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Estimating higher-order structure functions from geophysical turbulence time series:
Confronting the curse of the limited sample size
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Utilizing synthetically generated random variates and laboratory measurements, we document the inherent
limitations of the conventional structure function approach in limited sample size settings. We demonstrate that
an alternative approach, based on the principle of maximum likelihood, can provide nearly unbiased structure
function estimates with far less uncertainty under such unfavorable conditions. The superiority of this approach
over the conventional approach does not diminish even in the case of strongly correlated samples. Two entirely
different types of probability distributions, which have been reported in the turbulence literature, are found to be
compatible with the proposed approach.

DOI: 10.1103/PhysRevE.95.052114

I. INTRODUCTION

Characterization of small-scale turbulence by higher-order
statistical moments has a long and rich history in both
laboratory and geophysical settings. Dating back nearly
50 years, Van Atta and Chen [1] conducted an extensive
atmospheric boundary layer (ABL) experiment to measure
up to fourth-order moments of atmospheric velocity fluctu-
ations over the ocean. Their study revealed some intriguing
similarities, and differences, between what was observed and
the existing turbulence hypotheses [e.g., Kolmogorov and
Obukhov 1941 (KO41) [2,3]]. These findings led to increased
efforts (see Refs. [4–10], just to name a few) to acquire
extensive measurements of ABL flows in order to further
explore the statistical and dynamical features of turbulence
(e.g., power-law scaling, nonlinearity in energy cascade). At
the same time, researchers in a myriad of other geophysical
disciplines, from oceanography (e.g., phytoplankton biomass
distribution in turbulent coast waters [11,12]) to magneto-
hydrodynamics (e.g., intermittency in solar wind fluctuations
[13–17]), initiated their own investigations in this intriguing
research arena. Due to the lack of modern instrumentation, the
majority of the initial studies were conducted solely within
the Eulerian framework (by invoking the so-called Taylor’s
hypothesis). Fortunately, several recent contributions have
attempted to fill the void in the Lagrangian framework (see
Refs. [18–21] and references therein).

Over the years, the utilization of higher-order statistics not
only became common practice for (in)validating various hy-
potheses against experimental findings, but it also enabled the
research community to gain a better understanding of different
types of turbulent flows. For example, many studies have been
conducted which strive to make a distinction between active
and passive scalars [22–24] as well as contrasting atmospheric
convection [25,26] from Rayleigh-Bénard convection [27–31].
For other illustrative examples, please refer to the outstanding
books by Frisch [32] and Tsinober [33].

*awdemarc@ncsu.edu

In parallel to the analysis and characterization studies, a
handful of pioneering works focused on the development
of cascade models with the inherent ability to capture the
observed higher-order scaling behaviors. These models ranged
from a simplistic β-model which seeks to resemble the
intermittent behavior of turbulent cascade from a geometric
point-of-view [34,35] to a more complex probabilistic model,
which describes the energy cascade (multiplicative) process
within the inertial range in a multifractal framework [36–38].
Likewise, a number of other simplified dynamical models
(e.g., shell models, stochastic Burgers equation) [39–43]
were developed to mimic a number of intrinsic traits of
three-dimensional turbulence. From our perspective, this line
of research is still far from being mature.

It is important to acknowledge that the aforementioned
higher-order characterization and related modeling activities
are not only of importance from a pedagogical point of view,
but they are also beginning to make impacts in diverse practical
applications, including (but not limited to) combustion [44,45];
wind energy [46], and atmospheric modeling [47]. We strongly
believe that the gamut of applications can be significantly
broadened with further analyses of various geophysical data
sets. Unfortunately, the typical sample size of such data sets is
orders of magnitude fewer than their laboratory counterparts.
This disparity in sample size poses a serious challenge for
higher-order statistical analyses using the traditional sample
moments. In this paper, we advocate an alternative approach
to confront this challenge.

II. LIMITED SAMPLE SIZE PROBLEM

It is common knowledge in the turbulence research commu-
nity that capturing higher-order moments of turbulent variables
can be rather difficult without a substantial sample size of
experimental data [8,32,48–55]. In particular, the ability to
accurately estimate the moments can be directly related to
the tails of the underlying probability density function (pdf),
which signify rare events [56].

