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Extended Abstract  
The problem owner of the present study is a consulting company that provides simulation-

based workforce planning advice to a big manufacturing firm XYZ. The latter pertains the 

number of engineers of various skill levels that are needed for the repair of health care 

equipment in hospitals of a large country. The prediction of machine failures (reliability 

forecasting) is a crucial input to the simulations that affects the quality of the business advice. 

Currently, the problem owner follows a reliability forecasting approach based on lifetime 

models following the HPP
1
. Nevertheless, this practice has several limitations as: i) the 

predictive performance is not always satisfactory due to data overfitting (Liang, 2011), ii) 

real-world systems do not generally comply with the HPP traits (Kurien, Sekhon & Chawla, 

1993), namely constant failure rates of a memoryless failure process, while reliability is non-

linear and complex due to a bunch of factors (Chatterjee & Bandopadhyay, 2012).  

In the view of the above, the problem owner needs to increase the efficiency of workforce 

planning that will finally lead to cost savings for firm XYZ. It is believed that a more efficient 

planning can be achieved through the improvement of the forecasting approach. Forecasting 

should fulfil certain requirements, namely it should predict the failure patterns of multiple 

machines, at an acceptable level of accuracy, with a high degree of automation. Thus, the 

study’s research objective is defined as: to provide an automated forecasting framework that 

detects and predicts the failure patterns of multiple machines with acceptable accuracy. 
 

For achieving the research objective, firstly, a clarification of the forecasting requirements is 

done through a semi-structured interview with the problem owner. Among others, it is 

clarified that accuracy is the hourly absolute deviation between the actual and the forecasted 

inter-failure time of a machine (MAE), and it concerns only its next failure (one-step ahead 

forecasting). Additionally, for a bunch of reasons, two different levels of acceptable accuracy 

are defined, the 1
st
 with minimum accuracy of 120h (1 working week), and the 2

nd
 of 2160h (1 

quarter). Secondly, the identification of the most promising forecasting approach that can 

fulfil the given requirements is done through a literature review. Time series forecasting is 

found to be the most promising approach as it: i) outperforms reliability models that follow 

the NHPP in terms of accuracy (Ho & Xie, 1998; Dindarloo & Siami-Irdermoosa, 2015; Fan 

& Fan, 2015), ii) is able for automated and large-scale application (Wagner et al., 2011).  

 

Subsequently, a case study, which pertains reliability forecasting of radiation treatment 

machines maintained by firm XYZ, is conducted in order to evaluate the time series approach. 

The reliability metric of Time-Between-Failures (TBF) is used for forecasting, whilst the time 

series cross-validation method is employed for its evaluation. The time series approach 

followed is based on the use of three parametric methods (ARIMA, Exponential Smoothing, 

Optimized Theta) and two artificial neural networks (FFNN, RGMDH) applied on the 

machine group level (2 groups) and on the individual machine level (5 machines). In this 

context, experimentations take place under both full and adjusted for outliers data conditions. 

                                                           
1
 HPP stands for Homogeneous Poisson Process; it is a special case of the generalized Non-Homogeneous 

Poisson Process (NHPP), which constitutes with time series, the two alternatives to reliability forecasting. 
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Moreover, the related repair data, expressed by Time-To-Repair (TTR) and by a dummy 

variable that represents the use of spare items, is used in the TBF forecasting with ARIMAX 

models.  
 

The case study demonstrates that: i) on the machine group level, the series are white noise 

involving that the failure process is memoryless and failure patterns cannot be detected, ii) on 

the individual machine level, the best performing forecast model of every machine examined 

satisfies the 2
nd

 level of acceptable accuracy. The MAE error metric of the best forecast model 

for each machine examined is substantially less than 2160h. Thus, the present study has 

succeeded in its objective. The reliability forecasting framework produced constitutes a 

holistic approach to the prediction of machine failures, as with its various and at a degree, 

complementary methods can deal with all the basic types of failure data (e.g. autocorrelations, 

seasonality, trend, non/linearity, etc.) The framework formed is provided to the problem 

owner allowing for the transformation of the workforce planning of firm XYZ from an annual 

to a quarterly basis.  
 

The recommendations for the problem owner as well as for future research are: first, the 

execution of experimental simulations with a planning horizon of 3 months in order to 

evaluate the possible cost savings for firm XYZ. Second, the collection of new relevant to 

machine failures data (e.g. machine utilization, purchase date), and third, the extension and 

evaluation of the forecasting framework with the inclusion of these new data and/or with new 

methods (e.g. hybrid, FFNN with external covariates) and techniques (e.g. time series 

clustering). Fourth, the application and re-evaluation of the reliability forecasting framework 

formed when the failure data of 2016 become available. Fifth, the use of failure behavior’s 

variability as a stakeholder management tool when the problem owner deals with forecasting 

projects. Last, the use of the time series cross-validation method for the evaluation of forecast 

models and the great amount of attention on the potential existence of outliers in the dataset. 

On reflection, the contribution of the present thesis is multi-dimensional. First, a holistic and 

multi-method reliability forecasting framework that can deal with almost any failure process 

has been produced. This framework can be used in relevant projects as it can be extended and 

adjusted to the conditions of each project. Second, the aforementioned framework has been 

built though a state-of-the-art analytical forecasting process that can also be used by the 

problem owner in different projects. Third, there is a clear potential for cost savings for firm 

XYZ if workforce planning is adjusted in a quarterly horizon. Fourth, there is a knowledge 

contribution to the performance of various time series methods (e.g. Optimized Theta, 

RGMDH) in the context of reliability forecasting. Fifth, there is a clear contribution to the 

increase of the domain knowledge of reliability forecasting in health care equipment in 

general, and in radiation treatment machines in particular. Last, it has been highlighted that 

the initial evaluation of the variability of the failure behavior of a set of machines can serve as 

a stakeholder management tool as regards the final forecasting deliverable.  

Keywords: Workforce Planning, Reliability Forecasting, Machine Failures, Time Series 

Analysis, R. 
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1 Reliability Forecasting for Simulation-based Workforce Planning 

1. Introduction 
The chapter of introduction provides basic information for the problem owner, its current 

approach to workforce planning and the respective problem that is followed by the study’s 

research problem, objective, questions and methodology. Subsequently, the scientific and 

social relevance of the study with its respective outline are presented.  

1.1. Background Information 

The present sub-section serves for the introduction to the problem owner, its current approach 

to workforce planning as applied in a specific case as well as the respective problem 

identified. 

1.1.1. Introduction to the Problem Owner and the Case of Workforce Planning 

The problem owner (the company)
2
 is a consulting company that provides mainly supply 

chain management advice to a wide range of businesses. For providing this advice, the 

company uses an innovative object-oriented programming platform based on C#, and its 

deliverables are produced through advanced Discrete Event Simulation (DES) studies. The 

projects that are undertaken deal with various aspects of supply chain management including 

production and distribution policies, inventory management, workforce planning, investments 

in new facilities, etc. In the aforesaid types of projects, forecasting plays a critical role as 

accurate forecasting leads to optimal input to simulations, and finally, to optimal simulation 

output. Consecutively, optimal simulation output contributes to effective business decisions, 

efficient planning and increased financial returns. 

 

Figure 1. The work flow in a typical simulation project performed by the problem owner.  

Within the previously described context of activities, the problem owner provides workforce 

planning advice to a big manufacturing company XYZ
3
 for its activities in a specific country. 

In general, workforce planning aims to provide the right number of employees with the right 

skills at the right time according to the policy and plans of the organization (Khoong, 1996; 

                                                           
2
 The terms problem owner and company are used interrelated in the present report.  

3
 The terms manufacturing company XYZ and the client of the problem owner are also used interrelated in the 

present report. 

Data Analysis Forecasting  Simulations Optimization 
Business 
Advice 



 

Delft University of Technology 

 
 

2 Reliability Forecasting for Simulation-based Workforce Planning 

Zeffane & Mayo, 1994). Workforce planning is predominately short-term and determines 

which employees will perform the planned functions in the next couple of weeks or months 

(Geerlings et al., 2001). In the specific case of the manufacturing firm XYZ, workforce 

planning pertains the number of engineers of various skill levels that are needed for the 

Corrective Maintenance (CM) –repair- of health care equipment used in hospitals. At this 

point, it becomes clear that the manufacturing firm XYZ does not only provide hospitals with 

health care equipment, but it is also in charge of its repair in case of failure. 

Here, some basic definitions and clarifications are needed. First of all, a failure is defined as 

“an event that occurs when the delivered service deviates from correct service” (Avižienis et 

al. 2004, p.13). Alternatively, a failure is a misbehaviour that results in incorrect output, and it 

can be observed by a human or a computer system (Avižienis et al. 2004). Secondly, 

reliability is “the probability that a component or a system will perform the required function 

for a given period of time when used under stated operating conditions” (Ebeling, 1997, p.5). 

Thirdly, health care machines that are provided and maintained by the manufacturing firm 

XYZ are repairable systems. These systems have the identical characteristic that can be 

restored to optimal performance without being entirely replaced after failing to perform one or 

more of their functions under the predetermined standards (Ascher & Feingold, 1987).  

Taking into consideration all the previously mentioned facts, it becomes evident that for the 

case of firm XYZ, equipment reliability, or alternatively, machine failures are directly 

connected to workforce planning. Knowledge, even with a degree of uncertainty, of the time, 

the number and the type of machines that will fail in the next weeks or months constitutes 

reliability forecasting (machine failures prediction). Reliability forecasting is a critical input 

to the simulation-based workforce planning and the respective optimization performed by the 

problem owner, and allows for planning the respective workforce for conducting the 

necessary repair.  

1.1.2. Current Approach to Reliability Forecasting and Workforce Planning  

Concerning the current reliability forecasting approach, the problem owner established in 

2013 (1
st
 year of the workforce planning project) a methodology that approaches the machine 

failures of the whole company network in the country of study as being completely random 

events. Within this forecasting methodology, the assignment of lifetime distribution models to 

the expected number of failures per year is done. More specifically, the expected number of 

failures per year is approached with a Poisson distribution that fits the previous year’s failures 
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for every machine group. Consecutively, from each fitted Poisson distribution, values are 

drawn/sampled allowing the simulation-based workforce planning for the next year. 

 

Regarding the aforesaid machine groups, it should be clarified that all individual machines 

that can potentially fail and be in need of corrective maintenance belong to a machine group, 

while the machine groups are 360 in total. Machine groups are distinguished according to the 

type of machines, priority of service, type of day (working day or not) and contract type. This 

means that machine groups consist of machines with similar technical/model characteristics 

among others. When an individual machine fails, the whole group fails like a system 

consisted of serially connected (“AND” gate) components (see figure 2). Finally, every group 

of machines is linked to the specific skills of the firm’s engineers, and when it fails, the 

appropriate “skilful” engineer is called for providing corrective maintenance. 

  
Figure 2. Machines Group X as a system consisting of serially connected individual machines. 

1.2. Research Problem, Objective and Methodology 

In this section, the main elements of the research, namely the research problem, objective, 

questions and methodology, are given. 

1.2.1. Research Problem 

The current forecasting approach of assigning lifetime distribution models was indeed an 

effective way to deal with the lack of sufficient data in the first years of workforce planning 

for the manufacturing company XYZ. However, the assignment of Poisson stochastic 

distributions to the expected number of failures has several implications. These are that the 

failures of each machine are regarded as completely random involving that the expected 

Time-Between-Failures (TBF) has no memory. In other words, machines are assumed to have 

constant failure rates with no aging effects, while the time ranges between failures are 

independent and exponentially distributed. In this case, the whole machine failure process is a 

Homogeneous Poisson Process (HPP) where it is implied that every repair brings the machine 
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4 Reliability Forecasting for Simulation-based Workforce Planning 

to an “as good as new” state (renewal process) (Karbasian & Ibrahim, 2010; Moura et al., 

2011).  

On the one hand, the aforementioned implications of the Poisson distributions fitting approach 

constitute serious limitations as real-world systems are generally not characterized by constant 

failure rates; the latter is based on a bunch of factors such as the systems’ complexity and their 

dynamic environment (Kurien, Sekhon & Chawla, 1993). Furthermore, the assumption that a 

system does not suffer from the aging process may be real only during short-term horizons 

(Ross, 2010), while the repair to an “as good as new” state (perfect repair) may serve only the 

purpose of modeling the reliability of non-repairable systems (Doyen & Gaudoin, 2004).  

On the other hand, by going a step beyond Poisson distributions and speaking broadly about 

stochastic lifetime distribution models as a reliability forecasting approach, certain limitations 

are identified as well (Dindarloo, 2015; Dindarloo & Siami-Irdermoosa, 2015; Xu et al., 

2003). Firstly, the a priori assumptions and/or independence of failure data made in this 

approach are difficult to be validated, while meeting the requirements of certain distributions 

can be proven difficult, if not impossible, resulting even in erroneous outputs (Dindarloo, 

2015; Dindarloo & Siami-Irdermoosa, 2015; Xu et al., 2003). Secondly, with the 

aforementioned forecasting approach, reliability measures are only predicted in fixed time 

intervals making difficult to forecast the variability of reliability indices with time (Xu et al., 

2003). Thirdly, stochastic lifetime models are unable to capture complex non-linear 

relationships that mainly occur in real-world systems, while their prediction performance is 

not always satisfactory as data over-fitting problems are encountered (Liang, 2011). 

Apart from the inherent limitations of the stochastic distribution models, the way in which the 

categorization in machine groups takes place poses a serious limitation as it mixes different 

individual machines in machine groups. The latter has the disadvantage that there is not a 

clear clue on the failure patterns of individual machines. In other words, a particular 

individual machine that fails frequently makes the whole machine group failing frequently, 

while, at the same time, other individual machines fail only rarely or not at all; this behavior 

cannot be observed on the machine group/system level. An additional limitation is detected on 

the fact that not all the failures of an individual machine are included in a machine group but 

only some of them, as the criterion “Priority of Service” distinguishes them in 5 different 

categories (5 different priorities). More explicitly, the latter means that a failure of an 
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5 Reliability Forecasting for Simulation-based Workforce Planning 

individual machine can belong, for example, to group A when it has high priority of service 

(e.g. “1”), and to group B when it has low priority of service (e.g. “5”). In conclusion, the 

aforementioned methodology does not use the whole range of failure data resulting in a 

distorted view of the failure data and in information loss that could be valuable. 

 

In this context, the problem owner needs to increase the efficiency of workforce planning that 

will finally lead to cost savings for the manufacturing firm XYZ. The problem owner believes 

that by improving incrementally various parts of the simulations conducted, a more efficient 

planning can be achieved. Prediction of machine failures is the first thing that the problem 

owner aspires to improve for two main reasons: firstly, the limitations of the current 

forecasting approach as described previously are believed to reduce the optimality of the final 

output. To the aforementioned attitude some additional key facts of reliability forecasting 

have contributed; firstly, the fact that reliability (or failures) in real-world systems is non-

linear and complex (Chatterjee & Bandopadhyay, 2012), whereas catching the possibly non-

linear trend of failure times and the respective patterns are critical for maintenance decision 

making (Moura et al., 2011). This means that the various machines can follow certain failure 

patterns that may be identified and lead to a closer to reality forecasted failures, and as a 

result, to a more efficient simulation-based workforce planning. Secondly, as reliability 

forecasting is the most critical input to the workforce planning optimization, it would make 

sense to start the initiative of improving its efficiency from this element due to its potentially 

large impact. 

Thus, a forecasting framework able to tackle the limitations of the current forecasting 

approach and capable of dealing with the complexities of machine failures prediction is 

needed; moreover, this framework should fulfill certain additional requirements set by the 

problem owner. Primarily, it is required that the prediction of machines’ failure patterns 

should be of certain and acceptable level of accuracy. Moreover, the problem owner, trying to 

follow the leading companies in the field, wishes to make workforce planning more dynamic 

with a high degree of automation by transforming reliability forecasting into a process with 

limited human intervention. Additionally, the data should be incorporated in the optimization 

on a short-term basis, and in any case, not on the current static form of the annual basis. 

Finally, as normal, the forecasting framework to be produced is expected to be able to deal 

with reliability forecasting of multiple machines executing forecasting on the large scale. 

Clarifications on the requirements of the forecasting deliverable are given in chapter 2.  
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By producing a forecasting framework with the previous characteristics, the problem owner 

believes that the idle hours of the engineering personnel in charge of corrective maintenance 

will be less than the current situation. The latter will subsequently lead to a more efficient 

workforce planning involving cost savings, or alternatively, increased financial returns for 

firm XYZ. Therefore, by taking finally everything into consideration, the research problem in 

the present study is identified in the area of reliability forecasting that is used as input to the 

simulation-based workforce planning.  

1.2.2. Research Objective and Questions 

In the view of the research problem discussed above, the research objective of the present 

thesis project can be defined as: 

 

For achieving the above research objective, the research questions that need to be answered 

are: 

a) How are the requirements of the desired forecasting framework, i.e. automation, 

acceptable accuracy, for multiple machines, defined and/or measured?  

b) What is the most promising forecasting approach for fulfilling the requirements 

of the desired forecasting framework?  

c) Does the most promising forecasting approach identified in b satisfy the 

requirements set by the problem owner? 
 

By answering the aforementioned research questions, the research objective will have been 

completed. 

1.2.3. Research Methodology 

In this section, the research methodology that should be followed in order the research 

questions to be answered and the research objective to be achieved is presented. Three 

different research methods are employed in order the research objective to be accomplished. 

These are the interview, the literature review and the case study methods, whereas each 

research question needs a different method. 

to provide an automated forecasting framework that can detect and predict the failure 

patterns of multiple machines with acceptable accuracy 
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For answering the research question a, the semi-structured interview method, which includes 

both open- and close-ended questions, is employed in order to let the problem owner to 

specify the requirements that the pursued forecasting framework must fulfil. Only with an 

interview, the needs of the problem owner can be defined and the specific requirements can 

become tangible. Semi-structured interviews in particular are useful in this context as open 

questions can reveal new issues through in-depth discussions, while close-ended questions 

can clarify the already identified issues (Jankowitz, 2000). 

In order research question b to be answered, the method of the literature review is employed 

in order the forecasting approach that can potentially meet the problem owner’s requirements 

as expressed in the interview to be identified. Afterwards, the most promising reliability 

forecasting approach will be evaluated with a case study. This case study is to be based on 

health care equipment manufactured and correctively maintained by firm XYZ. Thus, data 

related to the reliability of these health care machines are used in order research question c to 

be answered.  

More specifically, among all the health care machines and the respective datasets, the ones to 

be examined within the present thesis project are radiation treatment machines that are used in 

hospitals of a large European country. The choice of this type of equipment is firstly based on 

its high criticality and on the importance of its health care function, while secondly, on the 

fact that it is generally an unexplored domain in terms of knowledge in reliability forecasting. 

It is clarified that the specific radiation treatment equipment (labeled as “Model X” in this 

study)  is manufactured as a simulator in order to fulfil the high performance requirements of 

radiation oncology. 

Overall, the research methodology with which the research objective can be achieved is given 

graphically below. 

 

Figure 3. The work flow diagram of the present thesis project.  
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8 Reliability Forecasting for Simulation-based Workforce Planning 

1.3. Social and Scientific Relevance 

Without any doubt, the present study holds scientific and business value, and on extension, 

economic and social value. With respect to its scientific significance, the following facts 

should be underlined: firstly, the present research topic accentuates the clear link between 

predictive performance and the quality of Discrete Event Simulation (DES) output as 

forecasting is an input to simulations. Thus, the present thesis project can provide a better 

understanding in their connection and show how forecasting can increase the validity and 

optimality of simulations’ output. Secondly, the present thesis will increase the domain 

knowledge as it will produce insights in reliability modeling, analysis and forecasting of 

radiation treatment equipment. It should be stressed that no literature is found in reliability 

forecasting of this type of machines.  
 

From the social relevance viewpoint, the social contribution of the present thesis project is 

made on two different levels. The first one pertains the case where the potential well-

performing reliability forecasting framework is used solely, whilst the second one is realized 

when it is used in combination with simulation based-workforce planning. On the one hand, a 

well-performing reliability forecasting framework used solely can enable critical public 

organizations (e.g. schools, hospitals, the police, the army) for efficient maintenance planning, 

decision making on spares provisioning and replacement policies (Fan & Fan, 2015; Xu et al., 

2003). On the other hand, when a well-performing reliability forecasting combined with 

simulations for workforce planning, organizational knowledge in terms of human resources 

management is increased enabling organizations to avoid either panic hiring or layoffs 

(Sullivan, 2002). It goes without saying that firms, the labor market, and on extension the 

economy and the society, are positively influenced in terms of stability from less panicked 

and temporary hiring as well as from less layoffs.  
 

Furthermore, efficient workforce planning serves additional business and societal needs as it 

results in no understaffing, and as a consequence, in a more effective day-to-day business 

operations (Attendance on Demand, 2015). Subsequently, this contributes: i) to higher quality 

of services resulting in higher utility for the consumers and the society, and in less customer 

complaints to firms, and ii) to the better utilization of employees avoiding situations where 

employees are idle or extremely busy working overtime. The latter working balance leads to 

good employee morale that finally returns value to the organization and the consumers 

(Attendance on Demand, 2015).  
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9 Reliability Forecasting for Simulation-based Workforce Planning 

1.4. Thesis Outline 

The outline of the present report is completely in line with the research flow of figure 3. More 

analytically, in the introduction of chapter 1 presented above, basic information for the 

problem owner is given, its current approach to workforce planning is presented, whereas the 

respective research elements are formulated and commented on their scientific and social 

relevance. Subsequently, in chapter 2, an explicit specification of the problem owner’s 

requirements on the desired reliability forecasting framework is done. After the identification 

of the specific requirements, the literature is reviewed in chapter 3 in order the most 

promising approach to reliability forecasting to be found. 

Consecutively, the most promising reliability forecasting approach identified in chapter 3 is 

analyzed in depth in chapter 4 accompinied with a detailed description of its methods, 

processes and tools. Then, in chapter 5, a case study is conducted allowing the evaluation of 

the reliability forecasting approach identified. Finally, in chapter 6, conclusions on the 

suitability of the reliability forecasting approach examined are drawn, while answers to the 

research questions and objective are overall presented. Recommendations for the problem 

owner and the future research are given, while critical reflection on the thesis project and its 

contribution is done. Furthermore, it is noted that the core of the report formed by the chapters 

described above is complemented with a list of the references used as well as with appendices 

that support the main text.   
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2. Requirements of the Forecasting Framework 
In this short chapter, the problem owner’s requirements for the pursued forecasting 

framework are clarified giving an answer to research question a. 

More specifically, as pointed out in chapter 1, the pursued forecasting framework should 

satisfy certain requirements set by the problem owner. The main or primary requirements are 

already given in brief, and these are: automation, acceptable accuracy, suitability for 

multiple machines. By employing the semi-structured interview method (see its protocol in 

appendix A), the problem owner clarified sufficiently the aforesaid primary requirements. 

Moreover, some secondary requirements that it would be desired but not necessary to be 

covered by the pursued framework were added. 

First of all, concerning the requirements of automation and suitability for multiple machines 

(large-scale forecasting), it should be noted that they are interrelated and for that reason they 

are approached as a group of requirements. Automation stands for limited human intervention 

where the forecasting system is able to continuously self-update its models. In this way, every 

time that a new machine failure occurs, the forecasting system executes a new forecast. 

Additionally, the automated forecasting framework should qualify for large-scale forecasting 

involving that it is able to deal with multiple failure datasets referring to multiple machines; 

namely, all the machines that are correctively maintained by the engineers of firm XYZ. This 

can offer a forecasting framework that can be used as a generally applicable input to the 

simulation-based workforce planning of the client of the problem owner. 

With respect to the acceptable accuracy requirement, first of all, it is clarified that according 

to the problem owner, forecasting accuracy is defined as the absolute deviation of the actual 

and the forecasted inter-failure time
4
 of a machine measured in hours. Equivalently, 

forecasting accuracy measures the hourly difference between the actual and the forecasted 

time point of failure. As it was stressed in the interview, the focus of machine failures 

prediction should be only on the next failure from the present time; in other words, reliability 

forecasting should be one-step ahead with a horizon of one failure.  

As regards the acceptance of accuracy, the problem owner in collaboration with firm XYZ, 

has defined two different levels of acceptable accuracy (see table 1). The establishment of two 

                                                           
4
 Operationally speaking, the forecasting accuracy as defined above by the problem owner equals the uptime of a 

machine; however, there is a semantic difference as the term uptime is not associated with failures. 



 

 

Accenture the Netherlands 

 

11 Reliability Forecasting for Simulation-based Workforce Planning 

different levels of acceptable accuracy is connected with the business operations of firm XYZ, 

whilst it serves various purposes. Generally speaking, this is firstly done in order the problem 

owner to express its maximum and minimum accuracy requirements, and to provide in this 

way a concrete orientation to the desired predictive performance of the forecasting framework 

deliverable. With the distinction of two levels of accuracy, the problem owner defines a broad 

range of results that could be of added value for the workforce planning and the business 

operations of its client. Finally, by establishing different levels of acceptance, the initial lack 

of knowledge on the predictive performance of reliability forecasting that could lead to strict 

and unrealistically high accuracy requirements is managed.  

Level of Acceptable Accuracy Maximum Allowed Deviation 

1
st
 5 full days or 120 hours 

2
nd

 3 months or 2160 hours 

Table 1. The two levels of acceptable accuracy as defined by the problem owner. 

In the specific context of the business operations of firm XYZ, it is clarified that the first level 

of acceptable accuracy pertains a maximum allowed absolute deviation between the actual 

and the forecasted (one-step ahead) inter-failure time of a machine of less than 5 full days, 

namely 120 hours. This strict level of accuracy is connected with the willingness of the 

problem owner and its client to examine the possibility of workforce planning for a very 

short-term horizon, namely for one working week. On the other hand, and on the contrary 

with the aforementioned weekly basis of planning, the second level of acceptable accuracy 

has a maximum of absolute deviation of 3 months (2160 hours). The latter is also related to 

the examination of the possible transformation of the current annual basis of workforce 

planning to a quarterly basis. Finally, it is stressed that the contribution of forecasting to 

workforce planning efficiency can potentially be made on both levels of accuracy due to the 

limitations of the current forecasting approach given in chapter 1. The latter can finally be 

evaluated by the problem owner through the execution of DES experimentations.  

If any of the above levels of forecasting accuracy are accomplished, then the problem owner 

will incorporate the project’s delivered forecasting in workforce planning deterministically 

where just one value will be assigned to the appropriate failure variable of simulations. 

Nevertheless, it is pointed out that if none of the acceptable levels of forecasting accuracy is 

accomplished, then the use of prediction intervals can be examined. The latter can be 

applicable if an acceptable level of uncertainty as expressed by prediction intervals of a 
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certain confidence level is met. For example, this can be the case where the range of 

prediction intervals with confidence level of 80% is less than 1 week. In this case, the 

appropriate failure variable of simulations will not be approached deterministically but with a 

distribution from which values will be drawn during the runs. 

 

Finally, as regards the secondary requirements that the forecasting framework is desired but 

not obliged to fulfil, the following points should be taken into account. Firstly, it is stressed 

that the forecasting framework is desired to have a low computational cost. In practical terms, 

this involve that wherever is possible, the minimum amount of data and/or variables should be 

used contributing in that way to low memory usage and limited computational time. Secondly, 

it is desired for the pursued forecasting framework to be easily integrated to the current 

workforce planning simulations involving that the less the changes required, the better. 
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3. Literature Review in Reliability Forecasting  
This chapter provides with an in-depth literature review in reliability forecasting by 

presenting and analyzing the respective approaches followed by the state-of-the-art literature 

in the field. In the end of the chapter, the research question b is answered as the most 

promising forecasting approach that can cover the previously described requirements is 

identified.  

3.1. Introduction to Reliability Forecasting 

Generally speaking, there are two approaches to forecasting: the quantitative (objective 

approach) and the qualitative (subjective approach) (Gahirwal & Vijayalakshmi, 2013). The 

quantitative forecasting approach can be applied under two conditions: i) numerical 

information about the past is available, and ii) it is reasonable to assume that some aspects of 

the past patterns will continue into the future (Hyndman & Athanasopoulos, 2013). If the 

aforesaid conditions are not satisfied, qualitative forecasting techniques are employed. These 

forecasting techniques are based on the judgment of experts in a specific field (Hyndman & 

Athanasopoulos, 2013). Furthermore, it should be stressed that there is not a single universal 

best-performing forecasting method (Makridakis & Hibon, 2000; Makridakis et al., 1982). 

