
 
 

Delft University of Technology

Modal methods for rehomogenization of nodal cross sections in nuclear reactor core
analysis

Gamarino, Matteo

DOI
10.4233/uuid:084a28c2-dacc-4c4d-9f61-8c9444a3dd4a
Publication date
2018
Document Version
Final published version
Citation (APA)
Gamarino, M. (2018). Modal methods for rehomogenization of nodal cross sections in nuclear reactor core
analysis. [Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:084a28c2-
dacc-4c4d-9f61-8c9444a3dd4a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:084a28c2-dacc-4c4d-9f61-8c9444a3dd4a
https://doi.org/10.4233/uuid:084a28c2-dacc-4c4d-9f61-8c9444a3dd4a
https://doi.org/10.4233/uuid:084a28c2-dacc-4c4d-9f61-8c9444a3dd4a


M
odal m

ethods for rehom
ogenization of nodal cross sections in nuclear reactor core analysis       M

atteo G
am

arino

Invitation
to the defence ceremony of  

the Ph.D. thesis entitled

Modal methods for 
rehomogenization of 

nodal cross sections in 
nuclear reactor core 

analysis

by

Matteo Gamarino

Tuesday, November 20, 2018
Senaatszaal, Aula of TU Delft  

Mekelweg 5, Delft

12:00 Introductory talk
12:30 Thesis defence

Matteo Gamarino

Modal methods for rehomogenization
of nodal cross sections in nuclear 

reactor core analysis  



Propositions

Belonging to the Ph.D. thesis of Matteo Gamarino

MODAL METHODS FOR REHOMOGENIZATION OF NODAL CROSS SECTIONS
IN NUCLEAR REACTOR CORE ANALYSIS

1. The accuracy of two-group nodal diffusion simulations with infinite-medium ho-
mogenization parameters relies on favorable error cancellation. (This thesis, Chap-
ters 2 and 3)

2. Spectral rehomogenization of nodal cross sections makes the critical-buckling met-
hodology redundant. (This thesis, Chapters 2 and 3)

3. Reactor analysts should not assess the accuracy of rehomogenization methods ba-
sed only on the errors in the multiplication factor and assembly-averaged power.
(This thesis, Chapters 2, 3, and 5)

4. The investment of research effort and funding would greatly benefit from peer-
reviewed journals promoting the publication of negative results.

5. Recent major cold blasts (such as the early 2012 European cold wave) do not indi-
cate a reversal of global warming and climate change. 1

6. Locating nuclear research institutes in isolated areas hampers public acceptance
of nuclear energy.

7. Only herd immunity can justify mandatory vaccination.

8. The absence of culturally-entrenched conservative religious beliefs is a necessary,
yet not sufficient condition for full compliance with civil rights and gender equa-
lity.

9. A canteen providing good-quality and diverse food at subsidized rates is an impor-
tant factor to improve employee workplace satisfaction and engagement.

10. The absence of symptoms of ‘numerical correctness bugs’ 2 (wrong results, con-
vergence failure, crashes and bad performance) does not prove that computer
software is free of such bugs. The outcome of numerical simulations (including
those presented in this thesis) must therefore be taken with a grain of salt.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor, Prof. dr. ir. J.L. Kloosterman.

1European Environment Agency, “Global and European temperature”, 2018, https://www.eea.europa.eu/
data-and-maps/indicators/global-and-european-temperature-8/assessment.

2A. Di Franco, H. Guo, and C. Rubio-González, “A comprehensive study of real-world numerical bug charac-
teristics”, Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
pp. 509-519, IEEE Press, 2017.

https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-8/assessment
https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-8/assessment


Stellingen

Behorende bij het proefschrift van Matteo Gamarino

MODAL METHODS FOR REHOMOGENIZATION OF NODAL CROSS SECTIONS
IN NUCLEAR REACTOR CORE ANALYSIS

1. De nauwkeurigheid van twee-groep nodale diffusieberekeningen met oneindig-
medium homogenisatieparameters is afhankelijk van gunstige foutenopheffing.
(Dit proefschrift, Hoofdstukken 2 en 3)

2. Spectrale rehomogenisatie van nodale werkzame doorsneden maakt de kritische
buckling methodiek overbodig. (Dit proefschrift, Hoofdstukken 2 en 3)

3. Reactoranalisten dienen de nauwkeurigheid van rehomogenisatiemethoden niet
alleen op basis van fouten in de vermenigvuldigingsfactor en in de assemblage-
gemiddelde vermogensproductie moeten beoordelen. (Dit proefschrift, Hoofd-
stukken 2, 3 en 5)

4. De investeringen van onderzoeksinspanning en financiering zouden gebaat zijn
bij het stimuleren van publicatie van negatieve resultaten.

5. Recente intense koude perioden (zoals die van begin 2012 in Europa) zijn geen
indicatie voor omkering van het broeikaseffect en klimaatverandering. 1

6. Het vestigen van nucleaire onderzoeksinstituten in geïsoleerde gebieden belem-
mert de publieke acceptatie van kernenergie.

7. Alleen groepsimmuniteit kan verplichte vaccinatie rechtvaardigen.

8. De afwezigheid van cultureel vervlochten conservatieve religieuze gedachten is
een benodigde, maar niet voldoende, conditie voor volledige naleving van men-
senrechten en geslachtsgelijkheid.

9. Een kantine die voorziet in hoge kwaliteit, divers voedsel tegen gesubsidieerde
prijzen is een belangrijk element om werknemer tevredenheid en betrokkenheid
te vergroten.

10. De afwezigheid van symptomen van ‘numerieke correctheid fouten’ 2 (verkeerde
resultaten, gebrek aan convergentie, slechte performance) is geen bewijs dat com-
putersoftware vrij is van dergelijke fouten. De uitkomst van numerieke simulaties
(inclusief die in dit proefschrift) moet dan ook met een korrel zout genomen wor-
den.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor, Prof. dr. ir. J.L. Kloosterman.

1European Environment Agency, “Global and European temperature”, 2018, https://www.eea.europa.eu/
data-and-maps/indicators/global-and-european-temperature-8/assessment.

2A. Di Franco, H. Guo, and C. Rubio-González, “A comprehensive study of real-world numerical bug charac-
teristics”, Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
pp. 509-519, IEEE Press, 2017.

https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-8/assessment
https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-8/assessment
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“In one world, effort is a bad thing. It, like failure, means you’re not smart or talented. If
you were, you wouldn’t need effort. In the other world, effort is what makes you smart or
talented.” − Carol Dweck

Thesis cover:

Front: Neutron flux energy spectrum per unit lethargy in a conventional UO2
fuel assembly (top), and physical media for the computational mesh
of an EPRTM -like quarter-core geometry (bottom). Both figures have
been obtained with the APOLLO2-A deterministic lattice transport
code.

Back: Reactor pool of the Hoger Onderwijs Reactor (HOR) of Delft Uni-
versity of Technology (Reactor Institute Delft).
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Chapter 1

Introduction

This thesis presents novel rehomogenization methods for Light Water Reactor (LWR)
core analysis. In this chapter, a short introduction to nodal diffusion methods and core
homogenization is provided. Practical difficulties arising from environmental effects
on the nodal cross sections and discontinuity factors are discussed, and the need for
rehomogenization is motivated. The main existing methods to correct homogenization
errors are briefly reviewed. To conclude, the research objectives are outlined and an
overview of the thesis contents is given.

1.1 Background and motivation

1.1.1 Nodal methods for reactor core analysis

Our capability to analyze nuclear reactor cores strongly relies on the numerical solution
of the multigroup neutron transport and diffusion equations. The latter (which makes
the assumption that the neutron flux only weakly depends on the angular variable) is
the primary modeling tool in routine analyses for industrial calculations (Stacey, 2007).
Core design, monitoring and safety analyses require thorough knowledge of physical
quantities such as the effective multiplication factor, the reaction-rate and power
distributions, control-rod worths and shutdown margins. Their determination calls
for full three-dimensional (3-D) calculations of the neutron flux. The reactor core is a
highly heterogeneous medium. Several levels of heterogeneity can be identified, ranging
from the scale of the typical unit cell (made of a fuel pin, clad and coolant) to the intra-
and inter-assembly variations in material composition. In conventional finite-difference
diffusion tools, the mesh spacing is constrained by two requirements (Duderstadt and
Hamilton, 1976): (i) it must be sufficiently fine to represent the spatial heterogeneity

1



1. Introduction

adequately, and (ii) it must not be larger than the shortest (i.e., thermal) diffusion
length in heterogeneous regions in order to avoid numerical inaccuracy. Consequently,
an accurate finite-difference solution of the diffusion equation can only be achieved
modeling explicitly every fuel pin, control rod, burnable-absorber rod, and water
channel in the reactor core. In a few-group framework, this approach may result
in more than 106 unknowns (the fluxes in each energy group at each mesh point).
The magnitude of the problem increases considerably in reactor cycle analyses, in
which a full-core spatial solution is needed at each fuel depletion step. In spite of
the continuous advances in computer hardware, a direct numerical solution of this
problem remains nowadays a prohibitive task due to practical limitations on memory
storage and run time.
In the past, a number of solution strategies were developed as alternatives to fine-mesh
approaches on a core-wide basis. Among them, coarse-mesh nodal diffusion methods
are certainly the most successful and widely used tool (Lawrence, 1986; Stacey, 2007).
In this class of methods, the reactor core is subdivided into relatively large subregions
(referred to as nodes) in which the material composition is assumed uniform. A
node usually consists of an entire fuel assembly or a quarter of fuel assembly in the
radial plane. Each node is described by a set of equivalent few-group diffusion-theory
parameters: the nodal cross sections (which are spatially constant over the cross-
sectional area of the node) and the assembly discontinuity factors. The calculation of
these parameters, which is based on General Equivalence Theory (GET) (Smith, 1986;
Sanchez, 2009), is addressed in Section 1.1.2. With this coarse-mesh approach, the
global (i.e., full-core) neutron flux distribution is computed at a significantly smaller
number of mesh points. Moreover, the spatial detail of the geometry is reduced to
a level where the diffusion approximation can be applied with a solid theoretical
background, because the flux becomes a smoothly varying function of the spatial
coordinates.
Early nodal methods, which appeared in the 1960s, were based on empirical relations
and ad hoc approximations (Gupta, 1981; Lawrence, 1986; Smith, 1986). However,
modern nodal schemes are consistently formulated (namely, the computed solution
approaches the exact solution of the few-group diffusion equation if the spatial mesh is
decreased or the approximation order is increased). Provided that reliable equivalent
parameters are determined, they are comparable in accuracy to detailed pin-by-pin
calculations, thus offering a trade-off between precision and computational efficiency. A
detailed description of nodal methods is out of the scope of this thesis. The remainder
of this section only summarizes the main solution strategies in advanced nodal schemes,
to which the methods developed in this thesis are applied.
In most nodal codes, the 3-D diffusion equation is integrated over the two directions
transverse to each coordinate axis (Lawrence, 1986). The so obtained one-dimensional
(1-D) equations are coupled by the node-to-node transverse leakage, which is assumed to
be in the shape of a quadratic polynomial. The leakage coefficients for a given direction
are determined requiring that the volume-averaged values of the transverse leakage
be preserved in three neighboring nodes. The most popular transverse-integrated

2



1.1. Background and motivation

nodal approaches are the Nodal Expansion Method (NEM) and the Analytic Nodal
Method (ANM). In the NEM (Finnemann et al., 1977; Langenbuch et al., 1977),
the 1-D flux distributions are approximated by quartic polynomial expansions. In
the ANM (Henry, 1972; Smith, 1979), the transverse-integrated equations are solved
analytically, with no approximation other than the quadratic leakage fit. For more
details about these methods, the interested reader may refer to: Lawrence (1986);
Vogel and Weiss (1992); Bouamrirene and Noceir (1994); Turinsky et al. (1995);
Zimin et al. (1998); Joo et al. (1998); Fu and Cho (2002); Downar et al. (2006);
Hébert (2008). Several acceleration techniques are available for the solution of the
transverse-integrated equations, such as the Coarse Mesh Finite Difference (CMFD)
iteration scheme (Smith, 1983; Sutton and Aviles, 1996) and Coarse Mesh Rebalancing
(van Geemert, 2014). Since the nodal equations only provide volume-averaged and
surface-averaged fluxes and reaction rates, dehomogenization techniques have been
developed to reconstruct the heterogeneous pin-by-pin flux and power distributions
using this average information (Rempe et al., 1989; Downar et al., 2006; Joo et al.,
2009). In most reconstruction schemes, the two-dimensional (2-D) diffusion equation
is solved locally (i.e., within each node) and independently in each energy group
using the volume-averaged fluxes, the surface-averaged fluxes and currents, and the
corner-point fluxes (for which additional approximations are introduced) as boundary
conditions. The so obtained non-separable homogeneous flux distribution is modulated
with a heterogeneous assembly flux shape.

1.1.2 Homogenization theory and the two-step procedure
Ideally, few-group nodal parameters (the homogenized cross sections and discontinuity
factors) should be determined such that equivalence is kept between the homogenized-
assembly diffusion-based representation of the reactor core and the exact solution of
the heterogeneous transport equation (Smith, 1986; Sanchez, 2009). The most import-
ant quantities to be preserved are (i) the effective multiplication factor (or reactor
eigenvalue), (ii) the volume-averaged few-group reaction rates in each homogenized
region, and (iii) the surface-averaged few-group currents at the interfaces of each
homogenized region. The reference angle-integrated transport equation in the energy
group G reads

∇ ·JhetG (r) + Σhet
t,G(r)Φhet

G (r) =
NG∑
G′=1

(
χhetG (r)
keff

νΣhet
f,G′(r) + Σhet

s,G′→G(r)
)

Φhet
G′ (r), (1.1)

with the following definitions:

JhetG (r) =
∫

4π
dΩ Ω ·Φhet

G (r,Ω), (1.2a)

Φhet
G (r) =

∫
4π
dΩ Φhet

G (r,Ω), (1.2b)

3



1. Introduction

Σhet
s,G′→G(r) = 1

2

∫ 1

−1
dµ0 Σhet

s,G′→G(r, µ0) , µ0 = Ω ·Ω′. (1.2c)

In Eq. (1.1), keff is the effective multiplication factor, Φhet
G (r) and JhetG (r) are the

3-D angle-integrated heterogeneous flux and current densities in group G, and NG is
the number of energy groups. The cross-section notation is standard (Stacey, 2007).
In Eq. (1.2), Ω denotes the angular variable, Φhet

G (r,Ω) is the group-G angular flux
distribution, and µ0 is the scattering angle cosine (Duderstadt and Hamilton, 1976).
The homogenized diffusion equation with piecewise-constant (i.e., assembly-homogenized)
cross sections is

∇ ·JhomG (r) + Σhom
t,G (r)Φhom

G (r) =
NG∑
G′=1

(
χhomG (r)
keff

νΣhom
f,G′(r) + Σhom

s,G′→G(r)
)

Φhom
G′ (r).

(1.3)
Given a node k with uniform cross sections, preservation of the volume-averaged
reaction rate (for reaction type x) and surface-averaged currents is obtained with the
relations

Σkx,G =
∫
Vk
dr Σhet

x,G(r)Φhet
G (r)∫

Vk
dr Φhom

G (r)
(1.4)

and ∫
Si

k

dS ∇ ·JhomG (r) =
∫
Si

k

dS ∇ ·JhetG (r), (1.5)

where Vk and Sik denote the volume and the i-th surface of node k, respectively. If
Eqs. (1.4) and (1.5) are satisfied, keff is also preserved (Smith, 1986).

1.1.2.1 Spatial homogenization and energy condensation of cross
sections

In Eq. (1.4), the spatially dependent cross sections are averaged within the node (i.e.,
the fuel assembly) by flux-volume weighting. Obviously, Eq. (1.4) cannot be used in
practical applications, because neither the heterogeneous transport solution Φhet

G (r)
[Eq. (1.1)] nor the homogeneous diffusion solution Φhom

G (r) [Eq. (1.3)] is known a
priori. This complexity is commonly circumvented approximating Φhet

G (r) with the
solution of the heterogeneous transport equation in the fuel assembly with reflective
boundary conditions at its outer edges (Smith, 1986). In this calculation (referred
to as single-assembly or infinite-medium calculation), the assembly is modeled in the
most detailed geometry, and intra-assembly transport effects are taken into account.
The zero-net-current boundary conditions are the only approximation. With the
aforementioned assumption, Eq. (1.4) becomes

Σkx,G ≈ Σ∞,kx,G , Σ∞,kx,G =
∫
Vk
dr Σhet

x,G(r)Φhet
∞,G(r)∫

Vk
dr Φhet

∞,G(r)
, (1.6)
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where Φhet
∞,G(r) denotes the heterogeneous flux from the single-assembly transport cal-

culation. Moving from Eq. (1.4) to Eq. (1.6), the spatial integral of Φhom
G (r) has been

replaced with the infinite-medium heterogeneous integral, thus introducing another
approximation.
The single-assembly (or lattice) calculation is performed for each type of fuel as-
sembly in a reactor core. It is commonly based on deterministic transport methods,
such as collision probability, the method of characteristics, and discrete ordinates
(Sanchez and McCormick, 1982; Lewis and Miller, 1984). The determination of the
assembly-homogenized cross sections is usually split into two phases, as described
below (Duderstadt and Hamilton, 1976; Smith, 1986; Stacey, 2007).

• The periodic lattice of the fuel assembly is first divided into a number of identical
unit cells, each consisting of a fuel pin, its clad, the surrounding moderator,
and the structural material. The transport equation is solved for every type
of fuel cell, under the assumption of zero net leakage at the cell boundaries.
More advanced lattice codes model clusters of cells (instead of each cell type
independently) to account for cell-to-cell neutron exchange. The cell calculation
is usually performed in 1-D cylindrical geometry and features (i) a very fine
energy mesh (often hundreds of groups) to account for heterogeneous effects in
resonance absorption and fast fission (such as energy self-shielding effects), and
(ii) a detailed spatial discretization to model the strong variation in the neutron
spectrum inside the cell (spatial self-shielding effects). Using the so obtained
within-cell flux distribution as weighting function, the fine-group, fine-mesh cross
sections are spatially averaged over the cell and collapsed to a smaller number
of groups (usually between 6 and 40). Rather specialized techniques are applied
for cells not containing fuel material, such as water holes, guide tubes hosting
control rods, and burnable-poison rods.

• Collapsed cell-averaged cross sections are used in whole-assembly transport
calculations that model all the homogenized fuel cells, control rods, water
channels, and burnable-absorber rods. Modern lattice codes, such as APOLLO2
(Sanchez et al., 2010) and CASMO (Rhodes et al., 2006), adopt a detailed
representation of the fuel cells also in this phase of the homogenization procedure.
These codes use the method of characteristics (Sanchez and McCormick, 1982;
Lewis and Miller, 1984) with an unstructured mesh and subdivide each fuel pin
into octants of rings. The whole-assembly calculation must also be performed
with a sufficient number of energy groups to account for spectral interactions
between dissimilar cells (i.e., between pins having different fuel composition,
between fuel cells and control rods, etc.). The resulting flux distribution is used
to spatially average the pin-by-pin cross sections over the whole assembly and
to collapse them further to few groups (usually two groups in LWR analysis).

The fine-group cross sections and the condensation spectrum used for energy collapsing
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depend on the thermal-hydraulic conditions and material composition in the node
(i.e., the reactor state parameters). Few-group homogenized cross sections for nodal
routines must therefore be represented as a function of the local, instantaneous
physical conditions. Lattice calculations are performed for a limited set of reactor
states, from which a continuous representation (namely, the cross-section library) is
built to cover the whole state-parameter phase space (Watson and Ivanov, 2002; Zimin
and Semenov, 2005). In this way, the nodal cross sections can be reconstructed (usually
via multivariate interpolation) at the exact, local conditions during the on-line core
calculation. This solution strategy (based on single-assembly transport calculations for
few-group constant generation and whole-core nodal diffusion simulations) is referred
to as two-step procedure.

1.1.2.2 Assembly discontinuity factors

The transverse-integrated nodal equations (Section 1.1.1) are solved requiring continu-
ity of the neutron flux and net current across nodal interfaces. A difficulty arising
from the homogenization procedure is that the homogenized diffusion equation with
the above continuity conditions lacks sufficient degrees of freedom to preserve simul-
taneously reaction rates and currents (Smith, 1986). This feature becomes apparent
introducing Fick’s diffusion law

JhomG (r) = −Dhom
G (r)∇Φhom

G (r) (1.7)

into Eq. (1.5), which yields, for node k,

Dk
G,i =

−
∫
Si

k
dS ∇ ·JhetG (r)∫

Si
k
dS ∇2Φhom

G (r)
. (1.8)

If conventional flux and current continuity are imposed at the nodal interfaces, the
values of the diffusion coefficient Dk

G,i computed with Eq. (1.8) will be different on
each surface Sik. Spatially constant values of the diffusion coefficient (preserving the
quantities of Eqs. (1.4) and (1.5)) can only be found if additional degrees of freedom
are introduced in the homogenized parameters. These degrees of freedom are the
assembly-surface discontinuity factors, which allow the homogeneous surface fluxes to
be discontinuous (Smith, 1986). These parameters relate the homogeneous surface flux
Φhom,k
G,i at a nodal interface i to the corresponding heterogeneous flux Φhet,k

G,i , which is
continuous and uniquely defined:

fkG,i =
Φhet,k
G,i

Φhom,k
G,i

. (1.9)

Assembly discontinuity factors can be viewed as additional homogenization parameters.
As such, they are also computed in single-assembly transport calculations and stored in
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1.1. Background and motivation

the multiparameterized cross-section libraries. In the infinite lattice, the homogenized
flux is spatially flat. Single-assembly discontinuity factors are, therefore, ratios of
surface-averaged heterogeneous fluxes to volume-averaged fluxes:

fkG,i ≈ f
∞,k
G,i , f∞,kG,i =

Φhet,k
∞,G,i

Φ̄het,k
∞,G

=
1
Si

k

∫
Si

k
dS Φhet

∞,G(r)
1
Vk

∫
Vk
dr Φhet

∞,G(r)
, (1.10)

where Sik and Vk denote the values of the surface area and volume of the node,
respectively.

1.1.3 Problem description: core-environment effects on the
homogenization parameters

Equivalence between the homogeneous nodal model [Eq. (1.3)] and the heterogeneous
fine-mesh global solution from transport [Eq. (1.1)] is only guaranteed if the neutron
flux distribution in the fuel assembly is close to the infinite-medium one used for
spatial homogenization and energy condensation of cross sections [Eq. (1.6)] and for
the determination of the discontinuity factors [Eq. (1.10)]. If the assembly is far
away from the reflector and surrounded by assemblies of the same type in a large
medium compared to the neutron mean free path, the infinite-medium approximation
is generally acceptable. However, this condition is seldom met in modern reactor
cores, characterized by strongly heterogeneous configurations which aim to reduce
the neutron leakage, to optimize the core power distribution, and to maximize fuel
exploitation. Interassembly streaming effects induced by variations in material and
fuel composition result in non-reflective boundary conditions at the assembly outer
edges, thus invalidating the theoretical foundation of the homogenization procedure.
Errors in the nodal cross sections and discontinuity factors due to deviations between
the environmental and single-assembly flux distributions may have a much larger
impact on the nodal calculation than spatial truncation errors. They become highly
penalizing in configurations with significant node-to-node leakage and strong flux
gradients near the assembly interfaces. Typical examples of such configurations are:
fuel loading patterns combining low-enriched uranium-oxide (UOX) and mixed-oxide
(MOX) assemblies (Palmtag, 1997; Downar et al., 2000); layouts with control-rod
banks inserted or local, strong burnable absorbers (such as Pyrex and gadolinium);
reflector boundaries; and elaborate depleted-assembly shuffling strategies. With these
increasingly widespread complex core designs, few-group constants deriving from the
standard homogenization paradigm may fail to reproduce accurate estimates of the
reaction rates and multiplication factor. Eventually, even with default adjustments
in the construction of parameterized tables (such as criticality by the fundamental-
buckling correction), high-fidelity simulations of LWRs with environment-independent
homogenization parameters are only possible for fresh fuel at start-up in weakly het-
erogeneous systems. Core-environment effects must therefore be modeled to provide
more accurate inputs for nodal solvers.
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1. Introduction

The impact of core heterogeneity on the neutron flux distribution is illustrated with
an example. Fig. 1.1a shows the infinite-medium spatially averaged neutron spectra
(normalized to unity) in a UO2 and a MOX assemblies at zero burn-up. The two
assemblies have substantially different spectra. Fig. 1.1b displays the variation in
the spectra (computed with respect to the single-assembly configuration) when the
two bundles are next to each other in the core environment. The perturbation in the
neutron distribution is significant, especially at thermal energies. The spectrum in the
UO2 assembly is hardened (namely, the neutron density increases at high energies and
decreases at low energies), whereas the spectrum in the MOX assembly is softened.
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Fig. 1.1. Spectral effects at a UO2/MOX interface: (a) infinite-medium assembly-averaged
neutron flux spectra per unit lethargy u versus energy; (b) variation (in percentage) in the
spatially homogenized spectra in the real environment, where the two fuel assemblies are
next to each other. The spectra in the (a) quadrant are normalized to unity. Units of the
non-normalized distributions are in neutrons/(square centimeters · second).

Fig. 1.2 depicts the spatial distribution of the cell-homogenized heterogeneous thermal
flux (normalized to unity) in the same UO2 assembly under the infinite-lattice ap-
proximation (Fig. 1.2a) and when it neighbors the MOX assembly (Fig. 1.2b). In the
second configuration, a steep flux gradient arises at the periphery of the assembly.
Here, the flux magnitude decreases by about 20% compared to the single-assembly
configuration.
It can be concluded that core heterogeneity has a relevant impact on the flux distribu-
tion in both space and energy.
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Fig. 1.2. Spatial effects at a UO2/MOX interface: thermal-flux distribution (normalized to
unity) in a UO2 assembly quarter (a) within an infinite lattice and (b) adjacent to a MOX
assembly. The non-normalized flux is in units of neutrons/(square centimeters · second).
The coordinates [0,0] (in cm) correspond to the assembly center. The six cells with flux
peaking are empty guide tubes.

1.2 Review of state-of-the-art methodology

Since the formulation of consistent nodal methods, a number of strategies have been
proposed to account for environmental effects on the homogenization parameters.
Homogenization with the environmental boundary conditions, based on iterations
between nodal and lattice calculations, turned out to be impractical because of
its excessive computational burden (Smith, 1980; Colameco, 2012). Colorset (i.e.,
multiassembly) homogenization is also computationally unwieldy, because it calls for
the simulation of each unique set of four assemblies that will appear throughout the
reactor core life (Palmtag, 1997). Alternative methods have therefore been developed
to preserve the high computational efficiency of the conventional two-step procedure.
Even if the spatial and spectral effects of the environment are tightly coupled, for the
sake of simplicity they are often addressed separately by reactor analysis methods.
One of the early spectrum-correction methods was introduced by Becker (1976), who
developed a simple analytical procedure to incorporate spectral effects into one-group
nodal simulators. Palmtag and Smith (1998) found an empirical correlation with
which to model local spectral interactions. This method, originally formulated for
UO2/MOX interfaces, is based on the observations that the fractional change in the
fast-group cross sections is proportional to the leakage-to-removal ratio of fast neutrons
and that the relative variation in the spectral index (raised to a power close to 1)
accurately matches the relative variations in the cross sections (Palmtag, 1997). In a
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similar approach proposed later by Ban and Joo (2016), called the Leakage Feedback
Method, the cross-section functionalization is extended to the leakage fractions of
both groups, and a separate formulation is proposed for peripheral fuel assemblies
facing the reflector. Dall’Osso et al. (2010) applied a group-wise modal expansion to
reconstruct the fine-energy spectrum change in the environment and to rehomogenize
the nodal cross sections. Another modal approach, called energy recondensation, was
developed at MIT (Zhu and Forget, 2011; Douglass and Rahnema, 2011). This method
is based on the Discrete Generalized Multigroup (DGM) energy expansion theory
(Rahnema et al., 2008; Zhu and Forget, 2010; Douglass and Rahnema, 2012).
Several methods have been proposed to take into account spatial effects. Spatial
heterogeneity due to non-uniform intranodal depletion (i.e., gradients in the burn-
up and nuclide concentrations) and fuel temperature is commonly modeled with
a separable (along each coordinate axis) quadratic expansion of the nodal cross
sections (Wagner et al., 1981; Forslund et al., 2001). A similar approach has been
applied to represent design heterogeneity (Shatilla et al., 1996). However, these
methods do not correct the spatial homogenization error due to deviations in the flux
distribution between the environment and the infinite lattice. One of the first spatial
rehomogenization techniques was proposed by Smith (1994). In his approach, the
transverse-integrated intranodal cross sections are spatially (re)homogenized at each
power iteration or thermal-feedback update with the computed 1-D heterogeneous
flux shape. This shape is obtained via superposition of the heterogeneous infinite-
lattice transverse-integrated flux form function and the homogeneous flux distribution
from the transverse-integrated nodal calculation. This method uses single-assembly-
generated rehomogenization coefficients and can be easily incorporated into existing
codes. However, it does not correct the assembly discontinuity factors. A variant of
it was later proposed by Palmtag (1997). In Dall’Osso (2014), the variation in the
1-D transverse-integrated flux between the real environment and the infinite lattice
is evaluated with a modal expansion. This approach also corrects the discontinuity
factors.
Another method for spatial rehomogenization is the 2-D submesh model that has been
implemented in Studsvik’s nodal code SIMULATE (Bahadir et al., 2005; Bahadir
and Lindahl, 2009). In this strategy, each radial node (i.e., fuel assembly or assembly
quarter) is subdivided into N×N homogeneous rectangular subnodes (typically with N
= 5). The 2-D diffusion equation is solved in every subregion with the corresponding
infinite-medium homogenization parameters. The axial leakage (known from the
global 3-D solution) is converted into an equivalent absorption cross section. The
resulting intranodal flux distribution is used to rehomogenize the single-assembly cross
sections over the submeshes and to estimate the environmental discontinuity factors
at the assembly outer edges. The 2-D submesh calculation is combined with an axial
homogenization model to handle axial heterogeneity. Radial zoning of fuel-assembly
homogenization can also be used to reduce spatial errors. For example, EDF’s core
simulator COCAGNE (Guillo et al., 2017) features a discretization of 2×2 subregions
in each assembly quarter. Non-uniform nodes are used to model separately (i) the
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four fuel pins in every external corner of the assembly, (ii) the outer and first inboard
pin rows (at the assembly periphery), and (iii) the remainder of the fuel bundle.
This meshing strategy has been chosen to minimize the level of heterogeneity in each
subregion that is homogenized. In spite of their enhanced accuracy, refined-mesh
approaches entail a somewhat higher computational effort than conventional nodal
methods, which only use one or four nodes per fuel assembly.
Other methods do not specifically focus on spatial or spectral effects and try to
model the global environmental effect. For example, in Rahnema and Nichita (1997),
the corrections on the nodal cross sections and discontinuity factors are tabulated
in the standard parameterized libraries versus the current-to-flux ratio (or other
albedo parameters) at the node surfaces. These corrections are computed during the
lattice calculation via parametric assembly simulations with varying albedo boundary
conditions. They are interpolated during the nodal calculation just as the infinite-
lattice group constants. Recently, a variant of this approach has been investigated (Kim
et al., 2017). The drawback of this kind of method is that it demands multiple single-
assembly calculations for each lattice state. Rahnema and McKinley (2002) developed
high-order cross-section homogenization, which does not require additional lattice
simulations. Using high-order boundary-condition perturbation theory (McKinley and
Rahnema, 2000), the environmental homogenization parameters are expanded in terms
of the surface current-to-flux ratio. The expansion coefficients are evaluated using the
known unperturbed solution of the zero-leakage problem. This method requires two
infinite-medium adjoint functions, which are precomputed and stored as additional
parameters in the cross-section tables. Clarno and Adams (2005) proposed to capture
neighbor effects during the single-assembly calculation via spatial superposition of
typical four-assembly configurations. Recently, Groenewald et al. (2017) developed a
semi-heterogeneous transport-embedded approach, in which the embedded transport
calculations are performed with a simplified handling of spatial heterogeneity, energy
discretization and solution operator. The computational burden of transport-nodal
iterations is thus mitigated.

1.3 Research objectives and thesis structure

This thesis focuses on the development and implementation of new first-principle
methods to improve the accuracy of cross sections and discontinuity factors used in
nodal codes. The ultimate goal is to achieve more reliable estimates of the important
quantities that influence reactor core design and operation, such as the multiplication
factor, the fission-power distribution, and the worth of control rods. The primary
motivation behind this work is that, despite the broad range of cross-section correction
approaches formulated in the last few decades (Section 1.2), homogenization errors
remain a partially unsolved issue in nodal analysis. To the author’s knowledge, there
exists no method that has given a comprehensive answer to the fundamental questions
of homogenization theory. Although continuous advances in numerical methods and
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large-scale massively parallel computers may in a near future make deterministic
transport practical for 3-D whole-core calculations (Sanchez, 2012), nodal methods
have reached industrial maturity and will most likely be used for many years to come.
Further research on this topic, therefore, not only is of scientific interest, but also has
practical relevance.
This thesis builds upon and extends previous work conducted at Framatome (Paris,
France) in the area of rehomogenization (Dall’Osso et al., 2010; Dall’Osso, 2014).
In this research, modeling of core-environment effects is addressed separating their
spectral and spatial components. The spectral and spatial rehomogenization meth-
ods investigated in this dissertation share a common feature: they both consist of
projection-based modal syntheses of variations in the flux distribution (in energy
or space) between the real environment and the infinite lattice. The dissertation is
structured as follows.
Chapter 2 is about spectral rehomogenization. The method is derived and described
in detail. Focus is given to the choice of the basis and weighting functions for the
modal synthesis of the neutron flux spectrum variation. Two tracks are investigated:
a combination of polynomial basis functions and a physically oriented mode, and a
fully mathematical approach based on Proper Orthogonal Decomposition (POD). The
method is applied to relevant Pressurized-Water-Reactor (PWR) benchmark problems.
Several aspects of this approach are discussed, such as its capability to model not only
spectral interactions between dissimilar neighbor assemblies but also spectral effects
due to different reactivity in the environment and in the infinite medium.
In Chapter 3, a method is developed to approximate the spectrum of interassembly
neutron leakage in the core environment. The proposed approach applies Fick’s
diffusion law to the environmental flux spectra determined by the rehomogenization
algorithm. The accuracy and robustness of the method are tested on several mul-
tiassembly configurations, and the impact of its non-linearity is discussed. This diffusive
strategy is compared with an alternative approach, which uses the fundamental-mode
leakage spectrum obtained from the solution of the homogeneous B1 equations.
Chapter 4 presents an original application of spectral rehomogenization. The method
described in Chapters 2 and 3 is adapted to model the spectral effects of local density
changes (i.e., changes in the moderator density, the concentration of diluted boron, and
the xenon atomic density) on the nodal macroscopic and microscopic cross sections.
The cross-section dependence on these three state parameters is thus resolved without
the standard multidimensional interpolation in parameterized libraries. The method is
validated on a broad range of reactor states, in both single-assembly and multiassembly
configurations. It is illustrated that spectral rehomogenization inherently reproduces
the combined spectrum changes due to perturbations in the local physical conditions
and interassembly neutron leakage.
In Chapter 5, a two-dimensional modal method is formulated for spatial rehomogen-
ization of cross sections and discontinuity-factor correction. The method is validated
on the same PWR assembly configurations analyzed in Chapter 3. Its accuracy is
assessed on both nodal and pin-by-pin quantities. A comparison with an already
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existing 1-D rehomogenization approach is made, and the contribution of the various
environmental effects to homogenization errors is quantified.
Concluding remarks and recommendations for future research follow in Chapter 6.
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Chapter 2

Modal synthesis of neutron
spectrum changes

2.1 Introduction

This chapter 1 introduces the spectral rehomogenization method developed at Framat-
ome (Dall’Osso et al., 2010). In this approach, the difference between the environmental
and infinite-medium node-averaged flux spectra is estimated at the core-calculation
level with a modal synthesis. The energy-condensation defects are evaluated on the
fly and added to the nodal cross sections provided by the standard lattice calculation.
The accuracy of the computed spectral corrections depends on the choice of the basis
and weighting functions for the modal expansion and on the approximation of the
energy distribution of the internodal neutron leakage. This chapter presents original
work on the first subject. Two modal approaches are investigated and compared:
a semi-analytic strategy, which combines polynomial basis functions and a physical
mode (the neutron emission spectrum from fission), and a method based on Proper
Orthogonal Decomposition (POD).
This chapter is structured as follows. Section 2.2 presents the spectral rehomogen-
ization algorithm with the latest developments. Section 2.2.2 discusses the two sets
of basis and weighting functions in the energy domain for the modal synthesis of
the spectrum change. The incorporation of the rehomogenization approach into the
LWR two-step procedure is also illustrated. Section 2.3 shows numerical results for
some PWR sample problems that are representative of the spectral effects observed
in a reactor core. Section 2.4 addresses several aspects of rehomogenization, such as

1The content of this chapter has been published in Nuclear Science and Engineering 190, 1, 2018
(Gamarino et al., 2018a).
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numerical features, the impact of the approximations in the derivation of the method,
and the interplay with the critical-buckling spectrum correction. A summary follows
in Section 2.5.

2.2 Theory

2.2.1 The spectral rehomogenization algorithm

The spectral rehomogenization method considered in this thesis is part of a more
general cross-section correction model that aims to reproduce environmental effects of
various nature. In Gamarino et al. (2016), an analytic expression was determined for
the few-group nodal cross section Σenv

G homogenized in the real environment:

Σenv
G = Σ∞G + δΣ(r)

G + δΣ(xs)
G , (2.1)

where

• Σ∞G is the single-assembly cross section (interpolated in the libraries at the
current values of the local state parameters);

• δΣ(r)
G is the homogenization defect due to the flux variation δΦ(r, E) between

the real environment and the infinite-medium conditions;

• δΣ(xs)
G is the homogenization error due to variations in the cross-section distri-

bution caused by the depletion in the real environment; this term encompasses
the corrections described in Wagner et al. (1981) and Forslund et al. (2001).

In the same work (Gamarino et al., 2016), a flux factorization was used to decouple
the spatial and spectral components of the homogenization-flux defect. It was shown
that the following approximation holds:

δΣ(r)
G ≈ δΣ

spat
G + δΣspectr

G + δΣcross
G , (2.2)

where the cross correction δΣcross
G represents the contribution of mixed space-energy

terms. This component of the homogenization error accounts for the fact that the
spatial and spectral effects of the environment are not separable.
We estimate the spectral cross-section correction δΣx,G for the reaction type x within
the coarse energy group G in a generic node as (from now on we drop the superscript
spectr for the sake of lightness of the notation):

δΣx,G = 1
Φ̄G

∫ E+
G

E−
G

dEΣx,∞(E)δΦG(E), (2.3)
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where E+
G and E−G denote the Gth-group upper and lower energy boundaries, respect-

ively; Σx,∞(E) is the distribution in energy of the infinite-medium spatially averaged
cross section; Φ̄G is the nodal volume-averaged integral flux; and δΦG(E) is the
variation in the node-averaged neutron flux spectrum due to environmental effects.
The nodal flux Φ̄G is defined as

Φ̄G = 1
V

∫
V

drΦG(r), (2.4)

where V is the volume of the node. We solve for δΦG(E) with a modal expansion.
We consider the neutron continuous-energy balance equation in the real environment
in a generic homogenized node:

Σt,env(E)Φenv(E) + Lenv(E) = χenv(E)
keff

∫ ∞
0

dE′νΣf,env(E′)Φenv(E′) +∫ ∞
0

dE′Σs,env(E′ → E)Φenv(E′). (2.5)

In Eq. (2.5), Φenv(E) and Lenv(E) represent the environmental neutron flux spectrum
and leakage energy distribution, respectively. The meaning of the remaining symbols
corresponds to common notation in reactor physics literature (Stacey, 2007). We
neglect the dependence of the cross-section distributions and of the fission spectrum
on the environment [i.e., Σx,env(E) ≈ Σx,∞(E), χenv(E) ≈ χ∞(E)]. This assumption
is the main approximation in the formulation of the method and will be the subject
of a thorough discussion in Section 2.4.1. From now on, the subscript referring to
the type of environment is dropped from the cross-section notation. We replace the
energy variable E with a lethargy-like quantity uG(E), which is defined separately in
each coarse energy group as

uG(E) =
ln
(
E
E−

G

)
ln
(
E+

G

E−
G

) . (2.6)

This change of variable is made to ease the search of the basis and weighting functions
of the modal expansion. The quantity u (we omit the subscript G) is bounded between
0 and 1 in each macrogroup. It is remarked that this ad hoc variable does not
correspond to the definition of lethargy commonly found in reactor physics textbooks
(namely, u = ln(E0/E), with E0 usually set to 10 MeV for reactor calculations).
According to Eq. (2.6), u increases with E.
Replacing E with u, Eq. (2.5) can be rewritten, for group G, as

Σt,G(u)Φenv,G(u) + Lenv,G(u) =
NG∑
G′=1

(
χG(u)
keff

∫ 1

0
du′νΣf,G′(u′)Φenv,G′(u′) +

∫ 1

0
du′Σs,G′→G(u′ → u)Φenv,G′(u′)

)
. (2.7)
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In each coarse group, the environmental spectrum is formulated as the sum of the
reference condensation spectrum in the infinite-medium conditions and the sought
spectrum variation in the environment δΦG(u):

Φenv,G(u) = Φ̄Gϕ∞,G(u) + δΦG(u). (2.8)

In Eq. (2.8), the Gth-group single-assembly spectrum ϕ∞,G(u) is normalized to unity,
and δΦG(u) has zero average. Therefore, the following normalization condition is
satisfied: ∫ 1

0
duΦenv,G(u) = Φ̄G. (2.9)

The spectrum difference is expanded in terms of the modal components QG,i(u):

δΦG(u) =
NQG∑
i=1

αG,iQG,i(u), (2.10)

where NQG
is the group-dependent number of basis functions. We choose basis

functions having zero average within each coarse group to satisfy the condition of
Eq. (2.9). An estimate of Φ̄G and of the multiplication factor keff [Eqs. (2.7) and (2.8)]
is known from the nodal solution. We assume that these estimates satisfy the balance
equation integrated in energy. This is another approximation of the method.
If the leakage energy distribution Lenv,G(u) is known, the expansion coefficients
αG,i [Eq. (2.10)] are the only unknowns of the spectral rehomogenization problem.
In order to solve for them, we define a linear system of algebraic equations by
applying a standard weighted-residual technique to Eq. (2.7). The use of a fully
mathematical approach to determine the equations of the system is justified by the
local distortion in the shape of the computed spectrum perturbation that has been
observed when physically justified conditions are imposed. These include the continuity
of the environmental spectrum in the energy domain and of its first derivative at
the boundary between the two energy groups, and the condition δΦ1(u = 1) = 0
within the fast group (that is, no spectrum variation at the upper energy boundary of
the fast group, as observed in Fig. 1.1b). After substitution of Eqs. (2.8) and (2.10),
Eq. (2.7) is projected on a set of weighting functions WG,j(u) (with j = 1, ..., NQG

)
and integrated in u within each coarse group. After some algebraic manipulation, the
projection term corresponding to the reaction rate x reads∫ 1

0
duWG,j(u)Σx,G(u)Φenv,G(u) = Φ̄GhR,x,G,j +

NQG∑
i=1

αG,ihV,x,G,i,j , (2.11)

with the rehomogenization parameters hR,x,G,j and hV,x,G,i,j defined as

hR,x,G,j =
∫ 1

0
duWG,j(u)Σx,G(u)ϕ∞,G(u) (2.12a)
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and
hV,x,G,i,j =

∫ 1

0
duWG,j(u)Σx,G(u)QG,i(u). (2.12b)

The reference coefficients hR,x,G,j carry the information of the reference collapsing
spectrum in the infinite lattice, whereas the variational coefficients hV,x,G,i,j are defined
in terms of the components of the spectrum perturbation. With the aforementioned
assumption Σenv

x,G(u) ≈ Σ∞x,G(u), the coefficients in Eq. (2.12) only depend on infinite-
medium quantities [Σ∞x,G(u), ϕ∞,G(u)] and on the basis and weighting functions
chosen for the modal synthesis of δΦG(u). They do not depend on environmental
quantities. Therefore, they can be computed for each fuel-assembly type during the
lattice calculation.
If the above procedure is applied to all terms in Eq. (2.7), the rehomogenization
problem can be cast in the following form:

Φ̄GhR,t,G,j +
NQG∑
i=1

αG,ihV,t,G,i,j + cG,j =
NG∑
G′=1

Φ̄G′
(
hR,s,G′→G,j+

χG,j
keff

hR,f,G′
)

+
NG∑
G′=1

NQ
G′∑

i=1
αG′,i

(
hV,s,G′→G,i,j + χG,j

keff
hV,f,G′,i

)
, (2.13)

where cG,j , χG,j and the coefficients hR, hV are the rehomogenization parameters
corresponding to the fine-group neutron leakage, fission-emission spectrum, and various
reaction rates. The variables in Eq. (2.13) are formulated as follows:

cG,j =
∫ 1

0
duWG,j(u)Lenv,G(u), (2.14a)

χG,j =
∫ 1

0
duWG,j(u)χG(u), (2.14b)

hR,t,G,j =
∫ 1

0
duWG,j(u)Σt,G(u)ϕ∞,G(u), (2.14c)

hV,t,G,i,j =
∫ 1

0
duWG,j(u)Σt,G(u)QG,i(u), (2.14d)

hR,f,G =
∫ 1

0
du νΣf,G(u)ϕ∞,G(u), (2.14e)

hV,f,G,i =
∫ 1

0
du νΣf,G(u)QG,i(u), (2.14f)

hR,s,G′→G,j =
∫ 1

0
duWG,j(u)

∫ 1

0
du′Σs,G′→G(u′ → u)ϕ∞,G′(u′), (2.14g)
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hV,s,G′→G,i,j =
∫ 1

0
duWG,j(u)

∫ 1

0
du′Σs,G′→G(u′ → u)QG′,i(u′). (2.14h)

The matrix of the linear system of Eq. (2.13) has rank r = NGN
max
Q , with Nmax

Q =
max

G=1,...,NG

{NQG
}. This system is solved for each node following a non-linear iteration

of the nodal solution. The quantities Φ̄G and keff are taken as input from the
prior, partially converged power iteration of the eigenvalue calculation, whereas
the precomputed rehomogenization coefficients [Eq. (2.14)] are interpolated in the
parameterized libraries as a function of the local physical conditions. No additional
lattice calculation is needed, neither when updating the cross sections throughout the
nodal simulation nor when building the parameterized libraries.
After determining the coefficients αG,i, the spectral cross-section correction for reaction
type x in a generic node is computed as

δΣx,G = 1
Φ̄G

∫ 1

0
duΣ∞x,G(u)δΦG(u) = 1

Φ̄G

NQG∑
i=1

αG,ihV,x,G,i,0 , (2.15)

where we have used the fact that WG,0(u) = 1.
In the derivation presented here, no assumption has been made about the spectral
distribution of the neutron leakage Lenv,G(u). In order for the rehomogenization model
to be applicable, this quantity must be determined based on nodal information. In
this chapter, the best-estimate shape is taken as an input quantity from the reference
transport simulation, even if this is not possible in routine calculations. This allows us
to keep the validation of the methodology unaffected by the inaccuracy unavoidably
introduced adopting a leakage spectrum other than the exact one. It is thereby
possible to focus on the effect of the chosen sets of basis/weighting functions on the
accuracy and performance of the method. The development of a model for the leakage
spectrum is addressed in Chapter 3.
The methodology described above can be applied to an arbitrary number of groups.
In this thesis we consider a two-group energy structure (NG = 2). This is the most
common choice in nodal codes for LWR analysis. The upper energy boundary of the
fast group is set to E+

1 = 19.6 MeV, and the lower energy boundary of the thermal
group is set to E−2 = 1.1 · 10−10 MeV. The thermal cut-off energy is E−1 ≡ E

+
2 = 0.625

eV.

2.2.2 Modal approaches
The successful application of spectral rehomogenization relies on the modal components
QG,i(u) and WG,j(u) used to derive Eq. (2.13).
Two kinds of basis functions have been investigated. The first approach (to which we
refer as polynomial or semi-analytic) adopts Chebyshev polynomials, in combination
with a physically oriented mode (the neutron emission spectrum from fission) in the
fast group. The use of the latter is justified by the peak observed in the spectrum
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deformation at high energies (see Fig. 1.1b). Moreover, the fission spectrum is
an appropriate trial function because it is mostly insensitive to the environmental
conditions. An attempt has been made to find other modes having physical insight
into the nature of the sought solution. This feature is highly desirable, as it commonly
requires a reasonably low number of basis functions to reproduce the solution to a
satisfactory accuracy (Stacey, 1967). The behavior of neutrons in the epithermal
and thermal parts of the spectrum can be described by the 1/E-type slowing-down
distribution and the Maxwellian distribution that characterizes thermal equilibrium
with the moderator, respectively (Dall’Osso, 2003). However, a superposition of these
migration modes can only be used to synthesize the neutron spectrum, not a spectrum
perturbation. For instance, since the neutron temperature defining the Maxwellian
distribution changes when moving from the infinite medium to the real environment,
the thermal-spectrum variation cannot be described by such a function. Due to the
difficulty of finding physical modes other than the fission spectrum, an alternative
strategy has been formulated building upon POD. This choice is inspired by the search
of basis functions capturing some information on the phenomenon under study (i.e.,
spectral interactions in a reactor core).
The two approaches are presented separately below.

2.2.2.1 A polynomial approach

Thermal-group basis functions In the thermal group, Chebyshev polynomials
of the first kind [Ti(u)] have been selected. These polynomials are defined with the
following recursive formula:

T0(u) = 1,
T1(u) = u,

Ti(u) = 2uTi−1(u)− Ti−2(u), i > 2.
(2.16)

In the pseudolethargy domain introduced in Section 2.2 [Eq. (2.6)], the thermal-group
spectrum variation has value of zero for u < b, with b ≈ 0.5 (which corresponds to
about 5.85 meV). Therefore, a modification of Eq. (2.16) must be introduced in order
for the basis functions to have zero average value in the interval [b,1] and to be null in
the interval [0,b). The polynomials Ti(u) are first shifted to have zero average between
0 and 1:

T ′i (u) = Ti(u)−
∫ 1

0
duTi(u), i > 1. (2.17)

They are then multiplied by a unitary Heaviside function H(u− b) that vanishes for
u < b. According to the fine-group structure adopted in this thesis (see Section 2.2.2.2),
a value of 0.52167 (corresponding to E = 7.15 meV) is chosen for b. This value matches
the upper boundary of one of the fine-energy groups g. After these changes, the thermal
basis functions read

Q2,i(u) = T ′i (u′)H(u− b), i > 1, (2.18)
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where the shifted variable u′ is defined as

u′ = u− b
1− b . (2.19)

The first four basis functions computed with Eq. (2.18) are shown in Fig. 2.1. The
superposition of the Heaviside function introduces a discontinuity in the modes at
u = b.
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Fig. 2.1. Thermal-group polynomial basis functions.

Fast-group basis functions In the fast group, the first trial function is the already
mentioned fission-spectrum migration mode χ(u). Several expressions can be found
in the literature for this function. In this thesis, we use the formulation reported in
Lamarsh’s textbook (Lamarsh, 1966). In the energy domain, this reads

χ(E) = nf
√
Ee−afE , (2.20)

with E expressed in mega-electron-volts (MeV). Eq. (2.20) is derived under the
assumption that the fission-emission distribution does not vary with the energy of
the incident neutron. The coefficient af and the normalization constant nf depend
on the fissioning nuclides. We consider af = 0.776 and nf = 0.771. These numerical
values correspond to uranium fuel enriched at less than 10%. We assume that the
inaccuracy caused by using Eq. (2.20) for other enrichments or different types of fuel
material (such as MOX assemblies) is reasonably small and acceptable in the context
of this work.
After moving from E to u and subtracting the average value of χ(E), the sought basis
function reads

Q1,1(u) = ce−afE
−
1 r

u
1 ln(r1)(ru1 )3/2 − χavg, (2.21)
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where

χavg =
∫ ∞

0
dEχ(E) = nf

√
π

2a3/2
f

, c = nf (E−1 )3/2, r1 = E+
1

E−1
. (2.22)

The remaining trial functions are, as in the thermal group, Chebyshev polynomials of
the first kind, modified to have zero average value between 0 and 1:

Q1,i(u) = T ′i−1(u), i > 2. (2.23)

The fast-group basis functions are plotted in Fig. 2.2 for i ∈ [1, 4].
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Fig. 2.2. Fast-group semi-analytic basis functions: (a) the neutron emission spectrum from
fission and (b) Chebyshev polynomials of the first kind.

