input features 7 derived
from the local flow state U'.
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Here, © denotes the Spalart-Allmaras transport variable, ﬁ the local flow state, P, D and T
the turbulent production, destruction and diffusion terms, respectively. Further details of the
terms of the SA-neg turbulence model are given in the original publication.

In the first step, we determine the optimal distribution of 8 by solving the approximate
inverse problem:

qRANS( B) ~ qref (2)

where ¢®*™ is a quantity of interest of the RANS solution that we aim to fit to the
corresponding quantity of interest ¢"! of a high-fidelity reference solution by optimizing .
Due to the nonlinear nature of the RANS equations contained in equation (2), we cannot
solve this equation directly, but we pose the problem as an optimization problem instead.
For the selected quantity of interest, the pressure coefficient c,, the associated cost function
is as follows:

1 a ef S 2 1 - 2
7 =32 V(g -4 B) a5 6~ ) ¥

The first term of the cost function is the mean squared error of the deviation in ¢, between
the reference data and the RANS solution, weighted by the cell volumes V; and computed
across the N cells in which reference data is available. The second term is a Tikhonov
regularization which penalizes deviations from the baseline turbulence model, that is,
deviations of B; the value of B in cell 7 from the default value of B, By = 1, for which the
turbulence model remains unchanged. This is computed across all M cells of the
computational domain.

The magnitude of the regularization is adjusted via the regularization parameter A. The
regularization is introduced for two reasons. First, because the problem is ill-posed, as the
number of degrees of freedom, i.e. the number of cells as B takes on a different value B; in
each cell, is usually much larger than the number of points where reference data is given.
For example, the pressure coefficient distribution ¢, is only available on the airfoil surface,
whereas the correction term is available throughout the flow field. Second, it allows
uncertainties in the reference data to be considered, as the regularization restricts the
magnitude of the turbulence model modification, which prevents overfitting in case of
untrustworthy reference data.

For the minimization of equation (3) with respect to B, a steepest descent optimizer
(Nocedal and Wright, 2006) is used, which updates B according to the following:

dl
Biv1 = Bi — B )

Here, € is the step size and j—fg is the gradient of cost function equation (3) with respect to 8.
This gradient is computed using the adjoint method (Dwight and Brezillon, 2006; Giles and
Pierce, 2000). The step size e is determined using the Armijo condition (Nocedal and Wright,
2006) in each optimization step. The optimization is stopped when the step size falls below a
threshold &.



Having obtained the optimal values for 3, the next step is to generalize B to different flow
geometries and flow conditions. As of now, B is available only as a function of the spatial
coordinates %, so it cannot be easily transferred and applied to different geometries and
different flow conditions. Therefore, the next step is to identify a function fz which

represents 3 depending on local flow features ; (l_])>, instead, that is:
f,337707"'7nn*>ﬁ (5)

The features are required to be nondimensional; ideally, they are fully local and Galilean
invariant as well. The selection of features considered in this study is presented in
Section 4.

The function fg is approximated using ML, neural networks (NN) in particular. Besides
NN, which are by far the most often applied ML method in the FIML framework, also
conventional and multiscale Gaussian processes (Zhang and Duraisamy, 2015) and
Adaptive boosting (Singh et al., 2017) were investigated and applied. NN are responsible for
ongoing successes in ML, especially in areas such as image detection, language processing
or autonomous driving (LeCun et al, 2015). As regressors, they are capable of
approximating any limited, continuous function arbitrarily exact with a finite number of
neurons (Unwersal Approximation Theorem), making them excellent candidates for our
purposes. Due to limited space, we refer the reader for details of the inner workings of NN to
dedicated publications such as (LeCun et al., 2015).

Figure 1 recapitulates the workflow of the FIML classic approach.

2.2 Feature engineering and selection

As it might be unclear which input features are relevant for the prediction of B, we need to
use feature engineering and feature selection. Feature engineering, in the present case,
means to derive features from the flow state which are dimensionless and ideally locally
available and Galilean invariant. The need for dimensionless features stems from the fact
that NN cannot take care of dimensional consistency and that the correction term B is
dimensionless itself. The desire for features being local is to enable easy availability of the
features in general computational fluid dynamics (CFD) solvers.

Many of the features listed in Section 4 were found in a literature survey, with few added
due to physical considerations of the present phenomenon, shock-induced separation. After
building a database of possible features, a subset of promising features was selected using
the following techniques.