 

Especially in the context of reliability forecasting, which is of increasing importance for 

organizations (Liang, 2011), it is of the utmost importance to distinguish machines, equipment 

and systems in general, in repairable and non-repairable ones (Xie & Ho, 1999). Non-

repairable systems can only fail once, and a lifetime distribution model like Weibull can be 

used to describe the time at which the system fails (Xie & Ho, 1999). Repairable systems 

follow a “failure-fix-failure” cycle (Fan, 2012) and are placed for service after the repair of a 

failure (Xie & Ho, 1999). Overall, the failures of a repairable system can be approached either 

as a failure counting process or as successive failure times (Xie & Ho, 1999).   

With respect to reliability forecasting of repairable systems like the health care equipment of 

firm XYZ, it is underlined that there are two main forecasting methodologies: the one is the 

generalized Non-Homogeneous Poisson Process (NHPP) and deals with reliability growth 

models, whilst the other one is based on time series analysis (Liang, 2011; Tong & Liang, 

2005; Xie & Ho, 1999). On the one hand, reliability growth models are built on a selected 

probability model, and then, they are utilized for predicting the future reliability of the 
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systems modelled. On the other hand, time series analysis is used for building an equation that 

relates reliability with time, and subsequently predicts the future reliability.  

3.1.1. Non-Homogeneous Poisson Process 

The Non-Homogeneous Poisson Process (NHPP) is based on the assumption that the failure 

rate is time-dependent, and it is commonly utilized for analysing a repairable system. Within 

this process, reliability forecasting is done through the selection of an appropriate probability 

function that is used for building the respective reliability growth model. It is stressed that 

N(t), which stands for the cumulative number of failures in the time interval (0, t] and has an 

intensity function of  λ(t), follows a NHPP if the following conditions are fulfilled: 

i. N(0) = 0 

ii. {N(t), t ≥ 0} has independent increments 

iii. P{N(t + h) – N(t) ≥ 2} = o(h) 

iv. P{N(t + h) – N(t) = 1} = λ(t)h + o(h) 

 

If the mean value function m(t) is defined as: 

 ( )  ∫  ( )  
 

 
     (1) 

 

then the number of failures [N(t+s)–N(t)] follow a  Poisson distribution with mean [m(t + s)–

m(t)] given by: 

   (   )– ( )      
[ (     )– ( )]

 

  
       (     )– ( )        (2) 

 

A special case of is NHPP is the Homogeneous Poisson Process (HPP), where it is assumed 

that a failed system is repaired to a “good as new” state (renewal process) involving that the 

time between failures is independent and exponentially distributed. In other words, HPP is a 

memoryless failure process where the failure rate is constant, while it is reminded that this is 

the approach followed by the problem owner in the case of firm XYZ. The main advantage of 

the NHPP over HPP is based on the fact in a NHPP some events are more likely to occur 

during a certain time period than during other ones (Xie & Ho, 1999). The latter complies 

more effectively with the reality as the system performance normally changes after a failure 

either positively (performance improvement) or negatively (performance deterioration) (Xie 

& Ho, 1999). 

 

The Duane model, also known as the power-law model, is the most popular model for 

repairable systems that follow the previously presented NHPP (Duane, 1964; Fan, 2012; Xie 
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& Ho, 1999). The Duane model is employed when only one single system is analysed and the 

least squares estimation method is utilized (karbasian & Ibrahim, 2010). It is a rather flexible 

model as it is expressed by equation 3 below, where only two positive constants, a and b, are 

needed (Xie & Ho, 1999).  This model adjusts its b value in order to model the failure 

behaviour of a repairable system. More specifically, values of b greater than 1 are assigned 

when the system performance is deteriorating, whereas values of b less than 1 are given when 

the system performance is improving; there is also the case of stable performance where b 

equals 1(karbasian & Ibrahim, 2010; Xie & Ho, 1999). Additionally, a useful characteristic of 

the model above is that its respective plot, the Duane plot, can be used for graphical parameter 

estimation and model validation during the analysis of a given failure dataset (Xie & Ho, 

1999). 

 ( )         (3) 

 

where α,t and b are greater than zero. 

 

Nevertheless, there are several limitations in the use of reliability growth models. First of all, 

the selection of a specific reliability growth model like the Duane model is done on an 

arbitrary basis before the start of the reliability analysis; this means that a priori postulation is 

necessary (Xie & Ho, 1999). Secondly, the assumed independence of the failure data is 

difficult to be validated (Dindarloo, 2015; Dindarloo & Siami-Irdermoosa, 2015; Xu et al., 

2003); moreover, this is for sure invalid in the case where the time to the next failure is related 

to the time elapsed between the previous and the current failure (high correlation in the inter-

failure data) as well as to the degree of the repair done (Xie & Ho, 1999). Thirdly, in the case 

of reliability growth models, all the observations of the failure dataset have equal weights in 

the modeling process. However, this can pose a serious limitation as sometimes the recent 

data determine heavily the future failures, while the uncertainty of the early failure data can 

produce even erroneous output (Xie & Ho, 1999).  

 

In addition to the previous limitations, it should be stressed that data overfitting is not 

uncommon in NHPP, as the probability function of a reliability growth model may fit the 

failure data adequately, but the forecasts can be poor (Liang, 2011). Moreover, the Duane 

model specifically, performs satisfactorily when the system’s performance improvement or 

deterioration does not change abruptly during the period when the Duane model is used (Xie 

& Ho, 1999). Finally, as mentioned in chapter 1, with this forecasting approach, reliability 
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measures are only predicted in fixed time intervals making difficult to forecast the variability 

of reliability indices with time (Xu et al., 2003).  

3.1.2. Time Series Analysis 

In the last two decades, new reliability modeling paradigms that are based on empirical 

techniques of failure data regression have been presented (Moura et al., 2011). These new 

paradigms are based on time series analysis and constitute the second available approach to 

reliability forecasting as mentioned in section 3.1. Additionally, it is stressed that this 

approach does not need the simplifying assumptions that facilitate the building of the 

reliability growth models described previously. 

More specifically, time series analysis is utilized in order to reveal predominant traits in 

sequentially organized data (Sfetsos & Siriopoulos, 2004). Time series methods produce 

forecasts by analyzing and finding patterns and relationships in the past failure observations 

with data-driven models (Azoff, 1994; Chatterjee & Bandopadhyay, 2012; Fan & Fan, 2015; 

Xu et al., 2003). In other words, it is a data-oriented approach that requires no a priori model 

specification (Walls & Bendell, 1987), while the future behavior of the examined time series 

is inferred from its past behavior by fitting an appropriate empirical model (Xie & Ho, 1999; 

Zhao, Xu & Liu, 2007). The patterns that can possibly be identified by a data-driven model 

are: i) Trends: systematic non-repetitive changes of the dependent variable’s values over time, 

ii) Cyclicity: cyclic movement of the dependent variable’s values over time, and iii) 

Seasonality: patterns based on time of year or month or day (Dunham, 2003). Finally, it 

should be stressed that outliers may be present in time series data, and after their careful 

evaluation, techniques for their removal or reduction of their impact may be applied 

facilitating in that way the pattern recognition (Dunham, 2003). 

 

The general time series model is:  

𝑦  𝑓(𝑦   ,     ,     / 𝑣𝑎𝑟𝑖𝑜𝑢  𝑘, 𝑗, )      (4) 

where yt (dependent variable) is the value of y at the corresponding time t, yt-i (independent 

variables) corresponds to the lagged values (with lag i) of y, whereas et stands for the 

error/noise that is not captured by the fitted forecast model at a time and does not follow the 

identified pattern. Moreover, f stands for the function that can be described by various 

parametric (e.g. exponential smoothing models) and non-parametric models (e.g. Artificial 

Neural Networks (ANNs), fuzzy logic) (Sfetsos & Siriopoulos, 2004). Finally,      are 



 

 

Accenture the Netherlands 

 

17 Reliability Forecasting for Simulation-based Workforce Planning 

exogenous variables that can potentially increase the predictive performance of the time series 

model. When the aforementioned exogenous variables are not incorporated in the time series 

model, the latter is called univariate. In a univariate time series model, there is only one 

variable, the  𝑦  , and its past lagged values (see equation 5 below), accompanied with the 

assumption that a real-world causal relationship exists, can be identified, and then, 

extrapolated in the future (Chatterjee & Bandopadhyay, 2012; Zhao, Xu & Liu, 2007).  A 

univariate time series model takes the following form:  

𝑦  𝑓(𝑦   , 𝑦   , … , 𝑦   )         (5) 

 

Furthermore, two important general points about time series forecasting are made. Firstly, it 

should be stressed that a time series model can generally incorporate the uncertainty involved 

in its forecast. In other words, a time series forecast can produce except for the point forecast 

𝑦  , a range that includes, at a certain level of confidence, the actual value of the time series. 

These forecasting ranges are called prediction intervals (Hyndman & Athanasopoulos, 2013). 

Secondly, it should be underlined that time series forecasting can successfully be applied for 

automated large-scale forecasting where multiple variables from different datasets need to be 

forecasted without human intervention in minimal computational time (Wagner et al., 2011). 

For example, it has been successfully employed in the case of a large international food 

distribution company where the number of the time series needing forecast were on the order 

of 10
5
. In this case, forecast models had been updating on a weekly basis producing weekly 

demand forecasting for a horizon of twelve weeks (Wagner et al., 2011). 

 

Within the context of reliability forecasting in particular, the dependent variable 𝑦  can be 

expressed in the form of various reliability indices such as the continuous variable Time-

Between-Failures (TBF) and the discrete variable Number of Failures per time interval (Xu et 

al., 2003). As these failure data are, in any form expressed, a set of observations ordered in 

time, some auto-correlation may exist and be identified by a time series method (Zhao, Xu & 

Liu, 2007). Time series forecasting constitutes a promising alternative to lifetime distribution 

models (Xu et al., 2003). This is based on the fact that time series models overcome the 

distribution models’ limitations described previously in sub-section 3.1.1. This is true as time 

series models based, for instance, on AutoRegressive Integrated Moving Average (ARIMA) 

or ANNs, are flexible, data-oriented structures that do not need a priori specifications 

(Dindarloo & Siami-Irdermoosa, 2015). Furthermore, it is worth-saying that the analysis of 
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past time series data related to equipment failures is becoming increasingly important in 

maintenance policies in environments like manufacturing plants, construction sites, etc., as it 

can lead to higher operational efficiency (Chatterjee & Bandopadhyay, 2012; Fan, 2012; Fan 

& Fan, 2015; Zhao, Xu & Liu, 2007).   

3.2. The State-of-the-Art Literature in Reliability Forecasting  

Herein, the key literature in reliability forecasting is presented. As it can be seen below, the 

state-of-the-art reliability forecasting has been performed through traditional parametric 

models like ARIMA and through non-parametric approaches based on various architectures of 

artificial neural networks. 

More analytically, Healy (1997) proved that a reliability forecasting model based on the 

exponential smoothing method has higher predictive performance than Duane’s reliability 

growth model (Ascher & Feingold, 1984) when the failure rate is not constant. Ho and Xie 

(1998) were among the first ones who recognized that ARIMA models can promisingly 

replace Duane models in reliability forecasting. The added value of ARIMA was justified on 

its very few assumptions, its flexibility and its predictive performance that was proven to be 

the same, if not better, than Duane models in predicting the failures of a mechanical system.  

 

Moreover, Ho, Xie and Goh (2002) compared the predictive performance of ARIMA with two 

types of ANNs, the Feed-Forward Neural Network (FFNN), and the Recurrent Neural 

Network (RNN). This comparison took place in the context of forecasting the TBF of a 

repairable compressor system at a process plant in Norway. It was found out that the 

predictive performance of ARIMA and RNN was of the same accuracy level, substantially 

higher in the short-term (prediction of the next four failures) than the long-term (next fifteen 

failures), and overall satisfactory. On the contrary, FFNN did not perform well in any of the 

forecasts, and its performance was deemed as inferior to ARIMA and RNN. 

 

Xu et al. (2003) attempted to forecast the failures of engine systems with the use of neural 

networks. Their stimulus for using neural networks was to overcome the limitations that are 

posed by failure distribution models such as the difficulty to validate the assumptions of the 

selected failure distribution and the difficulty to forecast the variability of reliability indices 

with time. Two case studies were examined where reliability forecasting pertained the Time-

Between-Failures of turbochargers and the Miles-To-Failure (MTF) of a car engine. In these 

case studies, they compared ARIMA, FFNN, and a Radial Basis Function (RBF) neural 
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network architecture, with the latter outperforming overall the other models in terms of 

computational intensity and forecasting accuracy. 

 

Dindarloo and Siami-Irdermoosa (2015) suggested the time series forecasting of TBF as a 

viable alternative to traditional techniques such as fitting probability distributions. By 

following this way, they managed to avoid the justification of certain assumptions that are at 

times difficult to validate under the use of lifetime distribution models. They proved both the 

usability (less assumptions) and the higher predictive performance of a Seasonal ARIMA 

(SARIMA) model against a gamma distribution for forecasting the TBF of hydraulic shovels. 

This benchmarking was done with the use of the scale-independent MAPE (Mean Absolute 

Percentage Error)
5
 metric that was calculated with Monte Carlo simulations for the case of the 

gamma distribution. The aforesaid comparison showed that SARIMA had 66% lower MAPE, 

and thus, substantially better predictive performance. In similar research logic, Dindarloo 

(2015) compared SARIMA with a genetic algorithm-based artificial neural network for 

forecasting the TBF of a load-haul-dump machine working at a coal mine in Alaska. The 

predictive performance of SARIMA was higher than the genetic algorithm-based ANN model 

in terms of MAPE and NRMSE (Normalized Root Mean Square Error). 

 

Fan and Fan (2015) executed time series modeling for forecasting the TBF of construction 

equipment of a big contractor in Canada in order to facilitate the development of a credible 

maintenance strategy. ARIMA modeling was used for forecasting the TBF having as auto-

regressor firstly the TBF data, and secondly, as additional regressor, the Time-To-Repair 

(TTR). However, the inclusion of the TTR regressor did not improve the results, which were 

overall deemed as accurate and satisfactory. Furthermore, Fan (2012) compared ARIMA 

models with power-law models for forecasting the TBF of various units of dozers working at 

a construction site again in Canada. The key points of the research were mainly detected on 

the fact that ARIMA models can predict failures more accurately than power-law models 

when the data is complex, while the opposite is true in cases where only limited data are 

available.  

 

Cheong, Koo and Babu (2015) undertook research very close to the present study as they 

forecasted the ATM (Automated Teller Machines) failures of all the stores of a bank in 

                                                           
5
 The reader is referred to sub-section 4.2.4 for gaining an understanding of the various error metrics used in 

forecasting. 
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Indonesia in order to make a more efficient optimization-based workforce planning. More 

analytically, they used time series analysis for forecasting the expected ATM failures per day 

per region. In order to identify the most accurate forecasting method, they compared 

AutoRegression with two types of exponential smoothing (simple exponential smoothing and 

Holt-Winters additive) in terms of MAPE and MSE (Mean Squared Error). They finally found 

out that the best performing method was AutoRegression (AR), and they used its point 

forecasts as input to the respective optimization. More specifically, the optimization approach 

followed was to determine the minimum number of field service engineers having as a 

constraint that not an ATM should be left unattended in the day of failure. The workforce 

planning was given on a two-week basis, while its evaluation was positive. More precisely, it 

was observed that the number of unattended ATMs was indeed null as well as there were less 

idle hours for the field service engineers resulting in 28.6% maintenance cost savings for the 

bank. 

 

3.3. Reflection and Selection of the Forecasting Approach 

On reflection, it is obvious that the time series analysis is the most promising approach for 

fulfilling the problem owner’s requirements for reliability forecasting and should be preferred 

over the generalized Non-Homogeneous Poisson Process. This statement is justified when the 

aforementioned characteristics of each method are taken into consideration. More specifically, 

time series analysis can satisfy more effectively the problem owner’s requirements of 

automation, acceptable accuracy and multiple machines (large-scale forecasting), than NHPP 

for the following reasons: 

i. Regarding the requirement of acceptable forecasting accuracy, the empirical 

research has proven that time series reliability forecasting outperforms reliability 

growth models following the NHPP in terms of accuracy (Ho & Xie, 1998; 

Dindarloo & Siami-Irdermoosa, 2015; Fan, 2012). For reliability growth models 

(NHPP), it is also argued that they can fit the failure data adequately, but their 

forecasts can be poor (Liang, 2011), whereas the most common reliability growth 

model, the Duane model, does not perform satisfactorily when there is an abrupt 

improvement or deterioration in the system’s reliability (Xie & Ho, 1999).  

Moreover, the a priori postulation and/or independence of failure data as take place 

in NHPP can produce invalid or even erroneous results (Dindarloo, 2015; 

Dindarloo & Siami-Irdermoosa, 2015; Xie & Ho, 1999; Xu et al., 2003). 
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ii. Concerning the requirements of automated and large-scale (multiple machines) 

forecasting, it should be pointed out that they are interrelated, while time series 

forecasting has proven to be able for both automation and large-scale application 

(Wagner et al., 2011). Furthermore, it is clarified that for automation, flexibility, 

namely few or no assumptions about the failure data, is necessary. The empirical 

research has proven that time series reliability forecasting outperforms reliability 

growth models following the NHPP in terms of flexibility (assumptions) (Ho & 

Xie, 1998; Dindarloo & Siami-Irdermoosa, 2015; Xu et al., 2015). Thus, the 

automation and large-scale application requirements can satisfactorily be covered 

by time series forecasting, while the opposite is true for NHPP. 

iii. Ultimately, the empirical research has showed that time series reliability 

forecasting can successfully be integrated with optimization and used for efficient 

workforce planning (Cheong, Koo & Babu, 2015). 
 

Taking all the above into consideration, the most promising forecasting approach identified in 

the literature review is the time series analysis. This statement constitutes the answer to 

research question b. Thus, the time series forecasting approach is chosen for producing the 

appropriate forecasting framework for the problem owner.  
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4. Time Series Forecasting: Methods, Process and Tools 
In this chapter, the time series forecasting approach that is previously qualified as the most 

promising for achieving the research objective is analytically presented in order to form the 

necessary transitional background for the case study of chapter 5. More precisely, specific 

time series methods, which can be part of the pursued forecasting framework, are described 

along with the general process of time series forecasting. In the end, the software tool of R, 

which is used for forecasting purposes in the present study, is given.  
 

4.1. Time Series Forecasting: The Methods 

Time series methods can be based on parametric or non-parametric, linear or non-linear 

models as well as on their combination (hybrid methods). Linear time series models like 

ARIMA have the advantages of being simple, flexible with a systematic model building 

approach that allows even non-specialized researchers to understand the essence of the 

methodology (Xu et al., 2003).  In reliability analysis, no a priori specification of linear 

models for the failure process is necessary (Xu et al., 2003).  The same applies to artificial 

neural networks like Feed-Forward Neural Networks (FFNN) with a single hidden layer that 

can produce non-linear models. In the case of ANNs particularly, “the model parameters are 

iteratively adjusted and optimized through network learning of historical patterns” (Xu et al., 

2003, p.256), while generally, neural networks are posed as promising alternatives to linear 

time series models such as ARIMA due to their potential for higher predictive performance 

(Xu et al., 2003). Lastly, hybridization of the above methods is suggested in the literature for 

diversifying the risk of having chosen an inappropriate method (Hibon & Evgeniou, 2005; 

Khashei & Bijari, 2010; Zhang, 2003). This contributes to forecast robustness. Advisable is to 

combine individual methods with different logic such as methods with linear models and 

methods that can deal with non-linearity such as ANNs (Khashei, Bijari & Ardali, 2009). 

4.1.1. Parametric Time Series Forecasting Methods 

Firstly, it is worth-mentioning that time series forecasting has been dominated by linear 

statistical methods for decades (Zhang, 2003). The AutoRegressive (AR), Moving Average 

(MA) and AutoRegressive Integrated Moving Average (ARIMA) models popularized by Box 

and Jenkins (1976) are traditionally used and have been classified as the classical time series 

models (Xu et al., 2003). These models, also known as Box-Jenkins models, have proven to 

be successful in a bunch of forecasting applications ranging from socio-economic problems to 

engineering and environmental ones (Zhao, Xu & Liu, 2007), and are given briefly below. 
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Box-Jenkins Models 

 

 A Moving Average (MA) model uses past forecast errors in a model similar to a 

regression one (Hyndman & Athanasopoulos, 2013). Its general form is: 

𝑦             …              (6) 

where  c is a constant and et is white noise. The above expression is referred to as 

MA(q) model  (Hyndman & Athanasopoulos, 2013). 

 In an AutoRegression (AR) model, the variable of interest is forecasted through a 

linear combination of its past values (Hyndman & Athanasopoulos, 2013). Its general 

form is: 

𝑦      𝑦        𝑦          (7) 

where c is a constant and et is white noise. The model is referred to as AR(p) model 

and is similar to a multiple regression model having as independent variables 

the lagged values of yt (Hyndman & Athanasopoulos, 2013). The AR process is 

widely used among forecasters (Bjørnland et al., 2012; Marcellino, Stock & Watson, 

2006; Sklarz, Miller & Gersch, 1987). The pure AR process is often used in empirical 

studies as a benchmark, while in the case that a simple AR model has an acceptable 

predictive performance, then there is no point in investing resources in more complex 

models (Skarbøvik, 2013).  

 AutoRegressive Integrated Moving Average (ARIMA) is a conventional statistical 

method and is broadly used for modeling and forecasting time series. ARIMA is based 

on the combination of differencing (“integration” is the reverse of differencing) with 

AR and MA, and it is written as: 

𝑦      𝑦        𝑦          …               (8) 

The above model is labeled as ARIMA(p,d,q), where p is the order of the AR part, d is 

the degree of  differencing, and q is the order of the MA part (Hyndman & 

Athanasopoulos, 2013). As it can be seen in the previous equation, ARIMA models 

can describe autocorrelations that exist in the dataset examined (Chapelle, 2002), 

while they are deemed as a robust approach to time series forecasting (Hsu & Lin, 

2002). Moreover, it needs to be pointed out that ARIMA models can be complemented 

with seasonal parameters in order to include the potential seasonality of a time series. 

This is done by extending the ARIMA models to SARIMA ones that are labeled as 

SARIMA (p,d,q)(P,D,Q)S, with a seasonal differencing order of D and a cycle of S.  
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The P and Q represent the autoregressive and moving average components of the seasonal 

part of the data respectively. 

For the determination of an ARIMA model, Box and Jenkins (1976) proposed a methodology 

that ended up to be one of the most popular approaches to the analysis and forecasting of time 

series. This methodology is divided in four steps: identification, estimation, diagnostic 

checking and forecasting. Initially, the time series is checked if it is stationary, and if it is not, 

a transformation is done for making the examined time series stationary
6
. Afterwards, a 

tentative model is chosen by matching both the autocorrelation (ACF) and partial 

autocorrelation function (PACF) of the stationary time series.  

 

After the identification of the tentative model, the process continues with the estimation of the 

ARIMA model’s parameters. The next step of this model building approach is the diagnostic 

checking, where the ARIMA model assumptions about random errors (noise) are checked. 

The aforementioned assumptions about the noise, or alternatively the error specifications of 

the generalized ARIMA models, are that errors are independent and identically distributed as 

normal random variables with zero mean and constant variance. The whole process described 

above is iterative, whilst it is terminated when a satisfactory model is selected. Ultimately, the 

produced forecasting model is used to compute the future values of the variable examined. 

 

It should be noted that in practice, most time series are non-stationary, and therefore, an 

ARIMA process cannot be applied directly. One way to transform a non-stationary series into 

a stationary one is to apply the technique of differencing (Hyndman & Athanasopoulos, 

2013). Differencing can eliminate trend and seasonality in a time series by stabilizing the 

mean of the time series (Hyndman & Athanasopoulos, 2013), whilst one or two orders of 

differencing are normally sufficient for making the data stationary (Dindarloo, 2015). A 

differenced series is the change between two consecutive observations in the original series, 

and can be written as: 
 

𝑦 
 
 𝑦  𝑦        (9) 

 

Especially in reliability forecasting, ARIMA models can describe autocorrelations in the 

failure data (Chapelle, 2002; Dindarloo, 2015; Dindarloo & Siami-Irdermoosa, 2015), and are 

preferable than methods based on the Bayesian approach (Beiser & Rigdon, 1997; Ogunyemi 

                                                           
6
 A stationary time series is one whose properties (e.g. mean, variance) do not depend on the time at which the 

series is observed (Hyndman & Athanasopoulos, 2013). 
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& Nelson, 1997); the reason for that is that the latter is constrained by the necessary 

conditions for the failure process that can itself be arbitrary (Xu et al., 2003). However, 

despite ARIMA can be customized to produce a highly accurate linear forecasting model 

especially in a short-term horizon, it cannot accurately forecast non-linear time series 

(Khashei, Bijari, & Ardali, 2009; Zhang, 2003; Zhao, Xu & Liu, 2007). The reason for that is 

that ARIMA models have two basic limitations, the linear limitation and the data limitation. 

More precisely, they assume that future values of a time series have a linear relationship with 

the past values as well as with the random errors (noise).  A second limitation of ARIMA 

models is the data limitation, which is based on the fact that ARIMA models require a large  

amount of historical data in order to produce accurate results (Fan, 2012; Khashei, Bijari, & 

Ardali, 2009; Zhang, 2003).  

ARIMAX models 

Finally, it needs to be stressed that ARIMA models can be extended in order to include 

exogenous covariates. That is the case of ARIMAX models where the linear effect of one or 

more exogenous series on the respective response series yt is incorporated (Hyndman, 2010; 

MathWorks, n.d.; Wold, 1938). ARIMAX models have the advantage that can add potentially 

valuable external information to time series models that are solely based on the past 

observations of a dependent variable. In this way, a model’s predictive performance can be 

improved. When the time series is already stationary, the model is labeled as ARMAX(p,q), 

and its general form is: 

𝑦  ∑   𝑦   
 
    ∑       

 
        ∑       

 
        (10) 

Exponential Smoothing and Innovation State Space Models 

ExponenTial Smoothing (ETS) is another one time series forecasting method, and along with 

ARIMA, they constitute the most widely used approaches to time series forecasting 

(Hyndman & Athanasopoulos, 2013).  Broadly speaking, exponential smoothing is based on 

weighted averages of past observations, where the weights decrease exponentially as the 

observations get older (Hyndman & Athanasopoulos, 2013). It is usually misconceived that 

exponential smoothing models are special cases of ARIMA models; this is true only when 

exponential smoothing models are degenerated to linear ones (Hyndman & Athanasopoulos, 

2013). Nevertheless, the two methods actually provide complementary approaches to time 

series forecasting. More precisely, ARIMA models are based on autocorrelations in the data, 
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whereas exponential smoothing models are based on the trend and the seasonality of the data 

(Hyndman & Athanasopoulos, 2013). 

As regards the taxonomy of exponential smoothing methods, it is firstly stressed that there are 

fifteen possible combinations of the trend and the seasonality component (Hyndman & 

Athanasopoulos, 2013). Every method is labeled with the (T, S) letters that stand for the type 

of trend and seasonality (i.e. none (N), additive: simple (A) or damped (Ad), multiplicative: 

simple (M) or damped (Md)). In fact, exponential smoothing methods, which are given 

analytically with their equations in table 30 of appendix B, are algorithms capable of 

generating point forecasts. 

 

Table 2. Taxonomy of exponential smoothing methods (source: Hyndman & Athanasopoulos (2013)). 

At this point, it is stressed that there are statistical models that underlie the aforementioned 

exponential smoothing methods. These statistical models generate the same point forecasts 

with exponential smoothing methods, while they are  additionally capable of generating 

prediction intervals (Hyndman & Khandakar, 2008). As it is generally known, a statistical 

model is a random process of data generation capable of producing forecast distributions. 

Especially in the context of time series forecasting based on exponential smoothing, there are 

two possible innovation state space models for each exponential smoothing method of table 

30, one with additive errors and one with multiplicative errors (Hyndman & Athanasopoulos, 

2013; Hyndman & Khandakar, 2008). It is underlined that if the model parameters are the 

same, the two forecast models produce the same point forecasts, but different prediction 

intervals. Overall, there are thirty potential innovation state space models in this taxonomy 

(see table 31 in appendix B), where a third letter is used in their labeling in order models with 

additive and multiplicative errors to be distinguished.  Therefore, each state space model is 

labeled as ETS (x,y,z) for (Error, Trend, Seasonality).  

http://otexts.com/fpp/7/6#table-7-8
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The Optimized Theta Method  

The original Theta method that was developed by Assimakopoulos & Nikolopoulos (2000) 

became popular among forecasters due to its simplicity and high performance (1
st
 rank) in the 

largest up-to-date forecasting competition, the M3-Competition (Fioruci et al., 2015). This 

method attempts to make full exploitation of the available data, and is based on the 

decomposition of the original time series according to their local curvatures. This 

decomposition is done through the theta coefficient (θ) where the de-seasonalized data are 

decomposed into two lines, the theta lines   ( ) . On the one hand, the 1
st
 theta line 

eliminates the curvatures of the data, and functions in that way as a good estimator of the 

long-term trend component. On the other hand, the 2
nd

 theta line doubles the curvatures of the 

series in order to approximate more accurately the short-term behaviour. The simple formula 

used for calculating the aforementioned theta lines is: 

  ( )   𝑦  (   )(𝑎    )     (11) 

where 𝑦  stands for the original time series, and α and β stand for the least squares estimators.  