Weighting functions The achievement of satisfactory results with the above poly-
nomial modes strongly depends on the weighting functions. Although their choice is
in principle arbitrary, the weighting operators can be opted for to minimize the error
in some sense (Stacey, 1967). For instance, the use of quasi-contiguous double step
functions (i.e., 1 inside certain intervals and 0 outside) has the physical interpretation
of requiring that the neutron balance be satisfied in an integral sense over certain
regions of the energy domain. However, the importance of the various energy intervals
can be sensitive to the specific assembly configuration and, hence, lack generality.
Since we could not find a rigorous justification of the choice of the steps, this option
has been discarded.
An attempt has been made to use the adjoint spectrum and the generalized import-
ance functions computed at the lattice-calculation level. The physical meaning of
this approach is to minimize the error on some characteristic spectrum-dependent
integral quantity. Typical observables are, in this sense, the multiplication factor, the
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spectral index, the breeding ratio, resonance integrals, the 235U and 238U absorption
probabilities per fission-emitted neutron, and the 135Xe worth, but other functionals
of the spectrum can be defined (Gandini, 1967). This approach could not be im-
plemented as a final solution because it produced an ill-conditioned matrix of the
rehomogenization problem. Moreover, the adjoint and importance-function spectra in
the real environment can differ from the infinite-medium ones. Hence, their use as
test functions might not be rigorous.
On the basis of these considerations, the most natural choice is Galerkin weighting
(that is, using weighting functions equal to the basis functions).

2.2.2.2 The POD approach

Proper Orthogonal Decomposition is a mathematical technique that has been widely
used in the last decades in many scientific and engineering fields (Chatterjee, 2000;
Kunisch and Volkwein, 2001) and to which a growing interest has been recently
shown also in the nuclear community (Wols, 2010; Sartori, 2015; Buchan et al., 2013,
2015; Gamarino et al., 2017). In the framework of our rehomogenization method,
the proposed approach is based on the calculation of the optimal (in a least-squares
sense) orthonormal basis functions for the space spanned by a set of snapshots of the
reference spectrum variation. A snapshot is the solution of the equation modeling the
problem of interest for a specific configuration or state of the system. The shape of
the so obtained modes is determined by the energy (namely, the information) carried
within the retained snapshots and can thus capture some relevant features of the
spectral changes. Even if the POD approach has a mathematical connotation and
not a physical one, its underpinning idea is to describe the spectrum variation as a
modulation of functions synthesizing its main components. This is, to some extent, the
same principle of the Migration Mode Method for the approximation of the neutron
spectrum (Dall’Osso, 2003).
As mentioned in Section 1.1.3, interassembly heterogeneity is the main source of
spectral effects, which mostly occur at the interfaces between different neighbor
regions. We therefore simulate several assembly-interface types to generate snapshots
of the spectrum variation between the environmental and infinite-medium conditions.
We simplify our analysis by considering 2-D colorsets (i.e., four-assembly sets). The
idea behind the generation of snapshots can be illustrated with an example. Fig. 2.3
depicts the fast-group spectrum variation in a UO2 assembly next to another UO2
assembly hosting a bank of twenty-four black control rods. Three different curves
are shown as a function of the 235U fuel enrichment in the rodded bundle (1.8%,
2.4%, and 3.1%). The enrichment in the unrodded assembly (1.8 %) is fixed. Both
assemblies have zero burn-up. In the epithermal range (that is, for approximately
u1 < 0.6 or E < 18.6 keV), the curves exhibit a very much alike outline with roughly
a simple shift among them. Also, a peak is found at high energies in the three cases.
However, if the enrichment in the rodded assembly increases, a distortion of such
peak occurs, with a sign-changing bulge becoming apparent in the pseudolethargy
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Fig. 2.3. Fast-group spectrum perturbation in a 1.8%-enriched UO2 assembly as a function
of the enrichment ehet in the adjacent rodded UO2 bundle.

range [0.85, 0.95] (i.e., between 1.4 and 8.2 MeV). This suggests that interassembly
enrichment differences trigger a characteristic component of the spectrum variation.
Spectral interactions between adjacent assemblies can be driven by differences in a
broad range of parameters other than the enrichment, such as the fuel composition
and burn-up, and by the presence of burnable poison and control elements. In order to
cover the parameter space of spectral interfaces and to capture as many components
of the spectrum variation as possible, multiple values of these heterogeneity variables
must be sampled.
For a given test problem (corresponding to a certain set of the aforementioned
parameters), we generate a snapshot by solving the neutron transport equation in the
colorset and single-assembly configurations. The environmental and infinite-medium
spatially averaged spectra are computed for each fuel bundle, together with the
corresponding variation. In order to determine the detailed spectrum change, the
numbers of fine energy groups g used in the fast and thermal coarse groups are 247
and 34, respectively. For both macrogroups, the matrix of snapshots AG is obtained
collecting the spectrum variation test solutions determined for different problems. The
searched POD modes ensue from the Singular Value Decomposition (SVD) of AG
(Chatterjee, 2000; Kunisch and Volkwein, 2001). This mathematical tool returns the
following matrix decomposition:

AG = UGSGV
T
G , (2.24)

where SG is a diagonal matrix of size nG × Ns (nG is the number of fine groups
in the coarse group G and Ns is the number of snapshots), whereas UG and VG
have dimensions nG × nG and Ns × Ns, respectively. The columns of the matrix
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UG are referred to as proper orthonormal modes and form the sought POD basis.
The elements of SG, which are non-negative and sorted in descending order, are the
singular values of AG. These are proportional to the energy of each mode, that is, its
importance in the modal approximation of the vector space spanned by AG. If all nG
eigenvectors produced by the SVD are used, the error in the approximation of the
original snapshot data goes to zero. The POD basis for our rehomogenization method,
consisting of NQG

modes, is built from a reduced form of Eq. (2.24), taking the first
NQG

columns of UG. The corresponding array provides a modal approximation of
the snapshot set that minimizes the error in the L2-norm compared to all the other
approximations. Also in this case, the rehomogenization problem is solved using the
achieved POD modes as weighting functions as well (Galerkin projection).

2.2.3 Integration into the LWR two-step procedure
Fig. 2.4 shows how the rehomogenization method is integrated into the nodal core
calculation and, more in general, into the two-step procedure commonly adopted in
commercial LWR analysis.

Cross-section
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Cross-section correction
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(P̄ )

Fig. 2.4. Flow diagram of spectral rehomogenization within the LWR two-step calculation.

The rehomogenization coefficients are computed [via Eq. (2.14)] at the cross-section
library level by post-processing the results of the fine-group lattice transport simulation.
Their calculation merely requires the solution of further integrals in the energy
domain. The only change in the parameterized tables is the storage of the additional
homogenization parameters. If the POD approach is used for the modal synthesis of
spectrum perturbations, a supplementary step is needed. Snapshots of the spectrum
deformation have to be collected for various sample assembly configurations. These
are then used to extract, via the SVD, the set of POD basis vectors with which the
rehomogenization parameters are to be computed. The POD-basis calculation (to
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which we refer as off-line phase) is to be performed prior to the lattice calculation.
During the core calculation, a steady-state nodal flux iteration of the core eigenvalue
problem is first performed with the infinite-medium cross sections interpolated in
the libraries at the current values of the state parameters in the various nodes. At
the end of the non-linear iteration, the nodal information (Φ̄G and keff) is used to
solve the spectral rehomogenization problem [Eq. (2.13)] in each homogenized region.
Since this is done locally sweeping all the nodes of the system, the algorithm is easily
parallelizable. Depending on the coupled neutronics/thermal-hydraulics iteration
control criterion, the following may be stated:

• If no thermal-feedback calculation is performed after the nodal flux iteration, the
single-assembly cross sections are updated with the spectral correction computed
by rehomogenization.

• If the thermal-feedback update is activated, the thermal-hydraulic calculation is
performed using as input the nodal power (P̄ ) distribution from the prior flux
iteration. After interpolation in the parameterized tables at the new values of
the state parameters, the cross sections are updated with the spectral correction
previously computed by rehomogenization.

Alternatively, the rehomogenization update can be implemented at an intermediate
step between the nodal flux and thermal-feedback iterations. The calculation continues
until convergence of all the coupled fields. Note that the flux solver is not changed by
the rehomogenization module. Therefore, the method can be easily integrated into
already existing core simulators.

2.3 Validation

In this section, the results of spectral rehomogenization are presented for some
benchmark problems. The analysis is made on 2-D colorset configurations, consisting
of checkerboard-loaded four-assembly sets with reflective boundary conditions at
the assembly centerlines. Both polynomial-based and POD-based approaches are
considered. The analysis of the results is introduced by a description of the procedure
followed for the validation.

2.3.1 Procedure
We apply spectral rehomogenization to three test cases exhibiting significant hetero-
geneity: a UO2 colorset with burnable-poison rods (example 1), a UO2 colorset hosting
silver-indium-cadmium (AIC) control rods (example 2), and a UO2/MOX colorset
(example 3). Nodal calculations are performed with BRISINGR, a Delft University of
Technology in-house-developed code. The solution strategy in BRISINGR is based
on the conventional non-linear coupling between a Coarse Mesh Finite Difference
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(CMFD) solver and the Nodal Expansion Method (NEM), with fourth-order polyno-
mial synthesis of the two-group intranodal transverse-integrated flux. More details
about this nodal code and its validation can be found in Appendix A. Two-group
homogenization parameters are computed by the SERPENT continuous-energy Monte
Carlo neutron transport code (Leppänen et al., 2015). Version 2.1.28 of SERPENT
is used, in combination with the JEFF3.1 nuclear data library (Koning et al., 2006).
Single-assembly calculations for group-constant generation are run with 750 active
cycles of 7.5 · 105 source neutrons (50 inactive cycles are discarded to allow the initial
fission-source distribution to converge). This choice results in 5.63 · 108 active neutron
histories. A standard deviation lower than 2.5% has been found for all the input cross
sections and discontinuity factors. Therefore, an uncertainty-propagation analysis is
deemed not to be necessary for the scope of this thesis work. No critical-buckling
correction is applied to the two-group cross sections. As clarified later, this choice is
consistent with the calculation of the snapshots in the framework of the POD approach.
We use two-group diffusion coefficients computed with the Cumulative Migration
Method (CMM) (Liu et al., 2016). The simulations are made for initial-core isothermal
conditions (i.e., without thermal-hydraulic feedback and fuel depletion). The values of
the main state parameters correspond to standard hot full-power conditions (namely,
Tfuel = 846 K, TH2O = 582 K, and p = 158 bar). We adopt a nodalization of 2×2
nodes per fuel assembly.
The results of the nodal calculations are compared to the reference solution from
SERPENT, which is determined solving the neutron transport equation in the colorset
environment with full geometric details and a very fine energy mesh (281 groups). In
this analysis, we only address the errors in the node-averaged quantities. For each
benchmark problem, we show the results of nodal simulations with:

• standard infinite-medium cross sections (a);

• cross sections rehomogenized with the reference spectral correction (b);

• polynomial-based spectral rehomogenization of cross sections (c);

• POD-based spectral rehomogenization of cross sections (d).

The reference spectral correction (calculation b) is evaluated, in line with Eq. (2.15),
collapsing the fine-group cross sections Σ∞x,G(u) with the reference spectrum variation
δΦref

G (u) from SERPENT:

δΣspec,ref
x,G = 1

Φ̄G

∫ 1

0
duΣ∞x,G(u)δΦref

G (u). (2.25)

The cross-section correction computed with Eq. (2.25) does not take into account the
spatial effects of the environment (i.e., it does not correct the spatial homogenization
error). For this reason, it is only a partial correction. However, it fully corrects
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the node-averaged energy condensation error. We therefore consider calculation b
as the reference for our method. For both modal approaches (calculations c and d),
rehomogenization is applied with NQG

= 4 in each coarse group. The rehomogenization
coefficients [Eq. (2.14)] are computed with the same 281-group energy structure defined
in Section 2.2.2.2. In the analysis, the errors in the nodal cross sections are computed
as

∆Σx,G =
Σx,G − Σref

x,G

Σref
x,G

· 100%, (2.26)

where Σx,G is the infinite-medium or rehomogenized cross section and Σref
x,G is the

reference cross section (i.e., the cross section condensed and homogenized in the
colorset environment).
The snapshots for the calculation of the POD modes are also computed with SERPENT.
Each 281-group spectrum variation solution is obtained running 5.25 · 106 active
neutron histories. This value is a reasonably good compromise between statistical
accuracy and computational effort. For reasons related to the computing time of
fine-group calculations, the B1 critical-spectrum calculation is not performed. More
details about the procedure for the generation of snapshots are given for each test
case in Section 2.3.2.

2.3.2 Numerical results

2.3.2.1 Example 1 - UO2 colorset with Pyrex rods

The first colorset is made of four 17× 17 PWR fuel assemblies of fresh UO2 having
two different compositions: the former with 1.8% enrichment, the latter with 3.1%
enrichment and 16 rods containing burnable poison. The absorber elements are made
of borosilicate glass (Pyrex). The colorset and assembly layouts are depicted in Fig. 2.5.
The concentration of diluted boron in the moderator is 700 parts per million (ppm).

UO2

3.1% + Pyrex

UO2

1.8%

UO2

1.8%

UO2

3.1% + Pyrex

(a) (b) (c)

Fig. 2.5. (a) Assembly set of example 1. Layout of the UO2 fuel assemblies: (b) with 1.8%
enrichment, (c) with 3.1% enrichment and 16 Pyrex rods. The mass composition of the
Pyrex glass is: Al2O3 (2.25%), B2O3 (12.7%), K2O (1.15%), Na2O (3.5%), SiO2 (80.0%), and
impurities (0.4%). The two bundles host 24 and 8 empty Zircaloy-4 guide tubes, respectively.
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In this configuration, interassembly spectral effects are driven by differences in the
enrichment and by the local presence of burnable-poison elements. In order to determ-
ine a set of POD modes, we generate 100 snapshots by means of a single-parameter
analysis, with the Pyrex content in the heterogeneous assembly (namely, the assembly
with poison rods) as the parametric variable. Solutions of the spectrum variation are
computed sampling uniformly the target range [5.9 · 10−5, 1.8 · 10−3] atoms/cm3 for
the concentration of boron in the burnable-absorber rods N bp

B10
. The snapshots are

taken at the critical boron concentration (1465 ppm). In the nodal calculation, we
simulate the colorset for one of the values of N bp

B10
spanned by the snapshot matrix

(i.e., 9.3 · 10−4 atoms/cm3). This is done in order to test capability of the POD modes
to accurately reproduce the solutions used to build the original snapshot set. The
chosen absorber concentration corresponds to keff = 1.08733 and to normalized values
of the assembly-averaged total fission power of 0.93 in the 1.8%-enriched assembly and
1.07 in the 3.1%-enriched assembly with Pyrex (reference values from SERPENT).
Fig. 2.6 shows the best-fit curves of the reference spectrum variation in the hetero-
geneous assembly. These have been computed with the polynomial basis functions
and with the first four POD modes generated by the above procedure. The latter are
plotted in Fig. 2.7. The POD operators fit very well the reference curves.
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Fig. 2.6. Example 1: best fit of the (a) thermal-group and (b) fast-group reference spectrum
deformation (per unit u) in the assembly hosting burnable-absorber rods. The perturbation
(in percentage) is computed with respect to the assembly-averaged two-group flux from the
reference transport calculation.

Comparing Figs. 2.6 and 2.7, it appears that the first and second POD basis functions
retrieve the global shape of the reference spectrum perturbation. The spiky profiles
observable in the higher-order modes, especially in the epithermal region, contribute
to the reconstruction of the fine details of δΦG(u), including those associated to the
resonances. Obviously, Chebyshev polynomials cannot reproduce such fine details due
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Fig. 2.7. (a) Thermal-group and (b) fast-group POD basis functions computed via the
method of snapshots and the SVD for a one-parameter analysis of example 1.

to their smoothness. However, they fit the average outline of the reference curves
precisely. The POD modes also inherit the property of the δΦG(u) snapshots to have
zero average within each macrogroup.
The spectrum change estimated by rehomogenization with the two modal strategies is
plotted in Fig. 2.8. The percent relative perturbation is computed with respect to the
two-group assembly-averaged flux from the nodal calculation.
Table 2.1 reports the errors in the multiplication factor and assembly-averaged fission
power (P̄fiss) for nodal calculations a, b, c and d. The number of power iterations
for the convergence of the eigenvalue problem is also given. The power errors within
parentheses correspond to the fast (first value) and thermal (second value) groups.
The effectiveness of rehomogenization in improving the nodal fission power is apparent,
while the gain in accuracy in the multiplication factor is somewhat limited. This is be-
cause the effects of changes in the flux spatial distribution are not accounted for by the
present method. Tables 2.2 and 2.3 show the errors in the nodal cross sections of the
two assemblies. With both modal approaches, the cross-section corrections computed
by rehomogenization reproduce almost exactly the reference ones (calculation b). No
significant difference is found between the two sets of basis and weighting functions,
despite the higher accuracy of the POD strategy observed in Fig. 2.8, especially within
the thermal group.
As seen in Table 2.1, rehomogenization causes an increase in the number of non-linear
iterations by a factor of 1.9 with Chebyshev polynomials and by a factor of 2.8 with
the POD modes. The numbers of power iterations reported in Table 2.1 correspond to
a tolerance of 10−5 for the relative variations in the keff estimate and in the two-norm
of the nodal flux distribution between two successive iterations.
An analysis is now carried out on the impact of the diffusion-coefficient spectral
correction (δDG). The diffusion coefficient can be rehomogenized in a similar fashion
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Fig. 2.8. Example 1: spectrum variation per unit u computed by rehomogenization. The
abbreviation b.p. stands for burnable poison.

Table 2.1. Example 1: errors in the multiplication factor (∆keff) and nodal fission power.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Simulation Number of power iterations ∆keff [pcm] Error in P̄fiss (%) Error in P̄fiss (%)

No rehom. (a) 8 -403 0.55 (0.68, 0.53) -0.48 (-0.49, -0.49)
Ref. δΣspec

G (b) 8 -373 0.03 (0.37, -0.04) -0.02 (-0.26, 0.04)
Spectr. rehom. - Cheb. (c) 15 -369 -0.02 (0.37, -0.09) 0.01 (-0.26, 0.09)
Spectr. rehom. - POD (d) 22 -369 -0.01 (0.36, -0.09) 0.01 (-0.26, 0.08)

Table 2.2. Example 1: errors in the nodal cross sections of the assembly without Pyrex
rods.

UO2 1.8% Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.00858 0.0621 0.00485 0.0825 0.539 1.310 0.513 0.0179 1.246

Simulation Errors (%)

No rehom. (a) -0.25 0.73 0.40 0.82 -0.25 0.27 -0.27 0.13 0.25
Ref. δΣspec

G (b) 0.04 0.17 0.14 0.24 0.0 -0.05 0.0 -0.03 -0.06
Spectr. rehom. - Cheb. (c) 0.06 0.11 0.15 0.17 -0.01 -0.07 -0.01 -0.04 -0.08
Spectr. rehom. - POD (d) 0.0 0.10 0.14 0.17 0.0 -0.08 0.0 -0.05 -0.09

to the other cross sections by defining its zeroth-order variational coefficient:

hV,D,G,i,0 =
∫ 1

0
duD∞G (u)QG,i(u). (2.27)
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Table 2.3. Example 1: errors in the nodal cross sections of the assembly with Pyrex rods.

UO2 3.1% + 16 b.p. rods Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.00997 0.09777 0.00660 0.1333 0.526 1.297 0.4997 0.016 1.198

Simulation Errors (%)

No rehom. (a) 0.27 -0.49 -0.22 -1.11 0.26 -0.49 0.27 -0.17 -0.50
Ref. δΣspec

G (b) -0.02 0.33 -0.11 -0.21 0.0 0.0 0.0 0.0 -0.02
Spectr. rehom. - Cheb. (c) -0.03 0.33 -0.10 -0.21 0.0 0.0 0.0 0.05 -0.02
Spectr. rehom. - POD (d) 0.01 0.34 -0.09 -0.20 0.0 0.02 0.0 0.06 0.0

Hence, the following relation holds for δDG:

δDG = 1
Φ̄G

NQG∑
i=1

αG,ihV,D,G,i,0 . (2.28)

We consider as example the calculation with the reference spectral corrections (cal-
culation b). In the version of SERPENT used in this thesis, the CMM can only
be applied when the homogenized region covers the entire geometry. We therefore
repeat the simulation with the outflow transport approximation (Choi et al., 2015)
for the calculation of the diffusion coefficients. In this way, a comparison between
the environmental and infinite-medium values is possible. For this option, Table 2.4
reports the main results of the simulations with (e) the reference corrections on the
cross sections and the infinite-medium values of the diffusion coefficients, and (f) the
reference corrections on the cross sections and diffusion coefficients. In calculation f,
the correction δDG is also computed with Eq. (2.25).

Table 2.4. Example 1: impact of diffusion-coefficient rehomogenization. The errors in the
nodal power (∆P̄fiss) and diffusion coefficients (∆DG) are expressed in percentage.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Simulation ∆keff [pcm] ∆P̄fiss ∆D1 ∆D2 ∆P̄fiss ∆D1 ∆D2

Ref. δΣspec
G (e) -376 0.42 (0.52, 0.40) 0.29 -0.48 -0.37 (-0.37, -0.37) -0.28 0.72

Ref. δΣspec
G and δDspec

G (f) -376 0.42 (0.52, 0.41) -0.05 0.03 -0.37 (-0.37, -0.37) 0.05 -0.02

Rehomogenization with the reference spectrum variation nullifies the errors in the
diffusion coefficients. However, the δDG corrections have clearly no impact on the
integral parameters. This is due to the fact that they are not large enough to bring
about appreciable changes in the neutron flux distribution. Such consideration can be
justified as follows. If Tables 2.1 (calculation b) and 2.4 (calculation e) are compared,
it appears that the outflow transport approximation produces a significant variation
in the error in the thermal power with respect to the CMM. Since the other input
parameters of the nodal calculation are unchanged, this variation is only caused by
the differences between the values of DG computed with the two approaches, which
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are quite large. For instance, in the assembly with Pyrex rods the fast-group diffusion
coefficient from the outflow-transport approximation is 6.2% higher than the one from
the CMM, whereas the thermal-group value is nearly 10% lower. On the other hand,
the corrections δDG computed by rehomogenization are much smaller: -0.33% (G = 1)
and 0.51% (G = 2) in the 1.8%-enriched assembly; 0.33% (G = 1) and -0.73% (G = 2)
in the 3.1%-enriched one. The errors in the integral parameters are thus unaffected.
This feature has been systematically observed also in the other benchmark problems.
It can be concluded that diffusion-coefficient rehomogenization does not bring any
substantial benefit to the accuracy of the nodal calculation.

2.3.2.2 Example 2 - UO2 colorset with AIC-type control rods

The second colorset is made of four 17 × 17 UO2 bundles (Fig. 2.9). The 235U
enrichment is uniform (1.8% in all fuel pins). Two clusters of twenty-four black control
rods each are inserted into two of the four bundles. The type of the control elements
is AIC (silver-indium-cadmium), with the following mass percent composition: 80%
47Ag, 15% 48Cd, and 5% 49In. No boron is present in the moderator (CB10 = 0 ppm).
The reference multiplication factor is 0.98860, and the reference values of the fission
power are 1.22 in the unrodded assembly and 0.78 in the rodded one.

UO2

1.8% + AIC

UO2

1.8%

UO2

1.8%

UO2

1.8% + AIC

(a) (b) (c)

Fig. 2.9. (a) Assembly set of example 2. Layout of the UO2 fuel assemblies: (b) unrodded,
and (c) rodded. The former hosts 24 guide tubes and an instrumentation tube in the center,
all of which are empty. In the latter, only the central instrumentation tube is free of control
elements.

We now aim to build a set of snapshots representative of the spectral effects induced
by control elements and, for the sake of generality, different enrichment. We therefore
parameterize the variation in the flux spectrum using three variables:

• the fuel enrichment, which is homogeneously sampled in the interval [2.1%, 3.6%]
for both the rodded and unrodded assemblies (20 combinations are selected);

• the number of control rods inserted in each heterogeneous fuel bundle (4, 8, 12,
16, 24, and 28), which is changed keeping the symmetry in the assembly layout;
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• the type of control rods (AIC and B4C).

A total number of 240 snapshots are computed. In order to verify whether the POD
approach can accurately predict the spectrum deformation in unseen problems (i.e.,
problems whose solution was not included in the snapshot array), rehomogenization
is also applied with the set of modes determined for example 1. In the analysis, we
refer to the nodal simulations with the POD modes of examples 1 and 2 as d1 and d2,
respectively.
The spectrum deformation computed by rehomogenization is reported in Fig. 2.10.
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Fig. 2.10. Example 2: spectrum variation per unit u computed by rehomogenization.

With the three calculations, the magnitude of the thermal-group spectrum variation
is underestimated in the rodded assembly. This result can be explained as follows. In
the rodded assembly, the reference spectral correction δΣspec,ref

a,2 [Eq.(2.25)] is 0.59%
of the infinite-medium cross section Σ∞a,2. However, the global cross-section variation
δΣtot,ref

a,2 (computed as the relative difference between the cross section condensed
and homogenized in the colorset environment and Σ∞a,2) is -0.71%. This means that
the reference spatial correction δΣspat,ref

a,2 must go in the opposite direction of the
spectral one and constitutes a significant part of the homogenization defect. Under
the hypothesis of full separability of the two corrections (i.e., no cross term), it would
be δΣspat,ref

a,2 ≈ -1.31%. Since the thermalizing effect of the spatial term is not taken
into account by spectral rehomogenization, the method predicts a harder spectrum
(that is, it underestimates the magnitude of δΦ2(u) as previously highlighted). In the
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unrodded assembly, δΣspec,ref
a,2 is -0.37% of Σ∞a,2, whereas the global variation δΣtot,ref

a,2
is -0.56%. Hence, the spatial correction is δΣspat,ref

a,2 ≈ -0.19%. Since in this case the
mismatch between the spectral and spatial corrections is significantly smaller, the
differences between the simulated and reference curves are less evident.
The errors in the integral parameters and nodal cross sections are reported in
Tables 2.5, 2.6 and 2.7.

Table 2.5. Example 2: errors in the multiplication factor and nodal fission power.

UO2 1.8% UO2 1.8% + 24 AIC rods

Simulation Number of power iterations ∆keff [pcm] Error in P̄fiss (%) Error in P̄fiss (%)

No rehom. (a) 10 58 3.03 (0.98, 3.41) -4.70 (-1.17, -5.61)
Ref. δΣspec

G (b) 10 -486 1.14 (0.47, 1.28) -1.77 (-0.56, -2.10)
Spectr. rehom. - Cheb. (c) 17 -513 1.25 (0.73, 1.36) -1.94 (-0.87, -2.24)
Spectr. rehom. - POD (d1 ) 25 -543 1.14 (0.60, 1.25) -1.77 (-0.71, -2.06)
Spectr. rehom. - POD (d2 ) 20 -524 1.16 (0.50, 1.29) -1.80 (-0.60, -2.13)

Table 2.6. Example 2: errors in the nodal cross sections of the unrodded assembly.

UO2 1.8% Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.00827 0.0557 0.00485 0.0837 0.534 1.313 0.509 0.0174 1.256

Simulation Errors (%)

No rehom. (a) 1.61 0.56 0.51 0.60 0.68 0.16 0.56 3.80 0.14
Ref. δΣspec

G (b) 0.05 0.20 -0.12 0.23 -0.02 -0.05 -0.02 -0.07 -0.06
Spectr. rehom. - Cheb. (c) -0.53 0.21 0.05 0.24 -0.14 -0.04 -0.13 -0.23 -0.05
Spectr. rehom. - POD (d1 ) -0.08 0.21 -0.07 0.24 -0.08 -0.04 -0.07 -0.38 -0.05
Spectr. rehom. - POD (d2 ) -0.04 0.20 -0.14 0.24 -0.06 -0.04 -0.05 -0.29 -0.06

Table 2.7. Example 2: errors in the nodal cross sections of the rodded assembly.

UO2 1.8% + 24 AIC rods Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.0116 0.0817 0.00474 0.0853 0.534 1.286 0.507 0.0153 1.203

Simulation Errors (%)

No rehom. (a) -1.71 0.71 -0.64 -0.93 -0.80 -0.38 -0.66 -4.77 -0.46
Ref. δΣspec

G (b) 0.60 1.28 0.19 -0.12 0.02 0.05 0.0 0.01 -0.04
Spectr. rehom. - Cheb. (c) 1.02 1.15 -0.09 -0.30 0.13 -0.05 0.12 -0.17 -0.14
Spectr. rehom. - POD (d1 ) 0.66 1.15 0.0 -0.30 0.08 -0.05 0.07 0.07 -0.13
Spectr. rehom. - POD (d2 ) 0.58 1.15 0.10 -0.30 0.04 -0.05 0.03 -0.06 -0.13

The unexpectedly small error in keff of the standard calculation (calculation a) is
the result of fortuitous error compensation as evidenced by the high deviations in
the nodal power. This error cancellation vanishes when spectral rehomogenization
is applied. The simulation with the reference corrections is well reproduced by the
calculations with the rehomogenized cross sections. It still exhibits a somewhat high
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error in the multiplication factor and thermal power, which confirms the need for
spatial rehomogenization to fully take into account the environmental effects. We
found that when applying the POD-based spectral rehomogenization (calculation d2 )
to the cross sections rehomogenized with the reference spatial corrections, the error in
keff drops from -524 pcm to -3 pcm. In the rodded assembly, the error in Σa,2 increases
when the reference δΣa,2 is added to the infinite-medium value (calculation b). This
is also due to the exclusion of spatial effects (see Chapter 5 for more details). Fast-
absorption corrections are overestimated with Chebyshev polynomials. This is because
the polynomial basis functions do not capture the resonance peaks in the epithermal
region (for u1 ∈ [0.05, 0.25], namely, E ∈ [1.5 eV, 46 eV]), where the magnitude of the
reference curve is moderately overestimated. Since the fine-group absorption cross
sections are considerably high in proximity of the resonance energies, an overestimated
δΣa,1 is found in the rodded assembly (the opposite occurs in the unrodded one). In
the framework of the POD analysis, the modes computed for example 1 approximate
the spectrum perturbation about as accurately as those computed ad hoc for rodded
configurations.
In this test case, the gap between the two modal approaches in terms of additional
non-linear iterations is much less substantial.

2.3.2.3 Example 3 - UO2/MOX colorset

The third colorset, which is shown in Fig. 2.11, consists of two 18× 18 UO2 assemblies
and two 18× 18 MOX assemblies. The UO2 assemblies have 2.1% enrichment. The
MOX bundle contains three different types of fuel pins: with low Pu content (1.78%
239Pu, 0.22% 235U) at the assembly corners, with intermediate Pu content (2.53%
239Pu, 0.21% 235U) along the assembly outer edges, and with high Pu content (3.86%
239Pu, 0.20% 235U) in the remainder of the fuel bundle. The concentration of diluted
boron in the moderator is 2907 ppm. The reference multiplication factor is 1.00194,
and the reference values of the nodal fission power are 0.86 in the UO2 assembly and
1.14 in the MOX assembly.
Semi-analytic rehomogenization is applied with four (calculation c1 ) and seven (cal-
culation c2 ) modes in the fast group. In the latter case, the fission spectrum and
Chebyshev polynomials of order 1 to 6 are used. The POD-based rehomogenization is
applied making use of three sets of basis functions:

• the POD modes computed for example 1 (set d1 );

• the POD modes obtained from a multiparameter analysis of the present config-
uration (set d2 );

• the POD modes obtained assembling all the snapshots computed for the three
benchmark problems investigated in this chapter (set d3 ).
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Fig. 2.11. (a) Assembly set of example 3. Layout of the (b) UO2 and (c) MOX fuel
assemblies. The MOX assembly is made of three fuel-pin types differing in plutonium content
and 235U enrichment and hosts 4 water rods in the center.

We refer to the nodal simulations with these three sets of basis functions as d1, d2
and d3, respectively. The snapshots for the UO2/MOX interface are generated follow-
ing an approach similar to that of test cases 1 and 2, namely, considering the 235U
enrichment and the Pu content in the three MOX-assembly pin types as parametric
variables. The purpose of calculation d3 is to verify whether rehomogenization, applied
with few modes, can still synthesize effectively the spectrum deformations of various
assembly-interface types, that exhibit a considerably unlike behavior (especially in
the fast range). This property of the POD modes is essential for the feasibility of the
methodology at an industrial level, in which the use of modes not depending on the
type of fuel assembly would be highly desirable.
Fig. 2.12 shows the fast-group spectrum variation in the UO2 assembly computed with
the set of modes d1. In this case, rehomogenization has been applied with the basis
functions resulting from the SVD of high-order Legendre-polynomial best fits of the
original snapshots. This strategy eliminates the noise caused by a different pattern of
the spectrum change fine details in the two configurations, still preserving the global
shape of the snapshots. Although the accuracy of the calculation is acceptable in the
epithermal range, the method is not capable of recreating the bump observable at
the end of the pseudolethargy domain (within u1 ∈ [0.87, 1.0], which corresponds to
[2.2 MeV, 19.6 MeV]). This is expected, because the POD basis functions computed
for the colorset with Pyrex rods have not been trained to reproduce such a localized,
abruptly sign-changing feature of the spectrum deformation.
The spectrum variation computed with calculations c1, c2 and d3 is shown in Fig. 2.13.
Since the results obtained with simulation d2 are almost identical to those of sim-
ulation d3, they are not reported for the sake of brevity. Rehomogenization with
the set of modes d3 faithfully reproduces the bulge observed in the fast group. Such
outcome can only be achieved with a proper training of the POD modes, that is, if
solutions exhibiting this particular feature are included in the snapshot array. This
can be deduced from Fig. 2.14a, which shows the fast-group POD basis functions
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Fig. 2.12. Example 3: fast-group spectrum variation in the UO2 assembly computed with
the POD modes derived for example 1.
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Fig. 2.13. Example 3: spectrum variation per unit u computed by rehomogenization.

computed from the snapshot set d3. Apparently, the shape of the high-energy bulge is
retained by the second, third, and fourth modes. The second mode also inherits the
steep profile of δΦ1(u) observed in the epithermal range (within u1 ∈ [0, 0.1], i.e., E ∈
[0.625 eV, 3.54 eV]) in both assemblies (see Fig. 2.13). The behavior of the singular
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Fig. 2.14. (a) Fast-group POD modes computed by the SVD of the ensemble of snapshot
sets built for examples 1, 2 and 3. (b) Singular values of the basis functions.

values of the computed modes is depicted in Fig. 2.14b. The first four basis functions
have significantly higher singular values than the remaining ones. This suggests that
they retain most of the information carried by the original snapshot set and that they
are sufficient for an accurate reconstruction of the solution.
The polynomial-based rehomogenization with only four modes in the fast group cannot
fit the steep bulge shape (Fig. 2.13). A significantly better prediction is achieved
increasing the number of fast-group basis functions to seven.
The errors in the integral parameters and nodal cross sections are shown in Tables 2.8, 2.9
and 2.10. Also in this case, a limitation of the method due to the exclusion of spatial
effects is apparent: in the MOX assembly, the error in νΣf,2 corrected with the
reference δνΣf,2 increases compared to the infinite-medium value. The same occurs
for fast fission in both assemblies and for thermal absorption in the MOX bundle. We
verified that the errors in Σa,2 and νΣf,2 in the MOX assembly vanish when spectral
rehomogenization is combined with the reference spatial cross-section corrections. The
overestimation of δνΣf,1 in the two assemblies with calculation c1 is caused by the
inaccurate prediction of δΦ1(u) at high energies. Because of the fast fissions of 238U,
the fine-group fission and production cross sections usually assume their highest values
(if one does not consider the epithermal resonance spikes) at u1 > 0.8 (that is, E >
0.7 MeV). Hence, the error in δΦ1(u) at u1 ∈ [0.9, 1.0] (E ∈ [4.0 MeV, 19.6 MeV])
observed in Fig. 2.13 has more weight in the calculation of the few-group correction.

2.4 Discussion

This section addresses the following topics: the approximations in the derivation of
the spectral rehomogenization algorithm (Section 2.4.1), the main numerical features
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Table 2.8. Example 3: errors in the multiplication factor and nodal fission power.

UO2 2.1% MOX

Simulation Number of power iterations ∆keff [pcm] Error in P̄fiss (%) Error in P̄fiss (%)

No rehom. (a) 10 30 0.73 (0.26, 0.86) -0.55 (-0.15, -0.71)
Ref. δΣspec

G (b) 10 -7 -0.21 (0.53, -0.45) 0.15 (-0.30, 0.38)
Spectr. rehom. - Cheb. (c1 ) 19 21 -0.21 (0.92, -0.59) 0.16 (-0.53, 0.49)
Spectr. rehom. - Cheb. (c2 ) 17 24 -0.29 (0.53, -0.57) 0.21 (-0.31, 0.47)
Spectr. rehom. - POD (d1 ) 27 -18 -0.16 (0.31, -0.34) -0.12 (-0.18, 0.28)
Spectr. rehom. - POD (d3 ) 22 -21 -0.25 (0.51, -0.50) 0.18 (-0.29, 0.42)

Table 2.9. Example 3: errors in the nodal cross sections of the UO2 assembly.

UO2 2.1% Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.00927 0.0894 0.00547 0.0979 0.534 1.302 0.508 0.0171 1.211

Simulation Errors (%)

No rehom. (a) -0.61 1.12 0.07 1.27 -0.33 0.53 -0.37 1.18 0.50
Ref. δΣspec

G (b) 0.11 0.18 0.35 0.30 0.01 0.01 0.01 -0.05 0.0
Spectr. rehom. - Cheb. (c1 ) 0.28 0.13 0.76 0.24 0.0 0.0 0.0 -0.1 -0.02
Spectr. rehom. - Cheb. (c2 ) 0.17 0.23 0.34 0.33 0.02 0.07 0.02 -0.08 0.06
Spectr. rehom. - POD (d1 ) 0.23 0.11 0.05 0.22 0.16 -0.03 0.16 0.24 -0.04
Spectr. rehom. - POD (d3 ) 0.05 0.12 0.31 0.24 0.0 -0.02 0.0 -0.10 -0.03

Table 2.10. Example 3: errors in the nodal cross sections of the MOX assembly.

MOX Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.0142 0.260 0.00990 0.375 0.526 1.517 0.498 0.0131 1.254

Simulation Errors (%)

No rehom. (a) 0.02 0.42 0.02 0.58 0.39 -0.64 0.43 -0.87 -0.90
Ref. δΣspec

G (b) -0.08 0.88 -0.25 1.08 -0.01 0.34 -0.01 0.04 0.23
Spectr. rehom. - Cheb. (c1 ) -0.22 0.91 -0.47 1.13 0.0 0.26 0.0 0.20 0.13
Spectr. rehom. - Cheb. (c2 ) -0.19 0.82 -0.30 1.04 -0.01 0.16 -0.01 0.20 0.03
Spectr. rehom. - POD (d1 ) -0.24 0.81 -0.26 0.98 -0.10 0.30 -0.10 -0.02 0.20
Spectr. rehom. - POD (d3 ) 0.0 0.90 -0.25 1.11 0.0 0.30 0.0 0.08 0.17

of the method (Section 2.4.2), the comparison of the polynomial and POD approaches
(Section 2.4.3), and the interplay between spectral rehomogenization and the critical-
spectrum correction (Section 2.4.4).

2.4.1 Approximations in the formulation of the method
As mentioned in Section 2.2, the rehomogenization coefficients are computed with
the infinite-medium, fine-group cross sections [Eq. (2.14)]. This is an approximation
because Eqs. (2.5) and (2.7) are rigorously valid in the real environment, where the
fine-energy cross sections may differ from the corresponding infinite-medium distri-
butions. Deviations can exist due to (i) variations in the fuel, fission-product and
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burnable-absorber isotopic concentrations Ni with respect to the infinite-medium
depletion, and (ii) variations in the fine-group microscopic cross sections σi(E). The
latter are influenced by self-shielding effects in the heterogeneous arrangement of
the fuel elements inside the assembly. In the core environment, the flux distribution
obviously changes not only at the assembly level but also at the cell and fuel-pin
levels, especially in the surroundings of the interface with a dissimilar region. Strong
spatial perturbations in the spectrum inside the cell can cause variations in the ratio
between the flux in the fuel rod and that in the moderator. This results in a change
in the resonance escape probability. In view of these considerations, a method has
been developed to account for variations in the nuclide content Ni when comput-
ing the rehomogenization parameters. This method uses isotopic rehomogenization
coefficients and is addressed in Chapter 4. In this section, we briefly investigate
the impact of using the infinite-medium microscopic cross-section distributions in
Eq. (2.14). We consider the UO2/MOX colorset (example 3), in which the effects of
within-cell flux distribution are expected to be more relevant due to the high flux
gradient at the interface between these two types of assemblies. As shown in Fig. 2.15,
in the MOX assembly deviations up to 1.5% are found between the environmental
and infinite-medium fine-group absorption cross sections in the thermal range and
at the highest energies of the fast group. The nuclide densities are the same in the
single-assembly and colorset calculations. The observed differences are therefore only
due to the fine-group microscopic cross sections. The aforementioned deviations are
comparable, in terms of magnitude, to the errors in the two-group single-assembly
cross sections (Tables 2.9 and 2.10).
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Fig. 2.15. Example 3: variation in the absorption cross-section energy distribution in the
MOX assembly between the environmental and infinite-medium conditions.
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Table 2.11 shows the results of the calculations with POD-based rehomogenization in
which the hR,x,G,j and hV,x,G,i,j parameters (other than the hV,x,G,i,0 coefficients) of
Eq. (2.14) have been computed with the environmental and single-assembly fine-group
cross sections.

Table 2.11. Example 3: application of the POD-based spectral rehomogenization with the
infinite-medium and environmental rehomogenization coefficients. The latter are computed
with the colorset fine-group cross sections. The errors ∆ in the two-group cross sections (b)
are expressed in percentage.

UO2 2.1% MOX

Simulation ∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

hR, hV from Σ∞x,G(u) -21 -0.25 (0.51, -0.50) 0.18 (-0.29, 0.42)
hR, hV from Σenv

x,G(u) -39 -0.30 (0.48, -0.58) 0.23 (-0.28, 0.48)
(a)

UO2 2.1% MOX

Simulation ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

hR, hV from Σ∞x,G(u) 0.05 0.12 0.31 0.24 0.0 0.90 -0.25 1.11
hR, hV from Σenv

x,G(u) 0.20 0.14 0.41 0.25 0.29 0.85 -0.12 1.04

(b)

The differences in the nodal cross sections between the two simulations are negligible in
the thermal range and small in the fast one. They mostly affect fast-group absorption.
The deviations in the integral parameters are also not relevant. This result is because
variations in the fine-group microscopic cross sections are considerably smaller than
variations in the condensation spectrum, which have a larger effect. A similar outcome
has been found in the remaining test cases considered in this chapter. Hence, it may
be concluded that the use of the infinite-lattice σi(E) distributions in the calculation
of the hR,x,G,j and hV,x,G,i,j coefficients (with j 6= 0) does not affect the performance
of the method. We remark that, according to the derivation presented in Gamarino
et al. (2016), it is mathematically consistent to use the infinite-medium distributions
in Eq (2.15) (i.e., for j = 0).
Another approximation of the method is that the cross-section corrections are averaged
over the node, whereas in reality the magnitude of spectral effects is significantly
higher at the interfaces with neighbor assemblies. For the UO2/MOX interface of
example 3, Fig. 2.16 shows the reference spectrum variation (per unit of standard
lethargy) in the UO2 bundle quarter as a function of the distance from the assembly
outer edge. The magnitude of the node-averaged perturbation corresponds to that
observed approximately 3 centimeters away from the assembly border (that is, within
the third inboard row of fuel cells). The strong spatial gradient in the spectrum change
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Fig. 2.16. UO2/MOX interface: spectrum perturbation (per unit of standard lethargy
u = ln(E0/E), with E0 = 10 MeV) in the UO2 bundle quarter as a function of the distance
from the assembly outer edge. The percent variation is referred to the assembly-averaged
total (i.e., one-group) flux.

suggests that mixed space-energy terms (currently neglected by the method) can be
important and should be modeled.
As a final remark, this rehomogenization approach does not correct the few-group
discontinuity factors, which depend by definition on heterogeneous spatial form func-
tions (Section 1.1.2.2). Since our approach relies on assembly-averaged distributions, a
rigorous way has not been found so far to determine a spectral correction on this kind
of homogenization parameter. However, a correction on the discontinuity factors is
computed by the spatial rehomogenization method that has been developed in parallel
to the spectral one (Chapter 5).

2.4.2 Numerical features and computational efficiency
In order to dampen numerical oscillations observed with Galerkin projection, an
under-relaxation factor θ has been introduced for the spectrum variation. Hence,
at each rehomogenization update m, the computed expansion coefficients αmG,i are
corrected as follows:

αm
′

G,i = θαmG,i + (1− θ)α(m−1)′
G,i , (2.29)

where α(m−1)′
G,i is the estimate from the previous iteration. An optimal under-relaxation

factor θ = 0.5 has been found. Eq. (2.29) demands to store the coefficients αG,i for each
node of the computational domain. This is the only significant memory requirement
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of the method at the on-line calculation level.
As shown in Section 2.3.2, in the case with no thermal-hydraulic feedback and when the
reference leakage energy distribution is used, rehomogenization produces an increase in
the number of non-linear iterations by a factor between 1.7 and 1.9 with the polynomial
synthesis, and between 2 and 2.8 with the POD approach. The computational efficiency
of the method is discussed more thoroughly in Chapter 3, which presents its final
implementation (i.e., with a model for the neutron leakage spectrum).
The memory requirement for the storage of the hR and hV coefficients in the cross-
section libraries can be easily quantified. We consider χ(u) = 0 along the whole thermal-
group energy domain (which trivially results in χ2,j = 0, ∀j), and we define the removal
coefficients hR,r,G,j = hR,t,G,j − hR,s,G→G,j and hV,r,G,i,j = hV,t,G,i,j − hV,s,G→G,i,j .
With this choice, for a generic point in the state-parameter space, the total number of
rehomogenization entries to be tabulated is given by

∑NG

G=1(2N2
QG

+7NQG
)+NQ1 +NG.

In a two-group framework and using four basis functions in each coarse group (NQG
=

4), this translates into 126 coefficients. In order to limit the library growth, a method
has been developed to store the rehomogenization parameters only as a function of
the burn-up, the fuel temperature and the moderator temperature. This method
consists of an on-the-fly update to account for the differences between the local values
of the remaining state parameters (the moderator density and the soluble-boron and
xenon concentrations) and the predetermined table-point values at which the spectral
coefficients are computed. This method is described in Section 4.4.6.

2.4.3 Comparison of the polynomial and POD approaches

The results presented in Section 2.3.2 showed that the POD modes reconstruct the
reference spectrum variation very accurately. Because of their capability of inheriting
properties of the snapshots, they can faithfully reproduce the details of the transport
solution, such as resonance-absorption spikes in the epithermal region. In the thermal
group, the spectrum perturbation is a smooth function and has a weak dependence on
the type of spectral interface, as well as on the local physical conditions (Gamarino
et al., 2017). As a result, the thermal POD modes computed with a limited set
of snapshots (namely, for a few test cases) can be easily generalized to other core
configurations, even if samples of their solutions have not been included in the snapshot
array. On the other hand, in the fast group the spectrum deformation strongly depends
on the type of assembly interface and, as it will be clearer in Section 3.3.1.5, on the
burn-up. The POD basis functions have to be trained to capture a number of
components of δΦ1(u). The accuracy of fast-group rehomogenization with POD is
therefore tied to an extensive sampling of heterogeneous assembly configurations and
fuel evolutions.
Polynomial modes can only fit the global behavior of the spectrum change. When
local (energy-wise), strongly varying components are present (such as at UO2/MOX
interfaces), they fail to reconstruct satisfactorily the shape of the perturbation in
the fast group. The use of more polynomial basis functions in this energy range can
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attenuate such deficiency. However, in some test cases this option has been found to
cause unphysical oscillations in the δΦ-solution when leakage form functions other than
the reference one are used. Limiting the number of modes to four is thus advisable.
In all the benchmark problems examined in Section 2.3.2, the nodal calculation with
POD-based rehomogenization converges more slowly than that with the polynomial
approach.
Another feature of interest of the comparison between the two strategies is the
conditioning of the spectral rehomogenization problem. For the simulations of example
1, Table 2.12 reports the condition number CA of the solving matrices corresponding
to the two assemblies. The problem formulated with the POD modes is significantly
better conditioned thanks to their orthonormality properties. In order to avoid
numerical instabilities, the polynomial basis functions should be orthonormalized
by the stabilized Gram-Schmidt process (Golub and Van Loan, 2012). With this
transformation, the corresponding rehomogenization linear system has a condition
number of the same order of magnitude as that achieved with the POD operators.

Table 2.12. Example 1: condition number of the assembly-rehomogenization linear system.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Modal approach CA

Chebyshev 437792 439739
POD 91 96
Chebyshev (Gram-Schmidt) 324 341

In this work, we have limited our analysis on the POD approach to the calculation of
sets of modes for a few relevant configurations. In order to exploit the POD-based
rehomogenization at an industrial level, one has to find a set of proper orthonormal
basis functions effectively usable for several types of assembly interfaces. The number
of snapshots fixes the computational burden of the POD off-line phase and, on the
other hand, limits the achievable knowledge of the spectrum-change components.
An effective sampling strategy must thus be developed (i) to reduce the amount of
costly off-line computations and (ii) to boost the capability of the POD basis to
reproduce the solution of problems not included in the snapshot set. In Gamarino
et al. (2017), it was illustrated that some helpful insight into the snapshot selection
process can be given by the analysis of the singular values of the snapshot matrices
A1 and A2 [Eq. (2.24)]. We believe that the search of a more general set of modes can
be tackled by combining an adaptive approach for the retention of snapshots (based
on the singular-value decreasing importance) with a suitable numerical technique for
the representation of high-dimensional functions, such as sparse grids (Bungartz and
Griebel, 2004).
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2.4.4 Relation with the critical-spectrum correction
In this section, an analysis is made on the interplay between spectral rehomogenization
and another type of spectral cross-section correction: the critical-buckling (B2

crit)
correction.
In single-assembly transport calculations, it is common practice to adjust the neutron
leakage rate in the homogenized assembly to enforce a multiplication factor equal to
unity (Hebert, 2009). In this way, the fine-energy cross sections are collapsed with a
more realistic spectrum, i.e., a spectrum closer to that of the critical core. Criticality
is achieved by adding an artificial leakage cross section Σleak,g to the fine-group
absorption cross section. This additional cross section is defined as

Σleak,g = DgB
2
crit, (2.30)

where Dg is the leakage coefficient of group g and B2
crit is the critical buckling (i.e.,

the buckling coefficient B2 fulfilling the condition k∞ = 1). The calculation of B2
crit

is based on the fundamental-mode assumption and is usually performed using a B1
homogeneous method (Hebert, 2009). Refined approaches consider the space and
energy dependence of the buckling coefficient (Benoist et al., 1994; Smith, 2017).
Even if this type of correction is meant to reduce the spectral differences between the
infinite medium and the core environment, it cannot reproduce in any way spectral
effects caused by unlike neighbors. It is therefore of interest to verify whether or not
a relation of complementarity exists between this kind of cross-section correction and
the one computed by rehomogenization.
We consider a rodded configuration similar to that modeled in example 2 (Sec-
tion 2.3.2.2), consisting of a UO2 assembly with 1.8% enrichment next to a UO2
assembly with 2.4% enrichment and 24 AIC-type control rods. In order to be consistent
with the fundamental-buckling approach, we study the critical colorset configuration,
achieved with a diluted-boron concentration of 222 ppm. We compare the results of
the nodal calculations having the following cross-section inputs (we omit the subscript
crit in B2

crit for the sake of lightness of the notation):

• infinite-medium cross sections without the B2 correction (a);

• infinite-medium cross sections with the B2 correction (b);

• cross sections rehomogenized by the δΣG computed with the reference spectrum
variation δΦG(u) = Φenv,G(u)− Φ∞,G(u) (c);

• cross sections rehomogenized by the δΣG computed with the reference spectrum
variation δΦB2

G (u) = Φenv,G(u)− ΦB2

∞,G(u) (d).

