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Malleable Kernel Interpolation for
Scalable Structured Gaussian Process

Hanyuan Ban, Ellen H. J. Riemens, Raj Thilak Rajan
Signal Processing Systems, Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands

Abstract—Gaussian process regression (GPR), is a powerful
non-parametric approach for data modeling, which has garnered
considerable interest in the past decade, however its widespread
application is impeded by the significant computational burden
for larger datasets. The computational complexity for both
inference and hyperparameter learning in GPs lead to O(N3) for
N training points. The current state-of-the-art approximations,
such as structured kernel interpolation (SKI)-based methods e.g.,
Kernel Interpolation for Scalable Structured Gaussian Process
(KISSGP), have emerged to mitigate this challenge by providing
a scalable inducing point alternatives. However, the choice of the
optimal number of grid points, which influences the accuracy
and efficiency of the model, typically remains fixed and is chosen
arbitrarily. In this work, we introduce a novel approximation
framework, Malleable KISSGP (MKISSGP), which dynamically
adjusts grid points using a new hyperparameter of the model
called density, which adapts to the changes in the kernel hyper-
parameters in each training iteration. In comparison with the
state-of-the-art KISSGP and irrespective of changes in hyperpa-
rameters, our proposed MKISSGP algorithm exhibits consistent
error levels in the reconstruction of the kernel matrix, and
offers reduced computational complexity. We present extensive
simulations to validate the improved performance of the proposed
MKISSGP, and give directions for future research.

Index Terms—Gaussian process regression, Low-rank approx-
imation, Structured kernel interpolation, KISSGP

I. INTRODUCTION

Gaussian process regression (GPR) is a non-parametric
Bayesian regression technique used for modeling (nonlinear)
relationships, and provides a principled way to quantify un-
certainty in predictions, which is crucial in decision-making
and risk assessment [1], [2]. In the past decades, GPR has
gained increasing attention in addressing challenges in diverse
fields e.g., in predicting atomistic properties in Chemistry
[3][4], in nonlinear model predictive control in the domain of
control theory [5][6] and localization in sensor network [7].
More recently, GPR networks have been proposed to combine
the structural properties of Bayesian neural networks with
the non-parametric flexibility of Gaussian Process [8], and
other extensions such as Deep Gaussian Processes have been
explored [9].

Despite the numerous advantages, the underlying optimiza-
tion of GPR implicitly requires the inversion of a kernel
matrix, which costs O(N3), where N is the number of data
points [1]. In many real-world applications, either the vast
quantity of training data N , or the requirement of frequent
updates prevents the direct use of GPR for large datasets.
To alleviate this high computational complexity, the GPR
cost function is typically distributed among various nodes

[10], [11], [12], or various local and global approximations
have been proposed [13][14][15][16]. There are numerous
approximation methods, such as Nyström approximation [17],
fully independent training conditional (FITC) [18] and sparse
spectral Gaussian process (SSGP) [19], which achieve a good
balance between accuracy and time. However, the current
state-of-the-art low-rank approximation based on the structural
kernel interpolation (SKI) framework is kernel interpolation
for scalable structured Gaussian process (KISSGP) [20], which
leverages a pre-selected set of grid points to interpolate the ker-
nel matrix. KISSGP achieves a time complexity ofO(N+M2)
where M ≪ N is the number of chosen grid points, and can
be further reduced to O(N + M logM) when the Toeplitz
structure of the kernel is exploited [15][20]. However, in
current SKI methods, there is a lack of well-defined strategy
for determining the optimal value of M . Notably, while
literature offers methods to address the exponential growth
of M [16][21][22], the precise determination of the number
of grid points remains unclear.

In this paper, we present a novel low-rank approxima-
tion framework, denoted as malleable kernel interpolation
for scalable structured Gaussian process (MKISSGP), which
extends the capabilities of the well-established state-of-the-
art SKI-based KISSGP approximation, with the determination
of flexible grid points. The determination of the number of
grid points Mopt, is our key contribution in this work, leading
to a reduced computational complexity of O(N + M2

opt),
where Mopt is the optimal number of grid points to reach a
desired accuracy. This avoids the arbitrary choice of M which
may lead to insufficient accuracy or excessive computational
complexity.