2.2.1 Feature correlation. The first technique is feature correlation. Here, a correlation
matrix is built, which measures the correlation among the features and the features and the
correction term. The used metric is Spearman’s rank correlation coefficient r; (Spearman
Rank Correlation Coefficient, 2008), see equation (6):

_ cov(R(x),R(y))
TR(x) OR(y)

©)

7s

Here, cov(x,y) is the covariance of two variables x, y and o, the standard deviation of
variable x. As opposed to Pearson’s correlation coefficient, it correlates the ranks of the
observations R(x), R(y) instead of the observations x, ¥ themselves. While Pearson’s
correlation coefficient assumes that the variables are normally distributed and detects only
linear relationships, Spearman’s rank correlation coefficient is able to also detect any
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Figure 1.
Workflow of FIML
classic

Reference Data

|

RANS Solution
2 ol U7 1% N
% flow adjoint
= solver solver
| ;
Update f3: Gradient
Bivi=PBi—¢ f—é j—é

-
/

Training data
B(x,y). ni(U, V)

/

Machine =~ Model ~ ~ Augmented
Learning fg:Mi— B  RANS Simulation

nonlinear, monotonous relationships and makes no assumptions about the variable
distribution. If the relationship between the variables is perfectly monotonous, 75 goes
toward 75 = 1 or toward 7g = —1 if the relationship is inverse. In case of no discernible
relationship between the variables, 75 tends toward 75 = 0.

Computing the correlation matrix between the possible features themselves and the
features and the correction term B allows, first, to remove redundant features, that is,
features that are monotonously depending on each other, and second, to remove features
that show no promising relationship with 3.

2.2.2 Sequential feature selection. With the reduced feature set obtained, sequential
Jeature selection (SFS) is applied. SFS is not agnostic to the selected ML model, as it involves
the ML model directly. The basic idea is to train the ML model, starting from a subset of
features and then to sequentially add or remove features depending on their importance. In
SF, the process is as follows:

* Randomly pick a subset of % features from the whole set of features.

e Train the ML model on this feature subset.

* Randomly add another feature from the remaining features.

¢ Retrain the ML model and keep the feature if the loss function decreases; discard it
otherwise.

¢ Continue with Step 3 until the loss function does not decrease further or the size of
the feature subset becomes larger than intended.



In sequential backward selection, one starts with the full set of features and removes features
until the loss function increases. Bidirectional SFS methods include additional inclusion/
exclusion steps, which allow to include (exclude) a feature again that was previously
dismissed (included).
There are three major points to be made about SFS are as follows:
(1) Because the algorithm is not agnostic toward the chosen ML model, it can yield
substantially better results for this particular model, but the results are not
universal and potentially worse for other models.

(2) Especially in the case of NN, a disadvantage is that one needs to predefine the network
hyperparameters, as either a too-simple or a too-complex architecture might be chosen.
In this work, we use a set of NN hyperparameters proven to work before (Jackel, 2021)
but will do a hyperparameter optimization subsequently.

(3) Although SFSis a greedy algorithm that does not necessitate an exhaustive search
of all possible subsets of features, it can still become computationally expensive as
for each investigated subset of features, and the ML model has to be trained.
Additionally, the algorithm should be run multiple times to eliminate effects due to
the random initialization of the NN parameters. In this work, computational effort
was still only on the order of a few minutes, using a current mid-class graphics
card for NN training.

2.2.3 Engineering considerations. The previous steps leave us a shortlist of input features for
the ML part. The final step is to train different NN on subsets of features from this shortlist
and apply them in the full CFD loop. While an ML model might train flawlessly, it is not
ensured that its inclusion in the turbulence model and the full CFD loop will work as well. A
frequent observation is that including the trained model will impact convergence heavily due
to an unsmooth prediction of B. Hence, the final step is to evaluate the ML models and
appropriate feature subsets according to their performance in the CFD loop.