We have denoted with Φ∞,G(u) and ΦB2

∞,G(u) the non-critical and critical (i.e., B2-
corrected) infinite-medium spectra, respectively. The single-assembly and colorset
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transport calculations for the present analysis are performed with the APOLLO2-A
deterministic lattice transport code (Martinolli et al., 2010). This choice allows us to
avoid the computational burden of a 281-group B1 spectrum calculation in SERPENT.
APOLLO2-A features two approaches for the calculation of the diffusion coefficient:
the outflow transport approximation (Choi et al., 2015) and the B1 method (Hebert,
2009). The former is the only available option when single-assembly calculations are
performed without critical buckling and is therefore chosen for this analysis. If no B2

correction is performed, the values of k∞ in the unrodded and rodded assemblies are
1.16433 and 0.82913, respectively. Criticality is achieved with B2 = 0.002608 cm−2 in
the former and with B2 = −0.003083 cm−2 in the latter.
Fig. 2.17 shows, for the unrodded assembly, the overall spectrum variation (per unit of
standard lethargy) between the critical colorset environment and the critical and non-
critical infinite lattices. The environmental and infinite-lattice spectra are normalized
to unity.
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Fig. 2.17. Critical colorset UO2 (1.8%-enriched) / UO2 (2.4%-enriched) with 24 AIC control
rods: difference in the spectrum (per unit of standard lethargy u = ln(E0/E), with E0 = 10
MeV) of the unrodded assembly between the real environment and the critical (dashed line)
and non-critical (solid line) infinite lattices. The neutron spectra [in units of neutrons/(square
centimeters · second)] are normalized to unity.

Clearly, the perturbation has lower magnitude when it is computed with respect to
the buckling-corrected spectrum, especially at high energies. This can be explained
by observing that given a positive value of B2 (i.e., an outgoing neutron flow), the
differences between the critical and non-critical infinite-medium spectra depend on two
effects going in opposite directions: the higher leakage rate in the fast range (which
tends to thermalize the spectrum), and the lower number of fast neutrons available for
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being scattered to thermal energies (which hardens the spectrum). The second effect
is preeminent: with the B2 correction, the spectral index in the unrodded assembly
increases from 3.304 to 3.482. Since the environmental spectrum is hardened by the
assembly with control rods, the spectrum variation is attenuated by the B2 correction.
Table 2.13 shows the errors in the integral parameters and nodal cross sections for
calculations a, b, c, and d.

Table 2.13. Effect of the critical-spectrum correction on the nodal calculations without and
with rehomogenization: errors in the (a) integral parameters and (b) nodal cross sections.
The errors in the nodal power and cross sections are expressed in percentage. The power
errors within parentheses correspond to the fast- and thermal-group power (in this order).

UO2 1.8% UO2 2.4% + 24 AIC rods

Simulation ∆keff [pcm] ∆P̄fiss ∆P̄fiss

No rehom., no B2 correction -171 3.28 (1.34, 3.67) -4.19 (-1.28, -5.02)
No rehom., B2 correction -617 1.42 (0.48, 1.63) -1.81 (-0.46, -2.23)
Ref. δΣspec

G , no B2 correction -453 1.31 (0.49, 1.49) -1.68 (-0.47, -2.04)
Ref. δΣspec

G , B2 correction -458 1.27 (0.44, 1.45) -1.61 (-0.42, -1.98)

(a)

UO2 1.8% UO2 2.4% + 24 AIC rods

Simulation ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

No rehom., no B2 correction 1.06 0.77 0.66 0.85 -1.19 0.54 -0.93 -1.33
No rehom., B2 correction -0.72 0.66 0.11 0.72 1.31 0.63 0.10 -1.21
Ref. δΣspec

G , no B2 correction 0.06 0.24 -0.05 0.29 0.30 1.43 0.05 -0.14
Ref. δΣspec

G , B2 correction 0.06 0.21 0.12 0.26 0.34 1.45 -0.09 -0.11

(b)

Comparing simulations a and b, it appears that the B2 correction significantly reduces
the errors in the fast production and fast-to-thermal scattering cross sections, whereas
it considerably overcorrects the fast absorption and total cross sections. Since thermal
neutrons are much less leakage-prone, the correction has little influence on the thermal
cross sections. The calculation with buckling exhibits significantly lower errors in the
nodal power, but a much higher error in keff. The errors of calculations c and d are
very close. The differences in the nodal cross sections between the two simulations
(observable, for instance, in the error in fast fission) lie within the range of accuracy
of the calculation. The same holds for the errors in keff and in the nodal power. This
suggests that rehomogenization is not influenced by the fact that the infinite-medium
cross sections are generated at conditions very far from criticality (16433 pcm off
criticality in the unrodded assembly, -17087 pcm off criticality in the rodded one).
The method can reproduce both neighbor effects (which cannot be modeled by the B2

correction) and spectral effects due to different reactivity (i.e., different multiplicative
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properties) in the core environment and in the infinite lattice. Therefore, the two
corrections are not complementary.
Although the fundamental-buckling correction is widely adopted in the preparation
of cross-section libraries, its application is notoriously not rigorous when simulating
non-critical conditions, in which the neutron spectrum may differ from the critical
one (Dall’Osso, 2015a,b; Demazière, 2016). These include reactor core transients and
subcritical states during power outage. For example, Demazière (2016) showed that
the use of B2-tweaked cross sections can have a large impact on the nodal simulation of
transients strongly deviating from criticality. The results of our analysis demonstrate
that spectral rehomogenization also carries out the task of the critical-spectrum
correction, which can thus be discarded in the preparation of cross-section libraries.
In this way, no bias is introduced in the simulation of non-critical conditions. One
of the limitations in the cross-section model is therefore removed, with an advantage
also in terms of the computational cost of the lattice calculation (namely, the absence
of critical-spectrum iterations).

2.5 Summary

In this chapter, focus has been given to the definition of effective sets of basis and
weighting functions for a modal reconstruction of the spectrum variation in the real
environment. Both polynomial and POD-based strategies proved to be suitable
candidates, with the latter synthesizing the spectrum perturbation to a higher degree
of accuracy.
Spectral rehomogenization has been validated on multiassembly configurations typically
encountered in PWR cores. The case without thermal feedback or fuel depletion has
been considered. The rehomogenization algorithm can reproduce very accurately the
spectral effects on nodal cross sections when the reference leakage energy distribution
is used. Another benefit is that the B1 critical-spectrum correction is no longer needed.
A limitation of this approach is that it can only correct a part of the homogenization
error. In order to fully capture core-environment effects, it cannot be decoupled from
an effective spatial rehomogenization.
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Chapter 3

Modeling of the neutron leakage
spectrum

3.1 Introduction

This chapter 1 addresses the calculation of the neutron leakage spectral distribution.
As mentioned in Section 2.2.1, this is the second pillar of spectral rehomogenization.
The leakage rate in a fuel assembly is dominated by two factors (Hebert, 2009):
scattering anisotropy and interassembly neutron exchange. The former has an im-
portant effect in PWRs due to the presence of hydrogen in the moderator and is
usually taken into account via transport corrections (such as the consistent B1 and
P1 approximations) at the lattice-calculation level. The latter depends inherently on
the core environment. The inaccurate results achieved with a flat-leakage approx-
imation (i.e., considering the leakage spectral distribution uniform and equal to the
coarse-group nodal estimate) highlighted the importance of finding a realistic energy
shape for streaming effects (Gamarino et al., 2018a). The aim of the work described
in this chapter is therefore to develop a physically grounded model for the leakage
spectrum. Two approaches are proposed and investigated. The first of these applies
Fick’s diffusion law to the node-averaged environmental spectra estimated by the
rehomogenization algorithm. We refer to it as diffusive leakage model. The second
uses the homogenized-assembly critical-leakage spectrum from the fundamental-mode
B1 calculation. The two strategies are tested on a wide range of heterogeneous PWR
configurations, including those considered in Chapter 2. Both isothermal fresh-fuel
conditions and configurations with fuel depletion are analyzed. Focus is given to the

1Most of the content of this chapter has been published in Annals of Nuclear Energy 116, 2018
(Gamarino et al., 2018b).
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more promising diffusive approach.
This chapter is structured as follows. In Section 3.2 the diffusive and fundamental-
mode leakage methods are described. Section 3.3 shows the numerical results of several
PWR benchmark problems. In Section 3.4 we discuss various features of interest of
the diffusive model. Concluding remarks follow in Section 3.5.

3.2 Theory

The leakage spectrum Lenv,G(u) in Eq. (2.7) is expressed as

Lenv,G(u) = L̄GfL,G(u), (3.1)

where L̄G is the few-group node-averaged leakage and fL,G(u) is a form function
describing the leakage energy dependence. The distribution fL,G(u) is normalized to
unity so as to satisfy the condition∫ 1

0
duLenv,G(u) = L̄G. (3.2)

We define L̄G as
L̄G =

∑
d=x,y,z

JG,d+ − JG,d−
∆d , (3.3)

where ∆d is the node width along the coordinate axis d, while JG,d+ and JG,d− are
the surface-averaged directional net currents at the node boundaries d+ and d−. An
estimate of these is available from the latest non-linear flux iteration. Using Eq. (3.1),
Eq. (2.14a) becomes

cG,j = L̄GhL,G,j , hL,G,j =
∫ 1

0
duWG,j(u)fL,G(u). (3.4)

In the following, we formulate fL,G(u) and hL,G,j for the two aforementioned leakage
models.

3.2.1 The diffusive leakage method

We consider two adjacent nodes k and l separated by a surface ∆S along the generic
direction x (Fig. 3.1). The two nodes have size ∆xk and ∆xl along x. We apply the
discrete (in space) Fick’s diffusion law to compute the spectral distribution of the
neutron current JSG(u) through the surface ∆S:

JSG(u) = −Dk
G(u)

ΦSenv,G(u)− Φkc

env,G(u)
∆xk/2 , (3.5)
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k l

∆S

JS
G

∆xk ∆xl

x

Fig. 3.1. One-dimensional layout of a generic nodal interface.

where Dk
G(u) denotes the distribution in energy of the spatially averaged diffusion

coefficient in node k, ΦS
env,G(u) is the environmental flux spectrum at the interface

between the two facing nodes, and Φkc

env,G(u) is the environmental flux spectrum at
the center of node k. A similar equation can be written for node l:

JSG(u) = −Dl
G(u)

Φlcenv,G(u)− ΦSenv,G(u)
∆xl/2 . (3.6)

We make the approximation that the spectrum at the center of a given node is equal
to the node-averaged spectrum:

Φmc

env,G(u) ≈ Φmenv,G(u), m = k, l. (3.7)

The discrete formulation of Fick’s law [Eqs. (3.5) and (3.6)] and Eq. (3.7) are based
on a linear flux spatial distribution. This hypothesis is not consistent with the quartic
polynomial expansion commonly adopted in advanced nodal codes. Because of the
lack of information for a more rigorous spatial discretization of spectral distributions,
we make the assumption that this approximation is acceptable within the range of
accuracy of the proposed methodology.
As done for the cross-section distributions in Section 2.2.1, the dependence of the
fine-energy diffusion coefficient on the environment is neglected:

Dm
G (u) ≈ Dm

G,∞(u), m = k, l. (3.8)

Continuity of the current distribution JSG(u) is imposed by equating Eqs. (3.5) and (3.6).
The following expression is found for the environmental spectrum at the surface ∆S:

ΦSenv,G(u) =
D̃k
G(u)Φkenv,G(u) + D̃l

G(u)Φlenv,G(u)
D̃k
G(u) + D̃l

G(u)
, (3.9)

where the quantity D̃m
G (u) reads

D̃m
G (u) = 2Dm

G (u)
∆xm , m = k, l. (3.10)
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Substituting Eqs. (3.9) and (3.10) into Eq. (3.5) or Eq. (3.6) yields

JSG(u) = −D̂k,l
G (u)

(
Φlenv,G(u)− Φkenv,G(u)

)
, (3.11)

with the harmonic-averaged diffusion parameter D̂k,l
G (u) defined as

D̂k,l
G (u) = D̃k

G(u)D̃l
G(u)

D̃k
G(u) + D̃l

G(u)
. (3.12)

We refer to D̂k,l
G (u) as the fine-energy nodal-coupling diffusion coefficient.

Moving to a more general multi-dimensional framework, the node-averaged leakage
spectrum for the homogenized region k is determined applying Eq. (3.11) to all the
interfaces with the surrounding nodes:

Lkenv,G(u) =
Nnb∑
m=1

D̂k,m
G (u)

∆dk,m
(

Φkenv,G(u)− Φmenv,G(u)
)
. (3.13)

In Eq. (3.13), the superscript m cycles over the number of neighbor nodes Nnb, and
∆dk,m is the width of node k along the direction perpendicular to the interface with
node m. Combining Eqs. (3.1) and (3.13) yields the nodal leakage form function
fkL,G(u):

fkL,G(u) =
Nnb∑
m=1

wk,mG
D̂k,m
G (u)

∆dk,m
(

Φkenv,G(u)− Φmenv,G(u)
)
. (3.14)

The Nnb normalization constants wk,mG in Eq. (3.14) are introduced to fulfill Eq. (3.2).
They are computed imposing the preservation of the few-group leakage Lk,mG through
each nodal interface:

wk,mG
∆dk,m

∫ 1

0
duD̂k,m

G (u)
(

Φkenv,G(u)− Φmenv,G(u)
)

= Lk,mG
L̄kG

, (3.15)

where Lk,mG is defined in terms of the few-group surface-averaged net current Jk,mG
(known from the nodal calculation) across the interface between the homogenized
regions k and m:

Lk,mG = Jk,mG
∆dk,m . (3.16)

In Eq. (3.15), dividing by the node-averaged leakage L̄kG is required to scale fkL,G(u)
to unity [see Eq. (3.2)]. After introducing Eqs. (2.8) and (2.10), Eq. (3.14) becomes

fkL,G(u) =
Nnb∑
m=1

wk,mG
D̂k,m
G (u)

∆dk,m

[
Φ̄kGϕk∞,G(u) +

NQG∑
i=1

αkG,iQG,i(u)−

(
Φ̄mGϕm∞,G(u) +

NQG∑
i=1

αmG,iQG,i(u)
)]
. (3.17)
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The projection of Eq. (3.17) over the weighting functionsWG,j(u) (with j = 1, ..., NQG
)

results in the following expression for the j-th leakage rehomogenization coefficient of
node k:

hkL,G,j =
Nnb∑
m=1

wk,mG
∆dk,m

[
Φ̄kGh

k∗,m

R,D̂,G,j
+
NQG∑
i=1

αkG,ih
k,m

V,D̂,G,i,j
−

(
Φ̄mGh

k,m∗

R,D̂,G,j
+
NQG∑
i=1

αmG,ih
k,m

V,D̂,G,i,j

)]
. (3.18)

In Eq. (3.18), a new type of rehomogenization parameter has been introduced for the
nodal-coupling diffusion coefficient:

hk
∗,m

R,D̂,G,j
=
∫ 1

0
duWG,j(u)D̂k,m

G (u)ϕk∞,G(u), (3.19a)

hk,m
∗

R,D̂,G,j
=
∫ 1

0
duWG,j(u)D̂k,m

G (u)ϕm∞,G(u), (3.19b)

hk,m
V,D̂,G,i,j

=
∫ 1

0
duWG,j(u)D̂k,m

G (u)QG,i(u). (3.19c)

The normalization condition of Eq. (3.15) results in the following expression for wk,mG :

wk,mG = Jk,mG /L̄kG

Φ̄kGh
k∗,m

R,D̂,G,0 +
∑NQG
i=1 αkG,ih

k,m

V,D̂,G,i,0 −
(

Φ̄mGh
k,m∗

R,D̂,G,0 +
∑NQG
i=1 αmG,ih

k,m

V,D̂,G,i,0

) ,
(3.20)

where, as in Eq. (2.15), we have used the fact that WG,0(u) is equal to unity to define
the rehomogenization coefficients for j = 0.
As observed in Eq. (3.19), the coefficients hR,D̂ and hV,D̂ for a certain node k are
not uniquely defined. This is because they also depend on the reference collapsing
spectrum [ϕm∞,G(u)] and on the diffusion-coefficient distribution [Dm

G (u)] in the ad-
jacent node m. The information on the former is carried by the coefficient hk,m

∗

R,D̂,G,j
,

whereas the information on the latter is present in the coefficients hk
∗,m

R,D̂,G,j
, hk,m

∗

R,D̂,G,j

and hk,m
V,D̂,G,i,j

. For a given fuel assembly, these “mixed” rehomogenization parameters
must be computed during the lattice calculation for each spectral interface (namely,
for each dissimilar adjacent assembly). Nevertheless, information on the neighbor
bundles is not easily achievable in the single-assembly simulation, because the lattice
code has no knowledge of the bordering regions that the fuel assembly will encounter
during its operating life in the reactor core. Although the cross-section generation
procedure could be modified to add such a feature, this would demand to redefine
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the architecture of the lattice code. Moreover, the simulated unit assembly and its
neighbor elements can experience different operating conditions and burn-up. Thus,
the coefficients of Eq. (3.19) should be computed for several combinations of values of
the state parameters in adjacent assemblies, with the fuel exposure being the most rel-
evant quantity to be sampled. In the light of the complex assembly-shuffling strategies
adopted in modern core designs, the growth of the cross-section libraries caused by the
storage of the rehomogenization parameters for the nodal-coupling diffusion coefficient
would be significant. In conclusion, the formulation of the diffusive leakage model
presented above is not suitable for a practical integration into lattice-physics codes.
In order to circumvent this difficulty, an alternative version of the method is pro-
posed. This variant is based on the assumption that the diffusion-coefficient spectral
distribution does not change significantly in two adjacent assemblies:

Dk
G(u) ≈ Dm

G (u). (3.21)

Under this approximation, Eq. (3.9) for the neutron spectrum at the surface ∆S
reduces to

ΦSenv,G(u) ≈
Φkenv,G(u) + Φlenv,G(u)

2 . (3.22)

Furthermore, Eq. (3.11) can be rewritten as

JSG(u) ≈ 2 Dk
G(u)

∆xk + ∆xl
(

Φkenv,G(u)− Φlenv,G(u)
)
. (3.23)

Using Eq. (3.21) again, the following expression holds for JSG(u):

JSG(u) ≈ 2
∆xk + ∆xl

(
Dk
G(u)Φkenv,G(u)−Dl

G(u)Φlenv,G(u)
)
. (3.24)

The values of JSG(u) computed for nodes k and l with Eq. (3.24) are equal and opposite.
Hence, the continuity of the neutron-current spectrum at the interface ∆S is satisfied.
We emphasize that, although the approximate definition of Eq. (3.24) has not a
rigorous foundation, it is justified by the observation that DG(u) almost does not vary
with the assembly composition. In Sections 3.3 and 3.4, we discuss further the validity
of this approximation and its impact on the calculation of the leakage spectrum.
Based on Eq. (3.24), the following approximation for fkL,G(u) is derived:

fkL,G(u) ≈
Nnb∑
m=1

sk,m
wk,mG

∆dk,m
(
Dk
G(u)Φkenv,G(u)−Dm

G (u)Φmenv,G(u)
)
. (3.25)

In Eq. (3.25), the spatial coefficient sk,m is given by

sk,m = 2
∆dk,m + ∆dm,k . (3.26)
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After some algebraic manipulation, the leakage projection parameter becomes

hkL,G,j ≈
Nnb∑
m=1

sk,m
wk,mG

∆dk,m

[
Φ̄kGhkR,D,G,j +

NQG∑
i=1

αkG,ih
k
V,D,G,i,j−

(
Φ̄mGhmR,D,G,j +

NQG∑
i=1

αmG,ih
m
V,D,G,i,j

)]
, (3.27)

where the coefficients hkR,D,G,j and hkV,D,G,i,j for node k read

hkR,D,G,j =
∫ 1

0
duWG,j(u)Dk

G(u)ϕk∞,G(u), (3.28a)

hkV,D,G,i,j =
∫ 1

0
duWG,j(u)Dk

G(u)QG,i(u). (3.28b)

An analogous equation can be written for the same coefficients in the generic neighbor
node m. The normalization constant wk,mG is now

wk,mG = Jk,mG /(L̄kGsk,m)

Φ̄kGhkR,D,G,0 +
∑NQG
i=1 αkG,ih

k
V,D,G,i,0 −

(
Φ̄mGhmR,D,G,0 +

∑NQG
i=1 αmG,ih

m
V,D,G,i,0

) .
(3.29)

The variables detailed in Eq. (3.28) are the standard rehomogenization parameters for
the diffusion coefficient [see Eq. (2.27)]. They only depend on the local infinite-medium
neutron spectrum and diffusion-coefficient distribution. No information on fine-group
quantities in the neighbor nodes is required. Therefore, these coefficients can be easily
computed during the lattice calculation, in a similar manner to the rehomogenization
parameters for the cross sections and the fission spectrum [Eq. (2.14)].
Despite the heuristic connotation of Fick’s law, the diffusive approach has a physical
justification. This can be illustrated with an example. We consider a 3.1%-enriched
UO2 assembly with burnable-absorber (Pyrex) rods adjacent to a 1.8%-enriched UO2
assembly (example 1 of Section 2.3.2.1). Both fuel bundles are at zero burn-up. For
the assembly with poison, Fig. 3.2 shows the leakage form functions computed by
Eqs. (3.14) and (3.25) (that is, the original and approximate formulations of the
method) using the reference environmental flux spectra Φk,ref

env,G(u) and Φm,ref
env,G(u).

The comparison with the reference environmental leakage reveals that the diffusive
definition provides a very accurate estimate and that the differences between the two
formulations are negligible.
From a numerical point of view, the diffusive approach translates into the dependence
of the leakage parameter hL,G,j [Eqs. (3.18) and (3.27)] on the spectrum-variation
modal expansion coefficients αG,i, which are the unknowns of the rehomogenization
algorithm. Therefore, a non-linearity is introduced. In addition, the spectral-correction
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Fig. 3.2. (a) Thermal-group and (b) fast-group reference diffusive leakage (i.e., computed
with the reference environmental flux spectra) in a 3.1%-enriched UO2 assembly with Pyrex
rods next to a 1.8%-enriched UO2 assembly. The curves of each coarse group have the same
norm. Units before the normalization are in neutrons/(cubic centimeters · second).

problem is no longer local, because the spectrum variation solution in a given node
depends on the spectrum perturbation (i.e., on the coefficients αG,i) in the neighbor
nodes. More details about numerical aspects of the method are given in Section 3.4.1.

3.2.2 The fundamental-leakage approach

The second approach consists of using the fundamental-leakage spectrum determined
at the single-assembly calculation level.
We make the approximation

fkL,G(u) ≈ f∞,kL,G (u), (3.30)

where f∞,kL,G (u) is the leakage distribution making the infinite lattice critical (i.e.,
k∞ = 1). This function is computed in most lattice-physics codes, in which the
unit assembly is simulated under critical conditions (Hebert, 2009). As mentioned in
Section 2.4.4, in the absence of information on the exact operating conditions and on
the materials surrounding the assembly, this assumption provides the most realistic
representation of the core environment. The critical-leakage calculation is commonly
based on the homogeneous fundamental-mode B1 approximation. An exhaustive
description of the corresponding theory can be found in Hebert (2009). In this thesis,
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we adopt the following formulation of f∞L,G(u) (the superscript k is omitted):

f∞L,G(u) =
DG(u)B2ϕB

2

∞,G(u)∫ 1
0 duDG(u)B2ϕB

2
∞,G(u)

, (3.31)

where B2 is the critical buckling and DG(u) is the Gth-group leakage-coefficient
energy distribution, which is also a function of B2. Both quantities come from the
solution of the homogeneous B1 equations (Hebert, 2009). Their product DG(u)B2

is the critical-leakage cross-section distribution. In Eq. (3.31), ϕB2

∞,G(u) denotes the
B2-corrected infinite-medium spectrum, which has the same shape in energy as the
fundamental mode computed by the B1 model. The normalization of f∞L,G(u) to unity
satisfies Eq. (3.2). After substitution of Eqs. (3.30) and (3.31) into Eq. (3.4), the
leakage projection coefficient for a generic node reads

hL,G,j =
∫ 1

0 duWG,j(u)DG(u)B2ϕB
2

∞,G(u)∫ 1
0 duDG(u)B2ϕB

2
∞,G(u)

. (3.32)

With this approach, hL,G,j can be computed on the basis only of lattice information.
Therefore, its calculation is performed directly during the single-assembly simulation,
as for the other rehomogenization parameters [Eq. (2.14)]. No complexity is added to
the on-line solution of the spectral rehomogenization problem.
Despite its straightforwardness, this method presents some significant limitations.
Even if the B1 model provides the best possible representation of the critical lattice
surrounding the assembly, the infinite-medium shape formulated in Eq. (3.31) might
not capture the streaming effects occurring in the real environment in the presence
of strong interassembly heterogeneity. Moreover, as discussed in Section 2.4.4, the
theoretical foundation of the B1 spectrum correction fades when non-critical conditions
are simulated. In reactor core transients and subcritical states (Dall’Osso, 2015a,b;
Demazière, 2016), the B2-corrected spectrum and the fundamental-leakage distribution
may deviate from those in the non-critical core environment even in homogeneous
systems (i.e., in the absence of streaming effects). Another drawback of this approach
is its lack of generality, because it can only be applied if the cross-section libraries are
built with the fundamental-buckling paradigm.

3.3 Numerical results

In this section, the methodology is applied to two-group nodal simulations of several
PWR colorset configurations, as done in Chapter 2. In the first part, the diffusive
leakage model is validated. In the second part, the fundamental-leakage approach is
tested and the two strategies are compared.
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3.3.1 Validation of the diffusive leakage model
Reactor configurations at zero burn-up and isothermal conditions are first addressed.
We consider the following benchmark problems: a UO2 colorset with burnable-poison
(Pyrex) rods (example 1), a UO2 colorset hosting silver-indium-cadmium (AIC)
control rods (example 2), a UO2/MOX colorset (example 3), and a UO2 colorset with
gadolinium-bearing fuel pins (example 4). Examples 1, 2 and 3 have been used in
Chapter 2 (Section 2.3.2) to validate the modal synthesis of the spectrum variation.
For these test cases, in the analysis that follows we only focus on the accuracy of
the leakage prediction (for other aspects of the calculation, the reader may refer
to Section 2.3.2). In this part of the investigation, nodal simulations are run with
BRISINGR (Appendix A). Single-assembly cross sections and discontinuity factors are
computed with SERPENT (Leppänen et al., 2015). The details about their calculation
can be found in Section 2.3.1. The fine-group [Eqs. (3.19) and (3.28)] and two-group
diffusion coefficients are formulated with the CMM (Liu et al., 2016). For the sake of
generality, the homogenization parameters are generated without the critical-buckling
correction. This approach is of particular interest in the light of the findings reported
in Section 2.4.4, which show that rehomogenization can also reproduce spectral effects
due to different reactivity in the core environment and in the infinite lattice.
As further validation of the methodology, we also simulate a test case with fuel
depletion (example 5). This benchmark problem consists of a UO2 colorset with
Pyrex rods and is modeled with ARTEMIS (Hobson et al., 2013), the core simulator
of Framatome’s code platform ARCADIA (Curca-Tivig et al., 2007; Porsch et al.,
2012). The cross-section libraries used by ARTEMIS are generated with APOLLO2-A
(Martinolli et al., 2010).
In all the example problems, the spatial discretization and the values of the main state
parameters are the same as in Section 2.3.1. We present the results of the following
calculations:

• with infinite-medium cross sections (a);

• with cross sections corrected by the reference spectral defect [Eq. (2.25)] (b);

• with spectral rehomogenization of cross sections using the reference environmental-
leakage spectrum (c);

• with spectral rehomogenization of cross sections using the original formulation
of the diffusive leakage model [Eqs. (3.17) and (3.18)] (d);

• with spectral rehomogenization of cross sections using the approximate variant
of the diffusive leakage model [Eqs. (3.25) and (3.27)] (e).

Unless stated otherwise, rehomogenization is applied with the polynomial (or semi-
analytic) synthesis in the fast group and the POD-based one in the thermal group
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(Section 2.2.2). This hybrid approach has been chosen because, as discussed in
Section 2.4.3, at the current stage of development of the methodology a universal
POD basis has not been achieved yet for the fast group. The semi-analytic strategy is
therefore deemed to have a more general validity in this energy range. In all the test
cases, we use the POD modes computed with the ensemble of snapshots of examples
1, 2 and 3, as explained in Chapter 2 (i.e., the d3 set defined in Section 2.3.2.3).
Numerical results of calculations b and c are also reported in this chapter to ease a
comprehensive evaluation of the methodology for the leakage spectrum. Calculation c
provides the reference solution to assess the performance of the leakage model, whereas
calculation b provides the reference solution for the rehomogenization method as a
whole. We underscore that the cross-section corrections used in calculation b only
correct the node-averaged spectral component of the homogenization defect. They do
not remove spatial homogenization errors. Therefore, the results of calculation b are
not the best estimates that may be achieved with the nodal calculation if the input
cross sections were fully condensed and homogenized in the colorset environment.
They only serve as a reference to assess the accuracy of spectral rehomogenization. In
calculation c, the reference environmental leakage is computed by Eq. (3.31) with the
assembly-averaged, fine-group leakage cross sections and flux spectra obtained from a
281-group transport simulation of the whole colorset.

3.3.1.1 Example 1 - UO2 colorset with Pyrex rods

The colorset and assembly layouts have been shown in Fig. 2.5. In this analysis, we
simulate the critical configuration (i.e., krefeff = 1.0), obtained with a concentration of
diluted boron of 1465 ppm. The reference (normalized) total fission power is 0.92 in
the 1.8%-enriched assembly and 1.08 in the 3.1%-enriched assembly with Pyrex.
Fig. 3.3 shows the leakage spectrum in the assembly without burnable absorber
computed by rehomogenization with the diffusive model. All curves are normalized to
the few-group assembly-averaged leakage from the nodal calculation e. The reference
environmental leakage from the transport simulation is accurately reproduced in the
fast group. Minor deviations only occur in the high-energy peak range (at u1 ∈ [0.7,
0.95], i.e., approximately between 0.12 and 8.2 MeV) and in the epithermal region
(at u1 < 0.1, i.e., E < 3.5 eV). In the thermal group the result is also satisfactory,
even if a slight shift of the bell-shaped curve towards higher values of u is observed.
Differences between the original and approximate definitions of the leakage spectrum
are negligible.
Fig. 3.4 depicts the flux spectrum variation in the two assemblies. The curves computed
with the diffusive approach have the same level of accuracy as those obtained with
the reference leakage input. The slight overestimation of the absolute value of the
reference perturbation in the epithermal region is a consequence of the aforementioned
discrepancy in the predicted leakage spectrum in this energy range. The shift found in
the computed thermal leakage has no appreciable effect on the spectrum deformation.
For the sake of comparison, Fig. 3.5 shows the fast-group spectrum variation in the
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Fig. 3.3. Example 1: leakage spectrum (per unit u) in the 1.8%-enriched UO2 assembly,
as computed by rehomogenization with the diffusive model and the hybrid modal approach
(namely, the POD basis in the thermal group and the semi-analytic one in the fast group).
The group-wise curves have the same norm. The labels “original” and “approx.” refer to
Eqs. (3.17) and (3.25), respectively.
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Fig. 3.4. Example 1: spectrum variation (per unit u) computed by rehomogenization with
the diffusive leakage model and the hybrid modal approach.

assembly with Pyrex rods computed with the diffusive approximation and the POD
modes.
The errors in the nodal cross sections are reported in Tables 3.1 and 3.2 for the two
assemblies. The corrections computed with the diffusive leakage model reproduce
very accurately those obtained with calculation c. A slight miscorrection is only
found in fast-to-thermal scattering with the original formulation (calculation d).
Table 3.3 shows the errors in the multiplication factor (∆keff), the few-group nodal
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Fig. 3.5. Example 1: fast-group spectrum variation in the assembly with Pyrex rods, as
computed by rehomogenization with the POD modes and the diffusive leakage approximation.

flux (∆Φ̄G), and the nodal fission power (∆P̄fiss). Also for these parameters, the results
of simulations d and e match those of the reference calculations (b and c). The errors
in the fission power drop to zero. Table 3.3 also indicates the number of non-linear
power iterations (Niter) for the convergence of the eigenvalue calculation. Also in this
case, we used a tolerance εiter = 10−5 for the relative variation in the keff estimate
and in the nodal-flux-array two-norm between two successive iterations. Compared
to the simulation without rehomogenization, the number of iterations increases by a
factor of 2.3 in calculation d and of 1.9 in calculation e.

Table 3.1. Example 1: errors in the nodal cross sections of the assembly without Pyrex
rods. Rehomogenization is applied with the hybrid modal approach.

UO2 1.8% Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.00877 0.0690 0.00485 0.0815 0.540 1.308 0.513 0.0178 1.238

Simulation Errors (%)

No rehom. (a) -0.39 0.66 0.39 0.77 -0.32 0.25 -0.32 -0.11 0.24
Ref. δΣspec

G (b) 0.03 0.13 0.16 0.22 0.01 -0.04 0.01 -0.01 -0.05
Rehom. - ref. env. leak. (c) 0.07 0.06 0.15 0.15 -0.01 -0.08 -0.01 -0.05 -0.09
Rehom. - diff. leak., original (d) 0.11 0.09 0.22 0.19 -0.01 -0.06 0.0 -0.19 -0.07
Rehom. - diff. leak., approx. (e) 0.17 0.09 0.25 0.18 0.0 -0.07 0.0 -0.12 -0.08

3.3.1.2 Example 2 - UO2 colorset with AIC-type control rods

The colorset layout has been shown in Fig. 2.9. Other properties (such as the reference
eigenvalue and fission power) can be found in Section 2.3.2.2.
Figs. 3.6 and 3.7 show the leakage distribution and the spectrum variation determined
by rehomogenization. In the thermal group, for both quantities the computed curves
almost overlap with those corresponding to the reference leakage. In the fast group,
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3. Modeling of the neutron leakage spectrum

Table 3.2. Example 1: errors in the nodal cross sections of the assembly with Pyrex rods.
Rehomogenization is applied with the hybrid modal approach.

UO2 3.1% + 16 b.p. rods Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.0101 0.104 0.00659 0.132 0.525 1.296 0.499 0.0158 1.190

Simulation Errors (%)

No rehom. (a) 0.41 -0.47 -0.17 -1.01 0.32 -0.45 0.33 0.10 -0.46
Ref. δΣspec

G (b) -0.03 0.27 -0.13 -0.20 0.0 0.0 0.0 0.01 -0.02
Rehom. - ref. env. leak. (c) -0.07 0.30 -0.11 -0.17 0.0 0.02 0.0 0.07 -0.01
Rehom. - diff. leak., original (d) -0.12 0.25 -0.15 -0.22 -0.02 -0.01 -0.02 0.16 -0.04
Rehom. - diff. leak., approx. (e) -0.19 0.26 -0.19 -0.21 -0.03 0.0 -0.03 0.08 -0.03

Table 3.3. Example 1: number of power iterations and errors in the multiplication factor,
nodal flux, and fission power. The two values of ∆Φ̄G refer to the fast and thermal groups,
respectively. The value of ∆P̄fiss out of parentheses refers to the total power, whereas the
two values within parentheses correspond to the fast- and thermal-group contributions,
respectively. Rehomogenization is applied with the hybrid modal approach.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Simulation Niter ∆keff [pcm] ∆Φ̄G (%) ∆P̄fiss (%) ∆Φ̄G (%) ∆P̄fiss (%)

No rehom. (a) 8 -338 0.2, -0.84 0.40 (0.69, 0.33) -0.12, 0.73 -0.34 (-0.48, -0.30)
Ref. δΣspec

G (b) 9 -310 0.14, -0.58 0.05 (0.42, -0.03) -0.04, 0.27 -0.05 (-0.29, 0.03)
Rehom. - ref. env. leak. (c) 13 -306 0.14, -0.57 0.0 (0.40, -0.10) -0.05, 0.29 0.0 (-0.28, 0.09)
Rehom. - diff. leak., original (d) 18 -303 0.16, -0.68 -0.04 (0.46, -0.16) -0.06, 0.36 0.04 (-0.33, 0.14)
Rehom. - diff. leak., approx. (e) 15 -303 0.15, -0.63 0.0 (0.50, -0.11) -0.05, 0.31 0.0 (-0.35, 0.10)

the leakage prediction is very precise in the epithermal range, whereas some inaccuracy
arises in the high-energy region (at u1 ∈ [0.7, 1.0], that is, between 0.12 and 19.6 MeV).
The fast-group spectrum deformation computed with the POD modes is plotted in
Fig. 3.8 for the unrodded assembly. Only the result of the approximate version of the
leakage model is shown. Compared to the polynomial approach, the outcome is more
accurate in the epithermal region, with the resonance spikes being fitted precisely.
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Fig. 3.6. Example 2: leakage spectrum in the rodded assembly computed by rehomogeniza-
tion with the diffusive model and the hybrid modal approach.
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Fig. 3.7. Example 2: spectrum variation computed by rehomogenization with the diffusive
leakage model and the hybrid modal approach.
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Fig. 3.8. Example 2: fast-group spectrum variation in the unrodded assembly, as computed
by rehomogenization with the POD modes and the approximate formulation of the diffusive
leakage model.

The errors in the nodal cross sections, multiplication factor, nodal flux and fission
power are shown in Tables 3.4, 3.5, and 3.6. Since the results achieved with the two
formulations of the diffusive leakage model are equivalent, they are only reported
for the approximate one. With the diffusive approach, the deviations in the thermal
cross sections are very close to those found with calculation b. In the fast group,
for all the reaction types the computed corrections go in the right direction and

65



3. Modeling of the neutron leakage spectrum

approach the reference ones. The main differences between calculations e1 and e2
are in the δΣa,1 and δΣs,1→2 estimates. The corrections on keff, the nodal flux and
the fission power are also in good agreement with the reference values. The errors in
the last two quantities are significantly lower than those found with infinite-medium
homogenization parameters.

Table 3.4. Example 2: errors in the nodal cross sections of the unrodded assembly. The
abbreviation “Hybr.” refers to the hybrid modal approach.

UO2 1.8% Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.00827 0.0557 0.00485 0.0837 0.534 1.313 0.509 0.0174 1.256

Simulation Errors (%)

No rehom. (a) 1.61 0.56 0.51 0.60 0.68 0.16 0.56 3.80 0.14
Ref. δΣspec

G (b) 0.05 0.20 -0.12 0.23 -0.02 -0.05 -0.02 -0.07 -0.06
Rehom. (Hybr.) - ref. env. leak. (c) -0.53 0.20 0.05 0.23 -0.14 -0.05 -0.13 -0.24 -0.06
Rehom. (Hybr.) - diff. leak., approx. (e1 ) -0.25 0.20 -0.12 0.23 0.05 -0.05 0.05 0.25 -0.06
Rehom. (POD) - diff. leak., approx. (e2 ) 0.12 0.21 -0.25 0.24 0.08 -0.04 0.09 -0.34 -0.05

Table 3.5. Example 2: errors in the nodal cross sections of the rodded assembly.

UO2 1.8% + 24 AIC rods Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.0116 0.0817 0.00474 0.0853 0.534 1.286 0.507 0.0153 1.203

Simulation Errors (%)

No rehom. (a) -1.71 0.71 -0.64 -0.93 -0.80 -0.38 -0.66 -4.77 -0.46
Ref. δΣspec

G (b) 0.60 1.28 0.19 -0.12 0.02 0.05 0.0 0.01 -0.04
Rehom. (Hybr.) - ref. env. leak. (c) 1.02 1.16 -0.09 -0.29 0.13 -0.04 0.12 -0.16 -0.13
Rehom. (Hybr.) - diff. leak., approx. (e1 ) 0.65 1.16 0.17 -0.28 -0.11 -0.04 -0.11 -0.71 -0.12
Rehom. (POD) - diff. leak., approx. (e2 ) 0.38 1.14 0.23 -0.31 -0.13 -0.06 -0.15 0.18 -0.14

Table 3.6. Example 2: number of power iterations and errors in the multiplication factor,
nodal flux and fission power.

UO2 1.8% UO2 1.8% + 24 AIC rods

Simulation Niter ∆keff [pcm] ∆Φ̄G (%) ∆P̄fiss (%) ∆Φ̄G (%) ∆P̄fiss (%)

No rehom. (a) 10 58 -0.56, 2.08 3.03 (0.98, 3.41) 0.69, -3.50 -4.70 (-1.17, -5.61)
Ref. δΣspec

G (b) 10 -486 -0.06, 0.19 1.14 (0.47, 1.28) 0.29, -1.46 -1.77 (-0.56, -2.10)
Rehom. (Hybr.) - ref. env. leak. (c) 15 -512 -0.02, 0.06 1.25 (0.74, 1.36) 0.30, -1.52 -1.94 (-0.87, -2.24)
Rehom. (Hybr.) - diff. leak., approx. (e1 ) 16 -435 -0.09, 0.33 1.38 (0.49, 1.56) 0.35, -1.78 -2.15 (-0.58, -2.57)
Rehom. (POD) - diff. leak., approx. (e2 ) 25 -517 -0.01, 0.04 1.08 (0.38, 1.22) 0.27, -1.34 -1.67 (-0.45, -2.01)

3.3.1.3 Example 3 - UO2/MOX colorset

This colorset has been described in Section 2.3.2.3 (see Fig. 2.11). Figs. 3.9 and 3.10
depict the leakage distribution and the spectrum perturbation estimated by rehomo-
genization with the hybrid and POD modal approaches. Also in this case, the results
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are only shown for the approximate formulation of the leakage model. The computed
fast-group distributions suffer from some inaccuracy in the higher part of the energy
domain (at u1 > 0.85, corresponding to E > 1.5 MeV). Here, the bulge-shaped outline
featured by the spectrum variation is not reproduced by the polynomial approach
and is amplified by the POD-based one. The result is instead satisfactory in the
epithermal region.
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Fig. 3.9. Example 3: leakage spectrum in the UO2 assembly computed by rehomogenization
with the diffusive model.
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Fig. 3.10. Example 3: spectrum variation computed by rehomogenization with the diffusive
leakage model.

Tables 3.7, 3.8 and 3.9 show the errors in the nodal cross sections and in the integral
parameters. As in the previous examples, the performance of the method is excellent
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3. Modeling of the neutron leakage spectrum

in the thermal group. In the fast group, all the cross-section corrections go in the right
direction. The simulation with the POD modes (calculation e2 ) reproduces the refer-
ence value of δΣa,1 almost exactly, whereas both calculations c and e1 overestimate
it, especially in the MOX assembly. This difference depends on the reconstruction of
the epithermal resonances, which is achieved to a high level of accuracy only with the
POD basis. Because of the aforementioned flaws in the prediction of δΦ1(u) at high
energies, the three calculations overcorrect significantly the production cross section
νΣf,1 and, as a result, the fast-group nodal power. Nevertheless, due to the small
contribution of the latter and to the considerable improvement in the thermal-power
estimate, the error in the total power decreases appreciably. The correction on keff is
overestimated (calculation e2 ) or mispredicted (calc. e1 ), but the errors remain low.

Table 3.7. Example 3: errors in the nodal cross sections of the UO2 assembly.

UO2 2.1% Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.00927 0.0894 0.00547 0.0979 0.534 1.302 0.508 0.0171 1.211

Simulation Errors (%)

No rehom. (a) -0.61 1.12 0.07 1.27 -0.33 0.53 -0.37 1.18 0.50
Ref. δΣspec

G (b) 0.11 0.18 0.35 0.30 0.01 0.01 0.01 -0.05 0.0
Rehom. (Hybr.) - ref. env. leak. (c) 0.28 0.11 0.76 0.23 0.0 -0.03 0.0 -0.11 -0.04
Rehom. (Hybr.) - diff. leak., approx. (e1 ) 0.22 0.15 0.82 0.27 -0.08 0.0 -0.10 0.20 -0.01
Rehom. (POD) - diff. leak., approx. (e2 ) 0.16 0.15 0.71 0.26 -0.14 -0.01 -0.15 0.15 -0.02

Table 3.8. Example 3: errors in the nodal cross sections of the MOX assembly.

MOX Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.0142 0.260 0.00990 0.375 0.526 1.517 0.498 0.0131 1.254

Simulation Errors (%)

No rehom. (a) 0.02 0.42 0.02 0.58 0.39 -0.64 0.43 -0.87 -0.90
Ref. δΣspec

G (b) -0.08 0.88 -0.25 1.08 -0.01 0.34 -0.01 0.04 0.23
Rehom. (Hybr.) - ref. env. leak. (c) -0.21 0.90 -0.47 1.11 0.0 0.29 0.0 0.21 0.16
Rehom. (Hybr.) - diff. leak., approx. (e1 ) -0.33 0.89 -0.49 1.09 0.05 0.26 0.07 -0.16 0.12
Rehom. (POD) - diff. leak., approx. (e2 ) -0.10 0.89 -0.52 1.09 0.07 0.26 0.08 -0.29 0.13

Table 3.9. Example 3: number of power iterations and errors in the multiplication factor,
nodal flux and fission power.

UO2 2.1% MOX

Simulation Niter ∆keff [pcm] ∆Φ̄G (%) ∆P̄fiss (%) ∆Φ̄G (%) ∆P̄fiss (%)

No rehom. (a) 10 30 0.03, -0.15 0.73 (0.26, 0.86) 0.04, -0.69 -0.55 (-0.15, -0.71)
Ref. δΣspec

G (b) 10 -7 0.09, -0.56 -0.21 (0.53, -0.45) 0.02, -0.39 0.15 (-0.30, 0.38)
Rehom. (Hybr.) - ref. env. leak. (c) 16 16 0.09, -0.56 -0.19 (0.93, -0.57) 0.02, -0.28 0.15 (-0.53, 0.47)
Rehom. (Hybr.) - diff. leak., approx. (e1 ) 12 34 0.06, -0.36 0.04 (0.99, -0.28) 0.03, -0.49 -0.03 (-0.57, 0.23)
Rehom. (POD) - diff. leak., approx. (e2 ) 20 -51 0.07, -0.40 0.07 (0.96, -0.22) 0.03, -0.60 -0.05 (-0.55, 0.19)
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3.3.1.4 Example 4 - UO2 colorset with gadolinium-bearing fuel rods

In this example (Fig. 3.11), the checkerboard layout consists of two 17 × 17 UO2
assemblies with 1.8% enrichment and two 17×17 UO2 assemblies with 3.9% enrichment
and 12 fuel rods containing gadolinium (Gd). The pins with burnable poison are
located at the periphery of the assemblies, in the outer and first inboard rows. They
have 0.25% 235U enrichment and 8% mass content of gadolinium oxide (Gd2O3), with
the isotopic composition of naturally occurring gadolinium. The concentration of
boron in the moderator is 1830 ppm, and the reference multiplication factor is 1.00303.
The reference fission power is 0.82 in the 1.8%-enriched assembly and 1.18 in the
3.9%-enriched one.

UO2

3.9% + Gd

UO2

1.8%

UO2

1.8%

UO2

3.9% + Gd

(a) (b) (c)

Fig. 3.11. (a) Assembly set of example 4. Layout of the UO2 fuel assemblies: (b) with 1.8%
enrichment, (c) with 3.9% enrichment and 12 gadolinium-bearing fuel rods in the periphery
of the assembly. Both assemblies host 24 empty guide tubes and an empty tube for the
instrumentation in the center.

Figs. 3.12 and 3.13 portray the leakage distribution and the spectrum variation. In
the fast group, the spectrum change from the diffusive approach exhibits a tilt with
respect to the curve obtained with the reference leakage input. The magnitude of
the reference spectrum deformation is overestimated in the epithermal region. As
in the colorset with control rods (Sections 2.3.2.2 and 3.3.1.2), the computed δΦ2(u)
deviates from the reference because of spatial effects. This behavior can be justified as
follows. In the assembly with gadolinium, the variation in the flux spatial distribution
is positive at the periphery and exceeds 15% in the outer cell rows (see Fig. 5.15),
where the fuel pins with burnable poison are located and neutron absorption is higher.
Hence, the average spatial correction δΣspat,ref

a,2 in the node is positive. Since the
hardening effect of the spatial term is not accounted for by spectral rehomogenization,
the method predicts a softer spectrum (that is, the amplitude of the thermal spectrum
change is overestimated).
Tables 3.10, 3.11 and 3.12 report the numerical errors. Simulations b and c differ
most clearly in their prediction of δνΣf,2 in the gadolinium-bearing assembly and
of δΣa,1 in both fuel bundles. In the thermal group, the corrections computed with
the diffusive model match those of calculation c. The cross sections Σa,1 and Σs,1→2
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Fig. 3.12. Example 4: leakage spectrum in the UO2 assembly with gadolinium-bearing
fuel rods, as computed by rehomogenization with the diffusive model and the hybrid modal
approach.
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Fig. 3.13. Example 4: spectrum variation computed by rehomogenization with the diffusive
leakage model and the hybrid modal approach.

are overcorrected due to the overestimation of δΦ1(u) in the epithermal range. The
correction on νΣf,1 is larger than the reference value in the assembly with poison,
whereas it goes in the wrong direction in the low-enriched bundle. These inaccuracies
are due to the misprediction of the spectrum change in the epithermal region and
in the range [0.95, 1.0] (i.e., E ∈ [8.2 MeV, 19.6 MeV]), where a non-zero δΦ1(u) is
computed. The errors in keff and fission power do not decrease significantly if only
the spectral effects are accounted for.
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Table 3.10. Example 4: errors in the nodal cross sections of the assembly without gadolinium.

UO2 1.8% Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.00889 0.0721 0.00486 0.0806 0.540 1.310 0.513 0.0180 1.237

Simulation Errors (%)

No rehom. (a) -0.99 1.06 0.31 1.30 -0.59 0.36 -0.57 -0.96 0.32
Ref. δΣspec

G (b) 0.02 0.23 0.22 0.44 0.02 -0.11 0.02 -0.01 -0.13
Rehom. (Hybr.) - ref. env. leak. (c) 0.29 0.07 0.15 0.28 0.08 -0.20 0.07 0.03 -0.22
Rehom. (Hybr.) - diff. leak., original (d) 0.44 0.08 0.51 0.29 0.0 -0.19 -0.03 0.59 -0.21
Rehom. (Hybr.) - diff. leak., approx. (e) 0.39 0.07 0.48 0.28 -0.01 -0.20 -0.03 0.45 -0.22

Table 3.11. Example 4: errors in the nodal cross sections of the assembly with gadolinium.

