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1 Introduction

Point clouds speak to the imagination. Today one can capture point clouds of
vast geographic regions with relative ease. It is a fully three-dimensional, often
coloured, and high resolution representation of the natural and built environ-
ment, where even small details such as benches and lamp posts are visible (see
Figure 1.1). The beautiful thing about such point clouds is that—provided a
capable and well executed immersive visualisation system'—they enable us to
explore any viewpoint imaginable and study a 3D scene. There are no physi-
cal restrictions on how you can move around nor in the relative scale of your
surroundings to yourself. This freedom facilitates the ability to observe things
in ways that are normally inaccessible to us, thereby enabling us to learn new
things about the environment with increased ease and efficiency.

Geographical point clouds, i.e. point clouds of geographic regions typically ac-
quired though aerial measurements using aerial LIDAR systems [Mallet and Bre-
tar, 2009], have numerous applications in asset management, crisis management,
city and landscape planning, and environmental simulations [Axelsson, 1999;
Snyder, 2013]. While these applications cover a broad range of different exper-
tises, they often require some of the same basic elements from a point cloud. One
such element is the ability to distinguish between points that represent water,
terrain, vegetation, roads or individual buildings. In other words: they require
semantics. In fact, nowadays point clouds are often used to construct a 3D city
model, a semantically rich collection of surface models of objects in urban areas,
i.e. where each urban object (e.g. a building or a tree) is represented as a sepa-
rate entity with a well defined meaning [Groger and Pliimer, 2012]. In practice
there is often a preference to utilise a 3D city model, rather than a point cloud
directly. This should not come as a surprise, given that information in a 3D city
model is well-structured, compact, and explicitly labelled. We can not say the
same of point clouds and certainly not of raw and unprocessed point clouds.

This brings us to the question: How do we obtain a semantically rich 3D city
model from a raw point cloud? Or, more specifically, how do we make a computer
do that? If we—humans—Ilook at a point cloud, we can understand what we see.
We recognise man-made and natural structures in the terrain, such as buildings

!There are specialised systems capable of fluently rendering massive (billions of points) point
cloud datasets in a virtual or augmented reality environment (see for example Kreylos et al.
[2008)).
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Figure 1.1: An aerial LIDAR point cloud (Hoogtebestand Rotterdam 2012).

and mountains, even though the groups of points that constitute these structures
are not explicitly or even implicitly labelled as such in the data structure in our
computer. This is because we have a visual cortex; the part of our brain through
which we make sense of visual information. However, to a computer, a point
cloud is nothing more than a list of points embedded in 3D space, without any
form of organisation or semantics [Schnabel et al., 2008]. So how can we make
the computer recognise some of the same structures that we see when we look
at a point cloud? With this thesis I hope to contribute to an answer to this
question, by developing a method to automatically create a so-called semantic
point cloud [Virtanen et al., 2017].

I propose a new approach to point cloud modelling based on the 3D Medial
Axis Transform (MAT) [Blum, 1967], an alternative way to describe shape (See
Figure 1.2). This approach is fully 3D, in contrast to most existing methods for
geographical point cloud modelling that work in 2.5D. Tagliasacchi et al. [2016]
say the MAT to be dual to the conventional boundary (e.g. a surface point
cloud or mesh) and volumetric (e.g. voxel) representation, because the MAT
contains the same information, but models key properties of a shape in a more
intuitive and explicit way. The key benefit of the MAT here is its skeleton-like
representation that explicitly encodes the structure of a shape through a set of
connected medial sheets. At the same time it also encodes the full geometry of
a shape as the union of its medial balls that effectively describes the volume of
the shape.



(a) The MAT for a

rectangular shape (b) 3D medial balls for a box (c) 3D medial axis of a box
consists of medial shape. shape.

balls (blue) and the
medial axis (red).

Figure 1.2: The MAT in 2D and in 3D.