II. GAUSSIAN PROCESS REGRESSION

Consider a regression model y = f(x) + w relating
a D−dimensional input x to an output y under Gaussian
noise w ∼ N (0, σ2

n) assumption. The underlying function
can be modeled as a Gaussian Process (GP) i.e., f(x) ∼
GP(0, k(x,x′)), where without loss of generality we assume
zero-mean, and introduce the scalar kernel function k(·, ·)
relating two input vectors [1]. Now, consider a dataset of N in-
puts X = {xn}Nn=1 with corresponding outputs y = {yn}Nn=1,
then the values of the function at a finite set of inputs are
jointly Gaussian i.e.,

f = [f(x1), . . . , f(xN)] ∼ N (0,K), (1)
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where K is a N×N kernel matrix whose element-wise entries
[K]ij = k(xi,xj) form the scalar kernel function. In this work,
we use the radial basis function (RBF) kernel i.e.,

k(xi,xj) = σ2
s exp

[
− 1

2l2
∥xi − xj∥22

]
, (2)

which contain the hyperparameters θ = [σ2
s , l]T i.e., the

signal power (σ2
s ) and length-scale (l) respectively. Given

the input-output pairs {X,y}, the hyperparameters θ and the
noise power σn, the predictive distribution of the test inputs
X∗ is a joint Gaussian distribution conditioned on the given
information i.e.,

f∗|X∗,X, f ,θ, σn ∼ N (f̄∗, cov(f∗)), (3)

where

f̄∗ = KT
X,∗(KX,X + σ2

nI)
−1y, (4a)

cov(f∗) = K∗,∗ −KT
X,∗(KX,X + σ2

nI)
−1KX,∗. (4b)

Here, I denotes the identity matrix, and KX,X,KX,∗ and K∗,∗
are the kernel matrices between X and X, X and X∗, and X∗
and X∗, respectively. Let det(·) denote the determinant of a
matrix, then the marginal likelihood of the data, conditioned
only on the hyperparameters θ is analytically

log p(y|X,θ) ∝ 0.5[yT (KX,X + σ2
n)

−1y

+ log det
(
KX,X + σ2

n

)
+N log 2π].

(5)

Observe that, the computational bottleneck of solving for
log det

(
KX,X + σ2

n

)
and (KX,X+σ2

n)
−1y typically requires

O(N3) time complexity using the Cholesky decomposition of
the kernel, which limits the use of GPR for large datasets.

A. KISSGP
Conventionally, approximation methods reduce the time-

complexity of GPR by reducing the rank of the kernel matrix
[13]. For instance, let U = {um}Mm=1 be a set of M predefined
inducing points such that M ≪ N , then subset of regressors
(SoR) method [23] uses the following approximation

KX,X ≈ K̃ = KX,UK−1
U,UKU,X, (6)

where KX,U represents the kernel evaluated at the correspond-
ing training and inducing inputs, while KU,U is the kernel
evaluated only from the respective inducing inputs. KISSGP
further reduces the computational complexity by finding a
suitable approximation for KX,U [20]. For any input xi,
1 ≤ i ≤ N , a set of M weights {wi,m}Mm=1 corresponding to
all grid points U is found, such that

k(xi,uj) ≈
M∑

m=1

wi,mk(um,uj), (7)

where k(xi,uj) = [KX,U]i,j and k(um,uj) = [KU,U]m,j .
Let all the weights be populated in a N ×M interpolation
matrix W, such that KX,U ≈WKU,U, where W could be
very sparse. Substituting this expression in (6), we have

KX,X ≈ K̃ = WKU,UWT , (8)

which is the Scalable Kernel Interpolation (SKI) framework
or KISSGP. Now, substituting (8) in (5), the modified log
likelihood is

log p(y|U,θ) ≈ 0.5[yT (K̃+ σ2
nI)

−1y

+ log det
(
K̃+ σ2

nI
)
+N log 2π].