UO2 3.9% + 12 Gd rods Σa,1 Σa,2 νΣf,1 νΣf,2 Σt,1 Σt,2 Σs,1→1 Σs,1→2 Σs,2→2

Reference [cm−1] 0.0103 0.119 0.00740 0.152 0.531 1.349 0.504 0.0164 1.228

Simulation Errors (%)

No rehom. (a) 0.93 -2.46 0.11 -0.90 0.55 -0.59 0.53 0.91 -0.42
Ref. δΣspec

G (b) -0.03 -1.71 -0.21 -0.10 -0.01 -0.13 -0.01 0.02 0.02
Rehom. (Hybr.) - ref. env. leak. (c) -0.28 -1.36 -0.21 0.28 -0.08 0.09 -0.07 -0.02 0.23
Rehom. (Hybr.) - diff. leak., original (d) -0.45 -1.36 -0.45 0.27 -0.03 0.09 0.0 -0.61 0.23
Rehom. (Hybr.) - diff. leak., approx. (e) -0.40 -1.36 -0.42 0.28 -0.02 0.09 0.0 -0.48 0.23

Table 3.12. Example 4: number of power iterations and errors in the multiplication factor,
nodal flux and fission power.

UO2 1.8% UO2 3.9% + 12 Gd rods

Simulation Niter ∆keff [pcm] ∆Φ̄G (%) ∆P̄fiss (%) ∆Φ̄G (%) ∆P̄fiss (%)

No rehom. (a) 9 712 0.48, -2.15 -1.74 (0.18, -2.25) -0.49, 3.30 1.20 (-0.11, 1.63)
Ref. δΣspec

G (b) 9 698 0.27, -1.24 -1.65 (0.15, -2.13) -0.36, 2.42 1.14 (-0.09, 1.55)
Rehom. (Hybr.) - ref. env. leak. (c) 13 717 0.26, -1.17 -1.79 (0.06, -2.28) -0.32, 2.16 1.24 (-0.04, 1.66)
Rehom. (Hybr.) - diff. leak., original (d) 12 698 0.19, -0.85 -1.36 (0.44, -1.84) -0.27, 1.85 0.94 (-0.26, 1.34)
Rehom. (Hybr.) - diff. leak., approx. (e) 12 704 0.21, -0.93 -1.45 (0.41, -1.94) -0.28, 1.91 1.0 (-0.24, 1.41)

3.3.1.5 Example 5 (fuel depletion)

We consider a colorset with three 1.8%-enriched UO2 assemblies and a 3.1%-enriched
UO2 assembly hosting 16 Pyrex rods. The composition and the internal layout of the
fuel bundles are the same as those displayed in Fig. 2.5. The fuel elements are burnt
at a power volumetric density of 107.03 kW/l until an average colorset exposure of
12.0 GWd/t, which corresponds to about 303 days. The depletion is performed with
50 burn-up steps of gradually increasing size. The values of the state parameters are
kept constant during the evolution. The diluted-boron concentration (1000 ppm) is
chosen so as to make the configuration critical during the first part of the depletion
(Fig. 3.14).
In this test case, the two-group cross-section libraries are generated with the critical-
buckling correction, which is the default option in the ARTEMIS nodal code. Reho-
mogenization is applied with the Chebyshev basis functions also in the thermal group,
and with the approximate variant of the diffusive leakage method. In APOLLO2-A,
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Fig. 3.14. Example 5: reference multiplication factor versus burn-up.

the rehomogenization coefficients are only parameterized versus the burn-up, the fuel
temperature and the moderator temperature. They are computed at predetermined
nominal values of the moderator density and of the concentrations of diluted boron
and xenon. During the nodal calculation, they are updated to account for differences
between the actual values of these three state parameters in each node and the nominal
ones. As mentioned in Section 2.4.2, this choice is made to minimize the memory
requirement for the storage of the additional rehomogenization entries in the cross-
section tables. The full details of the algorithm developed for the update are given
in Section 4.4.6. In the framework of the present analysis, we have verified that the
error introduced using updated rehomogenization coefficients (instead of computing
them at the exact, local conditions) is negligible or small.
Fig. 3.15 shows the spectrum variation in the 1.8%-enriched assembly next to the
assembly with Pyrex rods at the beginning and at the end of the depletion. In the
fast group, the reference curve exhibits a change of sign and a significant deformation
with the burn-up, especially at high energies. As observed in the UO2/MOX test
case (example 3), rehomogenization succeeds in predicting the average behavior of the
distribution in the epithermal and intermediate regions of the spectrum, but it fails
to reproduce rigorously its strongly varying outline in the upper part of the energy
domain. The comparison with the reference-leakage-input curve reveals that the
leakage spectrum is accurately estimated by the diffusive model and that the above
inaccuracy is mostly due to the inherent limitations of a polynomial synthesis in the
fast group. In the thermal range, neither the shape nor the magnitude of the spectrum
perturbation changes appreciably with the fuel exposure, and the reconstruction
remains accurate throughout the evolution.
Figs. 3.16 and 3.17 depict the errors in the absorption and production cross sections
of the fuel assembly with Pyrex rods and the poison-free bundle next to it as a
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Fig. 3.15. Example 5: spectrum variation in the 1.8%-enriched assembly adjacent to the
3.1%-enriched poisoned bundle, at 0 GWd/t (top) and 12.0 GWd/t (bottom).

function of the burn-up. In the plots the zero-error bar is highlighted. The corrections
computed with the diffusive model are in good agreement with those obtained with the
reference-leakage input. A significant overcorrection is only found for fast absorption
in the assembly with burnable absorber. For both reaction types, a considerable
improvement is achieved in the thermal group of the heterogeneous (i.e., poisoned)
assembly, above all in νΣf,2, and in the fast group of the assembly without Pyrex. In
the poison-free bundle, the errors in Σa,2 are significantly reduced in the first part
of the depletion. However, they increase with burn-up and ultimately overcome in
magnitude the homogenization defect, which slowly decreases with the fuel exposure.
No gain in accuracy is found for fast absorption in the heterogeneous assembly.
The errors in the nodal flux are shown in Fig. 3.18 for the aforementioned two as-
semblies and in Fig. 3.19 for the 1.8%-enriched assembly next to an assembly of the
same type. The improvement produced by rehomogenization is evident in the thermal
group, where in the absence of spectral corrections the errors increase significantly
with the burn-up (up to 2% in the assembly with Pyrex rods and about 1% in the
remaining two bundles). With the diffusive-leakage-based rehomogenization, the errors
are bounded below 0.5% in the dissimilar adjacent assemblies and 0.2% in the third
bundle. Furthermore, they do not change significantly with the fuel exposure, whereas
in the calculation with infinite-medium cross sections they exhibit a monotonically
increasing behavior during the second part of the depletion.
Fig. 3.20 shows the evolution of the error in the nodal fission power of the dissimilar
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Fig. 3.16. Example 5: error in the two-group absorption cross section as a function of
burn-up in the two adjacent dissimilar assemblies.
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Fig. 3.17. Example 5: error in the two-group production cross section as a function of
burn-up in the two adjacent dissimilar assemblies.
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Fig. 3.18. Example 5: error in the two-group nodal flux as a function of burn-up in the two
adjacent dissimilar assemblies.
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Fig. 3.19. Example 5: error in the thermal-group nodal flux as a function of burn-up in the
UO2 assembly adjacent to an identical assembly.

neighboring assemblies. The benefits of rehomogenization are apparent, especially in
the first part of the depletion. The behavior of the curves can be interpreted as follows.
When infinite-medium cross sections are used, the power is underestimated in the more
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reactive assembly (i.e., the 3.1%-enriched one). This is due to the underestimation
of its thermal production cross section (see Fig. 3.17). Therefore, the fuel initially
burns less and loses reactivity more slowly, which goes in the direction of an increase
in the power with burn-up. The opposite occurs in the least reactive assembly type
(the low-enriched one), in which the power is overestimated. A consequence of this
evolution is that the power deviations tend to decrease with burn-up in the three
assemblies. As shown in Fig. 3.21, the error in the multiplication factor (which is
initially negative) also becomes lower for increasing values of the fuel exposure and
approaches a constant value. When rehomogenization is applied, the deviations in
the power are considerably lower, especially in the assembly with Pyrex rods at the
beginning of the depletion. However, with the error pattern introduced by the spectral
corrections, the self-healing effect discussed above vanishes. This might be the cause
(or one of the causes) of the monotonically increasing behavior of the errors in the
power and in keff (Fig. 3.21) when rehomogenization is applied.
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Fig. 3.20. Example 5: error in the nodal fission power as a function of burn-up in the two
adjacent dissimilar assemblies.

Another possible source of inaccuracy in the depletion is that, in this analysis, the
spectral corrections are only computed for the macroscopic cross sections. Few-group
microscopic cross sections are not rehomogenized. Therefore, the solution of Bateman’s
equations for the depletion of fissile isotopes, fission products and burnable poison
benefits from rehomogenization only in part, namely, via the improved accuracy in the
few-group nodal flux as observed in Figs. 3.18 and 3.19. This source of error could be
removed introducing isotopic rehomogenization coefficients to correct the microscopic
cross sections. Based on Eq. (2.12), the reference and variational isotopic parameters
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Fig. 3.21. Example 5: error in the multiplication factor as a function of burn-up.

for the generic nuclide c and the reaction type x can be defined as

hR,x,c,G,j =
∫ 1

0
duWG,j(u)σx,c,G(u)ϕ∞,G(u), (3.33a)

hV,x,c,G,i,j =
∫ 1

0
duWG,j(u)σx,c,G(u)QG,i(u). (3.33b)

A relation similar to Eq. (2.15) holds for the microscopic cross section σx,c,G:

δσx,c,G = 1
Φ̄G

NQG∑
i=1

αG,ihV,x,c,G,i,0 . (3.34)

Rehomogenization of microscopic cross sections is addressed more in detail in Chapter 4.

3.3.2 Comparison with the fundamental-leakage approach

In this part of the analysis, the fundamental-leakage approach is investigated and
compared to the diffusive method for some test cases without feedback or depletion.
Nodal calculations are performed with BRISINGR (Appendix A). The infinite-medium
cross sections and discontinuity factors and the rehomogenization coefficients are com-
puted with APOLLO2-A (Martinolli et al., 2010). This choice has been made to
avoid a computationally demanding fine-group B1 spectrum calculation in SERPENT
(Leppänen et al., 2015). The diffusion coefficients are obtained from the homogeneous
B1 model. This approach makes the assumption that the leakage coefficient DG(u),
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which defines the critical leakage [Eq. (3.31)], can be used as diffusion coefficient
(Hebert, 2009). The results are briefly presented for examples 1 and 2, which are now
simulated using single-assembly input data generated with the critical-buckling pro-
cedure. An additional test case (a non-critical UO2/MOX colorset) is also considered.
Rehomogenization is applied with the hybrid modal approach.
For the assembly of example 1 hosting Pyrex rods (Section 3.3.1.1), Fig. 3.22 com-
pares (i) the fundamental-mode leakage computed with APOLLO2-A single-assembly-
generated data and (ii) the leakage predicted by rehomogenization with the diffusive
model. The spectrum perturbation determined with the two approaches is also depic-
ted.
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Fig. 3.22. Example 1: fundamental-mode and diffusive leakage distributions (top), and
corresponding spectrum variation (bottom) in the assembly with Pyrex rods for the calculation
with B2-corrected input data.

In the thermal group, the critical-leakage spectrum significantly overestimates the
amplitude of the reference for u2 ∈ [0.85, 1.0] (E ∈ [0.15 eV, 0.625 eV]) and under-
estimates it in the remaining part of the domain (u2 ∈ [0.5, 0.85], corresponding to
E ∈ [6 meV, 0.15 eV]). As a consequence, the magnitude of the spectrum change
is underestimated in the two lethargy ranges. In the epithermal region (u1 ∈ [0,
0.3], E ∈ [0.625 eV, 110 eV]), the environmental leakage is negative (i.e., there is
an incoming flow of neutrons), whereas the fundamental-mode leakage is positive.
Therefore, the fast-group spectrum deformation computed with the latter deviates
significantly from the reference in this lethargy range and eventually has opposite
sign near the thermal cut-off. Since in this region the fine-group cross sections are
higher than in the remainder of the fast-group domain, an error in the prediction of
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the spectrum variation has more weight. In the high-energy region (u1 ∈ [0.75, 0.85],
that is, E ∈ [0.27 MeV, 1.5 MeV]), the underestimation of the environmental leakage
causes a considerable overprediction of δΦ1(u). Analogous results are found for the
assembly without Pyrex rods. The effect of the aforementioned mispredictions in the
fast group can be observed in Table 3.13, which shows the deviations in the integral
parameters and in the main nodal cross sections. With the fundamental-leakage
approach (calculation f ), Σa,1 is overcorrected, whereas the corrections on νΣf,1 go
in the wrong direction. For both reaction types, the errors become higher than in
the calculation without rehomogenization. In the thermal group the corrections have
the right sign, but their magnitude is underestimated. The error in the fission power
increases notably. Also in this case, with the diffusive leakage approach the reference
cross-section corrections are accurately predicted, and the errors in keff and in the
fission power match the expected values (calculations b and c).

Table 3.13. Example 1: errors in the integral parameters and main nodal cross sections for
the simulation with B2-corrected input data. Errors are in pcm for the multiplication factor
and in percentage for the fission power and cross sections.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Errors (%)

Simulation ∆keff [pcm] ∆P̄fiss ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆P̄fiss ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

No rehom. (a) -189 0.85 -0.04 0.69 0.51 0.81 -0.72 0.10 -0.50 -0.33 -1.03
Ref. δΣspec

G (b) -158 0.14 0.04 0.14 0.13 0.24 -0.12 -0.03 0.27 -0.10 -0.20
Rehom. - ref. env. leak. (c) -154 0.11 -0.01 0.08 0.15 0.17 -0.09 0.0 0.28 -0.11 -0.19
Rehom. - diff. leak., original (d) -155 0.11 0.13 0.12 0.20 0.22 -0.10 -0.13 0.23 -0.17 -0.25
Rehom. - diff. leak., approx. (e) -154 0.04 0.15 0.12 0.13 0.21 -0.03 -0.15 0.23 -0.12 -0.24
Rehom. - fund. leak. (f ) -177 1.43 0.90 0.24 0.79 0.33 -1.22 -0.98 -0.02 -0.82 -0.52

The same analysis is performed for the colorset of example 2 (Section 3.3.1.2). Fig. 3.23
depicts the leakage distribution and the spectrum variation in the rodded assembly.
Compared to the case without critical-buckling correction (Fig. 3.7), the change in
shape and sign of the fast-group spectrum deformation is apparent. The reconstruction
of the perturbation with the fundamental-leakage approach still lacks accuracy. In
the thermal group, similar conclusions can be drawn as for the previous test case.
The deviations in the nodal cross sections and integral parameters are in Table 3.14.
Calculation e accurately corrects Σa,1, which is instead largely undercorrected with
simulation f. The error in keff is reduced by rehomogenization, especially with the
diffusive leakage model, whereas the impact on the fission power is quite small (most
of the error is due to spatial effects).
In the examples considered so far, homogenization errors in the fast-group infinite-
medium cross sections are mostly due to spectral effects, rather than spatial ones.
Hence, a last benchmark problem has been tailored to achieve very high errors in the
fast-group cross sections. In this way, we can better evaluate the capability of spectral
rehomogenization to correct them. The example consists of a UO2/MOX colorset. The
colorset layout is similar to that illustrated in Fig. 2.11a, with one of the two MOX

79



3. Modeling of the neutron leakage spectrum

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−4

u

f L
,2
(u

)
[n

/
cm

3
/
s]

UO2 1.8% + 24 AIC rods, G = 2

0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0
x 10

−3

u

f L
,1
(u

)
[n

/
cm

3
/
s]

UO2 1.8% + 24 AIC rods, G = 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

4

6

u

δ
Φ
2
(u

)
(%

)

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

u

δ
Φ
1
(u

)
(%

)
Reference
Rehom. - diff. leak. (original)
Rehom. - diff. leak. (approx.)
Rehom. - fund. leak.

Reference
Rehom. - diff. leak. (original)
Rehom. - diff. leak. (approx.)
Fund. leak.

Fig. 3.23. Example 2: fundamental-mode and diffusive leakage distributions (top), and
corresponding spectrum variation (bottom) in the rodded assembly for the calculation with
B2-corrected input data.

Table 3.14. Example 2: errors in the integral parameters and main nodal cross sections for
the simulation with B2-corrected input data.

UO2 1.8% UO2 1.8% + 24 AIC rods

Errors (%)

Simulation ∆keff [pcm] ∆P̄fiss ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆P̄fiss ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

No rehom. (a) -540 0.94 -0.72 0.43 -0.13 0.46 -1.46 1.83 0.83 0.46 -0.76
Ref. δΣspec

G (b) -337 1.14 0.05 0.17 0.05 0.20 -1.77 0.47 1.32 -0.02 -0.07
Rehom. - ref. env. leak. (c) -381 1.12 0.07 0.18 0.02 0.21 -1.74 0.32 1.19 -0.1 -0.27
Rehom. - diff. leak., approx. (e) -357 1.17 0.12 0.19 -0.13 0.22 -1.82 0.23 1.17 0.08 -0.29
Rehom. - fund. leak. (f ) -434 1.07 -0.51 0.25 -0.08 0.28 -1.66 1.03 1.06 0.22 -0.45

assemblies replaced by another UO2 assembly. The three UO2 assemblies are identical
and have 3.5% 235U enrichment, whereas the MOX assembly has 8.0% 239Pu content.
The internal loading of the fuel bundles corresponds to that of Figs. 2.11b and 2.11c.
The diluted-boron concentration is 700 ppm, and the reference multiplication factor is
1.26257. The reference values of the fission power are 0.87 in the MOX assembly, 1.03
in the UO2 assembly next to it and 1.10 in the third UO2 bundle.
Figs. 3.24 and 3.25 show the spectrum variation in the adjacent UO2 and MOX as-
semblies (heterogeneous interface) and in the UO2 assembly next to two UO2 bundles
(homogeneous interface). Compared to the previous test cases, the fundamental-
leakage spectrum provides a better approximation in the fast group. In particular, the
prediction is reasonably accurate for the UO2 assembly next to the MOX assembly.
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Fig. 3.24. Non-critical UO2/MOX example: spectrum variation in the adjacent UO2 and
MOX assemblies (heterogeneous interface).
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Fig. 3.25. Non-critical UO2/MOX example: spectrum variation in the UO2 assembly next
to two assemblies of the same type (homogeneous interface).

However, the spectrum perturbation in the latter is considerably underestimated in
the epithermal region. In the UO2 assembly bordering an identical assembly, the
two leakage models produce a similarly accurate outcome. In this case, due to the
low interassembly heterogeneity the fundamental-leakage approach provides a sat-
isfactory approximation of the environmental leakage. In the thermal group, the
infinite-medium leakage strategy is still inadequate, especially in the MOX assembly.
Table 3.15 shows the errors in the nodal cross sections and integral parameters. Their
magnitude is relevant in the fast-group cross sections (up to 4% in absorption in
the MOX assembly). A considerable part of these errors is due to the use of a B2-
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Table 3.15. Non-critical UO2/MOX example: errors in the (a) integral parameters and (b)
main nodal cross sections of the three assemblies.

MOX UO2 3.5% (next to MOX) UO2 3.5% (next to UO2)

Simulation ∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%) ∆P̄fiss (%)

No rehom. (a) -26 1.16 0.0 -0.91
Ref. δΣspec

G (b) 76 1.31 -0.28 -0.51
Rehom. - ref. env. leak. (c) -223 0.86 -0.07 -0.55
Rehom. - diff. leak., approx. (e) -164 0.40 0.07 -0.46
Rehom. - fund. leak. (f ) -60 -0.70 0.59 -0.54

(a)

MOX UO2 3.5% (next to MOX) UO2 3.5% (next to UO2)

Errors (%)

Simulation ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

No rehom. (a) -3.97 0.60 -1.67 0.57 -3.32 0.31 -2.03 0.33 -3.20 -0.08 -2.06 -0.08
Ref. δΣspec

G (b) -0.08 0.90 0.19 1.04 0.02 0.08 0.23 0.09 0.0 0.02 0.16 -0.03
Rehom. - ref. env. leak. (c) -0.03 0.87 -0.13 1.0 0.71 0.06 0.24 0.07 0.45 0.0 -0.1 -0.01
Rehom. - diff. leak., approx. (e) -0.27 0.90 -0.22 1.04 0.72 0.08 0.23 0.09 0.59 0.0 0.03 0.0
Rehom. - fund. leak. (f ) -1.35 0.49 -0.33 0.52 1.02 0.11 0.28 0.12 0.57 0.02 -0.06 0.02

(b)

corrected condensation spectrum in an environment very far from criticality (26257
pcm of positive reactivity). The benefits of rehomogenization in combination with the
diffusive leakage model are apparent. The errors in the fast-group cross sections are
significantly reduced and become very close to those of calculation c. An improvement
in the power prediction is also found. With the fundamental-leakage approach, the
errors also decrease but to a smaller extent. Moreover, deficiencies in the calculation
of the thermal corrections cause a considerable misprediction of the power in the
MOX assembly. If no spectral correction is performed, the errors in the thermal flux
(not shown in Table 3.15) are relevant : -6.67% in the MOX assembly, -4.88% in the
adjacent UO2 assembly, and -4.92% in the remaining UO2 bundle. These discrepancies
are reduced to -1.88%, 0.17% and 0.03% with calculation e, and to -2.88%, 0.87%
and 0.15% with calculation f. With the fundamental-leakage approach, in the UO2
assembly next to the MOX one, the somewhat high residual error in Φ̄2 deteriorates
the estimate of the total power, even if the deviations in Σa,2 and νΣf,2 are close
to the ones of calculation c due to fortuitous error cancellation. The variation in
keff observed with calculation c (i.e., our reference for the leakage model) goes in
the opposite direction with respect to that of calculation b (our global reference for
spectral rehomogenization). This is found, to a lesser extent, also for the fission power
in the MOX assembly. Such outcome is again a side effect of the use of smoothly
varying basis functions, which cannot reproduce in any way the fine details of the
spectrum perturbation (in particular, the resonance spikes).
The same UO2/MOX colorset has been simulated in critical conditions, obtained
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with a soluble-boron concentration of 4392 ppm. Fig. 3.26 shows the corresponding
spectrum variation in the adjacent UO2 and MOX assemblies. As in the example with
Pyrex rods (Fig. 3.22), the critical-leakage approach provides a poor approximation of
the reference, especially in the fast group. A comparison between the non-critical and
critical results (Figs. 3.24 and 3.26, respectively) reveals that the fundamental-leakage
approximation does not necessarily perform better in a critical environment.
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Fig. 3.26. UO2/MOX example: spectrum variation in the adjacent UO2 and MOX assemblies
in a critical environment.

3.4 Discussion

In this section we discuss various aspects of the diffusive leakage model. Focus is
given to its numerical features and computational efficiency and to the the validity of
the assumption underpinning the approximate formulation of the method [Eq. (3.21)].
We also address the influence of the fine-group diffusion coefficient definition on the
accuracy of the leakage spectrum prediction. To conclude, we briefly mention another
track for leakage modeling that has been investigated in this thesis work.

3.4.1 Numerical aspects and implementation features
As mentioned in Section 3.2.1, the diffusive leakage method is non-linear and non-
local. Non-linearity is tackled computing the leakage parameter hL,G,j [Eqs. (3.18)
and (3.27)] with the spectrum-variation expansion coefficients αG,i from the previous
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rehomogenization iteration. The spectral correction problem cannot be solved inde-
pendently for each node, as in the case of the fundamental-leakage approach. This
requires to store the coefficients αG,i for all the nodes of the system. However, with the
Galerkin-based modal synthesis this must be done irrespective of the leakage model to
dampen numerical oscillations observed in the convergence process (see Section 2.4.2).
Therefore, non-local features of the diffusive approach add no further complexity to
the rehomogenization problem.
When the normalization factor wk,mG is computed for the leakage spectrum at the
interface between nodes k and m, numerical instability can arise if the denominator
of Eq. (3.20) or Eq. (3.29) has a value close to zero. This can occur, for instance,
in adjacent fresh-fuel nodes with the same composition. In order to avoid undesired
convergence issues in the nodal simulation, the diffusive approach is only applied if
the following approximate threshold condition is met:∣∣Φ̄kG − Φ̄mG

∣∣
Φ̄avg,km
G

6 εtol, (3.35)

where εtol is a given tolerance and Φ̄avg,km
G is the arithmetic average of the coarse-group

flux in nodes k and m. Otherwise, no action is performed (i.e., the assumption is
made that there is no leakage through the given interface) or the fundamental-leakage
shape is used for that surface, if available from the lattice calculation. Values of εtol
in the range 0.1%-1.0% proved to be a suitable choice. A similar threshold condition
should be applied to the node-averaged leakage L̄kG, that divides J

k,m
G in Eqs. (3.20)

and (3.29). However, this second control is not necessary if we use the notation of
Eq. (3.13) with normalization to Jk,mG , instead of the notation of Eqs. (3.1) and (3.14)
with normalization to Jk,mG /L̄kG.
Due to the non-linearity of the diffusive approach, the spectrum perturbation and
the leakage distribution computed by rehomogenization are intimately coupled. In
order to reduce oscillations in the convergence of the calculation, numerical damping
is performed on the leakage coefficients at each assembly interface. We define the
few-group leakage parameter qk,mG,j for the edge of node k bordering with node m (we
take as example the approximate formulation of the method):

qk,m
(n)

G,j =
{
wk,mG

[
Φ̄kGhkR,D,G,j +

NQG∑
i=1

αkG,ih
k
V,D,G,i,j−

(
Φ̄mGhmR,D,G,j +

NQG∑
i=1

αmG,ih
m
V,D,G,i,j

)]}(n)

. (3.36)

In Eq. (3.36), the superscript (n) refers to the n-th rehomogenization iteration. At
each iteration, the parameter qk,m

(n)

G,j is updated as follows:

qk,m
(n)′

G,j = θqk,m
(n)

G,j + (1− θ)qk,m
(n−1)′

G,j , (3.37)
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where qk,m
(n−1)′

G,j denotes the estimate of Eq. (3.36) from the previous rehomogenization
iteration, and θ is the damping factor (taken as 0.5). Under-relaxation has been found
to strongly increase the stability of the computation. Without it, a significantly lower
rate of convergence is observed for most test cases. The drawback of this procedure
is that the coefficients qk,m

(n)′

G,j must be saved in memory for each internodal surface.
For a 3-D, two-group simulation with four basis functions per group, the memory
requirement is 48 coefficients per node.
When the polynomial-based spectral rehomogenization is combined with the diffusive
leakage model, the number of non-linear flux iterations increases by a factor of 1.2
to 1.9. Slower convergence (up to a factor of 2.5) is found with the POD approach.
We deem that this loss of computational efficiency is fully compensated for by the
observed gain in accuracy. Moreover, the benchmark problems presented in this work
have been simulated without thermal-hydraulic feedback. This choice has been made
to validate spectral rehomogenization against the reference solutions from SERPENT
and APOLLO2-A, in which the thermal feedback cannot be easily included. In an
actual core calculation, the method would be nested in the iterations between the flux
solver and the thermal-feedback calculation (see Section 2.2.3). Its cost in terms of
additional iterations would therefore be amortized.
In all test cases, the fundamental-leakage approach exhibits a somewhat faster conver-
gence than the diffusive one. The increase in the number of flux iterations is always
well below a factor of 2. This can be explained by the absence of non-linearity.

3.4.2 On the approximate formulation of the diffusive method

The results presented in Section 3.3 show that the differences between the original
and approximate formulations of the diffusive method [Eqs. (3.17) and (3.25)] are
negligible. This confirms that the approximation of Eq. (3.21) is generally acceptable.
For example, Fig. 3.27 depicts the fine-group diffusion coefficient in the two assemblies
of example 1. The deviations between the two distributions are negligible in the fast
group, whereas they are more substantial in the thermal group, especially at very low
energies. The rehomogenization method is, however, less sensitive to variations in the
computed thermal leakage, which has smaller magnitude. The behavior observed in
Fig. 3.27 can be justified by considering that the migration of fast neutrons is not
significantly affected by differences in the enrichment or by the presence of thermal
absorbers (such as burnable poison and control rods). These are only perceived when
neutrons are slowed down to thermal energies. A similar outcome has been also found
for adjacent assemblies with significantly different fuel composition, such as the UO2
and MOX assemblies of example 3.
To conclude, we verified that environmental effects on the fine-energy diffusion coeffi-
cients are negligible and that the performance of the method is not influenced by the
use of the infinite-medium DG(u) distributions instead of the environmental ones in
Eqs. (3.19) and (3.28).
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Fig. 3.27. Example 1: (a) thermal-group and (b) fast-group diffusion-coefficient energy
distributions, computed with the CMM in SERPENT, in the two adjacent assemblies.

3.4.3 Impact of the diffusion coefficient definition

We now assess the sensitivity of the diffusive-leakage spectrum to the diffusion coeffi-
cient formulation and its effect on the performance of the method. The calculation of
the diffusion coefficient in deterministic lattice-physics codes is usually based either
on the B1 methodology (Hebert, 2009) or on one of the conventional transport ap-
proximations (Choi et al., 2015): consistent PN, outflow (or out-scatter), and inflow
(or in-scatter). Several works (Smith, 2017; Choi et al., 2015, 2017) have highlighted
the weaknesses of approaches other than the inflow transport approximation, which
is unanimously credited to have the most rigorous foundation. For Monte Carlo
codes, Liu et al. (2016) proved that the optimal method is the already mentioned
CMM, which is equivalent to the inflow transport approximation in the limit of a
homogeneous hydrogen slab.
For the benchmark problems investigated in Section 3.3, we computed the DG(u)
distributions with the options featured by the SERPENT and APOLLO2-A codes:
the CMM for the former, the B1 model for the latter, and the outflow transport
approximation for both. We consider as illustrative case the assembly with gadolinium-
bearing fuel pins of example 4, for which Fig. 3.28 shows the diffusion coefficient from
the CMM and the outflow transport approximation computed with SERPENT data.
The corresponding leakage spectra, determined with the approximate version of the
diffusive model, are depicted in Fig. 3.29. In order to focus on the differences caused
by the diffusion coefficient formulation, they have been computed using the reference
environmental flux spectra. The spectrum variation predicted by rehomogenization
with the diffusive method and the hybrid modal approach is also shown. The devi-
ations between the CMM and the outflow transport approximation have an effect on
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Fig. 3.28. Example 4: fine-group diffusion coefficient in the gadolinium-bearing fuel assembly,
computed in SERPENT with the CMM and the outflow transport approximation.

the leakage especially in the higher-energy region of the fast group (u1 > 0.7, i.e.,
E > 0.12 MeV). Here, the fine-energy diffusion coefficient computed with the CMM is
significantly lower than that from the outflow transport approximation. When looking
at the spectrum perturbation, the outflow approach is less accurate in the high-energy
region. However, it results in a better approximation in the epithermal range, even if
the leakage spectra corresponding to the two formulations exhibit negligible differences
in this part of the energy domain. In the thermal group, the variations in the spectrum
deformation driven by discrepancies in the diffusion coefficient are not significant.
If the outflow transport approximation is used instead of the CMM, the errors in
Σa,1 and Σs,1→2 decrease from -0.40% and -0.48% (see calculation e in Table 3.11) to
-0.12% and -0.15% in the gadolinium-bearing assembly; from 0.39% and 0.45% (see
calculation e in Table 3.10) to 0.1% and 0.07% in the assembly without poison. The
error in the total fission power also becomes lower than that found with the CMM
formulation: from -1.45% and 1.0% (see calc. e in Table 3.12) to -0.92% and 0.64% in
the fuel bundles without and with gadolinium, respectively. Therefore, the approach
used to compute the diffusion coefficient can have a relevant impact on the outcome
of rehomogenization combined with the diffusive leakage method.
The analysis of the remaining benchmark problems showed that in the thermal group
the outflow transport approximation generally provides a more accurate leakage re-
construction. However, as observed for the above sample problem, the impact of
diffusion coefficient variations is small in this energy group. In the fast group, finding
an evident trend is difficult and the accuracy of the various formulations depends on
the specific test case.
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Fig. 3.29. Example 4: reference diffusive-leakage spectrum in the gadolinium-bearing
assembly (top) and spectrum variation computed by rehomogenization (bottom) using the
fine-group diffusion coefficients from the CMM and the outflow transport approximation (see
Fig. 3.28).

3.4.4 Alternative leakage models
Other methods to model the neutron-leakage energy dependence have been examined in
this thesis. For example, we have investigated a modal synthesis of the variation in the
leakage spectrum between the core environment and the critical infinite lattice. This
approach was suggested by the fact that, as observed in Fig. 3.22, the environmental
leakage distribution may be approximated as the sum of the fundamental-mode
distribution f∞L,G(u) and a function δfL,G(u):

Lenv,G(u) = L̄Gf
∞
L,G(u) + δfL,G(u), (3.38)

with

δfL,G(u) =
NPG∑
i=1

γG,iPG,i(u). (3.39)

In view of the high accuracy of the diffusive model in the thermal group, the approach of
Eqs. (3.38) and (3.39) has been only tested in the fast group. We limited the number of
basis functions PG,i(u) to 2 (NP1 = 2) and selected the first two modes used for the semi-
analytic synthesis of the fast-group spectrum variation (i.e., the neutron fission-emission
spectrum and the first-order Chebyshev polynomial). The additional equations to
solve for the coefficients γ1,i were found projecting the neutron continuity equation
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[Eq. (2.7)] over unit double-step functions (namely, 1 inside a given pseudolethargy
interval and 0 outside). Their pseudolethargy range was determined with a heuristic
procedure. For the set of benchmark problems considered in Section 3.3.1, which have
been simulated again with B2-corrected homogenization parameters, we attempted
to minimize the deviations of the computed leakage distribution from the reference
one within the epithermal region, where the accuracy of the spectrum variation
reconstruction is more important.
This approach provided a better leakage prediction than the fundamental-mode
approximation in examples 1, 4 and, to a lesser extent, 3. However, in all cases it
was less accurate than the diffusive approximation. The method failed to converge
in example 2. Figs. 3.30 and 3.31 show the computed fast-group leakage variation
δfL,1(u) and the corresponding leakage spectrum in the MOX and gadolinium-bearing
assemblies of examples 3 and 4, respectively (see Sections 3.3.1.3 and 3.3.1.4). The
computed δfL,1(u) is compared with a least-squares best fit of the reference leakage
variation, which has been determined with the same basis functions used in the modal
expansion. The reconstructed leakage spectrum is compared with the results of the
fundamental-mode and diffusive approaches.
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Fig. 3.30. Example 3: (a) fast-group leakage variation between the critical colorset and the
critical infinite lattice, and (b) reconstructed fast-group leakage spectrum. The plots refer to
the MOX assembly. The distributions are normalized to the node-averaged, coarse-group
leakage L̄1 from the nodal calculation with modal synthesis of the leakage spectrum.

The leakage predicted with this alternative approach is satisfactory in the gadolinium-
bearing assembly. However, compared to the diffusive leakage method the loss of
accuracy is apparent in the MOX assembly.
Numerical instability was observed increasing the number of basis functions NP1 to
3 or 4. Moreover, we found that this method is highly sensitive to the choice of the
pseudolethargy ranges of the step weighting functions. Small changes in their selection
can result in significant perturbations in the leakage reconstruction. Eventually, the
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Fig. 3.31. Example 4: (a) fast-group leakage variation between the critical colorset and the
critical infinite lattice, and (b) reconstructed fast-group leakage spectrum. The plots refer to
the assembly with gadolinium-bearing fuel pins.

leakage modal synthesis approach (which can only be applied with the critical-buckling
methodology) was abandoned because of the lack of robustness and of a rigorous
theoretical basis supporting the definition of the domain of the step functions.

3.5 Summary

We presented a method to estimate the interassembly neutron-leakage spectrum in
the real environment. This computational scheme completes the spectral rehomo-
genization technique originally developed at Framatome. The proposed approach
applies Fick’s diffusion law to the node-averaged environmental flux spectra computed
by rehomogenization. Numerical results show that rehomogenization combined with
this leakage model can capture spectral effects on the few-group nodal cross sections
very accurately. In the thermal group, the diffusive approach matches the spectral
corrections computed with the reference environmental leakage. In the fast group,
more accurate cross-section inputs for nodal routines are also obtained, even though
small deviations from the reference corrections are observed in some configurations.
These can be due to: (i) minor inaccuracies in the prediction of the leakage distri-
bution in the high-energy and epithermal regions, and (ii) the difficulty of the basis
functions reproducing the resonance details of the spectrum perturbation and its
strongly varying shape at high energies. A significant improvement in the estimates
of the nodal power distribution and of the multiplication factor is found. The gain in
accuracy is achieved at a moderate computational cost. The increase in the number
of non-linear flux iterations, which depends on the modal approach, is generally below
a factor of 2.
The method has been compared to a simpler approach that uses the fundamental-
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mode leakage distribution computed by the lattice code in the framework of the B1
critical-spectrum calculation. For all the test cases, the diffusive model outperforms
the critical-leakage strategy. The latter only provides a satisfactory approximation of
the environmental leakage in the presence of weak spectral interactions, that is, in
assemblies surrounded by assemblies featuring a similar composition. When applied
to heterogeneous fuel loading patterns, this method fails to accurately predict the
leakage in the thermal and epithermal ranges of the energy spectrum.
Other leakage models were investigated. However, no gain in accuracy was found
compared to the diffusive approach, which is the most robust option and remains the
default method adopted in ARTEMIS.
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Chapter 4

Modeling spectral effects of
local nuclide density changes

4.1 Introduction

As introduced in Section 1.1.2.1, nodal cross sections must be represented as a function
of the local, instantaneous physical conditions. For PWRs, the following variables
(referred to as state parameters) are commonly chosen for the parameterization of
cross sections in libraries: the burn-up, the fuel temperature, the moderator/coolant
temperature, the moderator/coolant density, the concentration of boric acid (10B)
dissolved in the moderator, and the concentration of xenon (135Xe). An additional
parameter is the presence of control rods. Spectral effects due to deviations between
the actual core depletion and the single-assembly base depletion may be accounted
for with empirically-defined history variables (Watson and Ivanov, 2002; Bilodid and
Mittag, 2010). These include the local concentration of 239Pu, the spectral-history
index, and the burnable-poison history. However, modern nodal codes make use of
microscopic depletion models to track the evolution of a number of nuclides (Bilodid
and Mittag, 2010), thus discarding history variables in the cross-section parameteriza-
tion of PWRs. In Boiling Water Reactor (BWR) core analysis, the coolant density
(or void) history and the control-blade history are commonly retained.
The generation of cross-section libraries depends on (i) the model chosen for the
representation of multivariate dependences, and (ii) the state-parameter sampling
strategy. These two aspects are briefly reviewed in the following.
It is common practice to represent the cross-section functional dependence by inter-
polation or approximation methods (Zimin and Semenov, 2005). In both approaches,
the mesh for the multidimensional domain is composed of the linear subspaces of the
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single independent variables (i.e., the axes or directions). For each axis, a functional
basis is found. A generic multivariate function is built by a linear combination of
tensor products of the 1-D basis functions. In the interpolation approach (Watson and
Ivanov, 2002), the cross sections at a given state (i.e., a point inside the tensorized
grid) are computed from the mesh-point values by a linear or higher-order (polynomial,
spline) interpolation algorithm. For instance, in ARTEMIS (Hobson et al., 2013) the
interpolation functions are based on combinations of cubic B-splines (for the burn-up
and moderator density) and second-order polynomials (for the other state variables).
Four triplets (namely, three-parameter cross terms) are used to build the multivariate
dependence. The interpolation approach is very general, because it demands no
knowledge of the functional dependence of the interpolated data. However, it suffers
from three main downsides (Zimin and Semenov, 2005; Bokov, 2009): (i) it does not
support a direct extrapolation of cross sections at operating points beyond the mesh
boundaries, (ii) it requires a regular Cartesian mesh, and (iii) it is prone to the curse
of dimensionality. The second point may hamper the definition of an optimal grid,
because certain state parameters are more important than others in the cross-section
representation. Regions of little or no physical interest may be included in the tabula-
tion, causing a worthless increase in the number of lattice calculations and in the size
of the cross-section library. The third drawback, typical of high-dimensional systems,
is because the number of mesh points and the computational cost of library generation
grow exponentially with the number of state parameters (Bokov, 2009). This aspect
strongly penalizes the simulation of reactor transients and design basis accidents, for
which cross-section libraries must span wider intervals of the state parameters than in
ordinary operating conditions.
Approximation techniques aim to estimate cross-term dependences by functional
forms (Zimin and Semenov, 2005). Since few-group homogenized cross sections mostly
exhibit a smooth behavior versus the state parameters, polynomial functions are
usually employed. Functional relations between the single cross sections and the state
parameters are not known a priori. The main challenge is therefore finding an optimal
multivariate polynomial for each cross-section type. Several strategies to identify
suitable polynomials are described in the literature. Among them, we mention trial-
and-error approaches (Turski et al., 1997), stepwise regression (Zimin and Semenov,
2005), quasi-regression (Bokov and Prinsloo, 2007; Bokov et al., 2008; Bokov, 2009),
regression (Dufek, 2011), and the Tucker decomposition (Luu et al., 2017). With
approximation techniques, there is no restriction on the type of grid. Unstructured
multivariate domains are used, with an appreciable reduction in the number of mesh
points and lattice simulations. Extrapolation outside the mesh boundaries is easily
performed. Moreover, the so obtained cross-section libraries only contain the regression
coefficients. They have therefore significantly smaller size than the parameterized
tables ensuing from the interpolation approach (Zimin and Semenov, 2005; Dufek,
2011). However, this strategy is also affected by the curse of dimensionality, because
the number of important polynomials increases dramatically if many state variables
are considered. Furthermore, since a polynomial function must be determined for each
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type of macroscopic and microscopic cross sections, the regression cost may be high.
When building the cross-section model (by either interpolation or approximation),
the sampling strategy is of great importance for the accuracy and effectiveness of
the representation. Quasi-random sampling is used in several polynomial-regression
approaches (Zimin and Semenov, 2005; Bokov et al., 2008; Bokov, 2009; Dufek, 2011).
Sánchez-Cervera et al. (2014) employed first-order adjoint perturbation theory to
evaluate the sensitivity of the infinite-medium multiplication factor (k∞) to the dis-
tance between points in the interpolation grid. For each axis, they estimated the
optimal intervals between samples and their minimum number to satisfy a given
target accuracy in k∞. Recently, an increasing interest has been shown in sparse-grid
methods (Botes and Bokov, 2011; Bokov et al., 2012; Botes and Bokov, 2014; Botes
et al., 2017). This approach consists of sampling the state-parameter phase space on a
reduced tensor-product grid. Sparse-grid sampling was investigated in the framework
of both interpolation and regression approaches. For example, Botes and Bokov (2011)
showed that, for a linear interpolation algorithm, a sparse grid requires orders of
magnitude fewer points than a full tensor-product grid, while satisfying the same
target accuracy.
The work presented in this chapter 1 aims to mitigate some of the weaknesses of the
cross-section methodology discussed hitherto. We describe a novel approach to model
the spectral effects of three relevant state parameters: the moderator/coolant density
(ρH2O), the soluble-boron concentration (CB10), and the xenon concentration (NXe135).
The proposed method is an original development of the spectral rehomogenization
technique described in Chapters 2 and 3, which is extended to compute the variation in
the infinite-medium condensation spectrum due to local nuclide density perturbations.
Changes in the fine-energy homogenized cross sections are incorporated by a heuristic
approach. We show that the dependence of the few-group macroscopic and microscopic
cross sections on the aforementioned state variables (ρH2O, CB10 , and NXe135) can
be accounted for directly. Neither multivariate interpolation in the parameterized
libraries nor multidimensional polynomial approximation is needed along these three
axes of the state-parameter phase space, which can be eliminated or sampled individu-
ally (namely, without cross terms) at far fewer points. This strategy reduces (i) the
computational burden of the lattice-physics calculation (i.e., the number of reactor
states to be simulated), (ii) the size of cross-section libraries, and (iii) the run time of
the nodal-data reconstruction during the on-line calculation.
This chapter is organized as follows. The method is described in Section 4.2. In
Section 4.3, we show the numerical results of various test cases. We first validate the
methodology on single-assembly configurations. We consider a typical PWR UO2
fuel assembly at zero burn-up. The accuracy of the cross-section reconstruction is
tested for a broad range of the values of the three state parameters considered in this
work. Afterwards, we investigate a heterogeneous PWR multiassembly configuration
hosting control rods. In this benchmark problem, the method is applied to capture

1The content of this chapter has been accepted for publication in Annals of Nuclear Energy.

95



4. Modeling spectral effects of local nuclide density changes

the combined spectral effects of perturbations in the local physical conditions and
interassembly neutron streaming. In Section 4.4 we discuss several aspects of interest
of the methodology, such as its main numerical features and the benefits on the
cross-section model. We also address the impact of variations in the state parameters
on the assembly discontinuity factors and on the form functions for the pin-power
reconstruction. A summary is given in Section 4.5.

4.2 Description of the method

In Section 4.2.1 we describe the method to reconstruct the infinite-medium macroscopic
and microscopic nodal cross sections. In Section 4.2.2 we show how neighbor effects
(see Chapters 2 and 3) can be incorporated into this procedure.

4.2.1 Reconstruction of the infinite-medium cross sections
The proposed reconstruction method can be applied to both types of cross-section
models reviewed in Section 4.1. In this work, we focus on the interpolation technique.
This is currently the most widely used approach in core simulators (Bahadir and
Lindahl, 2009; Hobson et al., 2013; Guillo et al., 2017).
We define the following set of state parameters (for a PWR):

p =
[
Bu, Tfuel, TH2O, NH2O, NB10 , NXe135

]
, (4.1)

denoting, in order, the burn-up, the fuel temperature, the water temperature, the
molecular number density of water, and the atomic number densities of diluted boron
and xenon. The water mass density ρH2O (in g/cm3) and the boron concentration
CB10 (in parts per million - ppm) are linearly related to the corresponding number
densities:

ρH2O = NH2OmH2O
1024

NAv
, CB10 = NB10

ρH2O

mB10

fB10

1024

NAv
106 , (4.2)

where mH2O is the water molecular weight, mB10 is the atomic weight of the isotope
10B, fB10 is the mass fraction of 10B in the boron mixture, and NAv is the Avogadro
number.
In standard approaches, the infinite-medium macroscopic cross section Σ∞x,G (for a
given reaction type x and the coarse energy group G) is reconstructed at the local
physical conditions in a node (ploc) as follows:

Σ∞x,G(ploc) = Σ∞,resx,G (ploc) +
nI∑
c=1

N loc
c σ∞x,c,G(ploc). (4.3)

In Eq. (4.3), nI is the number of isotopes tracked by the cross-section model; N loc
c

is the local number density of isotope c; σ∞x,c,G is the coarse-group microscopic cross
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section of isotope c; and Σ∞,resx,G is the residual (i.e., lumped) macroscopic cross section,
carrying the contribution of the isotopes that are not modeled explicitly. All the
quantities in Eq. (4.3) are spatially homogenized in the node. The cross sections
σ∞x,c,G and Σ∞,resx,G are interpolated in the parameterized libraries at the local values
of the variables listed in Eq. (4.1). The densities N loc

c are taken as input from the
thermal-hydraulic feedback and fuel depletion calculations (and, possibly, from a
critical-boron search for NB10).
We introduce a reduced set of state parameters, p′:

p′ =
[
Bu, Tfuel, TH2O

]
. (4.4)

This subset defines a tensorized grid made of only three axes (instead of six), with
the densities NH2O, NB10 and NXe135 kept fixed at a reference nominal value (Nnom

H2O
,

Nnom
B10

, and Nnom
Xe135

) when building the cross-section tables. Using this reduced set and
introducing a correction term δΣ∞x,G, Eq. (4.3) is rewritten as

Σ∞x,G(ploc) = Σ∞,resx,G (p′loc) +
nI∑
c=1

N loc
c σ∞x,c,G(p′loc) + δΣ∞x,G. (4.5)

The cross sections σ∞x,c,G and Σ∞,resx,G are now only interpolated at the local burn-up,
fuel temperature and water temperature. The spectral effect of changes in NH2O, NB10

and NXe135 from their nominal values is taken into account with the additional term
δΣ∞x,G. This correction is computed on the fly (namely, during the nodal calculation)
by an iterative procedure, which we address below.
We define the local (ploc) and nominal (pnom) conditions as

ploc =
[
p′loc, N

loc
H2O, N

loc
B10

, N loc
Xe135

]
(4.6a)

and
pnom =

[
p′loc, N

nom
H2O, N

nom
B10

, Nnom
Xe135

]
. (4.6b)

The following nominal values are chosen: ρnomH2O
= 0.7 g/cm3, Cnom

B10
= 700 ppm, and

Nnom
Xe135

= 4.0 · 10−9 a/Å3 (i.e., atoms/cubic Ångström). The selected value of Nnom
Xe135

is about twice as high as the the average xenon concentration in the depletion of a
highly-enriched UO2 fuel assembly. This choice is meant to consider an intermediate
value between the equilibrium concentration in a standard power reactor and the peak
values occurring at the extreme points of a spatial xenon oscillation (Duderstadt and
Hamilton, 1976).
Changes in ρH2O, CB10 and NXe135 (i.e., transitions from pnom to ploc) have three
different effects on Σ∞x,G:

• a direct effect, due to variations in the corresponding number densities;
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• a spectral effect, due to variations in the infinite-medium condensation spectrum;

• a third effect, due to perturbations in the fine-energy microscopic cross-section
distributions [σ∞,x,c(E)] that are collapsed to few groups via spectrum weighting.

We refer to the third effect as microscopic effect. The direct effect is trivially taken
into account using the actual local densities (N loc

H2O
, N loc

B10
and N loc

Xe135
) in Eq. (4.5).

The spectral and microscopic effects act upon the few-group residual and isotopic
cross sections. We search an analytic expression to model these effects starting from
the definition of the generic isotopic cross section σ∞,locx,c,G condensed in the exact, local
conditions. This reads

σ∞,locx,c,G = 1
Φ̄loc
∞,G

∫ E+
G

E−
G

dE σloc∞,x,c(E)Φloc
∞ (E), (4.7)

where Φ̄loc
∞,G is the few-group flux, σloc∞,x,c(E) is the microscopic cross-section energy

distribution, and Φloc
∞ (E) is the condensation spectrum. All the quantities in Eq. (4.7)

are homogenized in the infinite lattice. Using an approach similar to that of Sec-
tion 2.2.1, we define the condensation spectrum in the local conditions in the domain
of the pseudolethargy u [Eq. (2.6)] as

Φloc
∞,G(u) = Φ̄loc

∞,Gϕ
nom
∞,G(u) + δΦ∞,G(u), (4.8)

where ϕnom∞,G(u) is the reference condensation spectrum (normalized to unity) in the
nominal conditions, and δΦ∞,G(u) is the spectrum change due to perturbations in
ρH2O, CB10 and NXe135 (i.e., the spectrum change that occurs when moving from
pnom to ploc). A similar equation is introduced for σloc∞,x,c(E):

σloc∞,x,c,G(u) = σnom∞,x,c,G(u) + δσ∞,x,c,G(u). (4.9)

Moving from E to u and introducing Eqs. (4.8) and (4.9) into Eq. (4.7), we obtain

σ∞,locx,c,G = σ∞,nomx,c,G + δσ∞,sx,c,G + δσ∞,mx,c,G + δσ∞,∗x,c,G , (4.10)

where we have defined

• the few-group isotopic cross section in the nominal conditions:

σ∞,nomx,c,G =
∫ 1

0
duσnom∞,x,c,G(u)ϕnom∞,G(u); (4.11a)

• the isotopic correction term due to the spectral effect:

δσ∞,sx,c,G = 1
Φ̄loc
∞,G

∫ 1

0
duσnom∞,x,c,G(u)δΦ∞,G(u); (4.11b)
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• the isotopic correction term due to the microscopic effect:

δσ∞,mx,c,G =
∫ 1

0
du δσ∞,x,c,G(u)ϕnom∞,G(u); (4.11c)

• a cross (i.e., spectral-microscopic) isotopic correction term:

δσ∞,∗x,c,G = 1
Φ̄loc
∞,G

∫ 1

0
du δσ∞,x,c,G(u)δΦ∞,G(u). (4.11d)

During the nodal simulation, the nominal cross section σ∞,nomx,c,G [Eq. (4.11a)] is in-
terpolated in the parameterized libraries at the local values of Bu, Tfuel and TH2O.
The iterative calculation of the cross-section corrections of Eqs. (4.11b) to (4.11d)
is addressed in Sections 4.2.1.1 and 4.2.1.2. In Section 4.2.1.3 we show how the
macroscopic correction δΣ∞x,G [Eq. (4.5)] can be computed at each iteration step and
provide a global overview of the methodology.