Thus, in laboratory settings, it is customary to measure
turbulence with upwards of 107 samples using hot-wire
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anemometry (sampling rate on the order of several kHz).
However, acquisition of hot-wire data in a natural geophysical
setting is quite challenging. For example, in the case of ABL
field experiments, one needs to perform meticulous hot-wire
calibration at short regular intervals in order to account for
the ever-changing, diurnally varying ABL flow parameters
[57,58]. As a viable alternative, the ABL community widely
uses sonic anemometers (sampling rate of ∼20 Hz) for
measuring turbulent velocity fields. In contrast to hot wires,
these sensors require much less periodic calibration and
maintenance. However, these instruments can only collect
O(20–40) thousand samples during a measurement time
window of 15–30 min. Publications, from as early as the 1970s,
pointed out that such short time series are not adequate for
estimating moments beyond fourth-order [1,8]. Unfortunately,
one cannot circumvent this problem by simply using longer
time records owing to the frequent interference of nonstation-
ary and nonturbulent motions (a.k.a. mesoscale motions). An
earlier work attempted to tackle this problem using cumulants
[59]. It was demonstrated that a cumulant-based approach can
reliably estimate the so-called intermittency exponent [32]
from short ABL time series. However, the cumulants involve
logarithmic functions of the velocity increments; as such, they
are more influenced by the peak of the pdf rather than its tails.
Thus, their usage in the estimation of higher-order moments
is questionable. As an alternative, in this paper, we illustrate
a maximum likelihood-based moment estimation technique
which can provide statistically accurate higher-order moments
from relatively short geophysical series.

III. QUANTIFYING UNCERTAINTY IN STRUCTURE
FUNCTION ESTIMATES

It is customary to quantify the behavior of fine-scale fully
developed turbulence, using structure function (SF) analysis:

Sp = 〈|u(x + r) − u(r)|p〉 = 〈|δu|p〉 ∼ rζp, (1)

where Sp is the pth-order SF with respect to the spatial
separation (or increment), r . The angular brackets here indicate
spatial averaging, |δu|p is the pth-order absolute moment of
the velocity increments, and ζp is the scaling exponent.

Many laboratory and geophysical turbulence studies have
shown that the pdfs of velocity increments, pdf[δu], are scale-
dependent and change steadily within the inertial subrange.
Specifically, these distributions have shown to exhibit strong
non-Gaussian behavior at small increments, then become
more Gaussian as separation increases [15,56,61–65]. A
few years ago, Barndorff-Nielsen et al. [56] demonstrated
that the normal inverse Gaussian (NIG) distribution has the
inherent ability to capture such scale-dependent traits in a
parsimonious manner. An illustrative example is shown in
Fig. 1. Here, following the approach by Rydberg [60], we
have numerically generated three NIG distributed variates with
different parameter settings. This figure clearly attests to the
fact that the NIG distribution can indeed capture heavy-tailed
(•), moderate-tailed (�), and near-Gaussian (�) distributions
with appropriate choice of parameters. More details regarding
the NIG distribution are provided in Appendix A.

Next, using the NIG distributed variates, we quantify the
impacts of pdf shapes and sample sizes on the uncertainty of

FIG. 1. NIG distributed variates with three different parameter
combinations: (a) α = 0.1,δ = 1, (b) α = 1,δ = 1, and (c) α = 2,δ =
2. For all these cases, the parameters μ and β are assumed to be equal
to zero. Please refer to Appendix A for a detailed description of the
NIG parameters. For each case, 107 samples were generated using
Rydberg’s algorithm [60]. The distributions were normalized by the
standard deviation σδu. A Gaussian pdf is overlaid (dashed line) as a
reference.

the SF estimates. We consider a wide range of sample sizes (N )
from 103 to 107 for each of the three pdfs shown in Fig. 1. In
order to obtain reliable statistics, we generate 100 realizations
for each case. Based on the numerically generated variates,
we compute SF using Eq. (1). Without loss of generality, we
focus on the sixth-order SF (S6).

The decision to consider S6 as a test statistic was not
arbitrary. In turbulence literature, there is considerable interest
in the accurate estimation of S6, since its scaling exponent
is directly used to determine the intermittency exponent,
μ∗ ≡ 2 − ζ6, which relates to the behavior of the underlying
non-Gaussian distributions.

The estimated (henceforth “empirical”) S6 values are shown
in Fig. 2 utilizing a standard box-plot notation where 50% of
the data lie within the blue “box” and the red line segment
within the “box” is the median value of the data. The
“whiskers” (i.e., the vertical dashed line segments) correspond
to ±2.7σ , while the + are the outliers. The following
observations can be made based on this figure:

(1) For all the cases, with increasing sample size the
S6 estimates converge towards the true values as would be
expected.

