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Abstract

This paper investigates the effectiveness of vari-
ous clustering algorithms in detecting collabora-
tive Internet scanning groups. The packet dataset
used is collected from TU Delft’s network tele-
scope, and is aggregated into scanning sessions
and analyzed using K-Means, Hierarchical Clus-
tering, Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN), Clustering Us-
ing Representatives (CURE), and Bradley-Fayyad-
Reina (BFR). This paper also introduces an evalua-
tion framework based on five degrees of certainty to
assess the likelihood that a cluster is collaboratively
scanning. The findings indicate that DBSCAN con-
sistently outperforms other methods in identifying
collaborative scanning groups, while CURE shows
superior performance to BFR, K-Means, and Hier-
archical Clustering. It is hoped that these insights
help provide a strong foundation for enhancing net-
work security through improved detection of col-
laborative scanning behaviors.

1 Introduction

1.1 Background

Cybersecurity has always been and always will be a game of
cat and mouse. The first step in this game involves the attack-
ers finding and abusing a vulnerability, and the second step
consists of the cybersecurity specialists finding a way to re-
solve the vulnerability and impede the attackers, after which
it is the attackers’ turn to find or introduce a new vulnera-
bility. This back-and-forth also applies to malicious Internet
scanning.

Internet scanning refers to the systematic process of scan-
ning various networks and systems across the Internet to
gather information about them. It involves sending data pack-
ets to target Internet Protocol (IP) addresses and analyzing
the responses to identify open ports, services, or other char-
acteristics of the target systems. Internet scanning can be
conducted for various purposes, including security assess-
ments, network mapping, reconnaissance, or research, in
which cases it is called benign. However, Internet scanning
can also be leveraged by hackers and other types of adver-
saries to identify vulnerable systems, in which case it is called
malicious.

Initially, attackers massively scanned the Internet to find
which hosts were active and what services they ran, as this is
the first step to compromising them [1]. Later on, research
conducted by cybersecurity specialists revealed a way to de-
tect and block these scanners based on the large number of
packets they would send using intrusion detection systems
(IDS) and firewall thresholds. In response to this, attackers
started distributing their scans over multiple hosts to stay be-
low the thresholds and, as such, they remain undetected. That
is the state in which we find ourselves today, and it is now the
turn of cybersecurity specialists to find a way to detect these
collaborative scanning groups.

1.2 Motivation

Detecting collaborative scanners is crucial because these co-
ordinated efforts by attackers can evade traditional detection
methods, leading to significant security risks. Traditional sys-
tems often flag high activity from a single IP address as sus-
picious, but when scanning activity is divided among many
sources, it appears as low-intensity traffic from each source,
which is less likely to trigger alarms [1]. Due to the nature
of the Internet, every single vulnerability can be exploited at
scale, resulting in widespread sensitive data leaks, disrupting
services, and causing financial damage.

Finding these collaborative scanners requires new meth-
ods that can detect subtle patterns in large amounts of data.
Cutting-edge methods, such as the one presented by Griffioen
et al. [1], fall short when the packets’ fields are all random-
ized and no fingerprints can be distinguished. One promising
possible approach to solving this shortcoming is clustering,
which could be used to uncover hidden temporal structures in
data and help identify behavior linked to collaborative scan-
ning.

Clustering is a promising approach for several reasons.
Firstly, clustering algorithms are designed to identify groups
within data that share similar characteristics, making them
well-suited for detecting coordinated behavior among seem-
ingly random network activities. By grouping data points
that exhibit similar temporal patterns, clustering can reveal
the presence of collaborative scanners even when individ-
ual packets do not exhibit identifiable fingerprints. Secondly,
clustering can handle large volumes of data effectively, which
is essential given the scale of Internet traffic. Thirdly, cluster-
ing algorithms can adapt to evolving scan patterns. As scan-
ners modify their strategies to evade detection, clustering may
still be able to identify new patterns of behavior that emerge
as a result of these changes.

This paper explores how clustering methods can be used to
detect collaborative scanning. By looking closely at different
clustering algorithms and how they might work for this task,
the aim of this research is to contribute to creating new ways
to defend against malicious parties on the Internet.

1.3 Research Questions

The main question that this paper aims to answer is:
“Is it possible to detect collaborative scanners using cluster-
ing methods?”

In order to guide the research process, the following sub-
questions have been derived:

¢ RQ1: “How do collaborative scans work and what as-
sumptions does the proposed methodology make?”

* RQ2: “What data attributes should be considered for
clustering?”

* RQ3: “Once a cluster has been identified, how can we
check that it is indeed a collaborative scanning group?”

* RQ4: “What clustering methods should be used?”
* RQS5: “What values should the hyperparameters have?”



e RQ6: “If multiple clustering approaches can detect col-
laborative scanning groups, how do their performances
compare?”

1.4 Contributions
This paper makes the following contributions:

* It proposes a new methodology that uses temporal cor-
relations in network traffic to detect collaborative scan-
ners, moving beyond traditional packet header analysis.

» It applies and compares various clustering algorithms
to effectively identify collaborative scanners, even when
individual packet fields are fully randomized.

* It proposes a new evaluation mechanism which utilizes
five degrees of certainty to assess the likelihood that a
cluster is a collaboratively scanning group.