4.2.1.1 The spectral effect

The variation in the condensation spectrum due to local nuclide density changes
is estimated following the approach described in Chapter 2 for the environmental
spectrum correction, with some different assumptions.
We consider the continuous-energy neutron balance equation in the infinite lattice at
the local conditions. In the pseudolethargy domain, this reads

Σloc
∞,t,G(u)Φloc

∞,G(u) =
NG∑
G′=1

(
χG(u)
kloc∞

∫ 1

0
du′νΣloc

∞,f,G′(u′)Φloc
∞,G′(u′)

+
∫ 1

0
du′Σloc

∞,s,G′→G(u′ → u)Φloc
∞,G′(u′)

)
, (4.12)

where kloc∞ is the single-assembly multiplication factor. We neglect the dependence
of the neutron fission-emission spectrum χG(u) on the local conditions. This approx-
imation is acceptable, because the fission spectrum is mainly determined by the fuel
composition and enrichment (Lamarsh, 1966). Eq. (4.12) is valid for the general case
without critical-buckling correction on the nodal cross sections. If a critical-spectrum
search is made in the lattice-physics calculation, the following leakage rate must be
added to the left-hand side of Eq. (4.12) (Hebert, 2009):

Lloc
∞,G(u) = Dloc

∞,G(u)B2
crit,locψ

loc
∞,G(u), (4.13)

where B2
crit,loc is the critical buckling in the local conditions, Dloc

∞,G(u) is the leakage-
coefficient distribution, and ψloc

∞,G(u) is the critical spectrum. Moreover, kloc∞ must
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be set to unity on the right-hand side of Eq. (4.12). The critical-buckling approach
complicates the solution of the rehomogenization problem applied to Eq. (4.12), because
the leakage function detailed in Eq. (4.13) also depends on the local conditions. Since
in Section 2.4.4 we have showed that the B2

crit correction is unnecessary when spectral
rehomogenization is applied, in the rest of the derivation we will consider the non-
critical medium [Eq. (4.12)]. Some observations about the critical approach will be
made in Section 4.4.5.
As in Eq. (2.10), we express the spectrum variation δΦ∞,G(u) [Eq. (4.8)] as a linear
combination of basis functions QG,i(u):

δΦ∞,G(u) =
NQG∑
i=1

α∞,G,iQG,i(u). (4.14)

The modal coefficients α∞,G,i are determined such that Eq. (4.12) is satisfied in
a weighted-integral sense. Substituting Eqs. (4.8) and (4.14) into Eq. (4.12) and
projecting Eq. (4.12) on the weighting operators WG,j(u) (with j ∈ [1, NQG

]) yields
the following linear system of equations:

Φ̄loc
∞,Gh

loc
R,r,G,j +

NQG∑
i=1

α∞,G,ih
loc
V,r,G,i,j = χG,j

kloc∞

NG∑
G′=1

(
Φ̄loc
∞,G′h

loc
R,f,G′+

NQ
G′∑

i=1
α∞,G′,ih

loc
V,f,G′,i

)
+

NG∑
G′=1
G′ 6=G

(
Φ̄loc
∞,G′h

loc
R,s,G′→G,j +

NQ
G′∑

i=1
α∞,G′,ih

loc
V,s,G′→G,i,j

)
,

(4.15)

with the following expressions for

• the reference rehomogenization coefficients (hlocR,x,G,j):

hlocR,r,G,j = hlocR,t,G,j − hlocR,s,G→G,j , (4.16a)

hlocR,t,G,j =
∫ 1

0
duWG,j(u)Σloc

∞,t,G(u)ϕnom∞,G(u), (4.16b)

hlocR,f,G =
∫ 1

0
du νΣloc

∞,f,G(u)ϕnom∞,G(u), (4.16c)

hlocR,s,G′→G,j =
∫ 1

0
duWG,j(u)

∫ 1

0
du′Σloc

∞,s,G′→G(u′ → u)ϕnom∞,G′(u′); (4.16d)

• the variational rehomogenization coefficients (hlocV,x,G,i,j):

hlocV,r,G,i,j = hlocV,t,G,i,j − hlocV,s,G→G,i,j , (4.17a)
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hlocV,t,G,i,j =
∫ 1

0
duWG,j(u)Σloc

∞,t,G(u)QG,i(u), (4.17b)

hlocV,f,G,i =
∫ 1

0
du νΣloc

∞,f,G(u)QG,i(u), (4.17c)

hlocV,s,G′→G,i,j =
∫ 1

0
duWG,j(u)

∫ 1

0
du′Σloc

∞,s,G′→G(u′ → u)QG′,i(u′); (4.17d)

• and the fission-spectrum coefficient (χG,j):

χG,j =
∫ 1

0
duWG,j(u)χG(u). (4.18)

The rehomogenization coefficients in Eqs. (4.16) and (4.17) have the same structure
as those in Eq. (2.14). However, they depend on both local and nominal quantities,
instead of only local quantities.
The few-group flux, the multiplication factor and the rehomogenization parameters
must be known to solve Eq. (4.15) for the coefficients α∞,G,i. We compute Φ̄loc

∞,G and
kloc∞ solving the few-group homogenized balance equation in the infinite medium. In a
two-group framework and for the practical case with fission emission only in the fast
range (namely, χ1 = 1 and χ2 = 0), this can be written as

(
Σ∞,loca,1 + Σ∞,locs,1→2 − 1

kloc
∞
νΣ∞,locf,1

)
· Φ̄loc
∞,1 =

(
Σ∞,locs,2→1 + 1

kloc
∞
νΣ∞,locf,2

)
· Φ̄loc
∞,2 ,

(Σ∞,loca,2 + Σ∞,locs,2→1) · Φ̄loc
∞,2 = Σ∞,locs,1→2 · Φ̄loc

∞,1 .

(4.19)
From Eq. (4.19), the following expression is derived for the multiplication factor:

kloc∞ =
νΣ∞,locf1

Σ∞,loca,1 + Σ∞,locs,1→2
+

Σ∞,locs,1→2

Σ∞,loca,1 + Σ∞,locs,1→2
·

νΣ∞,locf2

Σ∞,loca,2 + Σ∞,locs,2→1
. (4.20)

The two-group flux is computed as

Φ̄loc
∞,1 = 1, Φ̄loc

∞,2 =
Σ∞,locs,1→2

Σ∞,loca,2 + Σ∞,locs,2→1
. (4.21)

The nodal cross sections in Eqs. (4.20) and (4.21) are determined with Eq. (4.5), using
the value of δΣ∞x,G from the latest, partially converged iteration of the reconstruction
procedure. In the first iteration, δΣ∞x,G is set to zero and only the direct effect of
density variations is taken into account.
The rehomogenization parameters detailed in Eqs. (4.16) and (4.17) depend on the
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fine-energy macroscopic cross sections in the local conditions [Σloc
∞,x,G(u)]. These can

be defined as

Σloc
∞,x,G(u) = Σnom

∞,x,G(u) +
np∑
c=1

δNcσ
loc
∞,x,c,G(u) +

np∑
c=1

Nnom
c δσ∞,x,c,G(u), (4.22)

where δNc indicates the variation in the isotopic number density between the local and
nominal conditions. To a first approximation, the summations on the right-hand side
of Eq. (4.22) are limited to the contributions of H2O, 10B and 135Xe (i.e., np = 3). We
temporarily neglect perturbations in the isotopic cross-section distributions (namely,
the aforementioned microscopic effect), that is

δσ∞,x,c,G(u) ≈ 0 , σloc∞,x,c,G(u) ≈ σnom∞,x,c,G(u). (4.23)

This assumption is only justified if a sufficiently fine energy mesh is used and if the
variation in the state parameters is mild. In Section 4.2.1.2 we will show how this
approximation can be relaxed.
Substituting Eqs. (4.22) and (4.23) into Eqs. (4.16) and (4.17), the rehomogenization
parameters in the local conditions are estimated as

hlocR,x,G,j ≈ hnomR,x,G,j +
np∑
c=1

δNch
nom
R,x,c,G,j (4.24a)

and

hlocV,x,G,i,j ≈ hnomV,x,G,i,j +
np∑
c=1

δNch
nom
V,x,c,G,i,j , (4.24b)

where hnomR,x,c,G,j and hnomV,x,c,G,i,j are the isotopic rehomogenization coefficients [Eq. (3.33)]
evaluated in the nominal conditions:

hnomR,x,c,G,j =
∫ 1

0
duWG,j(u)σnom∞,x,c,G(u)ϕnom∞,G(u), (4.25a)

hnomV,x,c,G,i,j =
∫ 1

0
duWG,j(u)σnom∞,x,c,G(u)QG,i(u). (4.25b)

In Eq. (4.24), the macroscopic coefficients hnomR,x,G,j and hnomV,x,G,i,j are computed with
Eqs. (4.16) and (4.17) using the nominal distributions Σnom

∞,x,G(u). These coefficients,
and the microscopic ones detailed in Eq. (4.25), are interpolated at pnom [Eq. (4.6b)] in
the parameterized libraries obtained from the subset p′ [Eq. (4.4)]. We use (i) the 10B
and 135Xe isotopic coefficients to update the macroscopic coefficients for absorption
and removal, and (ii) the H2O coefficients to update the macroscopic coefficients for
absorption, removal and scattering. For example, the macroscopic parameters for the
removal cross section [Eqs. (4.16a) and (4.17a)] are evaluated as

hlocR,r,G,j ≈ hnomR,r,G,j + δNH2Oh
nom
R,r,H2O,G,j+
δNB10h

nom
R,a,B10,G,j + δNXe135h

nom
R,a,Xe135,G,j (4.26a)
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and

hlocV,r,G,i,j ≈ hnomV,r,G,i,j + δNH2Oh
nom
V,r,H2O,G,i,j+

δNB10h
nom
V,a,B10,G,i,j + δNXe135h

nom
V,a,Xe135,G,i,j . (4.26b)

The rehomogenization problem of Eq. (4.15) is solved at each iteration of the cross-
section reconstruction algorithm. Also in this case, under-relaxation is performed on
the coefficients α∞,G,i (with a factor θ = 0.5) to dampen numerical oscillations in the
convergence process (see Section 2.4.2). The spectral correction on the isotopic cross
section σ∞x,c,G [Eq. (4.11b)] is computed as (we set again WG,0(u) = 1)

δσ∞,sx,c,G = 1
Φ̄loc
∞,G

NQG∑
i=1

α∞,G,ih
nom
V,x,c,G,i,0 . (4.27)

4.2.1.2 The microscopic effect

Deviations in the fine-group isotopic cross sections between the local and nominal
conditions are mainly induced by:

• variations in the energy self-shielding properties due to changes in the moder-
ator/coolant density;

• variations in the average fuel-to-moderator thermal-flux ratio due to perturba-
tions in the xenon concentration.

The first contribution mostly affects resonant isotopes (such as 238U) and is preeminent
in the fast group. The second contribution acts on the cross-section distributions of
the main thermal-neutron absorbers (such as 235U) and is only relevant in the thermal
group.
We introduce a new type of isotopic rehomogenization coefficients to estimate the
microscopic-effect and cross correction terms [Eqs. (4.11c) and (4.11d)]:

sR,x,c,G,j =
∫ 1

0
duWG,j(u)δσ∞,x,c,G(u)ϕnom∞,G(u), (4.28a)

sV,x,c,G,i,j =
∫ 1

0
duWG,j(u)δσ∞,x,c,G(u)QG,i(u). (4.28b)

We refer to sR and sV as self-shielding coefficients. Combining Eqs. (4.14) and (4.28),
Eqs. (4.11c) and (4.11d) become

δσ∞,mx,c,G = sR,x,c,G,0 (4.29a)
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and

δσ∞,∗x,c,G = 1
Φ̄loc
∞,G

NQG∑
i=1

α∞,G,i sV,x,c,G,i,0 . (4.29b)

We determine the variation functions δσ∞,x,c,G(u) and the self-shielding coefficients
with a heuristic approach. Below, the procedure is addressed separately for the
aforementioned effects of water density and xenon concentration.
For the UO2 assembly with 1.8% enrichment considered in Chapters 2 and 3, Fig. 4.1
shows the energy distribution of the homogenized, fast-group absorption cross section
of 238U at different values of the moderator density. The values of NXe135 and CB10

are 0 a/Å3 and 700 ppm, respectively. The fuel exposure is zero.
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Fig. 4.1. Fine-group, homogenized absorption cross section of 238U versus energy in the
fast region (namely, between 0.625 eV and 19.6 MeV), at different values of the moderator
density. The figure refers to a 1.8%-enriched UO2 assembly. Units are in barn.

Changes in ρH2O cause perturbations in the isotopic cross-section distribution in the
epithermal region, which become significant at very low densities. In order to better
appreciate the differences in the low-lying resonance region (namely, between 6.67
eV and 208.46 eV), Fig. 4.2 depicts the variation in the distribution at ρH2O = 0.21
g/cm3 with respect to the previously defined nominal conditions. The perturbation
is displayed for two values of soluble-boron concentration: 0 ppm and 2450 ppm.
The xenon density varies from 4.0 · 10−9 a/Å3 to 0 a/Å3. The overlap of the two
curves suggests that neither the boron concentration nor the xenon density has an
impact on fast-group absorption properties. The microscopic effect is thus only due
to the water density. An increase in absorption of 4% and 9.7% is observed for the
resonances at 6.67 eV and 20.9 eV, respectively. The impact of this variation on the
group-one collapsed macroscopic cross section is relevant and must be taken into
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Fig. 4.2. Relative variation (compared to the nominal conditions) in the fine-group,
homogenized absorption cross section of 238U in the fast region. Local conditions correspond
to ρH2O = 0.21 g/cm3, NXe135 = 0 a/Å3, CB10 = 0 ppm (solid curve) and CB10 = 2450 ppm
(dashed curve).

account. The variation in the thermal group (not shown here) is less significant and
reaches a maximum value of about 2% at 1 meV.
Since a simple relation between δσ∞,x,c,G(u) and δNH2O cannot be found, we use
a regression-like approach to model the dependence of self-shielding coefficients on
NH2O, without cross terms involving the boron and xenon concentrations. Due to the
smoothness of the corresponding behavior, one-variable polynomial approximations of
order 1 to 3 proved to be sufficiently accurate. This requires to perform four additional
lattice simulations for each burn-up (and, possibly, fuel-temperature) point of the
cross-section libraries built in the phase space p′ [Eq. (4.4)]. For the type of fuel
assembly considered in this work (i.e., UO2 with neither control elements nor burnable
absorbers), we compute the water-density self-shielding coefficients for 238U, 235U
and natural zirconium (Zr). These nuclides have been selected based on (i) their
contribution to the fast-group macroscopic absorption and fission cross sections and
(ii) the amplitude of the variation in their isotopic cross sections with water density.
Plutonium isotopes must be included in depletion calculations and for MOX assembly
analyses.
The contribution of changes in the xenon concentration to δσ∞,x,c,G(u) is a lattice
effect and can be explained as follows. In the lattice calculation, the cross section
of the absorbing nuclide c (for instance, 235U) in the fine energy group g is spatially
homogenized over the fuel assembly as (we omit the subscript x and the superscript
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∞)

σ̄c,g =
∑nfc
if =1Nc,ifσc,g,if Φg,ifAif

N̄cΦ̄gAfa
, (4.30)

where nfc
is the number of fuel cells in the assembly, Aif is the cross-sectional area

of the if -th cell, Afa is the cross-sectional area of the whole assembly, N̄c is the
assembly-averaged number density, and Φ̄g is the gth-group assembly-averaged flux
(with the water tubes and water gap included in the average). The quantities Nc,if
and σc,g,if are invariant to the physical conditions in the node. If the level of xenon
increases (or decreases) compared to its nominal value, the thermal flux becomes more
(or less) depressed in the fuel rods. This causes an increase (or decrease) in the ratio of
the average flux in the moderator to that in the fuel, commonly referred to as thermal
disadvantage factor (Duderstadt and Hamilton, 1976). Hence, the ratio Φg,if /Φ̄g in
Eq. (4.30) decreases (or increases), and so does σ̄c,g. This change is less relevant when
considering fuel assemblies without empty guide tubes, empty instrumentation tubes,
and water channels in general. The correction term for such xenon-induced effect is
also computed with a heuristic approach, based on the following observations for the
variation function δσ∞,x,c,G(u) within the thermal coarse group:

• for a given δNXe135 , the dependence of the variation function on the other state
parameters is negligible (for CB10) or small (for ρH2O);

• the shape of the variation function does not vary with δNXe135 ;

• the magnitude of the variation function scales linearly with δNXe135 .

The first property is apparent in Fig. 4.3, which shows the behavior of the thermal-
absorption variation function of 235U in the 1.8%-enriched UO2 assembly considered
before. The variation has been computed at NXe135 = 0 a/Å3. Three curves are
displayed, corresponding to different values of NH2O and NB10 . The second and third
properties can be observed in Fig. 4.4, which depicts the same variation function for
different values of NXe135 at ρnomH2O

and Cnom
B10

. The solid marked lines correspond to
the reference distributions δσref∞,x,c,G(u) from APOLLO2-A, whereas the dashed lines
correspond to the distributions computed with the following approximate relation of
linearity:

δσ∞,x,c,G(u) ≈
(
σsample
∞,x,c,G(u)− σnom∞,x,c,G(u)

) δNXe135

δN sample
Xe135

. (4.31)

In Eq. (4.31), σsample
∞,x,c,G(u) is the reference distribution evaluated at a sample concen-

tration of xenon (N sample
Xe135

= 2.0 · 10−9 a/Å3 in the example of Fig. 4.4) and at the
nominal values of ρH2O and CB10 . We have δN sample

Xe135
= N sample

Xe135
− Nnom

Xe135
. Clearly,

Eq. (4.31) provides a very accurate estimate of the reference variation. It can thus be
used to model the dependence of the coefficients sR,x,c,G,j and sV,x,c,G,i,j [Eq. (4.28)]
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107



4. Modeling spectral effects of local nuclide density changes

on NXe135. This approach only requires, for each value of the burn-up, the simulation
of an additional state during the lattice calculation to obtain the sample distribution
σsample
∞,x,c,G(u). In the on-line calculation, the local coefficients are estimated as

sR,x,c,G,j ≈ ssample
R,x,c,G,j

δNXe135

δN sample
Xe135

, sV,x,c,G,i,j ≈ ssample
V,x,c,G,i,j

δNXe135

δN sample
Xe135

. (4.32)

In the analysis presented in this chapter, we compute the xenon-related correction
terms of Eq. (4.29) for the thermal absorption in 235U, 135Xe, 10B and H2O, and for
the thermal fission in 235U. Since the spectrum variation δΦ∞,2(u) is zero at very low
energies (where the variation function has higher magnitude), the cross correction
δσ∞,∗x,c,G is considerably smaller than the microscopic one δσ∞,mx,c,G.
It should be noted that a lattice effect similar to that observed for xenon also occurs
when the soluble-boron concentration changes. However, the corresponding variation
in the fine-group cross sections is less relevant. For instance, the change in the thermal
absorption of 235U at 2450 ppm has a maximum value of about 0.15% at 1 meV. Since
the corresponding impact on the collapsed cross sections is negligible, this kind of
correction is not applied for perturbations in CB10 .
As explained in Section 4.2.1.1, before solving the spectral rehomogenization problem
[Eq. (4.15)] the standard macroscopic rehomogenization coefficients hR and hV are
corrected with Eq. (4.24) to account for the direct effect of nuclide density changes.
Using the self-shielding coefficients of Eq. (4.28), we introduce an additional correction
to include the microscopic effects in the reconstruction of the spectrum deformation.
For example, Eq. (4.24b) becomes

hlocV,x,G,i,j ≈ hnomV,x,G,i,j+
np∑
c=1

δNc

(
hnomV,x,c,G,i,j+sV,x,c,G,i,j

)
+

ns∑
q=1

N loc
q sV,x,q,G,i,j , (4.33)

where the index q cycles over the aforementioned relevant isotopes other than 10B,
135Xe, and H2O (namely, 238U, 235U, and Zr for the water-density self-shielding effect;
235U for the xenon-variation effect). For burnable nuclides, the atomic density N loc

q

comes from the environmental depletion calculation in the local conditions. We have
verified that only the xenon-variation component of this correction has an impact on
the solution of Eq. (4.15). The accuracy of the computed spectrum perturbation does
not vary if we neglect the water-density microscopic effect on the macroscopic hR
and hV coefficients (namely, if Eq. (4.24) is used instead of Eq. (4.33)), even at very
low values of ρH2O. Hence, the high-order (i.e., with j > 0) sR,x,c,G,j and sV,x,c,G,i,j
coefficients are only computed for the xenon-induced microscopic effect. This allows
us to minimize the regression cost for the calculation of water-density self-shielding
coefficients.
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4.2.1.3 Overview

At each iteration step, the global isotopic cross-section correction is computed summing
the contributions of Eqs. (4.27) and (4.29):

δσ∞x,c,G = sR,x,c,G,0 + 1
Φ̄loc
∞,G

NQG∑
i=1

α∞,G,i

(
hnomV,x,c,G,i,0 + sV,x,c,G,i,0

)
. (4.34)

The global macroscopic correction is determined as

δΣ∞x,G = 1
Φ̄loc
∞,G

NQG∑
i=1

α∞,G,ih
loc
V,x,G,i,0 , (4.35)

with the coefficients hlocV,x,G,i,0 defined according to Eq. (4.33). A similar expression
holds for the correction of the diffusion coefficient δD∞G . Some considerations about
its calculation are made in Section 4.4.3.
A flow diagram of the local cross-section reconstruction algorithm is depicted in
Fig. 4.5.

Solve few-group
balance

[Eq. (4.19)]

Solve rehom. system
[Eq. (4.15)]

Compute cross-section
corrections

[Eqs. (4.34) and (4.35)]

Cross-section
reconstruction

[Eqs. (4.5) and (4.10)]
Convergence?

Coefficient
update

[Eq. (4.33)]
Rehomogenization
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δσ∞x,c,G, δΣ∞x,G

Power
distribution

Φ̄G
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hnomR , hnomV
sR, sV

Σ∞,loc
x,G

σ∞,loc
x,c,G

yes

Bu, Tfuel, TH2O

no

Bu, Tfuel, TH2O
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Rehomogenization
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Fig. 4.5. Flow diagram of the rehomogenization-based algorithm for the reconstruction of
the infinite-medium cross sections in a given node. The blue arrows represent the flow of
state-parameter information (Nd denotes the number densities of the most relevant isotopes
tracked in the fuel depletion calculation).

At the beginning of a new burn-up step or after a thermal-hydraulic update, the
few-group cross sections and the rehomogenization coefficients are evaluated at the new
values of Bu, Tfuel and TH2O in a given node and at the nominal values of ρH2O, CB10
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and NXe135 . The rehomogenization problem [Eq. (4.15)] is solved using (i) the values
of Φ̄loc

∞,G and kloc∞ ensuing from the few-group infinite-medium balance [Eq. (4.19)],
and (ii) the rehomogenization coefficients updated via Eq. (4.33) to account for the
direct and microscopic effects of variations in ρH2O, CB10 and NXe135 . The isotopic
and macroscopic cross-section corrections are computed with Eqs. (4.34) and (4.35).
The cross-section reconstruction follows with Eqs. (4.5) and (4.10). This procedure
is repeated until convergence of Φ̄loc

∞,G and kloc∞ , upon which the so obtained cross
sections can be used in the core nodal calculation. Homogenized cross sections are
reconstructed independently in each node of the computational domain. Therefore,
the algorithm can be easily parallelized.

4.2.2 Incorporation of neighbor effects
When a fuel assembly is simulated within the reactor core, the spectral effects of local
nuclide density changes and interassembly neutron streaming cannot be separated.
We now seek the spectrum deformation resulting from the combination of these two
effects.
We compute the variation δΦG(u) between the real environment in the local physical
conditions and the infinite lattice in the nominal conditions. Eq. (4.8) becomes

Φloc
env,G(u) = Φ̄Gϕnom∞,G(u) + δΦG(u), (4.36)

where the few-group environmental flux Φ̄G (we have dropped the superscript loc)
is now taken from the latest power iteration of the nodal calculation. The spectral
rehomogenization problem [Eq. (4.15)] is rewritten replacing kloc∞ with the core effective
multiplication factor keff (which also comes from the previous nodal iteration) and
adding the internodal-leakage term (Section 3.2.1):

Φ̄GhlocR,r,G,j +
NQG∑
i=1

αG,ih
loc
V,r,G,i,j + L̄Gh

loc
L,G,j = χG,j

keff

NG∑
G′=1

(
Φ̄G′hlocR,f,G′+

NQ
G′∑

i=1
αG′,ih

loc
V,f,G′,i

)
+

NG∑
G′=1
G′ 6=G

(
Φ̄G′hlocR,s,G′→G,j +

NQ
G′∑

i=1
αG′,ih

loc
V,s,G′→G,i,j

)
, (4.37)

where the leakage projection coefficient hlocL,G,j is given by Eq. (3.27), with the reho-
mogenization parameters hlocR,D,G,j and hlocV,D,G,i,j defined as in Eqs. (4.16) and (4.17).
Eq. (4.37) is structurally identical to Eq. (2.13), but the rehomogenization coeffi-
cients are defined in a different way. The microscopic and macroscopic cross-section
corrections are computed with Eqs. (4.34) and (4.35), using the core-environment
coefficients αG,i and the rehomogenization parameters ensuing from Eqs. (4.25), (4.28)
and (4.33).
Fig. 4.6 shows how the rehomogenization algorithm is nested in the core simulation
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when modeling the combined spectral effects of local physical conditions and node-
to-node neutron leakage. Compared to the infinite-medium reconstruction, multiple
iterations after the interpolation at pnom (see Fig. 4.5) are not necessary. Fig. 4.6
differs from Fig. 2.4 mostly in the flow of state-parameter information.

Cross-section
libraries

Thermal-hydraulic
feedback

Rehomogenization
data set

Σenv,loc
x,G = Σ∞,nom

x,G + δΣx,G

σenv,locx,c,G = σ∞,nom
x,c,G + δσx,c,G

LATTICE CODE

Rehomogenization
algorithm

Nodal flux
iteration

Depletion
(Bateman’s equations)

Cross-section
reconstruction

Σ∞,nom
x,G

σ∞,nom
x,c,G

hnomR , hnomV
sR, sV

δΣx,G, δσx,c,G

Σenv,loc
x,G

σenv,locx,c,G

Bu, Tfuel, TH2O

Bu, Tfuel, TH2O

NH2O

Power
distribution

Φ̄G NXe135 , Nd

NH2O

NB10

NH2O

NB10

NXe135
Nd

keff, Φ̄G, L̄G

Fig. 4.6. Flow diagram of the core calculation when the nodal cross sections are directly
reconstructed in the real environment at the local conditions.

4.3 Numerical results

In this section we apply the proposed method to several test cases. We first focus
on the reconstruction of the local infinite-medium cross sections of a standard UO2
fuel assembly (Section 4.3.1). Afterwards, we investigate a multiassembly benchmark
problem and test the reconstruction of cross sections in the real environment at the
local conditions (Section 4.3.2).

4.3.1 Single-assembly configurations

We consider a 17×17 UO2 fuel assembly with 1.8% enrichment. This kind of assembly
has already been simulated in examples 1 and 2 of Sections 2.3.2 and 3.3. The fuel
bundle contains 24 empty guide tubes and an empty instrumentation tube made of
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a Zircaloy-4 alloy. The assembly side has size 21.61 cm, with the cell pitch and the
water gap measuring 1.26 cm and 0.8 mm, respectively. The assembly layout can be
found in Fig. 2.5b.
The cross-section reconstruction algorithm as described in Section 4.2.1 has been
implemented in the BRISINGR code (Appendix A). In the analysis that follows,
infinite-lattice calculations for the generation of two-group cross sections in the
nominal conditions are performed with APOLLO2-A (Martinolli et al., 2010). The
critical-buckling correction is not applied (B2 = 0). The spectrum-variation basis
functions QG,i(u) [Eq. (4.14)] are determined with the POD approach described in
Section 2.2.2.2. The POD modes are extracted from the SVD of a set of 100 snapshots
of the reference spectrum perturbation. The snapshots have been computed sampling
the whole range of the values of ρH2O, CB10 and NXe135 that can be found in a reactor
core. In both coarse energy groups, the spectrum perturbation is synthesized with the
first four modes ensuing from the above procedure. These are shown in Fig. 4.7. The
rank of the rehomogenization matrix [Eq. (4.15)] is 8.
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Fig. 4.7. (a) Thermal-group and (b) fast-group POD basis functions computed with the
method of snapshots and the SVD.

The single-assembly cross sections are generated at zero burn-up. The nominal values
of ρH2O, CB10 and NXe135 are those defined in Section 4.2.1. In order to keep the
analysis unaffected by interpolation errors, we compute the nominal cross sections at
the exact values of the fuel and moderator temperatures. When simulating normal
operating conditions, we set Tfuel = 851.5 K and TH2O = 586.1 K. We consider
variations in the boron concentration within the range [0 ppm, 3200 ppm]. The
water density is spanned in the interval [0.21 g/cm3, 1.0 g/cm3]. Since we simulate
fresh-fuel conditions, in all the test cases the local xenon density is set to 0 a/Å3, which
corresponds to a strong variation from its nominal value as seen in Section 4.2.1. The
macroscopic and microscopic cross sections predicted with the rehomogenization-based
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algorithm (Σ∞,locx,G , σ∞,locx,c,G ) are compared to those obtained in APOLLO2-A at the
exact, local conditions (Σ∞,loc,refx,G , σ∞,loc,refx,c,G ). The errors in the reconstructed cross
sections are computed as

∆Σ∞x,G =
Σ∞,locx,G − Σ∞,loc,refx,G

Σ∞,loc,refx,G

· 100%, ∆σ∞x,c,G =
σ∞,locx,c,G − σ

∞,loc,ref
x,c,G

σ∞,loc,refx,c,G

· 100%. (4.38)

The variation in the macroscopic cross sections between the local and nominal condi-
tions is determined as

δΣ∞x,G =
Σ∞,locx,G − Σ∞,nomx,G

Σ∞,nomx,G

· 100%. (4.39)

Similar expressions hold for the errors and variations in the multiplication factor (∆k∞,
δk∞), in the node-averaged two-group flux (∆Φ̄∞,G, δΦ̄∞,G), and in the node-averaged
total fission power (∆P̄∞fiss, δP̄∞fiss).
Our target in terms of accuracy is to have:

• errors not exceeding 50 pcm in k∞ and 0.1% in the macroscopic cross sections
in the most frequent conditions (namely, in the normal range of operation);

• errors not exceeding 100 pcm in k∞ and 0.5% in the macroscopic cross sections
in abnormal operating points (such as very low moderator densities) that are
typically reached in accidental conditions.

We include in the second category the transitions from cold to hot conditions during
the reactor start-up and from hot to cold conditions when the reactor is shut down.
We believe that the above error bounds are reasonably low considered the range of
accuracy of nodal diffusion tools. For instance, the values chosen for normal operating
conditions would be easily concealed by homogenization errors arising in heterogeneous
core configurations (Chapters 2 and 3).
The convergence of the reconstruction algorithm (Fig. 4.5) is reached when the relative
changes in kloc∞ and in the nodal flux two-norm between two successive iterations drop
below a tolerance εiter = 10−5.
The analysis is structured as follows. We first present sample results for variations in
only one parameter. In this way, the accuracy of the method is assessed individually
for the three variables considered in this work. When focusing on variations in the
moderator density or boron concentration only, the nominal xenon density is set to 0
a/Å3. Afterwards, simultaneous perturbations in the three parameters are addressed.

4.3.1.1 Variation in the xenon concentration

We consider a perturbed configuration with NXe135 = 0 a/Å3 and δNXe135 = -4.0 · 10−9

a/Å3. The boron concentration and the water density are at their nominal values.
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4. Modeling spectral effects of local nuclide density changes

The reference value of kloc∞ is 1.08277.
Fig. 4.8 shows the thermal-group spectrum variation (per unit pseudolethargy) due
to this perturbation. The deformation in the fast group is negligible (its magnitude
ranges from -0.01% to 0.05%) and is therefore not shown. The reference change is
very accurately predicted by the method.
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Fig. 4.8. Thermal-group spectrum variation (per unit u) versus energy due to a change in
NXe135 from 4.0 · 10−9 a/Å3 to 0 a/Å3.

Table 4.1 reports the errors in the computed macroscopic cross sections and in the
main integral parameters. The two flux-error values refer to the fast and thermal
groups. The number of iterations (niter) of the reconstruction algorithm is also shown.

Table 4.1. Transition from NXe135 = 4.0 · 10−9 a/Å3 to NXe135 = 0 a/Å3: errors in the
reconstructed macroscopic cross sections and in the main integral parameters, and number
of iterations.

∆Σ∞a,1 (%) ∆Σ∞a,2 (%) ∆νΣ∞f,1 (%) ∆νΣ∞f,2 (%) ∆Σ∞s,1→2 (%) ∆k∞ [pcm] ∆Φ̄∞,G (%) ∆P̄∞fiss (%) niter

0.011 0.003 -0.009 0.008 0.01 -2 -0.002, 0.006 0.01 7

The deviations are negligible for all the quantities. If the xenon-variation microscopic
effect (Section 4.2.1.2) is not taken into account, the errors in Σ∞a,2 and νΣ∞f,2 increase
to -0.55% and -0.82%, respectively, and the error in k∞ becomes -249 pcm.
The interplay among the various effects (direct, spectral, and microscopic) of the xenon
perturbation is quantified in Table 4.2, which shows the corresponding contributions
to the reference global variation in the cross sections and integral parameters. For
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this kind of perturbation, the spectral and microscopic effects play a secondary role
compared to the direct one.

Table 4.2. Variation in the macroscopic cross sections and integral parameters due to a
change in NXe135 from 4.0 · 10−9 a/Å3 to 0 a/Å3. The global variation and its spectral and
microscopic components have been determined with the reference data from APOLLO2-A.
The reference perturbed cross sections are Σ∞a,2 = 0.066702 cm−1 and νΣ∞f,2 = 0.080904
cm−1.

δΣ∞a,2 (%) δνΣ∞f,2 (%) δk∞ [pcm] δΦ̄∞,G (%) δP̄∞fiss (%)

Direct -8.94 0.0 7930 -1.92, 7.50 5.81
Spectr. + micr. (ref.) 1.49 1.95 311 0.31, -1.2 0.77
Global (ref.) -7.44 1.95 8241 -1.62, 6.3 6.58

4.3.1.2 Variations in the concentration of diluted boron

We analyze two examples with varying concentration of diluted boron:

• a transition from 700 ppm to 2450 ppm, with NXe135 = 0 a/Å3 in both nominal
and perturbed conditions (case a);

• a transition from 700 ppm to 0 ppm, with NXe135 = 4.0 · 10−9 a/Å3 in the
nominal state and NXe135 = 0 a/Å3 in the perturbed one (case b).

The first perturbed value of CB10 (2450 ppm) may be representative of the beginning
of the core life at hot full-power conditions, in the absence of burnable poisons and
with control rods out. The second value (0 ppm) is typically found at the end of a
fuel cycle. The reference values of k∞ in the two perturbed conditions are 0.87077
(case a) and 1.20541 (case b). In case a, in which there is no xenon variation, the
microscopic effect and the corresponding corrections [Eqs. (4.11c) and (4.11d)] are
not taken into account.
Fig. 4.9 depicts the spectrum perturbations in the two test cases. The deformation
is significant in the thermal group, whereas the fast group is only affected in the
epithermal range. The result is flawless in the thermal and epithermal regions. The
deviations from the reference found at high energies (especially at E > 100 keV in
case b) have negligible impact on the reconstruction of the fast-group cross sections,
because in this range (i) the magnitude of δΦ∞,1(u) is low and (ii) only the fission
cross sections are relatively high, due to the contribution of fast fissions of 238U.
The errors in the macroscopic cross sections and integral parameters are in Table 4.3.
Table 4.4 shows the errors in the rehomogenized isotopic cross sections of some relevant
nuclides. The deviations have the same order of magnitude as the errors found with the
conventional multivariate interpolation. For case a, Table 4.5 reports the contributions
of the various effects to the overall variation in the macroscopic cross sections and in
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Fig. 4.9. Spectrum variations (per unit u) versus energy due to the following transitions:
(a) from CB10 = 700 ppm to CB10 = 2450 ppm (both conditions have NXe135 = 0 a/Å3);
(b) from CB10 = 700 ppm and NXe135 = 4.0 · 10−9 a/Å3 to CB10 = 0 ppm and NXe135 = 0
a/Å3.
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the integral parameters. Also in this case, the direct effect is preeminent.

Table 4.3. Variations in the boron concentration: errors in the reconstructed macroscopic
cross sections and in the main integral parameters, and number of iterations.

Case ∆Σ∞a,1 (%) ∆Σ∞a,2 (%) ∆νΣ∞f,1 (%) ∆νΣ∞f,2 (%) ∆Σ∞s,1→2 (%) ∆k∞ [pcm] ∆Φ̄∞,G (%) ∆P̄∞fiss (%) niter

a -0.007 -0.018 0.012 -0.039 -0.02 -13 0.0, -0.004 -0.033 8
b 0.016 0.03 -0.013 0.039 0.031 4 0.0, 0.001 0.033 7

Table 4.4. Variations in the boron concentration: errors (in %) in the reconstructed
microscopic cross sections of some relevant isotopes.

H2O 10B 135Xe 235U 238U

Case ∆σ∞a,2 ∆σ∞s,1→2 ∆σ∞a,2 ∆σ∞a,2 ∆σ∞a,1 ∆σ∞a,2 ∆νσ∞f,1 ∆νσ∞f,2 ∆σ∞a,1 ∆σ∞a,2 ∆νσ∞f,1
a 0.017 -0.016 0.017 -0.046 -0.021 -0.039 -0.021 -0.039 -0.004 -0.038 0.052
b -0.035 0.030 -0.026 0.016 0.020 0.040 0.020 0.039 0.017 0.037 -0.054

Table 4.5. Variations in the macroscopic cross sections and integral parameters due to the
transition from 700 ppm to 2450 ppm (case a). Since neither the water density nor the xenon
level changes and the microscopic effect of boron concentration is neglected, only the direct
and spectral effects are present. The reference values of the perturbed cross sections are:
Σ∞a,1 = 0.008891 cm−1, Σ∞a,2 = 0.076932 cm−1, νΣ∞f,1 = 0.004830 cm−1, νΣ∞f,2 = 0.080188
cm−1, and Σ∞s,1→2 = 0.017106 cm−1.

δΣ∞a,1 (%) δΣ∞a,2 (%) δνΣ∞f,1 (%) δνΣ∞f,2 (%) δΣ∞s,1→2 (%) δk∞ [pcm] δΦ̄∞,G (%) δP̄∞fiss (%)

Direct 4.80 28.11 0.0 0.0 0.0 -20950 4.92, -17.76 -13.99
Spectr. (ref.) -0.336 -3.50 -0.284 -2.78 -1.92 -250 -0.085, 0.306 -1.73
Global (ref.) 4.46 24.61 -0.284 -2.78 -1.92 -21200 4.83, -17.45 -15.72

We have made a parametric analysis by considering the whole range of variation of
the boric-acid concentration in a reactor core. Fig. 4.10 shows the errors in k∞ and in
the node-averaged total fission power versus the boron concentration. The zero-error
bar is highlighted. The errors in the macroscopic thermal absorption and production
cross sections are plotted in Fig. 4.11. The results are shown for the cases with Nnom

Xe135

= 0 a/Å3 and Nnom
Xe135

= 4.0 · 10−9 a/Å3. In the former (i.e., when CB10 is the only
changing parameter), the deviations are negligible along the whole boron axis. In
the latter (i.e., with a combined variation of the two variables), their magnitude is
higher, yet remains within the target bounds (50 pcm for k∞, 0.1% for the macroscopic
cross sections). Only at 3200 ppm, the errors in k∞ and νΣ∞f,2 (-45 pcm and -0.11%,
respectively) are close to or slightly exceed the prescribed limits. However, values
of CB10 higher than 3000 ppm are uncommon in modern PWR core design. The
amount of chemical shim is limited (usually to 2000 or 2500 ppm) to avoid a positive
moderator void coefficient of reactivity (Duderstadt and Hamilton, 1976).
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Fig. 4.10. Errors in the (a) multiplication factor and (b) total fission power versus the
boron concentration. The case with Nnom

Xe135 = 0 a/Å3 corresponds to a variation in CB10

only.
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Fig. 4.11. Errors in the thermal-group (a) absorption and (b) production cross sections
versus the boron concentration.

4.3.1.3 Variations in the water density

Following the same approach as for the boron concentration, we consider three examples
with perturbations in the moderator density:

• a transition from 0.7 g/cm3 to 0.76 g/cm3, with NXe135 = 4.0 · 10−9 a/Å3 in the
nominal state (case a);

• a transition from 0.7 g/cm3 to 0.91 g/cm3, with NXe135 = 4.0 · 10−9 a/Å3 in the
nominal state (case b);
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• a transition from 0.7 g/cm3 to 0.21 g/cm3, with NXe135 = 0 a/Å3 in both
nominal and perturbed conditions (case c).

Case a is an example of mild fluctuation during normal operation. It corresponds to
a change in the moderator temperature of about 30 K at the nominal pressure (158
bar). Cases b and c are instead examples of strong perturbations. The first value of
ρH2O (0.91 g/cm3) is encountered in the transition from cold zero power to hot full
power during the reactor start-up. The second value (0.21 g/cm3) may occur in design
basis accidents, such as loss-of-flow accidents. The reference values of k∞ in the three
perturbed states are 1.08028 (case a), 1.06777 (case b), and 0.93046 (case c).
Fig. 4.12 shows the spectrum perturbations of cases b and c. Compared to the previous
examples, a significant deformation also takes place in the fast group. The shape of the
variation features a double peak in the range 50 keV - 19.6 MeV, changing sign at about
1 MeV. This shape is somewhat similar to that observed (within the fission-emission
energy region) in the spectrum variation triggered by internodal heterogeneity at
UO2/MOX interfaces (Figs. 3.10 and 3.26). At ρH2O = 0.21 g/cm3, the magnitude
of the perturbation becomes remarkable in both groups. The POD basis accurately
reproduces the sharp outline of the high-energy deformation and the resonance spikes
in the epithermal region.
The errors in the cross sections and integral parameters are presented in Tables 4.6
and 4.7. In case a, all the errors are negligible, except for the thermal absorption
of 135Xe. In case b, the target accuracy is achieved for all the macroscopic cross
sections other than fast-to-thermal scattering, for which the error bound is slightly
exceeded. Similarly, the isotopic cross sections of H2O and 10B and fast fission in 238U
have errors between 0.1% and 0.2%. In case c, the deviations in the thermal-group
macroscopic cross sections are still negligible, whereas higher errors (between -0.35%
and -0.51%) are observed in the fast group. These residual errors are caused by minor
imperfections in the prediction of the epithermal spectrum perturbation [Fig. 4.12b].
For instance, at 6.67 eV (which corresponds to one of the main resonances of 238U) the
reference spectrum change is -17.3%, whereas the computed value is -18.0%. Since the
magnitude of the deformation is very high, small discrepancies in the resonance region
can result in non-negligible errors in the collapsed cross sections. We have verified that
the fast-group errors drop to zero if the cross-section corrections are computed with
the reference δΦ∞,1(u). Another feature of the low-density calculation is the increase
in the number of iterations for the convergence of the reconstruction algorithm.

Table 4.6. Variations in the water density: errors in the reconstructed macroscopic cross
sections and in the main integral parameters, and number of iterations.

Case ∆Σ∞a,1 (%) ∆Σ∞a,2 (%) ∆νΣ∞f,1 (%) ∆νΣ∞f,2 (%) ∆Σ∞s,1→2 (%) ∆k∞ [pcm] ∆Φ̄∞,G (%) ∆P̄∞fiss (%) niter

a 0.067 -0.002 -0.018 0.013 0.034 -9 -0.008, 0.027 0.031 7
b 0.065 -0.019 -0.05 0.025 0.115 26 -0.035, 0.1 0.098 6
c -0.361 0.062 -0.374 0.046 -0.506 -35 0.044, -0.522 -0.434 17
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Fig. 4.12. Spectrum variations (per unit u) versus energy due to the following transitions:
(a) from ρH2O = 0.7 g/cm3 and NXe135 = 4.0 · 10−9 a/Å3 to ρH2O = 0.91 g/cm3 and NXe135

= 0 a/Å3; (b) from ρH2O = 0.7 g/cm3 to ρH2O = 0.21 g/cm3 (both conditions have NXe135

= 0 a/Å3).
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Table 4.7. Variations in the water density: errors (in %) in the reconstructed microscopic
cross sections of some relevant isotopes.

H2O 10B 135Xe 235U 238U

Case ∆σ∞a,2 ∆σ∞s,1→2 ∆σ∞a,2 ∆σ∞a,2 ∆σ∞a,1 ∆σ∞a,2 ∆νσ∞f,1 ∆νσ∞f,2 ∆σ∞a,1 ∆σ∞a,2 ∆νσ∞f,1
a -0.053 0.034 -0.053 -0.263 0.019 0.014 0.018 0.013 0.087 0.012 -0.063
b -0.148 0.115 -0.148 -0.098 0.071 0.025 0.065 0.025 0.072 0.021 -0.189
c 0.297 -0.538 0.297 -0.748 -0.64 0.046 -0.568 0.046 -0.306 0.041 -0.071

The contributions of the various effects to the cross-section variations are reported in
Table 4.8 for case c. The perturbations computed by the method are compared to the
reference ones. In this example, the spectral and microscopic effects give a relevant
contribution to the global variation.

Table 4.8. Variations in the macroscopic cross sections and integral parameters due to the
transition from 0.7 g/cm3 to 0.21 g/cm3 (case c). The reference values of the perturbed cross
sections are: Σ∞a,1 = 0.006768 cm−1, Σ∞a,2 = 0.046244 cm−1, νΣ∞f,1 = 0.003907 cm−1, νΣ∞f,2
= 0.071230 cm−1, and Σ∞s,1→2 = 0.004003 cm−1.

δΣ∞a,1 (%) δΣ∞a,2 (%) δνΣ∞f,1 (%) δνΣ∞f,2 (%) δΣ∞s,1→2 (%) δk∞ [pcm] δΦ̄∞,G (%) δP̄∞fiss (%)

Direct -2.68 -13.72 0.0 0.0 -68.69 -11520 15.96, -57.60 -45.38
Spectr. + micr. (ref.) -17.81 -11.38 -19.35 -13.64 -8.35 -3711 1.85, -6.68 -12.96
Spectr. + micr. (calc.) -18.09 -11.33 -19.65 -13.60 -8.47 -3745 1.90, -6.86 -13.14
Global (ref.) -20.48 -25.1 -19.35 -13.64 -77.05 -15230 17.81, -64.27 -58.34

A parametric analysis similar to that of Section 4.3.1.2 has been made for the water
density. The errors versus the moderator density are shown in Figs. 4.13 to 4.16 for
various quantities. At densities between 0.51 and 0.81 g/cm3, the absolute values
of errors in the cross sections are below 0.1% in the fast group and 0.03% in the
thermal one, and the absolute values of deviations in k∞ are below 20 pcm. At 0.21
g/cm3, the highest error is found in fast-to-thermal scattering (-0.63% when the xenon
concentration also varies).

4.3.1.4 Combined variations in the three parameters

We assess the performance of the method for simultaneous variations in the three
parameters. From now on, we will only consider nominal conditions with NXe135 =
4.0 · 10−9 a/Å3. The perturbation δNXe135 is therefore fixed at -4.0 · 10−9 a/Å3.
Table 4.9 reports the numerical errors for various perturbed states. A more general
overview is given in Figs. 4.17 to 4.19, which show the deviations in k∞, Σ∞a,2 and
νΣ∞f,2 along the whole range of variation of ρH2O and CB10 . At water densities between
0.51 and 0.81 g/cm3, the absolute values of the errors in k∞ are (i) lower than 25
pcm if CB10 varies in the range [0 ppm, 1500 ppm], and (ii) lower than 40 pcm if
CB10 varies in the range [1500 ppm, 2000 ppm]. The errors in Σ∞a,2 are well below
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Fig. 4.13. Errors in the (a) multiplication factor and (b) total fission power versus the
moderator density. The case with Nnom

Xe135 = 0 a/Å3 corresponds to a variation in ρH2O only.
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Nnom
Xe = 4.0 · 10−9 a/Å3
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Fig. 4.14. Errors in the (a) thermal- and (b) fast-group absorption cross sections versus the
moderator density.

0.1% in most of the state-parameter domain, whereas the deviations in νΣ∞f,2 remain
below this bound if CB10 < 2000 ppm and ρH2O > 0.41 g/cm3. The errors in the
aforementioned quantities become negative for boron concentrations above a certain
value. At ρH2O = 0.21 g/cm3, the dependence on the boron concentration is negligible
(especially in k∞ and Σ∞a,2). Similarly, deviations in the fast group only depend on
the moderator density and almost do not vary with the boron concentration. This
can be observed in Fig. 4.20, which shows the behavior of the error in Σ∞a,1.
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Fig. 4.15. Errors in the (a) thermal- and (b) fast-group production cross sections versus
the moderator density.
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Fig. 4.16. Error in the fast-to-thermal scattering cross section versus the moderator density.

4.3.2 Application to a heterogeneous multiassembly configuration

We now apply the method to predict the combined effects of perturbations in the
state parameters and interassembly neutron leakage on the node-averaged spectrum.
The analysis is made on the colorset benchmark problem with control rods described
in Section 2.3.2.2. The fuel assemblies in the colorset, made of 1.8%-enriched UO2,
are of the same type as that simulated in Section 4.3.1 for the reconstruction of the
infinite-medium cross sections. Two banks of twenty-four AIC control elements each
are inserted into two of the four bundles. The arrangement of the assemblies in the
colorset and their internal layout can be found in Fig. 2.9.
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4. Modeling spectral effects of local nuclide density changes

Table 4.9. Three-parameter variations: errors in the reconstructed macroscopic cross
sections and in the main integral parameters, and number of iterations. The perturbed xenon
concentration is 0 a/Å3 in all the test cases.

ρH2O [g/cm3] CB10 [ppm] ∆Σ∞a,1 (%) ∆Σ∞a,2 (%) ∆νΣ∞f,1 (%) ∆νΣ∞f,2 (%) ∆Σ∞s,1→2 (%) ∆k∞ [pcm] ∆Φ̄∞,G (%) ∆P̄∞fiss (%) niter

0.41 0 -0.198 -0.001 -0.102 -0.015 -0.154 26 0.024, -0.129 -0.132 9
0.51 1200 -0.104 -0.004 -0.028 -0.041 -0.111 -13 -0.018, -0.09 -0.107 9
0.64 800 0.009 0.004 -0.008 -0.003 -0.026 -15 0.006, -0.022 -0.021 7
0.76 1600 0.061 -0.028 -0.012 -0.030 0.012 -23 -0.008, 0.031 -0.002 7
0.81 200 0.079 0.018 -0.027 0.04 0.066 0 -0.012, 0.037 0.062 7
0.81 1400 0.071 -0.029 -0.021 -0.017 0.038 -13 -0.015, 0.053 0.024 6
0.91 2000 0.063 -0.065 -0.044 -0.044 0.095 -1 -0.034, 0.125 0.056 6
1.0 2600 0.026 -0.098 -0.067 -0.075 0.154 7 -0.053, 0.198 0.084 7
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Fig. 4.17. Error in the infinite-medium multiplication factor as a function of the boron
concentration (on the x-axis) and of the moderator density (markers). In all the simulated
states, the variation in the xenon density is δNXe135 = -4.0 · 10−9 a/Å3.