(2) For comparable sample size, the uncertainty of the S6

estimate is much higher for the heavy-tailed case than the
near-Gaussian case; the moderate-tailed case falls in between.

(3) For small sizes, the S6 estimates are strongly biased for
the heavy-tailed case. The bias decreases for the moderately
tailed case, while for the near-Gaussian case, the estimates are
close to unbiased.

These findings have significant implication on geophysical
data analyses and require scrutiny in to whether a collection of
samples are robust enough to provide an accurate estimation
of a specific higher-order moment. In a recent paper, Dudok
de Wit [66] made an interesting contribution in this arena
by borrowing ideas from the Extreme Value (EV) theory. He
proposed a simple approach to compute the maximum moment
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FIG. 2. “Empirical” S6 box plots for three different NIG distributions with parameter combinations: (a) α = 0.1,δ = 1, (b) α = 1,δ = 1,
and (c) α = 2,δ = 2. The parameters μ and β are assumed to be equal to zero. The sample sizes (N ) are varied from 103 to 107. One hundred
realizations are used for the construction of the box plots. The dashed magenta lines represent the true S6 values based on Eq. (A4).

order (pmax) for which reliable estimation of structure function
(Spmax ) is feasible for a given spatial or time series. In the
following section, using the aforementioned NIG distributed
variates, we elaborate on Dudok de Wit’s approach followed
by a recommendation for certain improvement.

IV. ESTIMATING pmax FROM LIMITED DATA

Let us denote the rank-ordered (in decreasing order)
absolute value of the velocity increments as: �k = |δu|k/σδu,
where k = 1, . . . ,N . Dudok de Wit [66] showed that for
small values of k,�k versus k follows the well-known Zipf
power-law behavior:

�k ∝
(

k

N

)−γ ∗

, (2)

where γ ∗ is known as the tail index (a.k.a. shape parameter).
Via analytical derivations (with one minor approximation),
Dudok de Wit [66] related γ ∗ to pmax as follows:

pmax =
⌊

1

γ ∗

⌋
− 1, (3)

where the floor bracket denotes the integer part.
In Fig. 3 the rank-ordered plots for three NIG distributed

variates are shown. In these log-log plots, the power-law

behavior is clearly discernible for small values of k. Following
Dudok de Wit’s approach, γ ∗ values are estimated using
ordinary linear regression over the range of 10 � k � 1000.
These values along with the estimated pmax values are reported
in Table I.

As shown in Ref. [66], and illustrated here in Table I, there is
a clear dependence on pmax values for the various sample sizes.
Additionally, we also notice that the shape of the pdfs directly
influences pmax. For instance, in the case of the heavy-tailed
distribution (α = 0.1 and δ = 1), a minimum sample size of
107 is required in order to provide a reliable estimate of S6.
However, for a near-Gaussian distribution (α = 2 and δ = 2),
only 105 samples will suffice. We would like to note that these
results are in complete agreement with the ones reported in
Fig. 2.

Even though the overall approach of Dudok de Wit [66]
is quite elegant and powerful, the tail index estimation
component is rather subjective and not statistically robust.
It can be significantly improved by employing one of the
well-tested estimators from the field of EV theory [67] instead
of using linear regression. Over the years, several estimators
for γ ∗ have been proposed in the literature, including (but not
limited to) Pickand’s estimator [68], Hill estimator [69], and
the Dekkers-Einmahl-de Haan estimator [70]. In this work, we

FIG. 3. Rank-order (a.k.a. Zipf) plots for NIG distributed variates with three different parameter combinations: (a) α = 0.1,δ = 1, (b)
α = 1,δ = 1, and (c) α = 2,δ = 2. The parameters μ and β are assumed to be equal to zero. The sample sizes (N ) are varied from 104 to 107.
The tail indices (γ ∗) are estimated for N = 104 (dot-dashed) and N = 107 (dashed) and reported in the bottom-left corner of the plots.
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TABLE I. Tail-index (γ ∗) and maximum moment order (pmax)
for NIG distributed variates of varying sample sizes and with three
different parameter combinations.