2.3 Software

The FIML approach has been implemented in DLR’s software ecosystem before (Jackel, 2021),
using the unstructured high-performance CFD code TAU (Schwamborn et al, 2006) and the
python optimization toolbox SMARTY (Bekemeyer ef al, 2022). For ML purposes, the open-
source frameworks TensorFlow (Abadi ef al, 2015) and Scikit-learn (Pedregosa et al.,, 2011) were
used. The purpose of TAU is hereby to solve the RANS equations and the adjoint problem.
SMARTYy wraps around TAU and enables running the different modes of TAU in the context of
the stated optimization problem, that is, running TAU in flow solver mode to evaluate the cost
function and running TAU in adjoint solver mode to compute the gradient %. SMARTY also

wraps TensorFlow, thereby enabling communication between the ML model and the flow solver.

3. Database

The goal of this study is to apply the FIML approach to flows with shock-induced
separation. For this purpose, Airbus provided the authors access to a database called
“AIRBUS RWC.01.” The AIRBUS RWC.01 database gathers aerodynamic experimental
data acquired in 2016 using the pilot facility of the European transonic wind tunnel for a
series of 2D airfoil sections.
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Table 1.

The cases selected
from the database for
field inversions

3.1 Windtunnel measurements

The RWC.01 database contains pressure tap measurements for the RAE2822 airfoil from a
windtunnel campaign covering a Mach number range from 0.2 to 0.96, a Reynolds number
range from 2.7 x 10° to 15.7 x 10° and an angle of attack sweep from —2.5° to 13°. The
RAE2822 is a transonic, rear-loaded airfoil with a rooftop-type pressure distribution. The
windtunnel width is three times the chord length of the airfoil, and the pressure is measured
along the centerline of the airfoil; hence, 3D effects are considered negligible. From this large
database, we selected multiple cases in which shock-induced separation appears, and the
predictions of the baseline SA-neg model were considerably off, selecting cases with
differing flow conditions on purpose. A list of the selected cases is provided in Table 1.

3.2 Field inversion

For the field inversion, first, the optimal regularization parameter A must be determined for
each case in Table 1 separately. The canonical way (Jackel, 2021; Singh and Duraisamy, 2016)
to do so is to conduct multiple field inversions for different values of A, then plot the respective
two terms of equation (3) against each other in a log-log plot, which should yield a so-called
L-Curve (Hansen, 2000). There the optimal value for A lies in the corner of the L-shaped curve,
balancing prediction improvements and the magnitude of the model modification. In the
present case, we could not obtain such a curve, possibly due to unknown uncertainties in
the wind tunnel measurements or suboptimal convergence in the optimization.

Instead, we resorted to engineering judgement. For a too large A, the shock location does
not change significantly from the baseline solution, and the B-field is not very pronounced.
For a too small A, the shock location is matched well, and the pressure downstream of the
shock is also matched better. However, this comes at the cost of a much more pronounced
B-field, with stronger gradients and more extrema, which is considered to complicate the ML
step. Additionally, the results from the pressure sensors downstream of the shock are
uncertain. Hence, we choose A such that:

¢ the shock location is improved, but the pressure downstream is maintained; and
¢ the B-field does not become overly complex.

Figures 2 and 3 show the effects of different values of A on ¢, and 3, respectively.

Figure 4 shows, for each case, the ¢, distributions on the upper side of the airfoil for the
field inversion result (solid line), the baseline solution (dashed line) and the reference data
(dotted line). For case T1, no regularization parameter was found that would improve the
results without hurting our engineering considerations. For Cases T2-T6, the shock location
is improved considerably throughout without hurting the engineering considerations.

Figures 5 and 6 show the full flow fields in terms of the pressure coefficient c, and the
Mach number of the field inversion result for case T3, respectively. In both, the oblique

Case Re Ma @

Tl 2.68 x 10° 0.717 2.604°
T2 6.36 x 10° 0.742 4.456°
T3 8.79 x 10° 0.721 5.669°
T4 10.94 x 10° 0.724 5.654°
T5 13.18 x 10° 0.724 5.650°

T6 1532 x 10° 0.724 5.145°




shock wave beginning at x/c ~ 0.4 is well recognizable. The streamlines shown in Figure 6
emphasize the separation bubble downstream of the shock location.