As in Sections 2.3.2.2 and 3.3.1.2, the multiassembly set is simulated at zero burn-up
and at normal operating conditions (Tfuel = 851.5 K, TH2O = 586.1 K, ρH2O = 0.71
g/cm3), without thermal-hydraulic feedback or fuel depletion. Since there is no boron
diluted in the moderator (CB10 = 0 ppm), the deviations of the local conditions from
the nominal ones are δCB10 = -700 ppm and δNXe135 = -4.0 · 10−9 a/Å3. The change
in the water density is negligible. The reference effective multiplication factor and
control-rod bank worth computed with APOLLO2-A are keff = 0.98847 and wCR =
21840 pcm, respectively. The reference assembly-averaged fission power P̄fiss is 1.216
in the unrodded assembly and 0.784 in the rodded one.
The nodal simulations of the colorset are performed with the ARTEMIS code (Hobson
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Fig. 4.18. Error in the thermal-group absorption cross section as a function of the boron
concentration (on the x-axis) and of the moderator density (markers).
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Fig. 4.19. Error in the thermal-group production cross section as a function of the boron
concentration (on the x-axis) and of the moderator density (markers).

et al., 2013), in which a beta-testing version of the rehomogenization-based cross-
section model has been implemented. Also in this case, the parameterized libraries
are generated with APOLLO2-A. We present the results of the following calculations:
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Fig. 4.20. Error in the fast-group absorption cross section as a function of the boron
concentration (on the x-axis) and of the moderator density (markers). The legend is the
same as in Figs. 4.17 to 4.19.

• with infinite-medium cross sections computed without the critical-buckling
correction (a);

• with standard infinite-medium cross sections and the critical-buckling correction
(b);

• with cross sections corrected by the reference spectral defect (c);

• with spectral rehomogenization of the infinite-medium cross sections interpolated
at ploc (d);

• with spectral rehomogenization of the infinite-medium cross sections interpolated
at pnom (e).

Calculation b is currently the most widely used approach in nodal codes. In calculation
c, the reference spectral corrections are obtained by collapsing the 281-group macro-
scopic cross sections of the infinite lattice at the local conditions with the reference
environmental spectrum variation from APOLLO2-A [Eq. (2.25)]. In calculation d,
only the spectral effects of the environment are modeled by rehomogenization, as
described in Chapters 2 and 3. Calculation e is the one that fully applies the method
proposed in this chapter. In both simulations d and e, rehomogenization is applied
with the diffusive leakage model (Chapter 3) and the semi-analytic basis investigated
in Section 2.2.2.1 (namely, Chebyshev polynomials of the first kind combined with the
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4.3. Numerical results

neutron emission spectrum from fission in the fast group).
In ARTEMIS, the two-group diffusion coefficient is computed from the buckling coeffi-
cient (set to the critical value by default) and the leakage cross section Σ∞leak,G = D∞G B

2.
The same applies to the fine-group diffusion coefficient for the calculation of the reho-
mogenization parameters hR,D,G,j and hV,D,G,i,j [Eq. (3.28)]. In order to be consistent
with the methodology of Section 4.2.1.1, which has been derived for the zero-buckling
case, the nodal data for simulations other than b are generated with the smallest
user-defined value of B2 accepted by APOLLO2-A (B2 = 10−7 cm−2). This value
is four orders of magnitude lower than the critical one in both fuel bundles (B2

crit
= 3.24 · 10−3 cm−2 in the unrodded assembly, and B2

crit = -4.37 · 10−3 cm−2 in the
rodded assembly). Compared to the zero-buckling case, the differences in all the
computed cross sections are below 0.005%. Hence, with this choice no inconsistency is
introduced in the application of the methodology.
Fig. 4.21 shows (i) the change in the infinite-medium spectrum due to the aforemen-
tioned perturbations in the state parameters [δΦ∞,G(u) = Φloc

∞,G(u)− Φnom
∞,G(u)], and

(ii) the deformation of the spectrum in the colorset environment at the local conditions
[δΦenv,G(u) = Φloc

env,G(u)− Φloc
∞,G(u)].
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Fig. 4.21. Components of the spectrum variation (per unit u) in the unrodded and rodded
assemblies of the colorset example: (i) perturbation in the infinite medium due to the
transition from the nominal to the local conditions (solid lines), and (ii) perturbation in the
environment due to neighbor effects (dashed lines).

The variations in both CB10 and NXe135 from their nominal values contribute to
a reduction in absorption, thus thermalizing the spectrum in the two assemblies.
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4. Modeling spectral effects of local nuclide density changes

Neutron streaming hardens the spectrum in the unrodded assembly and thermalizes
it in the rodded one. The neighbor-effect component is preeminent in the fast group,
whereas the state-parameter change has the highest impact in the thermal group.
Fig. 4.22 depicts the overall spectrum variation [δΦG(u) = Φloc

env,G(u) − Φnom
∞,G(u)]

estimated with calculation e. The computed curves accurately predict the global
behavior of the reference. Minor deviations from the transport solution are mainly
found in the thermal group and in the high-energy region of the fast group (at E > 0.1
MeV). These deviations are due partly to the use of polynomial basis functions and
partly to inherent flaws of the diffusive approximation of the leakage spectrum, whose
outcome is shown in Fig. 4.23. The leakage function computed with this approach
is very precise in the epithermal region and in the low-energy region of the thermal
group (E < 0.25 eV), whereas it exhibits minor inaccuracy in the range [0.25 eV, 0.625
eV] and in the fission-emission region.
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Fig. 4.22. Spectrum variation (per unit u) between the colorset environment in the
local conditions and the infinite lattice in the nominal conditions, as computed by the
rehomogenization-based reconstruction algorithm with the diffusive leakage model (calc. e).

For the above set of calculations, Table 4.10 reports the errors in the nodal cross
sections of the two assemblies. The critical-buckling approach significantly overcorrects
the fast-group cross sections. The corrections computed with calculation e go in the
right direction and are close to the reference ones (calculation c), except for thermal
absorption in the rodded assembly (for which yet the error decreases compared to
the infinite-medium values). The improvement over calculations a and b is appar-
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Fig. 4.23. (a) Thermal- and (b) fast-group leakage spectra in the unrodded assembly, as
computed with the diffusive approximation applied to calculation e. The curves are normalized
to the reference coarse-group, assembly-averaged leakage. Units are in neutrons/(cubic
centimeters · second).

ent. Table 4.11 shows the errors in the main integral parameters and the number
of power iterations for the convergence of the eigenvalue calculation. Calculation e
produces better estimates of the integral parameters than those ensuing from standard
interpolation of the infinite-medium cross sections. The method strongly reduces the
overestimation of the control-rod bank worth observed with the conventional B2

crit
approach (the small error found with calculation a is instead the result of favorable
error cancellation). Similar considerations hold for the environmental rehomogeniza-
tion (calculation d). We remark that the residual errors of our reference calculation
are ascribable to the spatial component of the homogenization defects, which cannot
be corrected by spectral rehomogenization. These errors are higher in keff and in the
thermal fission power.

4.4 Discussion

4.4.1 Numerical features and impact on the cross-section model
For a standard PWR UO2 assembly (as the one analyzed in this work), cross-section lib-
raries commonly consist of about 3000 calculation points. With the rehomogenization-
based model, the boron-concentration axis can be removed. Along the water-density
and xenon-concentration axes, only few points must be kept, without cross calculations,
to account for the effects of variations in the fine-group microscopic cross sections. The
number of lattice simulations and table points decreases by a factor of approximately
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4. Modeling spectral effects of local nuclide density changes

Table 4.10. Errors in the nodal cross sections of the colorset benchmark problem.

UO2 1.8% UO2 1.8% + 24 AIC rods

Σa,1 Σa,2 νΣf,1 νΣf,2 Σs,1→2 Σa,1 Σa,2 νΣf,1 νΣf,2 Σs,1→2

Reference [cm−1] 0.00825 0.0554 0.00483 0.0833 0.0172 0.0115 0.0810 0.00472 0.0849 0.0151

Simulation Errors (%)

Inf. med., no B2
crit (a) 1.39 0.55 0.36 0.60 3.40 -1.63 0.78 -0.45 -0.89 -4.42

Inf. med., B2
crit (b) -0.82 0.41 -0.35 0.45 -1.08 1.95 0.91 0.66 -0.70 1.54

Ref. δΣspec
G (c) -0.05 0.19 -0.33 0.22 -0.28 0.47 1.37 0.43 -0.06 0.11

Rehom. at ploc (d) -0.26 0.23 -0.26 0.26 -0.23 0.54 1.20 0.31 -0.31 1.0
Rehom. at pnom (e) -0.25 0.02 -0.35 0.06 0.31 0.44 0.65 0.24 -0.38 0.04

Table 4.11. Number of power iterations (niter) and errors in the effective multiplication
factor, control-rod bank worth, nodal flux, and assembly-averaged fission power of the colorset
benchmark problem. The value of power error out of parentheses refers to the total power,
whereas the two values within parentheses correspond to the fast- and thermal-group power,
respectively.

UO2 1.8% UO2 1.8% + 24 AIC rods

Simulation niter ∆keff [pcm] ∆wCR (%) ∆Φ̄G (%) ∆P̄fiss (%) ∆Φ̄G (%) ∆P̄fiss (%)

Inf. med., no B2
crit (a) 6 80 0.37 -0.47, 1.65 2.51 (0.52, 2.89) 0.62, -3.14 -3.91 (-0.61, -4.78)

Inf. med., B2
crit (b) 6 -687 -3.15 0.14, -0.51 0.41 (-0.25, 0.55) 0.083, -0.42 -0.64 (0.30, -0.92)

Ref. δΣspec
G (c) 6 -425 -1.95 0.03, -0.12 0.70 (-0.07, 0.86) 0.26, -1.29 -1.10 (0.09, -1.43)

Rehom. at ploc (d) 10 -387 -1.87 -0.01, 0.05 0.98 (0.04, 1.17) 0.30, -1.54 -1.53 (-0.05, -1.94)
Rehom. at pnom (e) 13 -196 -0.9 -0.12, 0.42 0.77 (0.0, 0.91) 0.14, -0.73 -1.20 (0.0, -1.51)

9 if the water-density self-shielding coefficients are only computed along the burn-up
axis, or 7 if they are also computed along the fuel-temperature axis. In an industrial
utilization where the methodology is applied to reconstruct the cross sections directly
in the real environment, the computational burden of the lattice calculations is also
reduced because of the elimination of the critical-spectrum iterations. The memory
requirement for the storage of the rehomogenization coefficients is negligible compared
to the global memory saving.
The contraction of the interpolation hyperspace also has a beneficial effect on the
on-line reconstruction phase. This step usually takes up a significant fraction of the
overall run time of the nodal calculation. For example, Table 4.12 reports the run-time
statistics of a 900-MW PWR reactor full-core simulation with standard six-axes inter-
polation in ARTEMIS. Almost half of the computing time is used by the cross-section
module. This high fraction is due to the optimization of the nodal solution strategy
in the flux solver (van Geemert, 2014). If the rehomogenization-based reconstruction
is applied to compute the single-assembly cross sections (Section 4.2.1), the number
of iterations (each of which consists of the solution of a linear system with rank 8) is
generally between 6 and 8. Slower convergence is only found at very low values of the
water density (Tables 4.6 and 4.9). This fraction of the core-calculation run time can

130
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Table 4.12. Distribution of a full-core simulation run-time among the main modules for a
900-MW PWR core. The values refer to the ARTEMIS nodal code with traditional six-axes
interpolation.

Module Run time (%)

Cross-section reconstruction 48.9
Flux solver 9.58
Dehomogenization 1.17
Depletion solver 31.7
Thermal-hydraulics 0.26
Others 8.39

be easily minimized via parallelization of the algorithm. If the environmental approach
is chosen (Section 4.2.2), the number of flux iterations increases. For instance, an
increase by a factor of 2.17 has been observed in the colorset benchmark problem of
Section 4.3.2 (Table 4.11). However, as discussed in Section 3.4.1, this value is not
fully representative for an actual (i.e., coupled) core simulation, where embedding
the rehomogenization updates within the thermal-feedback iterations (see Fig. 4.6)
would mitigate the slowdown in convergence of the eigenvalue calculation. Moreover,
as observed in Table 4.12, the contribution of the nodal flux solver to the overall run
time of the core calculation is about five times smaller than that of the standard
interpolation-based reconstruction phase. Therefore, the gain due to the decrease in
the number of interpolation axes would prevail over the additional iterations at the
flux-solver level.
Isotopic rehomogenization [Eq. (4.34)] allows modeling the spectral effects of the
environment and of the local physical conditions on the microscopic cross sections
of the most relevant nuclides (such as fissile elements, the main fission products and
actinides, burnable absorbers, and control elements). Node-averaged history effects
due to differences between the off-nominal depletion in the real environment and
the single-assembly reference base depletion can therefore be fully accounted for by
combining the proposed method with a microscopic depletion model.
This rehomogenization-based strategy is valid for an arbitrary number of energy groups
of the nodal cross sections and can be applied to reactor types other than PWRs.
For example, in BWR core analysis one could take advantage of this approach to
model the spectral effects of the instantaneous coolant and moderator void fractions
(or densities) and, potentially, of the coolant void (or density) history as well. When
the boron concentration (which is not used for shim control in BWRs) is also retained
in the cross-section parameterization for safety/transient calculations (such as the
Anticipated Transient Without Scram), the interpolation hyperspace would be reduced
by four to five axes. Another feature of the method is that it can be leveraged to
reconstruct the cross sections in subcritical states, not only in core operation of critical
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4. Modeling spectral effects of local nuclide density changes

reactors, but also in the presence of a neutron source. This requires to compute the
projection coefficients of the neutron-source emission spectrum SG(u) on the weighting
functions WG,j(u):

ΨG,j =
∫ 1

0
duSG(u)WG,j(u). (4.40)

This source term is to be added to the right-hand side of Eq. (4.15). This strategy
can thus be used for safety analyses of cold shut-down states. Furthermore, it can be
easily integrated into the cross-section model of accelerator-driven subcritical reactors.

4.4.2 On the modal approach

In the tests on single-assembly configurations (Section 4.3.1), we have used basis and
weighting functions built with the POD approach. A similar study has been made
with the semi-analytic modes (i.e., Chebyshev polynomials and the fission-emission
spectrum) used for the multiassembly benchmark problem in Section 4.3.2. The
results are here summarized for two sample perturbations without xenon variation: a
transition to CB10 = 2450 ppm (case a of Section 4.3.1.2), and a transition to ρH2O =
0.21 g/cm3 (case b of Section 4.3.1.3).
The computed spectrum variations and numerical errors are shown in Fig. 4.24 and
Table 4.13. A significant loss of accuracy is found in the prediction of the fast-group
spectrum change, especially at high energies. In the first example, the magnitude of
the perturbation is small, and the semi-analytic approach still provides reasonably
accurate estimates of the cross sections and integral parameters. In the case with low
moderator density, the amplitude of the deformation is high and the deviations in the
computed curve result in a poor prediction of the above parameters. Hence, this set
of modes cannot preserve in a generalized sense a degree of accuracy comparable to
that of standard interpolation.
A basis function (such as a fission spectrum shifted toward lower values of E) could
be added to better fit the high-energy double peak that characterizes water-density
perturbations (Figs. 4.12 and 4.24). The first of the two peaks of opposite sign is
centered at about 400 keV, which is the average energy of delayed neutrons (Stacey,
2007). Therefore, this additional mode may also be exploited to capture neutron-
dynamics features in the simulation of reactor transients.

Table 4.13. Examples with the semi-analytic basis: errors in the reconstructed macroscopic
cross sections and in the main integral parameters, and number of iterations.

Perturbed state ∆Σ∞a,1 (%) ∆Σ∞a,2 (%) ∆νΣ∞f,1 (%) ∆νΣ∞f,2 (%) ∆Σ∞s,1→2 (%) ∆k∞ [pcm] ∆Φ̄∞,G (%) ∆P̄∞fiss (%) niter

CB10 = 2450 ppm -0.096 0.257 0.190 0.215 -0.022 41 0.049, -0.224 0.032 8
ρH2O = 0.21 g/cm3 1.107 1.084 2.89 1.071 -1.645 -549 0.211, -2.52 0.602 14
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Fig. 4.24. Spectrum changes versus energy computed with the semi-analytic basis for the
following transitions (without xenon variation): (a) from CB10 = 700 ppm to CB10 = 2450
ppm; (b) from ρH2O = 0.7 g/cm3 to ρH2O = 0.21 g/cm3.
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4. Modeling spectral effects of local nuclide density changes

4.4.3 Reconstruction of the diffusion coefficient
The diffusion coefficient is reconstructed with a procedure similar to that described
for the macroscopic cross sections. Fig. 4.25 depicts the fine-group diffusion coefficient
in a 1.8%-enriched UO2 lattice at different physical conditions.
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Fig. 4.25. Infinite-medium fine-group, homogenized diffusion coefficient of a 1.8%-enriched
UO2 assembly at different physical conditions. The xenon concentration is zero in conditions
other than the nominal ones. The distributions have been computed with APOLLO2-A.

The distributions have been computed with the outflow transport approximation (Choi
et al., 2015). Along the whole energy domain, the impact of variations in the boron
and xenon concentrations is negligible. Therefore, the corresponding microscopic-effect
and cross corrections δD∞,mG and δD∞,∗G [Eqs. (4.11c) and (4.11d)] can be neglected.
Only the moderator density has a significant impact on the diffusion-coefficient energy
distribution. We account for its effect via ad hoc macroscopic coefficients sR,D,G,j and
sV,D,G,i,j [Eq. (4.28)], which are computed with a polynomial approximation in one
variable as described in Section 4.2.1.2. Eq. (4.33) is then adapted to the diffusion
coefficient as

hlocV,D,G,i,j ≈ hnomV,D,G,i,j + sV,D,G,i,j , (4.41)
where the rehomogenization parameters hnomV,D,G,i,j are determined according to Eq. (4.17)
with the nominal distribution Dnom

∞,G(u). Eq. (4.35) still holds for the few-group cor-
rection δD∞G .
It should be noted that if the diffusion coefficient is computed via the B1 equations
(Hebert, 2009), variations in the boron concentration and xenon density cause a change
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4.4. Discussion

in its distribution in the high-energy region (at E > 1 MeV). This unphysical effect is
due to an inherent limitation of the B1 methodology (Smith, 2017), which produces an
increase (or decrease) in the diffusion coefficient at all energies as the lattice reactivity
decreases (or increases). Because of this behavior, the contributions of boron and
xenon variations to the correction terms δD∞,m1 and δD∞,∗1 (which we have set to
zero in the test case of Section 4.3.2) may no longer be negligible.

4.4.4 On the discontinuity factors and form functions

We briefly discuss the impact of variations in ρH2O, CB10 and NXe135 on the assembly
discontinuity factors and form functions. At the library preparation stage, the
discontinuity factors are usually determined and stored at the same points of the state-
parameter phase space as the nodal cross sections. The form-function model often
uses a simplified approach. For instance, in ARTEMIS their multivariate dependence
is built with only two two-parameter cross terms.
For the UO2 bundle considered in Section 4.3.1, Figs. 4.26 and 4.27 show the variation in
the assembly-surface discontinuity factors versus the boron concentration and the water
density, respectively. Changes are small (mostly < 0.2% in the fast group and < 0.5%
in the thermal one) along the whole range of values of the two state parameters. This
is because discontinuity factors are meant to account for intra-assembly heterogeneity,
whereas perturbations in the state parameters are homogeneous within a given node.
Their influence on the intranodal flux distribution is limited to changes in the fuel-to-
moderator flux ratio, for the reasons discussed in Section 4.2.1.2. This can be observed,
for example, in Fig. 4.28a, which shows the perturbation in the thermal-flux form
function at CB10 = 0 ppm and NXe135 = 0 a/Å3. The variations observed in Figs. 4.26
and 4.27 are significantly smaller than those induced by neighbor effects in the core
environment. For instance, Dall’Osso (2014) found changes (compared to the infinite-
medium values) of about 1.0% and 3.0% in the fast- and thermal-group environmental
discontinuity factors of a rodded UO2 assembly neighboring an unrodded assembly of
the same type. As it will be shown in Chapter 5, we have found even higher variations
(up to 6.0%) at UO2/MOX interfaces.
Fig. 4.28b depicts the variation in the total-fission-power form function at CB10 = 0 ppm
and NXe135 = 0 a/Å3. A radial tilt is observed in the power spatial distribution. Higher
perturbations in the form functions are found at very low moderator densities. For
example, changes in the power distribution up to 2% occur in the assembly periphery
at ρH2O = 0.21 g/cm3. As observed for discontinuity factors, these variations are still
modest compared to those induced by the spatial effects of the core environment.
In order to fully benefit from the reduction in the lattice-calculation computational
burden and in the library memory requirements, a method should be found to reproduce
the effects of local nuclide density changes on the assembly discontinuity factors and
form functions. The spatial rehomogenization model described in Chapter 5 may
address this aspect. This method aims to compute the variation in the 2-D spatial
distribution of the neutron flux density between the real environment and the single-
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Fig. 4.26. Variations in the (a) thermal-group and (b) fast-group assembly-surface discon-
tinuity factors versus the diluted-boron concentration.
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Fig. 4.27. Variations in the (a) thermal-group and (b) fast-group assembly-surface discon-
tinuity factors versus the water density.

assembly conditions. Following an approach similar to that presented in this chapter
(namely, computing the variation with respect to the infinite-lattice flux distribution
in the nominal conditions), the spatial correction on the discontinuity factors could
also include the state-parameter effect. Changes in the flux and power form functions
may instead be estimated via empirical correlations.
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Fig. 4.28. Variation (in percentage) in the (a) thermal-flux and (b) total-fission-power form
functions at CB10 = 0 ppm and NXe135 = 0 a/Å3.

4.4.5 Reconstruction of the B2-corrected single-assembly cross
sections

In the approach presented in this chapter, the cross sections are reconstructed
without the critical-buckling correction. If the critical-spectrum approximation is
used, Eq. (4.15) becomes

Φ̄loc
∞,Gh

loc
R,r,G,j +

NQG∑
i=1

α∞,G,ih
loc
V,r,G,i,j + c∞,locG,j = χG,j

NG∑
G′=1

(
Φ̄loc
∞,G′h

loc
R,f,G′+

NQ
G′∑

i=1
α∞,G′,ih

loc
V,f,G′,i

)
+

NG∑
G′=1
G′ 6=G

(
Φ̄loc
∞,G′h

loc
R,s,G′→G,j +

NQ
G′∑

i=1
α∞,G′,ih

loc
V,s,G′→G,i,j

)
,

(4.42)

where c∞,locG,j is the projection coefficient of the critical-leakage spectrum in the local
conditions [see Eq. (4.13)]:

c∞,locG,j =
∫ 1

0
duWG,j(u)Lloc

∞,G(u). (4.43)

Using the same approach as in Section 3.2.2, we express Lloc
∞,G(u) as

Lloc
∞,G(u) = L̄loc

∞,Gf
∞,loc
L,G (u), (4.44)

137



4. Modeling spectral effects of local nuclide density changes

where L̄loc
∞,G is the infinite-medium, coarse-group critical leakage, and f∞,locL,G (u) is the

fundamental-mode leakage spectrum normalized to unity [Eq. (3.31)]:

L̄loc
∞,G = D∞,locG B2

crit,locΦ̄loc
∞,G , f∞,locL,G (u) =

Dloc
∞,G(u)B2

crit,locψ
loc
∞,G(u)∫ 1

0 duD
loc
∞,G(u)B2

crit,locψ
loc
∞,G(u)

. (4.45)

In Eq. (4.45) we have used the same notation as in Eq. (4.13). The few-group diffusion
coefficient D∞,locG comes from the latest iteration of the reconstruction algorithm
(see Fig. 4.5 and Section 4.4.3), whereas B2

crit,loc and Φ̄loc
∞,G are estimated solving the

B2-variant of Eq. (4.19). For example, the critical zero-dimensional balance in the
fast group reads

(
Σ∞,loca,1 +D∞,loc1 B2

crit,loc + Σ∞,locs,1→2 − νΣ∞,locf,1

)
· Φ̄loc
∞,1 =(

Σ∞,locs,2→1 + νΣ∞,locf,2

)
· Φ̄loc
∞,2. (4.46)

Reconstructing the buckling-corrected cross sections requires the knowledge of f∞,locL,G (u).
A simple approach is to assume that its shape does not change significantly with the
physical conditions in the node, namely

f∞,locL,G (u) ≈ f∞,nomL,G (u). (4.47)

For the unrodded UO2 fuel assembly considered in this chapter, Fig. 4.29 depicts the
critical-leakage spectra in the nominal conditions (with Nnom

Xe135
= 4.0 · 10−9 a/Å3)

and in few perturbed states, all with NXe135 = 0 a/Å3. The differences between
the local and nominal distributions are negligible in the fast group. However, the
approximation of Eq. (4.47) is not warranted in the thermal range. The impact
of this assumption has been quantified solving Eq. (4.42) in one step (i.e., without
iterations). We have solved Eq. (4.46) with the two-group B2-corrected cross sections
and diffusion coefficients interpolated at the local conditions (i.e., at the local values
of ρH2O, CB10 , and NXe135). The so obtained values of Φ̄loc

∞,G and B2
crit,loc have been

used in Eqs. (4.42) and (4.45). In this way, the approximation of Eq. (4.47) is the
only source of inaccuracy in the solution of Eq. (4.42). For some perturbed states,
Table 4.14 shows the error in the infinite-medium multiplication factor ensuing from
this procedure. Significant deviations are found at low moderator densities and high
boron concentrations. If the same one-step procedure is applied to the zero-buckling
problem [Eq. (4.15)], the error in k∞ drops to 0 pcm in all sample cases. This
outcome suggests that more complex modeling of f∞,locL,G (u) is needed for an accurate
reconstruction of the B2-corrected cross sections. A potential approach is to define
the critical spectrum ψloc

∞,G(u) in Eq. (4.45) with Eqs. (4.8) and (4.14). However, this
option would introduce an additional non-linearity in the rehomogenization algorithm.
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Fig. 4.29. (a) Thermal- and (b) fast-group fundamental-mode leakage spectra (normalized
to unity) in the nominal state and in various perturbed conditions.

Table 4.14. Error in the multiplication factor computed with a one-step reconstruction of
the B2-corrected single-assembly cross sections.

Local conditions Error [pcm]

CB10 = 0 ppm -11
CB10 = 3000 ppm 205
NXe135 = 0 a/Å3 (Cnom

B10
, ρnomH2O

) -32
ρH2O = 0.81 g/cm3, CB10 = 1000 ppm -13
ρH2O = 0.51 g/cm3 -47
ρH2O = 0.21 g/cm3 163

4.4.6 Spectral effects of density changes on the rehomogenization
coefficients

As mentioned in Sections 2.4.2 and 3.3.1.5, in ARTEMIS the rehomogenization
coefficients are only tabulated versus the burn-up, the fuel temperature and the
moderator temperature. An algorithm has been developed to incorporate the effects
of nuclide density changes into these parameters when rehomogenization is applied
to capture only neighbor effects, such as in Chapters 2 and 3. This algorithm shares
common features with the methodology described in this chapter. For the sake of
completeness, it is summarized in the following.
The direct effect of density changes on the rehomogenization coefficients is taken into
account with Eq. (4.24). When the spectral effects of density changes on the nodal
cross sections are modeled via standard interpolation in parameterized libraries, the
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4. Modeling spectral effects of local nuclide density changes

reference coefficients hR [Eq. (2.12a)] must be computed with the infinite-medium
spectrum corresponding to the exact, local conditions. This spectrum is determined
on the fly solving the rehomogenization problem in the infinite lattice [Eq. (4.15)
or Eq. (4.42)] in one step (namely, with the cross sections interpolated at the local
conditions), as explained in Section 4.4.5. Replacing Eqs. (4.8) and (4.14) into
Eq. (2.12a) yields, after some algebraic manipulation, the following expression for the
updated reference coefficient hloc,∗R,x,G,j :

hloc,∗R,x,G,j = hlocR,x,G,j +
NQG∑
i=1

α∞G,ih
loc
V,x,G,i,j , (4.48)

where hlocR,x,G,j and hlocV,x,G,i,j are the reference and variational coefficients corrected
with Eq. (4.24) to take into account the direct effect of density changes. The modal
coefficients α∞G,i come from the one-step solution of Eq. (4.15) or Eq. (4.42). The
spectral update of Eq. (4.48) is performed at the beginning of each rehomogenization
iteration. Afterwards, the environmental rehomogenization problem [Eq. (2.13)] is
solved using the coefficients hloc,∗R and hlocV obtained with Eqs. (4.48) and (4.24),
respectively. In this way, nodal cross sections are rehomogenized [by Eq. (2.15)] with
the difference in the spectrum exclusively due to internodal neutron leakage. We
emphasize that if only the correction of Eq. (4.24) is applied, the spectrum deformation
computed with Eq. (2.13) (which becomes equivalent to Eq. (4.15)) will include the
contributions of both neighbor effects and changes in the state parameters. The latter
would therefore be taken into account twice (namely, via rehomogenization and the
cross-section model).
The calculation with fuel depletion presented in Section 3.3.1.5 was performed with the
critical-buckling approach and with the direct and spectral updates of the rehomogen-
ization coefficients described in this section. In the solution of the one-step problem for
the spectral update, Eq. (4.47) was used to approximate the critical-leakage spectrum
in the local conditions. Since in this test case only the xenon concentration changes
significantly compared to the nominal conditions, the impact of this approximation is
small (see Table 4.14).

4.5 Summary

We have proposed a novel method to model the spectral effects of local nuclide
density changes on the few-group nodal macroscopic and microscopic cross sections.
The cross-section multivariate dependence on the water density, the concentration
of diluted boron and the xenon level is reproduced with a rehomogenization-based
approach. Our target accuracy is achieved in most of the phase space of these three
state parameters. Deviations close to or slightly higher than the prescribed error
bounds are only found in fast-group cross sections at very low moderator densities
(below 0.3 g/cm3), which can be experienced in accidental conditions. However, these
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deviations are still small compared to the homogenization errors commonly found in
standard nodal simulations of strongly heterogeneous multiassembly configurations.
Eventually, the rehomogenization algorithm inherently predicts the combined spectral
changes due to (i) variations in the local physical conditions, (ii) interassembly neutron
leakage, and (iii) different reactivity in the real environment and in the infinite lattice.
These findings lay the groundwork for a new concept of cross-section model, featuring
(i) a considerably smaller number of branch calculations in the lattice-physics code
and of table points in the parameterized libraries, and (ii) a computationally less
demanding on-line reconstruction of the nodal cross sections.
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Chapter 5

A two-dimensional model for
spatial rehomogenization of

nodal cross sections and
discontinuity-factor correction

5.1 Introduction

In this chapter 1, we propose an extension of the spatial rehomogenization technique
described in Dall’Osso (2014). This method aims to compute on the fly the change
in the intranodal flux shape that is used for cross-section spatial homogenization
when the assembly is in the core environment. The rehomogenization problem is
solved using as boundary conditions the estimates of the volume-averaged fluxes, the
surface-averaged fluxes and currents, and the multiplication factor from the global
(i.e., core-wide) nodal calculation. Only radial heterogeneity is addressed. The effect
of axial heterogeneity is taken into account via axial homogenization or control-rod
cusping models (Dall’Osso, 2002). Two significant approximations are made in the
formulation presented in Dall’Osso (2014):

• The 2-D rehomogenization problem is simplified via transverse integration into
two 1-D problems, which are solved sequentially in the x and y directions.

• The transverse-integrated fine-mesh cross sections (to be weighted with the
computed 1-D flux change) are obtained by collapsing the 2-D pin-by-pin cross-

1The content of this chapter has been accepted for publication in Annals of Nuclear Energy.
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section distributions with the infinite-medium flux form function, instead of the
environmental flux shape.

In the work presented in this chapter, the above assumptions are relaxed by devel-
oping a full 2-D rehomogenization model, which retains the non-separability of the
flux variation in the x and y directions. In this way, the 2-D distributions of the
environmental flux and directional net currents can be estimated at the nodal flux
iteration level. Moving to a 2-D model is also motivated by the possibility to use the
so obtained 2-D information (i) to compute the transverse-leakage distributions for
the transverse-integrated nodal equations, and (ii) to reconstruct the pin-by-pin flux
and power distributions directly (i.e., without the dehomogenization phase).
This chapter is structured as follows. The 2-D rehomogenization method is described
in Section 5.2. Section 5.3 shows the numerical results of the PWR multiassembly
configurations considered in previous chapters, in which the spatial effects of the
environment are also important. The accuracy of the method is assessed on both
nodal and pin-by-pin quantities. A comparison with the simplified 1-D approach is
made. In Section 5.4, we discuss various aspects of interest of spatial rehomogeniza-
tion. These include the correction of assembly discontinuity factors, the calculation of
the transverse-leakage shape with the information from the 2-D rehomogenization,
and the contributions of various environmental effects (spatial, spectral, and mixed
energy-space) to the deviations of nodal cross sections from the single-assembly values.
Concluding remarks follow in Section 5.5.

5.2 Description of the method

We introduce a non-dimensional coordinate ud, where d stands for x or y. The
following change of variable is applied:

d, d ∈ [0,∆d] → ud = d

∆d −
1
2 , ud ∈

[
− 1

2 ,
1
2

]
. (5.1)

We define the 2-D intranodal distribution of the environmental neutron flux density
in the coarse energy group G as

Φenv,G(ux, uy) = Φ̄Gϕ∞,G(ux, uy) + δΦG(ux, uy), (5.2)
where Φ̄G is the volume-averaged flux from the nodal calculation, ϕ∞,G(ux, uy) is
the infinite-medium flux distribution (normalized to unity) used for cross-section
spatial homogenization in the lattice calculation, and δΦG(ux, uy) is the flux spatial
variation between the environmental and infinite-medium conditions. The distributions
Φenv,G(ux, uy) and ϕ∞,G(ux, uy) are heterogeneous quantities, whereas δΦG(ux, uy) is
assumed to be a smoothly varying function. The node-averaged value of δΦG(ux, uy)
is zero to satisfy the normalization condition∫ 1/2

−1/2
dux

∫ 1/2

−1/2
duyΦenv,G(ux, uy) = Φ̄G. (5.3)
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The flux change is approximated with a 2-D modal expansion:

δΦG(ux, uy) =
Nx∑
ix=1

αG,x,ixPG,ix(ux) +
Ny∑
iy=1

αG,y,iyPG,iy (uy)+

Nx∑
cx=1

Ny∑
cy=1

cx+cy≤Nc

αG,xy,cx,cyPG,cx(ux)PG,cy (uy). (5.4)

The non-separability of the flux variation is modeled with the cross terms αG,xy,cx,cy .
In this work, for each coarse group we consider directional expansions with four basis
functions (i.e., Nx = Ny = N = 4) and we retain four cross terms (Ncross = 4). The
basis functions PG,id(ud) are the conventional polynomial and hyperbolic functions
used for the 1-D transverse-integrated flux expansion in the semi-analytic NEM, with
the only exception of P2,4(ud):

PG,1(ud) = ud (G = 1, 2); (5.5a)

PG,2(ud) = u2
d −

1
12 (G = 1, 2); (5.5b)

P1,3(ud) = ud

(
u2
d −

1
4

)
, P2,3(ud) = sinh(ηud); (5.5c)

P1,4(ud) =
(
u2
d −

1
4

)(
u2
d −

1
20

)
, P2,4(ud) = cosh(ηud)−

2
η
sinh

(η
2

)
. (5.5d)

In Eqs. (5.5c) and (5.5d), the coefficient η is chosen so that the hyperbolic functions
sinh(ηud) and cosh(ηud) are particular solutions of the 1-D homogeneous diffusion
equation in the thermal group:

η = ∆d

√
Σa,2 +

∑2
G′=1 Σs,2→G′
D2

. (5.6)

The basis functions of Eq. (5.5) proved to accurately reconstruct the 1-D transverse-
integrated flux variation (Dall’Osso, 2014) and have been also used in this work for
their generality. The above modes have zero average value in the interval [−1/2, 1/2],
thus satisfying Eq. (5.3). The four cross terms in Eq. (5.4) only have polynomial
components, with global order up to 4 (i.e., Nc = 4) and directional order up to 2.
The spatial distribution of the directional net neutron current Jenv,G,d(ux, uy) is
defined as

Jenv,G,d(ux, uy) = Φ̄GJ∞,G,d(ux, uy) + δJG,d(ux, uy), (5.7)

with
δJG,d(ux, uy) = −DG(ux, uy)

∆d
∂

∂ud
δΦG(ux, uy). (5.8)
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In Eq. (5.7), scaling to the volume-averaged flux Φ̄G ensues from the application of
Fick’s law to Eq. (5.2). In Eq. (5.8), DG(ux, uy) is the spatially dependent diffusion
coefficient (in units of cm).
We define the environmental discontinuity factors f envG,d± at the node surfaces as

f envG,d± = f∞G,d± + δfG,d± , (5.9)

where the signs ± refer to the interfaces along the positive and negative directions of
the d axis.
The following nodal unknowns must be found for each coarse group [Eqs. (5.4)
and (5.9)]: the directional modal coefficients αG,d,id (4 unknowns per direction),
the cross modal coefficients αG,xy,cx,cy

(4 unknowns), and the discontinuity-factor
corrections δfG,d± (2 unknowns per direction). With the aforementioned choice of N
and Nc, the number of unknowns per coarse group is 16. In order to solve for them,
we identify a set of equations for the following quantities:

• the environmental surface-averaged fluxes (2 equations per direction, per group);

• the environmental surface-averaged net currents (2 equations per direction, per
group);

• the environmental corner-point fluxes (4 equations per group).

The remaining four (or [(Nx+Ny+Ncross)−8] in a more general framework) equations
per group are found applying a standard weighted-residual technique to the 2-D few-
group balance equation in the environmental conditions. The procedure used to derive
the aforementioned equations is explained below.

5.2.1 Equations for the environmental surface-averaged flux
The surface-averaged heterogeneous (i.e., continuous) flux in the environmental condi-
tions Φhet

G,d± can be written, for the x direction, as

Φhet
G,x± =

∫ 1/2

−1/2
duyΦenv,G(ux, uy)

∣∣∣
ux=± 1

2

= f envG,d±Φhom
G,x±, (5.10)

where Φhom
G,x± denotes the homogeneous (i.e., discontinuous) surface-averaged flux from

the nodal calculation. Introducing Eqs. (5.2) and (5.9) into Eq. (5.10) yields

Φ̄G
∫ 1/2

−1/2
duyϕ∞,G(ux, uy)

∣∣∣
ux=± 1

2

+
∫ 1/2

−1/2
duyδΦG(ux, uy)

∣∣∣
ux=± 1

2

=

(f∞G,x± + δfG,x±)Φhom
G,x±. (5.11)
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Using the definition of single-assembly discontinuity factor and taking into account
that the volume-averaged value of ϕ∞,G(ux, uy) is unity, we rewrite the first term on
the left-hand side of Eq. (5.11) as

Φ̄G
∫ 1/2

−1/2
duyϕ∞,G(ux, uy)

∣∣∣
ux=± 1

2

= Φ̄Gf∞G,x±. (5.12)

After substituting Eqs. (5.4) and (5.12) into Eq. (5.11), we obtain
Nx∑
ix=1

αG,x,ixPG,ix

(
± 1

2

)
= (f∞G,x± + δfG,x±)Φhom

G,x± − f∞G,x±Φ̄G. (5.13)

In Eq. (5.13), the transverse-direction (i.e., y-directional) and cross components of
the surface-averaged flux variation vanish because, by definition,∫ 1/2

−1/2
duyPG,iy (uy) = 0. (5.14)

An equation analogous to Eq. (5.13) holds for the y direction.

5.2.2 Equations for the environmental surface-averaged current
We consider the simple case with homogeneous diffusion coefficient [i.e., DG(ux, uy) =
DG]. Using Eqs. (5.7) and (5.8), the surface-averaged directional net current reads
(for the x axis)∫ 1/2

−1/2
duyJenv,G,x(ux, uy)

∣∣∣
ux=± 1

2

= −DG

∆x

∫ 1/2

−1/2
duy

∂

∂ux
δΦG(ux, uy)

∣∣∣
ux=± 1

2

=

− DG

∆x

[
Nx∑
ix=1

αG,x,ix
dPG,ix
dux

(ux)
∣∣∣
ux=± 1

2

]
. (5.15)

In Eq. (5.15), we have used the fact that the infinite-medium current at the assembly
surface is zero, namely

J∞,G,x(ux, uy)
∣∣∣
ux=± 1

2

= 0. (5.16)

Eq. (5.16) is valid at the assembly outer edges and, when considering four nodes per
fuel assembly, at the internal surfaces of fully symmetrically loaded fuel bundles (i.e.,
with octant or quadrant symmetry).
The sought equation is found equating Eq. (5.15) to the surface-averaged directional
net current JG,x± from the nodal calculation:

− DG

∆x

[
Nx∑
ix=1

αG,x,ix
dPG,ix
dux

(ux)
∣∣∣
ux=± 1

2

]
= JG,x±. (5.17)
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5.2.3 Equations for the environmental corner-point flux
The heterogeneous (i.e., continuous) flux at a nodal corner point c is

Φhet
G,c = Φenv,G(ux, uy)

∣∣∣ux=uc
x

uy=uc
y

= Φ̄Gϕ∞,G(ux, uy)
∣∣∣ux=uc

x

uy=uc
y

+ δΦG(ux, uy)
∣∣∣ux=uc

x

uy=uc
y

, (5.18)

where ucx and ucy denote the corner-point coordinates within the node. Introducing the
single-assembly corner discontinuity factor f∞G,c and substituting Eq. (5.4), Eq. (5.18)
becomes

Nx∑
ix=1

αG,x,ixPG,ix(ucx) +
Ny∑
iy=1

αG,y,iyPG,iy (ucy)+

Nx∑
cx=1

Ny∑
cy=1

cx+cy≤Nc

αG,xy,cx,cy
PG,cx

(ucx)PG,cy
(ucy) = Φhet

G,c − Φ̄Gf∞G,c. (5.19)

An estimate of Φhet
G,c must be found to use Eq. (5.19) in the spatial rehomogenization

algorithm. For this purpose, we use two different approaches:

• a combination of Smith’s method (Rempe et al., 1989) and the Method of
Successive Smoothing (MSS) (Böer and Finnemann, 1992);

• a Corner Point Balance (CPB) condition (Chang et al., 1989).

The methods mentioned above are commonly used in the context of fuel-assembly
dehomogenization (Joo et al., 2009). Their application in the framework of our work
is briefly explained in the following.

5.2.3.1 Smith’s method and the Method of Successive Smoothing

In Smith’s method, the intranodal flux distribution is considered as separable in the x
and y directions. The homogeneous flux at a given node vertex is approximated using
the volume-averaged flux in the node and the surface-averaged flux at the nodal edges
crossing the corner. For instance, using the nodal coordinate system of Fig. 5.1, the
flux in the north-east corner Φhom

G,NE reads

Φhom
G,NE =

Φhom
G,x+Φhom

G,y+

Φ̄G
. (5.20)

The MSS is based on the assumption that the flux varies linearly in the neighborhood
of a corner point. The homogeneous flux at a nodal vertex is estimated with a linear
extrapolation in terms of the surface-averaged and volume-averaged fluxes:

Φhom
G,NE = Φhom

G,x+ + Φhom
G,y+ − Φ̄G. (5.21)

148



5.2. Description of the method

Φhet
G,NW[

− 1
2 ,

1
2

] Φhet
G,NE[

1
2 ,

1
2

]

Φhet
G,SW

[
− 1

2 ,−
1
2

]
Φhet

G,SE

[
1
2 ,−

1
2

]Φhet
G,x− Φhet

G,x+

Φhet
G,y+

Φhet
G,y−

ux

uy

Fig. 5.1. Corner-point coordinate system in a generic node. The corner and surface-averaged
fluxes are highlighted.

The heterogeneous corner flux in the environment is related to its homogeneous
counterpart Φhom

G,c via the corner discontinuity factor:

Φhet
G,c = f envG,cΦhom

G,c . (5.22)

Using Eqs. (5.20) or (5.21) and Eq. (5.22), four estimates of Φhet
G,c are available for a

given corner point, one from each node surrounding the corner. The heterogeneous
corner flux is thus approximated with the arithmetic average of the available estimates:

Φhet
G,c = 1

4

(
Φhom
G,c,i,jf

env
G,c,i,j + Φhom

G,c,i+1,jf
env
G,c,i+1,j+

Φhom
G,c,i,j+1f

env
G,c,i,j+1 + Φhom

G,c,i+1,j+1f
env
G,c,i+1,j+1

)
, (5.23)

where we have denoted with i and j the coordinates (along the x and y axes, respect-
ively) of the four nodes sharing the corner c. In the real environment, the corner
discontinuity factors also change compared to their infinite-lattice estimates. An envir-
onmental correction on this parameter (δfG,c) should therefore be introduced for each
node vertex. In order not to increase the number of unknowns and equations of the
rehomogenization problem, we use an approximate relation to evaluate this correction.
We assume that δfG,c is proportional to the corrections on the discontinuity factors of
the x- and y-directional surfaces crossing the corner (δfG,x, δfG,y), namely

f∞G,c + δfG,c

f∞G,c
=
f envG,x + f envG,y

f∞G,x + f∞G,y
, (5.24)

where f envG,x and f envG,y are the environmental discontinuity factors estimated with
Eq. (5.9) at the previous rehomogenization iteration.
Previous work (Khoshahval et al., 2014) showed that the MSS generally performs
better than Smith’s method, in which spatial cross effects are neglected. On the
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5. A two-dimensional model for spatial rehomogenization

other hand, Eq. (5.21) may lead to a negative corner flux (especially at the first nodal
iterations, when the surface-averaged flux estimates are not yet accurate enough).
For this reason, we use Eq. (5.21) as a default option and switch to Eq. (5.20) in
case of negative corner-flux values from the MSS. Despite the ease of implementation,
this approach may fail to provide accurate estimates of the corner fluxes if the flux
distribution exhibits strong spatial gradients (Rempe et al., 1989; Joo et al., 2009).

5.2.3.2 The Corner Point Balance approach

The Corner Point Balance (Chang et al., 1989) is a neutron balance equation imposing
the absence of net source conditions at the corner points (i.e., no accumulation of
neutrons within an infinitesimally small volume). With this method, continuity of the
neutron current at the vertices of a node is preserved.
We briefly review this approach with an analogy to the simple case of 1-D problem
(Joo et al., 2009). From diffusion theory, the heterogeneous surface-averaged flux at
the interface s between two adjacent nodes k and l is related to the inlet (J inG,s) and
outlet (JoutG,s) partial currents as

ΦG,s = 2(J inG,s + JoutG,s), (5.25)

where
J inG,s = 1

4ΦG,s + 1
2JG,s, JoutG,s = 1

4ΦG,s −
1
2JG,s. (5.26)

If no continuity of the net current JG,s is imposed, the estimates of JG,s computed
for the nodes k and l will be different (i.e., JkG,s 6= J lG,s). Inserting Eq. (5.26) into
Eq. (5.25) yields

Φ∗G,s = ΦG,s + (JkG,s − J lG,s). (5.27)
Eq. (5.27) defines an iterative algorithm, in which a new estimate of the surface flux
Φ∗G,s is obtained from the previous one and the difference in the computed net currents,
which will eventually converge to zero.
A similar scheme can be applied to the neighborhood of a corner point. As illustrated
in Fig. 5.2, four sets of directional net currents exist at a given nodal vertex (one
for each adjacent node): J1

x,c and J1
y,c for node 1, J2

x,c and J2
y,c for node 2, etc.

The currents along a certain direction must have the same value (i.e., J1
x,c = J2

x,c,
J3
x,c = J4

x,c, J1
y,c = J3

y,c, and J2
y,c = J4

y,c) to ensure a zero-net-leakage balance in an
infinitesimally small volume containing the corner point. However, since no condition
on the corner current continuity is imposed in the nodal calculation, they may be
different. Using Eq. (5.27), four new estimates of the heterogeneous corner flux are
obtained (one for each node). Taking the average of them yields

Φ∗G,c = ΦG,c + 1
4

[
(J1
x,c − J2

x,c) + (J3
x,c − J4

x,c) + (J1
y,c − J3

y,c) + (J2
y,c − J4

y,c)
]
. (5.28)

This iterative scheme converges as the sum of the differences in the net currents (i.e.,
the term within brackets on the right-hand side of Eq. (5.28)) vanishes. Assuming
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1 2

3 4
J3
x,c J4

x,c

J1
x,c J2

x,c

J3
y,c

J1
y,c J2

y,c

J4
y,c

Fig. 5.2. Scheme of the directional net currents in the neighborhood of a nodal corner point.
The corner is shared by four nodes of two different types in a checkerboard layout.

that Eq. (5.2) is the exact solution of the neutron balance equation in the nodes
sharing the corner, an estimate of the net currents at the corner itself is obtained from
Eq. (5.7). For instance, the following expression is derived for J1

x,c in node 1 (we use
the nodal coordinate system of Fig. 5.1):

J1
x,c = J1

env,G,x

(1
2 ,−

1
2

)
= −D

1
G

∆x

(
Nx∑
ix=1

α1
G,x,ix

dPG,ix
dux

(ux)
∣∣∣
ux=1/2

+

Nx∑
cx=1

Ny∑
cy=1

cx+cy≤Nc

α1
G,xy,cx,cy

dPG,cx

dux
(ux)

∣∣∣
ux=1/2

PG,cy

(
− 1

2

))
. (5.29)

Eq. (5.29) ensues from the fact that the infinite-medium net current in a corner point
is zero.
With the CPB approach, a new estimate Φ∗G,c of the heterogeneous corner flux Φhet

G,c

is found at the end of each rehomogenization iteration (namely, after sweeping all the
nodes) with the computed flux-variation modal coefficients. This new estimate is to
be used as a known term on the right-hand side of Eq. (5.19) in the following rehomo-
genization update. At the first iteration, in which no estimate of the α coefficients is
available, we use Eq. (5.20) or Eq. (5.21).
Compared to Smith’s method and the MSS, the CPB approach has a physical founda-
tion. Moreover, it does not involve the corner discontinuity factors, so an environmental
correction on these parameters is not necessary. No further approximation is intro-
duced when solving the rehomogenization problem. On the other hand, as it will be
shown in Section 5.3, this strategy causes a slower convergence rate of the rehomogen-
ization algorithm due to its non-linearity. This is because the heterogeneous corner
fluxes depend on the flux-variation modal coefficients, which are the unknowns of the
rehomogenization linear system.

151



5. A two-dimensional model for spatial rehomogenization

5.2.4 Weighted-residual balance equations
The 2-D multigroup neutron balance equation in the real environment is

1
∆x

∂Jenv,G,x(ux, uy)
∂ux

+ 1
∆y

∂Jenv,G,y(ux, uy)
∂uy

+ Σt,G(ux, uy)Φenv,G(ux, uy) =

NG∑
G′=1

(χG(ux, uy)
keff

νΣf,G′(ux, uy) + Σs,G′→G(ux, uy)
)

Φenv,G′(ux, uy). (5.30)

Following the example of spectral rehomogenization (Section 2.2.1), we project
Eq. (5.30) over a set of weighting functions WG,j(ux, uy) (with j = 1,...,4) and
integrate it in the two directions. The cross-section projection term for the generic
reaction rate r is∫ 1/2

−1/2
dux

∫ 1/2

−1/2
duyWG,j(ux, uy)Σr,G(ux, uy)Φenv,G(ux, uy) =

Φ̄GhR,r,G,j +
∑
d=x,y

Nd∑
id=1

αG,d,idhV,r,G,d,id,j +
Nx∑

cx=Nx

Ny∑
cy=Ny

cx+cy≤Nc

αG,xy,cx,cyhV,r,G,xy,cx,cy,j ,

(5.31)
where the rehomogenization coefficients are defined as

hR,r,G,j =
∫ 1/2

−1/2
dux

∫ 1/2

−1/2
duyWG,j(ux, uy)Σr,G(ux, uy)ϕ∞,G(ux, uy), (5.32a)

hV,r,G,d,id,j =
∫ 1/2

−1/2
dudPG,id(ud)

∫ 1/2

−1/2
dutWG,j(ud, ut)Σr,G(ud, ut), (5.32b)

hV,r,G,xy,cx,cy,j =
∫ 1/2

−1/2
duxPG,cx(ux)

∫ 1/2

−1/2
duyPG,cy (uy)WG,j(ux, uy)Σr,G(ux, uy).