α = 0.1,δ = 1 α = 1,δ = 1 α = 2,δ = 2

N γ ∗ pmax γ ∗ pmax γ ∗ pmax

5 × 103 0.583 0 0.346 1 0.265 2
1 × 104 0.468 1 0.259 2 0.209 3
5 × 104 0.344 1 0.206 3 0.157 5
1 × 105 0.294 2 0.185 4 0.140 6
5 × 105 0.213 3 0.146 5 0.117 7
1 × 106 0.204 3 0.130 6 0.109 8
5 × 106 0.155 5 0.109 8 0.088 10
1 × 107 0.139 6 0.107 8 0.080 11

use the popular Hill estimator:

γ ∗ =
[

1

k

k∑
i=1

log

(
�i

�k+1

)]−1

, (4)

where k = 1, . . . ,N − 1. It is customary to estimate γ ∗ value
through a graphical representation called a Hill plot. This type
of depiction is formed by plotting γ ∗ versus k [71]. For EV
distributions (e.g., Pareto), estimated γ ∗ (or, related pmax via
Eq. (3)) are expected to stabilize (i.e., exhibit nonfluctuating
behavior) with increasing values of k.

To illustrate this technique, we present, in Fig. 4, Hill plots
using the same three NIG distributed variates and range of
sample sizes as in Fig. 3. Even though it captures heavy tails
[72], a NIG distribution is not formally an EV distribution.
Thus, perfect stabilization of the Hill plots is not anticipated.
Nonetheless, Fig. 4(a) shows that all four curves smoothly and
slowly decrease below the dashed line, representing pmax = 6.
This behavior indicates that, for this particular heavy-tailed
distribution, even with 107 samples we cannot provide an accu-
rate estimation of S6. However, as the pdf shapes are modified
and tend to become more Gaussian, the Hill plots [Figs. 4(b)
and 4(c)] reveal that higher order moments are achievable for
smaller sample sizes. Another important feature that Fig. 4
portrays is that sixth-order moment estimations pose issues
with sample size less than 105 irrespective of the shape of the

distribution. In fact, this characteristic can also be seen through
the “empirical” sixth-order SF calculations displayed in Fig. 2.

In summary, the approach proposed by Dudok de Wit [66]
and our suggested modification provide guidelines into the
pmax values attainable by the conventional structure function
analysis. In the next section, we advocate an alternative
approach, based on maximum likelihood estimation (MLE),
which has the ability to reliably compute structure functions
well beyond pmax. However, to employ such an approach, one
needs to make an assumption about the underlying pdf of the
velocity increments. In the present work, we assume it to be
following the NIG distribution [56].

V. MAXIMUM LIKELIHOOD-BASED STRUCTURE
FUNCTION ESTIMATION

If the velocity increments follow the NIG distribution, the
structure functions can be rewritten as

Sp = E
(|xp|) =

∫ ∞

−∞
|x|pfNIG(x; α,β,μ,δ)dx. (5)

In this case, x equals δu. If the parameters of the NIG
distribution are known (or estimated), one can simply use a
numerical integration approach to compute the integral.

However, in a typical laboratory or geophysical setting,
these NIG parameters are not known a priori. One can then
use the method of moments approach (see Appendix A)
to estimate them, but this technique has been shown to be
unstable [73]. A more robust approach would be to use the
maximum likelihood estimator (MLE; [74,75]), for details see
Appendix B. Since MLE is a computationally very expensive
technique and occasionally requires numerous iterations for
convergence, in this work we make use of the MME-based
estimates as the initial conditions for the MLE computations.

In order to illustrate the superiority of MLE over MME, we
make use of the Kolmogorov-Smirnov (K-S) statistic based on
the empirical distribution function (EDF; [76]):

D = sup
x

|FEMP(x) − FNIG(x)|, (6)

where FEMP and FNIG are the empirical and estimated NIG
distribution functions, respectively. The results associated with
a heavy-tail distribution (α = 0.1,δ = 1) are shown in Fig. 5.
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FIG. 4. Hill plots for NIG distributed variates with three different parameter combinations: (a) α = 0.1,δ = 1, (b) α = 1,δ = 1, and (c)
α = 2,δ = 2. The parameters μ and β are assumed to be equal to zero. The sample sizes (N ) are varied from 104 to 107. The dashed black
lines represent pmax = 6.
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FIG. 5. Box plots of K-S test statistic (D) comparing MME (top
panel) versus MLE (bottom panel) results. The following parameters
are utilized to generate the random variates: α = 0.1, β = 0, μ = 0,
and δ = 1 (heavy-tailed). The sample sizes (N ) are varied from 103

to 106. As before, 100 realizations are used for the construction of
the box plots.

Without any doubt, for all sample sizes, MLE outperforms
MME by having (i) lower (median) values of D and (ii) reduced
uncertainty bounds of D. Similar comparative results were

obtained for moderate-tail and near-Gaussian pdfs as well (not
shown here for brevity).