This combination makes it a powerful shape descriptor, especially for point
clouds that lack any form of organisation. For example, in this thesis I demon-
strate that a point cloud can be decomposed in meaningful parts such as separate
buildings, by using a decomposition of the MAT (Chapter 3). The MAT brings
us a new perspective in point cloud modelling and the underlying hypothesis
of this thesis is that certain operations on point clouds can be achieved more
effectively by using its MAT, rather than its surface points directly.

The novelty of this thesis lies in the application of the 3D MAT to geograph-
ical point clouds, which to my knowledge has not been done before. My core
contribution is three-fold. First, geographical point clouds are noisy and the
MAT is notorious for being extremely sensitive to noise, rendering the resulting
MAT—when constructed with conventional methods—is practically useless. In
Chapter 3 however, I demonstrate how to adapt the ball-shrinking algorithm
from Ma et al. [2012] to be robust to noise. This enables us to approximate
the geometric part of the MAT for geographical point clouds in a way that is
scalable to very large point cloud datasets as described in Chapter 5. Second,
in Chapter 4 I show how to organise the MAT into a connected set of medial
sheets that form so-called medial clusters that gives us a natural decomposition
of the point cloud into objects. Third, I show how the MAT can be applied for
object detection and classification, point cloud simplification and visualisation,
and visibility analysis in geographical point clouds (Chapters 6 and 7). Further-
more, despite my focus on geographical point clouds in this thesis, some of my
results, such as the segmentation approach presented in Section 4.2, should also
be applicable in a more general context.

In this thesis I conclude that the MAT offers a novel perspective to geographical
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(d) Absorbance
and reflectance

(a) Measurement (b) Uneven point

noise distribution (¢) Missing surfaces

Figure 1.3: Increasing point cloud density over the years in different versions of the
national Dutch elevation dataset (AHN) and the point cloud dataset
maintained by the City of Rotterdam.

point cloud modelling. In particular, the MAT gives us 1) an elegant way to
structure and decompose a point cloud into meaningful objects such as buildings
and watercourses in a geographical scene, 2) an explicit separation into interior
and exterior volumes in the point cloud, and 3) the local medial geometry: a
set of measures to characterise shapes. Consequently, I believe that applications
such as object detection can greatly benefit from these unique properties of the
MAT. Thereby bringing the computer that much closer to understanding some
of the same things that we do when we look at a geographical point cloud.

1.1 Related work in geographical point cloud modelling

The geographical point clouds that I consider in this thesis are acquired using
airborne LiDAR-based systems [Shan and Toth, 2008]. Due to practical and
physical constraints such point clouds suffer from a number of flaws that gener-
ally makes it difficult to process them. In Figure 1.3 I have illustrated the main
problems when working with geographical point clouds. First, there is measure-
ment uncertainty (a combination of positioning and ranging errors); points will
not lay exactly on the sampled surface (Figure 1.3a). Second, not all parts of the
surface get equal exposure during acquisition. As a result the point distribution
will vary significantly (Figure 1.3b). In the extreme case a part of the surface is
not seen at all during acquisition and will be completely missing in the resulting
DSM (Figure 1.3c). And even if a surface gets adequate exposure, the physical
properties of the surface material can make it invisible to the acquisition tech-
nique, e.g. for water or glass surfaces (Figure 1.3d). These characteristics set
geographical point clouds apart from the typically much denser and higher qual-
ity point clouds that are used in the more general field of geometric modelling,
e.g. for 3D surface reconstruction as in Amenta et al. [2001], Alexa et al. [2001],
Kolluri et al. [2004], Dey and Goswami [2003] or Kazhdan et al. [2006].



1.1 Related work in geographical point cloud modelling

(a) AHNI (1996-2003)

(b) AHN2 (2008)

(c) AHN3 (2014) (d) City of Rotterdam (2016)

Figure 1.4: Increasing point cloud density over the years in different versions of the
national Dutch elevation dataset (AHN) and the point cloud dataset
maintained by the City of Rotterdam.