More analytically, the Theta Method consists of six steps (Assimakopoulos & Nikolopoulos, 

2000). First, the time series data are statistically tested in terms of seasonal behavior. Second, 

if they are found to be seasonal, they are de-seasonilized via the classical decomposition 

method under the assumption of a multiplicative relationship of the seasonality element. 

Third, the time series is de-composed into the two theta lines. These two theta lines are 

regarded as two new and distinct time series, and are approached by the appropriate time 

series forecasting method, namely by linear regression for the 1
st
 line and by Simple 

Exponential Smoothing
7
 for the 2

nd
 line. After the fourth step of extrapolation, the produced 

forecasts are combined (re-composition process – 5
th

 step) with equal weights producing the 

integrated forecast that is finally reseasonilized (6
th

 step - only in the case that de-

seasonalization was done in the start). 

A generalization of the Theta method was proposed by Fioruci et al. (2015), and is labeled as 

the Optimized Theta Method. This new method is based on the optimized selection of the 

second theta line; the aforementioned optimization uses various validation schemes “where 

the out-of-sample accuracy of the candidate variants is measured” (Fioruci et al., 2015, p.1). 

In pure methodological terms, the Optimized Theta Method extends the aforesaid six 

                                                           
7
 Simple Exponential Smoothing (SES) is the simplest exponential smoothing method, and it is suitable for 

forecasting data with no trend or seasonal pattern (Hyndman & Athanasopoulos, 2013).  
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algorithmic steps of the original Theta Method by one. This is the estimation step that follows 

the 2
nd

 step of de-seasonalization, and deals with the estimation of the value of theta (θ) that 

minimizes the prediction errors in the time series forecasting of the original time series 𝑦 . 

Empirical results show that the Optimized Theta Method produces more accurate results than 

the traditional Theta Method making it even more appealing to the field of forecasting 

(Fioruci et al., 2015). Finally, it is underlined that neither the original Theta Method nor its 

Optimized version has been reported in the reliability forecasting literature. 

4.1.2.  Non-parametric Time Series Forecasting Methods 

In spite of the fact that linear and/or parametric forecasting models demonstrate significant 

advantages, they have also serious limitations as they cannot capture non-linear relationships 

in the data processing phase (Zhang, 2003). The latter causes problems as data are non-linear 

in most of the real-world systems (Valenzuela et al., 2008). Thus, it is not reasonable to 

assume that any time series is generated by a linear process. Furthermore, sometimes in the 

real world, future situations must be forecasted using small datasets over a limited period of 

time (Khashei, Bijari & Ardali, 2009). Therefore, it is evident that forecasting methods which 

are efficient in non-linear and/or limited historical data situations should be used (Khashei, 

Bijari & Ardali, 2009). 

 

More precisely, various non-linear times series methods have been developed and used. 

Indicatively, some of these methods use Bilinear, Threshold AutoRegressive (TAR), 

AutoRegressive Conditional Heteroscedastic (ARCH), General AutoRegressive Conditional 

Heteroscedastic (GARCH), and Chaotic Dynamics models (Khashei, Bijari & Ardali, 2009; 

Zhang, 2003). Nevertheless, the aforementioned models have been developed for specific 

non-linear patterns, and thus, their applicability cannot be generalized. Therefore, for non-

linear modeling, the attention of the present study is mainly paid on Artificial Neural 

Networks (ANNs), which are more flexible and general, and exceed the limitations of the 

other non-linear methods.  

 

The basis of ANNs is built on simple mathematical models of the brain, whilst they can be 

perceived and approached as networks of neurons arranged in layers (Hyndman & 

Athanasopoulos, 2013). The input (predictors) to an ANN forms the bottom layer, the output 

(forecasted variable) forms the top layer, while there are intermediate layers containing 

hidden neurons (Hyndman & Athanasopoulos, 2013). The output is produced through a linear 

combination of the predictors, while certain coefficients called weights are selected through a 
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learning algorithm that minimizes a cost function, which is related to an error metric like the 

MSE (Hyndman & Athanasopoulos, 2013). 

  

Figure 4. A representative ANN architecture (Khashei & Bijari, 2010). 

A remarkable number of successful applications indicate that ANNs constitute a promising 

alternative for both research and practice in the field of forecasting (Hyndman & 

Athanasopoulos, 2013). ANNs are flexible, non-parametric and data driven forecasting 

methods that can capture both linear and non-linear data patterns. However, in linear 

processes, their results are mostly less accurate than the ones coming from traditional linear 

methods (Zhang, Patuwo & Hu, 2001). Thus, it is unreasonable to use ANNs blindly to any 

data structure (Zhang, 2003). Additionally, in ANNs, it is always hard to explain some parts 

of their architecture such as the meaning of the hidden layers (Lee & Tong, 2011). 

Valuable insights in ANNs were given by the simulation study made by Zhang, Patuwo and 

Hu (2001), where they mainly concluded that: firstly, the number of both the input and hidden 

nodes influences significantly the predictive capability of ANNs. However, the influence of 

the input nodes is higher than the respective of the hidden nodes. Secondly, simple ANNs are 

effective as even architectures with 1 or 2 hidden nodes normally produce more accurate 

results than complex models. Thirdly, as expected, ANNs are proven to be more competent 

than Box-Jenkins models in forecasting non-linear time series. Fourth, the sample size used 

for training an ANN has limited influence on the forecasting accuracy. However, the more the 

data, the easier to overcome overfitting problems. 

 

In the context of reliability forecasting, ANNs have proven to perform satisfactorily (see 

section 3.2), while they are deemed as a convenient approach for forecasting failure data as 

assumptions like stationarity, predefined model structure and normality of residuals are not 
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needed (Moura et al., 2011; Rocco, 2013). Below, two specific ANNs are presented. These 

are the Feed-Forward Neural Networks and the Revised Group Method of Data Handling. 

Feed-Forward Neural Networks (FFNN) with a Single Hidden Layer  

The Feed-Forward Neural Networks (FFNN) with a single hidden layer is broadly used, and it 

is suitable for modeling and forecasting time series. In this ANN architecture, the neurons are 

arranged in layers. In the first (input) layer, the data are given to the network, while in the 

second (hidden) layer, the data are processed, and finally, in the last (output) layer, the 

respective results are produced according to given the input. The structure of a feed-forward 

ANN is the representative one shown in figure 4 previously. 

 

The input observations 𝑦   , 𝑦   , … , 𝑦   , are related to the output results, the value  𝑦 , with 

the following equation:  

 

 𝑦  𝑔 (𝑏  ∑ 𝑎 
 
   𝑓(𝑤  ,  ∑ 𝑤  

 
   𝑦   ))      (12) 

 

where b (j = 0, 1, 2, …, q) is a bias on the j
th

 unit, and w ij (i = 0, 1, 2, …, p; j = 0, 1, 2, …, q) 

are connection weights, while f and g are the hidden and output layer activation functions 

respectively (Lai et al., 2006). 

 

An ANN is trained by an optimization algorithm, while the most popular and widely used is 

the back-propagation algorithm (Zou et al., 2007). In these algorithms, the final goal is the 

minimization of the global error, whereas the weights and the bias values are chosen 

randomly in the start of the algorithm and are fixed later according to the results of the 

training process (Shabri & Samsudin, 2014). Traditionally, the FFNN architecture is 

commonly used as a benchmark in time series forecasting, whereas the long training time and 

local minima problems are the main drawbacks of the method (Xu et al., 2003).  

The GMDH (Group Method of Data Handling) Method and its Revised Version (RGMDH) 

A sub-model of ANNs is the Group Method of Data Handling (GMDH) that was firstly 

developed by Ivakheneko (1971). The GMDH method has proven to be successful in systems 

characterized by uncertainty, linearity or non-linearity, operating in different contexts from 

engineering and economy to medical diagnostics, signal processing, etc. (Ivakheneko & 

Ivakheneko, 1995;  Shabri & Samsudin, 2014; Tamura & Kondo, 1980; Voss & Feng, 2002). 

The GMDH (Group Method of Data Handling) method was initially built to give solutions for 

higher order regression polynomials especially in the context of solving modeling and 
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classification problems (Shabri & Samsudin, 2014). The general connection between input 

and output variables is expressed as complicated polynomial series in the form of the Volterra 

series (the Kolmogorov-Gabor polynomial): 

 

  𝑦  𝑎  ∑ 𝑎   
 
    ∑ ∑ 𝑎      

 
   

 
    ∑ ∑ ∑ 𝑎   

 
       

 
   

 
           (13) 

 

where the input vector is given by ( 
𝑖
,  𝑗, 𝑘, … ), whereas the number of input is M and the 

summand coefficients vector is given by (𝑎𝑜,𝑎𝑖
, 𝑎𝑖𝑗,𝑎𝑖𝑗𝑘, … ) (Ivakheneko, 1971). Nevertheless, 

for most applications, the quadratic form called partial descriptions (PD) is used, and it is 

defined as: 

  𝑦  𝐺(  ,   )  𝑎  𝑎    𝑎    𝑎      𝑎   
  𝑎   

       (14) 

 

where ( 
 
,   , …  ,   )  is the input variable vector and  𝑦 is the output to be predicted (Shabri 

& Samsudin, 2014). The GMDH has proven to be a promising method for time series 

forecasting (Shabri & Samsudin, 2014), especially for a short-term horizon (Dag & 

Yozgatligil, 2016). It should be underlined that all the structural parameters of a GMDH 

network (e.g. number of layers with their respective neurons in each layer) are automatically 

calculated in a manner that minimizes the Akaike Information Criterion (AIC) (Kondo & 

Ueno, 2006). 

 

However, the conventional sigmoid function trained with the back propagation technique does 

not have the structural identification ability of the ANN, whereas AIC cannot be used to for 

the identification of the optimum ANN architecture due to the non-uniqueness of the 

connection weights (Hagiwara et al., 2001; Hagiwara, Toda & Usui, 1993). For that reason, 

the Revised GMDH (RGMDH) has been developed. RGMDH is an algorithm with a feedback 

loop identifying sigmoid function neural network where the ANN architecture is 

automatically organized so as to minimize the prediction error criterion of AIC. As normal, 

the complexity of the ANN architecture increases gradually by the feedback loop calculations 

in order to obtain the best possible fit to the non-linear system (Kondo & Ueno, 2006). 

 

Finally, it is underlined that neither GMDH nor RGMDH has been reported in the reliability 

forecasting literature. 

4.1.3. Hybrid Forecasting Methods 

Ultimately, it is remarked that the various forecasting methods can be combined forming a 

hybrid forecasting methodology. The rationale behind the hybridization of forecasting 
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(combination of different methods) is to reduce the risk of using an inappropriate method and 

obtain finally results that can possibly be more accurate (Hibon & Evgeniou, 2005; Khashei & 

Bijari, 2010; Zhang, 2003). Both theoretical and empirical findings have indicated that the 

integration of different methods can be an effective way for improving the overall predictive 

performance, especially when the models in the ensemble have different logic (Khashei, 

Bijari & Ardali, 2009).  This takes place, for instance, when a linear model like ARIMA is 

combined with a non-linear model like a FFNN with one single hidden layer.  

 

Forecasting hybridization can be done with two different techniques: the two-level (or multi-

level) and the ensemble one (Shmueli & Lichtendahl, 2015). In the two-level combination, 

two different forecasting methods are used. The one method is used for fitting a model to the 

original time series and generating the forecasted values for the respective horizon, whilst the 

other method uses the former method’s forecast errors in order to generate a forecast of the 

errors and correct accordingly the initial forecast (Shmueli & Lichtendahl, 2015). In the case 

of ensemble hybridization, two or more individual forecasting methods are used for fitting a 

model to the original time series and generating individual forecasts for the respective horizon 

(Shmueli & Lichtendahl, 2015). Afterwards, the individual forecasts are averaged in the 

preferred way producing the final integrated forecasted time series. With respect to the 

averaging of forecasts, this can be done, for example, by assigning larger weights to forecasts 

with smaller errors, which can be expressed in terms of an error metric such as MAPE, MAE 

(Mean Absolute Error), and RMSE (Root Mean Square Error).   

4.1.4. Reflection and Conclusions on the Time Series Methods  

On reflection, most of the time series forecasting methods reported in the previous sub-

sections mainly have different characteristics and predictive capabilities. Therefore, they can 

function complementarily in the pursued reliability forecasting framework covering a vast 

range of failure behaviours and data structures.  

 

Indicatively, parametric methods like ARIMA can model adequately autocorrelations in the 

failure data, while SARIMA, exponential smoothing, and the Optimized Theta Method
8
, can 

model effectively any failure seasonality and trend. Additionally, ARIMA can model 

competitively linear failure processes, while the ANNs of FFNN and RGMDH can deal 

promisingly with non-linear and complex data structures even of limited size which require 

high modeling flexibility. Finally, additional and potentially significant information can be 

                                                           
8
 It is noted that the Optimized Theta Method can also model auto-correlations with its 1

st
 theta line. 
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incorporated in forecasting with external covariates in ARIMAX models, which extend in this 

way their original ARIMA structure. Thus, the aforementioned methods can competitively 

form the foundation of a holistic reliability forecasting framework. This is based on the fact 

that all these methods as a whole can deal in principle with almost any time series data 

structure (see table 3); for that reason, they are used and evaluated in the case study of chapter 

5. 

 

Potential Characteristics  

of the Failure Data  

Auto-correlations 

Seasonality 

Trend 

Linearity 

Non-linearity 

Simple Relationships 

Complex Relationships 

Limited Size 

Table 3. The characteristics of the failure data that can be dealt by the methods of the pursued reliability 

forecasting framework. 

 

4.2. Time Series Forecasting: The Process 

Before implementing the time series analysis for reliability forecasting in the case study of 

chapter 5, it is also necessary to clarify the key elements of a time series forecasting process. 

The present sub-section includes this necessary information. 

 

4.2.1. Data Partitioning for Validation of Forecast Models 

A forecasting time series model is trained in a part of the dataset, the training set, while it is 

tested in terms of predictive performance in another part of the dataset, the test set. The size of 

the test set depends on the size of the whole dataset and on the desired forecast horizon, 

namely the number of steps ahead that the model is required to predict (Hyndman & 

Athanasopoulos, 2013).  The rules of thumb here are that the test set should have a size equal 

to, or bigger than the forecast horizon. Typically, the size of the training and test set covers 

80% and 20% of the examined dataset respectively (Hyndman & Athanasopoulos, 2013); this 

data partitioning approach is the traditional evaluation or validation of a time series forecast 

model and is given graphically in figure 5. 
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Figure 5. The traditional validation approach for a time series forecast model (adjusted from Hundman (2014)). 

 

Furthermore, there is another one more sophisticated approach to the evaluation of a time 

series forecast model. That is the time series cross-validation (see figure 6), which is also 

known as roll-forward validation and rolling forecasting origin (Hyndman & Athanasopoulos, 

2013). In this approach, the training set consists only of observations that occurred prior to the 

observations that form the test set involving that no future observations are used for building 

the forecast model (Hyndman & Athanasopoulos, 2013). This approach contributes to a more 

efficient use of the available data as only one observation is omitted at each step. The final 

values of the accuracy measures used result from averaging the errors identified at each step. 

 

 

Figure 6. The time series cross-validation approach for a time series forecast model (adjusted from Hyndman 

(2014)). 

4.2.2. Model Selection  

As it is said above, a model is trained in the training set, or in other words, a model is fitted to 

the in-sample data. Within this model building process, certain criteria are used in order the 

produced model to have the desired properties. These properties are accuracy (small errors) 

and parsimony, which stands for simple models with the least possible number of parameters 

(Hyndman & Athanasopoulos, 2013). The criteria that are widely used are: the Akaike 

Information Criterion (AIC), the Corrected Akaike Information Criterion (AICc), and the 

Bayesian Information Criterion (BIC).  
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AIC is defined as: 

        (
   

 
)   (   )     (15) 

where SSE stands for the minimum sum of squared errors given by: 

     ∑   
  

       (16) 

while N is the number of observations used for estimation and k is the number of predictors in 

the model. The best forecasting model is often the one with the lowest AIC value. In fact, AIC 

chooses the model with the best fit according to the likelihood function, while using a term 

that penalizes any increase in the number of parameters of the fitted model; the latter prevents 

data overfitting (Fan & Fan, 2015). However, for a limited number of observations  N, AIC 

produces models with excessive predictors (Hyndman & Athanasopoulos, 2013). Therefore, a 

version that corrects this bias is needed; that is the Corrected Akaike Information Criterion 

labeled as AICc, and defined as (Hyndman & Athanasopoulos, 2013): 

 

         
 (   )(   )

     
      (17) 

 

As regards the Bayesian Information Criterion, BIC is defined as: 

 

        (
   

 
)  (   ) 𝑜𝑔    (18) 

 

Once again, the best forecasting model is often the one with the lowest BIC value (Hyndman 

& Athanasopoulos, 2013). It should be noted that the BIC penalizes the number of parameters 

more severely than the AIC. 

 

4.2.3. Residual Diagnostics  

After the model building stage, the forecasting model produced should be tested in terms of 

its residuals’ behavior. This is the stage of residual diagnostics where the necessary tests on 

the residuals are performed. As it is known, residuals are errors, namely they are the 

difference between the fitted/forecasted    and the actual values 𝑦  in the training/test set 

respectively. Therefore, these errors are expressed as:     𝑦    .  Generally speaking, the 

residuals of a good forecasting model have the following properties: 
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 The residuals are uncorrelated involving that there is no information left in the 

residuals that could be utilized for performing forecasts (Hyndman & Athanasopoulos, 

2013).  

 The residuals have zero mean involving that the forecast model is unbiased (Hyndman 

& Athanasopoulos, 2013). 

Moreover, in order to be able to construct prediction intervals simply around the values of 

point forecasts ŷ, the residuals except for being uncorrelated, should be normally distributed 

in the test set (Hyndman & Athanasopoulos, 2013). Only then, a symmetrical prediction 

interval such as one of an 95% level of confidence can be derived from the equation ŷ±1.96σ 

(σ is an estimate of the standard deviation of the forecast distribution). However, if the 

aforesaid residuals requirements are not satisfied, then more complicated methods like 

bootstrapping can be used for constructing the respective prediction intervals (Pan & Politis, 

2014). For checking if a forecast model’s residuals have the aforesaid desired properties, 

“eyeball” as well as formal statistical tests are conducted. 

      “Eyeball” Tests 

ACF (Auto-Correlation Function) and PACF (Partial Auto-Correlation Function) are 

graphical tools for residual diagnostics. They are used for checking the existence of 

autocorrelation in a time series. More specifically, ACF, also known as correlogram, 

describes the auto-correlation (internal correlation of the observations) values against the 

respective time lags. PACF measures the degree of association between various lags when the 

effects of other lags are eliminated.  Histograms and Quantile-Quantile (Normality) Plots of 

errors in the test set are used for identifying if the residuals are normally distributed, and 

subsequently if, for instance, 95% prediction intervals can be produced from the equation 

ŷ±1.96σ. 

       Statistical Tests  

The Augmented Dickey-Fuller (ADF) test is used for testing if the data are stationary 

(Hyndman & Athanasopoulos, 2013). If the p-value of the test is higher than the limit of 5%, 

then the null hypothesis of non-stationarity cannot be rejected. This test is applied to the raw 

time series data to check if the series is non-stationary, and patterns can be detected and  
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predicted to a certain degree. This test comprises an initial check for making sure that the 

series is not an unpredictable white noise series
9
, and a forecasting attempt is worthwhile.  

The Ljung-Box test (also known as one of the ‘portmanteau’ tests – the other one is the less 

accurate Box-Pierce test) is used for examining the null hypothesis of independence in a given 

time series (Hyndman & Athanasopoulos, 2013). This test normally checks if the residuals are 

correlated (stationary residual series). Moreover, if Ljung-Box test is done on squared 

residuals, then residuals’ homoscedasticity (constant variance) is checked (Skarbøvik, 2013). 

The Jarque-Bera test is used for testing if the residuals in the test set are normally distributed 

(Jarque & Bera, 1980). This test simply checks jointly if the residuals have the same skewness 

and kurtosis as the normal distribution (Cromwell, Labys, & Terraza, 1994). Again, the null 

hypothesis of normality cannot be rejected if the p-value is higher than the limit of 5%. 

The three statistical tests above are the counterparts of the eyeball tests described in the 

previous section. Additionally, the Brock-Dechert-Scheinkman (BDS) test is generally used 

for testing if the tested series is a series of independent and identically distributed random 

variables (Brock et al., 1996; Cromwell, Labys, & Terraza, 1994). However, it can also be 

used for checking if any non-linearity is left in the residuals, where the null hypothesis stands 

for that the forecast model captures all dependencies  (Bosler, 2010). If the null hypothesis is 

rejected, some non-linearity is left and a non-linear model should be fitted in order to model 

the changing variance appropriately.  

4.2.4. Evaluation of the Predictive Performance 

After checking the model’s residuals, the forecasting model is evaluated in terms of predictive 

performance in the test set, or alternatively in the out-of-the-sample data. The evaluation of a 

model’s predictive performance is done by measuring certain accuracy metrics, which are in 

fact error measures. The most common error measures are (Hyndman & Athanasopoulos, 

2013): 

 RMSE (Root Mean Square Error): scale-dependent error metric resulting from equation: 

 

      √  𝑎  (|  
 |)     (19) 

 

                                                           
9
 By definition, a white noise series cannot be predicted as for this series “it does not matter when you observe it, 

it should look much the same at any period of time” (Hyndman & Athanasopoulos, 2013, section 8.1). 
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 MAE (Mean Absolute Error): scale-dependent error metric resulting from equation: 

       𝑎  (|  |)          (20) 

 MAPE (Mean Absolute Percentage Error): scale-independent percentage error metric that 

can be used for comparing the predictive performance of various models of different 

datasets. The value of MAPE comes from equation 21 below: 

        𝑎  (|
     

  
|)    (21) 

 MASE (Mean Absolute Scaled Error): it is actually the ratio of the MAE of a forecast 

model in the test set to the MAE of a naïve
10

 forecast model fitted to the training set. In 

one-step ahead forecasting, when this error metric is higher than one, it is involved that 

the naïve method leads to higher accuracy (Hyndman, 2006; Shmueli & Lichtendahl, 

2016). Therefore, when MASE is greater than one, reflection on the predictability of the 

data should be done as the data may be white noise or the forecast model overfits the 

data
11

. 

                       𝑎  (|  |)     (22) 

where     
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    (23) 

 

4.3 The Tool of R  

The data analysis and forecasting tool used in this thesis project is the R package. The reasons 

for choosing for R are: first, R is a flexible, easy and interactive programming language that 

can used for data analysis, statistical tests, and high level graphics; the R environment 

supports the user with a command line allowing the rapid processing data (Dalzell, 2013; 

Eglen & Gatto, 2014). Second, R offers a robust packaging (Dalzell, 2013), and within 

forecasting especially, R provides several packages (e.g. forecast, nnetar, otm, etc.) that 

facilitate automatic modeling with automated forecasting algorithms for both traditional (e.g. 

ARIMA and Exponential Smoothing) and sophisticated forecasting methods (e.g. RGMDH, 

Optimized Theta Method). Third, there is a strong open-source community around R 

                                                           
10

  For the naïve forecasting method, it is noted that: “All forecasts are simply set to be the value of the last 

observation. That is, the forecasts of all future values are set to be yT, where yT is the last observed value. This 

method works remarkably well for many economic and financial time series” (Hyndman & Athanasopoulos, 

2013, section 2.3.). 
11

 Data over-fitting stands for the case in which the forecast model fits with small errors in the training set but 

with high errors in the test set involving poor forecasts. 
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consisting of senior academics with a history of more than 20 years (Dalzell, 2013). The latter 

allows for direct access to numerous articles and recommendations on the use of R. Finally, 

there are dozens of R tutorials available on websites such as the DataCamp, the R Code 

School, the Clarkson University, etc. (Hyndman & Athanasopoulos, 2013). 

 

4.4 Conclusions from the Analysis of the Time Series Forecasting Approach 

From the previous sections, several important conclusions of high value for the case study of 

chapter 5 can be drawn.  

First of all, most of the time series forecasting methods reported in section 4.1 mainly have 

different predictive capabilities, and thus, they can function complementarily in the pursued 

reliability forecasting framework. In this way, the previously mentioned reliability forecasting 

framework becomes holistic covering a vast range of failure behaviours and data structures. It 

is restated that the time series methods that can form this forecasting framework are the 

parametric methods of ARIMA and its ARIMAX extension, exponential smoothing, and 

Optimized Theta as well as the non-parametric ones of FFNN and RGMDH. The combination 

of these methods under one single framework allows forecasting to deal effectively with data 

characterized by   autocorrelations, seasonality, trend, linearity and non-linearity, simple and 

complex relationships as well as by limited size. 

Furthermore, time series cross-validation has been identified as the most competitive 

validation method used for the evaluation of time series forecasting. Additionally, it is 

reminded that the forecasting evaluation is typically done for a test set of 20% of the original 

dataset size. Moreover, for the evaluation of a forecast model, several residual diagnostic tests 

are executed with the use of the most appropriate error measures at each time. Most 

importantly, the ADF test can detect directly if a time series is white noise (lack of patterns), 

whereas the latter can be done also at a second phase with the reflection on the value of the 

MASE accuracy measure. Finally, the R software package has been qualified as the study’s 

forecasting tool due to its respective forecast packages, its flexibility as well as the rich 

documentation by which is supported.  

 

 

 

http://www.datacamp.com/courses/introduction-to-r
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5. Case Study: Reliability Forecasting for Workforce Planning for Firm 

XYZ 
In chapter 5, the most promising forecasting approach and the respective methods identified 

are applied and evaluated in a case study that deals with the failures of radiation treatment 

equipment as explained in chapter 1. Firstly, a description of the available data are done, 

while then, specifications on the forecasting approach followed are given. Then, operational 

details of time series forecasting in the environment of R are presented, whereas afterwards, 

forecasting is executed on two different levels, the machine group and the individual machine 

level. Finally, conclusions from the case study are drawn, and a critical reflection on the 

results is done. 

5.1 Introduction to the Case Study 

In the present section, a description of the available dataset is done followed by the 

specifications of the respective time series forecasting approach.  

5.1.1. Data Description  

In the case of the manufacturing firm XYZ, data are available from a specific country/market 

from 2013 to 2015. These data are updated every year and pertain the following Variables: 

first, the Machine ID and its respective Machine Group that failed at a particular Date and 

Time. Second, the Number of Site Visits for corrective maintenance of the failed machines 

with the respective Duration done by a Number of Engineers. Finally, these data are 

complemented by a categorical variable indicating if Spare Items are used during a site visit. 

The acronym SWO that can be seen in figure 7 below stands for Service Work Order, and it is 

a call for an engineer to repair a machine that has failed at the given Date and Time. It is 

assumed that the creation of an SWO is completely identified with a machine failure. 

 

 
Figure 7. Indicative part of the failure and repair data as depicted in the environment of R Studio.   
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5.1.2. Specifications of the Time Series Forecasting Approach 

For reasons already explained in the previous chapters, the time series approach is chosen for 

reliability forecasting. In this sub-section, the specifications of the time series approach 

followed in this study are given.  

The Forecasted Variables 

First of all, the Time-Between-Failures (TBF) variable is defined as the most suitable 

reliability metric and the most appropriate input to the simulation-based workforce planning. 

The TBF variable can be expressed either in its shear form, or cumulatively as cumulative 

TBF (cumTBF), while generally the option for the TBF variable is based on the following 

facts. First and foremost, TBF represents exactly the accuracy measurement definition given 

by the problem owner in the interview (see chapter 2); operationally speaking, it is explicit 

that TBF equals the inter-failure time of a machine. Therefore, it can directly be used for the 

comparison of the forecasting accuracy achieved against the accuracy required.  

 

Additionally, it is mentioned that the TBF metric can show exactly in how many hours, or 

equivalently, at which time and date, the next machine failure takes place. The latter is 

particularly useful for workforce planning and its optimization as the exact time and date of a 

failure (possibly accompanied by its uncertainty in the form of prediction interval) allows for 

an efficient personnel scheduling. This attempt for a precise forecasting of the time and date 

of a machine failure cannot be done with a different reliability metric such as the expected 

failures per a specific time interval, which is also commonly used. The use of the last variable 

makes sense only when the failure rate of the machine(s) examined is high, and there is no 

need for a precise forecasting of the date and time of failure.  