(9)

Note that KX,X has been replaced by K̃, which consists of
sparse W, and KU,U with a Toeplitz structure due to the
equispaced gridpoints. Exploiting this structure of K̃ reduces
the time complexity for the calculations of both (K̃+σ2

nI)
−1y

and log det
(
K̃+ σ2

nI
)

, and facilitates a reduction in time
complexity from O(N3) to O(N +M2). There are numerous
approaches to construct the sparse interpolation matrix W,
for e.g., cubic convolution interpolation (CCI), which was
implemented in the original KISSGP work [20], which results
in 4D non-zero entries per row [24].

III. PROPOSED LOW-RANK APPROXIMATION

One of the key features of KISSGP is the number of
fixed gridpoints M in the learning phase, which is typically
arbitrarily chosen. Furthermore, for accurate kernel recon-
struction, a higher M is required, which in turn leads to a
computational bottleneck for larger datasets. To overcome this
challenge, we make the observations that, for RBF kernels M
depends on the length scale l to achieve a desired accuracy
and for all interpolation methods the distance between grid
points is naturally fixed. In pursuit of a unified metric, we
combine these observations and define a novel density metric
ρ, which relates the distance between successive grid points
d = ∥um+1 − um∥2 and the kernel length l as

ρ =
l

d
, (10)

and thus combines the kernel hyperparamters and the interpo-
lation method, and thereby allowing us to adapt and converge
at an optimal value for Mopt. See Section III-A.

We now aim to show that the introduction of ρ does not
affect the accuracy of KISSGP (7). Let a ∈ {u1,u2, . . . ,uM},
then we consider the task of interpolating the kernel value
k(xi,a) at xi, 1 ≤ i ≤ N . Here, the distance from xi to a can
be expressed as function of d i.e., ∥xi − a∥2 = sxad = sxa

l
ρ ,

where sxa is the relative distance from xi to a, in terms of the
distance between gridpoints d. Note that it is valid to represent
a point xi by its relative distance sxa since the relationship is
bijective when ρ and l are specified. Subsequently, the kernel
value k(xi,a) in (7) can be explicitly expressed as a function
of ρ, i.e.,

k(xi,a) = σ2
s exp

(
−
∥xi − a∥22

2l2

)
= σ2

s exp

(
− s2xa
2ρ2

)
.

(11)
Along similar lines k(um,a), 1 ≤ m ≤ M , can also be
expressed as a function of ρ, where the relative distance
between grid points is 1 by definition. Thus the performance
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(a) l = 0.5 (b) l = 1.0

Fig. 1: Comparison of interpolation result with ρ = 1. a) Using
16 grid points. b) Using 8 grid points.

of the linear operation in (7) should not be affected by the
introduction of ρ.

Figure 1 gives an illustration for a 1-D case, which is
obtained by fixing ρ = 1 to an approximate RBF kernel with
l = 0.5 and l = 1. From the plots, we observe that both
the true kernel value distribution and the interpolated value
distribution are stretched along the x-axis, however the values
remain unchanged. In summary, the criteria for accuracy can
be uniquely controlled by the newly proposed parameter:
density ρ, which directly yields the number of grid points M .

A. MKISSGP

We propose a framework that leverages grid point density
to ensure accuracy at a reduced cost, and introduce a training
algorithm where at every iteration, the grid points are updated
according to ρ to adapt to the change in the length scale l. We
consider here an RBF kernels and single dimension D = 1, but
a similar density parameter can be learned for other kernels,
and can be extended for larger dimensions. The steps of the
training algorithm are summarized in Algorithm 1, and for
each iteration we follow these tasks.

• Determine grid points Given the inputs X, the length
scale l, and density parameter ρ, we determine the dis-
tance between grid points as d = l

ρ . To guarantee that all
training inputs are effectively covered, we add sufficient
number of grid points at the beginning and the end with
the same distance to ensure that the interpolation can be
effectively achieved.

• Calculate interpolation matrix (W) Because the grid
points now change with the optimization, the interpola-
tion matrix W is recalculated in every iteration, unlike
in standard KISSGP.

• Calculate kernel (KU,U) Given the updated hyperpa-
rameters and selected grid points U, the updated kernel
matrix is calculated.