I use the term geographical point cloud modelling to describe all methods that
are designed to semantically or structurally enrich geographical point clouds to
facilitate the extraction of useful information. For instance, the automatic de-
tection, recognition and reconstruction of urban objects such as buildings, for
the purpose of creating 3D city models, have proven to be popular topics among
researchers for the last two decades (see e.g. Haala and Kada [2010]; Musialski
et al. [2013]; Rottensteiner et al. [2014]). Building reconstruction methods are
particularly interesting, not only because there are many applications that need
them [Biljecki et al., 2015], but also because they are quite demanding in the
sense that they require an extensive range of point cloud modelling techniques
to be able to reconstruct the required structured geometry from a geographical
point cloud. However, despite the large body of research in building modelling
and the increasing point density of geographical point clouds (see Figure 1.4d),
it remains challenging to set up a fully automated workflow to derive accurate
and geometrically valid building models from geographical point clouds [Rotten-
steiner et al., 2014].

Following is a discussion of relevant literature in parts, where each part corre-
sponds to a processing phase intended to gradually increase the level of semantics
and structure in a geographical point cloud.
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Point classification

One of the most elementary forms of semantics in point cloud is a point clas-
sification, i.e. assigning a each point a label that signifies the type of object it
belongs to. The earliest developed methods classify points into a ground and
a non-ground class for the generation of DTMs, e.g. using morphological filters
[Kilian et al., 1996; Vosselman, 2000; Zhang et al., 2003], progressive TIN densi-
fication [Axelsson, 1999], or by fitting interpolation surfaces [Kraus and Pfeifer,
1998, 2001]. Other classification methods also detect e.g. buildings, vegetation
and clutter classes based on point attributes, return count, or characteristics of
the neighbourhood of a point, such as planarity, slope, elevation, local height dif-
ference, and curvature. These methods are using techniques such as grid-based
region growing (e.g. Forlani et al. [2006]), and graph-cut based optimisation (e.g.
Golovinskiy and Funkhouser [2009]; Lafarge and Mallet [2012]). A point cloud
classification in itself does not distinguish between different objects of the same
type, however it can be used to quickly discard points that are not relevant to a
particular application (see e.g. Awrangjeb and Fraser [2014]; Lafarge and Mallet
[2012]; Xiong et al. [2014]).

Object detection

When individual objects, e.g. single building structures, need to be detected in
a point cloud a variety of techniques can be applied. For instance, one can filter
out ground points and use Euclidean clustering [Sun and Salvaggio, 2013] or
grid-based clustering [Awrangjeb and Fraser, 2014]. Another approach is to use
object footprints from external source, e.g. from a cadastral registry (e.g. Bren-
ner [2000]; Haala and Brenner [1997]; Henn et al. [2013]; Xiong et al. [2016]),
or derived from aerial imagery using computer vision techniques (e.g. Sohn and
Dowman [2007]). While additional data sources can, if available, compensate for
flaws in the point cloud and simplify the development of an approach, adding
other data sources may cause problems due to different data accuracies, acqui-
sition dates, or other types of errors in the additional data source.

Geometry extraction

In building modelling, object detection is often followed by object reconstruc-
tion, i.e. the computation of yhedral model with detailed roof structures and
simplified facades similar to the LoD2 building specification of the CityGML
standard [Open Geospatial Consortium, 2012]). Data-driven object reconstruc-
tion methods often perform a 2.5D triangulation of the original data points or
a simplification thereof (see e.g. Constantin et al. [2010]; Wahl et al. [2008];
Zhou and Neumann [2010]), or the building geometry is derived directly from a
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set of best-fitting planes by carefully intersecting them [Dorninger and Notheg-
ger, 2007; Dorninger and Pfeifer, 2008]. Other researchers employ model-driven
reconstruction methods, either by directly fitting parametrised models [Henn
et al., 2013] or by first performing a segmentation or primitive fitting step for a
decomposition into simple geometric entities such as planes and smooth surface
patches (e.g. Verma et al. [2006]) or slightly higher level geometric primitives
such as cylinders, spheres and cubes (e.g. Lafarge and Mallet [2012]; Schnabel
et al. [2008]). This decomposition phase is often applied in building modelling
and is based on techniques such as the Random Sampling Consensus (RANSAC,
Fischler and Bolles [1981]), see e.g. [Ameri and Fritsch, 2000; Brenner, 2000;
Tarsha-Kurdi et al., 2008], the Hough transform (Hough [1962]), see e.g. Overby
et al. [2004]; Vosselman et al. [2001], and region-growing segmentation, see e.g.
Rottensteiner [2006]; Verma et al. [2006]. The underlying assumption is often
that the resulting groups of points, e.g. planar segments or shape primitives, are
part of separate building objects.