 

More specifically, if the present time is to, and it is forecasted that the TBF of a machine is for 

example, 50 hours, then an engineer can be scheduled for the day after tomorrow. However, if 

it is known that the expected failure per week of the same machine is one, then there would be 

no evidence about the specific date and time of the failure. In this case, the scheduling process 

would be sub-optimal as the respective engineer for correcting the machine failure should be 

available for all the week long. Finally, it should be stressed that cutting-edge object-oriented 

simulation programmes such as SIMIO approach the reliability of objects used for modeling 

real-world vehicles with the uptime variable, which is operationally identical to the TBF 

(Kelton, Smith & Sturrock, 2011). 
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Therefore, from the data given and depicted partly in figure 7, the values of the TBF 

reliability index can be calculated. It is restated that TBF equals the inter-failure time (mostly 

measured in hours) between two successive failures each time, while it is given (for i = 1, 2, 

…, n) by the following equation: 

 

      𝑎      𝑖   𝑜𝑓  𝑎𝑖 𝑢𝑟       𝑎      𝑖   𝑜𝑓  𝑎𝑖 𝑢𝑟         (hours),   (24) 

or alternatively, being in line with the data given, TBF is given by the equation: 

 

       𝑟 𝑎 𝑖𝑜   𝑎      𝑖   𝑜𝑓          𝑟 𝑎 𝑖𝑜   𝑎      𝑖   𝑜𝑓         (hours),  (25) 

The Time Series Methods Used  

The time series forecasting approach and the most important methods that can be used for 

reliability forecasting have been analyzed in chapter 4. In the present study, the time series 

methods employed are: ARIMA and ARIMAX, Innovation State Space models for 

exponential smoothing, the Optimized Theta Method, the Feed-Forward Neural Network 

(FFNN) and the Revised Group Data Handling Method (RGMDH). Briefly, there are two 

bunches of  reasons for this selection: the first bunch is related to the empirical research that 

has demonstrated the high predictive performance of the afomentioned methods; for example, 

exponential smoothing was proven to work satisfactorily in reliability forecasting (Healy, 

1997), while the Theta Method, on which its optimized version is based, was the best 

performing method in the M3 competition (Fioruci et al., 2015). For more details, on the 

methods’ empirical results, see sections 3.2 and 4.1. The second bunch of reasons is related to 

the fact that most of these parametric and non-parametric methods have, at a degree, 

complementary predictive capabilities. Thus, they can deal as a whole, in the form of a 

framework, with all the basic failure data structures (from auto-correlations, seasonality and 

trend to complex non-linear relationships; see 4.1.4). 

The Training and the Test Set 

In the context of reliability forecasting especially, forecasting is predominantly short-term 

concerning the prediction only of the next failure; this stands for a forecast horizon of one-

step ahead. This practice, which is also in line with the problem owner’s needs, is followed as 

a short forecast horizon of one-step ahead provides with useful information for planning 

corrective maintenance actions; simultaneously, the accumulation of large errors that takes 

place in long horizons is avoided (Xu et al., 2003). Nevertheless, as explained in section 4.2, 

the evaluation of forecast models should be done on a sufficient amount of data in order to 
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gain the necessary confidence to the models examined. For that reason, the typical rule of 

training the forecast model in the first 80% of the original dataset and testing it with the time 

series cross-validation approach in the last 20% is used. As in the time series cross-validation 

a new forecast model is built in every run, this approach is used here just for the reliable 

evaluation of the forecast models; however, its applicability in the pursued automated 

forecasting framework should be considered due to its high computational cost.  

The Model Selection Criterion 

From the model selection criteria described in section 4.2., the corrected Akaike Information 

Criterion (AICc) is used in this thesis project. This is based on the fact that AIC is best for 

prediction as it is asymptotically equivalent to cross-validation (Stone, 1977), while its 

corrected version (AICc) can handle the bias when the dataset studied is not large (Hyndman 

& Athanasopoulos, 2013 – for the size of the datasets, see section 5.3 and appendix D). 

The Error Metrics 

From all the error measures presented in section 4.2.4, MAE, MAPE, and MASE, are used in 

this thesis for the following reasons. Firstly, MAE, which is expressed in time units (e.g. 

hours) herein, provides a straightforward and clear insight in the deviation of the forecasted 

TBF and the actual one. This metric is of added value in this study as it can communicate 

easily and directly the error within the workforce planning team as well as within firm XYZ. 

As regards the MAPE index, it is used for the reason that its scale-independency and 

percentage expression can give directly the magnitude of forecast errors. This characteristic 

serves two purposes: first, it gives the possibility for comparing the forecasting made on 

different datasets (e.g. the results of the present study with the literature), and second, it is 

convinient in cases where a non-specialist or a non-involved in simulations stakeholder needs 

information about the forecasting performance.  

Furthermore, the MASE criterion is used in order to give a direct indication if time series 

forecasting with the various models is worthwhile. The latter is based on the fact that when 

MASE is greater than one, it is concluded that naïve forecasting performs higher than the 

(more complex) forecast models used each time (Hyndman, 2006). Ultimately, in any case, as 

the forecast horizon used is only one-step ahead, the other commonly used error measure, 

namely the RMSE, has always the same value with MAE. Therefore, there is no room for 

disputes with respect to the selection of the most appropriate error measures in the present 

study.  
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5.2. Operationalization of the Time Series Forecasting Approach in R 

In this sub-section, basic information about the key functions of the R package that are used 

for building the various forecast models are given. 

With respect to parametric methods, and more specifically in the case of ARIMA models, 

selecting the appropriate values for p, d and q can be difficult. Nevertheless, the “auto.arima” 

function of the “forecast” package does it automatically (Hyndman & Khandakar, 2008). 

More precisely, it returns the best ARIMA model according to the specified criterion (AIC, 

AICc or BIC - AICc in the present study) after conducting a search over possible models 

within the order constraints provided. The final model is computed using maximum likelihood 

estimation. It is also stressed that the “auto.arima” function deals with seasonality producing 

the respective SARIMA models. Last, it is mentioned that all of the above apply also to the 

case of ARIMAX, with the only difference that the “xreg” argument is used for providing the 

respective external regressor to the original ARIMA model.  

 

In a similar degree of automation, innovation state space models for exponential smoothing 

are built in R with the “ets” function of the “forecast” package. For a given time series, the 

“ets” function applies all the appropriate models by optimizing both the smoothing and the 

initial state variable parameters, and finally selects the best model according to the specified 

criterion (e.g. AICc). Regarding the Optimized Theta Method, the “otm” function in the 

“forecTheta” package is used for forecasting univariate time series (Fiorucci, Louzada & 

Yiqi, 2016). Additionally, the package includes a function, the “errorMetric”, for computing 

the main error metrics used in time series forecasting. The respective error metric is given 

according to the user’s specification. 

 

With respect to the ANNs used, firstly, FFNN with one single hidden layer are provided by 

the “nnetar” function which is part of the integrated “forecast” package. The predictors of the 

FFNN are the lagged values of the univariate time series that is to be forecasted. When the 

“nnetar” command is executed, a number of networks with random starting weights are fitted, 

while afterwards, they are averaged when computing forecasts. Each network is trained for 

one-step ahead forecasting, while for multi-step forecasts the network is computed 

recursively. The final model of NNAR(p,k) means that there are k hidden nodes, whilst it is 

analogous to an AR(p) model but with non-linear functions. The latter model type applies 

when the data are non-seasonal, while for seasonal data, the fitted model has the form of 
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NNAR(p,P,k)[m], and it is analogous to an ARIMA(p,0,0)(P,0,0)[m] model but with non-

linear functions as well.  

Secondly, the GMDH and the RGMDH neural networks are operationalized by the “GMDH” 

package (Dag & Yozgatligil, 2016). This package includes a function for short-term 

forecasting of a univariate time series by using GMDH-type neural network algorithms. The 

algorithm chooses between the traditional GMDH and RGMDH according to the respective 

argument in the command ("GMDH" or "RGMDH"). This method, as it is known, is 

appropriate for short-term forecasting, whereas the automatic algorithm in R allows for only 

five-step ahead forecasting. Moreover, the plot of the forecast model does not produce 

automatically the respective prediction intervals (95%, 90% and 80%) on the time series chart 

as other packages do; in the present study, this is done by the author with separate commands.  

5.3. Reliability Forecasting: Analysis, Results and Basic Conclusions  

A bunch of analyses are performed in order a forecasting framework that fulfils the needs of 

the problem owner to be produced. The reliability forecasting is applied on two different 

levels, the machine group level and the individual machine level, with the use of the time 

series methods that have been identified as promising (see sub-section 4.1.4). On the one 

hand, forecasts are attempted on the machine group level despite the criticism on the grouping 

method followed by the problem owner. The justification for that is based on the fact that it 

would be of high value for the problem owner to have a forecasting framework relatively 

close to its current practice in order to integrate it with the minimum possible cost (see 

secondary requirements in chapter 2).  

On the other hand, individual machines are examined separately ignoring the problem 

owner’s machine group categorization and depicting the real machine failure data without any 

distortion. On the individual machine level, forecasting is attempted in two ways; firstly, in 

the form of univariate time series analysis of the TBF of machines, while secondly by 

including additional external information (i.e. repair data) in the forecast models in order to 

examine its potential added value on the overall predictive performance. Moreover, it is 

stressed that two types of experimentations are done on the individual machine level each 

time: the one where the full failure dataset is used, and one where the failure dataset is 

adjusted for possible outliers. Finally, it is underlined that all the time series forecast charts 

are presented not for one-step ahead but for a horizon equal to the size of the test set (~20% of 

the dataset). This is done just for giving the overall picture of forecasting and not the 
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visualization of the prediction of only one single point. Finally, a part of the respective 

programming code is indicatively given in Appendix J.  

In sections 5.3.1, and 5.3.2, the analyses described above are presented in detail. 

5.3.1. Approach 1: Machine Group Level 

As it is pointed out in the introduction  (see section 1.2.1), the grouping methodology does not 

use the whole range of data resulting in a distorted view of the failure data and in information 

loss that could be valuable. However, even on the machine group level and in spite of the 

criticized categorization approach, there may be failure patterns that can be detected and 

accurately extrapolated. The potential identification of such patterns on the machine group 

level can lead to a forecasting framework bearing the minimal integration cost for the problem 

owner. 

For the reliability analysis and forecasting on the machine group level, the data used are only 

from 2015. This is done as when the analysis of failures is done per machine group, the 

annual datasets are rather rich in observations. Additionally, initiated by researchers such as 

Dindarloo (2015), Chatterjee and Bandopadhyay (2012), Kedia, Thummala and Karpalem 

(2005), the TBF variable is used in its cumulative form. This practice is followed as on the 

cumulative level, the overall behavior of the curve can be captured, the presence of noise can 

be handled, whilst the slope of the monotonically increasing curve depicts clearly the 

variation of the failure data with time (Kedia, Thummala & Karpalem, 2005). The latter 

involves that the general time series model is specified as: 

 𝑢      𝑓( 𝑢       ,  𝑢       , … ,  𝑢       )        (26) 

 

On the machine group level, two different datasets referring to the failures of radiation 

treatment equipment are examined. The analysis of the first machine group examined is given 

in the next pages, while for the second one is given in Appendix C. It is noted that the use of 

the MAPE error measure on the cumulative expression of TBF is not followed as the large 

denominator leads to small MAPE values and potentially misleading conclusions on the 

predictive performance. However, this practice was followed by Dindarloo (2015), and is 

criticized at this point as not a suitable practice. Finally, it is stressed that the main conclusion 

from the analysis that is presented in detail below is that there are no failure patterns on the 

machine group level. In other words, the TBF time series in the datasets examined are white 



 

 

Accenture the Netherlands 

 

47 Reliability Forecasting for Simulation-based Workforce Planning 

noise involving that the machine group failures are completely random following a 

memoryless failure process (Homogeneous Poisson Process). 

More specifically, the first machine group examined is the “pr4_Model X” that has the 

following characteristics: 

 Several individual machines of Model X with priority of service 4  

 As already presented, the TBF variable is calculated as the hourly difference between 

the date and time of two successive SWOs. Respectively, the cumulative TBF is 

calculated in the same way with the only difference being that every new TBF is 

added up to the previous value on a cumulative basis. The chart of the cumulative TBF 

is given in figure 8. 

 The chosen training set is the 80% of the dataset (from failure 1 to failure 55), while 

the test set is the 20% of the dataset (from failure 56 to failure 68). As it has already 

been described, the time series cross validation method is used for the evaluation of 

forecasting that is of one-step ahead horizon. The latter means that 13 iterations of the 

forecasting process take place, namely from observation 56 to 68, and finally the 

average of the errors metrics of all the iterations is calculated.  
 

No. Of 

Failure
12

 

TBF (h) Cumulative 

TBF (h) 

1 71,5 71,5 

2 263,6 335,1 

3 337,1 672,2 

4 625,4 1297,6 

5 646,4 1944 

6 2,4 1946,4 

7 2,4 1948,8 

8 138,5 2087,3 

9 238,2 2325,5 

10 144,9 2470,4 

11 846,3 3316,7 

12 331 3647,7 

13 461,3 4109 

14 163 4272 

15 191,4 4463,4 

                                                           
12

 The first failure of the machine group is labeled 

as failure “0”, and TBF1 equals the hourly time 

difference between failure “1” and failure “0”. 

16 336,5 4799,9 

17 71,1 4871 

18 122,2 4993,2 

19 164,4 5157,6 

20 317 5474,6 

21 505,1 5979,7 

22 691,9 6671,6 

23 21,4 6693 

24 338,9 7031,9 

25 27,5 7059,4 

26 117,7 7177,1 

27 456,1 7633,2 

28 238,7 7871,9 

29 292,4 8164,3 

30 142,3 8306,6 

31 335 8641,6 

32 239,5 8881,1 

33 100,3 8981,4 

34 23,4 9004,8 

continued 
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No. Of Failure TBF (h) Cumulative 

TBF (h) 

35 44,8 9049,6 

36 987 10036,6 

37 49,8 10086,4 

38 1,7 10088,1 

39 236,1 10324,2 

40 97,4 10421,6 

41 120,1 10541,7 

42 379,9 10921,6 

43 311,7 11233,3 

44 97,4 11330,7 

45 73 11403,7 

46 169,9 11573,6 

47 352,8 11926,4 

48 601,8 12528,2 

49 336,3 12864,5 

50 147,5 13012 

51 237 13249 

52 0,5 13249,5 

53 260,3 13509,8 

54 341,7 13851,5 

55 215 14066,5 

56 169 14235,5 

57 18,5 14254 

58 265,4 14519,4 

59 242,8 14762,2 

60 192,8 14955 

61 453,3 15408,3 

62 678,1 16086,4 

63 116,5 16202,9 

64 19,6 16222,5 

65 29,8 16252,3 

66 48,1 16300,4 

67 281,8 16582,2 

68 315,9 16898,1 

Table 4. Failures with their respective TBF and Cumulative TBF of machine group pr4_Model X in 2015. 

 

  

Figure 8. The cumulative TBF(h) time series of machine group pr4_Model X. 

From both the “eyeball” and the ADF test below, it becomes evident that the failure data in 

their cumulative form are non-stationary. Thus, various forecast models can be used for 

predicting the future failures. The ARIMA forecast model produced is extensively presented 

in tables 6 and 7, and figure 10, along with its graphical and statistical residual diagnostics 

tests. As the process is almost the same for every forecast model, the models of all the 
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forecast methods are given more briefly in table 37 and figure 27 of appendix E and F 

respectively. Finally, an overall comparative analysis and reflection on the forecasting attempt 

on the machine group level is done. 

 

Figure 9. The ACF and PACF graphs of cumulative TBF(h) time series of machine group pr4_Model X. 

 

Augmented Dickey-Fuller Test (alternative hypothesis: stationary): 

p-value = 0.67: so the cumTBF data are not white noise 

Table 5. The ADF test for checking statistically the stationarity of cumulative TBF(h) time series of machine 

group pr4_Model X. 
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Figure 10. The ARIMA forecast model fitted to the cumulative TBF (h) time series of machine group pr4_ Model X along with the respective residual diagnostics graph.
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Table 6. Statistical tests for checking if the ARIMA forecast model fitted to the cumulative TBF(h) time series of 

machine group pr4_Model X has the desired properties. 

 

MAE (h) MASE Range of 80% Prediction 

Interval (h) 

121.4 0.51 509.5 

Table 7. Error metrics of the ARIMA model fitted to the cumulative TBF(h) time series of machine group 

pr4_Model X. 

 

First of all, the ARIMA (0,1,0) with drift forecast model is acceptable as it satisfies the                     

generally desired properties of a forecast model, namely uncorrelated and normally 

distributed residuals with constant variance and mean close to zero. However, according to 

the BDS test, some non-linear patterns are left in the residuals involving that these patterns 

can possibly be captured effectively by the non-linear models of ANNs. Moreover, the error 

metrics show errors (e.g. MAE=121.4h) very close to the first level of acceptable accuracy. 

Thus, at a first glance at least, the forecast model seems promising for accurate reliability 

forecasting. Furthermore, it is reminded that the average range of the prediction interval with 

a confidence level of 80% is 510 hours approximately. This means that a failure takes place 

on average within a time range of 22 days with a confidence of 80%. 

 p>0.05 means that we have uncorrelated residuals 

Box-Ljung test 

p-value = 0.4251 

 

 p>0.05 means that we have homoscedasticity (constant variance) of residuals 

Box-Ljung test 

p-value = 0.9481 

 check if the mean is close to zero: if so, it is an unbiased model 

mean(fitarima$residuals) 

[1] -0.003403029 

 p>0.05 means that we have normally distributed residuals 

Jarque Bera Test 

p-value = 0.5549 

 p>0.05 means that non-linear patterns are not left in the residuals 

BDS Test 

p-value = 

[ 47.6946 ] [ 95.3892 ] [ 143.0837 ] [ 190.7783 ] 

[ 2 ]      0.2724      0.1359       0.0000       0.0006 

[ 3 ]      0.5165      0.1884       0.0012       0.0089 

apparently, some non-linearity is left involving that a non-linear model may perform better 
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Regarding the rest of the models produced, it can be seen in table 37 (see appendix E) that 

both of the   ANNs satisfy the generally desired residuals’ properties, while the exponential 

smoothing model has correlated residuals and the optimized theta method has inadequate 

prediction intervals. Overall, as regards the predictive performance of the various models, it 

seems that the ARIMA method resulted in the highest accuracy in terms of MAE with 121 

hours   approximately, followed by RGMDH with 173 hours, the Optimized Theta Method 

with 190 hours, and finally, by FFNN with 277 hours. The MASE metric reveals that ARIMA 

performed substantially higher than the naïve  method (~50%), while FFNN almost the same, 

questioning in this way its added value to the present forecasting attempt. Finally, it is pointed 

out that the large range of the 80% prediction interval of almost 22 days is also applicable in 

the case of RGMDH.   

 

MAE (h) 

ARIMA OTM FFNN RGMDH 

121 190 244 173 

MASE 

ARIMA OTM FFNN RGMDH 

0.51 NA 0.97 0.77 

Range of 80% Prediction Interval (h)  

ARIMA OTM FFNN RGMDH 

509 NA NA 519 

Table 8. Comparison the forecast methods used for cumulative TBF(h) time series of machine group pr4_ Model 

X. 

 

However, on reflection, the aforementioned large prediction intervals produced by each model  

involves a high level of uncertainty of the reliability forecasting of the examined group.          

In figures 10 and 27, stable forecast lines surrounded by large prediction intervals can be        

seen. This can be an indicator of a forecast model fitted to a white noise series, namely to a    

series where there is complete randomness in failures. Additionally, in line with the previous     

observation, for figures 8, 10 and 27, it can be said that the series looks more-less the same no 

matter which of its part is observed. The latter is the precise definition of white noise                                                     

(Hyndman & Athanasopoulos, 2013). Therefore, the cumulative TBF series is white noise          

where there is lack of failure patterns (complete randomness) involving that any forecasting        

attempt is meaningless. 

 

The previous observation on white noise and the unpredictability of failures on the machine 

group level is confirmed by going one step beyond. More specifically, indeed, if the TBF, and 

not the cumulative TBF, is posed on the vertical axis, white noise can be seen (see figure 11 
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and 12), while it is statistically proven by the ADF test (see table 9). This involves that the 

examined time series on the machine group level cannot be predicted, whilst it explains and 

confirms the white noise series indicator, i.e. the large prediction intervals around a stable 

forecast line pointed out when the cumulative TBF is examined. Finally, it is stressed that 

exactly the same observation about white noise holds for the second machine group 

examined, the pr3_ Model X, which is presented in Appendix C.  

 

Figure 11. The TBF(h) time series of machine group pr4_ Model X. 

 

 

Figure 12. The TBF(h) time series of machine group pr4_Model X with the respective ACF and PACF graphs. 

 

 

 

 

 

Table 9. The ADF test for checking the stationarity of TBF(h) time series of machine group pr4_Model X. 

 

Several observations are made and conclusions are drawn from the time series forecasting 

approach on the machine group level. First, there are no certain failure patterns on the 

Augmented Dickey-Fuller Test: p-value = 0.013 

so the TBF data are white noise 
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machine group level in the datasets examined as the TBF time series are white noise. This 

involves that failures on the machine group level are completely random and failure patterns 

cannot be detected and extrapolated in the future. Thus, the problem owner’s current 

reliability forecasting approach with the assignment of Poisson distributions to the expected 

number of failures on the machine group level is valid. This is true as the failure process is a 

memoryless Homogeneous Poisson Process involving that the TBF is exponentially 

distributed. Second, the cumulative TBF approach could have been misleading as stationarity 

is in a way “hidden”. This stationarity becomes explicit only by a critical analysis of the time 

series forecast graph with the large prediction intervals and the stable line of the point 

forecasts as well as from the fact that the series looks more-less the same no matter which of 

its part is observed. Finally, the aforementioned stationarity, i.e.white noise, is confirmed 

through the examination of the pure TBF. 

Moreover, it should not be forgotten that the forecasting approach on the machine group level 

as done by the problem owner has certain limitations. These are mainly related to the fact that 

information for the failures of individual machines is lost on the machine group level due to: 

i) the exclusion of failures of the same individual machine with different priority of service 

each time, ii) the impossibility to detect and predict the failure frequency of the different 

individual machines resulting in confusing integrated TBF series. Therefore, a forecasting 

“Approach 2” on the individual machine level is needed as it can possibly reveal existing 

machine failure patterns. This approach, which is described further in the following section of 

5.3.2, overcomes the aforementioned machine group limitations for the reason that the 

categorization is based only on machine ID involving that all the failures of an individual 

machine, regardless of priority of service, are included in the TBF time series. This approach 

eliminates the distorted view of failures of the machine group level.  

5.3.2. Approach 2: Individual Machine Level 

For the reliability analysis and forecasting on the individual machine level, the data used refer 

to machine failures from 2013 to 2015; it is stressed that these are the only available data. 

This forecasting approach is labeled as “Approach 2” within the present report. In order to 

avoid the disadvantages of the cumulative TBF as pointed out in “Approach 1”, the pure form 

of TBF is used. The reliability forecasting in the form of TBF is done in two different 

manners given in the next two sub-sections. The first one is the univariate time series analysis, 

where only the TBF variable and its past values are used for building the forecast models; 
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whilst in the second one, additional data concerning the repair of the machines are included in 

the models with the use of external regressors.   

 

More specifically, one individual machine is analytically examined on its failures in the 

present sub-section in order the forecasting process to be explicitly demonstrated. Moreover, 

for increasing the research breadth of the study, additional individual machines are examined 

(see Appendix D for their failure and repair data), while their respective predictive 

performance is presented overall in the end of this sub-section. All of the aforementioned 

individual machines have more than 20 observations in their failure data; in this way, working 

with short time series (less than 20 observations) is avoided. It is known that working with 

short time series has the disadvantage that there are not enough data for training and 

subsequently testing the forecast model (Hyndman, 2014). Finally, two points are stressed: 

first, the machines with more than 20 failure observations are only five, while all of the are 

examined within the present case study. The fact that this machine population is not larger 

constitutes one of the limitations of the present study as it limits its generalization potential. 

Second, the individual machine that is presented analytically, namely the #100137513 of 

Model X, has been chosen randomly among the aforementioned set of machines. 

Nevertheless, it is underlined that the approach of looking for more than 20 failures per 

machine does not pose any limitation neither for the problem owner nor for the present thesis’ 

deliverable. This is due to fact that the majority of the individual machines have total failures 

not substantially less than 20 (e.g. 15) till 2015; thus, if they continue with the current failure 

rates, they will have passed this limit by the end of 2016. Therefore, if a credible forecasting 

framework is developed for the older machines that have more than 20 failures, it can 

potentially be used overall when the failure data of 2016 become available. Furthermore, it is 

known that time series clustering can be done in situations where time series of different 

lengths are needed to be grouped and then extrapolated (Jha et al., 2015; Wang, Smith & 

Hyndman, 2006). Therefore, by taking into considetation the above points, the problem 

owner’s requirement for forecasting multiple machines can be satisfied if the forecasting 

framework perform satisfactorily in terms of accuracy.  

At this point, it is clarified that the results of the various forecasting models that are fitted to 

the TBF time series of the five individual machines are acceptable for the second level of the 

problem owner’s  accuracy requirements (MAEmax = 2160 hours). More specifically, as it can 
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be seen in the next two sub-sections, there is always at least one forecasting model that 

produces MAE values substantially less (order of magnitude) than the MAEmax of the second 

level of acceptance. Nevertheless, as regards the first level of acceptable accuracy (MAEmax = 

120 hours), which can be deemed as rather limited and strict, it is stressed that not a machine 

has reached it; the closest values are of MAE of 200 hours approximately. 

5.3.2.1. Univariate Time Series Forecasting  

In the present sub-section, time series forecasting is attempted on a univariate basis. Thus, the 

general time series model used for reliability forecasting on the individual machine level is 

defined as: 

     𝑓(      ,       , … ,       )        (27) 

Herein, the time series reliability forecasting for the one of the individual machines examined 

is presented in detail. The failure data from 2013 to 2015 of machine #100137513 are given in 

table 10 below, while the descriptive statistics of the TBF time series and its chart are given in 

table 11 and figure 13 respectively.  

 

No. Of Failure
13

 TBF (h) 

1.  8256 

2.  672 

3.  864 

4.  1128 

5.  1224 

6.  1128 

7.  2208 

8.  24 

9.  528 

10.  1008 

11.  96 

12.  24 

13.  120 

14.  96 

15.  312 

16.  504 

17.  120 

18.  1248 

19.  504 

20.  96 

21.  336 

22.  528 

23.  528 

24.  432 

continued 

                                                           
13

 The first failure of the individual machine is labeled as failure “0”, and TBF1 equals the hourly time difference 

between failure “1” and failure “0”. 
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No. Of Failure TBF (h) 
25.  336 

26.  264 

27.  432 

28.  696 

29.  504 

30.  144 

31.  888 

32.  24 

33.  480 

34.  168 

35.  264 

36.  864 

37.  240 

38.  96 

39.  1848 

40.  672 

41.  576 

42.  312 

43.  1008 

44.  1032 

45.  624 

Table 10. The TBF(h) time series of the individual machine #100137513. 

 

TBF (h) #100137513 

N 45 

Mean 743.5 

Standard Deviation 1225.67 

Min 24 

Max 8256 

Range 8232 

Q1 240 

Q3 864 

IQR 624 

Median 504 

Skeweness 5.31 

Kurtosis 32.03 

Table 11. Basic descriptive statistics for the TBF(h) time series of the individual machine #100137513. 

 

By critically analyzing the failure data of machine #100137513, certain observations are 

made. First of all, the following TBF chart and the ADF test (figure 13 and table 12 

respectively) demonstrate that the TBF time series is not white noise, and failures patterns in 

the dataset can be detected and possibly predicted. Furthermore, the first value of the variable 

TBF is 8256 hours, and it is substantially higher, one to two orders of magnitude, than the rest 

of the observations. Additionally, there are certain observations of the variable TBF like the 

8
th

, 11
th

, 12
th

 etc., which are surprisingly low, ranging from 24h to 96h (less than a week). The 
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interpretation of the last “unexpected” values is two-fold: first, the small TBF value may 

involve that the repair executed to the failed machine brought it to a “bad as old” state 

involving an unsuccessful (imperfect) initial repair attempt. Second, a small TBF can also 

involve that the machine failed could not be repaired by the worker called with the initial 

SWO, and a new call (SWO) for a worker with higher skills is done
14

.  

 

Figure 13. The TBF(h) time series of the individual machine #100137513. 

 

 

 

Table 12. The ADF test for checking the stationarity of TBF(h) time series of the individual machine 

#100137513. 