(5.32c)
In Eq. (5.32b), the subscript t refers to the direction transverse to d.
We consider again a spatially constant diffusion coefficient within each node of the
computational domain. With this assumption, the projection of the x-directional
component of the current-divergence term (i.e., the first term on the left-hand side of
Eq. (5.30)) yields∫ 1/2

−1/2
dux

∫ 1/2

−1/2
duyWG,j(ux, uy)∂Jenv,G,x(ux, uy)

∂ux
= Φ̄Gh∞R,leak,G,x,j−

DG

∆x

[
Nx∑
ix=1

αG,x,ixhdiv,G,x,ix,j +
Nx∑
cx=1

Ny∑
cy=1

cx+cy≤Nc

αG,xy,cx,cyhdivx,G,xy,cx,cy,j

]
, (5.33)
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with the following definitions:

h∞R,leak,G,x,j =
∫ 1/2

−1/2
dux

∫ 1/2

−1/2
duyWG,j(ux, uy)∂J∞,G,x(ux, uy)

∂ux
, (5.34a)

hdiv,G,x,ix,j =
∫ 1/2

−1/2
dux

d2

du2
x

PG,ix(ux)
∫ 1/2

−1/2
duyWG,j(ux, uy), (5.34b)

hdivx,G,xy,cx,cy,j =
∫ 1/2

−1/2
dux

d2

du2
x

PG,cx
(ux)

∫ 1/2

−1/2
duyPG,cy

(uy)WG,j(ux, uy). (5.34c)

Similar equations can be written for the projection of the y-directional component of
the current divergence. The rehomogenization parameter detailed in Eq. (5.34a) is
determined for the two directions from the projection of the 2-D balance equation in
the infinite medium:

1
∆xh

∞
R,leak,G,x,j + 1

∆yh
∞
R,leak,G,y,j =

NG∑
G′=1

Φ̄∞G′
Φ̄∞G

(χG
k∞

hR,f,G′,j +hR,s,G′→G,j

)
−hR,t,G,j ,

(5.35)
where the spectral ratio Φ̄∞G′/Φ̄∞G is computed solving the single-assembly zero-
dimensional (i.e., node-averaged) neutron balance equation. In a two-group framework
and with neutron emission from fission only in the fast group (χ1 = 1, χ2 = 0), this
reads

Φ̄∞1
Φ̄∞2

=
Σ∞a,2 + Σ∞s,2→1 +D∞2 B2

Σ∞s,1→2
, (5.36)

where B2 = B2
crit with the critical-buckling approach or B2 = 0 otherwise.

To summarize, with the above definitions the j-th weighted-residual equation is

Φ̄G
( ∑
d=x,y

h∞R,leak,G,d,j
∆d +hR,t,G,j

)
+
∑
d=x,y

Nd∑
id=1

αG,d,id

(
hV,t,G,d,id,j−

DG

∆d2hdiv,G,d,id,j

)

+
Nx∑
cx=1

Ny∑
cy=1

cx+cy≤Nc

αG,xy,cx,cy

(
hV,t,G,xy,cx,cy,j −DG

∑
d=x,y

hdivd,G,xy,cx,cy,j

∆d2

)
=

NG∑
G′=1

[
Φ̄G′

(χG
keff

hR,f,G′,j + hR,s,G′→G,j

)
+
∑
d=x,y

Nd∑
id=1

αG′,d,id

(χG
keff

hV,f,G′,d,id,j+

hV,s,G′→G,d,id,j

)
+

Nx∑
cx=1

Ny∑
cy=1

cx+cy≤Nc

αG′,xy,cx,cy

(χG
keff

hV,f,G′,xy,cx,cy,j+hV,s,G′→G,xy,cx,cy,j

)]
.

(5.37)
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Using Eq. (5.37), we make the assumption that the nodal estimates Φ̄G and keff satisfy
the neutron balance in space [Eq. (5.30)] in a weighted-integral sense.
The choice of the weighting functions WG,j(ux, uy) is, in principle, arbitrary. How-
ever, these modes must be selected carefully to avoid ill-conditioning of the reho-
mogenization linear system that ensues from the set of equations defined above
[Eqs. (5.13), (5.17), (5.19), and (5.37)]. Using Galerkin projection, the lowest condi-
tion number of the solving matrix has been achieved with the following set of test
functions in one variable:

W1(ux) = P1(ux), W2(uy) = P1(uy), W3(ux) = P2(ux), W4(uy) = P2(uy).
(5.38)

With this choice, the weighting operators do not depend on the energy group.

5.2.5 Summary of the procedure
At the end of a non-linear flux iteration, the nodes are swept to solve the spatial reho-
mogenization problem. The rehomogenization linear system is set up independently
for each node with Eqs. (5.13), (5.17), (5.19), and (5.37). In Eq. (5.19), the corner flux
is determined using (i) Eqs. (5.20) to (5.24), or (ii) Eqs. (5.28) and (5.29) with the
flux-variation modal coefficients from the previous rehomogenization update. After
solving the system, the new estimates of the environmental discontinuity factors at
the node surfaces are determined with Eq. (5.9). The spatial cross-section correction
for reaction r is computed as

δΣr,G = 1
Φ̄G

∫ 1/2

−1/2
dux

∫ 1/2

−1/2
duyΣr,G(ux, uy)δΦG(ux, uy) =

∑
d=x,y

Nd∑
id=1

αG,d,idhV,r,G,d,id,0 +
Nx∑
cx=1

Ny∑
cy=1

cx+cy≤Nc

αG,xy,cx,cy
hV,r,G,xy,cx,cy,0 , (5.39)

where the index j = 0 refers to the unitary weighting function [WG,0(ud) = 1]. When
the CPB condition is applied, as the corner fluxes converge, the corrections δfG,d± and
δΣr,G also converge, and so do the multiplication factor and the nodal variables Φ̄G,
Φhom
G,d±, and JG,d± (which are the input quantities of the rehomogenization algorithm).

We exploit the information on the 2-D directional net current distributions [Eq. (5.7)]
to compute the few-group transverse-leakage shape for the NEM (or ANM) equations.
This approach replaces the approximation commonly adopted in industrial nodal
codes, which is based on a three-node quadratic fit along the direction of interest
(Lawrence, 1986). This approximation lacks a theoretical justification and introduces
an inconsistency in the solution of the nodal equations, because it uses information from
the adjacent nodes in the direction under consideration to determine the internodal
leakage in the transverse direction. For the 1-D transverse-integrated problem along
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the x direction, the transverse leakage is formulated as

Lenv,G,y(ux) = 1
∆y

[
Jenv,G,y(ux, uy)

∣∣∣
uy= 1

2

− Jenv,G,y(ux, uy)
∣∣∣
uy=− 1

2

]
. (5.40)

Introducing Eqs. (5.4), (5.7) and (5.8) into Eq. (5.40), after some algebraic manipula-
tion we obtain

Lenv,G,y(ux) = L̄G,y −
DG

∆y2

Nx∑
cx=1

Ny∑
cy=1

cx+cy≤Nc

αG,xy,cx,cy
bG,cy

PG,cx
(ux), (5.41)

where L̄G,y is the node-averaged leakage in the y direction (i.e., the transverse
direction), and bG,cy

is a constant term defined as

bG,cy =
dPG,cy

duy
(uy)

∣∣∣
uy= 1

2

−
dPG,cy

duy
(uy)

∣∣∣
uy=− 1

2

. (5.42)

Setting Nc = 4 and using directional polynomial basis functions of order up to 2 in
the cross terms, we obtain bG,1 = 0 and bG,2 = 2. Eq. (5.41) becomes thus

Lenv,G,y(ux) = L̄G,y −
2DG

∆y2

2∑
cx=1

αG,xy,cx,2Pcx
(ux). (5.43)

The transverse leakage detailed in Eq. (5.43) is still a quadratic polynomial. However,
its shape retains some information on the 2-D node-to-node leakage distribution (i.e.,
information from the transverse direction) via the cross coefficients αG,xy,cx,2. In this
way, the unphysical feature of the standard approximation discussed above is removed.

5.3 Numerical results

We validate the method on the same test cases considered in Chapter 3 (Section 3.3.1):
(i) a UO2 colorset with Pyrex rods, (ii) a UO2 colorset with AIC-type control rods,
(iii) a UO2 colorset with gadolinium-bearing fuel pins, and (iv) a UO2/MOX colorset.
Two-group nodal simulations are run with BRISINGR (Appendix A). The infinite-
medium homogenization parameters are generated with APOLLO2-A (Martinolli
et al., 2010), which is also used for the reference calculations. Since in this chapter we
do not apply spectral rehomogenization, the critical-buckling correction (which is a
default option in advanced nodal codes) is applied to the nodal cross sections. All the
test cases are simulated in critical conditions (keff = 1), which are determined with a
critical-boron-concentration search. Also in this analysis, we use a spatial discretization
of one node per assembly quarter. We present the results of the calculations with:

• single-assembly cross sections and discontinuity factors (calc. a);
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5. A two-dimensional model for spatial rehomogenization

• 2-D spatial rehomogenization of cross sections and discontinuity factors, using
the CPB approach (calc. b) and the MSS/Smith’s method (calc. c) to determine
the corner fluxes;

• 1-D spatial rehomogenization of cross sections and discontinuity factors (calc.
d).

For the sake of convenience, from now on we will refer to the MSS/Smith’s method
simply as MSS. The spatial rehomogenization coefficients [Eqs. (5.32) and (5.34) for
calculations b and c] are computed with the infinite-medium cell-homogenized cross
sections and flux distribution. We test the accuracy of spatial rehomogenization on
the main nodal parameters and on the pin-by-pin flux and fission-power distributions.
In all the calculations, the 2-D heterogeneous intranodal flux is reconstructed with
the dehomogenization method described in Joo et al. (2009). This approach is
based on a 2-D, fourth-order Legendre-polynomial expansion of the neutron source
distribution, which results in a semi-analytic solution of the 2-D, group-decoupled
neutron diffusion equation. In calculations b and c, the corner fluxes computed with the
2-D rehomogenization are used as boundary conditions for the pin-flux reconstruction.
The pin-power Root-Mean-Square (RMS) deviations are expressed in terms of the
relative error (RMSP,r) and of the power-weighted absolute error (RMSP,wa), namely

RMSP,r =

√√√√ 1
Nfc

Nfc∑
i=1

(
P calc
i − P ref

i

P ref
i

)2

· 100%, (5.44a)

RMSP,wa =

√
1
Nfc

∑Nfc

i=1
(
P calc
i − P ref

i

)2 P ref
i

P̄ ref
CS

P̄ ref
CS

· 100%, (5.44b)

where Nfc is the number of fuel cells, P calc
i and P ref

i are the computed and reference
(i.e., from APOLLO2-A) values of the fission power in the i-th cell, and P̄ ref

CS is the
reference average power in the colorset. With Eq. (5.44b), the errors in the hot spots
(i.e., the fuel cells having the highest thermal load) have more weight in the accuracy
assessment. We also use Eq. (5.44a) to compute the RMS deviation in the two-group
flux distribution (RMSΦG,r).

5.3.1 Example 1: UO2 colorset with Pyrex rods
The colorset layout can be found in Fig. 2.5 (Section 2.3.2.1). For the sake of
completeness, we report here the reference absorption and production cross sections
(condensed and homogenized in the colorset environment) computed with APOLLO2-
A: Σa,1 = 0.00873 cm−1, Σa,2 = 0.0686 cm−1, νΣf,1 = 0.00483 cm−1, and νΣf,2
= 0.0811 cm−1 in the 1.8%-enriched assembly; Σa,1 = 0.0101 cm−1, Σa,2 = 0.104
cm−1, νΣf,1 = 0.00657 cm−1, and νΣf,2 = 0.131 cm−1 in the 3.1%-enriched assembly
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5.3. Numerical results

with poison. The reference values of the normalized fission power are 0.92 in the
1.8%-enriched assembly and 1.08 in the assembly with Pyrex.
Fig. 5.3 depicts the reference variation in the 2-D flux distribution between the real
environment and the infinite lattice in the two fuel assemblies. The percent values
are computed with respect to the node-averaged flux. The coordinates [0,0] (in cm)
represent the assembly center, whereas the abscissas and ordinates 10.1 cm and -10.1
cm denote the center of the assembly outer pin rows.
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Fig. 5.3. Example 1: reference variation (in percentage) in the 2-D pin-by-pin flux between
the environmental and infinite-lattice conditions in the neighboring quarters of the two
dissimilar assemblies. The top and bottom plots depict the variations in the fast and thermal
groups, respectively. The plots on the left side refer to the 1.8%-enriched assembly quarter,
whereas those on the right side refer to the 3.1%-enriched assembly quarter. The coordinates
[0,0] (in cm) correspond to the assembly centers. The abscissas 10.1 cm in the 1.8%-enriched
assembly and -10.1 cm in the assembly with Pyrex rods denote the centers of the outer cell
rows (the water gap is not shown).

Fig. 5.4 shows the flux variation computed with the 2-D spatial rehomogenization,
combined with the CPB approach for the corner-point fluxes. The result of the
MSS approach is not presented because the differences are small. Rehomogenization
captures the overall flux variation reasonably well. The main differences between
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Fig. 5.4. Example 1: variation (in percentage) in the 2-D flux distribution in the neighboring
quarters of the two assemblies, as computed with the CPB-based 2-D rehomogenization. The
results are plotted with the same scale as in Fig. 5.3 to ease the comparison between the
reference and computed variations.

the reference and computed distributions are observed in the outer pin rows of both
assemblies. In the 1.8%-enriched bundle, the magnitude of the thermal flux change is
overestimated at the assembly edges and underestimated in the external-corner fuel cell.
The opposite is found in the assembly with Pyrex rods. Fig. 5.5 shows the variation
in the transverse-integrated flux ΦG,x(x) computed with the 1-D rehomogenization.
For the sake of comparison, we also plot the 1-D curves obtained by transverse
integration of the 2-D distributions of Fig. 5.4. The deviations between the 1-D and
2-D approaches are not significant. They are more evident in the fast group, especially
in the assembly with Pyrex.
Table 5.1 reports the number of non-linear flux iterations (Niter) and the errors in
the integral parameters and main nodal cross sections (the errors in the discontinuity
factors will be addressed in Section 5.4.2). Compared to the calculation with infinite-
medium cross sections and discontinuity factors, both the 2-D and 1-D models give a
significantly more accurate prediction of the multiplication factor and fission power.
Much of this improvement comes from the correction of the thermal absorption cross
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Fig. 5.5. Example 1: variation (in percentage) in the transverse-integrated flux distribution
in the neighboring quarters of the two dissimilar assemblies. The computed variation in the
water gap is also depicted.

section in the assembly with burnable poison, even if the corresponding error becomes
higher than that of the single-assembly estimate. The increase in the error in this
cross section is because of the exclusion of spectral effects, which go in the opposite
direction to spatial ones (see Table 3.13 and Section 5.4.4). The improvement in the
power is more apparent with the 2-D rehomogenization. The differences between the
CPB and MSS strategies are negligible.
Table 5.2 compares the errors in the cross sections rehomogenized with (i) the
reference 2-D flux change (Fig. 5.3) and (ii) a least-squares best fit of it. The best
fit has been computed with the basis functions defined in Eq. (5.5), using the same
number of directional and cross terms as in the modal reconstruction [Eq. (5.4)].
Since these two sets of cross sections do not account for the spectral effects of the
environment, they can be considered as a reference to assess the accuracy of spatial
rehomogenization. Comparing Tables 5.1 and 5.2, it turns out that the cross-section
corrections computed with the 2-D rehomogenization go in the right direction and are
very close to those obtained with a best fit of the 2-D reference. The inaccuracy in the
flux-change reconstruction observed in Fig. 5.4 is therefore ascribable to the limited
fitting capability of the 1-D basis functions [Eq. (5.5)] rather than to a deficiency of the
method. We have verified that increasing the number of cross terms in the best fit from
four to six or eight improves the computed corrections only slightly. Rehomogenization
underestimates the corrections on Σa,2 and νΣf,2 in the 1.8%-enriched assembly and
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5. A two-dimensional model for spatial rehomogenization

Table 5.1. Example 1: (a) number of non-linear flux iterations and errors in the integral
parameters, and (b) errors in the absorption and production nodal cross sections.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Simulation Niter ∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

No rehom. (a) 9 -189 0.85 (0.86, 0.85) -0.72 (-0.60, -0.76)
2-D rehom. - CPB (b) 15 26 0.19 (0.74, 0.06) -0.16 (-0.52, -0.05)
2-D rehom. - MSS (c) 12 30 0.22 (0.78, 0.08) -0.18 (-0.55, -0.07)
1-D rehom. (d) 13 -18 0.39 (0.87, 0.28) -0.33 (-0.61, -0.25)

(a)

UO2 1.8% UO2 3.1% + 16 b.p. rods

Errors (%)

Simulation ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

No rehom. (a) -0.04 0.69 0.51 0.81 0.10 -0.50 -0.33 -1.03
2-D rehom. - CPB (b) -0.02 0.64 0.53 0.71 0.11 -0.92 -0.34 -0.90
2-D rehom. - MSS (c) -0.02 0.64 0.53 0.71 0.11 -0.93 -0.34 -0.90
1-D rehom. (d) -0.03 0.64 0.53 0.70 0.11 -0.85 -0.34 -0.93

(b)

Table 5.2. Example 1: errors in the absorption and production cross sections rehomogenized
with the reference 2-D flux variation and with a least-squares best fit of it.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Errors (%)

Flux variation (2-D) ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

Reference -0.01 0.53 0.55 0.50 0.09 -0.68 -0.35 -0.71
Best fit -0.02 0.62 0.53 0.67 0.11 -0.84 -0.34 -0.86

on νΣf,2 in the assembly with Pyrex (see Tables 5.1b and 5.2). It overcorrects Σa,2
in the latter. This overcorrection is due to an overly negative estimate of the flux
variation in the center of the assembly, where the Pyrex rods are located and thermal
absorption is higher. This mismatch is smaller with the 1-D model. The flux spatial
variation has no effect on the fast-group cross sections. The same has been observed
in fast-to-thermal scattering and in the diffusion coefficients of both energy groups,
which are not reported in the previous tables. For these quantities, both reference
and computed corrections are negligible.
Fig. 5.6 compares the relative errors in the thermal-flux pin-by-pin distribution of the
1.8%-enriched assembly, as computed with calculations a and b. A general improvement
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5.3. Numerical results

is observed, especially in the fuel cells surrounding the assembly external vertex. The
reference pin-by-pin fission power and the errors in the computed power distributions
are in Figs. 5.7 and 5.8, respectively. Table 5.3 shows the RMS errors in the two-
group flux and total power. The reduction in the RMS deviations is apparent in the
poison-free bundle, whereas it is less evident in the assembly with Pyrex. The error in
the fuel cell with the highest power (i.e., the external-corner cell in the assembly with
Pyrex) increases from -0.64% to -1.71% when the 2-D rehomogenization is applied
(Fig. 5.8).
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Fig. 5.6. Example 1: relative error (in percentage) in the pin-by-pin thermal flux in the 1.8%-
enriched assembly quarter. The plots refer to the calculations (a) without rehomogenization
and (b) with the CPB-based 2-D rehomogenization.
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Fig. 5.7. Example 1: reference pin power (normalized to the colorset-averaged value) in (a)
the 1.8%-enriched assembly and (b) the 3.1%-enriched assembly with Pyrex rods.
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Fig. 5.8. Example 1: relative error (in percentage) in the pin-power distribution computed
with calculations a and b.

Table 5.3. Example 1: RMS deviations (in percentage) in the pin-by-pin two-group flux
and total fission power.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Simulation RMSΦ1,r RMSΦ2,r RMSP,r RMSP,wa RMSΦ1,r RMSΦ2,r RMSP,r RMSP,wa

No rehom. (a) 0.11 0.58 0.94 0.94 0.20 0.45 0.77 1.25
2-D rehom. - CPB (b) 0.14 0.36 0.77 0.66 0.27 0.43 0.91 1.06
1-D rehom. (d) 0.08 0.51 0.85 0.73 0.22 0.34 0.81 0.98

5.3.2 Example 2: UO2 colorset with AIC-type control rods

The colorset layout is the same as in Fig. 2.9 (Section 2.3.2.2). In this test case,
the 235U enrichment in the rodded assembly is 2.4% (instead of 1.8%). The critical
configuration is achieved with a boron concentration of 222 ppm. The reference values
of the normalized fission power are 1.12 in the unrodded assembly and 0.88 in the
rodded one. The reference cross sections are: Σa,1 = 0.00833 cm−1, Σa,2 = 0.0573
cm−1, νΣf,1 = 0.00483 cm−1, and νΣf,2 = 0.0828 cm−1 in the unrodded assembly;
Σa,1 = 0.0119 cm−1, Σa,2 = 0.0942 cm−1, νΣf,1 = 0.00554 cm−1, and νΣf,2 = 0.109

162



5.3. Numerical results

cm−1 in the rodded assembly.
The reference and computed 2-D flux variations are in Figs. 5.9 and 5.10. The
prediction is quite accurate in the unrodded assembly. In the rodded bundle, the
magnitude of the flux change is underestimated around the external corner, where it
is positive, and overestimated in the control-rod cells closer to the assembly center
(i.e., at the coordinates [-3.79,0], [-3.79,3.79] and [0,3.79] cm), where it is negative.
The decrease in thermal absorption in the environment is therefore overestimated (see
Tables 5.4 and 5.5).
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Fig. 5.9. Example 2: reference variation (in percentage) in the 2-D flux distribution.

The variation in the transverse-integrated flux is shown in Fig. 5.11. In the thermal
group of the rodded assembly, the 1-D curve from the 2-D model approximates the
reference better in the neighborhood of the coordinate -3.79 cm, which spans three
rodded cells along the y direction (see Figs. 2.9c and 5.9). However, it provides a less
accurate estimate at the periphery.
Tables 5.4 and 5.5 report the errors in the nodal quantities. Also in this case, an
improvement in keff and in the fission power is observed, particularly with the 1-D
rehomogenization. Calculations b, c and d mainly differ in the prediction of the
correction δΣa,2 in the rodded assembly, which is overestimated to a different extent
in the three cases (see Tables 5.4b and 5.5). As in the example with Pyrex rods,
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Fig. 5.10. Example 2: variation (in percentage) in the 2-D flux distribution, as computed
with the CPB-based 2-D rehomogenization.

the 2-D model reproduces faithfully the corrections computed with a best fit of the
reference flux change. Therefore, the overestimation of δΣa,2 is mostly because the
basis functions cannot reconstruct the dip in δΦ2(x, y) in the inner rodded cells.
The relative errors in the pin-by-pin thermal flux in the unrodded assembly and in
the power distribution are depicted in Figs. 5.12 and 5.14. The reference fission power
is in Fig. 5.13. Table 5.6 summarizes the RMS deviations. With the 2-D model, a
general improvement is only found in the unrodded bundle, even though not in the
cells with higher power. Since in this assembly the 2-D rehomogenization provides
a better intranodal flux distribution than calculation a (see Fig. 5.12), the observed
increase in RMSP,wa is probably due in part to the inaccuracy in the infinite-medium
pin-by-pin fission cross sections. With the 1-D approach, the improvement is negligible
in both assemblies. The highest power (126% of the colorset-averaged value) is found
in the external-corner cell of the rodded assembly and in the two cells adjacent to the
empty instrumentation tube at the center of the unrodded bundle (i.e., at [0,0] cm).
With the 2-D rehomogenization, the power error decreases (in absolute value) from
3.38% to -1.0% in the former and increases (in absolute value) from -0.70% to -0.76%
in the latter.
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Fig. 5.11. Example 2: variation in the transverse-integrated flux distribution.

Table 5.4. Example 2: (a) number of non-linear flux iterations and errors in the integral
parameters, and (b) errors in the absorption and production nodal cross sections.

UO2 1.8% UO2 2.4% + 24 AIC rods

Simulation Niter ∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

No rehom. (a) 10 -608 1.41 (0.69, 1.57) -1.79 (-0.66, -2.15)
2-D rehom. - CPB (b) 18 -18 -0.72 (-0.41, -0.78) 0.92 (0.40, 1.07)
2-D rehom. - MSS (c) 16 -21 -0.96 (-0.64, -1.02) 1.23 (0.61, 1.40)
1-D rehom. (d) 16 -72 0.10 (0.21, 0.08) -0.12 (-0.20, -0.11)

(a)

UO2 1.8% UO2 2.4% + 24 AIC rods

Errors (%)

Simulation ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

No rehom. (a) -0.72 0.66 0.11 0.72 1.31 0.63 0.10 -1.21
2-D rehom. - CPB (b) -0.75 0.54 0.06 0.58 1.09 -1.42 0.16 -0.98
2-D rehom. - MSS (c) -0.75 0.55 0.07 0.59 1.08 -1.51 0.16 -0.98
1-D rehom. (d) -0.75 0.53 0.06 0.56 1.02 -1.02 0.18 -1.08

(b)
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5. A two-dimensional model for spatial rehomogenization

Table 5.5. Example 2: errors in the absorption and production cross sections rehomogenized
with the reference 2-D flux variation and with a least-squares best fit of it.

UO2 1.8% UO2 2.4% + 24 AIC rods

Errors (%)

Flux variation (2-D) ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

Reference -0.80 0.35 0.01 0.33 1.08 -0.62 0.23 -0.81
Best fit -0.76 0.51 0.06 0.53 1.04 -1.45 0.19 -0.91
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Fig. 5.12. Example 2: relative error (in percentage) in the pin-by-pin thermal flux in the
unrodded-assembly quarter. The plots refer to the calculations (a) without rehomogenization
and (b) with the CPB-based 2-D rehomogenization.

Table 5.6. Example 2: RMS deviations (in percentage) in the pin-by-pin two-group flux
and total fission power.

UO2 1.8% UO2 2.4% + 24 AIC rods

Simulation RMSΦ1,r RMSΦ2,r RMSP,r RMSP,wa RMSΦ1,r RMSΦ2,r RMSP,r RMSP,wa

No rehom. (a) 0.20 0.78 0.96 1.28 0.43 1.31 1.25 1.50
2-D rehom. - CPB (b) 0.18 0.33 0.68 1.81 0.54 1.45 1.60 1.75
1-D rehom. (d) 0.14 0.72 0.90 1.23 0.34 1.30 1.35 1.37

5.3.3 Example 3: UO2 colorset with gadolinium-bearing fuel rods
This colorset has been described in Section 3.3.1.4 (Fig. 3.11). The reference normalized
fission power and cross sections in APOLLO2-A are: P̄fiss = 0.81, Σa,1 = 0.00889
cm−1, Σa,2 = 0.0723 cm−1, νΣf,1 = 0.00483 cm−1, and νΣf,2 = 0.0803 cm−1 in the
1.8%-enriched assembly; P̄fiss = 1.19, Σa,1 = 0.0103 cm−1, Σa,2 = 0.118 cm−1, νΣf,1
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Fig. 5.13. Example 2: reference pin power (normalized to the colorset-averaged value) in
the (a) unrodded and (b) rodded assemblies.
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Fig. 5.14. Example 2: relative error (in percentage) in the pin-power distribution computed
with calculations a and b.
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= 0.00738 cm−1, and νΣf,2 = 0.151 cm−1 in the assembly with gadolinium-bearing
fuel pins.
The reference and computed flux changes are shown in Figs. 5.15 to 5.17. The nodal
errors are in Tables 5.7 and 5.8.
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Fig. 5.15. Example 3: reference variation (in percentage) in the 2-D flux distribution.

With the 2-D model, the computed δΣa,2 in the 3.9%-enriched assembly is higher than
the expected value. This is because the thermal-flux variation is overestimated in the
gadolinium-bearing fuel pins located in the outer rows (at the coordinates [-2.53,10.78]
and [-10.78,2.53] cm). In these cells the reference flux change is 8.12%, whereas the
computed one is 13.4%. In the same fuel bundle, the correction on νΣf,2 goes in
the wrong direction because of the combined underestimation and overestimation
of the magnitude of δΦ2(x, y) in the neighborhood of the assembly vertex and in
the assembly center, respectively. Despite the above mismatches, the 2-D model
significantly improves the keff and nodal-power estimates compared to the calculation
without rehomogenization. These parameters improve less with the 1-D model.
Figs. 5.18 and 5.19 show the reference pin-by-pin fission power and the errors in the
computed power distributions. Table 5.9 lists the RMS deviations. Rehomogenization
gives a better prediction in the center of the gadolinium-bearing-assembly quarter
(where the power is higher), which causes a reduction in RMSP,wa.
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Fig. 5.16. Example 3: variation (in percentage) in the 2-D flux distribution, as computed
with the CPB-based 2-D rehomogenization.

5.3.4 Example 4: UO2/MOX colorset

The colorset and assembly layouts have been shown in Fig. 2.11 (Section 2.3.2.3). The
reference normalized fission power and cross sections are: P̄fiss = 0.85, Σa,1 = 0.00924
cm−1, Σa,2 = 0.0887 cm−1, νΣf,1 = 0.00543 cm−1, and νΣf,2 = 0.0974 cm−1 in the
UO2 assembly; P̄fiss = 1.15, Σa,1 = 0.0143 cm−1, Σa,2 = 0.258 cm−1, νΣf,1 = 0.00994
cm−1, and νΣf,2 = 0.372 cm−1 in the MOX assembly.
Figs. 5.20 to 5.22 compare the results of rehomogenization with the reference flux
spatial deformations. Tables 5.10 and 5.11 show the nodal errors. The 2-D model
overestimates the absolute value of the thermal-flux change in the center of the
MOX assembly, where it is negative. Here the plutonium content is higher (see
Section 2.3.2.3), and so are the thermal-group absorption and production pin-by-pin
cross sections. The corrections on the thermal cross sections are thus considerably
higher than those computed with the reference flux variation and, in this case, also
with a least-squares best fit of it. The error in keff increases, whereas the errors in the
fission power still decrease significantly.
The pin-by-pin errors are shown in Figs. 5.23 to 5.26 and in Table 5.12. In spite
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Fig. 5.17. Example 3: variation in the transverse-integrated flux distribution.

Table 5.7. Example 3: (a) number of non-linear flux iterations and errors in the integral
parameters, and (b) errors in the absorption and production nodal cross sections.

UO2 1.8% UO2 3.9% + 12 Gd pins

Simulation Niter ∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

No rehom. (a) 9 757 -0.48 (0.58, -0.78) 0.33 (-0.34, 0.56)
2-D rehom. - CPB (b) 15 -105 0.24 (0.74, 0.11) -0.16 (-0.43, -0.08)
2-D rehom. - MSS (c) 13 -136 0.41 (0.93, 0.28) -0.28 (-0.54, -0.20)
1-D rehom. (d) 16 358 -0.37 (0.47, -0.60) 0.26 (-0.27, 0.43)

(a)

UO2 1.8% UO2 3.9% + 12 Gd pins

Errors (%)

Simulation ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

No rehom. (a) 0.03 1.11 0.67 1.35 -0.11 -2.45 -0.48 -0.95
2-D rehom. - CPB (b) 0.07 0.98 0.73 1.10 -0.20 -0.88 -0.47 -1.23
2-D rehom. - MSS (c) 0.07 0.99 0.72 1.10 -0.19 -0.84 -0.46 -1.24
1-D rehom. (d) 0.07 0.99 0.73 1.10 -0.19 -1.62 -0.48 -0.97

(b)
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Table 5.8. Example 3: errors in the absorption and production cross sections rehomogenized
with the reference 2-D flux variation and with a least-squares best fit of it.

UO2 1.8% UO2 3.9% + 12 Gd pins

Errors (%)

Flux variation (2-D) ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

Reference 0.08 0.89 0.74 0.91 -0.20 -1.27 -0.48 -0.86
Best fit 0.06 0.98 0.72 1.07 -0.18 -1.22 -0.47 -1.11
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Fig. 5.18. Example 3: reference pin power (normalized to the colorset-averaged value) in
the assemblies (a) without and (b) with gadolinium-bearing fuel pins.

Table 5.9. Example 3: RMS deviations (in percentage) in the pin-by-pin two-group flux
and total fission power.

UO2 1.8% UO2 3.9% + 12 Gd pins

Simulation RMSΦ1,r RMSΦ2,r RMSP,r RMSP,wa RMSΦ1,r RMSΦ2,r RMSP,r RMSP,wa

No rehom. (a) 0.37 1.24 1.55 1.05 0.51 1.38 1.61 2.11
2-D rehom. - CPB (b) 0.34 1.18 1.47 1.04 0.22 1.20 1.29 1.76
1-D rehom. (d) 0.34 1.23 1.56 1.03 0.34 1.23 1.42 1.86

of the limited accuracy in the prediction of the flux variation, the flux and power
distributions in the MOX assembly improve with the 2-D rehomogenization. An
increase in the error is only found around the four nodal vertices, particularly in the
two cells surrouding the central water-carrying instrumentation tube (in the SW corner
of the shown quadrant). These observations are confirmed by the RMS deviations,
which also decrease appreciably. The improvement is more significant in the UO2
assembly with the 2-D model.
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Fig. 5.19. Example 3: relative error (in percentage) in the pin-power distribution computed
with calculations a and b.

In this test case, the CPB-based 2-D rehomogenization has a considerably slower
convergence rate than the MSS approach and the 1-D rehomogenization (Table 5.10).

5.4 Discussion

5.4.1 On the transverse-leakage approximation

As mentioned in Section 5.2.5, the conventional three-node quadratic fit for the
approximation of the transverse-leakage distribution is a non-consistent feature of nodal
calculations (Lawrence, 1986). Various methods can be found in the literature to relax
this approximation (Prinsloo et al., 2014). In this section, we compare the transverse-
leakage distributions computed with the aforementioned standard approach and with
the quadratic approximation ensuing from the 2-D rehomogenization [Eq. (5.43)]. The
impact of these two strategies on the nodal simulations is also addressed.
Fig. 5.27 shows the transverse-leakage shape LG,y(x) in the 1.8%-enriched UO2
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Fig. 5.20. Example 4: reference variation (in percentage) in the 2-D flux distribution.

assembly of example 1. The curves of calculations a and d have been computed with
the three-node parabolic fit, whereas the curves of calculation b have been determined
with Eq. (5.43). The distributions obtained with the 2-D rehomogenization differ
significantly from those of the standard approximation, especially in the thermal
group.
We have found that, when spatial rehomogenization is applied, the nodal calculation
becomes insensitive to the transverse-leakage approximation. We have observed
convergence to the same solution (in terms of keff, the nodal-flux distribution Φ̄G, and
the cross-section corrections δΣx,G) irrespective of the intranodal shape assumed for
LG,y(x) and LG,x(y). This finding is related to the corrections on the assembly-surface
discontinuity factors δfG,d± and can be explained as follows. The transverse-leakage
approximation affects the nodal estimates of Φhom

G,d± and JG,d±, which are input
quantities to the spatial rehomogenization algorithm (see Section 5.2). However,
the corrections δfG,d± vary in such a way that the modal coefficients of the flux
spatial perturbation [Eq. (5.4)] converge to the same values obtained with other
transverse-leakage approximations. Eventually, also the heterogeneous quantities
(f∞G,d± + δfG,d±)Φhom

G,d± and JG,d± converge to the same values. The discontinuity-
factor correction acts thus as a free parameter that enables convergence to the unique
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Fig. 5.21. Example 4: variation (in percentage) in the 2-D flux distribution, as computed
with the CPB-based 2-D rehomogenization.

solution of the coupled nodal (i.e., CMFD + NEM) and rehomogenization fields.
For example 1, Table 5.13 shows the corrections δfG,d± determined with calculation b
and three different transverse-leakage distributions: the flat-leakage approximation (in
which the intranodal shape is considered as uniform and equal to the node-averaged
value of the transverse leakage), the standard three-node quadratic fit, and the
quadratic shape from Eq. (5.43). The flat-leakage approximation leads to the highest
variations in δfG,d±, whereas Eq. (5.43) leads to the smallest.
The insensitivity to the transverse-leakage approach has also been observed with the 1-
D rehomogenization. More investigation is needed to find a mathematical justification
of this behavior.

5.4.2 Analysis on the discontinuity factors

In Section 5.3, we have only assessed the accuracy of the cross-section corrections. We
now make a similar analysis on the discontinuity factors.
We evaluate the reference environmental discontinuity factors f env,refG,d± with a nodal-
equivalence approach applied to the colorset transport calculation. We define the
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Fig. 5.22. Example 4: variation in the transverse-integrated flux distribution.
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Fig. 5.23. Example 4: relative error (in percentage) in the pin-by-pin thermal flux in the
UO2 assembly. The plots refer to the calculations (a) without rehomogenization and (b) with
the CPB-based 2-D rehomogenization.
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Fig. 5.24. Example 4: relative error (in percentage) in the pin-by-pin thermal flux in the
MOX assembly. The plots refer to the calculations (a) without rehomogenization and (b)
with the CPB-based 2-D rehomogenization.
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Fig. 5.25. Example 4: reference pin power (normalized to the colorset-averaged value) in
the (a) MOX and (b) UO2 assemblies.
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Table 5.10. Example 4: (a) number of non-linear flux iterations and errors in the integral
parameters, and (b) errors in the absorption and production nodal cross sections.

UO2 2.1% MOX

Simulation Niter ∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

No rehom. (a) 11 199 1.94 (0.81, 2.24) -1.44 (-0.46, -1.86)
2-D rehom. - CPB (b) 29 276 0.38 (0.70, 0.22) -0.28 (-0.39, -0.19)
2-D rehom. - MSS (c) 17 273 0.48 (0.89, 0.29) -0.36 (-0.50, -0.24)
1-D rehom. (d) 17 286 0.22 (0.48, 0.10) -0.17 (-0.27, -0.09)

(a)

UO2 2.1% MOX

Errors (%)

Simulation ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

No rehom. (a) 0.54 1.18 0.61 1.35 -1.05 0.31 -0.52 0.45
2-D rehom. - CPB (b) 0.54 1.17 0.62 1.31 -1.01 -1.28 -0.43 -1.40
2-D rehom. - MSS (c) 0.55 1.16 0.62 1.30 -1.0 -1.27 -0.44 -1.39
1-D rehom. (d) 0.54 1.16 0.62 1.29 -1.0 -1.19 -0.41 -1.30

(b)

Table 5.11. Example 4: errors in the absorption and production cross sections rehomogenized
with the reference 2-D flux variation and with a least-squares best fit of it.

UO2 2.1% MOX

Errors (%)

Flux variation (2-D) ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2 ∆Σa,1 ∆Σa,2 ∆νΣf,1 ∆νΣf,2

Reference 0.59 0.88 0.68 0.68 -1.05 -0.06 -0.49 0.07
Best fit 0.55 1.11 0.63 1.17 -1.04 -0.71 -0.48 -0.74

Table 5.12. Example 4: RMS deviations (in percentage) in the pin-by-pin two-group flux
and total fission power.

UO2 2.1% MOX

Simulation RMSΦ1,r RMSΦ2,r RMSP,r RMSP,wa RMSΦ1,r RMSΦ2,r RMSP,r RMSP,wa

No rehom. (a) 0.35 3.0 3.1 2.68 0.73 2.10 2.59 4.09
2-D rehom. - CPB (b) 0.45 0.89 1.51 1.21 0.70 1.25 1.97 2.64
1-D rehom. (d) 0.45 2.40 2.48 1.73 0.77 1.17 1.86 2.50
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Fig. 5.26. Example 4: relative error (in percentage) in the pin-power distribution computed
with calculations a and b.

Table 5.13. Example 1: corrections (in percentage) on the assembly discontinuity factors
computed with calculation b and different transverse-leakage approximations.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Leakage approximation δf1 (%) δf2 (%) δf1 (%) δf2 (%)

Flat -0.15 1.64 0.21 -2.87
Quadratic (standard) 0.05 0.44 0.03 -1.87
Quadratic (2-D rehom.) -0.04 0.23 0.12 -1.70

homogeneous transverse-integrated neutron flux in the real environment with a quartic
expansion, as in the conventional NEM equations:

Φhom,ref
G,d (ud) = Φ̄ref

G +
4∑
i=1

arefG,d,iPG,i(ud), (5.45)
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Fig. 5.27. (a) Thermal- and (b) fast-group transverse-leakage distributions in the 1.8%-
enriched UO2 assembly of example 1. The abbreviation ‘std.’ stands for ‘standard’ and refers
to the conventional three-node quadratic fit. In both groups, the curves are normalized to
the node-averaged transverse leakage from the nodal calculation.

where Φ̄ref
G is the node-averaged flux from the reference transport simulation in

APOLLO2-A. The basis functions PG,i(ud) are those defined in Eq. (5.5). The
directional modal coefficients arefG,d,i in a given node are determined with a linear
system of four equations per group: (i) the conservation of the reference directional
net current at the left boundary of the node (J refG,d−); (ii) the conservation of the
reference directional net current at the right boundary of the node (J refG,d+); the
projection of the transverse-integrated, two-group nodal diffusion equation in the
environment over the (iii) first- and (iv) second-order NEM basis functions [Eqs. (5.5a)
and (5.5b)].
We exploit the symmetry of the four-assembly configurations considered in this work
and determine the reference surface-averaged currents with the two-group nodal
balance in the colorset:

|J refG,d±| =
∆d
2

(
Σref
t,GΦ̄ref

G −
χrefG
krefeff

2∑
G′=1

νΣref
f,G′Φ̄ref

G′ −
2∑

G′=1
Σref
s,G′→GΦ̄ref

G′

)
. (5.46)

The cross sections in Eq. (5.46) have been condensed and homogenized with the
neutron flux energy spectrum and spatial distribution of the colorset environment.
The jth-order (with j = 1, 2) 1-D homogeneous equation is∫ 1/2

−1/2
dudPj(ud)

[
dJ refG,d(ud)

dud
+ Σref

t,GΦhom,ref
G,d (ud)− Sref

G,d(ud)
]

= 0, (5.47)
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where the source term Sref
G,d(ud) includes the scattering and fission operators and the

transverse leakage:

Sref
G,d(ud) = χrefG

krefeff

2∑
G′=1

νΣref
f,G′Φ

hom,ref
G′,d (ud) +

2∑
G′=1

Σref
s,G′→GΦhom,ref

G′,d (ud)− LG,t(ud).

(5.48)
In Eq. (5.48), the transverse-leakage distribution LG,t(ud) is approximated with the
conventional quadratic fit over the node under consideration and the two adjacent nodes
along the direction d. The leakage expansion coefficients are computed preserving the
reference volume-averaged transverse leakage L̄ref

G,t (evaluated with Eq. (5.46)) in the
three nodes.
After solving for the modal coefficients arefG,d,i, the reference discontinuity factor is
estimated as

f env,refG,d± =
Φhet,ref
G,d±

Φhom,ref
G,d

(
± 1

2
) , (5.49)

where Φhet,ref
G,d± is the heterogeneous surface-averaged flux from the reference transport

calculation. Since this quantity is not among the edits of APOLLO2-A, we make the
following assumption:

Φhet,ref
G,d± ≈ Φref

G,wg , (5.50)

where Φref
G,wg denotes the spatially averaged value of the water-gap flux from the

reference calculation.
Table 5.14 reports the relative differences (in percentage) between the discontinuity-
factor estimates of calculations a, b, and d and the reference values determined with
Eq. (5.49). The improvement in the discontinuity factors is less apparent than that
observed in the cross sections in Section 5.3. In particular, in the UO2 and MOX
assemblies of example 4 (Table 5.14d) the corrected values have significantly higher
errors than the infinite-medium ones. We remark that the reference quantities in
Eqs. (5.46) to (5.49) (cross sections, node-averaged fluxes, surface-averaged fluxes and
currents) come from the solution of the 281-group transport equation in the colorset
environment, with successive collapsing to two groups. These quantities incorporate
not only the spatial effects of the environment but also the spectral ones, which are not
taken into account by spatial rehomogenization. The discontinuity factors computed
with Eq. (5.49), which we consider here as reference values, are therefore not fully
consistent with our spatial rehomogenization approach. A more rigorous assessment
should be made computing them with a reference solution that excludes the spectral
effects (namely, solving the transport equation in the colorset environment directly in
a two-group structure, without energy condensation).
To conclude the analysis on the discontinuity factors, we assess the impact of the
reference δfG,d± on the nodal estimates of the multiplication factor and fission power.
For this purpose, we run two nodal calculations with the cross sections rehomogenized
by the reference 2-D flux variation (see Tables 5.2, 5.5, 5.8, and 5.11). The first of
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Table 5.14. Relative errors (in percentage) in the infinite-medium assembly discontinuity
factors and in the environmental discontinuity factors determined with rehomogenization.
The errors are computed with respect to the discontinuity-factor estimates ensuing from the
application of a nodal equivalence approach to the reference data from APOLLO2-A.

Example 1 UO2 1.8% UO2 3.1% + 16 b.p. rods

Simulation ∆f env1 (%) ∆f env2 (%) ∆f env1 (%) ∆f env2 (%)

No rehom. (a) 0.11 1.41 0.68 -0.69
2-D rehom. - CPB (b) 0.07 1.64 0.80 -2.38
1-D rehom. (d) 0.08 1.72 0.83 -2.15

(a)

Example 2 UO2 1.8% UO2 2.4% + 24 AIC rods

Simulation ∆f env1 (%) ∆f env2 (%) ∆f env1 (%) ∆f env2 (%)

No rehom. (a) 0.14 0.10 0.81 3.52
2-D rehom. - CPB (b) 0.12 0.36 0.33 -1.68
1-D rehom. (d) 0.13 0.44 0.55 -0.56

(b)

Example 3 UO2 1.8% UO2 3.9% + 12 Gd pins

Simulation ∆f env1 (%) ∆f env2 (%) ∆f env1 (%) ∆f env2 (%)

No rehom. (a) 0.41 2.95 0.66 -4.47
2-D rehom. - CPB (b) 0.31 2.97 0.27 -4.14
1-D rehom. (d) 0.34 3.22 0.22 -4.18

(c)

Example 4 UO2 2.1% MOX

Simulation ∆f env1 (%) ∆f env2 (%) ∆f env1 (%) ∆f env2 (%)

No rehom. (a) 0.23 5.90 0.34 2.86
2-D rehom. - CPB (b) 0.21 8.76 0.33 -10.7
1-D rehom. (d) 0.21 8.71 0.24 -9.86

(d)

these uses the infinite-medium discontinuity factors f∞G,d±, whereas the second uses
the reference discontinuity factors f env,refG,d± from Eq. (5.49). The results are shown in
Table 5.15. Whilst the discontinuity-factor corrections have a mild impact on the
nodal simulations of examples 1 and 4, their effect is substantial in examples 2 and 3.
Comparing the errors in keff and P̄fiss shown in Table 5.15 with those resulting from
rehomogenization (Tables 5.1, 5.4, 5.7, and 5.10), the following conclusions can be
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5. A two-dimensional model for spatial rehomogenization

Table 5.15. Errors in the multiplication factor and assembly-averaged fission power estimated
with the reference spatial cross-section corrections (δΣspat,ref

r,G ) and the infinite-medium (f∞G,d±)
or reference (fenv,refG,d± ) discontinuity factors.

Example 1 UO2 1.8% UO2 3.1% + 16 b.p. rods

∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

δΣspat,ref
r,G , f∞G,d± -36 0.51 (0.81, 0.43) -0.43 (-0.57, -0.39)

δΣspat,ref
r,G , f env,refG,d± -43 0.65 (0.54, 0.68) -0.55 (-0.38, -0.61)

(a)

Example 2 UO2 1.8% UO2 2.4% + 24 AIC rods

∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

δΣspat,ref
r,G , f∞G,d± -33 0.76 (0.38, 0.84) -0.97 (-0.36, -1.15)

δΣspat,ref
r,G , f env,refG,d± -141 0.07 (-0.03, 0.095) -0.09 (0.02, -0.13)

(b)

Example 3 UO2 1.8% UO2 3.9% + 12 Gd pins

∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

δΣspat,ref
r,G , f∞G,d± 210 -0.24 (0.71, -0.50) 0.17 (-0.42, 0.36)

δΣspat,ref
r,G , f env,refG,d± 137 0.95 (0.74, 1.0) -0.65 (-0.43, -0.72)

(c)

Example 4 UO2 2.1% MOX

∆keff [pcm] ∆P̄fiss (%) ∆P̄fiss (%)

δΣspat,ref
r,G , f∞G,d± 97 1.70 (0.76, 1.96) -1.27 (-0.43, -1.62)

δΣspat,ref
r,G , f env,refG,d± 61 2.01 (0.74, 2.37) -1.49 (-0.42, -1.96)

(d)

drawn for the various test cases:

• In example 1, both the 1-D and 2-D models overestimate the corrections on keff
and on the fission power (especially the 2-D one).

• In example 2, similar considerations apply to the 2-D model, whereas the 1-D
approach provides a very accurate result.

• In example 3, the correction on keff is overestimated with the 2-D model and
underestimated with the 1-D one; both approaches underestimate the corrections
on P̄fiss (particularly the 1-D model).
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• In example 4, the computed corrections on keff and P̄fiss go in the wrong direction.
The spatial effects have negligible impact on the assembly-averaged fission power.

5.4.3 Numerical features and implementation
As spectral rehomogenization, spatial rehomogenization also translates into an addi-
tional level of feedback in the global core calculation (Section 2.2.3). In a two-group
framework with four basis functions per direction and four cross terms (see Section 5.2),
the rank of the 2-D rehomogenization linear system is 32. Since the rehomogenization
problem is solved independently in each node after updating the corner-point flux
distribution [Eq. (5.23) or (5.28)], the corresponding computational cost can be mitig-
ated via parallelization of the algorithm.
In the present work, the rehomogenization coefficients [Eqs. (5.32) and (5.34)] have
been computed post-processing the APOLLO2-A single-assembly cell-homogenized
cross sections and flux distribution. Better modeling may be achieved incorporating
their calculation into the lattice-code routines, thus accounting for within-cell het-
erogeneity. As in the case of spectral rehomogenization, an approximation is made
in the formulation of the weighted-residual equations [Eq. (5.37)]. Eq. (5.30) is valid
in the real environment, whereas in practice we use the pin-by-pin cross sections of
the infinite medium. In order to verify the impact of this approximation, we have
repeated the calculations of Section 5.3 computing the rehomogenization coefficients
of Eq. (5.32) with the colorset cell-homogenized cross sections. For examples 2 and 4,
Table 5.16 shows the errors of calculation b with these improved rehomogenization
parameters.

Table 5.16. Results of the CPB-based 2-D rehomogenization with environmental rehomo-
genization coefficients (i.e., computed with the colorset pin-by-pin cross sections).