Within the MLE computation, we explored two types
of numerical algorithms: Expectation-Maximization (E-M)
[77] and Nelder-Mead method [78]. Both these approaches
produced near-identical results (up to the fourth decimal
points). Our implementation of the E-M algorithm follows
Ref. [74]. We chose this specific approach due to its simplicity
and robustness for the NIG distribution. A pseudocode is
included in Appendix B. For the Nedler-Mead method, we
used a commercial MLE function from MATLAB. Further
details regarding this approach can be found in Ref. [79].

Using the idealized NIG distributed variates generated in
Fig. 2, we now apply the MLE approach to find out if an
improvement over the conventional approach is feasible. The
MLE-based S6 estimates are displayed in Fig. 6 using the
standard box-plot notation as before. Of note, the sample size
range is reduced from 107 in Fig. 2 to 106 in Fig. 6 since MLE
provides converged statistics with far fewer data samples.

There are distinct differences in results between Fig. 2 and
Fig. 6. First of all, for all sample sizes and pdf shapes, the
estimated S6 values are nearly unbiased in Fig. 6. Second,
the uncertainty bounds are significantly reduced in Fig. 6
in comparison to the corresponding box plots in Fig. 2. In
other words, the MLE-based structure function approach is
much more robust and more reliable in comparison to the
conventional structure function approach, especially in a small
sample setting.

In the following section, we will investigate if this conclu-
sion also holds in the case of correlated and real-data samples.

VI. EFFECTS OF CORRELATION

To this point, our analysis has been focused on indepen-
dent and identically distributed (i.i.d) random NIG variates.
However, in practice, the samples may be correlated. For
example, in the case of velocity increments, Anselmet et al.
[49] and Huang et al. [80] reported scale-dependent temporal
correlations. In order to quantify the impact of correlation on
higher-order moment estimation, we synthetically generated
100 realizations of correlated NIG variates. Each realization
is created via the following steps:
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FIG. 6. MLE-based S6 box plots for three NIG distributions with parameter combinations: (a) α = 0.1,δ = 1, (b) α = 1,δ = 1, and (c)
α = 2,δ = 2. The parameters μ and β are assumed to be equal to zero. The sample sizes (N ) are varied from 103 to 106. One hundred
realizations are used for the construction of the box plots. The dashed magenta lines represent the true S6 values based on Eq. (A4).
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FIG. 7. Realizations of i.i.d (top panel) and correlated (bottom
panel) NIG variates. Both realizations follow the same NIG distribu-
tion with prescribed parameters: α = 1, β = 0, μ = 0, and δ = 1.

(1) As before, generate i.i.d NIG variates (sample size of
one million) using the approach by Rydberg [60]. We assumed
a moderate-tailed distribution (α = 1, β = 0, μ = 0, and
δ = 1).

(2) Generate a red-noise series (sample size of one million)
with a spectral slope between zero and minus 1. The magnitude
of this slope is randomly selected from a uniform distribution.

(3) Perform simple histogram matching between the i.i.d
NIG series and the red-noise series. The resultant series
preserves the NIG pdf accurately, and it is correlated. However,
it does not follow the exact correlation structure of the red
noise.

Illustrative examples of i.i.d and correlated NIG variates
are shown in Fig. 7. Even though they look distinctly different
(due to correlation structure), both realizations follow an
identical pdf.

Let us denote each of the 100 correlated NIG realizations
as δu

(k)
1 , . . . ,δu(k)

M ; where M = 106 and k varies from 1 to
100. From each realization, we extract a contiguous subset
δu

(k)
i , . . . ,δu(k)

i+N−1, where i � 1 and i + N − 1 � M . We vary
the subsample size N from 103 to 106. Since we have a total
of 100 realizations, for a specific value of N , we also get 100
subsamples. These subsamples are used to estimate S6 using
the aforementioned “empirical” and MLE approaches. These
results are shown in Fig. 8.

Comparing the results from Fig. 8 to the corresponding box
plots in Fig. 2, it is clear that the uncertainty bounds have
significantly increased for the correlated samples. Also, the
number of outliers have increased substantially. Still, for this
difficult scenario, the MLE-based estimates outperforms the
“empirical” ones in terms of bias and uncertainty bounds. It
is quite remarkable that for all sample sizes, the MLE-based
estimates are unbiased. It is needless to say that both the esti-
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FIG. 8. “Empirical” (top panel) and MLE-based (bottom panel)
S6 box plots for correlated NIG variates. The following parameters are
utilized to generate the random variates: α = 1, β = 0, μ = 0, and
δ = 1. The sample sizes (N ) are varied from 103 to 106. One hundred
realizations are used for the construction of the box plots. The dashed
magenta lines represent the true S6 value based on Eq. (A4).

mates do converge to the true S6 value for large sample sizes;
however, the convergence is slower than the i.i.d scenario.