1.5 Structure

The remainder of this paper is structured as follows: Section
2 presents the previous work conducted towards the detec-
tion of collaborative scanners, Section 3 details the method-
ology used for the research procedure, spanning the processes
of data collection (Section 3.1), aggregating data and select-
ing attributes for training (Section 3.2), clustering (Section
3.3), and hyperparameter optimization (Section 3.4). Section
4 presents and analyses the experimental setup and the en-
suing results, explaining the concept of degrees of certainty
(Section 4.1), presenting method validation (Section 4.2), fol-
lowed by a comparison of the clustering methods considered
for this research paper (Section 4.3), an analysis of the clus-
ters which are not described by any of the proposed degrees
of certainty (Section 4.4), and lastly a presentation of the an-
swers formulated to the research sub-questions (Section 4.5).
The research at hand will be framed in the context of re-
sponsible research in Section 5, discussing ethical implica-
tions and privacy concerns. In Section 6, the produced results
and the method’s limitations are discussed. Lastly, Section 7
concludes the research findings and proposes potential future
research points.

2 Related Work

This section will explore previous research which has at-
tempted to solve the problem of detecting collaborative scan-
ners, and present the shortcomings of the methods proposed
by these papers.

There have been multiple studies which have corroborated
the existence of advanced adversaries using distributed scan-
ners to stay below firewall and IDS packet thresholds [2] [3],
and a number of solutions have been proposed to identify
these collaborative groups. Gates [4] employs the set cover
technique to identify connections between IP addresses, but
the set cover problem is NP-complete [5], and therefore ap-
plying this algorithm is impractical for handling large vol-
umes of data. Robertson et al. [6] identify distributed scans
provided that the IP addresses involved in these scans are sit-
vated within the same subnet, but this is a strong assump-
tion to make seeing as adversaries can avoid detection by this
method by simply renting or using hosts on differing subnets.

In fact, there already exists proof of the existence of large col-
laborative scanning groups utilizing hosts belonging to differ-
ent subnets [2], [3]. Yegneswaran et al. [7] detect coordinated
behavior by examining destination ports and IP addresses to
identify slow-scanning malware, discovering that many scans
exhibit coordinated characteristics, with IP addresses display-
ing the same behavior. Their evaluation focuses on the desti-
nation ports and IP addresses in the packet headers, ignoring
other fields.

Griffioen et al. [1] demonstrate that the above methods are
inadequate for reliably detecting collaborative port scans in
two main ways: firstly, at the scale of the Internet or within a
large organization, the volume of incoming data is too vast to
analyze for complementarity, and the prefiltering required for
Gates’ set cover solution [4] is usually unavailable. Secondly,
as highlighted by Blenn et al. [2], adversaries often disregard
subnet boundaries, with their activities spanning different net-
work ranges, Internet Service Providers (ISPs), and country
borders. The method proposed by Griffioen et al. [1] instead
involves detecting distributed and stealthy network scanners
by clustering source IP addresses based on commonalities in
their scan probes and header values. The method shows high
precision and recall in detecting scanner groups that use com-
mon scanning tools or have detectable patterns in their scan
behavior. However, it has significant shortcomings when the
scanners exhibit almost no commonality within their packets’
header values, making it difficult to identify them. Specif-
ically, the method struggles with groups that randomize al-
most all fields, do not use XOR relations, and are distributed
over many hosts sending low amounts of packets, leading to
a weak combined signal that the method cannot effectively
detect.

3 Methodology

This section will first explore why detecting hidden tempo-
ral structures in the data is a promising approach to address-
ing the challenge of fully randomized packet fields. The first
subsection will explain how the data used for clustering was
collected. The second subsection will detail how the data was
aggregated and which attributes were selected for training.
The third subsection will present the clustering methods con-
sidered and their respective advantages in the context of this
research. The fourth subsection will discuss the optimization
of the hyperparameters for the methods described in the pre-
vious section.

High-speed port scanners operate by sending TCP SYN
packets to numerous target IP addresses and ports, record-
ing responses to identify active hosts and open ports. Un-
like traditional scanners, which maintain detailed records of
each probe to avoid mistaking backscatter from Distributed
Denial-of-Service (DDoS) attacks for legitimate responses,
modern high-speed scanners like Masscan and ZMap stream-
line this process. They achieve this by embedding a unique
identifier, such as a 32-bit initial sequence number (ISN), into
each outgoing packet. This method allows them to differen-
tiate genuine responses from backscatter based on the ISN in
the return packets, minimizing the need for extensive tracking
and enabling the scanning of the entire IPv4 address space in



less than an hour [8] [9].

However, by doing this, some of these scanners create fin-
gerprints within their packets which can be used to identify
the tools used to generate them and, as a result, they can
be grouped into scanning groups [1]. Notably, ZMap does
not exhibit this behavior, making it an important exception.
Advanced adversaries that have access to large amounts of
computational resources could forfeit this strategy in favour
of being harder to detect by randomizing all packet fields.
ZMap achieves this by using Advanced Encryption Stan-
dard (AES), effectively thwarting fingerprint-based detection
methods such as the one presented in Griffioen et al. [1].

As such, instead of utilizing the data in the packets them-
selves to detect collaborative scanners, this paper proposes
using the temporal correlations of the packets, under the as-
sumption that distributed instances running the same scan-
ning tool would do so at similar times and with similar fre-
quencies. It must be mentioned that, just like with the packet
fields, timings and frequencies can also be randomized in the
interest of stealthiness, but comes at the cost of efficiency,
because it would lead to the under-utilization of the scanning
capacity of the infrastructure, as the source hosts would have
to stay inactive for intermittent periods of time [1].