Extracting topological structures

Finally, a vital, yet challenging, step in model-based building reconstruction is
to organise and structure the available segments or primitives in such a way that
a regularised, watertight and geometrically valid polyhedron can be derived.
One approach is to find and classify topological relations between neighbouring
surface segments. The resulting topology is captured in a roof topology graph,
i.e. an abstract graph where each node represents a planar segment and each edge
represent an adjacency between neighbouring segments (see e.g. Verma et al.
[2006] or Elberink and Vosselman [2009]; Forlani et al. [2006]; Schnabel et al.
[2008]; Xiong et al. [2014]). The constructed roof topology graph is then matched
against a library of parametrised building models and the best fitting model is
fitted to the LiDAR points. Other approaches to induce the required structure
for building reconstruction are based on e.g. footprint decomposition (see e.g.
Kada and McKinley [2009]; Xiong et al. [2016]) or by projecting class labels
to a 2D grid and using advanced image-based segmentation and optimisation
techniques [Lafarge and Mallet, 2012]. Yet, the fully automatic reconstruction
of LOD2 buildings remains challenging [Xiong et al., 2016], especially for the
construction of geometrically valid models [Rottensteiner et al., 2014].

1.2 Research questions and scope

Automatic building detection and reconstruction, an advanced topic in geograph-
ical point cloud modelling, involves the organisation of points into higher level ge-
ometrical entities, e.g. planar facets or other types of simple surfaces and shapes,
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ol L

(a) A 3D scene. (b) Reduction to 2.5D.

Figure 1.5: Information is lost when a 3D model is reduced to 2.5D model.

and finding structural relations between those entities. That so-called structura-
tion of a geographical point clouds—often with a poor point distribution—is
not easy, is illustrated by the plethora of methods that were developed during
the last two decades. Virtually all these methods are based on the boundary
representation, and to simplify the structuration problem, many methods re-
duce the dimensionality of the point cloud, e.g. using field-based representations
like a rasterisation or a 2D triangulation [Kumler, 1994; Li et al., 2005]. This
considerably simplifies reconstruction, because it is 1) a simple way to clearly
separate between the interior and exterior part of an object, and 2) it simplifies
neighbourhood relation. However, it also has a fundamental limitation, because
state-of-the-art geographical point clouds, with ever increasing point densities
[Virtanen et al., 2017], can contain complex 3D objects that can not always be
reduced to 2.5D ones without a significant loss of information [Axelsson, 1999;
Filin and Pfeifer, 2005], e.g. a building with an overhanging structure such as a
balcony as illustrated in Figure 1.5.

In this thesis I explore a novel approach to point cloud modelling based on the
3D Medial Axis Transform The main benefits of the MAT are that

1. it is a truly 3D structure with a well defined interior and exterior, and

2. it gives a natural decomposition of a geographical scene into meaningful
objects such as buildings and watercourses.

As such I believe that the 3D MAT would be a powerful and complementary
addition to the existing methods in geographic point cloud modelling that are
based on the boundary representation.

My main research objective is the following:

Exploring to what extend can the MAT be applied to effectively anal-
yse geographical point clouds.

As far as I know, the application of the 3D MAT to geographical point clouds
is completely novel. Consequently, this thesis is of an explorative nature. The
main goals are to
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. investigate how the MAT can be made to work for geographical point

clouds,

. to find what characteristics and properties of the MAT are relevant to

geographical point cloud modelling, and

. to demonstrate how these can be used using real-world datasets and appli-

cations.

This leads to the following main research questions:

1.