Finally, Figure 7 shows the resulting B-fields for Cases T1, T3 and T6. Cases T2, T4 and
T5 are not shown due to their similarity to Cases T3 and T6. For Cases T2-T6, Bis typically
decreased to around B = 0.5 at the shock location (x/c =~ 04...0.6, depending on the case)
and the surrounding areas. This decrease corresponds to reduced turbulent production;
hence, a reduced eddy viscosity, and therefore, the shock location moves upstream. At the
beginning of the ensuing separation bubble, turbulent production is still decreased. Then, an
area with an increased 3, that is, increased turbulent production, follows at the outer edge of
the separation bubble. For case T1, however, the flow remains attached, and turbulent
production is decreased only slightly along the entire upper surface. As discussed
previously, this case was particularly troublesome to find a plausible regularization
parameter for, and a relatively high regularization was used.

4. Feature selection
With the data gathered in the previous section, the feature selection procedure discussed in
Section 2.2 was applied.

- - - baseline
-1.5 —~—1=10"°
A =10"10
s —©-A=10""
—0.5
0 .
T T T T T

0.4 0.6 0.8 1 1.2
X

Note: The additional extrema and the wider range of
for L =10-12
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Figure 2.

¢, distributions of
Case T3 from the
baseline computation,
different A and from
the reference data

Figure 3.
B-fields for different
A, Case T3
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Figure 4.

Surface ¢, from the
baseline RANS
computation, field
inversion and
reference database for
Cases T1-T6

Figure 5.
¢ from the field
inversion, Case T3

Figure 6.

Local Mach number
and streamlines from
the field inversion
results for Case T3

Tl - - - baseline
—— inversion

Ma

0 02 04 06 08 1 12 14

0.2
>

0




0.4 0.6 0.8 1 1.2
X

Note: The results for cases T2, T4, TS are very similar to
T3 and T6, and hence, not depicted

4.1 Considered features
The following features are considered:

The normalized transport variable of the SA-neg model y = /v, where v is the
molecular kinematic viscosity.

The ratio of the production to the destruction term of the SA-neg model P/D.

The dimensionless function f,, part of the destruction term D of the SA-neg model,
see (Allmaras et al., 2012).

A nondimensionalized variant of the SA-neg viscosity gradient magnitude
Vi =d/(v+ v)|VD|, according to (Ferrero et al., 2020). d is the wall distance.

The magnitude of the vorticity tensor, nondimensionalized Q = d*/(v + )Q,
where Q is the magnitude of the vorticity Q = ||€;||.

The ratio of the local turbulent stresses to the shear stress at the closest wall 7,
(Holland et al., 2019; Jackel, 2022), 6 = w,S/(1.57,)

The ratio of the magnitudes of strainrate and vorticity S/Q = ||S;||/|| €|

The normalized Reynolds stress tensor magnitude 77,5, where 7, = p(v + 17)2 d?
and 7= ||7;||. Based on Ferrero et al. (2020).

The boundary layer shape factor Hy» = §%/6, where 8" is the displacement thickness,
and 0 is the momentum thickness of the boundary layer.

A measure of the turbulent kinetic energy, % gcg = 1.5Cc2v11/2S;S;/ (% Ziuf),
based on the quadratic constitutive relation for SA-neg models, as used by Volpiani
et al (2021). It is C¢,o = 2.5, and ; are the velocities.

The delayed detached eddy simulation wall shielding function f; = 1 — fanh (872),
used before in this or a modified version by Ferrero ef al (2020) and Kohler et al. (2020).

Data-driven
augmentation

1553

Figure 7.
B-fields for cases T1,
T3and T6
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Figure 8.
Correlation matrix

. The Rotta and Clauser pressure gradient parameter Bpe = &'/ (pu?)9p/Os, where %
is the stream-wise pressure gradient.

+ The inner pressure gradient parameter Aps = v/ (pu)dp/0s.

Note that not all features fulfill the criteria of being locally available, for example, 8, H;»and the
pressure gradient parameters Brc and Aps.. These nonlocal features typically depend on
surface quantities and are made available locally by projecting the surface values into the field;

that is, at every field point, the value of the quantity at the closest wall is made available.

4.2 Spearman’s correlation
We now combine the datasets for the field inversions from all cases and compute
Spearman’s rank correlation coefficient between all of the features and the features and S.
Figure 8 shows the resulting correlation matrix. From the correlation matrix, we find that
the following features are redundant:

 kocr and 8 at a correlation of 75 = 0.94. Looking at their definitions, this is expected,
as both features are proportional to v,S. The correlation of £gcr and B is s = 0.17,

less than the correlation of § and B at s = 0.21; hence, kbCR is eliminated.