3.1 Data Collection

The data used in this research originates from the TU Delft
network telescope. A network telescope refers to a designated
block of IP address space where legitimate traffic is minimal
or nonexistent. By observing the unexpected traffic that ap-
pears in this space, it is possible to monitor and analyze re-
mote network security events, including denial-of-service at-
tacks, Internet worm propagation, and network scanning ac-
tivities [10].

The telescope used contains three partially populated /16
networks which collect incoming packets for approximately
65,000 unused IP addresses [2], though this amount varies
based on the university’s network strain at different moments
of the week.

The dataset utilized for clustering is made up of TCP pack-
ets which were collected throughout February 2024. UDP
packets are excluded from the analysis because most port
scanning traffic targets TCP [1]. Packets which have the
IPID equal to 54321 are also excluded from the analysis be-
cause these are ZMap packets (mainly originating from be-
nign sources) which can be simply dropped using a firewall
rule. The presence of these packets is well-documented, and
their exclusion helps ensure that the analysis focuses on po-
tentially more relevant and less predictable network traffic.

3.2 Aggregating Data and Selecting Attributes for
Training

In order to train clustering models, this paper proposes the ag-
gregation of packet data into scanning sessions. A scanning
session is defined as an accumulation of multiple packets re-
ceived from the same IP address, with no more than 3 hours
between consecutive packets. This timeframe is inspired by
Aniket et al. [11] and has been extended to better suit the
smaller scale of the TU Delft network telescope. For each
scanning session, the following attributes are created:

* The starting time of the session, obtained from the first
packet encountered within each session

* The ending time of the session, obtained from the last
packet encountered within each session, meaning that
there is a break of more than 3 hours between this packet
and the next one received from the same IP address

* The total time between the starting time and the ending
time of the session

* The mean amount of time between the packets making
up the session

e The number of packets received within the time frame
of the scanning session

Therefore, the packet dataset collected by the network tele-
scope during February 2024 is aggregated into a scanning
session dataset as presented above, with resulting dataset con-
taining almost 4.4 million entries. The newly created at-
tributes can be used to cluster these sessions into groups, and
these groups can then be evaluated to understand how likely
they are to be collaboratively scanning.

3.3 Considered Clustering Methods

The clustering methods considered in this research are: K-
Means Clustering [12], Hierarchical Clustering [13], DB-
SCAN [14], CURE [15] and BFR [16].

Unlike the other three methods, which typically assume
that the entire dataset can be loaded into memory, CURE and
BFR are specifically tailored to work efficiently with massive
datasets by using disk-based storage and scalable processing
techniques. CURE achieves this by representing clusters with
multiple representative points, reducing the effect of outliers,
and allowing the algorithm to manage data in chunks that can
be processed independently [15]. BFR, on the other hand,
is an adaptation of the K-Means algorithm designed to work
in a high-dimensional space and incorporates a framework to
handle data that is too large to fit into memory by partitioning
the dataset and progressively processing each partition. [16]

In contrast to CURE and BFR, DBSCAN approaches the
challenge of large datasets from a different angle, as its abil-
ity to handle large datasets stems from its reliance on spatial
indexing structures such as k-d trees or R-trees, which sig-
nificantly enhance the efficiency of neighborhood queries, a
critical feature of the algorithm [14].

Additionally, CURE, BFR, and DBSCAN determine the
number of clusters based on the data itself, making them par-
ticularly useful for this research since the actual number of
collaborative scanners is unknown. These design consider-
ations make CURE, BFR, and DBSCAN stand out as top
candidates for the clustering approach, which is why it is
expected that they will perform better in comparison to K-
Means and Hierarchical Clustering.

3.4 Hyperparameter Optimization

The first step in the process of optimizing the hyperparame-
ters of the aforementioned clustering methods is splitting the
data into a training set, a test set and a validation set. From
the dataset spanning February 2024, the first 50% of the data
will be used to train the models with various hyperparameters



picked through an iterative process, with the remaining data
being split into a 25% test set and a 25% validation set. The
hyperparameters that provide the best cluster quality based on
the degrees of certainty presented in Section 4.1 will subse-
quently be used to evaluate the quality of the models when
clustering the previously unseen test set scanning sessions.

4 Experimental Setup and Results

This section will discuss the way in which the evaluation of
the detected clusters will take place and the final results ob-
tained. The first subsection will define the degrees of cer-
tainty with which we can claim that a cluster is collabora-
tively scanning. The second subsection will explain the eval-
uation of the clustering methods based on the degrees of cer-
tainty. The third subsection will compare the results of the
evaluations conducted on the previously mentioned clustering
methods using their optimized hyperparameters. The fourth
subsection will present an in-depth analysis of the clusters to
which no degree of certainty can be assigned, in an effort to
explain how they appear, and identify whether they are in-
deed just residual noise. The fifth subsection will present the
answers formulated to the research sub-questions.