• Update hyperparameters θ Finally, we follow the steps
of non-linear conjugate gradient (CG) approach to update
the hyperparameters.

B. Time complexity

Compared with the original KISSGP, MKISSGP introduced
the procedure of grid point determination and interpolation

Algorithm 1 Training Process for MKISSGP
Input: Training set {X, y}, initial guess θ0, density ρ

1: Determine grid points from ρ and l
2: Calculate the initial W, KU,U

3: Define index k ← 0
4: Estimate ∆k ← −∂ log p(y|X,θk)

∂θk

5: Define initial conjugate direction sk ←∆k

6: repeat
7: Determine grid points from ρ and l
8: Update the interpolation matrix W
9: Update the grid kernel matrix KU,U

10: Estimate ∆k+1 ← −∂ log p(y|X,θk+1)
∂θk+1

using W,KU,U

11: Estimate βk ←
∆T

k+1(∆k+1−∆k)

∆T
k ∆k

12: Update conjugate direction: sk+1 ← βksk +∆k+1

13: Perform Wolfe line search: αk ← α
14: Update hyperparameter: θk+1 ← θk + αksk
15: Update index k ← k + 1
16: until convergence
17: Output: Optimal hyperparameters θk−1

matrix calculation W at every iteration, which introduces
additional time complexity terms. The determination of grid
points takes O(M) time to evaluate the position of the M
grid points in each dimension. Due to the fact that in the
SKI framework, we assume a multiplicative kernel [20], and
the CCI will require at least 4 grid points per dimension,
O(MD) ≤ O(MD). Secondly, for the calculation of the
interpolation matrix W, the required grid points and the cor-
responding weights for the training data need to be calculated,
which both take O(N) time, but can be computed in parallel.

IV. SIMULATIONS

We perform 3 experiments to demonstrate the performance
of the proposed MKISSGP in comparison with state-of-the-art.

Kernel reconstruction: We generate 3 RBF kernel matrices
from 10000 random points drawn from a standard normal
distribution while using RBF kernels with l = 0.1, l = 0.5,
and l = 1.0, respectively. We approximate the kernels with
a density ρ = 2.7 and KISSGP with M = 42, equivalent
to MKISSGP in the l = 0.5 case. In Figure 2, we see the
absolute reconstruction error, as compared to the true kernel
matrix. In Figure 2a, 2c, and 2e, the error of reconstruction
using MKISSGP is shown, where the values of the errors
remain relatively consistent with the length scale variation. In
Figure 2b, 2d, and 2f, we see the error of reconstruction using
KISSGP, where the error significantly scales with smaller
values of l and constant M . For l = 0.5, despite having the
same number of grid points, the reconstruction error differs
between MKISSGP and KISSGP, due to differences in grid
point position selection. This experiment confirms that by
choosing higher values of ρ, one can improve the accuracy
of kernel matrix reconstruction without overestimating the
required number of grid points M .
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(a) (Proposed) MKISSGP, l=0.1 (b) KISSGP, l=0.1

(c) (Proposed) MKISSGP, l=0.5 (d) KISSGP, l=0.5

(e) (Proposed) MKISSGP, l=1.0 (f) KISSGP, l=1.0

Fig. 2: Reconstruction error between true and approximated
kernel matrix |K − K̃|, where | · | denotes the element-wise
absolute value. The color bar is limited to 0.25, as values may
be larger.

Recommended Density (ρ): In the next experiment, our ob-
jective is to determine an optimal density value for MKISSGP
using the RBF. We perform 8,000 Monte Carlo trials, where
in every trial, we generate 1,000 noisy training points (with
σ2
n = 0.25) from an arbitrarily sampled D = 1 function

governed by a Gaussian process (GP) using an RBF kernel.
The signal power is drawn from a uniform distribution ranging
between 1.0 and 10.0, while the length scale is selected from a
uniform distribution in the logarithmic domain spanning from
0.1 to 20.0. For each trial, a MKISSGP model is constructed
with densities drawn from a uniform distribution between 0.5
and 3.5. The efficiency of the algorithm is gauged by recording
the average time spent on one negative marginal log-likelihood
(NMLL) and derivative of NMLL w.r.t. hyperparameters cal-
culation, along with the final RMSE achieved.