VII. WIND TUNNEL DATA

To further showcase the strength of the MLE approach,
we utilize laboratory data from the Office National d’Etudes
et de Recherches Aérospatiales (ONERA) S1 wind tunnel.
These velocity measurements were obtained with a DISA
55M01 constant temperature system with Wollaston wire (3
mm diameter and 0.35 mm length for all the air flows). The
sample size for this data is approximately (∼13 × 106) long
with a sampling rate of 25 kHz. Following the conventional
turbulence analysis techniques, we have invoked Taylor’s
hypothesis to convert this time series to a spatial series and nor-
malized the original series to have zero mean and unit standard
deviation. For further details on this data set and past ONERA
S1 wind tunnel experiments, please refer to Refs. [81–83].

Figures 9(a) and 10(a) depict pdfs of velocity increments
for two specific 	t values: 4 × 10−4 sec and 1.35 × 10−2

sec, respectively. Given their distinctly different tail behavior,

052114-6



ESTIMATING HIGHER-ORDER STRUCTURE FUNCTIONS . . . PHYSICAL REVIEW E 95, 052114 (2017)

FIG. 9. Analyses of ONERA S1 wind tunnel data. Selected increment: r = 8.2 mm or 	t = 4 × 10−4 sec, (a) corresponding PDF with
NIG-MLE fit, (b) “Empirical” S6 box plots, (c) NIG-MLE S6 box plots. One hundred realizations are used for the construction of the box plots.
The dashed magenta line represent the S6 values based on Eq. (1) using the entire data set. The dot-dashed lines represent an uncertainty of
±10% around the magenta line.

we utilize them to evaluate the strengths (weaknesses) of the
proposed MLE-based structure function estimation approach.
As before, we randomly selected 100 subsets of varying sample
sizes for both empirical and MLE-based moment estimations.
We consider the S6 values based on Eq. (1) using the entire
data set as the “truth.”

For small sample sizes, the conventional estimates are quite
uncertain (middle panels of Figs. 9 and 10). In addition, for
such cases, the median S6 estimates are significantly outside
the ±10% uncertainty bound. In contrast, the MLE-based
estimates offer low uncertainty for all sample sizes (right
panels of Figs. 9 and 10). For the large 	t case, the MLE-
based median estimates are almost identical to the “true”
value for all sample sizes. The performance is somewhat
poorer for small 	t . In this case, the MLE-based median
values are approximately ±10% lower than the “truth” for
all sample sizes. For small sample sizes (N � 104), the MLE-
based approach unequivocally outperforms the conventional
approach. Based on these results, we strongly recommend the
geophysical community to utilize the proposed MLE-based
approach for analyzing data sets with limited sample size.

VIII. ALTERNATIVE PDF

Throughout this paper, we have demonstrated the strengths
of the MLE-based approach to estimate higher-order moments.

For this purpose, we needed to make an assumption about the
underlying pdf of increments. Given its versatility in capturing
pdfs of different shapes and forms [84], we opted to use the
NIG pdf.

We acknowledge that the NIG pdf has not been fully
vetted by the turbulence research community at large. Thus, its
appropriateness to represent velocity and/or scalar increments
for diverse types of flows remains to be confirmed. In the
recent past, other types of pdfs have been proposed (e.g., Refs.
[85–87]), and some of them have already gained popularity.
In this section, we would like to find out if our MLE-based
moment estimation approach can be utilized in conjunction
with another type of pdf.