4.1 Degrees of Certainty

In order to assess how likely it is for a cluster to be a collabo-
ratively scanning group, we define the following five degrees
of certainty:

* Degree 1: All IP addresses within the cluster are part of
the same subnet

* Degree 2: All IP addresses within the cluster correspond
to the same ISP

* Degree 3: All IP addresses within the cluster correspond
to the same country

e Degree 4: The IP addresses within the cluster corre-
spond to at most three different subnets in total

e Degree 5: The IP addresses within the cluster corre-
spond to at most three different ISPs in total

These degrees describe in descending order how certainly a
cluster can be classified as a collaboratively scanning group
(i.e. 1 is the highest degree of certainty, 5 is the lowest). If
all IP addresses within a cluster are part of the same subnet,
then it can be claimed with high confidence that they are col-
laborating, especially since the IP addresses themselves are
not used during the training of the clustering models. How-
ever, if the IP addresses within the cluster correspond to at
most three different ISPs in total, it may still be claimed that
they are collaborating (in this case, the potential adversary
would have made an additional effort to remain hidden by us-
ing hosts belonging to different ISPs), but with considerably
less certainty.

4.2 Method Validation

The results of training the previously mentioned clustering
methods on the training set using various hyperparameters
can be seen below. These hyperparameters were tested in an
iterative manner, where each iteration involved adjusting one

or more parameters to observe their effects on clustering per-
formance. Unfavourable parameter changes, characterized by
a decline in clustering performance, indicated that such direc-
tions should not be pursued further.

If an extended amount of computational time did not yield
considerably better results, this was interpreted as an indica-
tion that the hyperparameters were converging to their opti-
mal values. Specifically, when further adjustments to hyper-
parameters resulted in negligible or no significant improve-
ment in clustering quality, it suggested that the current set
of hyperparameters was close to optimal. Thus, through this
systematic approach, the optimal hyperparameters for each
clustering method were determined, ensuring robust and reli-
able clustering performance.

DBSCAN

In the case of DBSCAN, the hyperparameters to be fitted
are epsilon, which is the maximum distance between two
samples for one to be considered as being in the neighbor-
hood of the other, and min_pt s, which is the minimum num-
ber of samples in a neighborhood for a point to be considered
as a core point. Seeing as a collaboratively scanning group
can be made up of as little as 2 IP addresses, min_pts has
been set to 2, leaving only epsilon to be optimized. The
values tested and the results they yield can be seen in Ta-
ble 1, in the Appendix. To determine the optimal value for
epsilon, the number of clusters corresponding to Degree
1 (the highest degree of certainty for a cluster being a col-
laboratively scanning group) was calculated for each option.
The results indicate that the maximum number of Degree 1
clusters is achieved when epsilon is set to 0.001. Apply-
ing DBSCAN with these hyperparameters to the test dataset
produces the results seen in Figure 1.

Lo DBSCAN Evaluation Results
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Figure 1: Results of running DBSCAN on the test dataset using
min_pts =2and epsilon =0.0001

K-Means Clustering

In the case of Mini-Batch K-Means, the hyperparameters
to be fitted are the number of clusters no_.of_clusters,
which determines how many centroids will be initialized,
the batch size batch_size, which specifies the number of
samples to be used in each iteration to update the centroids,
and the maximum number of iterations max_iterations.



The values tested and the results they yield can be seen
in Table 2 in the Appendix. The results indicate that the
maximum number of Degree 1 clusters is achieved when
no_of_clusters is set to 700000, batch_size is set
to 10000 and max_iterations is set to 100. Applying
Mini-Batch K-Means using these hyperparameters to the test
dataset produces the results seen in Figure 2.

Lo K-Means Evaluation Results
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Figure 2: Results of running Mini-Batch K-Means Clustering on
the test dataset using no_of_clusters =70000, batch_size =
10000 and max-iterations =100

CURE

In the case of CURE, the hyperparameters that must be tuned
are the number of clusters no_of_clusters, the compres-
sion factor compression, and the number of representative
points no_repr_points. Since no pre-existing implemen-
tation of CURE was found that doesn’t rely on computing a
distance matrix (which becomes too large to store when pro-
cessing large amounts of data), sampling was used to approx-
imate the results of applying the algorithm on the aforemen-
tioned datasets. no_of_clusters represents the desired
number of clusters in the dataset (the values tested for this hy-
perparameter were inspired from the number of clusters ob-
tained using DBSCAN, adjusted to the sizes of the samples
used), while compression controls how much the repre-
sentative points are shrunk towards the centroid of the cluster
during the merging process. no_repr_points is the num-
ber of points used to represent each cluster. The values tested
and the results they yield can be seen in Table 3, in the Ap-
pendix. The results indicate that the maximum number of
Degree 1 clusters is achieved when no_of_clusters is set
to 200, no_repr_pointsissetto S and compression is
set to 0.01. Applying CURE using these hyperparameters to
the test dataset produces the results seen in Figure 3.

Hierarchical Clustering

In the case of Hierarchical Clustering, the hyperparameter to
be fitted is the number of clusters no_of_clusters. Ward
linkage was chosen as the optimal linkage criterion for this
situation because it minimizes the variance within each clus-
ter, leading to more compact and well-separated clusters [13].
This is particularly advantageous when identifying collabo-
rative scanning groups, as it ensures that clusters are as dis-

CURE Evaluation Results
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Figure 3: Results of running CURE on the test dataset us-
ing no-of_clusters = 200, no_repr_points = 5 and
compression =0.01

tinct as possible, reducing the likelihood of overlapping clus-
ters that could misrepresent the data. Similarly to the case
of CURE, sampling was used due to the fact that Hierar-
chical Clustering implementations also rely on computing a
distance matrix. The values tested and the results they yield
can be seen in Table 5 in the Appendix. The results indicate
that the maximum number of Degree 1 clusters is achieved
when no_of_clusters is set to 800. Applying Hierarchi-
cal Clustering using this hyperparameter to the test dataset
produces the results seen in Figure 4.