Figure 3a and 3b show the error and time across density
values ρ, respectively. The covariance of the error distribution
decreases, and the time spent increases with growing density.
The scattering of time values can be attributed to the stochastic
nature of computational power and variations in hyperparam-

(a) Density vs. RMSE (b) Density vs. Time

(c) Time vs. RMSE (d) Distribution of samples

Fig. 3: Recommended density test results: (a) root mean square
error (RMSE) decreases with increasing ρ, (b) Time generally
rises with density. (c) RMSE decreases with time; preferred
results are indicated (time < 20ms, RMSE < 0.2). (d) KDE
plots. Blue: preferred samples (RMSE < 0.2). Red: samples
with RMSE > 0.2. Samples are weighted considering error
and time.

Fig. 4: Function f(x) with posterior distribution obtained
using MKISSGP with ρ = 2.7.

eter initialization. The relationship between time per iteration
and the RMSE is shown in Figure 3c. Achieving better results
is more likely when there is a higher time used. The region
within the red (dotted) box is considered where the optimal
test results are expected to be found, balancing time and
RMSE. Beyond the threshold of 20 ms, minimal improvement
in results is observed and an upper bound of 0.2 is imposed
on the RMSE. Figure 3d shows the distribution of samples
with RMSE values less and greater than 0.2, where we have
chosen ρ = 2.70, as it maximizes the difference between the
kernel density estimate (KDE) values. Individual requirements
and unique characteristics of the data may require adjustments
to the chosen density.

Computational complexity: We now generate a function
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Method ρ̄ RMSE time (ms)
GPR - 0.11 8601.63
KISSGP-50 1.41 0.25 1201.94
KISSGP-100 2.91 0.13 4793.28
KISSGP-200 5.91 0.11 6727.39
MKISSGP-2.2 2.20 0.15 947.71
MKISSGP-2.7 2.70 0.11 1155.03
MKISSGP-3.2 3.20 0.11 1523.23

TABLE I: RMSE and time of GPR, KISSGP and MKISSGP,
where ρ̄ indicates equivalent density for KISSGP.

f(x), using an RBF kernel with parameters σ2
s = 25, l = 30,

and the underlying noise variance of σ2
n = 0.25, using

N = 1000 samples as shown in Figure 4. We compare the
reconstruction error of GPR, KISSGP and MKISSGP, for
various equivalent density parameters, and all experiments
were run on a 2.30GHz Intel Core i7-11800H CPU. Table I
shows the RMSE and training time for the three methods
reconstructing function f(x) over 100 Monte Carlo trials.
We observe that to achieve our benchmark accuracy of the
GPR, KISSGP requires M = 200 gridpoints at an equivalent
density of 5.91, while MKISSGP only needs a density of 2.7
to achieve a similar accuracy, while requiring almost 6 times
less training time.

The asymptotic time complexity of MKISSGP is found to be
reduced to O(N +M2

opt), where Mopt represents the optimal
number of grid points to reach a specific level of accuracy
given the length scale l. During nonlinear conjugate gradients
(CG), the changes in the length scale become progressively
smaller to the extent that the number of grid points remains
unchanged. To achieve the desired accuracy, our proposed
MKISSGP algorithm converged at Mopt = 81 with ρ = 2.7,
while using the state-of-the-art KISSGP, the corresponding
accuracy was only reached at M = 200, while traditional
GPR uses N = 1000 points. As mentioned earlier, we could
further reduce this complexity to O(N+Mopt logMopt) if we
exploit the underlying Toeplitz structure [15].

V. CONCLUSION

In this work, we presented MKISSGP, a malleable exten-
sion of KISSGP, where the grid points can be computed
dynamically. We show that MKISSGP effectively minimizes
the number of grid points required to achieve desired accuracy,
as compared to the state-of-the-art methods, and thus reduces
computational complexity. The benefits of our strategy are cor-
roborated with extensive simulations. In this work, we limited
our discussion to RBF kernels and CCI, and in our follow
up work, we aim to explore other kernels and interpolation
methods, and recommend suitable density parameters in these
scenarios.
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