In this proof-of-concept exercise, we choose to use the
log-normal superstatistics (LNSS) pdf [64,87,88] given its
strikingly different form compared to the NIG pdf (please refer
to Appendix C). First, we generate i.i.d. NIG variates (α =
1, β = 0, μ = 0, δ = 1) of different sample sizes. We then
estimate S6 by utilizing the MLE approach. However, unlike
before, we make an (incorrect) assumption that the underlying
distribution is governed by the LNSS pdf. The results are
shown in Fig. 11. The top-panel plot shows that the difference
between the NIG and LNSS pdfs are remarkably small (except
near the tails). Visually (without using any metrics), both
the pdfs appear to be equally representative of the generated
random variates. To magnify the tail estimation, the middle
panel shows the pdf multiplied by δu6, which highlights

FIG. 10. Same a Fig. 9, except for r = 277.8 mm or 	t = 1.35 × 10−2 sec.
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FIG. 11. Top panel: comparison of fitted NIG and LNSS pdfs for
i.i.d NIG variates. The sample size is 106. Middle panel: magnifies
the right-tail estimation by multiplying the pdf by δu6. Bottom panel:
MLE-based S6 box plot for i.i.d. NIG variates with the (incorrect)
assumption of LNSS as the underlying pdf. Due to high computational
costs associated with numerical integration of the LNSS pdf, the
sample sizes (N ) are only limited to 104 in this example. The
following parameters are utilized to generate the random variates:
α = 1, β = 0, μ = 0, and δ = 1. One hundred realizations are used
for the construction of the box plot. The dashed magenta line
represents the true S6 value based on Eq. (A4).

the differences in two estimations. More surprisingly, the
LNSS-MLE approach overestimates the true S6 value only
by a small margin (see bottom panel of Fig. 11). Undoubtedly,
the most important finding is that the estimation bias remains
independent of sample size. This result reconfirms the strength
of the proposed MLE approach for small sample setting.

IX. CONCLUDING REMARKS

Maximum likelihood estimation (MLE) is an age-old
technique and is utilized in countless disciplines. For reasons
unknown, the turbulence community has not leveraged on this
statistically robust approach for the estimation of higher-order
structure functions. In this work, we demonstrate that unbiased
estimation of sixth-order structure function with relatively
small samples (less than 105) is feasible with MLE, whereas
the conventional approach fails under these circumstances.
Moreover, the unbiasedness of the MLE approach is not
affected by correlation within the samples. Last, this approach
performs remarkably well for two entirely different types of
pdfs: normal inverse Gaussian and log-normal superstatistics.
In our future work, we will continue to investigate the
prowess of the MLE-based higher-order moment estimation
approach by systematically using other observed data sets
from turbulence to mesoscale motions. Additionally, we will
inter-compare various potential pdf candidates using rigorous
metrics (e.g., Kolmogorov-Smirnov and Anderson-Darling).
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APPENDIX A: NORMAL INVERSE GAUSSIAN
DISTRIBUTION

The one-dimensional normal inverse Gaussian (NIG) pdf
contains four parameters (α, β, δ, and μ) and is defined as
follows [89–91]:

fNIG(x; α,β,μ,δ) = α

π
exp(δ

√
α2 − β2 − βμ)

1√
φ(x)

× exp(βx)K1[δα
√

φ(x)], (A1)

where

φ(x) = 1 +
[
x − μ

δ

]2

. (A2)

The parameter α controls the steepness of the pdf, where a
small α signifies a heavy tail. β is the skewness parameter,
such that a negative β indicates that the pdf is skewed to the
left. μ is the centrality or translation parameter and is slightly
different from the arithmetic mean of the distribution. δ is a
scale or peakedness parameter, and it controls the shape of the
pdf near its mode. α and δ are always positive, and K1 is the
modified Bessel function of third kind of order one [92].

The parameters of the NIG distribution are explicitly
related to the first four central moments [56,74]. Let us
denote the sample mean, standard deviation, skewness, and
kurtosis by m1,m2,m3, and m4, respectively. Further define
γ = 3

m2

√
(3m4−5m2

3)
. Subsequently, the pdf parameters can

be estimated, via the method of moments approach, as
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follows [74]:

α =
√

β2 + γ 2; (A3a)

β = (m2m3γ
2)

3
; (A3b)

δ = m2
2γ

3

β2 + γ 2
; (A3c)

μ = m1 − βδ

γ
. (A3d)

In this work, without loss of generality, we generated NIG
distributed variates with μ = 0 and β = 0. This choice was
made so that Eq. (5) becomes analytically tractable [93] and
reduces to

Sp = E
(|x|p) = 2

p+1
2 δp

π (αδ)
p−1

2

exp (αδ)�

(
p + 1

2

)
Kp−1

2
(αδ).

(A4)

For α = 0.1, δ = 1, it is easy to show that S6 = 4.965 ×
106. This true value is represented as dashed magenta lines
in the left panels of Figs. 2 and 6. True S6 values using other
parameter combinations are also shown in middle and right
panels of Figs. 2 and 6.