* fqand 7/7,at a correlation of 7s = 0.98. Here, 7/, is eliminated due to its lower
correlation with B at »s = —0.09 as opposed to s = — 0.1 for (f; B). Deeper insight

reveals that both features scale with %2 and one of {S /L %} in relevant parts of

the flow, explaining their high correlation.

e Brcand Ap,, at a correlation of 75 = 0.95. According to their definitions, both are
different scalings of 0p/0s; hence, this is expected. Both are eliminated, as their

correlation with Bis very small with 75 = 0.03 and 75 = 0.02, respectively.

This results in the following subset of features:

{§7H127fuhfd7 Wa 6

P/D
0.1 S/Q

-023 -03 4§
-0.21

0.23
0.03

-0.13 0.0 0.0l 0.02 00l -0.01 Brc
-0.03 -0.01 -0.08 -0.04 0.07 0.02 -Aps+

0.07 -0.16 0.09 0.05 0.03 -0.08 0.22

-0.31 -0.19 -0.43 0.09
029 0.3 -0.54 043 0.0

045 -0.37 -0.52 -0.23 0.6 -0.08 -0.07
0.06 -0.16 021 021 -0.1 -0.15 0.03

d_xj dx,-

S P }
7Q7D7X

0.16 Hp
0.02 -0.02 kper

0.06 0.04 T/ Tref
0.02 0.17 Q

0.02 0.11 0.17 -0.09 0.12 B

)



4.3 Sequential feature selection
Before running the SFS, which includes the actual training of a NN, the data needs to be
preprocessed.

4.3.1 Preprocessing. Some of the feature values span multiple orders of magnitudes.
Applying the natural logarithm to these features makes them more amenable to ML by
pushing their distribution toward a Gaussian distribution.

Figure 9 demonstrates the effect this transformation has on the example of the feature P/D.
The feature spans orders of magnitudes from O(10~%) to O(10"). Applying the logarithm
normalizes the data to the order of O(1), and an almost Gaussian distribution, which makes the
data much easier discernable to the NN. The features to which the natural logarithm is applied
are as follows:

___.SsP
{viy767§aﬁa/\/}7 (8)

Note that this transformation leads to a loss of information, as the logarithm is not defined
for negative values, which means that affected samples must be removed from the data set.
Most of the features become only negative when < 0. In that case, the modification
introduced by the negative Spalart-Allmaras model formulation becomes active. We expect
it to be better to leave the turbulence model unchanged in that case for numerical
robustness; therefore, it is no problem to leave out these samples.

A further step is to reduce the amount of samples where 8 ~ 1. This is true for the
majority of the samples; see Figure 10, upper diagram. For the purpose of ML this is
detrimental, as it rewards the ML algorithm to predict a constant 8 = 1, as this already
decreases the cost function significantly. The procedure hereby is to pick all 75 samples
for which |8 — 1> 0.02 holds and then to add 0.2n4_., of the samples with |8 — 1|< 0.02.

1073 109 10° 100 10° 10'2

P/D

15
g 10
Q

5 .

O _

-5 0 5 10 15
In(P/D)

Note: The different scales of the x-axis
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Figure 9.
Histograms for P/D
(top) and In(P/D)
(bottom)
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Figure 10.
Histograms for the
full set of B (top) and
the reduced set of 8
(bottom)

Table 2.

Selection table for
input features to be
used for neural
network training

100
80
60
40
20

p[%]

0 T T !
06 07 08 09 1 1.1

B

These thresholds and factors have been obtained manually by targeting a more Gaussian
distribution. According to Figure 10, the distribution of 8 is now much closer to a Gaussian
distribution, and therefore, better suited for ML training.

These preprocessing steps leave around 7,100 samples, about 1% of the initial data set size.

4.3.2 Procedure. A NN with two layers and 50 neurons each is used. As activation
functions, the rectified linear unit is used together with the Adam optimizer. Due to the
random initialization of NN, SFS runs are nondeterministic. To alleviate this, each SFS
variant, forward and backward, is run three times. We predefine a range of 3 to 5 for the
number of features the SFS should return. For each run, we then assign a score to the
returned feature, ranging from 5 for the most important feature to 1 for the least important
feature. Then, the scores over the different SFS runs are summed up to get the final score for
each feature.