Hierarchical Clustering Evaluation Results
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Figure 4: Results of running Hierarchical Clustering on the test
dataset using no_of_clusters =800

BFR

In the case of BFR, the hyperparameter to be fitted is the num-
ber of clusters no_of_clusters, which determines how
many centroids will be initialized. Similarly to CURE, no
pre-existing implementation of BFR was found that doesn’t
rely on computing a distance matrix, and as such sampling
was used to approximate the results of applying BFR on the
train and test datasets. The values tested and the results they
yield can be seen in Table 4 in the Appendix. The results
indicate that the maximum number of Degree 1 clusters is



achieved when no_of_clusters is set to 900. Applying
BFR clustering using this hyperparameter to the test dataset
produces the results seen in Figure 5.
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Figure 5: Results of running BFR on the test dataset using
no_of_clusters =900

4.3 Comparison of Clustering Methods

In order to compare the clustering methods, a score is com-
puted for each one by taking the mean of the percentages
achieved for every degree of certainty.

DBSCAN significantly outperforms the other four cluster-
ing methods in terms of the given results, as it achieves a
score of approximately 74%. In comparison, the next best
method, CURE, has an approximate score of 30%, meaning
DBSCAN performs about 247% better than CURE. When
compared to BFR, which has an approximate score of 7%,
DBSCAN is about 1057% better. Similarly, DBSCAN out-
performs K-Means, with its average score of 3%, by around
2467%. Lastly, compared to Hierarchical Clustering, which
has an approximate score of 1%, DBSCAN is roughly 7400%
better.

CURE outclasses BFR, K-Means, and Hierarchical Clus-
tering, at it performs significantly better. CURE’s score of
30% is about 429% higher than BFR’s score of 7%. Com-
pared to K-Means’ score of 3%, CURE is roughly 1000%
better. Lastly, CURE outperforms Hierarchical Clustering’s
score of 1% by about 3000%. These comparisons highlight
the significant performance gaps between the methods, with
DBSCAN and CURE being notably ahead of the rest.

The comparison of the evaluations above highlights the ad-
vantages and limitations of each clustering method in the con-
text of collaborative scanner detection. DBSCAN’s density-
based approach allows it to naturally adapt to the data struc-
ture, identifying clusters regardless of their shape or size, and
effectively filtering out noise. This is particularly advanta-
geous in network traffic analysis where collaborative scans
may not conform to fixed patterns.

CURE’s ability to handle outliers and represent clusters
with multiple points makes it a strong candidate. BFR’s
chunk-based processing is useful for large datasets but does
not seem compensate for its centroid-based limitations.

K-Means and Hierarchical Clustering, while useful for cer-
tain applications, do not perform well in the noisy environ-
ment of network traffic. Their limitations in handling noise
and large-scale data make them less suitable for detecting col-
laborative scanners.

4.4 Analysis of Clusters Not Covered Under Any
Degree of Certainty

This subsection will more closely analyze the clusters de-
tected by DBSCAN when ran on the test set using the optimal
hyperparameters obtained in Section 4.2. These clusters can
be split into 3 categories based on the number of source IP
addresses they contain:

* Clusters containing less than 100 source IP addresses:
63 clusters in the test set

* Clusters containing more than 100 and less than 1000
source IP addresses: 4 clusters in the test set

* Clusters containing more than 1000 source IP addresses:
5 clusters in the test set

The GreyNoise' analysis tool was used to attempt to further
investigate these clusters and understand why they do not
conform to any degree of certainty. GreyNoise is a cyber-
security company that focuses on analyzing and categoriz-
ing internet-wide scan and attack traffic to help organizations
differentiate between benign, background noise and targeted
malicious activity. The results of this analysis on the larger
clusters which were encountered can be seen in Table 6 in the
Appendix.

The analysis reveals that the majority of IP addresses in
most of these clusters are located in China. This is especially
true for the largest clusters, which contain more than 20000
IP addresses.

The existence of some large clusters can be attributed to
Internet worms, which are malicious programs that replicate
themselves across networks to infect systems without requir-
ing user interaction. This phenomenon is exemplified by clus-
ter 7480. It is made up of 198 hosts, out of which 74% were
detected by the GreyNoise analysis tool to be infected with
Mirai or a Mirai-like variant of the worm. This would provide
a reasonable explanation as to why this cluster is not cov-
ered by any degree of certainty: by infecting multiple hosts
across various subnets, ISPs, and countries, botnets can avoid
being detected when using such an evaluation scheme. The
same reasoning can be applied to the other clusters, where
large percentages of hosts were identified as being either Se-
cure Shell (SSH) Bruteforcers, Telnet Bruteforcers or Mirai
infected. As a result, hosts that are infected by an Internet
worm can avoid detection in the above manner.

The conclusion of this analysis is that additional consider-
ation needs to be attributed to the evaluation of the formed
clusters, so that clusters made up of hosts infected by Internet
worms won’t be discarded as simply being badly formed.