Both of the peculiar observations analyzed previously (given in dark color and bold italics in 

the failure data table 10), namely the first large one and the rest small ones, could possibly be 

regarded as outliers
15

 in the training and test set. The presence of outliers could deteriorate the 

predictive performance of a forecast model (Dunham, 2003). This can be true as, for example, 

the first large value of TBF will never happen again because it takes place only when the 

machine is brand new.  In other words, the inclusion of this observation and/or of the ones 

with the small value, can induce noise when a forecast model is fitted to the training set, and 

result finally in low predictive performance. For these reasons, and to cover every possibility, 

two different experimentations are done within “Approach 2”. In Experimentation 1, the 

                                                           
14

 It is reminded that the date and time of an SWO is assumed to be identical to the date and time of a machine 

failure. 
15

 Outliers are observations that show inconsistency with the reminder of the dataset (Barnett & Lewis, 1994). 

Augmented Dickey-Fuller test: p-value = 0.47  

so the TBF data are not white noise 
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whole dataset is used for training and testing the forecast models, while in Experimentation 2, 

the aforesaid “atypical” TBF values are initially removed as possible outliers. In both of the 

experimentations, the training and the test set is the first 80% and the last 20% approximately 

of the respective dataset.  

a) Experimentation 1: for the full dataset The results of Experimentation 1 are given 

firstly graphically, and then, analytically in the next pages. 
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   Figure 14. ARIMA, ETS, RGMDH and FFNN  forecast models fitted to the TBF(h) time series of the individual machine #100137513
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The Optimized Theta Method produces erroneous output as the forecasted values of the by 

definition positive TBF variable are negative (see table below). For that reason, this method is 

not further elaborated in the case of machine #100137513 under Experimentation 1. 

Model Point Actual 

Values 

Predicted 

Values 

 

 

Optimized 

Theta   

37 240 24.65 

38 96 -23.98 

39 1848 -72.62 

40 672 -121.25 

41 576 -169.88 

42 312 -218.51 

43 1008 -267.15 

44 1032 -315.78 

45 624 -364.41 
Table 13. The actual TBF(h) time series of the individual machine #100137513 and the predicted ones by the 

Optimized Theta  forecast model. 

In the table 38 of appendix E, the forecast models produced by each method are given 

analytically accompanied by the formal statistical tests on their residuals; the respective 

“eyeball” tests are given from figure 28 to 31 in appendix G. It is evident that we deal with an 

unacceptable ARIMA forecast model as the residual diagnostics show correlation involving 

that there is information that is not used in the forecast. On the other hand, in the exponential 

smoothing model, it seems that the residuals are uncorrelated with mean close to zero, and 

thus, it is an unbiased forecasting model which leaves no information in the residuals.  

More specifically, these properties are proven by the formal statistical tests due to the fact that 

the Box-Ljung test on residuals and on the squared residuals gave p-values of 70,55% and 

99,25% respectively. Moreover, there is a normal distribution of the residuals in the test set, 

and since the residuals have proven to be uncorrelated, 95% and 80% prediction intervals can 

be produced by using the equations “ŷ±1.96σ” and “ŷ±1.28σ” respectively. Finally, there is 

no non-linearity left in the residuals as proven by the BDS test meaning that a linear model 

can perform satisfactorily. Regarding the ANNs, it is stressed that both the RGMDH and 

FFNN models satisfy the requirements of being unbiased forecast models that make sufficient 

use of the information given in the dataset, while prediction intervals can be built by the 

previously described method provided by R. 

For the evaluation of the predictive performance of the forecast models that pass the residual 

diagnostics tests, the time series cross-validation method described in section 4.2 is applied as 
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it increases the reliability of the evaluation to the maximum. More specifically, the forecast 

models are initially trained in the first 80% of the dataset, namely from observation 1 to 36, 

and then, are tested in the last 20%, namely from observation 37 to 45. As the time series 

cross-validation method is utilized, each forecast model is tested for one-step ahead 

forecasting sequentially. More precisely, the first forecast model is trained in the first 36 

observations, and then, it is tested for its point forecast for the 37
th

 observation. In the same 

manner, the next forecast model is trained in the first 37 observations, and it is tested for its 

point forecast for the 38
th

 observation, etc. The final values of the error measures result from 

averaging the forecasting errors of all the iterations.            

According to the aforementioned validation method, the predictive performance of the various 

forecast models is deemed as satisfactory for the second level of acceptable accuracy. This is 

based on the fact that MAE values higher than 120 but less than 2160 hours are detected. As it 

can be seen in table 14, the lowest MAE and MAPE values pointed out are 365 hours and 

72.26% respectively, and are given by the exponential smoothing method. As regards the 

uncertainty aspect, the smallest prediction interval achieved for the prediction of the next 

failure is 1003 hours for a confidence level of 80% and is produced by the RGMDH method. 

On reflection, a value of MAE of 365 hours approximately means that a failure will be 

forecasted to happen, on average, 15 days earlier or later than the actual failure. In the same 

sense, the 1003 hours of the 80% prediction interval involves that the next failure will take 

place within 41 days with 80% confidence. Moreover, it is stressed that the various forecast 

models have higher predictive performance than the naïve method as MASE is lower than one 

in any of the models. 

 

MAE (h) 

ETS FFNN RGMDH 

365 388 486 

MAPE (%) 

ETS FFNN RGMDH 

72.26 86.57 113.65 

MASE 

ETS FFNN RGMDH 

0.65 0.62 0.72 

Range of 80% Prediction Interval (h) 
ETS FFNN RGMDH 

1411 NA 1003  

Table 14. Error metrics of  the various forecast models fitted to the TBF(h) time series of the individual machine    

#100137513. 
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At this point, the logic behind the adoption of the one-step ahead forecast horizon in 

reliability forecasting (see “The Training and the Test Set” on Xu et al. (2003) of sub-section 

5.1.2) is verified. As it can be seen in the next figure, and as also expected, there is a clear 

trade-off between the magnitude of errors and the forecast horizon. Thus, in the pursuit of the 

maximum possible accuracy, short-term forecasting (1-step ahead) is followed. In that view, 

the problem owner’s initial choice for one-step ahead forecasting is characterized as right. 

 

 

Figure 15. The graphical relation between MAE and forecast horizon for the various forecast models fitted to 

the TBF(h) time series of the individual machine #100137513. 

 

b) Experiment 2: For the adjusted dataset  

Herein, the time series reliability forecasting for the adjusted failure data of the individual 

machine #100137513 Model X is presented in detail. It is reminded that the adjusted failure 

data are the original dataset of the aforementioned machine’s failures after the removal of 

observations that can possibly be characterized as outliers. The descriptive statistics of the 

TBF time series and its chart are given in table 15 and figure 16 respectively.  
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Adjusted TBF (h) #100137513 

N 37 

Mean 668.75 

Standard Deviation 457.01 

Min 120 

Max 1848 

Range 1728 

Q1 336 

Q3 888 

IQR 552 

Median 528 

Skeweness 1.46 

Kurtosis 2.69 

Table 15. Basic descriptive statistics for the adjusted TBF(h) time series of the individual machine #100137513. 

 

Figure 16. The adjusted TBF(h) time series of the individual machine #100137513. 

Apparently, it is proven by the ADF test below (table 16) that the TBF time series is not white 

noise, and failures patterns in the dataset can be detected and possibly predicted. The various 

forecast models fitted to the adjusted TBF time series of the individual machine #100137513 

are graphically presented in the next figures, while their respective residual diagnostics are 

given in table 39 of appendix E, and from figure 32 to 35 to  in appendix G. 

 

 

 

Table 16. The ADF test for checking the stationarity of the adjusted TBF(h) time series of the individual machine 

#100137513. 

Augmented Dickey-Fuller test: p-value = 0.41 

Thus, the adjusted TBF data are not white noise 
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Figure 17. The ARIMA, ETS, RGMDH and FFNN  forecast models fitted to the adjusted TBF(h) time series of the individual machine #100137513.
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Figure 18. The Optimized Theta forecast model fitted to the adjusted TBF(h) time series of the individual 

machine #100137513. 

First of all, it is evident that in the case of the adjusted for the outliers dataset, the various 

forecast models produced have an acceptable behavior in terms of residuals as the latter have 

most of the desired properties (see table 39). The only problematic aspect is the non-zero 

mean of the residuals in the models produced by the Optimized Theta Method and the 

RGMDH. However, this bias is easily corrected by adding up the opposite value on the 

respective point forecasts. This correction, while it seems manual, it can be easily 

incorporated in a fully automated forecasting framework.  

Concerning the predictive performance of the forecast models, it is proven by the time series 

cross-validation to be substantially better than the ones fitted to the full TBF series. Thus, of 

course, the results are again satisfactory for the second level of the problem owner’s accuracy 

requirements. It is noted that the first level of acceptable accuracy (MAEmax=120 hours) 

seems strict and probably unachievable for the specific failure data; this is analyzed further in 

the next chapter. In table 17, it is shown that the lowest MAE measure is 203 hours, and is 

given by the ARIMA method
16

. Thus, in the case of the adjusted dataset, there is an 

improvement of the predictive performance of almost 45% in terms of MAE as compared to 

the full dataset. The same applies to the uncertainty where the lowest mean of 80% prediction 

intervals is 801 hours demonstrating an improvement of 20% comparing to the one from the 

full dataset. Furthermore, the improvement in the predictive performance of the various 

models is also depicted to the MASE criterion; in the case of the adjusted dataset, and for the 

parametric models, it is even less than 0.5. The latter stands for a more than 50% higher 

                                                           
16

 It is noted that the predictive performance of ARIMA equals to the one of exponential smoothing. 
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predictive performance than the naïve method meaning that time series forecasting with these 

models is worthwhile.  

MAE (h) 

ARIMA ETS OTM FFNN RGMDH 

203 203 208 254 402 

MAPE (%) 

ARIMA ETS OTM FFNN RGMDH 

34.4 34.4 33.33 41.72 62.38 

MASE 

ARIMA ETS OTM FFNN RGMDH 

0.44 0.44 0.445 0.55 0.84 

Range of 80% Prediction Interval (h)  

ARIMA ETS OTM FFNN RGMDH 

1320 1320 
NA NA 

801 

Table 17. Error metrics of the various forecast models fitted to the adjusted TBF(h) of machine #100137513. 

In the same research line with the analytically presented individual machine #100137513, four 

more individual radiation treatment machines of the same Model X have been examined (see 

appendix D). The MAE results
17

 of each machine and method are given in the next table. It is 

obvious that the predictive performance of the forecasting models of table 18 is acceptable for 

the 2
nd

 level of the problem owner’s accuracy requirement (MAE < 2160h). The latter applies 

even in the case of the machine with white noise TBF (see its ADF test in appendix D). 

                  MAE (h) 
 

Machine ID 

Methods 

ARIMA ETS OTM FFNN RGMDH 

#54920709 709 686 723 725 765 

#55421717
18

 1254 966 1025 825 1067 

#45423025 496 737 636 470 219 

#50471390 877 948 926 864 761  
 

Table 18. Results from the univariate forecasting analysis of the rest four radiation treatment machines. 

                                                           
17

 The overall results of predictive performance are given only for the favorable adjusted for outliers dataset. 
18

 The failure behaviour of this machine is completely random (white noise). 
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5.3.2.2. Time Series Forecasting with External Information 

Within the individual machine approach labeled as “Approach 2”, external information can 

also be incorporated in reliability forecasting in an attempt to increase the accuracy and 

reduce the uncertainty.  In the case of reliability analysis of repairable systems, it is suggested 

to consider the effects of successive repairs (Karbasian & Ibrahim, 2010). It is also known 

that the next inter-failure time is related to the present repair effort, while time series models 

have generally the capability to discover the aforesaid interfailure time – repair effort 

relationship (Xie & Ho, 1999). In the present case study, there is some additional information 

with respect to the repairs done that can be used for conducting the second part of forecasting 

“Approach 2”. 

 

More specifically, the one-lagged predictors of TTR (Time-To-Repair) and of the categorical 

variable Spare_Item can be used as additional regressors to the univariate TBF analysis. The 

use of one-lag is based on the assumption that the next failure can be predicted better by 

taking into account the TTR and the use of a spare item for correcting the present failure. This 

is completely in line with the statement of Xie and Ho (1999) formulated in the previous 

paragraph. From the dataset depicted in section 5.1, the TTRi variable, which is in fact the 

total man-hours spent for the repair of failure i, is defined in equation 28, whereas the variable 

Spare_Item is an already given dummy variable.  
 

 

     ∑   𝑔𝑖   𝑟    𝑟  𝑖    𝑖 𝑖   𝑢𝑟𝑎 𝑖𝑜  𝑜𝑓  𝑖    𝑖 𝑖       (hours) (28) 

 

Therefore, the type of the compounded forecast model would be: 

 

     𝑓(      ,       , … ,       ,   𝑎𝑟 _       ,  𝑟𝑟𝑜𝑟)          (29) 

 

As it is described in chapter 4, the ARIMAX method is utilized when it is necessary to 

include external regressors in forecasting. Various combinations of the aforementioned 

external regressors are done in order to demonstrate which combination offers the best 

forecasting. More precisely, the experimentations that take place are the following: ARIMA 

for TBFt with external regressors the   𝑎𝑟 _        and the       , individually and 

combined, for both the full and the adjusted dataset. The data for the respective external 

regressors for machine #100137513 are given in table 19, while the various ARIMAX 

forecast models produced are presented along with their respective residual diagnostics tests 

in appendix E. 
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Failure TTR (h)
19

 Spare 

Item 

 Failure TTR (h) Spare 

Item 

0 0.5 1  23 14.75 0 

1 1.5 0  24 3.25 1 

2 0.25 0  25 6 1 

3 0.5 0  26 3.25 0 

4 0.5 0  27 3.5 1 

5 1 1  28 4.75 1 

6 0.25 0  29 1.5 0 

7 0.5 0  30 0.25 0 

8 0.25 0  31 1 0 

9 59.25 1  32 2.5 0 

10 11.75 1  33 1 0 

11 5.75 0  34 5.5 1 

12 2 0  35 5 1 

13 3.75 1  36 0.25 0 

14 1.25 1  37 1.75 1 

15 3.75 0  38 2.25 0 

16 1 0  39 2 0 

17 3.5 0  40 2 0 

18 2.25 0  41 2 0 

19 1.5 0  42 1.5 0 

20 2 1  43 2.25 0 

21 4 0  44 2.75 1 

22 4 1  

Table 19. The TTR(h) time series and the dummy variable Spare Items used of the individual machine 

#100137513. 

In the full failure dataset of the individual machine #100137513, the three ARIMAX models 

given in table 40 (see appendix E) are acceptable in terms of residual diagnostics only after 

correcting their bias. As it is known, this is simply done by adding up each time the opposite 

non-zero mean of the residuals to the point forecasts. Additionally, the ARIMAX model 

having as external regressors the Spare_Item and TTR lacks the physical meaning that is 

initially assumed. More analytically, the negative coefficient of the TTR regressor involves 

that the TBF increases when the total repair time of the previous failure decreases. 

                                                           
19

 It is restated that the TTR and the Spare_Item variables have 1-lag as regards the number of failure. For 

example, the first value of “TTR=0.5h” and “Spare_Item=1” refer to failure “0”, and are used as regressors for 

TBF1, which is the hourly time difference between failure “1” and failure “0”. 
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Nevertheless, exactly the opposite is expected, as stressed in the start of the present sub-

section. 

In terms of predictive performance, the ARIMAX models demonstrate acceptable predictive 

performance for the second level of the problem owner’s accuracy requirement (MAE < 

2160h). The best performing ARIMAX model (see its chart in figure 19) is the one having the 

variable Spare_Item as external regressor producing one-step forecasts with MAE of 384 

hours, MAPE of 60.51%, and 80% prediction intervals of 2195 hours. Obviously, the 

inclusion of the external regressors does not increase the forecasting accuracy in terms of 

MAE, whereas it increases substantially the uncertainty as compared to the univariate analysis 

(see Experiment 1 in section 5.4.2). 

MAE (h) 

ARIMAX with Spares ARIMAX with TTR ARIMAX with TTR and Spares
20

 

384 402 391 

MAPE (%) 

ARIMAX with Spares ARIMAX with TTR ARIMAX with TTR and Spares 

60.51 121.4 61.69 

MASE 

ARIMAX with Spares ARIMAX with TTR ARIMAX with TTR and Spares 

0.62 0.63 0.64 

Range of 80% Prediction Interval (h)  

ARIMAX with Spares ARIMAX with TTR ARIMAX with TTR and Spares 

2195 2522 2163 

Table 20. Error metrics of the ARIMAX forecast models fitted to the TBF(h) of machine #100137513. 

 

Figure 19. The ARIMAX forecast model with external regressor the Spare_Item variable as fitted to the TBF(h) 

time series of the individual machine #100137513. 
                                                           
20

 ARIMAX models that lack physical meaning are given in red colour. 
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In the same logic, the adjusted for outliers dataset is examined. The various ARIMAX 

forecast models produced for the adjusted dataset are presented analytically along with their 

respective residual diagnostics tests in table 41 of appendix E. 

 

In the adjusted for outliers failure dataset of the individual machine #100137513, the three 

ARIMAX models produced are acceptable in terms of residual diagnostics. It is also pointed 

out that as happened in the univariate time series analysis presented in section 5.3.2.1, the 

removal of possible outliers has led to better residual diagnostics of the forecast models. 

Nevertheless, the ARIMAX models that have as external regressor the Spare_Item, 

individually and combined with TTR, lack the physical meaning that is initially assumed. 

More precisely, the negative coefficient of the Spare_Item regressor involves that the TBF 

increases when a spare item is not used for the repair of the previous failure, whilst exactly 

the opposite is expected. 

In terms of predictive performance, the ARIMAX models demonstrate acceptable predictive 

performance for the second level of the problem owner’s accuracy requirement (MAE < 

2160h). The best performing ARIMAX model (see its chart in figure 20) is the one having the 

variable TTR as external regressor producing one-step forecasts with MAE of 209 hours, 

MAPE of 22.67%, and 80% prediction intervals of 1198 hours. Obviously, the removal of 

possible outliers resulted in the substantial decrease of uncertainty (~52%) as expressed by the 

range of the 80% prediction interval. Moreover, the MAPE metric is the lowest one in all the 

analyses so far demonstrating an improvement of 99% comparing to the respective ARIMAX 

for the unadjusted for outliers dataset.  

MAE (h) 

ARIMAX with Spares ARIMAX with TTR ARIMAX with TTR and Spares
21

 

213 209 213 

MAPE (%) 

ARIMAX with Spares ARIMAX with TTR ARIMAX with TTR and Spares 

38.1 22.67 38.4 

MASE 

ARIMAX with Spares ARIMAX with TTR ARIMAX with TTR and Spares 

0.46 0.45 0.47 

continued 
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 ARIMAX models that lack physical meaning are given in red colour. 
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Range of 80% Prediction Interval (h) 

ARIMAX with Spares ARIMAX with TTR ARIMAX with TTR and Spares 

1191 1198 1182 

Table 21. Error metrics of the ARIMAX forecast models fitted to the adjusted TBF(h) time series of the individual 

machine #100137513. 

 

 

Figure 20. The ARIMAX forecast model with external regressor the TTR(h) variable as fitted to the adjusted 

TBF(h) time series of the individual machine #100137513. 

In the same research line as presented analytically for the individual machine #100137513, 

the rest four individual radiation treatment machines have been examined. Their MAE 

results
22

 for each ARIMAX model are given in the next table. It is obvious that the predictive 

performance of the forecasting models (with physical meaning) of table 22 is acceptable for 

the second level of the problem owner’s accuracy requirements (MAE < 2160h). 

 MAE (h) 
 

Machine ID 

Methods 

ARIMAX  

with TTR 

 ARIMAX  

with TTR 

& Spares 

ARIMAX 

with Spares 

#54920709 630  571.5 607 

#55421717
23

 772  890 816 

#45423025 480  644.5 622 

#50471390 822  784 749 

Table 22. The ARIMAX forecasting results for the rest four radiation treatment machines examined. 

                                                           
22

 The overall results of predictive performance are given only for the favorable adjusted for outliers dataset. 
23

 The failure behaviour of this machine is completely random (white noise - see its ADF test in appendix D), 

while results from ARIMAX models with no physical meaning are given in red and are not considered in the 

benchmarking. 
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5.3.2.3. Basic Conclusions for “Approach 2”  

The basic descriptive conclusions drawn from the “Approach 2” as applied to the TBF time 

series of five radiation treatment individual machines, which have more than 20 TBF 

observations, are given below. It is stated that the failure and repair data of these machines are 

given in appendix D. It is also stressed that through the examination of more than one failure 

datasets
24

, the by definition limited research breadth of the case study is expanded as far as 

possible for the given data. In this way, the research approach followed within the present 

thesis project becomes more compact as it provides with the deepest and broadest possible 

insights in the domain of reliability forecasting of radiation treatment equipment. 

Firstly, the overall conclusion on the predictive performance of the various forecast models 

fitted to the TBF time series of the five individual machines is that it is satisfactory for the 

problem owner’s second level of acceptable accuracy. The predictive performance results, 

which come from one-step ahead forecasting with the use of the time series cross-validation 

method, for the best performing method per machine are: MAE ranges from 209 to 825 hours, 

MAPE ranges from 22.7% to 191%, and MASE from 0.46 to 1.93 (see table 23 and figure 21, 

as well as figures 36 and 37 of appendix H). The minimum errors as expressed by MAE and 

MAPE have been achieved by ARIMA and ARIMAX with TTR respectively for the 

individual machine #100137513 that has been presented analytically in the previous section; 

the values of these errors metrics are 203h, and 22.7% respectively. Additionally, it is stressed 

that even the best-performing ARIMA model does not fulfill the problem owner’s accuracy 

requirements of the first level, which can be judged as strict and unrealistically high.  

 

Figure 21. The MAPE and MAE metrics for the best performing forecasting method of each machine examined. 

                                                           
24

 The use of only one failure dataset is rather common in journal papers dealing with reliability forecasting. 
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Machine ID Size of  the 

Dataset (N'
25

) 

Method MAE (h) MAPE 

(%) 

MASE 80% 

Prediction 

Interval (h) 

#50471390 27 RGMDH 761 49 0.9 810 

#54920709 38 ARIMAX with  

TTR & Spares 

571 47 0.63 1670 

#55421717 29 FFNN 825 191 1.93 NA 

#45423025 27 RGMDH 219 64 0.68 1100 

#100137513 37 ARIMA 203 34.4 0.44 1320 

Table 23. The predictive performance results for the best performing forecasting method for each individual 

machine examined. 

Furthermore, in order general insights in the predictive performance of the various methods to 

be generated, an overall analysis and presentation of the predictive performance of all the 

methods applied to every machine is done. More specifically, these insights, which are mainly 

based on the following table, are analytically described and compared to the knowledge 

derived from the literature in section 5.4. 

 MAE (h) 
 

Machine 

ID 

Methods 
ARIMA ETS OTM FFNN RGMDH ARIMAX  

with TTR 

 ARIMAX  

with TTR 

& Spares 

ARIMAX 

with 

Spares 

#100137513 203 203 208.3 254.6 402.2 209.3
26

  213 213.4 

#54920709 709 686 723 725 765 630  571.5 607 

#55421717
27

 1254 966 1025 825 1067 772  890 816 

#45423025 496 737 636 470 219 480  644.5 622 

#50471390 877 948 926 864 761  
 

822  784 749 

Table 24. Overall results of the predictive performance of all the forecasting methods applied to  each radiation 

treatment machine examined. 

Moreover, it is observed that there is not a specific time series forecasting method proven to 

perform the highest for all the machines examined. This is based on the fact that RGMDH is 

                                                           
25

 The size of the dataset N' refers to the adjusted for outliers dataset each time. It is stressed that the highest 

predictive performance has been achieved for the adjusted for outliers datasets for each machine. 
26

 Results from ARIMAX models with no physical meaning are given in red and are not considered in the 

benchmarking. 
27

 The failure behaviour of this machine is completely random (white noise). 
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the best performing method for two machines, while ARIMA, ARIMAX with TTR, and 

FFNN, are the best performing methods for one machine respectively. Moreover, it is stressed 

that the removal of observations characterized as possible outliers improves significantly the 

predictive performance in terms of MAE, MAPE and the range of the 80% prediction interval. 

This improvement confirms Dunham (2003), and it can be graphically observed for the 

individual machine #100137513 in terms of MAE in figure 22  (in terms of MAPE and range 

of 80% prediction interval is depicted in figures 38 and 39 of appendix I) along with a 

comparison among all the forecast models. 

Figure 22. The MAE metric of all forecast models fitted to the original and the adjusted TBF(h) time series of the 

individual machine #100137513.  

As regards the uncertainty with which the point forecasts are generally accompanied, it is 

argued to be rather high. More analytically, prediction intervals with a confidence level of 

80% range from 810 to 1898 hours, namely from 24 to 79 days, whilst the average for all the 

machines is 1195 hours (50 days approximately). This high uncertainty can be assigned to the 

existence of inherent physical randomness in the repairable systems examined, i.e. the 

radiation treatment equipment, as well as to the lack of specific data like the ones referring to 

the utilization of the equipment (for more reflection on uncertainty, see section 5.4). 

Finally, it is concluded that the inclusion of external information in the form of regressors in 

the ARIMAX models results in forecasts of the same level of errors approximately with the 

univariate models. Therefore, the idea that the combination of the repair data with the failure 

data could result in a significant improvement of forecasting is not verified. Additionally, it 
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should be pointed out that the time for which a machine is used, is not known and not 

provided in the given datasets. It is believed that this information is highly relevant in 

reliability forecasting, and its inclusion could reduce the uncertainty and increase the 

forecasting accuracy at acceptable levels that could satisfy even the first level of acceptable 

accuracy. Moreover, the same is believed for fine-grained ontological data that can be, for 

example, related to specific components of a machine, or even of data concerning the 

purchase date of a machine and the respective start of operations.  

5.4 Conclusions from the Case Study and Reflection on the Findings 

From the case study conducted in the previous sections of chapter 5, conclusions that provide 

an answer to research question c are presented herein. These conclusions are followed by a 

critical reflection on the performance of the forecasting methods used as well as on the 

findings of the case study accompanied by their in-depth comparison with the literature.   

In the case study, it has proven that the time series reliability forecasting approach, which has 

been implemented on different levels (the machine group and the individual machine level) 

for various processed (i.e. adjusted for outliers) and unprocessed datasets with the use of 

parametric and non-parametric methods as well as with the inclusion of external variables, 

does satisfy the problem owner’s requirements. More specifically, the predictive performance 

of almost every forecast model fitted to each individual machine is satisfactory for the 

problem owner’s second level of acceptable accuracy (MAEmax=2160h). In fact, there is an 

order of magnitude difference in the MAE achieved and the required one for most of the 

models produced (see table 24). Thus, the answer to research question c, i.e. if the most 

promising forecasting approach identified satisfies the requirements set by the problem 

owner, is positive. The latter involves that a forecasting framework that satisfies all the 

requirements can be delivered to the company. 

Additionally, it is also worthwhile to mention that the latter, i.e. the satisfaction of the 

accuracy requirements, is also applicable in the case of machine #55421717 where white 

noise is detected. Therefore, for the second level of accuracy at least, there is not need for the 

use of HPP even for the machine that has white noise failure time series. In other words, for 

one out of the two given levels of acceptable accuracy, there is a clear indication that the 

forecasting approach followed deals effectively even with machines that do not follow failure 

patterns. Thus, this approach can indeed constitute the base of a forecasting framework that is 

generally applicable to all the individual machines. Nevertheless, it is underlined that the first 
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level of acceptable accuracy (MAEmax=120h) has not been satisfied in any of the cases; this 

level of accuracy can be characterized as strict and unrealistically high.  

At this point, the main conclusions drawn from “Approach 1” are restated. Firstly, it is 

underlined that the current forecasting methodology of the assignment of Poisson distributions 

on the machine group level is proven to have validity. This is based on the fact that under 

“Approach 1”, it has been demonstrated that the TBF time series is white noise involving the 

existence of a memoryless failure process that can be modeled with the current Homogeneous 

Poisson Process (HPP). Furthemore, the form in which the TBF variable is expressed (pure or 

cumulative TBF) is of high importance as the cumulative TBF approach can “hide” the 

stationarity of data. Moreover, there is a high degree of forecasting uncertainty expressed by 

the large prediction intervals. The latter is an indication of high variability in the failure 

datasets, and on extension, of high randomness of the failure behavior of the repairable 

systems examined; this is analyzed further in the following pages
28

. 

On the other hand, the conclusions drawn from “Approach 2”, which are richer than the 

respective ones from “Approach 1”, are analyzed. First of all, a general high-level conclusion 

is stressed: the study has confirmed the literature that real-world systems do not generally 

comply with the HPP characteristics (Kurien, Sekhon & Chawla, 1993) as the individual 

machines examined (except for one) do not follow a memoryless failure process with constant 

failure rates. This is proven by the ADF test executed (see table 12 for machine #100137513 

and appendix D for the rest of the individual machines), which shows that the TBF failure 

data are not white noise involving that failure patterns exist.  