Can the MAT be robustly computed or approximated for geographical
point clouds?

a) How to effectively deal with noisy and incomplete point cloud inputs
during MAT approximation? (i.e. the unstructured MAT)

b) How to effectively structure the MAT? (i.e. the structured MAT)

. What applications benefit most from MAT-based geographical point cloud

modelling?

Scope

1.

I focus mainly on geographical point clouds that are obtained using aerial
laser scanning.

. The aim of this thesis is to explore the feasibility of the MAT for geograph-

ical point cloud modelling and to identify promising applications. Further,
more in-depth developments of particular applications are left for future
research.

1.3 Thesis outline

This thesis consists of 9 chapters. Following is a brief overview of the structure
of this thesis

e Chapter 2 introduces the reader to the Medial Axis Transform and de-

scribes all relevant foundational concepts for the following chapters.

In Chapter 3 I introduce a method to robustly compute the geometrical
part of the MAT for geographical point clouds, i.e. the unstructured MAT.

In Chapter 4 I further develop the MAT for geographical point clouds, by
proposing methods for decomposing the MAT into its constituent parts
and reconstructing the topology of those parts, i.e. the structured MAT.



1 Introduction

In Chapter 5 I give practical details on how to implement the MAT.

Chapter 6 describes applications of the unstructured MAT, such as point
cloud simplification and visibility analysis.

Chapter 7 describes applications of the structured MAT, i.e. object detec-
tion.

In Chapter 8 I present my conclusions for this thesis as a whole and I give
recommendations for future work.

Finally, Appendix A provides an overview of general characteristics of datasets
that have been used for the various experiments in this thesis.

10



2 Background of the Medial Axis
Transform

The Medial Axis Transform (MAT)' was introduced by Harry Blum in 1967
[Blum, 1967]. Blum was a biologist and visual scientist concerned with the
perception and analysis of biological shapes using a mathematical approach. He
was dissatisfied with conventional Euclidean geometry, which he describes as
being “rooted in the primitive act of surveying” [Blum, 1974].

Describing a shape merely by its boundary he considered too limiting, as it
did not allow one to easily ‘tease out some of the essential properties of shape’.
For example, Blum wondered how to naturally decompose a shape into parts,
a decomposition that would remain stable even after distorting that shape in
various ways (e.g. see Figure 2.1b).

With the MAT, Blum introduced a new kind of geometry that was ‘a plea to
re-approach the problem of shape with fresh and naive eyes’. And indeed, re-
searchers today consider the MAT a representation of shape that is dual to the
conventional boundary of volumetric shape representations, because the MAT
captures all the same shape aspects, i.e. it is fully equivalent in the mathemat-
ical sense. Yet, at the same time the MAT allows for a simpler, more intuitive
and computationally effective way to analyse or change properties of shape when
compared to the other shape descriptors [Tagliasacchi et al., 2016].

The key problems that Blum considered the MAT useful to are 1) segmentation
of the field into objects (see Figure 2.1a), 2) defining locations and 3) the recogni-
tion and morphology of shapes. Unsurprisingly, these are also core applications
of the MAT in this thesis. The difference is that I study not biology, but aerial
point clouds, acquired using that primitive act of surveying.

Partly thanks to the advance of computers, the MAT—and particularly its 3D
variant—is still an active field of research today. In this chapter I will formally
define the MAT and elaborate on its properties and applications in light of the
latest contributions to the field.

!Sometimes the MAT is referred to as medial axis function, stick figure, symmetry axis,
skeleton or surface skeleton. Blum himself settled on symmetry axis, as he considered
symmetry to be the crucial role of the MAT [Blum, 1973].

11
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(b) Invariance to distortion: the topology of
MAT branches remains the same despite
a deformation of the boundary.

(a) Segmentation: each open space
translates to a connected medial
axis.

Figure 2.1: Some key features of the MAT [Blum, 1973].

2.1 The geometry of shape and geographical data models

We use geographical data models to represent in a computer, what Goodchild
[1992] calls geographical reality: empirically verifiable fact about the real world.
These data models are limited representations of reality and constrained by the
finite, discrete nature of computers. Through the use of such data models we
are able to (automatically) analyse and interpret geographical information about
natural and artificial features in the terrain [Zhou and Zhu, 2013].