Example 2 UO2 1.8% UO2 2.4% + 24 AIC rods

∆keff [pcm] ∆P̄fiss (%) ∆Σa,2 (%) ∆νΣf,2 (%) ∆P̄fiss (%) ∆Σa,2 (%) ∆νΣf,2 (%)

-32 -0.76 (-0.37,-0.84) 0.57 0.61 0.97 (0.36,1.14) -1.34 -0.94

(a)

Example 4 UO2 2.1% MOX

∆keff [pcm] ∆P̄fiss (%) ∆Σa,2 (%) ∆νΣf,2 (%) ∆P̄fiss (%) ∆Σa,2 (%) ∆νΣf,2 (%)

317 0.19 (0.66,-0.001) 1.27 1.44 -0.14 (-0.38,0.001) -1.08 -1.18

(b)

Comparing Tables 5.16a and 5.4, we observe that the differences in the results are neg-
ligible in the colorset with control rods. In the UO2/MOX colorset (see Tables 5.16b
and 5.10), the differences are more tangible. Whilst the error in keff increases of
about 40 pcm compared to the case with standard rehomogenization coefficients (i.e.,
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5. A two-dimensional model for spatial rehomogenization

computed with the infinite-medium pin-by-pin cross sections), the errors in the fission
power are halved. However, in both cases the power errors are significantly smaller
than those of calculation a. Moreover, the improvement in the nodal cross sections of
the MOX assembly observed with the environmental rehomogenization coefficients is
small if compared to the reference estimates (see Table 5.11). We have verified that
the impact of the aforementioned approximation on the rehomogenization parameters
is marginal also in the test cases with Pyrex rods and gadolinium-bearing fuel pins. It
can therefore be concluded that using the infinite-medium fine-mesh cross sections in
Eq. (5.32) does not significantly affect the performance of the method.
Intranodal depletion effects can be easily incorporated into the rehomogenization
coefficients. If the environmental 1-D (i.e., transverse-integrated) or 2-D pin-by-pin
cross sections are approximated with polynomial expansions (Wagner et al., 1981;
Forslund et al., 2001), the generic rehomogenization parameter h can be corrected as

h = hbase + δh, (5.51)

where

• hbase is computed with Eq. (5.32), using the cross-section distribution of the
infinite-medium base depletion;

• δh is determined with the coefficients of the intranodal cross-section expansion
and an additional set of rehomogenization parameters. These only depend on (i)
the basis functions of the cross-section expansion, (ii) the weighting functions
of the flux-variation modal synthesis, and (iii) the single-assembly flux form
function (reference parameters) or the basis functions of the flux-variation modal
synthesis (variational parameters).

Isotopic spatial rehomogenization coefficients can also be used (as shown in Chapter 4)
to fully account for the spatial effects of the environment in fuel depletion calculations.
The memory requirement for the storage of the rehomogenization coefficients in the
cross-section libraries is minimized exploiting the symmetry of the fuel-assembly
internal layout. For example, given the same index id the two directional terms of
Eq. (5.32b) are equal. Moreover, with the assumption of uniform diffusion coefficient,
most of the neutron-current divergence coefficients [Eqs. (5.34b) and (5.34c)] are zero
due to the properties of the chosen basis functions. The rehomogenization parameters
are only computed and stored for an assembly quarter. During the nodal calculation,
their sign is determined based on the orientation of the node within the fuel assembly.
As observed for spectral rehomogenization (Section 2.4.2), convergence of the algorithm
benefits from under-relaxation, which dampens numerical oscillations. Except for the
CPB approach in the UO2/MOX benchmark problem (Table 5.10), the increase in
the number of power iterations of the eigenvalue calculation is below a factor of 1.8
and, thus, acceptable. Convergence difficulties have never been encountered.
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To conclude, the 2-D rehomogenization method presented in this chapter can also be
viewed as an original dehomogenization approach. If Eq. (5.2) is used, the assumption
is made that the 2-D flux variation is a smooth function of the x and y coordinates and
is not affected by intranodal heterogeneity. The impact of this approximation on the
direct reconstruction of the pin-by-pin flux and power distributions should be assessed.
A successful application of the 2-D rehomogenization for assembly dehomogenization
as well would increase the attractiveness of the method and largely compensate for its
higher computational cost compared to the 1-D model.

5.4.4 Complementarity between the spatial and spectral effects of
the environment

We briefly address the complementarity of the various environmental effects on the
nodal cross sections. For the benchmark problems analyzed in Section 5.3, Table 5.17
shows: (i) the reference spectral corrections δΣspec,ref

r,G , computed with the reference
spectrum variation [Eq. (2.25)]; (ii) the reference spatial corrections δΣspat,ref

r,G , com-
puted with the reference 2-D flux spatial change; and (iii) the cross (i.e., mixed
energy-space) corrections δΣcross

r,G , which have been estimated as

δΣcross
r,G = Σref

r,G − Σ∞r,G − δΣ
spec,ref
r,G − δΣspat,ref

r,G , (5.52)

where Σref
r,G is the cross section condensed and homogenized in the colorset configuration,

thus incorporating the global environmental effect. Even if the cross corrections are
generally smaller than the spectral and spatial ones, they are not negligible, especially
in the assemblies with the strongest heterogeneity. In particular, in the MOX assembly
of example 4 (Table 5.17d), the thermal absorption and production cross terms have
magnitude comparable to or larger than the spectral and spatial ones, which have
opposite sign and roughly cancel each other. As discussed in Section 2.4.1, one of
the reasons of this behavior is that the flux spectrum deformation varies significantly
with the distance from the assembly outer edge, whereas the correction δΣspec,ref

r,G is
computed with an average deformation in the assembly. Taking into account the cross
corrections is therefore important for an accurate prediction of the global cross-section
variation in the environment.
From Table 5.17, some general features of the cross-section corrections can be observed:

• The spatial effects are only relevant in the thermal group, whereas the spectral
ones are significant in both energy groups. There is no clear pattern for the
cross effects.

• In the heterogeneous assemblies, the sign and magnitude of the spatial corrections
depend on the position of the main sources of heterogeneity within the fuel
bundle.
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Table 5.17. Cross-section changes due to the various types of environmental effects: spectral,
spatial, and cross (i.e., mixed energy-space). The variations have been computed with respect
to the infinite-medium values by using the reference data from APOLLO2-A.

Example 1 UO2 1.8% UO2 3.1% + 16 b.p. rods

Variation (%)

Type of effect δΣa,1 δΣa,2 δνΣf,1 δνΣf,2 δΣs,1→2 δΣa,1 δΣa,2 δνΣf,1 δνΣf,2 δΣs,1→2

Spectral 0.074 -0.55 -0.34 -0.57 -0.58 -0.13 0.77 0.19 0.84 0.45
Spatial 0.028 -0.16 0.034 -0.30 -0.025 -0.007 -0.18 -0.026 0.33 0.005
Cross -0.065 0.025 -0.15 0.067 0.045 0.034 -0.090 0.12 -0.12 -0.017
Global 0.037 -0.69 -0.46 -0.80 -0.56 -0.10 0.50 0.28 1.04 0.44

(a)

Example 2 UO2 1.8% UO2 2.4% + 24 AIC rods

Variation (%)

Type of effect δΣa,1 δΣa,2 δνΣf,1 δνΣf,2 δΣs,1→2 δΣa,1 δΣa,2 δνΣf,1 δνΣf,2 δΣs,1→2

Spectral 0.78 -0.44 0.056 -0.46 0.61 -0.96 0.82 -0.23 1.12 -0.53
Spatial -0.09 -0.31 -0.10 -0.39 0.072 -0.23 -1.24 0.13 0.41 0.062
Cross 0.034 0.098 -0.008 0.13 -0.043 -0.10 -0.20 -0.048 -0.29 -0.026
Global 0.72 -0.65 -0.055 -0.72 0.64 -1.29 -0.62 -0.15 1.23 -0.49

(b)

Example 3 UO2 1.8% UO2 3.9% + 12 Gd pins

Variation (%)

Type of effect δΣa,1 δΣa,2 δνΣf,1 δνΣf,2 δΣs,1→2 δΣa,1 δΣa,2 δνΣf,1 δνΣf,2 δΣs,1→2

Spectral 0.0 -0.85 -0.44 -0.88 -0.92 0.082 0.80 0.32 0.84 0.98
Spatial 0.056 -0.21 0.072 -0.43 -0.056 -0.09 1.20 -0.005 0.084 0.038
Cross -0.083 -0.030 -0.24 -0.019 0.08 0.12 0.51 0.13 0.036 -0.063
Global -0.03 -1.09 -0.61 -1.33 -0.90 0.11 2.51 0.45 0.96 0.95

(c)

Example 4 UO2 2.1% MOX

Variation (%)

Type of effect δΣa,1 δΣa,2 δνΣf,1 δνΣf,2 δΣs,1→2 δΣa,1 δΣa,2 δνΣf,1 δνΣf,2 δΣs,1→2

Spectral -0.43 -0.98 -0.41 -1.0 -3.43 0.92 0.47 0.34 0.50 2.46
Spatial 0.05 -0.30 0.066 -0.66 -0.035 -0.002 -0.37 0.033 -0.37 0.02
Cross -0.15 0.11 -0.35 0.33 0.10 0.13 -0.41 0.17 -0.57 -0.095
Global -0.53 -1.17 -0.70 -1.33 -3.36 1.06 -0.31 0.54 -0.44 2.39

(d)
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5.5. Summary

Separating the various effects on the discontinuity factors is not equally straightforward
for the reasons discussed in Section 5.4.2.
For example 1, we briefly compare the results obtained with the reference spatial
cross-section corrections and discontinuity factors (Table 5.15a) to those obtained
with the reference spectral cross-section corrections (Table 3.13). The corrections
on keff and on the fission power computed in the two cases go in the same direction.
Considered the magnitude of the errors in the two standalone calculations and having
verified that in this configuration cross effects play a little role (Table 5.17a), it is
reasonable to expect that the errors in these parameters would become close to zero if
one merely summed the spatial and spectral corrections.

5.5 Summary

In this chapter, we have developed a first-principle modal method to estimate the
variation in the 2-D few-group flux distribution between the core environment and
the infinite lattice. This method relaxes the main approximations of the original 1-D
transverse-integrated rehomogenization.
Numerical results show that the errors in the multiplication factor and assembly-
averaged fission power significantly decrease compared to the calculation with infinite-
medium homogenization parameters. The cross-section corrections computed by the
2-D model always go in the right direction. In most cases they match the corrections
determined with a least-squares best fit of the reference flux change, but they are higher
than the reference values. One of the reasons of this outcome is that the polynomial
and hyperbolic basis functions used for the modal expansion cannot reproduce to a
high degree of accuracy the flux variation dip in the cells hosting absorbing elements
(burnable-poison rods and control rods). In the 1-D approach, the flux change dip
in these cells is smoothed out by the transverse integration and is therefore better
fitted by the basis functions. When applying spatial and spectral rehomogenization
sequentially, the overestimation of the spatial cross-section corrections in the thermal
group may affect the accuracy of the global results.
The differences between the CPB-based and MSS-based approaches are small, with the
former usually performing slightly better. An apparent superiority of the 2-D model
over the 1-D model has not been observed. Except for the test case with gadolinium-
bearing fuel pins, in which the 2-D method is more accurate, the discrepancies between
the two approaches are not significant. In general, the 1-D model overestimates the
cross-section corrections to a lesser extent.
At the pin-by-pin level, on average better results are found when rehomogenization is
applied. Nevertheless, the improvement in the heterogeneous flux and fission-power
distributions is often not fully generalized, but limited to certain subregions of the fuel
assemblies. Therefore, the accuracy of the computed fission power in the hot spots
(that is, the fuel cells with the highest thermal load) is tied to their location within
the fuel bundles.
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5. A two-dimensional model for spatial rehomogenization

We have observed that when 1-D or 2-D spatial rehomogenization is applied, the type
of transverse-leakage approximation does not affect the accuracy of the nodal calcula-
tion. An analysis on the complementarity of the various environmental corrections
revealed that mixed energy-space effects cannot be neglected, especially in UO2/MOX
configurations.
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Chapter 6

Conclusions and recommendations

In this thesis, rehomogenization methods have been developed to model core-environment
effects on the homogenization parameters used in nodal diffusion codes. The main
motivation behind this work was to enhance the accuracy of nodal simulations of cur-
rent and next-generation reactor cores, where strong spatial heterogeneity invalidates
the assumptions underlying conventional homogenization theory.
This chapter summarizes the key contributions of this work to reactor core nodal
analysis. Directions for future research are also discussed.

6.1 Conclusions

The most important findings of this research are highlighted below.

• If combined with the diffusive approximation of the neutron leakage energy
distribution, the POD-based spectral rehomogenization reconstructs the envir-
onmental flux spectrum very accurately. In many benchmark problems, the
accuracy of the computed spectrum perturbation is comparable to that of the
reference solution from neutron transport. The spectral component of the ho-
mogenization error due to neighbor effects is therefore successfully corrected. In
general, the semi-analytic modal approach gives less accurate results, while still
satisfactory. This is because the polynomial basis functions cannot reproduce
faithfully the details of the spectrum deformation, such as resonance absorption
spikes in the epithermal range and, in UO2/MOX configurations, strongly vary-
ing components at fission energies. With this approach, the spectral error is
often corrected only partially.
In isothermal conditions (i.e., without thermal-hydraulic feedback), the number
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of non-linear flux iterations increases by a factor of about 2 with the POD ap-
proach and of about 1.6 with the semi-analytic approach. However, embedding
the rehomogenization cross-section updates within thermal iterations would
reduce the slowdown in convergence.

• Spectral rehomogenization can also predict variations in the infinite-medium con-
densation spectrum due to perturbations in nuclide densities. Taking advantage
of this feature, a novel approach has been developed to model the multivariate
dependence of the single-assembly macroscopic and microscopic cross sections
on the water density and on the concentrations of diluted boron and xenon.
This approach replaces the conventional multidimensional interpolation versus
these state parameters. The boron-concentration axis is eliminated. The water-
and xenon-density axes cannot be removed completely, because the effects of
variations in the fine-energy isotopic cross sections must also be accounted for.
However, these two directions are sampled individually (i.e., discarding the
cross dependences) at far fewer points than in standard polynomial and spline
interpolation algorithms.
In normal operating conditions and cold-to-hot transitions, the errors in the
single-assembly macroscopic cross sections reconstructed with this rehomogenization-
based approach are generally well below 0.1% and, therefore, comparable to
interpolation errors. The errors in the infinite-medium multiplication factor k∞
are lower than 40 pcm. In accidental conditions (i.e., at very low values of the
water density), the errors in the macroscopic cross sections and in k∞ are below
0.5% and 100 pcm, respectively.
Compared to tensorized interpolation, this method has a dual advantage: it
reduces (by a factor of 7 to 9) the number of states to be simulated in the off-line
lattice transport calculation and the number of table points in the cross-section
libraries, and it decreases the computational cost of the on-line cross-section
reconstruction.

• Spectral rehomogenization also reproduces the effects of differences in reactivity
between the core environment and the infinite medium. It therefore eliminates
the need for the critical-spectrum correction at the lattice-calculation level.
The use of this kind of correction is questionable when simulating non-critical
conditions (Dall’Osso, 2015a; Demazière, 2016). Moreover, as observed in
Sections 3.3.2 and 4.3.2, nodal calculations with buckling-corrected cross sections
tend to overestimate the control-rod worth in rodded configurations. Without
the critical-buckling methodology, this non-conservative feature is removed or
alleviated. An additional benefit is that the critical-spectrum iterations in lattice
calculations are eliminated.

• The three aforementioned properties of spectral rehomogenization can be com-
bined together to reconstruct the overall spectrum variation between the core
environment in the local physical conditions and the non-critical infinite lattice in
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a predefined nominal state. This finding lays the groundwork for a new concept
of cross-section model, in which all spectral effects (due to interassembly neutron
streaming, local changes in the nuclide densities, and differences in multiplicative
properties) are predicted by rehomogenization. The above feature makes this
thesis work a significant contribution to nodal methods for core analysis.

• The 2-D spatial rehomogenization model developed in this work produces signific-
antly better estimates of the multiplication factor and assembly-averaged fission
power compared to the case with single-assembly input parameters. The spatial
corrections on thermal-absorption cross sections are, however, systematically
overestimated. The spatial homogenization error is therefore overcorrected with
respect to the reference. Global improvements are found in the pin-by-pin flux
and power density distributions. Nevertheless, the power errors in the hot spots
(which commonly condition the whole thermal-hydraulic core design) do not
always decrease. In general, the gain in accuracy of the assembly discontinuity
factors is less tangible. It has been shown (although not mathematically proved)
that spatial rehomogenization nullifies the impact of inconsistent transverse-
leakage approximations, such as the three-node parabolic fit. With regard to
the computational cost of the method, similar considerations hold as for spectral
rehomogenization.

To summarize, the results presented in this thesis demonstrate that spectral and
spatial rehomogenization succeed in enhancing the accuracy of homogenized cross
sections and of the nodal estimates of the parameters of greatest interest for core
design and operation. One of the main gaps in industrial routine calculations is
therefore bridged or mitigated.
From a numerical point of view, the chief advantages of the methods investigated in
this thesis can be summarized as follows:

• They have a solid physical basis and do not resort to ad hoc approximations.
Practical justifications corroborate the assumptions made in the derivation of the
algorithms, such as neglecting the dependence of the diffusion-coefficient energy
distribution on the fuel-assembly composition in the framework of the leakage
spectrum model. These aspects distinguish the developed methods from other
cross-section correction techniques available in the literature, most of which rely
on empirical correlations or on the tabulation of precomputed corrections.

• They are based on lattice data and information from the on-line nodal calculation.
The improvement in nodal accuracy is therefore achieved preserving the single-
assembly homogenization paradigm and the computational efficiency of the
conventional two-step procedure.

• They proved to be robust in a wide variety of test cases chosen to validate the
methodology, and in others that have not been presented in this dissertation.

191



6. Conclusions and recommendations

• They do not substantially degrade the computing performance of nodal calcula-
tions.

• They can be easily integrated into existing nodal codes as standalone modules.

• They can be used to correct the cross sections in every homogenization-based
solution strategy, i.e., irrespective of the form of the neutron transport operator
used in the homogenized core model (diffusion, transport, or simplified transport).
They have therefore general validity.

For the reasons stated above, these methods largely meet industry’s requirements.
Their suitability for implementation in nodal transport and nodal simplified P3 (SP3)
solvers is also attractive in the light of the steadily increasing interest in whole-core
deterministic transport calculations.
Below are listed the main limitations of the proposed methods.

• The spectral and spatial effects of the environment are modeled separately. In
some assembly configurations, such as UO2/MOX interfaces, these effects are
tightly coupled (that is, mixed energy-space terms are important from a modeling
point of view). A sequential application of the spectral and spatial rehomogen-
ization algorithms may therefore not always fully correct the homogenization
defects.

• The POD-based modal synthesis of the neutron spectrum variation demands a
costly off-line phase.

• It is assumed that the homogenization error in infinite-medium assembly discon-
tinuity factors is entirely spatial (i.e., its spectral component is neglected).

• Spatial rehomogenization tends to overcorrect spatial homogenization errors.
Moreover, as presented in this work, the algorithm can only be applied to
Cartesian geometries.

Some of these shortcomings leave room for further improvement in the methodology,
as extensively discussed in the next section.

6.2 Perspectives and recommendations

6.2.1 Spectral rehomogenization
One of the main challenges is the application of the POD methodology at an indus-
trial level. The development of an adaptive snapshot sampling strategy is highly
recommended to retain the attractiveness of this approach. It is the author’s opinion
that sparse grids would be a suitable candidate to pursue this achievement. The
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calculation of snapshots depends on whether rehomogenization is used to reproduce
(i) the spectral effects of dissimilar neighbor assemblies, (ii) the spectral effects of the
local physical conditions, or (iii) the combination of the two. Finding an effective basis
for case ii is easier for three reasons: (1 ) the problem has lower dimension; (2 ) the
spectrum deformations induced by changes in the state parameters depend marginally
on the fuel-assembly composition; (3 ) only single-assembly calculations are needed
to generate the snapshots, thus limiting the computational burden of the off-line
phase. In the more interesting case iii (namely, when the goal of rehomogenization
is to incorporate all spectral effects), the most straightforward approach would be
to combine the two bases computed separately for cases i and ii, that is, defining
the overall spectrum deformation as a superposition of modes from the two sets of
functions. The interplay between the two types of spectral effects may, however, pose
some constraints in the choice of the modes. For instance, it has been observed that
in the absence of strong perturbations in the water density, the fast-group spectrum
variation mostly inherits the smoother shape of the heterogeneity-induced deformation
(Section 4.3.2). On the other hand, if the moderator density varies significantly, the
contribution of neighbor effects becomes smaller. Therefore, the importance of the two
effects may be accounted for in the modal synthesis by selecting the basis functions
on the fly with an adaptive approach, based on the type of perturbation in the state
parameters. With this choice, the magnitude of the moderator density variation would
be the threshold parameter with which to determine the number and the order of the
modes from the two sets.
Besides the POD approach, the natural next step in the investigation of spectral
rehomogenization is its application to reactor problems including thermal-hydraulic
feedback. The diffusive approximation of the leakage spectrum introduces a non-
linearity in the rehomogenization algorithm, which adds itself a non-linearity in the
solution of the nodal transverse-integrated equations. In the seemingly straightforward
case of isothermal conditions, convergence issues have not been observed either at zero
burn-up or with fuel depletion. It is now necessary to verify that the dual non-linearity
introduced by rehomogenization is small compared to thermal-hydraulic non-linearities.
In this way, the robustness of the method can be conclusively proved.
The leakage energy distribution affects not only the forward neutron spectrum, but
also the adjoint one. Leakage modeling is thus of paramount importance for an accur-
ate prediction of adjoint-dependent quantities, such as the effective delayed-neutron
fraction. This kinetic parameter is commonly computed during the lattice calculation
by weighting the delayed-neutron emission rate with the infinite-medium adjoint
spectrum (Stacey, 2007), which may differ significantly from the environmental one,
especially in the fast group. In view of the relevance of this parameter in reactor
kinetics and dynamics, a method for its correction could be developed exploiting the
information from rehomogenization.
It would be of great interest to investigate the effect of spatial discretization on the
accuracy of spectral rehomogenization. For example, an analysis is recommended
to assess the suitability of the method for nodal codes that use finer meshes with
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subassembly homogenization (see Section 1.2). Exploring the limit case of direct
pin-by-pin calculations would not only be of practical interest, but also give more
insight into the physical foundation of rehomogenization theory. Whilst the nodal
neutron continuity equation in the energy domain [Eq. (2.5)] is valid irrespective of
the mesh size, the diffusive leakage model may be less accurate at the fuel-cell spatial
scale, where transport effects are important and the diffusion approximation is less
rigorous. More complex modeling may therefore be needed to estimate the cell-to-cell
leakage spectrum.
To conclude, the rehomogenization-based cross section model investigated in Chapter 4
should be validated on other types of fuel assemblies (such as MOX assemblies and
assemblies hosting control rods or burnable poison) and on calculations with fuel
depletion. The reconstruction of both infinite-medium and environmental cross sec-
tions in these further test cases should be considered. Also in this case, coupled
neutronics/thermal-hydraulics simulations would be the conclusive benchmark. An-
other topic to be addressed is modeling the spectral effects of the local physical
conditions on the assembly discontinuity factors and form functions, for which some
suggestions have already been given in Section 4.4.4.

6.2.2 Spatial rehomogenization
The accuracy of the 2-D spatial rehomogenization might be improved with basis
functions that better fit the intranodal flux spatial variation. Based on the satisfactory
outcome of the POD in the framework of spectral rehomogenization, this modal
approach could be extended to the spatial problem as well. This strategy would
allow the direct calculation of two-dimensional basis functions in the domain of space,
thus removing the separation of the directional and cross components of the modal
expansion with the one-dimensional modes PG,id(ud). Eq. (5.4) would become

δΦG(ux, uy) =
∑
i

αG,iPG,i(ux, uy). (6.1)

The search of snapshots for the calculation of the spatial modes PG,i(ux, uy) would
follow the same criteria defined for the spectral problem.
As for spectral rehomogenization, the 2-D spatial rehomogenization with the CPB
approach for the corner-point fluxes also introduces a dual non-linearity, which causes
slower convergence in the UO2/MOX benchmark problem (Section 5.3). The applica-
tion of the method to test cases with thermal feedback is therefore advised once again
to verify the absence of numerical instabilities in coupled calculations.
A pivotal aspect to be investigated is the use of the 2-D rehomogenization model for
fuel-assembly dehomogenization and pin power reconstruction. In case of a positive
outcome, two important steps of the nodal calculation could be incorporated into a
single algorithm, with benefits not only in the accuracy of the results, but also in
software functionality.
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In core configurations with strong heterogeneity in the axial direction (such as en-
richment and gadolinium-concentration zoning in BWRs), the 2-D rehomogenization
in the x and y coordinates may be combined with the 1-D rehomogenization along
the z axis. This strategy would allow accurate modeling of axial heterogeneity while
retaining coarse axial meshes for both 3-D assembly homogenization (Schneider et al.,
2016), when applicable, and the on-line nodal calculation.

6.2.3 Validation on a broader spectrum of test cases
This thesis work focused on the most common assembly configurations in PWRs,
with the exception of reflector boundaries. This kind of benchmark problem was not
investigated because the procedure followed for reflector group-constant generation
differs from that employed for fuel assemblies. For example, the Equivalent Reflector
Model (Hetzelt and Winter, 1999) is used in APOLLO2-A. This feature hinders a
straightforward calculation of the rehomogenization parameters in the lattice-code
routines dedicated to reflector homogenization. Nevertheless, nodal interfaces between
fuel assemblies and reflector nodes (where both spectral and spatial effects are very
strong) remain one of the most challenging test cases for further validation of the
methodology.
The application of spectral and spatial rehomogenization to calculations with thermal
feedback and full-core benchmark problems would give a final answer not only on the
robustness of these methods, but also on their actual impact on the computational
cost of coupled calculations. The latter must be evaluated in terms of (i) the increase
in the number of non-linear flux iterations when rehomogenization is nested in the
thermal-hydraulic updates, and (ii) the increase in the CPU time. In this respect,
investigating numerical techniques to reduce the loss in computational efficiency may
also bring substantial benefits.
As a final remark, the assessment of these rehomogenization techniques would gain
value from their comparison with already existing methods in reactor physics literature
(Section 1.2), and from their application to the analysis of reactors that exhibit even
stronger core heterogeneity than PWRs, such as BWRs and materials testing reactors.
The validity of these methods for fast-reactor core analysis should also be investigated.

6.2.4 Coupled modeling of spatial and spectral effects
There exist various research paths to combine the two rehomogenization algorithms
into a unified model. The simplest though least rigorous approach is to apply spatial
and spectral rehomogenization sequentially and to estimate the cross-term corrections
via ad hoc empirical approximations. A theoretically more sound strategy is to build
upon the following expression for the variation in the space- and energy-dependent
flux distribution:

δΦG(r, E) =
∑
i

∑
j

αG,i,jPG,i(r)QG,j(E), (6.2)
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where the basis functions PG,i(r) and QG,j(E) are to be computed via POD in the
separate phase spaces of r and E. As an alternative, considering the two phase spaces
simultaneously (i.e., taking snapshots of the pin-by-pin fine-group flux variation) would
generate three-variable modes Fi(r, E). Eq. (6.2) would thus become

δΦG(r, E) =
∑
i

γG,iFi(r, E). (6.3)

In the formulation of both coupled approaches [Eqs. (6.2) and (6.3)], attention must
be paid to the numerical conditioning of the so-obtained rehomogenization system.
It is remarked that the approach of Eq. (6.3) would increase significantly the numerical
complexity of the problem. Our current knowledge does not allow us to evaluate a
priori whether significant improvements (i.e., appreciable enough to justify the in-
crease in problem complexity) may be achieved moving to this simultaneous approach,
compared to a simpler sequential strategy.

To conclude, this thesis work represents a solid basis for future developments in
the area of rehomogenization. Some of the refinements discussed hitherto, together
with a successful application to reactor problems with thermal feedback, would allow
the described methods to reach maturity and, probably, to enter the mainstream of
nodal diffusion codes.
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Appendix A

The BRISINGR nodal code:
description and validation

The BRISINGR nodal diffusion solver was developed to carry out the research activity
described in this thesis. This code solves the multigroup neutron diffusion equation in
Cartesian geometry for external-fixed-source steady-state problems, as well as forward
and adjoint eigenvalue problems.
Three types of transverse-integrated nodal methods are implemented: the Nodal
Expansion Method (NEM), the Analytic Nodal Method (ANM), and the Semi-Analytic
Nodal Method (SANM) (Lawrence, 1986). These nodal schemes are non-linearly
coupled to a Coarse Mesh Finite Difference (CMFD) algorithm, which serves as an
acceleration technique (Smith, 1983). In this solution strategy, the multidimensional
diffusion equation is solved on coarse meshes with a conventional finite-difference
approach. The so obtained flux distribution and core eigenvalue are inputs to the
higher-order transverse-integrated nodal equations, which are solved via two-node-
problem calculations (i.e., spatially uncoupled calculations spanning two adjacent
nodes) for all nodes and in all directions. The two-node calculations provide an
improved estimate of the net surface-averaged current at each nodal interface. Such
estimate is used to correct the coarse-mesh leakage operator via update of the original
CMFD diffusion coupling coefficients. This iterative strategy progressively forces the
CMFD equations to yield the values of the net surface currents predicted by the
higher-order nodal scheme. The node-averaged fluxes and core eigenvalue also converge
to the NEM/ANM/SANM estimates. In eigenvalue calculations, power iterations are
accelerated with Wielandt’s eigenvalue shift (Sutton, 1988; Palmtag, 1997).
The code has been benchmarked with three different approaches: (i) the method of
manufactured solutions (Roache, 2002) for external-fixed-source problems; (ii) the
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comparison with the exact solution of simple eigenvalue problems; and (iii) validation
against the results of Framatome’s nodal code ARTEMIS (Hobson et al., 2013) in
colorset (i.e., four-assembly set) problems. In this Appendix, we show some sample
results of the first two validation campaigns. Homogeneous computational domains
are considered (namely, all nodes of the same type). Discontinuity factors are therefore
set to unity.

A.1 Fixed-source problems

A.1.1 Finite slab geometry
The one-group diffusion equation is solved in a 1-D finite slab with vacuum boundary
conditions (i.e., no reentrant current). The slab has a width of 200 cm and is subdivided
into ten uniform nodes. We choose the following closed analytic form for the flux
solution:

Φ(x) = −x2 + k, (A.1a)

where k is a numerical constant. The value of k is a function of the width of the
slab and is determined so that the conventional Marshak vacuum boundary condition
(Stacey, 2007) is satisfied at the right and left boundaries of the slab itself. The source
function that generates the flux distribution of Eq. (A.1a) is

S(x) = (Σr − νΣf )Φ(x)− 2D. (A.1b)

We use arbitrary values of the cross sections.
Table A.1 shows the two-norm of the relative error in the computed flux distribution,
compared to the reference (i.e., manufactured) solution. The error is reported for the
solutions computed with the standalone CMFD algorithm and with multiple iterations
of the non-linear CMFD-NEM strategy. The nodal updates are performed after each
global CMFD solution. With ten nodal updates, the error decreases by about five
orders of magnitude.

Table A.1. One-group fixed-source problem in a slab geometry: two-norm of the relative
error in the flux solution (in percentage) versus the number of non-linear CMFD-NEM
iterations.

Solution method Flux error two-norm (%)

CMFD 3.15 · 10−3

CMFD - NEM (1 iteration) 8.88 · 10−4

CMFD - NEM (2 iterations) 2.60 · 10−4

CMFD - NEM (5 iterations) 6.71 · 10−6

CMFD - NEM (8 iterations) 1.73 · 10−7

CMFD - NEM (10 iterations) 1.52 · 10−8
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A.1.2 Three-dimensional geometry
We consider a cube with side length of 200 cm and Marshak vacuum boundary
conditions. The chosen analytic solution and the corresponding source function are

Φ(x, y, z) =
(
− x2

m
+ c
)(
− y2

m
+ c
)(
− z2

m
+ c
)

(A.2a)

and
S(x, y, z) = (Σr − νΣf )Φ(x, y, z) + 2D

m
f(x, y, z), (A.2b)

where m and c are numerical constants, and the function f(x, y, z) is defined as
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(A.2c)
Also in this case, the constant c is determined as a function of the size of the
computational domain (namely, the cube side length) and the type of vacuum boundary
condition (Marshak in the case considered in this analysis).
Table A.2 reports, for various mesh sizes, (i) the minimum and maximum relative
errors in the flux, and (ii) the two-norm of the 3-D flux error distributions from
the CMFD and CMFD-NEM solutions. The number of non-linear iterations for the
convergence of the CMFD-NEM strategy is also shown. A tight convergence criterion
has been chosen (namely, a tolerance ε = 10−8 for the variation in the two-norm flux
error between two consecutive nodal updates).

Table A.2. One-group fixed-source problem in a 3-D geometry: number of non-linear
CMFD-NEM iterations, absolute values of the minimum and maximum local errors (in
percentage), and two-norm of the error distribution (in percentage) for various discretizations.
The maximum error is found in the corner nodes of the axial boundaries (i.e., the upper and
lower planes), whereas the minimum error is observed at the center of the computational
domain (i.e., in the nodes furthest away from the boundaries).

Minimum error (%) Maximum error (%) Error two-norm

No. of nodes
per direction

No. of non-linear
iterations

(CMFD-NEM)
CMFD CMFD-NEM CMFD CMFD-NEM CMFD CMFD-NEM

5 10 6.42 · 10−3 2.15 · 10−4 8.69 3.6 · 10−2 2.16 · 10−2 1.73 · 10−4

10 12 1.6 · 10−4 1.09 · 10−6 5.27 1.79 · 10−2 5.59 · 10−3 2.92 · 10−5

15 12 1.11 · 10−5 4.54 · 10−8 3.58 1.13 · 10−2 2.49 · 10−3 8.93 · 10−6

20 11 4.04 · 10−6 1.32 · 10−8 2.59 7.48 · 10−3 1.39 · 10−3 3.58 · 10−6

Compared to the 1-D case, the nodal solution is somewhat less accurate. The main
source of error is the three-node quadratic fit for the transverse leakage approximation.
Nevertheless, the superiority of the nodal scheme over the standalone CMFD method
is still apparent.
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A.2 Eigenvalue problems

The two-group diffusion eigenvalue problem is solved in the 1-D and 3-D geometries
considered in Section A.1. Zero-flux boundary conditions are imposed. The eigenvalue
of this simple problem can be determined analytically as

krefeff =
χ1

(
νΣf,1
Σr,1

PNL1 + Σs,1→2
Σr,1

νΣf,2
Σr,2

PNL1 PNL2

)
+ χ2

(
νΣf,2
Σr,2

PNL2 + Σs,2→1
Σr,2

νΣf,1
Σr,1

PNL1 PNL2

)
1− Σs,1→2

Σr,1

Σs,2→1
Σr,2

PNL1 PNL2
,

(A.3)
where PNLG is the group-G non-leakage probability, which depends on the neutron
diffusion length LG and on the geometric buckling B2

h:

PNLG = 1
1 + L2

GB
2
h

, LG =

√√√√( DG

Σr,G

)
, B2

h =
Nd∑
id=1

( π

Hid

)2
, (A.4)

where Nd is the number of spatial dimensions of the problem (Nd = 1 for the slab
geometry), and Hid is the width of the domain in the id-th direction.
With the numerical cross-section values chosen for this test case, the reference eigenval-
ues computed with Eq. (A.3) are 0.92719 in the homogeneous slab and 0.90884 in the
homogeneous cube. We use ten uniform nodes in the slab geometry and twenty uniform
nodes per direction in the cubic one. Table A.3 shows the errors in the eigenvalues
computed with three solution strategies: CMFD, CMFD-NEM, and CMFD-ANM.

Table A.3. Two-group diffusion eigenvalue problem in slab and cubic geometries with
zero-flux boundary conditions: relative error (in percentage) in the computed eigenvalues.

Error in keff (%)

Geometry CMFD CMFD-NEM CMFD-ANM

Homogeneous slab 8.3 · 10−3 9.7 · 10−9 9.9 · 10−11

Homogeneous cube 6.11 · 10−3 1.0 · 10−5 1.0 · 10−5

In the slab case, the ANM performs better than the NEM because it does not suffer
from the spatial truncation error in the intranodal flux expansion. As observed for the
fixed-source problem, in the 3-D case the accuracy of the nodal algorithms is affected
by the transverse-leakage approximation, which also nullifies the superiority of the
ANM solution over the NEM one.
In the CMFD-NEM calculation, the numbers of power iterations without Wielandt’s
acceleration are 169 and 204 in the slab and cubic geometries, respectively. These
values are obtained with a tolerance ε = 10−8 for the variations in the eigenvalue and
in the nodal-flux two-norm between two successive iterations. If the eigenvalue shift is
applied, the numbers of iterations decrease to 21 and 22 in the two cases, respectively.
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Fig. A.1 shows the impact of the NEM updates and of Wielandt’s acceleration on the
convergence of the coarse-mesh eigenvalue solution in the slab geometry.
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Fig. A.1. Eigenvalue convergence in the finite slab geometry. (a) Comparison between the
CMFD and CMFD-NEM simulations. The first NEM update is performed at the sixteenth
power iteration. (b) Comparison between the CMFD simulations with and without Wielandt’s
acceleration. The vertical dashed line marks the power iteration at which the eigenvalue shift
is activated, after partial convergence of the CMFD solution.
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Appendix B

Notation

B.1 Symbols

This section reviews the notation adopted in this thesis. Focus is given to quantities
for which there is no standard notation in reactor physics literature.

• Φ̄G: few-group volume-averaged flux in a generic node;

• fG,d±: few-group discontinuity factor at the node surface corresponding to the
d± coordinate;

• P̄fiss: volume-averaged fission power in a generic node;

• Φenv,G(u): environmental flux spectrum (per unit pseudolethargy u) within the
coarse group G;

• ϕ∞,G(u): infinite-medium flux spectrum (normalized to unity) within the coarse
group G;

• δΦG(u): variation in the Gth-group flux spectrum between the environmental
and infinite-medium conditions;

• Lenv,G(u): environmental leakage spectrum within the coarse group G;

• fL,G(u): leakage spectrum function (normalized to unity) within the coarse
group G;

• f∞L,G(u): fundamental-mode leakage spectrum function (normalized to unity)
within the coarse group G;
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• αG,i: modal coefficients of the spectrum variation between the environmental
and infinite-medium conditions;

• α∞,G,i: modal coefficients of the variation in the infinite-medium spectrum
between the local and nominal physical conditions;

• σ∞r,c,G: few-group infinite-medium cross section of isotope c and reaction r;

• σ∞,r,c,G(u): fine-group infinite-medium cross section of isotope c and reaction r;

• Φenv,G(ux, uy): environmental 2-D pin-by-pin flux distribution within the coarse
group G;

• ϕ∞,G(ux, uy): infinite-medium 2-D pin-by-pin flux distribution (normalized to
unity) within the coarse group G;

• δΦG(ux, uy): variation in the Gth-group 2-D pin-by-pin flux distribution between
the environmental and infinite-medium conditions;

• αG,d,id : directional (i.e., d-axis) modal coefficients of the Gth-group 2-D pin-by-
pin flux variation between the environmental and infinite-medium conditions;

• αG,xy,cx,cy
: cross modal coefficients of the Gth-group 2-D pin-by-pin flux vari-

ation between the environmental and infinite-medium conditions (for the basis
functions cx and cy along the coordinate axes x and y, respectively).

Spectral rehomogenization coefficients

• χG,j : fission spectrum coefficient for the coarse group G and the weighting
function j;

• hR,r,G,j : reference macroscopic coefficient for reaction r, coarse group G, and
weighting function j;

• hV,r,G,i,j : variational macroscopic coefficient for reaction r, coarse group G,
basis function i, and weighting function j;

• hR,r,c,G,j : reference microscopic coefficient for isotope c, reaction r, coarse group
G, and weighting function j;

• hV,r,c,G,i,j : variational microscopic coefficient for isotope c, reaction r, coarse
group G, basis function i, and weighting function j;

• sR,r,c,G,j : reference self-shielding coefficient for isotope c, reaction r, coarse
group G, and weighting function j;
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• sV,r,c,G,i,j : variational self-shielding coefficient for isotope c, reaction r, coarse
group G, basis function i, and weighting function j.

Spatial rehomogenization coefficients

• hR,r,G,j : reference coefficient for reaction r, coarse group G, and weighting
function j;

• hV,r,G,d,id,j : directional variational coefficient for reaction r, coarse group G,
coordinate axis d, basis function id, and weighting function j;

• hV,r,G,xy,cx,cy,j : cross variational coefficient for reaction r, coarse group G, basis
functions cx and cy along the coordinate axes x and y, and weighting function j;

• h∞R,leak,G,d,j : reference infinite-medium current-divergence coefficient for coarse
group G, coordinate axis d, and weighting function j;

• hV,div,G,d,id,j : directional current-divergence coefficient for coarse group G, co-
ordinate axis d, basis function id, and weighting function j;

• hV,divx,G,xy,cx,cy,j : x-directional, cross current-divergence coefficient for coarse
group G, basis functions cx and cy along the coordinate axes x and y, and
weighting function j.

B.2 Acronyms

• NEM: Nodal Expansion Method

• ANM: Analytic Nodal Method

• SANM: Semi-Analytic Nodal Method

• CMFD: Coarse Mesh Finite Difference

• POD: Proper Orthogonal Decomposition

• SVD: Singular Value Decomposition

• CMM: Cumulative Migration Method
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Summary

This thesis develops novel first-principle methods to correct homogenization errors in
nodal cross sections and discontinuity factors. Its aim is to improve the accuracy of
nodal diffusion simulations of heterogeneous core configurations.
This research builds upon previous work conducted at Framatome (Paris, France). It
is based on a modal reconstruction of variations in the neutron flux distribution (in
space and energy) between the core environment and the infinite-medium approxima-
tion, which is typically used in lattice transport calculations for few-group constant
generation. Focus is given to the correction of the nodal cross sections.

Chapter 1 provides a short introduction about nodal methods and the founda-
tions of homogenization theory.

The choice of the basis and weighting functions for the modal synthesis of neut-
ron flux spectrum changes is the main focus of Chapter 2. Two approaches are
investigated. The first of these uses polynomial basis functions (Chebyshev polynomi-
als of the first kind) and a physical mode (the neutron emission spectrum from fission).
The second is based on Proper Orthogonal Decomposition (POD). It computes the
optimal (in a least-squares sense) orthonormal basis functions for the space spanned by
a set of snapshots of the reference spectrum perturbation. Both strategies are tested
on pressurized-water-reactor benchmark problems that exhibit strong heterogeneity.
In this analysis, the neutron leakage spectrum is taken as an input quantity from
the reference transport calculation. Several aspects of spectral rehomogenization are
discussed, such as the impact of approximations in the algorithm on the computed
cross-section corrections. It is proved that the method can take into account spectral
effects due not only to dissimilar neighbor assemblies, but also to different reactivity
in the core environment and in the infinite lattice. This feature eliminates the need
for critical-spectrum corrections at the lattice-calculation level.

Chapter 3 presents a novel method with which to approximate the spectral distribu-
tion of heterogeneity-driven interassembly neutron leakage. The proposed approach
is based on Fick’s diffusion law. The leakage spectrum at a nodal interface is com-
puted as a function of the gradient of the environmental flux spectrum, which is
itself determined by the rehomogenization algorithm. Extensive validation of this
non-linear strategy shows that the energy dependence of streaming effects is accur-
ately reproduced. Compared to simulations with infinite-medium homogenization
parameters, when using this method fully based on nodal information significant
improvements in the input nodal cross sections, fission power and multiplication factor
estimates are achieved at a reasonably low computational cost (i.e., the increase in the
number of non-linear flux iterations is generally below a factor of 2). The proposed
model is also compared with a more straightforward approach that uses the critical-
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leakage spectrum obtained from the solution of the homogeneous fundamental-mode
B1 equations. This second strategy is, however, less accurate and can only provide an
adequate approximation of the environmental leakage in weakly heterogeneous systems.

In Chapter 4, we devise a new method, based on spectral rehomogenization, to model
the dependence of nodal macroscopic and microscopic cross sections on the moderator
density and on the concentrations of diluted boron and xenon. The spectral effects of
changes in these state parameters are accounted for by computing the variation in
the infinite-medium condensation spectrum that exists between the local conditions
(with perturbed values of the aforementioned three variables) and a nominal state.
This approach replaces the conventional multivariate interpolation in parameterized
libraries, with substantial benefits in the computational cost of the lattice calculation,
the library memory requirements, and the run time of the on-line cross-section recon-
struction. The proposed strategy is applied to a sample fuel assembly, covering a wide
range of the values of the state parameters mentioned above. We show that, in most
cases, cross-section changes due to nuclide density perturbations are predicted with an
accuracy comparable to that of standard interpolation. It is also demonstrated that
this method can be combined with those described in Chapters 2 and 3 to reconstruct
the spectrum variation between the perturbed real environment and the infinite lattice
in the nominal state, thus modeling simultaneously the non-separable spectral effects
of local physical conditions and neutron leakage.

In Chapter 5, a two-dimensional (2-D) modal method for spatial rehomogenization
is developed. This algorithm aims to synthesize the variation in the 2-D pin-by-pin
few-group flux and directional net currents between the core environment and the in-
finite lattice. Assembly discontinuity factors are also corrected. Validation on a broad
set of benchmark problems is followed by a thorough discussion that addresses the use
of the 2-D neutron current information to compute the transverse-leakage distribution
for the transverse-integrated nodal equations, the potential dual application of the
method for rehomogenization and dehomogenization, and the quantification of the
contributions of various environmental effects to homogenization errors.

In conclusion, the findings reported in this thesis show that spectral and spatial
rehomogenization are successful at reducing condensation and homogenization errors
in nodal cross sections, with a marginal impact on the computational efficiency of the
nodal calculation. In this way, one of the major limitations of current computational
tools for core design and operation is alleviated. Throughout this work, the spectral
and spatial effects of the environment have been modeled separately. However, it
is shown that mixed energy-space effects can be non-negligible, which calls for a
unified algorithm where the two rehomogenization methods are coupled. An overview
of possible strategies with which a simultaneous approach might be developed is
presented in the concluding chapter of this dissertation. Suggestions are also given for
further refinements of the algorithms developed in this thesis.
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Modale methoden voor rehomogenisatie van nodale werkzame doorsneden
in kernreactor analyse

In dit proefschrift worden nieuwe methoden ontwikkeld om homogenisatiefouten
in nodale werkzame doorsneden en in discontinuïteitsfactoren te corrigeren. Het doel
is om de nauwkeurigheid van nodale diffusiesimulaties van heterogene reactorkernen
te verbeteren.
Dit werk bouwt voort op eerder werk dat is uitgevoerd bij Framatome (Parijs,
Frankrijk). Het is gebaseerd op modale reconstructie van variaties in de neutronen-
fluxverdeling (in ruimte en energie) die optreedt tussen de heterogene kernsamenstelling
en de oneindig-medium benadering die vaak gebruikt wordt in weinig-groeps door-
sneden te bepalen in neutronen transport codes. De nadruk van het werk ligt op de
correctie van de nodale werkzame doorsneden.

Hoofdstuk 1 bevat een korte inleiding over nodale methoden en de grondbeginselen
van homogenisatietheorie.

De keuze van basis- en weegfuncties voor nodale synthese van neutronenflux spec-
trum veranderingen is het zwaartepunt van Hoofdstuk 2. Twee aanpakken zijn
onderzocht. De eerste aanpak is gebaseerd op het gebruik van polynomen als basis-
functies (Chebyshev van de eerste soort) samen met een fysische modus (het neutronen
emissiespectrum afkomstig van splijting). De tweede aanpak gebruikt de ‘Proper Or-
thogonal Decomposition’ (POD) methodiek en berekent de optimale (in kleinste
kwadraten zin) orthonormale basis functies in een ruimte die opgespannen wordt door
een set ‘momentopnames’ die genomen worden van de referentie spectrum perturbaties.
Beide strategieën worden getest op benchmarkproblemen voor drukwaterreactoren
die sterke heterogeniteit bevatten. In deze analyse wordt het neutronenlek-spectrum
als bekend verondersteld afkomstig van een referentieberekening. Diverse aspecten
van spectrale rehomogenisatie worden bestudeerd zoals de invloed van verschillende
benaderingen op de resulterende correcties van de werkzame doorsneden. Aangetoond
wordt dat de methode correct de spectrale effecten van de aanwezigheid van verschil-
lende buurassemblages en van verschillende reactiviteiten in de kern t.o.v. die in de
oneindig medium analyse kan voorspellen. Deze eigenschap elimineert de noodzaak
voor kritische-spectrum correcties op roosterniveau.

In Hoofdstuk 3 wordt een originele methode gepresenteerd waarmee de spectrale
verdeling van de heterogeniteit-gedreven inter-assemblage neutronen stroom wordt bes-
chreven. De voorgestelde methode is gebaseerd op het gebruik van Fick’s diffusiewet.
Het lekspectrum op het nodale scheidingsvlak wordt berekend via de gradient van het
flux spectrum dat op zijn beurt uit het rehomogenisatie-algoritme rolt. Een uitgebreide
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validatie van deze niet-lineaire strategie laat zien dat de energie-afhankelijkheid van
de neutronenstromen accuraat gereproduceerd worden. Vergeleken met simulaties
waar oneindig-medium homogenisatie wordt gebruikt, leidt de huidige methode waar
gebruik gemaakt wordt van nodale informatie, tot duidelijk verbeterde werkzame
doorsneden, splijtingsvermogen en multiplicatiefactor tegen redelijk lage computer-
kosten (het aantal iteraties blijft binnen een factor 2 van de originele methode). De
voorgestelde methodiek wordt vergeleken met een simpeler aanpak gebaseerd op het
kritische lek-spectrum verkregen van de oplossing van de B1 vergelijkingen. Deze
alternatieve strategie is echter minder accuraat en kan slechts een adequate benadering
geven in systemen met beperkte heterogeniteit.

In Hoofdstuk 4 wordt een nieuwe rehomogenisatie-gebaseerde methode gepresent-
eerd om de afhankelijkheid van nodale microscopische en macroscopische werkzame
doorsneden van moderatordichtheid en van Boron en Xenon concentratie te bepalen.
Spectrale effecten veroorzaakt door veranderingen in deze parameters worden mee-
genomen door de variatie in het condensatiespectrum in lokale condities (inclusief
verstoringen door bovengenoemde parameters) en in oneindig-medium condities. Deze
aanpak vervangt de conventionele methode van interpolatie in databibliotheken en
leidt daarmee tot duidelijke voordelen op gebied van geheugengebruik en kosten die
gepaard gaan met online reconstructie van werkzame doorsneden. De voorgestelde
strategie is toegepast op een voorbeeld brandstofassemblage met een breed scala aan
waarden van de drie voorgenoemde parameters. Aangetoond wordt dat in de meeste
gevallen de behaalde nauwkeurigheid vergelijkbaar is met standaard interpolatie. Ook
wordt aangetoond dat deze methode kan worden gecombineerd met de methoden
beschreven in hoofdstukken 2 en 3 die gebruikt worden om de spectrum variatie te
voorspellen zodat het simultaan modelleren van zowel spectrale effecten van lokale
compositie als van neutronen-lek mogelijk is.

In Hoofdstuk 5 wordt een tweedimensionaal model voor spatiale rehomogenisa-
tie beschreven. Dit algoritme heeft als doel de variatie in pin-vermogens te recon-
strueren en de netto stroom tussen de omgeving en het oneindig-medium rooster.
Assemblage-discontinuïteitsfactoren worden ook gecorrigeerd. Validatie van de meth-
ode is uitgevoerd op een uitgebreide set van benchmarkproblemen gevolgd door een
diepgaande discussie van de resultaten. Beschreven worden o.a. het gebruik van
2D neutronen stroom informatie om de transversale lekdistributie te berekenen, het
potentiele gebruik van de duale functie in rehomogenisatie en dehomogenisatie en de
kwantificering van diverse omgevingseffecten op homogenisatiefouten.

De conclusie van dit proefschrift is dat spectrale en spatiale rehomogenisatie meth-
oden succesvol de fouten afkomstig van condensatie en homogenisatie in werkzame
doorsneden kunnen reduceren met behoud van de efficiency van de nodale methodiek.
Op deze manier is een van de beperkingen van de huidige kernontwerp software
weggenomen. In dit onderzoek zijn de effecten van spatiale en spectrale effecten van
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de omgeving afzonderlijk gemodelleerd. Ook is geïllustreerd dat dergelijke effecten in
sommige gevallen niet goed gescheiden kunnen worden en dat een volledig gekoppelde
aanpak nodig is. Een overzicht van mogelijke strategieën om tot een dergelijke gekop-
pelde aanpak te komen is beschreven in de conclusies van dit proefschrift. Suggesties
voor verdere verfijning van de ontwikkelde algoritmen worden ook beschreven.

(Dutch translation provided by Danny Lathouwers.)
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