A qualitative evaluation of the predictive performance of each forecasting method along with 

its relation, i.e. confirmation or contradiction, to the literature is summarized in the following 

table. Detailed analysis and reflection on the methods’ performance is given below. 

 

 

                                                           
28

 It is noted that variability expressed by standard deviation is directly related to the respective prediction 

intervals produced with the equation “80% Prediction Interval = ŷ±1.28σ”. 
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Method Evaluation of  the Predictive 

Performance in Reliability 

Forecasting
 29

 

Relation to the 

Literature 

Proven Potential 

for Reliability 

Forecasting 

ARIMA(X)
30

 High performance in relatively rich  

failure datasets 

(40 observations approx.) 

In line:  

the literature is 

confirmed 

High 

Exponential  

Smoothing 

Low overall  

predictive performance in reliability 

forecasting 

In line:  

the literature is 

confirmed 

Low 

Optimized  

Theta  

Low overall  

predictive performance in reliability 

forecasting 

Opposed: 

the literature is 

contradicted 

Low 

RGMDH High performance in relatively limited  

failure datasets 

(30 observations approx.) 

In line:  

the literature is 

confirmed 

High 

FFNN Higher accuracy than parametric 

methods in limited datasets but lower 

than RGMDH 

In line:  

the literature is 

confirmed 

Low 

Table 25. Conclusions on the predictive performance of the various methods of the reliability forecasting 

framework. 

Primarily, it can be realized that there is not a single method (e.g. ARIMA, RGMDH) that 

performs the highest in terms of accuracy (measured by MAE) in the reliability forecasting of 

radiation treatment equipment. This observation is in line with Makridakis and Hibon (2000), 

and Makridakis et al. (1982), who concluded that there is not a single universal best-

performing forecasting method. This applies even in the limited “universe” of radiation 

treatment equipment of the same Model X used in hospitals of the same country; on this 

occasion, one could argue that the existence of a single best-performing reliability forecasting 

method could be possible. Apparently, this is not true as every individual machine follows a 

different failure process that can be modeled the best with a different forecasting model. The 

latter proves that indeed a reliability forecasting framework consisting of a bunch of different 

methods is necessary in order the different machine failure behaviors to be modeled with the 

highest possible accuracy every time. Thus, the inclusion of forecasting methods with 

different underlying logic and predictive capabilities under the same forecasting approach can 

be regarded as a strong point of the present study.  

Furthermore, by analyzing the results of the best performing forecasting method on the 

individual machine level (table 23), it seems that in three out of the five cases, ANNs perform 

the highest in terms of MAE; while in the rest two, the parametric methods of ARIMAX with 

                                                           
29

 The predictive performance of the various methods is analyzed only on the individual machine level as there 

were no failure patterns on the machine group level. 
30

 ARIMA(X) stands for both the original ARIMA method and its extended version of ARIMAX. 
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TTR and the Spare as external covariates, and of ARIMA have the lowest MAE. At a glance, 

it can be realized that the ANNs performed the best in terms of forecasting accuracy in the 

failure datasets with the least observations. On the contrary, the parametric methods of 

ARIMA and ARIMAX performed the best in the failure datasets with the most observations. 

These observations confirm the literature where it is acknowledged that: i) ANNs have higher 

predictive performance than parametric and linear methods like ARIMA in limited historical 

data situations (Khashei, Bijari, & Ardali, 2009), ii) ARIMA methods require large datasets 

for achieving high accuracy (Fan, 2012; Khashei, Bijari, & Ardali, 2009). 

More specifically, the original ARIMA method (not its ARIMAX extension) has 

demonstrated the best predictive performance for only one of the machines studied, the 

#100137513, with a MAE of 203 hours. However, in the studies like these of Ho, Xie and 

Goh (2002), and Dindarloo (2015), ARIMA had of the same level, if not the highest, 

predictive performance as compared to various ANN architectures. A plausible reason behind 

this fact can be that that the autocorrelations in the failure data of the radiation treatment 

equipment examined are not strong enough; thus, the failure process is possibly modeled 

better by other forecasting methods. Nevertheless, a reasonably stronger reason than the 

previous one is the relatively limited data of the failure datasets. Box and Jenkins (1976) 

argued that in order ARIMA forecasting to be of high accuracy, 50 observations at least are 

needed. It is stressed that in the studies of Ho, Xie and Goh (2002), and Dindarloo (2015), the 

observations were 90 and 40 respectively, while in the present study, the size of the datasets 

ranges from 27 to 46 with the (adjusted for outliers) dataset size of #100137513 being 37. 

With respect to ARIMAX, it has proven that for machine #54920709, ARIMAX with TTR 

and Spare Items as external covariates has the highest predictive performance. It is underlined 

that the ARIMA method extended with the use of external covariates has been reported in the 

reliability forecasting literature only by Fan and Fan (2015). In their case, the inclusion of the 

TTR repair data in the TBF forecasting deteriorated the predictive performance as compared 

to the original ARIMA model. This finding of the literature contradicts with the results of 

machine #54920709 at least. Additionally, it needs to be mentioned that ARIMAX models 

with Spare_Items as external covariate, individually and combined with TTR, have been used 

for the first time within the present thesis. General conclusions on the value of the inclusion of 

the repair data cannot be drawn, as in some cases there is a better forecasting performance, 

whereas in other cases, the performance is either worse or there is lack of physical meaning. 
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Finally, it is stressed that ARIMAX methods have worked the best and the second best (with 

slight difference from the first of ARIMA) for machines #54920709 and #100137513 

respectively, which have the largest datasets with 38 and 37 observations in their adjusted 

datasets  accordingly. 

From the above reflection on the predictive performance of ARIMA and ARIMAX, an 

underlying relationship between the size of the failure dataset and the aforesaid methods’ 

reliability forecasting accuracy can be argued. This is based on the fact that for machines with 

a number of failures around 30, ARIMA and ARIMAX models do not show any predictive 

superiority to other methods. On the contrary, for machines with size of failure datasets close 

to 40, the models perform highly. Thus, it can be said that the observation that methods based 

on the ARIMA statistical structure require large datasets for achieving high accuracy (Fan, 

2012; Khashei, Bijari, & Ardali, 2009; Zhang, 2003) is confirmed.  

Furthermore, a negatively surprising result is the low predictive performance of the Optimized 

Theta Method, which has not been reported as the best-performing in none of the machines 

examined. It is reminded that the predictive performance of the original Theta Method was the 

highest in the largest up-to-date forecasting competition of M3, which consisted of 3003 time 

series related to micro- and macro-economics, industry, demographics, etc. (de Gooijer & 

Hyndman, 2006; Fioruci et al., 2015; Makridakis & Hibon, 2000). Thus, in this case, the 

literature is not confirmed. With respect to exponential smoothing, the predictive performance 

is overall deemed as low. This observation is in line with the work of Cheong, Koo and Babu 

(2015), where two types of exponential smoothing (simple exponential smoothing and Holt-

Winters additive) performed remarkably worse than AutoRegression in reliability forecasting 

of ATMs. On reflection, the low performance of the two methods above can be assigned to 

the lack of seasonality and the weak or null trend in the failure process of the machines 

examined
31

.  

With respect to ANNs, in the related literature (section 3.2), FFNN has always been found to 

be the worst performing forecasting method as compared to ARIMA and other architectures 

of ANNs. In the case study conducted, it is underlined that there is one single case, the 

machine with white noise failure series in particular (#55421717), where FFNN produces the 

                                                           
31

 The lack of seasonality and the weak or null trend in the failure process can be shown, at least for the 

analytically examined machine #100137513, in the respective “ets” and “otm” forecasting models in appendix E. 

For the rest of the machines examined, the statement above can be proven by running the indicative R code of 

appendix J for the TBF datasets given in appendix D. 
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smallest forecasting errors. Nevertheless, the added value of this observation is null as it 

pertains the case of a white noise series; thus, it can be argued that the literature is confirmed. 

On the other hand, RGMDH has proven to be the best forecasting method for two out of the 

five individual machines examined. The latter constitutes an indicative confirmation that 

RGMDH is indeed able of effective short-term forecasting (one-step ahead for firm XYZ) 

especially under limited datasets. Ultimately, it can generally be argued that the predictive 

performance of ANNs is indeed superior to the parametric methods when there are limited 

historical data.  

By taking into consideration all the previous observations, it can be understood that the 

ARIMA and ARIMAX methods show high predictive performance, as compared to the rest of 

the time series methods, when the size of the failure dataset is relatively large (40 failures 

approximately). This proves that the aforementioned parametric methods hold high potential 

for accurate reliability forecasting. The same applies to the RGMDH method, as it performs 

the best when the size of the failure dataset is relatively small (30 failures approximately). On 

the contrary, the Optimized Theta, the exponential smoothing, and the FFNN time series 

methods have shown a low potential for accurate reliability forecasting. However, it should be 

stressed that the datasets examined are only five involving that the generalization power of the 

observations on the methods’ performance is limited. Thus, despite the fact that three of the 

methods have demonstrated low performance in the present study, they should be kept in the 

reliability forecasting framework as in the view of more failure data for more machines, they 

can possibly forecast satisfactorily. 

In the same line of comparing the results of the case study with the literature, a merit of the 

present study needs to be highlighted. More analytically, it is stressed that the results of the 

time series reliability forecasting are of higher predictive accuracy as compared to the results 

of most of the case studies of the related literature
32

 (see section 3.2). This is proven by 

comparing the scale-independent error measure of MAPE of the best time series forecast 

model of the machines examined above with the ones examined by other researchers that are 

mainly machines used in the construction sector (Dindarloo, 2015; Dindarloo & Siami-

Irdermoosa, 2015; Fan & Fan, 2015). The MAPE results are shown in table 26, where it can 

easily be observed that the forecasting accuracy of the best performing forecast model of each 
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 It is reminded that the results of forecasting in the case studies of the related literature were deemed as 

satisfactory. 
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radiation treatment machine is generally higher than the respective models of the state-of-the-

art literature.  

 

 

TBF(h) 

Machines from the Literature Radiation Treatment Equipment  

Dindarloo & 

Siami-

Irdermoosa 

(2015) 

Dindarloo 

(2015) 

Fan & Fan (2015) #..513 #..390 #..717 #..709 #..025 

MAPE
33

 

(%) 
44.6 113.7 

Univariate 

TBF 

TTR as 

additional 

regressor 

to TBF 22.7
34

 49 191 47 64 

100.53 105.35 

Table 26. The MAPE values of the time series forecasting of the TBF(h) for the machines examined in the 

present study and of machines examined in the state-of-the-art literature. 

More analytically, the MAPE results for four out of the five machines of the present case 

study are better (smaller values) than the respective results of Dindarloo (2015), and Fan and 

Fan (2015). At the same time, the MAPE metric in the case of machine #100137513 is almost 

twice less than the respective in the case of Dindarloo and Siami-Irdermoosa (2015). The 

aforementioned observations lead to the conclusion that time series reliability forecasting as 

executed in the present study is generally of higher performance than the state-of-the-art 

literature. Therefore, the forecasting results of the case study, which could possibly have been 

characterized as unattractive at an initial evaluation phase due to the fact that MAE ranges 

from 203 to 825 hours, are deemed as decent and satisfactory. 

Another one important point that needs to be stressed pertains the accuracy requirements that 

are set by the stakeholders involved in a project; these initial accuracy requirements determine 

critically the acceptance or the rejection of a forecasting deliverable. For example, in the case 

of firm XYZ, if the only accuracy requirement set by the problem owner was the strict one for 

a MAE less than 120h (first level of acceptable accuracy), then the answer to research 

question c would have been negative. In other words, the forecasting deliverable would have 

been judged as dissatisfactory and of unacceptable predictive performance due to the 

                                                           
33

 It is noted that the MAPE metric for the univariate reliability forecasting of TBF in the cases of Dindarloo 

(2015) and Fan & Fan (2015) is calculated by the author (for the respective datasets, see Appendix K). 
34

 It is noted that the minimum MAPE for machine #100137513 has been achieved by ARIMA with TTR, and 

not by ARIMA, which achieved the minimum MAE. 
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unrealistically high accuracy requirements. Therefore, a serious initial consideration of the 

requirements on the performance of a forecasting deliverable should be done in every project. 

Additionally, it should be kept in mind that a forecasting project can be done in the inverse 

order; namely with the initial examination of forecasting without any requirements, and the 

subsequent adjustment of the optimization process in the forecasting accuracy achieved
35

.   

Concering the aforementioned issue of the requirments, it is argued that the data 

characteristics of machine failures can be used for setting initially reasonable accuracy 

requirements on reliability forecasting. This can be proven by the following: in the failure 

data (see appendix K) and the descriptive statistics (see table 27) of the construction machines 

examined in the state-of-the-art literature (Dindarloo, 2015; Dindarloo & Siami-Irdermoosa, 

2015; Fan & Fan, 2015), it is shown that TBF takes mainly small values. Therefore, in this 

case, a MAPE, for instance, of 100% involves that the next failure will not take place in 20 

hours but in 40 hours instead. The latter is still of high value and usefulness for maintenance 

planning, spares provisioning, etc. Thus, a valuable forecasting approach can be characterized 

even by big MAPE values. In that view, the data characteristics (e.g. data variability 

expressed by measures such as the range and the standard deviation of TBF) should be 

examined at an initial project phase as they determine critically the potential usefulness, the 

requirements and the final evaluation of time series forecasting.  

Moreover, another one important aspect of the reliability forecasting executed is the 

uncertainty involved, which is deemed as high. More specifically, uncertainty as expressed by 

prediction intervals has been found to be, on average for all the radiation treatment machines 

examined, 1195 hours (~50 days) with a confidence level of 80%. Moreover, the high 

uncertainty is depicted even more explicitly by comparing the 95% prediction interval of the 

best-performing machine #100137513, which is 1553 hours, with the respective of Fan and 

Fan (2015) that is only 270 hours. Thus, there is an order of magnitude difference in the 

forecasting uncertainty involving a high degree of randomness in the failure behaviour of the 

machines examined and/or lack of specific knowledge/data concerning the machine failures of 

the case study.  

Generally speaking, uncertainty, defined “as being any departure from the unachievable ideal 

of complete determinism” (Walker et al., 2003, p.1), is always expected in model-based 
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 This is applicable especially in cases where forecasting is used as input to simulation-based decision making. 
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decision support. At the same time, the communication of uncertainty to the stakeholders 

involved each time is necessary for effective decision-making (Walker’s et al., 2003). 

Especially in the case of time series reliability forecasting for the radiation treatment 

machines, it is underlined that both of the two types of uncertainty that comprise the third 

dimension of Walker’s et al. (2003) conceptual framework (see figure 23), the nature of 

uncertainty, are present.  

 

Figure 23. The three dimensions of uncertainty (taken from Walker et al. (2003)). 

On the one hand, epistemic, or equivalently, epistemological uncertainty is present due to the 

lack of knowledge concerning certain aspects of the machines examined. These are: the 

machine utilization, the existence of specific components in Model X as well as the purchase 

date and the respective start of operations of a machine. Data on the aforementioned aspects 

of a machine have not been given to the problem owner. However, this knowledge 

imperfection, and simultaneously source of epistemic uncertainty, can be eliminated or 

reduced at least, with additional research. In this case particularly, it can be tackled by simply 

recording the times or the number of hours for which a machine is used, the detection of 

specific components that may affect the machine failure (e.g. the screen of the equipment that 

may be prone to failure), and the simple recording of the machine’s purchase date and the 

respective start of operations. These data can potentially contribute to a higher predictive 

performance (e.g. lower MAE and smaller prediction intervals) than the one of section 5.3; 

moreover, they can be incorporated in forecasting, for instance, as external regressors in the 

ARIMAX method.  

On the other hand, variability or ontological uncertainty is also present in reliability 

forecasting of the repairable systems studied in this thesis. That is firstly based on the fact that 

when a model is used for extrapolation, ontological uncertainty is generated due to the 

application of a forecast model to (future) conditions that are different from the (past) 

conditions under which the model is built (Walker et al., 2003). Secondly, ontological 

uncertainty is also present due to the fact that the radiation treatment equipment demonstrates 
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variability that seems to be inherent; namely, a degree of intrinsic randomness characterizes 

the failure behaviour of the machines examined. This can be proven by comparing key 

variability measures of the TBF variable (e.g. standard deviation (std), interquartile range 

(IQR)) of the radiation treatment machines and of machines examined by various researchers 

in the state-of-the-art literature. Finally, it is mentioned that in the case of ontological 

uncertainty, additional research cannot improve the final output (Walker et al., 2003). 

More analytically, the second source of ontological uncertainty pointed out above, the 

inherent randomness, can be justified by the comparative descriptive statistics of table 27 and 

the box-and-whisker plot of figure 24. At a glance, it can be seen that the radiation treatment 

equipment examined has substantially greater variability measures than the other machines 

examined in the literature. More concretely, in the case of radiation treatment equipment, the 

standard deviation and interquartile ranges of TBF are greater on an order of magnitude level 

than the respective of most of the other machines. Moreover, if the descriptive statistics of the 

radiation treatment machines are compared among themselves in particular, it can be 

concluded that they have indeed different failure patterns. The last observation can be related 

to the belief that indeed unknown factors (e.g. the machine utilization time) affect the 

respective failures. 

 

 

TBF (h) 

Machines from the Literature Radiation Treatment Equipment examined 

Dindarloo 

& Siami-

Irdermoosa 

(2015) 

Dindarloo 

(2015) 

Fan & Fan 

(2015) 

#..513 #..390 #..717 #..709 #..025 

N 55 40 30 45 30 32 46 32 

Mean 134 14.45 165.6 743.5 848 774 555.65 874.88 

Standard 

Deviation 

130.69 13.77 
68.11 

1225.67 817.93 802.66 731.92 799.21 

Min 0.32 1 1 24 48 24 24 48 

Max 577.76 59.9 304 8256 3048 3288 4392 3360 

Range 577.44 58.9 303 8232 3000 3264 4378 3312 

Q1 20.88 4.95 134.5 240 210 234 144 324.19 

Q3 191.35 19.1 216.5 864 1266 492 630 1212.12 

IQR 170.47 14.15 82 624 1056 258 486 887.92 

Median 10.21 10.35 162 504 600 234 336 648.28 

Skeweness 1.24 1.63 -0.353 5.31 1.35 1.74 3.54 1.73 

Kurtosis 1.52 2.34 0.168 32.03 1.24 2.63 16.03 3.02 

Table 27. Overall descriptive statistics for the TBF(h) data of the machines examined in the present study and of 

machines examined in the state-of-the-art literature. 
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Figure 24. A comparative box-and-whisker plot of the TBF(h) data of the machines examined in the present 

study and of machines examined in the state-of-the-art literature. 

 

Ultimately, it should be stressed that for deeper insights in reliability forecasting of radiation 

treatment equipment and the respective methods, more machines should be examined. This 

will be feasible since the start of 2017, where the annual failure data of 2016 will be given to 

the problem owner. It is underlined that if more-less the same machine failure rates are kept, a 

substantial number of machines will have more than 20 observations in their failure data (i.e. 

they will not be short time series) allowing the reliability examination of a larger population. 

In this way, the knowledge produced with the present study so far can be updated and 

augmented increasing simultaneously the study’s generalization power.  
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6. Conclusions, Recommendations and Reflection  
In the present chapter, the conclusions that answer the research questions are given along with 

the respective recommendations for the problem owner and the future research as well as with 

a critical reflection on the contribution of the thesis project.  

6.1. Conclusions  

Herein, the answers to the research questions are restated, and the research objective is 

addressed
36

.  

As regards the research question a: “How are the requirements of the desired forecasting 

framework, i.e. automation, acceptable accuracy, for multiple machines, defined and/or 

measured?”, its answer is briefly restated here (for a detailed analysis, see chapter 2). Firstly, 

automation stands for a forecasting system able of being continuously self-updated, namely 

that forecast models are updated every time that a machine fails with no human intervention. 

The aforementioned update of the forecast models is followed by the execution of a new 

forecast. Secondly, the forecasting framework should be large-scale dealing with multiple 

failure datasets referring to multiple machines allowing the forecasting deliverable to be used 

overall as input to the simulation-based workforce planning. Moreover, concerning the 

accuracy, two different levels of acceptable accuracy have been defined; these accuracy 

levels pertain the absolute deviation between the actual and forecasted inter-failure time of a 

machine. More specifically, these levels of acceptance, the first and the second, are expressed 

with a MAEmax equal to 120 and 2160 hours respectively. Finally, it is reminded that these 

values of MAE are related to the horizon of the pursued workforce planning of firm XYZ, 

which can potentially be either weekly (120h – meaning a working week) or quarterly 

(2160h).  

 

With respect to research question b: “What is the most promising forecasting approach for 

fulfilling the requirements of the desired forecasting framework?”, its answer is briefly 

restated here (for a detailed analysis, see chapter 3). Time series forecasting is the most 

promising approach for fulfilling the problem owner’s requirements as it outperforms the 

alternative approach of the generalized Non-Homogeneous Poisson Process (NHPP). More 

specifically, time series forecasting is empirically proven to have higher predictive accuracy 

                                                           
36

 It is noted that conclusions on the specific methods used as well as reflective observations on the time series 

forecasting applied and its comparison with the literature are given only in section 5.4, and are not restated here 

for keeping the report as concise as possible. 
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than the NHPP (Ho & Xie, 1998; Dindarloo & Siami-Irdermoosa, 2015; Fan, 2012). 

Furthermore, time series forecasting is able for effective automation and large-scale 

application (Wagner et al., 2011). 

With respect to research question c: “Does the most promising forecasting approach 

identified in b satisfy the requirements set by the problem owner?”, its answer is also briefly 

restated here (for a detailed analysis, see chapter 5). The most promising forecasting approach 

identified in b, namely the time series forecasting, does satisfy the second level of acceptable 

accuracy on the individual machine level. This is based on the fact that the best forecast 

model per machine has substantially smaller MAE values (order of magnitude) than the 2160 

hours of the quarterly horizon. At the same time, the strict first level of acceptable accuracy is 

not satisfied as not a reliability forecast model has MAE less than 120h.  It is also worthwhile 

to mention that the satisfaction of the accuracy requirement is also real for the case of 

machine #55421717 where white noise is detected. Therefore, for the second level of 

accuracy at least, there is not need for the use of HPP even for the machine that has failure 

time series of white noise.  

By taking into consideration all the analysis conducted, a reliability forecasting framework 

that detects and predicts the failure patterns of multiple machines with acceptable accuracy 

has been formed (for details, see the next paragraph). Therefore, it is concluded that the 

present study has succeeded in its objective that is given in the introduction (see chapter 1). 

The present deliverable can be highly valuable as failure patterns have been detected and 

predicted with an acceptable level (2
nd

) of accuracy on the individual machine level. This 

involves that there are not memoryless failure processes that would be modelled with the HPP 

as the problem owner normally does. Thus, the  reliability forecasting framework formed is 

provided to the problem owner allowing for the transformation of workforce planning of firm 

XYZ from an annual to a quarterly basis. The evaluation of the latter can be done by the 

problem owner with the execution of DES experimentations.  

The framework formed is structured in a specific way, while it is given on a high level 

visualization in figure 25. More analytically, it is a three-layer framework that has as a 

starting level a bunch of parametric and non-parametric methods which use machines’ failure 

and repair data for undertaking reliability forecasting on the machine group and the individual 

machine level. It is stressed that the framework built constitutes a holistic approach to the 
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prediction of machine failures as with its various, and at a degree, complementary methods 

can deal with all the basic types of failure data (e.g. autocorrelations, trend, non/linearity, 

white noise, etc. – for more details, see sub-section 4.1.4). It is clarified that this framework 

can also be extended in terms of methods and data used according to the specific forecasting 

needs each time. 

Figure 25. The Reliability Forecasting Framework produced within the present thesis project. 

6.2. Recommendations  

The recommendations for the problem owner and for future research are firstly summarized in 

the next table, while they are consecutively analyzed in detail in the rest of the section. These 

recommendations are based on the conclusions of the case study given in section 5.4 as well 

as on the high-level conclusions of section 6.1. It is also mentioned that some 

recommendations for the problem owner include clearly the possibility for future research. 

Recommendations
37

 The Problem Owner The Future Research 

DES experimentations with 

 a workforce planning 

horizon of 3 months 

x x 

Collection of new 

 relevant to failures data  

x  

Extension of the Reliability 

Forecasting Framework  

x x 

 

continued 

                                                           
37

 When a specific recommendation is applicable to the problem owner and/or to the future research, the symbol 

“X” is given to the respective cell. 
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Recommendations The Problem Owner The Future Research 

Application of the Reliability 

Forecasting Framework after 

 the update of the failure data 

x x 

Use of data variability 

as a stakeholder  

management tool 

x  

Table 28. The summarized recommendations for the problem owner and the future research. 

A first recommendation to the problem owner is the execution of DES experimentations with 

the use of a planning horizon that equals the acceptable level of accuracy achieved; in other 

words, with the use of a planning horizon of 3 months (second level of acceptable accuracy). 

Through these experimentations, the contribution of the reliability forecasting framework 

produced to the simulation-based workforce planning can be evaluated. The evaluation can be 

done in terms of idle hours of the engineers of firm XYZ that are in charge of corrective 

maintenance. If the evaluation is positive, then the workforce planning can become quarterly 

allowing firm XYZ to achieve cost savings. Obviously, the aforementioned suggestion 

constitutes at the same time a recommendation for future research. 

Secondly, it is strongly recommended to the problem owner to ask from its client, namely the 

manufacturing firm XYZ, new information concerning the failures of machines. Engineers 

that are in charge of repairing the various machines of hospitals can provide additional 

insights on the possible determinants of a machine failure. More specifically, the expansion of 

the available machine data by the inclusion of the machine utilization at each hospital is 

suggested. This can be done by recording the times or the time for which a machine is used, 

whilst it is believed to be of critical significance to reliability forecasting. Moreover, it is 

suggested to the problem owner to ask from firm XYZ the collection of fine-grained 

ontological data that can be, for example, related to specific components of a machine (e.g. 

screens prone to failures), or even of data concerning the purchase date of a machine and the 

respective start of operations. It is assumed that the inclusion of these data can increase the 

accuracy and decrease the respective uncertainty of reliability forecasting.  

Thirdly, a recommendation to the problem owner that is also a suggestion for future research 

is the extension of the reliability forecasting framework; this can take place in multiple ways. 

Firstly, if the previously mentioned data are indeed collected by firm XYZ, then the produced 

framework can be extended with the inclusion of new external covariates to the failure data. 
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For example, the machine utilization data or the presence of special components in a machine 

can be incorporated in ARIMAX models as external covariates. Additionally, the use of the 

aforementioned external regressors in a non-parametric method can be of high research 

interest. It is known that the ARIMAX method is not the only solution for using external 

covariates in time series forecasting. More concretely, the use of a specific neural network 

type that can include additional covariates and capture non-linear and complex processes is 

recommended. This is the already known architecture of FFNN (Feed-Forward Neural 

Network with one hidden layer), which can be operationalized in R with the function 

“avNNet” of the “caret” package (Kuhn et al., 2016). Ultimately, the execution of this 

recommendation will shed light on the predictive significance of the new data as well as on 

the performance of ANNs that include additional regressors. 

Another one possibility for the extension of the forecasting framework produced is the 

hybridization of parametric and non-parametric methods. As it is mentioned in chapter 4, the 

hybridization of forecasting (combination of different methods) serves the risk mitigation of 

using an inappropriate model that can potentially result in a more accurate forecasting than 

the individual methods (Hibon & Evgeniou, 2005; Khashei & Bijari, 2010; Zhang, 2003). 

Furthermore, it is restated here that the combination of methods with different underlying 

logic is advised towards the achievement of the highest possible predictive performance 

(Khashei, Bijari & Ardali, 2009). Therefore, the problem owner should consider the possible 

contribution of the hybridization technique in any of the projects undertaken. Finally, it is 

stressed that hybrid forecasting can be effective for an automated forecasting framework 

where the human intervention is limited, and the risk for large forecasting errors should be 

managed automatically.  

Moreover, another one suggestion that belongs to the aforementioned generic context of 

recommendations, namely the extension of the reliability forecasting framework, is given. 

This deals with the examination of the possibility of forecasting through time series 

clustering, while it can be initiated by either the problem owner or by the future researcher. 

This approach can cluster every failure time series to a specific machine failure group with the 

use of a suitable clustering algorithm according to an appropriate similarity (proximity) 

measure. Special attention should be paid on the choice of the previously mentioned 

clustering algorithm and similarity measure as in the case of the reliability forecasting of 

radiation treatment equipment, the length of the failure time series is variable. Thus, global 
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characteristic measures (e.g. serial correlation, skewness, kurtosis) and the Dynamic Time 

Warping (DTW) distance should be considered as similarity measures (Iglesias & Kastner, 

2013; Wang, Smith & Hyndman, 2006). 