'The GreyNoise analysis tool can be found here:

https://www.greynoise.io/


https://www.greynoise.io/

4.5 Results

RQ1: “How do collaborative scans work and what assump-
tions does the proposed methodology make?”
Collaborative scans work by sending packets from a multi-
tude of IP addresses to remain under IDS and firewall thresh-
olds. The assumption this paper makes about collaborative
scans is that they commence and conclude at similar times
and that the addresses within a group send messages with ap-
proximately the same frequency. Therefore, no assumptions
are made about the contents of the packets themselves, en-
abling the proposed method of detection to work regardless
of the tool used to create these packets, as long as the above-
mentioned temporal correlations hold.
RQ2: “What data attributes should be considered for clus-
tering?”
This paper proposes aggregating the received packets into
scanning sessions, as detailed in Section 3.2. After this ag-
gregation, the following attributes should be used for cluster-
ing:

1. The start time of the sessions

2. The end time of the sessions

3. The total duration of the sessions

4. The average time between packets within each session

5

. The total number of packets received during each ses-
sion

These attributes facilitate the effective clustering of the ses-
sions.

RQ3: “Once a cluster has been identified, how can we check
that it is indeed a collaborative scanning group?”

There is no method by which to say with full confidence that
an identified group is collaboratively scanning. This paper
proposes approximating the likelihood that a cluster is col-
laboratively scanning based on the best degree of certainty
that it achieves. If, for example, it achieves Degree 1, then
there is a high chance that the cluster is indeed a collabora-
tive scanning group, but if it can only achieve Degree 5, then
this probability is considerably lower.

RQ4: “What clustering methods should be used?”

Based on the evaluations above, DBSCAN stands out as the
optimal clustering method by a considerable margin, as it
performs about 247% better than CURE, 1057% better than
BFR, 2467% better than K-Means and 7400% better than Hi-
erarchical Clustering.

RQS5: “What values should the hyperparameters have?”
Based on the evaluations above, the hyperparameters for DB-
SCAN should have the following values: min_pts =2 and
epsilon=0.0001. In order to further validate this outcome,
the results of running DBSCAN using these hyperparameters
on an unseen validation dataset can be observed in Figure 6.
RQ6: “If multiple clustering approaches can detect collab-
orative scanning groups, how do their performances com-
pare?”

Both DBSCAN and CURE perform considerably better than
the other three clustering methods based on the evaluations
undertaken using the five degrees of certainty, but it is clear
from the results presented above and in the Appendix that

DBSCAN Validation Results
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Figure 6: Results of running DBSCAN on the validation dataset
usingmin_pts =2and epsilon =0.0001

DBSCAN considerably outperforms CURE while also de-
tecting a larger number of meaningful clusters (meaning a
cluster that scans more than 10% of the network telescope).

5 Responsible Research

This section will discuss the ethical implications of the re-
search, the privacy concerns regarding the data collection
method, and the reproducibility of the research methods
presented previously, followed by some additional concerns
about the environmental impact of using machine leaning
models for collaborative scanner detection.

This research can help enhance cybersecurity by identi-
fying and mitigating coordinated malicious activities, thus
protecting sensitive information, and maintaining system in-
tegrity. There exists the question of the risk of false posi-
tives, where legitimate users may be incorrectly flagged as
malicious, leading to unwarranted scrutiny or actions against
them. Since the method outlined above only considers pack-
ets that have the SYN flag set and the ACK flag unset, in-
ternet backscatter isn’t included in the sanitized dataset used
for training. Users could still have their IP addresses spoofed
and be mistakenly flagged, although from the perspective of
Internet scanning it makes no sense for malicious parties to
engage in this behaviour, since receiving the responses from
the scanned hosts is a vital part of Internet scanning and these
responses would be sent to the legitimate users instead of the
scanning parties if this method is employed. Another situa-
tion in which incorrect flagging could happen is in the case of
benign scanning. However, scientific institutions or groups
that undertake scanning for research-related purposes usually
announce their presence, and as such they can be excluded
from any subsequent actions following their initial flagging
by the clustering methods.

In terms of the privacy concerns that could be raised re-
garding the data collection procedure, data is collected by
the network telescope and filtered such that the considered
packets have the SYN flag set and the ACK flag unset. This
is done to remove backscatter containing information about
hosts being under DDoS attack. The resulting data is inher-



ently anonymous because it is generated by the passive ob-
servation of an unused IP address space where no legitimate
traffic exists [10]. Therefore, any data gathered in this way
consists of only unsolicited traffic.

The research methods explained previously have been
meticulously detailed and presented with full transparency in
order to ensure the reproducibility of the work. All of the re-
sults presented have been verified multiple times to guarantee
that they are accurate and reliable.

Another important aspect to consider is the sustainability
of implementing machine learning models for detecting col-
laborative scanners. These models require significant compu-
tational power, which may lead to increased energy consump-
tion and, as a result, negative environmental impact. The use
of these models has the potential to improve cybersecurity
by identifying and addressing threats. However, it is essen-
tial to evaluate the long-term sustainability of these methods,
especially as data volumes and model complexities grow. Ef-
ficient and scalable algorithms are necessary to ensure high
performance without an excessive environmental footprint.