The geometry of a geographical data model is implied by its shape descriptor.
Most common is the boundary representation, i.e. a description of a shape or
object by means of its boundary.

Definition 2.1. An object or shape is a compact spatial subset O C R™ with a
2-manifold boundary S = 60.

As shown in Figure 2.2 the earth as a whole can be seen as an object that satisfies
this definition, where the space occupied by O, i.e. the earth itself, is called the
interior of O and its complement, i.e. R™ \ O or the sky, the exterior.

Usually a study area is only a very small part on the surface of the earth with
a boundary that is not closed. However, because we know that the study area
is a subset of the object that represents the entire earth, we can imagine the
boundary to extend at the edges of the study area to form a closed object (see
Figure 2.2). Consequently, the concepts of interior and exterior are conceptually
still valid.

This reasoning can be taken even further, i.e. we can consider the entire study
area to be a single object or a composition of many objects, i.e. a scene, where
each object may correspond to a structure of interest on the surface.

12
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Figure 2.2: The earth can be considered a single object O with a manifold surface S.

These definitions and concepts are important not only for the content of this
chapter, but also for understanding the meaning of the MAT, that is described
in detail in the next chapter, for a geographical data model.

2.2 Defining the Medial Axis Transform

The MAT of an object O consists of interior and exterior medial balls; a set of
balls residing in the interior or the exterior of O respectively. Medial balls can
be characterised by their maximality property which states that a medial ball
can never be contained by another medial ball.

Definition 2.2. A ball B is an interior medial ball of an object O if it is mazimal
in O, i.e. if B is a subset of O and any ball that contains B is not contained in

0.

See Figure 2.3 for an example of an interior medial ball. The exterior medial
ball can be defined analogously.

Definition 2.3. A ball B is an exterior medial ball of an object O if it is maximal
in R"\ O, i.e. if B is a subset of R\ O and any ball that contains B is not
contained in R™ \ O.

A medial ball is guaranteed to be empty, i.e. it does not contain any part of S.
However, it does by definition touch S at two or more points. And, in case of a
smooth—i.e. C?-continuous—boundary, a medial ball is tangent at those points
where it touches S [Ma et al., 2012].

The set of all medial balls of O is called the Medial Azis Transform, denoted
M(O).

13



2 Background of the Medial Axis Transform

Figure 2.3: A maximal ball (disc in 2D) touches the boundary in at least two points
and does not intersect with it [Blum, 1974].

(b) The corresponding medial axis
and some of its medial balls.

(a) A object or shape O.

Figure 2.4: The Medial Axis Transform of a two-dimensional shape.

Definition 2.4. The Medial Azis Transform M(O) of an object O is the set of
centres C and corresponding radii R of all medial balls in O, i.e. M(O) = (C,R).

Figure 2.4b illustrates this. C, in itself sometimes also referred to as the Medial
Axis (MA), represents a skeleton-like structure that is medial to O. R relates C
to the surface S.

Various other equivalent definitions of the MAT exist (see e.g. Tagliasacchi et al.
[2016]), however the one stated here is most appropriate for this thesis.

In order to be able to study local properties of the MAT, I will now define the
medial atom. The MAT can be seen as a collection of medial atoms, each atom
representing a corresponding tuple of a centre and a radius.

14



2.2 Defining the Medial Axis Transform

(b) The 3D MAT (right) of a surface
model of a hand (left) consists of
faces, edges and points [Amenta and
Kolluri, 2001].

(a) Early illustration of the 2D MAT
(consisting of edges and points) of
two ‘anthropomorphs’ [Blum, 1967].

Figure 2.5: The MAT

Definition 2.5. A medial atom a is a tuple of a centre ¢ € C and radius r € R
that correspond to the same medial ball, i.e. a = (c,r).

In this thesis I will often simply use the term atom to refer to a medial atom.