Nevertheless, even in the case that additional data relevant to failures cannot be collected, 

further studies based on the present thesis project can be done. These studies can result in the 

increase of the comparative insights in the framework’s forecasting methods as well as in the 

expansion of the domain knowledge in reliability forecasting of radiation treatment machines. 

More specifically, a recommendation for both the problem owner and future research is the 

utilization and application of the reliability forecasting framework produced when the new 

failure data of 2016 become available
38

. In the view of more data, more individual machines 

will have more than 20 observations in their TBF time series meaning that they will not be 

short time series. Thus, the research breadth will expand and the study’s generalization power 

will increase tackling one of its limitations, namely the five failure datasets used on the 

individual machine level. At the same time, the application of the forecasting framework in 

that case can increase substantially the insights in its predictive performance and in the failure 

behavior of the radiation treatment equipment. Eventually, the latter serves also for an 

extended re-evaluation of the forecasting framework produced. 

Furthermore, the use of the data variability as a stakeholder management tool is recommended 

to the problem owner for its forecasting projects and deliverables. A basic analysis of 

variability measures of the data can give an indication of the achievable level of accuracy and 

an idea of the respective forecasting uncertainty. This is based on the fact that the higher the 

variability, the more difficult for high accuracy to be achieved; in the same line, the higher the 

variability, the higher the forecasting uncertainty. Thus, the variability of the data should be 

communicated to the stakeholders involved. This should be done predominantly at the initial 

phase of a project serving as a management tool for the stakeholders’ requirements and 

expectations on the forecasting deliverable. The latter is especially applicable to organizations 

where the knowledge in forecasting is limited, and there are expectations for high, or 

sometimes, unrealistically high accuracy.  

Ultimately, concerning the technical part of a forecasting project, some important suggestions 

to the future researcher are given. Firstly, the use of the time series cross-validation method 
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 It is reminded that the failure data become available to the problem owner in the start of every year. 
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for the evaluation of the predictive performance of a forecast model is strongly recommended. 

It is reminded that this method leads to a very efficient use of the available data (Hyndman & 

Athanasopoulos, 2013). Additionally, it is stressed that a great amount of attention should be 

paid on the potential existence of outliers in the training set as they can result in an 

inappropriately trained forecast model and subsequently to unacceptable forecast errors. 

6.3. Reflection on the Thesis Project and its Contribution 

Ultimately, a reflection on the thesis project itself, its special elements and value, is done. The 

present thesis project has contributed to the literature and science as well as to the problem 

owner. It is noted that the contribution to the problem owner can also be regarded as 

contribution to the big manufacturing firm XYZ, and on extension to the society (see the 

social relevance of the topic in section 1.3). The study’s overall contribution is summarized in 

the following table, while it is presented analytically in the rest of the section. 

Contribution
39

 The Problem Owner The Literature 

Holistic Reliability  

Forecasting Framework 

x x 

Potential for Cost Savings  

of Firm XYZ 

x  

Analytical Forecasting Process  x  

Comparative Insights  

in Forecasting Methods  

 x 

Domain Knowledge in 

Reliability Forecasting of 

Radiation Treatment 

Equipment 

x x 

Identification of Data 

Variability as a  

Stakeholder Management Tool 

x x 

Table 29. The summarized contribution of the present thesis project to the problem owner and the literature. 

As already explained, the execution of the present project resulted in the formation of a 

holistic reliability forecasting framework that is visualized on the high level in figure 25. With 

the produced reliability forecasting framework, the examination and the successive 

forecasting of any potential failure behavior of a machine group or of an individual machine 

                                                           
39

 When a specific contribution is done for the problem owner and/or for the literature, the symbol “X” is given 

to the respective cell. 
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can successfully be completed. This is based on the fact that the framework consists of 

parametric and non-parametric methods that have, at a degree, complementary predictive 

capabilities allowing it to deal with all the basic failure data structures. More analytically, 

with the five univariate methods used (ARIMA, Exponential Smoothing, Optimized Theta 

Method, FFNN, RGMDH) in the study, autocorrelations, seasonality and cyclicity, trend, 

linearity and non-linearity of simple and complex failure data structures, even of limited size, 

can effectively be modeled. Within this framework, the forecasting potential is boosted with 

the inclusion of external data (e.g. repair data) through the ARIMAX method. Moreover, it 

can deal with outliers, and with the lack of failure patterns as it can identify white noise series 

with the respective “eyeball” and statistical tests (i.e. the ADF test).  

The previously described reliability forecasting framework is of added value to the current 

state of research and the literature as well as to the problem owner. It is stressed that a holistic 

reliability forecasting framework has not been presented in the literature. More analytically, it 

is mentioned that the vast majority, if not all, of the journal papers in reliability forecasting to 

which the present study refers to, focuses on a benchmarking of a limited number of 

forecasting methods (see Dindarloo and Siami-Irdermoosa (2015), Ho, Xie and Goh (2002), 

Ho and Xie (1998), Xu et al. (2003), Fan and Fan (2015), etc.).  

With respect to the problem owner, the added value is two-fold; firstly, in the specific case of 

firm XYZ, the produced reliability forecasting framework has the potential to lead to the 

increase of workforce planning efficiency (measured with the number of idle hours per 

engineer in charge of corrective maintenance) and the respective cost savings for firm XYZ. 

For evaluating this potential, DES experimentations are recommended (see recommendations 

in 6.2) with the use of the quarterly planning horizon that equals the second level of 

acceptable accuracy achieved. If the evaluation is positive, the current yearly intra-

organizational decision-making on human resources management of firm XYZ can shorten its 

horizon on a quarterly basis. Simultaneously, the firm can finally experience cost savings that 

are related to a chain of positive impacts from the quality of service and employees’ morale to 

the increased consumers’ utility (see section 1.3 of social relevance). 

Secondly, the problem owner can use the given reliability forecasting framework in any case 

where the prediction of failures is needed regardless of firm XYZ. This statement is justified 

by the previously mentioned fact that the framework is holistic and covers any potential 
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failure data structure, while additionally, it is flexible to be extended and adjusted to the given 

circumstances at a time. As it is already presented (see the previous section of 

recommendations), the framework can be extended by including, for example, a new type of 

data as external covariates in ARIMAX models, or a new type of ANNs like the Recurrent 

Neural Network (RNN) used by Ho, Xie and Goh (2002), or even a hybrid method based on a 

parametric and a non-parametric one. The options for the extension of the framework are 

multiple, and remarkable additions can be done if it is believed that they can contribute 

significantly to its predictive performance.  

Furthermore, the present study has contributed to the problem owner with an analytical 

forecasting process (mainly described in chapter 4) that supports the reliability forecasting 

framework. This process, which is based on the state-of-the-art literature, can be characterized 

as general and complete since it deals with all the possible aspects of the time series 

forecasting approach (e.g. data partitioning, validation, accuracy measures) that are generally 

applicable in any time series forecasting project. In this manner, the problem owner has 

gained all the necessary background to conduct time series forecasting in general, even out of 

the particular context of reliability forecasting.  

More concretely, the aforementioned forecasting process can be used, for instance, for another 

project undertaken by the problem owner where the forecasting of the regional sales of 

parcels for a postal services firm is required. The forecasting deliverable in that case can be 

used as input to the simulation-based inventory management and workforce planning. Finally, 

it should not be forgotten that the importance of knowledge in predictive analytics, which is 

part of advanced analytics, is high. More specifically, according to Gartner (2014), a leading 

provider of technical research and advice for business, advanced analytics was the fourth most 

important strategic technology for 2015 at least. Therefore, the knowledge generated over the 

process of time series forecasting can boost the company’s competitive advantage in the area 

of business consulting. 

Moreover, it is underlined that despite the limited number of the datasets examined, the 

present study has contributed with knowledge in the forecasting performance of various time 

series methods. Firstly, it has confirmed that ANNs have higher predictive performance than 

parametric and linear methods in limited historical data situations. Secondly, it has 

demonstrated that ARIMA(X) methods require large data (e.g. 40 observations 
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approximately) for achieving high accuracy. Furthermore, it has proven that there is not a 

single universal best-performing forecasting method even in the limited “universe” of 

radiation treatment equipment of the same model used in hospitals of a specific country. This 

means that a bunch of different methods is necessary in order the different machine failure 

behaviors to be modeled with the highest possible accuracy. It is restated that the latter is done 

under the multi-method reliability forecasting framework produced, and it is regarded as one 

of its strong points.  

Additionally, within this thesis project, it is the first time where specific time series methods 

are used and benchmarked in the context of reliability forecasting. These methods are the 

Optimized Theta Method and the RGMDH that have been compared in terms of predictive 

performance with popular methods (e.g. ARIMA). The latter has generated insights into their 

applicability and performance in the specific context of machine failures prediction. More 

analytically, the Optimized Theta Method, whose original base of Theta Method has 

performed the highest in the largest up-to-date forecasting competition of M3, has not 

performed the best for any of the machines and under any experimentation conditions; 

moreover, it overall forecasting accuracy is deemed as low. On the other hand, RGMDH has 

proven to be the best forecasting method for two out of the five individual machines 

examined. The latter constitutes an indicative confirmation that RGMDH is indeed able of 

effective short-term forecasting especially in datasets of limited size.  

Furthermore, there is a clear contribution of the thesis project to the increase of the domain 

knowledge of reliability forecasting in health care equipment in general, and in radiation 

treatment machines in particular. It is stressed that no literature has been found in reliability 

forecasting in the aforementioned domain. With respect to the knowledge generated, it is 

stated that it mostly pertains that the failure behavior of radiation treatment machines, at least 

of the present study, is characterized by high variability and a high degree of inherent 

randomness. The aforesaid facts involve a high degree of uncertainty when it comes to 

forecasting their reliability.  

On extension of the aforementioned observation on variability, another one contribution of the 

present thesis is stressed. This is the identification of data variability, i.e. the variability of the 

failure behavior in the case study conducted, as a stakeholder management tool. The use of 

this tool can be valueable especially in the initial phase of a forecasting project where the 
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requirements on the deliverable are set by the stakeholders involved. Therefore, by using this 

tool, the problem owner will be able to manage potentially strict requirements and 

unrealistically high expectations over the forecasting accuracy of a future deliverable. Finally, 

it is mentioned that the aforesaid tool can be applicable in any forecasting project undertaken 

by the company regardless of the machine failures prediction of firm XYZ.  

Ultimately, the present thesis project that is part of the M.Sc. Engineering and Policy Analysis 

(EPA) curriculum of the faculty of Technology, Policy and Management of TU Delft has also 

elements of added value for the academic institution. This is based on the fact that a specific 

knowledge area of advanced analytics, the predictive analytics, which is not traditionally 

covered by the EPA programme, has been explored within the present thesis. More precisely, 

it is clarified that the EPA programme covers topics dealing with model-based decision 

making in general, and simulation in particular, but the specific area of predictive analytics is 

not covered within the core programme. Finally, it should be stressed that within the present 

project, shedding light on the interface of two aforementioned methods of advanced analytics, 

the predictive analytics and simulation, has been initiated. The completion of the latter is 

expected from the future research, where the first type of analytics will be given as input to 

the second one. 
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Appendix A: Interview Protocol  
The short interview between the author and the company’s manager Michele Fumarola took 

place on March 26, 2016. The focus of the interview was on the specification of the 

requirements for the final forecasting deliverable. The questions made to the interviewee 

were: 

 

1. Could you restate the requirements for the final forecasting deliverable that were given 

in the initial description of the research problem?  

2. Are all these requirements of equal importance? If not, how do you rank them? 

3. How far ahead do you need to forecast (size of the forecast horizon)?  

4. How do you define and measure the requirement of forecasting accuracy? 

5. How do you define and/or measure the requirement of forecasting automation?  

6. How do you define and/or measure the requirement of large-scale forecasting for 

multiple machines?  

7. Are there any secondary requirements for the final forecasting deliverable, namely 

requirements that it would be desired but not necessary to be fulfilled? If yes, which 

are these secondary requirements, and how do you define and/or measure them?     
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Appendix B: Analytical Equations of Exponential Smoothing methods  
 

Table 30. Formulae for recursive calculations and point forecasts of all the exponential smoothing methods 

(taken from: Hyndman & Athanasopoulos (2013)).
40

  

 

 

 

 

                                                           
40

 ℓt  stands for the series level, bt stands for the slope, and st stands for the seasonal component of the series at 

time t, m stands for the number of seasons in a year, whereas α, β, γ and ϕ are smoothing parameters. 



 

 

Accenture the Netherlands 

 

109 Reliability Forecasting for Simulation-based Workforce Planning 

 

 

 Table 31. State space equations all the models of the ETS framework (taken from: Hyndman & Athanasopoulos 

(2013)). 
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Appendix C: Analysis of the pr3_Model X Machine Group  
The second machine group examined was pr3_Model X having the following characteristics: 

 Several individual machines of Model X with service Priority 3 

 The Failure Data of 2015 is given below: 

No. Of 

Failure 

TBF (h) Cumulative  

TBF (h) 

1 313,46 313,46 

2 70,57 384,03 

3 534,8 918,83 

4 70,99 989,82 

5 1,15 990,97 

6 92,71 1083,68 

7 72,58 1156,26 

8 1,22 1157,48 

9 47,43 1204,91 

10 24,22 1229,13 

11 20,6 1249,73 

12 2,63 1252,36 

13 162,19 1414,55 

14 124,08 1538,63 

15 51,18 1589,81 

16 68,54 1658,35 

17 49,38 1707,73 

18 46,67 1754,4 

19 94,95 1849,35 

20 6,54 1855,89 

21 17,24 1873,13 

22 194,84 2067,97 

23 98,88 2166,85 

24 162,32 2329,17 

25 54,52 2383,69 

26 23,44 2407,13 

27 21,46 2428,59 

28 122,3 2550,89 

29 136,12 2687,01 

30 221,7 2908,71 

31 143,38 3052,09 

32 42,23 3094,32 

33 77,71 3172,03 

34 1,53 3173,56 

35 44,25 3217,81 

36 0,11 3217,92 

37 1,86 3219,78 

38 24,05 3243,83 

39 97,44 3341,27 

40 46,98 3388,25 

41 19,6 3407,85 

42 2,42 3410,27 

43 0,41 3410,68 

44 171,49 3582,17 

45 94,23 3676,4 

46 0,06 3676,46 

47 0,92 3677,38 

48 92,92 3770,3 

49 264,05 4034,35 

50 20,93 4055,28 

51 52,97 4108,25 

52 286,67 4394,92 

53 116,11 4511,03 

54 267,96 4778,99 

55 72,9 4851,89 

56 22,88 4874,77 

57 3,16 4877,93 

58 68,62 4946,55 

59 3,1 4949,65 

60 68 5017,65 

61 47,51 5065,16 

62 125,18 5190,34 

63 20,91 5211,25 

64 213,09 5424,34 

65 97,37 5521,71 

66 24,65 5546,36 

67 51,95 5598,31 

68 92,55 5690,86 

69 0,3 5691,16 

70 22,48 5713,64 

71 26,92 5740,56 

72 140,34 5880,9 

73 27,33 5908,23 

74 18,33 5926,56 

75 287,88 6214,44 

76 6,28 6220,72 

77 0,68 6221,4 

78 187,27 6408,67 

79 29,9 6438,57 

80 88,27 6526,84 

81 4,85 6531,69 

82 20,3 6551,99 

83 3,55 6555,54 

84 240,07 6795,61 

85 69,38 6864,99 

86 76,52 6941,51 

87 167,97 7109,48 

88 19,2 7128,68 

89 4,5 7133,18 

90 239,55 7372,73 

91 93,32 7466,05 

92 97,2 7563,25 

93 44,22 7607,47 

94 22,82 7630,29 

95 268,62 7898,91 

96 168,03 8066,94 

97 171,57 8238,51 

98 16,65 8255,16 

99 29,38 8284,54 

100 0,13 8284,67 

101 23,62 8308,29 

102 114,5 8422,79 

103 2,67 8425,46 

104 3,52 8428,98 

105 22,57 8451,55 

106 19,57 8471,12 

107 0,03 8471,15 
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No. Of 

Failure 

TBF (h) Cumulative  

TBF (h) 

108 103,88 8575,03 

109 42,87 8617,9 

110 293,82 8911,72 

111 213,88 9125,6 

112 185,52 9311,12 

113 242,18 9553,3 

114 47,85 9601,15 

115 26,58 9627,73 

116 0,08 9627,81 

117 22,43 9650,24 

118 99,73 9749,97 

119 138,58 9888,55 

120 215,2 10103,75 

121 6,03 10109,78 

122 214,33 10324,11 

123 0,23 10324,34 

124 240,2 10564,54 

125 23,2 10587,74 

126 43,73 10631,47 

127 4,8 10636,27 

128 146,68 10782,95 

129 22,99 10805,94 

130 22,66 10828,6 

131 141,12 10969,72 

132 3,13 10972,85 

133 120,1 11092,95 

134 49,18 11142,13 

135 93,05 11235,18 

136 26,58 11261,76 

137 68,42 11330,18 

138 116,92 11447,1 

139 25,93 11473,03 

140 285,83 11758,86 

141 168,55 11927,41 

142 221,1 12148,51 

143 115,13 12263,64 

144 145,97 12409,61 

145 213,28 12622,89 

146 360,23 12983,12 

147 169,9 13153,02 

148 292,12 13445,14 

149 64,4 13509,54 

150 151,8 13661,34 

151 118,52 13779,86 

152 354,45 14134,31 

153 27,28 14161,59 

154 95,63 14257,22 

155 0,02 14257,24 

156 506,85 14764,09 

157 49,75 14813,84 

158 186,17 15000,01 

159 118,3 15118,31 

160 174,29 15292,6 

161 68,45 15361,05 

162 73,82 15434,87 

163 219,18 15654,05 

164 111,53 15765,58 

165 52,4 15817,98 

166 46,07 15864,05 

167 124,03 15988,08 

168 25,17 16013,25 

169 95,73 16108,98 

170 20,72 16129,7 

171 308,55 16438,25 

172 54,57 16492,82 

173 42,78 16535,6 

174 3,6 16539,2 

175 1,25 16540,45 

176 94 16634,45 

177 23,75 16658,2 

178 23,2 16681,4 

179 0,05 16681,45 

180 23,47 16704,92 

181 292,2 16997,12 

182 45,17 17042,29 

183 2,07 17044,36 

184 69,52 17113,88 

185 2,4 17116,28 

186 72,33 17188,61 

187 314,57 17503,18 

188 112,3 17615,48 

189 4,53 17620,01 

190 2 17622,01 

191 191,4 17813,41 

192 22,4 17835,81 

193 458,83 18294,64 

194 236,15 18530,79 

195 117,85 18648,64 

196 23,65 18672,29 

197 27,38 18699,67 

198 118,3 18817,97 

199 24,65 18842,62 

200 123,05 18965,67 

201 0,32 18965,99 

202 43,58 19009,57 

203 122,6 19132,17 

204 90,98 19223,15 

205 7,22 19230,37 

206 88,12 19318,49 

207 78,83 19397,32 

208 68,68 19466 

209 21,88 19487,88 

210 71,85 19559,73 

211 167,12 19726,85 

212 2,07 19728,92 

213 73,53 19802,45 

214 48,82 19851,27 

215 48,83 19900,1 

216 141,35 20041,45 

217 309,88 20351,33 

218 26,52 20377,85 

219 119,56 20497,41 

220 22,62 20520,03 

221 195,03 20715,06 

222 117,22 20832,28 

223 28,97 20861,25 

224 47,92 20909,17 

225 233,28 21142,45 

226 3,93 21146,38 

227 21,77 21168,15 

228 26,38 21194,53 

229 384,65 21579,18 

230 93,05 21672,23 

231 313,63 21985,86 

232 44,32 22030,18 

233 149,85 22180,03 

234 0,52 22180,55 

235 71,96 22252,51 

236 117,87 22370,38 
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No. Of 

Failure 

TBF (h) Cumulative  

TBF (h) 

237 2,93 22373,31 

238 0,92 22374,23 

239 136,02 22510,25 

240 0,12 22510,37 

241 1,57 22511,94 

242 24,21 22536,15 

243 293,07 22829,22 

244 188,68 23017,9 

245 44,22 23062,12 

246 98,92 23161,04 

247 4,95 23165,99 

248 92,5 23258,49 

249 94,37 23352,86 

250 44,95 23397,81 

251 1,75 23399,56 

252 118,93 23518,49 

253 47,18 23565,67 

254 126,6 23692,27 

255 70,52 23762,79 

256 93,23 23856,02 

257 25,68 23881,7 

258 117,45 23999,15 

259 101,75 24100,9 

260 65,63 24166,53 

261 169,7 24336,23 

262 96,73 24432,96 

263 71,77 24504,73 

264 4,25 24508,98 

265 45,83 24554,81 

266 25,23 24580,04 

267 141,8 24721,84 

268 118,47 24840,31 

269 22,37 24862,68 

270 175,05 25037,73 

271 42,02 25079,75 

272 123,23 25202,98 

273 26,12 25229,1 

274 22,78 25251,88 

275 116,65 25368,53 

276 29,38 25397,91 

277 118 25515,91 

278 0,35 25516,26 

279 25,82 25542,08 

280 166,2 25708,28 

281 46,85 25755,13 

282 2,82 25757,95 

283 91,67 25849,62 

284 45,07 25894,69 

285 27,92 25922,61 

286 23,47 25946,08 

287 3,55 25949,63 

288 93,45 26043,08 

289 25,37 26068,45 

290 119,98 26188,43 

291 2,53 26190,96 

292 42,58 26233,54 

293 121,73 26355,27 

294 46,7 26401,97 

295 22,09 26424,06 

296 2,73 26426,79 

297 24,23 26451,02 

298 2,22 26453,24 

299 1,1 26454,34 

300 68,73 26523,07 

301 3,95 26527,02 

302 19,53 26546,55 

303 47 26593,55 

Table 32. Failures with their respective TBF and Cumulative TBF of machine group pr3_ Model X. 

 

Figure 26.  The TBF(h) time series of machine group pr3_ Model X. 

Augmented Dickey-Fuller (ADF) test: p-value = 0.01 

The TBF time series is white noise; thus, failure patterns cannot be detected. 
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Appendix D: Failure and Repair Data of Individual Machines  
It is noted that within appendix D, the ADF test is given for each machine in order to check 

statistically if the TBF time series is white noise or not. 

Individual Machine #2 

 Machine ID # 50471390 

No. Of Failure TBF (h) (1-lag) TTR
41

 (1-lag) Spare Item 

1.  936 3 0 

2.  624 3 1 

3.  216 3.25 1 

4.  1296 25 1 

5.  528 4.25 0 

6.  192 4 1 

7.  408 0.75 0 

8.  1176 3.25 0 

9.  48 11.75 1 

10.  2856 3.5 0 

11.  336 3.75 1 

12.  3048 3.5 0 

13.  264 11.5 1 

14.  1392 2.50 0 

15.  840 1.00 0 

16.  984 2.75 0 

17.  1392 1.00 1 

18.  264 23 1 

19.  192 6 1 

20.  192 0.75 0 

21.  336 15.25 1 

22.  120 2.75 0 

23.  72 6 1 

24.  600 6 1 

25.  672 1.5 0 

26.  2208 4.75 1 

27.  48 13.25 1 

28.  600 0.25 0 

29.  1536 1.50 1 

30.  2064 29.25 0 

Table 33. The TBF(h) and TTR(h) time series, and the dummy variable Spare Items used of the individual 

machine #50471390 of Model X. 

 

ADF test: p-value = 0.73 

The TBF time series is not white noise; thus, failure patterns can be detected. 

 

                                                           
41

 It is noted that the TTR and the Spare_Item variables have 1-lag as regards the number of failure. For 

example, the first value of “TTR=3h” and “Spare_Item=0” refer to failure “0”, and are used as regressors for 

TBF1.  
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Individual Machine #3 

Machine ID # 55421717 

 

No. Of Failure TBF (h) (1-lag) TTR (h)
42

 (1-lag) Spare Item 

1.  1776 1.75 1 

2.  144 1.5 0 

3.  840 1.5 0 

4.  24 3.25 0 

5.  504 3.25 0 

6.  288 1 1 

7.  168 3 1 

8.  336 2 1 

9.  120 3.5 1 

10.  2592 6.5 1 

11.  480 3.75 0 

12.  816 10 1 

13.  408 1 0 

14.  3288 1.75 1 

15.  648 1.5 1 

16.  384 1 1 

17.  24 14.25 1 

18.  1320 14.5 1 

19.  1128 1 0 

20.  168 1.5 1 

21.  1608 7.5 1 

22.  456 2 1 

23.  24 1 0 

24.  312 3.25 1 

25.  1176 1 1 

26.  552 1.5 1 

27.  288 1 1 

28.  528 2.25 1 

29.  2664 0.5 0 

30.  216 1.75 0 

31.  648 3 0 

32.  840 5.5 0 

Table 34. The TBF(h) and TTR(h) time series, and the dummy variable Spare Items used of the individual 

machine #55421717of Model X. 

 

 

ADF test: p-value = 0.02 

The TBF time series is white noise; thus, failure patterns cannot be detected. 

 

 

 

 

 

 

                                                           
42

 It is reminded that the TTR and the Spare_Item variables have 1-lag as regards the number of failure. For 

example, the last value of “TTR=5.5h” and “Spare_Item=0” refer to failure “31”, and are used as regressors for 

TBF32. 
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Individual Machine #4  

Machine ID # 54920709  

 

No. Of Failure TBF (h) (1-lag) TTR (h) (1-lag) Spare Item 

1.  2184 5.75 0 

2.  216 10 1 

3.  168 6.25 1 

4.  624 18 1 

5.  936 2.00 1 

6.  408 8.75 0 

7.  336 8 1 

8.  72 4.75 1 

9.  24 5.25 0 

10.  624 1.50 1 

11.  144 2.00 0 

12.  1056 11 1 

13.  288 27 1 

14.  24 0.50 0 

15.  528 3.25 0 

16.  24 1.00 1 

17.  264 9.75 1 

18.  336 0.75 1 

19.  360 0.25 0 

20.  24 3.75 0 

21.  288 15 1 

22.  648 1.00 1 

23.  192 5.75 1 

24.  336 13 1 

25.  888 3.25 1 

26.  168 2.25 0 

27.  120 8 0 

28.  216 12.25 1 

29.  936 4.5 0 

30.  1752 1.75 0 

31.  96 3.00 0 

32.  864 1.00 1 

33.  312 0.75 0 

34.  576 0.75 0 

35.  1440 1.25 1 

36.  72 13 0 

37.  96 2.5 1 

38.  1032 2.75 0 

39.  480 5.5 1 

40.  360 0.75 0 

41.  552 1.00 0 

42.  4392 2.5 0 

43.  144 2.00 0 

44.  600 6 1 

45.  48 14.75 1 

46.  312 6.25 1 

Table 35. The TBF(h) and TTR(h) time series, and the dummy variable Spare Items used of the individual 

machine #54920709 Model X. 

ADF test: p-value = 0.56 

The TBF time series is not white noise; thus, failure patterns can be detected. 
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Individual Machine #5  

Machine ID #45423025 

 

No. Of Failure TBF (h) (1-lag) TTR (h) (1-lag) Spare Item 

1.  2160 2.50 0 

2.  672 1.00 1 

3.  336 3.25 1 

4.  816 2.00 0 

5.  1080 3.00 1 

6.  504 0.50 1 

7.  1152 3.50 1 

8.  360 1.25 1 

9.  264 2.50 1 

10.  648 1.50 1 

11.  432 1.00 1 

12.  816 7.50 1 

13.  120 4.00 1 

14.  192 3.50 1 

15.  1488 1.75 1 

16.  1008 2.50 0 

17.  1368 3.25 1 

18.  2976 0.75 0 

19.  3360 1.00 1 

20.  1272 3.75 1 

21.  120 0.50 1 

22.  456 4.00 1 

23.  744 5.00 0 

24.  312 0.25 0 

25.  528 5.25 0 

26.  96 1.50 0 

27.  48 1.50 1 

28.  1488 0.75 0 

29.  552 2.00 1 

Table 36. The TBF(h) and TTR(h) time series, and the dummy variable Spare Items used of the individual 

machine #45423025 of Model X. 

 

ADF test: p-value = 0.51 

The TBF time series is not white noise; thus, failure patterns can be detected. 
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Appendix E: Fitted Forecasting Models  
Parametric Methods Residual Diagnostics 

Test Result Conclusion 

Model ARIMA (0,1,0)  

The results for ARIMA are given separately 

in table 5. The overall conclusion is that the 

ARIMA model is acceptable from the 

residual diagnostics perspective. 