6 Discussion

The results of this study highlight the efficacy of the DB-
SCAN clustering algorithm in detecting collaborative scan-
ning activities. By leveraging temporal correlations between
packet transmissions, DBSCAN demonstrates superior per-
formance in identifying meaningful clusters compared to
other methods such as CURE, BFR, K-Means, and Hierar-
chical Clustering.

One significant implication of this research is its potential
to enhance network security by providing a robust method for
detecting distributed scanning activities. Collaborative scan-
ning poses a substantial threat as it allows adversaries to map
network vulnerabilities without triggering conventional secu-
rity alerts. By accurately clustering these scanning activities,
network administrators can proactively identify and mitigate
potential threats.

However, the study also emphasizes the importance of ac-
counting for Internet worms when assessing the produced
clusters. Many clusters may not fit within any of the five de-
grees of certainty, but they should not be dismissed outright.

7 Conclusion

In conclusion, this study successfully demonstrates the effec-
tiveness of DBSCAN in identifying collaborative scanning
activities by focusing on temporal patterns in packet trans-
missions. The research answers the primary question of how
collaborative scans can be detected using clustering meth-
ods, with DBSCAN emerging as the most effective technique.
This method does not rely on the content of the packets, al-
lowing it to adapt across various tools and scenarios, provided
that the temporal correlations are maintained.

The findings recommend DBSCAN for its superior perfor-
mance in clustering compared to other methods, with specific
hyperparameters (min_pts = 2 and epsilon = 0.0001)
showing optimal results.

Future research could further test the performance of DB-
SCAN by injecting artificial collaborative scanner packets
into the network telescope dataset and computing how many

of these scanners are detected using this clustering method.
Creating these packets should be done using a wide array of
scanning tools in order to obtain the most realistic evaluation
possible.

Additionally, future research should focus on developing
energy-efficient algorithms that offer high performance with
sustainability principles in mind.
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Appendix

epsilon 1076 50 1073 57° 104 5% 1073
Noise Points 1924832 | 1523003 | 1395843 | 913590 | 759666 | 412713 | 240682

Meaningful Clusters 54 160 333 562 720 1030 1784
Degree 1 37.04% | 59.38% | 59.46% | 57.17% | 55.14% | 18.25% | 9.30%
Degree 2 90.74% | 83.75% | T1.72% | 64.41% | 61.67% | 25.40% | 12.78%
Degree 3 27.78% | 72.50% | 69.37% | 66.73% | 66.25% | 27.18% | 14.35%
Degree 4 98.15% | 96.88% | 92.19% | 88.08% | 85.28% | 72.23% | 62.95%
Degree 5 98.15% | 97.50% | 92.49% | 89.50% | 86.67% | 75.08% | 66.03%

Table 1: DBSCAN results generated from clustering on the training

set using varying values for epsilon.
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no_of_clusters | 100000 | 100000 | 200000 | 300000 | 300000 | 300000 | 400000 | 450000 | 500000 | 700000
batch_size 10000 | 20000 10000 10000 | 20000 | 20000 10000 10000 10000 10000
max_iterations 100 100 100 100 100 150 100 100 100 100
Meaningful Clusters | 8152 8077 8862 8793 8714 8691 8321 7910 7596 6075
Degree 1 207% | 2.20% | 3.774% | 545% | 6.01% | 5.79% | 828% | 9.47% | 10.90% | 17.19%
Degree 2 226% | 2.30% | 427% | 598% | 6.86% | 6.36% | 9.28% | 10.87% | 12.32% | 19.54%
Degree 3 340% | 3.52% | 598% | 8.45% | 9.10% | 856% | 11.92% | 13.68% | 15.19% | 23.37%
Degree 4 723% | 6.43% | 22.78% | 32.79% | 34.52% | 32.02% | 45.57% | 48.94% | 53.78% | 72.72%
Degree 5 7971% | 7.21% | 24.80% | 35.06% | 36.98% | 34.78% | 47.55% | 51.08% | 55.40% | 74.77%

Table 2: Mini-Batching K-Means results generated from clustering on the training set using varying values for the no_of_clusters,

batch_size and max_ierations.

no of _clusters 100 200 300 200 300 200 200 200 200 200
no_repr points 2 2 2 2 5 5 5 5 5 5

compression 0.5 0.5 0.5 0.2 0.5 0.5 0.1 0.01 0.001 0.0001

Meaningful Clusters 53.6 51.6 128.8 97.2 122.8 91.6 96 86.4 79.6 84.8
Degree 1 372% | 7.16% | 7.02% | 12.87% | 833% | 9.45% | 9.01% | 14.85% | 10.65% | 14.10%
Degree 2 336% | 4.83% | 639% | 12.67% | 7.34% | 8.99% | 8.05% | 14.39% | 9.87% | 13.86%
Degree 3 336% | 5.88% | 7.95% | 13.58% | 8.83% | 9.45% | 9.63% | 14.88% | 11.12% | 14.35%
Degree 4 12.31% | 19.88% | 23.29% | 26.76% | 25.80% | 23.40% | 22.79% | 24.83% | 23.11% | 23.06%
Degree 5 6.30% | 12.57% | 14.29% | 20.89% | 16.80% | 16.88% | 16.05% | 20.20% | 17.13% | 19.06%

Table 3: CURE results generated from clustering on samples of the training set using varying values for no_of_clusters,
no_repr_points and compression.