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation (MLE) is a well-
established statistical method to estimate the parameters of
a given model (say, NIG) which make the sample data,
xi = x1,x2, . . . ,xN , the most probable outcome. Let f (x|θ )
denote the underlying NIG pdf of the sample data with
parameters θ (θ1 = α, θ2 = β, θ3 = μ, and θ4 = δ). In the case
of independent, identically distributed NIG variates, f (x|θ )
can then be expressed as a joint probability function:

f (x|θ ) = f1(x1|θ )f2(x2|θ ) · · · fN (xN |θ ). (B1)

However, in order to determine the model parameters based on
observed data, we have to solve an inverse problem. The first
step is to define a likelihood function, where the parameters
are a function of the fixed data, as follows:

L(θ |x) = f (x|θ ). (B2)

In the case of the NIG pdf, this likelihood function is simply
a four-dimensional surface sitting above a four-dimensional
hyperplane covering the NIG parameters. For computational
ease, it is customary to maximize the log-likelihood (instead
of L) to obtain the MLE estimates. The log-likelihood function
for the NIG pdf can be written as

ln[L(θ |x)]

= −N ln(π ) + N ln(α) + N (δγ − βμ)

− 1

2

N∑
i=1

ln(φ(xi)) + β

N∑
i=1

xi +
N∑

i=1

ln{K1[δα
√

φ(xi)]},

(B3)

where N is the sample size. Next, to find the paramet-
ric values which “maximizes” the log-likelihood function,

we impose

∂ ln [L(θ |x)]

∂θk

= 0, (B4)

∂2 ln [L(θ |x)]

∂θ2
k

< 0, (B5)

where k varies from 1 to 4.
Karlis [74] developed an expectation-maximization

algorithm to easily maximize Eq. (B3). He leveraged on the
fact that the partial derivative of ln(L) with respect to β leads
to a simple relationship connecting the sample mean (x) and
some of the NIG parameters:

x = μ + δβ

γ
. (B6)

He also derived the relationships between the conditional
expectations of the inverse Gaussian (IG) distribution and NIG
parameters (see Ref. [74] for details). A pseudocode for his
approach is provided below:

Algorithm 1: Expectation-Maximization for NIG pdf

Initialize:
NIG parameters (α(1), β (1), μ(1), δ(1)) using
the MME approach

Compute:
ln (L(1)) using Eq. (B3) and initialized
parameters

for k = 1 to kmax do
Compute:
E-Step - The conditional expectations, si

and wi

si ← δ(k)
√

φ(k)(xi )

α(k)
K0(δ(k)α(k)

√
φ(k)(xi ))

K1(δ(k)α(k)
√

φ(k)(xi ))

wi ← α(k)

δ(k)
√

φ(k)(xi )

K−2(δ(k)α(k)
√

φ(k)(xi ))

K−1(δ(k)α(k)
√

φ(k)(xi ))

Compute:
M-Step - Update the parameters using si

and wi from previous step
s ← ∑N

i=1
si
N

M̂ ← s

�̂ ← N
N∑

i=1
(wi− 1

M̂
)

δ(k+1) ←
√

�̂

γ (k+1) ← δ(k+1)

M̂

β (k+1) ←
N∑

i=1
xiwi−x

N∑
i=1

wi

N−s
N∑

i=1
wi

μ(k+1) ← x − β (k+1)s

α(k+1) ← √
(γ (k+1))2 + (β (k+1))2

i = 1, . . . ,N

Compute:
ln (L(k+1)) using Eq. (B3) with updated
parameters

if | ln (L(k+1))−ln (L(k))
ln (L(k))

| < 10−10 then

break
end if

end for
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APPENDIX C: LOG-NORMAL SUPERSTATISTICS

The concept of superstatistics (a.k.a. “statistics of a statistics”) was proposed by Beck and Cohen [87]. The log-normal
superstatistics (LNSS) pdf can be written as

fLNSS(x; μ,s) = 1

2πs

∫ ∞

0
b−1/2 exp

{−[ln (b/μ)]2

2s2

}
e−(1/2)bx2

db. (C1)

The noncentral second-order moment and the flatness of this distribution can be written as follows [64]:

〈x2〉 = √
w/μ, (C2a)

F2 = 〈x4〉
〈x2〉2

= 3w, (C2b)

where w = es2
. These equations are easily solved to estimate the unknown parameters μ and s. In the present work, these

method of moments-based estimates are used as initial conditions for the MLE computations. A commercial MLE function from
MATLAB, employing the Nelder-Mead method, is utilized.
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