Lag Coefficient Standard Error 

Drift 259.1667 29.2357 

AICc 737.43 

Model ETS (A,A,N) Box-Ljung 

on residuals 
p-value = 

0.03 

Correlated 

Residuals 

Smoothing  

Parameters 

alpha=0.9703 

beta=0.0001 

Box-Ljung 

on squared 

residuals 

p-value = 

0.74 

Constant 

Variance 

Initial  

States 

l=56.87 

b=260.48 

Jarque Bera p-value = 

0.70 

Residuals’ 

Normality 

AICc 

820.32 

BDS p-values > 

0.05 

No non-

linearity left 

Mean 0.003403029 Zero Mean 

Overall Conclusion 

 
Non-acceptable forecasting model due to 

correlated residuals 

Model Optimised Theta Model Box-Ljung 

on 

residuals 

p-value = 

0.16 

Uncorrelated 

Residuals 

Seasonal 

decomposition 

No Box-Ljung 

on squared 

residuals 

p-value = 

0.79 

Constant 

Variance 

Optimisation 

method 

Nelder-Mead Shapiro-

Wilk 

With 97% of 

confidence, 

the 

unseasoned 

residuals do 

not follow the 

Normal 

distribution. 

The 

prediction 

intervals may 

not be 

adequate. 

No 

Residuals’ 

Normality 

Number of 

theta lines 

2 BDS p-value > 

0.05 

No non-

linearity left 

Weights for 

theta lines 

omega_1=1 

omega_2= 0 

Mean 8.01 No zero 

mean: Slight 

bias (8h) in 

the model 
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Parameters ell0 = -656.77 

alpha =  0.99 

theta = 667.66 

   

Overall Conclusion Problematic model due to the potentially 

inadequate prediction intervals.  

Artificial Neural Networks Residual Diagnostics 

Model 

 

NNAR (1,1) Box-Ljung 

on 

residuals 

p-value = 

0.75 

Uncorrelated 

Residuals 

Box-Ljung 

on squared 

residuals 

p-value = 

0.88 

Constant 

Variance 

Sigma^2 46593 Jarque 

Bera 

p-value = 

0.50 

Residuals’ 

Normality 

Mean 0 Zero Mean 

Overall Conclusion Acceptable forecasting model 

Model RGMDH Box-Ljung 

on 

residuals 

p-value = 

0.06 

Uncorrelated 

Residuals 

Input 4 Box-Ljung 

on squared 

residuals 

p-value = 

0.46 

Constant 

Variance 

Layer 3 Jarque 

Bera 

p-value = 

0.80 

Residuals’ 

Normality 

  Mean -5.8764e-08 Zero Mean 

Overall Conclusion Acceptable forecasting model 

Table 37. The forecast models for cumulative TBF(h) time series of machine group pr4_Model X with their 

respective characteristics and residual diagnostics. 
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Parametric Methods Residual Diagnostics 

Test Result Conclusion 

Model ARIMA (0,1,2) Box-Ljung 

on 

residuals 

p-value = 

0.0003 

Correlated 

Residuals 

Lag Coefficient Standard Error Box-Ljung 

on squared 

residuals 

p-value = 

0.005 

Not constant 

Variance 

MA(1) -1.4938 0.1654 Jarque 

Bera 

 

MA(2) 0.7562 0.1523 BDS 

AICc 606.55 Mean 

Overall Conclusion Non-acceptable forecasting model due to 

correlated residuals with not constant 

variance 

Model ETS (M,N,N) Box-Ljung 

on 

residuals 

p-value = 

0.70 

Uncorrelated 

Residuals 

Smoothing 

Parameters 

alpha = 0.4976 Box-Ljung 

on squared 

residuals 

p-value = 

0.99 

Constant 

Variance 

Initial 

States 

l = 3828.3369 

sigma = 1.0428 

Jarque 

Bera 

p-value = 

0.47 

Residuals’ 

Normality 

AICc 595.3668 BDS p-values > 

0.05 

No non-

linearity left 

Mean 0.09 Zero Mean 

Overall Conclusion 

 
Acceptable forecasting model 

Model Optimised Theta Model  

Seasonal 

decomposition 

No 

Optimisation 

method 

Nelder-Mead 

Number of 

theta lines 

2 

Weights for 

theta lines 

omega_1=0.99 

omega_2= 0.01 

Parameters ell0 = 304.36 

alpha =  0.10 

theta = 114.92 

Overall Conclusion Non-acceptable forecasting model due to 

erroneous point forecasts 
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Artificial Neural Networks Residual Diagnostics 

Model 

 

NNAR (1,1) Box-Ljung 

on 

residuals 

p-value = 

0.492 

Uncorrelated 

Residuals 

Box-Ljung 

on squared 

residuals 

p-value = 

0.94 

Constant 

Variance 

Sigma^2 46484 Jarque 

Bera 

p-value = 

0.55 

Residuals’ 

Normality 

Mean 0 Zero Mean 

Overall Conclusion Acceptable forecasting model 

Model RGMDH Box-Ljung 

on 

residuals 

p-value = 

0.4989 

Uncorrelated 

Residuals 

Input 4 Box-Ljung 

on squared 

residuals 

p-value = 

0.827 

Constant 

Variance 

Layer 3 Jarque 

Bera 

p-value = 

0.60 

Residuals’ 

Normality 

Mean 6.6e-09 

 

Zero Mean 

Overall Conclusion Acceptable forecasting model 

Table 38. The various forecast models (with their respective residual diagnostics stastistical tests) fitted to the 

TBF(h) time series of the individual machine #100137513. 
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Parametric Methods Residual Diagnostics 

Test Result Conclusion 

Model ARIMA (0,0,0)  with non-zero 

mean 

Box-Ljung 

on 

residuals 

p-value = 

0.9107 

 

Uncorrelated 

Residuals 

Lag Coefficient Standard Error Box-Ljung 

on squared 

residuals 

p-value = 

0.9974 

 

Constant 

Variance 

Intercept 661.9355 87.4036 Jarque 

Bera 

p-value = 

0.8487 

Residuals’ 

Normality 

BDS p-values > 

0.05 

No non-

linearity left 

AICc 476.03 Mean 1.6e-10 Zero Mean 

Overall Conclusion Acceptable forecasting model 

Model ETS (M,N,N) Box-Ljung 

on 

residuals 

p-value = 

0.79 

 

Uncorrelated 

Residuals 

Smoothing 

Parameters 

alpha = 1e-04 

 

Box-Ljung 

on squared 

residuals 

p-value = 

0.9855 

Constant 

Variance 

Initial 

States 

l = 661.7835 

sigma = 0.7353 

Jarque 

Bera 

p-value = 

0.8487 

Residuals’ 

Normality 

AICc 494.51 BDS p-values < 

0.05 

Non-linearity 

left 

Mean 8.6e-05 

 

Zero Mean 

Overall Conclusion 

 
Acceptable forecasting model 

Model Optimised Theta Model  

Seasonal 

decomposition 

No Box-Ljung 

on residuals 

p-value = 

0.8253 

 

Uncorrelated 

Residuals 

Optimisation 

method 

Nelder-Mead Box-Ljung 

on squared 

residuals 

p-value = 

0.9408 

Constant 

Variance 

Number of 

theta lines 

2 Saphiro-

Wilk 

With 97% of 

confidence, 

the 

unseasoned 

residuals do 

not follow 

the Normal 

distribution. 

The 

prediction 

intervals 

may not be 

adequate. 

No 

Residuals’ 

Normality 
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Weights for 

theta lines 

omega_1=0.60 

omega_2= 0.40 

BDS p-values < 

0.05 

Non-linearity 

left 

Parameters ell0 = 369.52 

alpha =  0.10 

theta = 2.53 

Mean -24.0408 Non-zero 

Mean 

Overall Conclusion Acceptable forecasting model only after 

correcting its bias 

Artificial Neural Networks Residual Diagnostics 

Model 

 

NNAR (1,1) Box-Ljung 

on 

residuals 

p-value = 

0.939 

Uncorrelated 

Residuals 

Box-Ljung 

on squared 

residuals 

p-value = 

0.997 

Constant 

Variance 

Sigma^2 233473 Jarque 

Bera 

p-value = 

0.711 

Residuals’ 

Normality 

Mean 0 Zero Mean 

Overall Conclusion Acceptable forecasting model 

Model RGMDH Box-Ljung 

on 

residuals 

p-value = 

0.8523 

 

Uncorrelated 

Residuals 

Input 4 Box-Ljung 

on squared 

residuals 

p-value = 

0.8703 

 

Constant 

Variance 

Layer 3 Jarque 

Bera 

p-value = 

0.8031 

 

Residuals’ 

Normality 

Mean 21.37889 Non-zero 

Mean 

Overall Conclusion Acceptable forecasting model only after 

correcting its bias 
Table 39. The various forecast models (with their respective residual diagnostics stastistical tests) fitted to the 

adjusted TBF(h) time series of the individual machine #100137513. 
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ARIMAX Methods for the full dataset Residual Diagnostics 

Test Result Conclusion 

Model ARIMAX with Spare Items as 

external regressor: 

ARIMA (0,1,1) 

Box-

Ljung on 

residuals 

p-value = 

0.393 

 

Uncorrelated 

Residuals 

Lag Coefficient Standard Error Box-

Ljung on 

squared 

residuals 

p-value = 

0.995 

 

Constant 

Variance 

MA(1) -0.6299 0.1957 Jarque 

Bera 

p-value = 

0.73 

Residuals’ 

Normality 
 

Spare Items 

Regressor 

 

637.4927 

 

396.7057 

 
Mean -453 Non-zero 

Mean 

AICc 591.09 Physical 

Meaning 

logical 

Overall Conclusion Acceptable forecasting model after 

correcting its bias 

Model ARIMAX with TTR as 

external regressor: 

ARIMA (0,1,0) 

Box-

Ljung on 

residuals 

p-value = 

0.434 

 

Uncorrelated 

Residuals 

Lag Coefficient Standard 

Error 

p-value = 

0.998 

 

p-value = 

0.9855 

Constant 

Variance 

TTR regressor 11.1529 18.1136 

 

Jarque 

Bera 

p-value = 

0.475 

Residuals’ 

Normality 

AICc 594.34 Mean -229 

 
Non-zero 

Mean 

Physical 

Meaning 

logical 

Overall Conclusion 

 
Acceptable forecasting model after 

correcting its bias 

Model ARIMAX with Spare Items 

and TTR as 

external regressors: 

ARIMA (0,1,1) 

Box-Ljung 

on 

residuals 

p-value = 

0.25 

 

Uncorrelated 

Residuals 

Lag Coefficient Standard 

Error 

Box-Ljung 

on squared 

residuals 

p-value = 

0.98 

Constant 

Variance 
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MA(1) 

 

-0.6374 

 

0.2018 Jarque Bera p-value = 

0.71 

Residuals’ 

Normality 

Spare Items 

regressor 

652.3847 412.7272 Mean -439 Non-zero 

Mean 

TTR regressor -2.9668 21.808 

AICc 593.63 Physical 

Meaning 

Non-logical due to the 

negative coefficient of the 

TTR 

Overall Conclusion Non-Acceptable forecasting model due 

to the lack of physical meaning 

Table 40. The various ARIMAX forecast models (with their respective residual diagnostics stastistical tests) 

fitted to the TBF(h) time series of the individual machine #100137513. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Accenture the Netherlands 

 

125 Reliability Forecasting for Simulation-based Workforce Planning 

ARIMAX Methods for the adjusted dataset Residual Diagnostics 

Test Result Conclusion 

Model ARIMAX with Spare Items as 

external regressor: 

ARIMA(0,0,0) with non-zero 

mean 

Box-

Ljung on 

residuals 

p-value = 

0.492 

 

Uncorrelated 

Residuals 

Lag Coefficient Standard Error p-value = 

0.983 

p-value = 

0.995 

 

Constant 

Variance 

Intercept 

 

654.3158 101.1776 Jarque 

Bera 

p-value = 

0.89 

Residuals’ 

Normality 

 

Spare Items 

Regressor 

 

-87.0431 167.0893 Mean 1.2128e-13 Zero Mean 

AICc 457.37 Physical 

Meaning 

Non-logical due to the 

negative coefficient of the 

Spare Items 

Overall Conclusion Non-Acceptable forecasting model due 

to the lack of physical meaning 

Model ARIMAX with TTR as 

external regressor: 

ARIMA(0,0,0) with non-zero 

mean 

Box-

Ljung on 

residuals 

p-value = 

0.415 

 

Uncorrelated 

Residuals 

Lag Coefficient Standard 

Error 

p-value = 

0.988 

 

p-value = 

0.9855 

Constant 

Variance 

Intercept 603.5496 87.9372 p-value = 

0.848 

p-value = 

0.475 

Residuals’ 

Normality 

TTR regressor 4.0758 7.6512 

AICc 457.36 Mean 3.80e-15 Zero Mean 

Physical 

Meaning 

logical 

Overall Conclusion 

 
Acceptable forecasting model 

Model ARIMAX with Spare Items 

and TTR as 

external regressors: 

Box-Ljung 

on 

residuals 

p-value = 

0.411 

 

Uncorrelated 

Residuals 
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ARIMA(0,0,0) with non-zero 

mean 

Lag Coefficient Standard 

Error 

p-value = 

0.964 

p-value = 

0.98 

Constant 

Variance 

Intercept 641.2513 101.9208 Jarque Bera p-value = 

0.847 

Residuals’ 

Normality 

Spare Items 

regressor 

-123.8064 173.2762 Mean 4.017e-13 

 

Zero Mean 

TTR regressor 5.7393 7.9362 

AICc 459.5 Physical 

Meaning 

Non-logical due to the 

negative coefficient of the 

Spare Items 

Overall Conclusion Non-Acceptable forecasting model due 

to the lack of physical meaning 

Table 41. The various ARIMAX forecast models (with their respective residual diagnostics stastistical tests) 

fitted to the adjusted TBF time series of the individual machine #100137513. 
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Appendix F: Time Series Charts of the Fitted Forecasting Models  

 

 

Figure 27. The ETS, Optimized Theta, FFNN, and RGMDH forecast models fitted to the cumulative TBF(h) time series of machine group pr4_Model.
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Appendix G: Residual Diagnostics of the Fitted Forecasting Models  
 

 

Figure 28. The residual diagnostics graphs of ARIMA forecast model fitted to the TBF(h) time series of the 

individual machine #100137513. 

 

 

Figure 29. The residual diagnostics graphs of ETS forecast model fitted to the TBF(h) time series of the 

individual machine #100137513. 
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Figure 30. The residual diagnostics graphs of RGMDH forecast model fitted to the TBF(h) time series of the 

individual machine #100137513. 

 

 
Figure 31. The residual diagnostics graphs of FFNN  forecast model fitted to the TBF(h) time series of the 

individual machine #100137513. 
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Figure 32. The residual diagnostics graphs of the ARIMA forecast model fitted to the adjusted TBF(h) time 

series of the individual machine #100137513. 

 

 

Figure 33. The residual diagnostics graphs of the ETS forecast model fitted to the adjusted TBF(h) time series of 

the individual machine #100137513. 
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Figure 34. The residual diagnostics graphs of the Optimized Theta forecast model fitted to the adjusted TBF(h) 

time series of the individual machine #100137513. 

 

 
Figure 35. The residual diagnostics graphs of the FFNN forecast models fitted to the adjusted TBF(h) time 

series of the individual machine #100137513. 
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Appendix H: Overall Forecast Results of the Individual Machines  
 

 

Figure 36. The MASE and MAE metrics for the best performing forecasting method of each machine examined.  

 

 

Figure 37. The MAE metric and 80% prediction interval for the best performing forecasting method of each 

machine examined.  
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Appendix I: Forecast Results of Machine #100137513 
 

Figure 38. The MAPE metric of all forecast models fitted to the original and the adjusted TBF(h) time series of 

the individual machine #100137513.  

 

Figure 39. The range of the80% prediction intervals of all forecast models fitted to the original and the adjusted 

TBF(h) time series of the individual machine #100137513.  
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Appendix J: Part of the R Code Written for Machine #100137513 
1. library("fma", lib.loc="~/R/win-library/3.2") 

2. #machine 100137513tbf all priorities 

3. #Import data 

4. `100137513prall_tbf` <- 

read.delim("C:/Users/m.papathanasiou/Desktop/New_Approach/Idividual 

Machines/machines 2013-15/IS_(MR)_-_3.0T/100137513/100137513prall_tbf.csv", 

header=FALSE) 

5. View(`100137513prall_tbf`) 

6. TBF717<-ts(`100137513prall_tbf`) 

7. #Data exploration 

8. summary(TBF717) 

9. plot(TBF717,main = "TBF of Machine #100137513 (2013-15)", xlab = "No. of 

Failures", ylab = "TBF") 

10. plot(TBF717) 

11. acf(TBF717) 

12. pacf(TBF717) 

13. adf.test(TBF717) ) #check if it is white noise series #p>0.05 shows non-stationarity 

14. # fit an ARIMA model  

15. tbf2f21<-window(TBF717,start=1,end=36)  #training set – 80% of the dataset  

16. tbf2f22<-window(TBF717,start=37,end=45) #test set – 20% of the dataset 

17. fitarima <-auto.arima(tbf2f21,ic=c("aicc")) 

18. fitarima 

19. length(fitarima$par) 

20. fitarima$residuals 

21. fcastARIMA<-forecast(fitarima,h=9,level=80) 

22. fcastARIMA 

23. #####plot## 

24. plot(fcastARIMA,col="blue",xlab = "No. of Failures", ylab = "TBF") 

25. lines(fcastARIMA$fitted, col="blue") 

26. lines(tbf2f21,col="red") 

27. lines(tbf2f22,col="red") 

28. legend("topright",lty=1,col=c("blue","red","purple"),legend=c("Forecasted 

Values","Actual Values", "80% Prediction Interval")) 

29. #diagnostics for the forecast model 

30. tsdisplay(fitarima$residuals, main="Residuals fitarima-model") 

31. res<-residuals(fitarima,tbf2f12)  

32. # tests for checking the correlation and the zero mean in the residuals 

33. Box.test(res,lag=10, fitdf=length(fitarima$par), type="Lj") #lag=10 due to lack of 

seasonality & fitdf= parameters of the model (p>0.05 means that we have white noise 

in residuals (uncorrelated)) 

34. Box.test(res^2,lag=10, fitdf=length(fitarima$par), type="Lj") #Ljung-Box  

35. #diagnostics for the testing set 

36. accuracy(fcastARIMA,tbf2f22)  

37. NRMSEARIMA<-mean(sqrt(sum((forecasterrors)^2)/(ts(tbf2f21))^2)) 

38. NRMSEARIMA 

39. #for the symmetrical prediction intervals, we need uncorrelated (acf) and 

normally distributed  

40. #eyeball and formal statistical tests for forecasting errors'normality 

41. forecasterrors<-tbf2f22-fcastARIMA$mean 

42. hist(forecasterrors, nclass="FD", main="Histogram of forecast errors") #normality 

eyeball test 1 

43. qqnorm(forecasterrors)  
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44. jarque.bera.test(forecasterrors) #if p=small value, we have non-normality 

45. #check the residuals in the training set if non-linear patterns are left 

46. bds.test(res) #low p values for every combination, so   uncaptured non-linear pattern 

 

47. #ARIMAX models 

48. # Indicatively for one-step ahead point forecast (observation 37) 

49. # for combined TTR and Spare_Item regressors 

50. #When one regressor is used, only k (kk) or l (ll) is inserted in variable a (b) 

51. tbf2f21<-window(TBF717,start=1,end=36)  #training set  

52. tbf2f22<-window(TBF717,start=37, end=37) #test set 

53. k<-c(ttrandspares7[1:35,2],NA) #spare itmes 

54. kk<-c(ttrandspares7[36:36,2],NA) 

55. l<-c(ttrandspares7[1:35,1],NA) #ttr 

56. ll<-c(ttrandspares7[36:36,1],NA) 

57. as.matrix(cbind(k,l)) 

58. a = as.matrix(cbind(k,l)) 

59. b = as.matrix(cbind(kk,ll)) 

60. fitarima_tbf_ttr<-auto.arima(tbf2f21,xreg = a) 

61. fitarima_tbf_ttr 

62. fit1.preds <- forecast(fitarima_tbf_ttr, h = 1, xreg = b)  

63. fit1.preds 

64. accuracy(fit1.preds,tbf2f22) 

65. -fit1.preds$lower[1,1]+fit1.preds$upper[1,1] #calculation of the 80% prediction of the 

one-step ahead point forecast 

66. plot(fit1.preds) 
 

67. #fit an ETS model 

68. tbf2f21<-window(TBF717,start=1,end=36)  #training set  

69. tbf2f22<-window(TBF717,start=37,end=45) #test set 

70. fitets <-ets(tbf2f21,ic=c("aicc")) 

71. fitets 

72. length(fitets$par) 

73. fcastets<-forecast(fitets,h=9,level=c(80)) 

74. fcastets 

75. plot(fcastets,col="red",ylim=c(0,8000)) 

76. lines(fcastets$fitted, col="blue") 

77. lines(tbf2f22,col="red") 

78. legend("topright",lty=1,col=c("blue","red","purple"),legend=c("Forecasted 

Values","Actual Values", "80% Prediction Interval")) 

79. tsdisplay(fitets$residuals, main="Residuals fitets-model")  

80. res <- residuals(fitets,tbf2f12) 

81. Box.test(res,lag=10, fitdf=length(fitets$par), type="Lj")  

82. Box.test(res^2,lag=10, fitdf=length(fitets$par), type="Lj")  

83. accuracy(fcastets,tbf2f22) 

84. forecasterrors<-tbf2f22-fcastets$mean 

85. NRMSEets<-mean(sqrt(sum((forecasterrors)^2)/(ts(tbf2f21))^2)) 

86. NRMSEets 

87. hist(forecasterrors, nclass="FD", main="Histogram of forecast errors")  

88. qqnorm(forecasterrors)  

89. jarque.bera.test(forecasterrors)  

90. bds.test(res) 

 

91. #Optimized Theta Method  
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92. library("forecTheta", lib.loc="~/R/win-library/3.2") 

93. tbf2f21<-window(TBF717,start=1,end=36)  #training set  

94. tbf2f22<-window(TBF717,start=37,end=45) #test set 

95. otmtbfcum2<-otm(tbf2f21,h=9) 

96. plot(otmtbfcum2) 

97. lines(otmtbfcum2$fitted, col="blue") 

98. #####plots## 

99. plot(otmtbfcum2,col="red") 

100. lines(otmtbfcum2$fitted, col="blue") 

101. lines(tbf2f22,col="red") 

102. legend("topright",lty=1,col=c("blue","black","red"),legend=c("Forecasted 

Values","Actual Values", "80% Prediction Interval")) 

103. #accuracy metrics  

104. errorMetric(obs=tbf2f22, forec=otmtbfcum2$mean, type = "APE", statistic = 

"M") #MAPE 

105. #diagnostics  

106. tsdisplay(otmtbfcum2$residuals, main="Residuals fitotm-model") 

107. res <- residuals(otm(tbf2f21,h=9)) 

108. Box.test(res,lag=10, fitdf=length(otmtbfcum2$par), type="Lj") #lag=10 due to 

lack of seasonality & fitdf=1 due to the one parameter of the model (p>0.05 means 

that we have white series residuals(uncorrelated)) 

109. Box.test(res^2,lag=10, fitdf=length(otmtbfcum2$par), type="Lj") #Ljung-Box 

test - homoscedasticity (p>0.05 means that we have homoscedastic (constant 

variance)) 

110. forecasterrors<-tbf2f22-otmtbfcum2$mean 

111. tbf2f22 

112. otmtbfcum2$mean 

113. NRMSEotm<-mean(sqrt(sum((forecasterrors)^2)/(ts(tbf2f21))^2)) 

114. NRMSEotm 

115. hist(forecasterrors, nclass="FD", main="Histogram of forecast errors") 

#normality eyeball test 1 

116. qqnorm(forecasterrors) #normality eyeball test 2 

117. jarque.bera.test(forecasterrors) #if p=small value, we have non-normality 

118. bds.test(res) 

 

 

119. #Artificial Neural Networks  

 

120. # R-GMDH  - possibility for only 5 steps ahead forecasting  

121. #Method suitable for short-term forecast 

122. library("GMDH", lib.loc="~/R/win-library/3.2") 

123. tbf2f21G<-window(TBF717,start=1,end=36)  #training set  

124. tbf2f22G<-window(TBF717,start=37,end=41) #test set 

125. FGMDHTBF2<-fcast(tbf2f21G, method = "RGMDH",level=80) 

126. tbf2gmdh<-window(TBF717,start=37,end=41) 

127. #diagnostics for the training set 

128. res <- residuals(FGMDHTBF2) 

129. tsdisplay(FGMDHTBF2$residuals, main="Residuals RGMDH-model") 

130. ##no possibility for automatic plot here - I construct one on my own# 

131. #####point forecasts 

132. point_fcast<-FGMDHTBF2$mean 

133. point_fcast 

134. #######construction of 80% prediction interval############## 

135.  
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136. lo80<-FGMDHTBF2$lower 

137. lo80 

138. up80<-FGMDHTBF2$upper 

139. up80 

140. #Plot of forecast with 80% prediction intervals 

141. plot(tbf2f22G, lwd="2",xlab="", ylab="TBF", main="RGMDH 

forecast",xlim=c(0,41),ylim=c(0,6000)) 

142. lines(point_fcast,col="blue",lwd="2") 

143. lines(lo80, col="red", lwd="1") 

144. lines(up80, col="red", lwd="1") 

145. lines(FGMDHTBF2$fitted,col="blue",lwd="2") 

146. lines(tbf2f21G,col="black",lwd="2") 

147. legend("topright",lty=1,col=c("blue","black","red"),legend=c("Forecasted 

Values","Actual Values", "80% Prediction Interval")) 

148. #model evaluation – residuals diagnostics  

149. res <- residuals(FGMDHTBF2) 

150. tsdisplay(FGMDHTBF2$residuals, main="Residuals RGMDH-model") 

151. Box.test(res,lag=10, fitdf=0, type="Lj") #lag=10 due to lack of seasonality & 

fitdf=0 since ANNs are non-parametric models 

152. Box.test(res^2,lag=10, fitdf=0, type="Lj") #Ljung-Box test - homoscedasticity 

(p>0.05 means that we have homoscedastic (constant variance)) 

153. accuracy(ts(FGMDHTBF2),tbf2gmdh) 

154. forecasterrors<-tbf2f22-FGMDHTBF2$mean 

155. qqnorm(forecasterrors) #normality eyeball test 2 

156. jarque.bera.test(forecasterrors)  
 

157. #Multi-Layer Perceptron ANN 

158. tbf2f21<-window(TBF717,start=1,end=36)  #training set  

159. tbf2f22<-window(TBF717,start=37,end=45) #test set 

160. fitANNtbf2cum <- nnetar(tbf2f21,ic=c("aicc")) 

161. forecastnnetar<-forecast(fitANNtbf2cum,h=9)  

162. plot(forecastnnetar) 

163. fitANNtbf2cum 

164. tsnnetartbf2cum<-fitANNtbf2cum 

165. lines(fitANNtbf2cum$fitted, col="blue") 

166. #residual diagnostics  

167. tsdisplay(fitANNtbf2cum$residuals, main="Residuals fitANN-model")  

168. res <- residuals(nnetar(tbf2f21)) 

169. Box.test(res,lag=10, fitdf=0, type="Lj")  

170. Box.test(res^2,lag=10, fitdf=0, type="Lj")  

171. #diagnostics for the test set 

172. accuracy(forecast(tsnnetartbf2cum),tbf2f22)  

173. #check if any non-linearity is left in the residuals 

174. bds.test(res) 

175. #####point forecasts 

176. point_comb_fcast<-forecastnnetar$mean 

177. point_comb_fcast 

178. plot(forecastnnetar) 

179. lines(fitANNtbf2cum$fitted, col="blue") 

180. lines (tbf2f22, lwd="2",xlab="", ylab="TBF", main="nnetar 

forecast",xlim=c(0,45),ylim=c(0,5500)) 

181. lines(point_comb_fcast,col="blue",lwd="2") 

182. lines(point_comb_fcast,col="blue",lwd="2") 
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183. legend("topright",lty=1,col=c("blue","black","red"),legend=c("Forecasted 

Values","Actual Values")) 

184. forecasterrors<-tbf2f22-forecastnnetar$mean 

185. hist(forecasterrors, nclass="FD", main="Histogram of forecast errors")  

186. qqnorm(forecasterrors)  

187. jarque.bera.test(forecasterrors)  
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Appendix K: Machine Failure Data of the State-of-the-Art Literature  
 

 

Figure 40. The failure data of Dindarloo (2015) (adjusted from Dindarloo (2015)). 
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Figure 41. The failure and repair data of Fan and Fan  (2015) (taken from Fan and Fan  (2015)). 

 