no_of _clusters 100 50 200 300 400 500 700 800 900 1000 1100
Meaningful Clusters 66.6 40.8 109.4 | 144.4 174 196.8 241 260.6 | 275.6 292.2 304.8
Degree 1 0.63% 0% 1.68% | 0.86% | 1.74% | 2.21% | 2.50% | 2.53% | 2.76% | 2.13% | 2.31%
Degree 2 0.63% 0% 1.52% | 0.57% | 1.10% | 1.79% | 1.74% | 1.94% | 2.13% 1.94% 1.70%
Degree 3 0.63% 0% 1.35% | 0.98% | 1.44% | 2.30% | 1.98% | 2.25% | 2.710% | 2.42% | 2.09%
Degree 4 40.63% | 0.47% | 3.72% | 4.11% | 6.19% | 6.79% | 7.79% | 8.78% | 10.04% | 10.32% | 12.36%
Degree 5 0.94% 0% 2.83% | 2.56% | 4.25% | 4.34% | 4.719% | 5.06% | 5.65% | 5.57% | 6.15%

Table 4: BFR results generated from clustering on samples of the training set using varying values for no_of_clusters.

no_of_clusters 100 200 300 400 500 600 700 800 900
Meaningful Clusters | 64.2 | 104.6 | 142.6 | 176.8 206 2322 | 258.6 | 280.6 | 303.2
Degree 1 0% 0% 0% 0.21% | 0.18% | 0.33% | 0.44% | 0.47% | 0.31%
Degree 2 0% 0% 0% 0.21% | 0.18% | 0.33% | 0.30% | 0.34% | 0.31%
Degree 3 0% 0% 0% 0.21% | 0.18% | 0.33% | 0.44% | 0.47% | 0.31%
Degree 4 0% | 0.18% | 0.54% | 0.97% | 1.77% | 2.11% | 3.32% | 3.89% | 3.80%
Degree 5 0% | 0.18% | 0.13% | 0.32% | 0.37% | 0.41% | 0.59% | 0.61% | 0.70%

Table 5: Hierarchical Clustering results generated from clustering on samples of the training set using varying values for no_of_clusters.




Cluster ID IPs Malicious | Benign | Unknown Notes
2 >20000 27% 0% 73% 78% CN, 15% SSH, 6% Telnet, 4% Mirai
1 >20000 29% 2% 69% 77% CN, 18% SSH, 8% Telnet, 4% Mirai
5 >20000 26% 5% 69% 77% CN, 14% SSH, 5% Telnet, 4% Mirai
103 19906 32% 1% 67% 72% Web Crawler, 20% SSH, TLS/SSL Crawler
7504 68 99% 0% 1% 94% SSH, 76% HK
7480 198 86% 0% 14% 74% Mirai
7673 39 100% 0% 0% 95% Unidentified
7667 20 0% 0% 0% 100% Unidentified
13764 4 0% 0% 0% 100% Unidentified
9277 25 74% 0% 26% 84% Web Crawler, 74% CN
78 98 51% 3% 46% 71% Web Crawler
28309 12 0% 0% 0% 100% Unidentified
9277 25 74% 0% 26% 84% Web Crawler
78 98 51% 3% 46% 71% Web Crawler, 26% SSH, 10% Mirai, 56% CN
28309 12 0% 0% 0% 100% Unidentified
15214 24 59% 0% 41% 88% CN, 12% Mirai
609 53 35% 4% 61% 26% SSH
13754 5 75% 0% 25% 75% Mirai
1509 43 45% 0% 55% 55% CN, 27% Telnet
8595 19 88% 0% 13% 87.5% UCLOUD HK
7857 51 47% 0% 53% 47% CN, 38% Telnet
2043 41 67% 0% 33% 76% Web Crawler, 45% SSH, 42% CN
8113 22 43% 0% 57% 71% TLS/SSL Crawler, 29% Mirai
5221 23 100% 0% 0% 88% Web Crawler, 69% SSH
8123 5 100% 0% 0% 33% Mirai
458 54 53% 0% 47% 47% CN, 43% SSH
160 371 45% 4% 51% 69% CN, 22% SSH, 14% Mirai, 13% Telnet
19099 16 40% 0% 60% 40% CN, 20% SSH, 20% Telnet, 20% Mirai
708 495 54% 1% 46% 68% CN, 27% SSH, 19% Mirai, 16% Telnet
3233 19 93% 0% 7% 86% Web Crawler
6809 23 25% 0% 75% 58% Web Crawler
28 1249 59% 0% 41% 97% CN, 47% SSH, 13% Telnet

Table 6: Results of the analysis undertaken using the GreyNoise tool on the larger clusters which aren’t covered under any degree of certainty.
SSH refers to SSH Bruteforcers, Telnet refers Telnet Bruteforcers and Mirai refer to Mirai Botnet infected hosts. CN refers to China and HK
refers to Hong Kong.



	Introduction
	Background
	Motivation
	Research Questions
	Contributions
	Structure

	Related Work
	Methodology
	Data Collection
	Aggregating Data and Selecting Attributes for Training
	Considered Clustering Methods
	Hyperparameter Optimization

	Experimental Setup and Results
	Degrees of Certainty
	Method Validation
	DBSCAN
	K-Means Clustering
	CURE
	Hierarchical Clustering
	BFR

	Comparison of Clustering Methods
	Analysis of Clusters Not Covered Under Any Degree of Certainty
	Results

	Responsible Research
	Discussion
	Conclusion