4.3.3 Results. The final scores from SFS as well as the correlations with B, both for the
full (“full data”) and the preprocessed (“training data”) data sets are listed in Table 2.

Correlation with 3 (x)
Feature SFS score Full data Training data
In(y) 30 0.18 0.61
In(d) 18 0.21 0.62
n@Q) 17 0.12 0.20
I (S 8 -0.16 -0.11
o(3)
Hyy 8 0.11 0.18
fa 2 -0.1 0.13
fro 1 -0.15 0.20
n(Vo) 0 0.21 0.18




By far, In(y) is considered the most important feature, followed by In(8) and In(Q), both at
the same level. With less importance, In(S/Q) and H;. follow. Not much significance is

attributed to £, f,, and In(V7).

5. Machine learning
With the results obtained before, finally, a NN can be trained and included in the CFD solver
to augment the SA-neg turbulence model. As inputs, we use the features

{m( x),1n(8),1n(Q),In (g)  His } )

which are the top five of the features listed in Table 2. The NN architecture is optimized
using the hyperparameter optimization strategy discussed in (Sabater ef al, 2021). The
result is a network with four layers, 86, 67, 52 and 40 neurons, respectively.

Figure 11 shows the training success. The line indicates perfect predictions, and the
symbols show the actual predictions located not far off the line. With the thus-augmented
turbulence model, CFD calculations are carried out for the cases that were part of the
training dataset, T2-T6, as well as for some additional validation cases, T1 and V1-V3, see
Table 3.

In Figure 12, results are shown for multiple training and validation cases. It contains
the surface ¢, of the baseline model (dashed line), the reference data (dotted), the NN-
augmented prediction (dash-dotted) and, where applicable, the inversion result (solid
line). For cases T2, T3 and V2, the prediction of the shock location is significantly
improved, reaching the field inversion solution. For V1, the improvement is less clear
because the shock location is not as clear in the reference data. For cases T1 and V3, no
shock-induced separation appears, and the shock location is not improved. In both
cases, however, the prediction is also not worsened vis-G-vis the baseline model. Note
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Figure 11.
Truth versus
prediction for the
trained NN
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Table 3.
Validation cases

that T1 was not part of the training data, as the field inversion did not yield usable
improvements.

In (Jackel, 2022), a different approach with the FIML approach was taken, which fits
an analytical function instead using the direct FIML (Holland et al, 2019) variant. It
uses test case T3 as well, however, and achieves the same improvement in the
prediction of the shock location.

6. Summary

In this study, the FIML approach was applied to cases with shock-induced separation.
For this purpose, an extensive database of windtunnel measurements for the RAE2822
at transonic flow conditions was investigated. This included the identification of cases
for which the CFD simulations with the SA-neg model deviated significantly from the
measured data and selecting these cases for field inversions. The next step was feature
selection, where a list of possible input features for the ML step was established and
where the features were investigated in terms of their applicability to the present
problem by examining their correlations among themselves and with the target term as
well as via SFS. Then, the hyperparameters of the deployed NN were optimized. The
network optimized in that manner was trained using the previously selected input
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features to predict the correction term introduced into the turbulence model. The
turbulence model with the trained correction term was then successfully applied to
multiple cases, both, cases that were part of the training process and cases that were
omitted in the training. To apply the trained model to other testcases with similar flow
conditions, a more comprehensive training process based on the FIML Direct approach
(Holland et al., 2019) is needed. The approach was already adopted for subsonic flows
(Jackel, 2022) and enables the training process on several testcases simultaneously. In
the present work, the focus was on feature selection methods and on first steps for data-
driven turbulence modeling in transonic flows.
Future points of research are as follows:

¢ to combine the training data obtained in this study for shock-induced separation
with previously obtained data (Jackel, 2021) for subsonic trailing edge separation
and investigate if a common correction model can be found based on the preferred
features as determined in this study;

* to investigate different correlation coefficients, as Spearman’s correlation
coefficient only considers two variables at a time and detects only monotonous
relationships;

* to add more features and other transformations than the natural logarithm, such as
the transformation proposed by (Ling et al., 2016);

e to put more focus on the availability of the features in other CFD solvers, where
nonlocal features such as, for example, the wall shear stress at the closest wall
might not be given; and

» to train on several transonic flow testcases for an improved generalizability of the
resulting data-driven turbulence model.
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