The MAT can be divided into an interior part and an exterior part. The interior
MAT consists of its interior atoms, and the exterior MAT consists of its exterior
atoms. A single object can only have an exterior MAT if that object is non-
convex, since for convex object it is not possible to find exterior medial balls. In
case of a composition of multiple objects, the interaction between these object
can also lead to an exterior MAT, even if all objects are convex.

Finally, a remark on the dimensionality of the MAT. Indeed, Blum, while he
himself mostly wrote about the 2D MAT (see Figure 2.5a), already said the
MAT deserves to be extended to three and possibly higher dimensions [Blum,
1974]. Since I study 3D point clouds, in this thesis I am focussing on the three-
dimensional MAT, i.e. its embedding in R® (see Figure 2.5b). For reasons of
simplicity and clarity I do use the 2D MAT in many illustrations, because the
MAT typically behaves the same in R? as it does in R®. An intuitive way to
think about this, is to consider the 2D MAT to be a planar cross section of the
3D MAT.

2.2.1 The local geometry of a medial atom

The medial atom is elementary to the MAT, since ultimately all parts of the MAT
are merely aggregates of medial atoms. Therefore also the intrinsic properties
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2 Background of the Medial Axis Transform

\ 1111edital
/ sheets

junction
curve:

B(C7 rr) (b) The structure of medial sheets and
junction curves in the 3D MAT.

(a) The local geometry of a medial atom.

Figure 2.6: Characteristics of the MAT.

of the medial atom are fundamental to understanding the MAT. I refer to these
properties as the local geometry of a medial atom.

Considering a medial atom a = (c, ), see Figure 2.6b, I use the following termi-
nology to describe its local geometry.

medial point : the point c
radius : the scalar r

medial ball : the medial ball corresponding to a with center ¢ and radius r,
i.e. B(e,r)

feature point : a surface point where the medial ball of a touches S. Notice that
all feature points are per definition equidistant with a distance r from c. I
consider each medial atom to have two feature points p and q, respectively
the primary feature point and the secondary feature point/footnoteln spe-
cial cases there can be more than two feature points, however these are not
important in the context of this thesis since the ball-shrinking algorithm
(Section 3.1) that I use to approximate the MAT can only compute medial
atoms with exactly two feature points..

spoke/spoke vector : the vector from c to a feature point. The primary spoke,
to p, is denoted sp and the secondary spoke, to q, is denoted sg.

medial bisector : a vector of unit length that bisects the spoke vectors sp and
Sq, denoted b.

separation angle/object angle : the angle 6 between the spoke vectors sp and
Sq-
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2.2 Defining the Medial Axis Transform

Figure 2.7: The local feature size f(p), i.e. the shortest distance from p to the point
approximation of M([S], and the e-sample

As Siddiqi and Pizer [2008] explain in detail, an atom’s local geometry is useful
for a number of reasons: 1) it easily quantifies local characteristics of a shape
such as thickness and curvature; 2) it makes the interaction between the atom
and its corresponding surface points, i.e. feature points, explicit; and 3) it can
be used to define a local coordinate system.

2.2.2 The local feature size and the c-sample

The local feature size is a property of surface points that is computed using the
MAT. It is denoted f(p), and defined as the Hausdorff distance from a point p
on the boundary of an object O to M(QO) (see Figure 2.7). The local feature
size captures the curvature at p and the proximity of other parts of S, since in
both these cases the medial axis is close to S.

The e-sample, proposed by Amenta et al. [1998b], attempts to define a minimum
sample of object that takes into account the differences in the level of detail in
different parts of the same shape. A point cloud P of the boundary of O is an
e-sample if distance from any point on the boundary of O to the nearest point
p € P is at most ¢f(p).

Many MAT approximation methods [Amenta and Kolluri, 2001; Dey and Zhao,
2004; Ma et al., 2012] assume the input to be an e-sample, because it ensures
that fine details are sufficiently sampled and it is often used to mathematically
prove that some approximation method converges to the true MAT when ¢ — 0.
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2 Background of the Medial Axis Transform

(a) Surface reconstructed (b) Surface reconstructed
from oversampled point from e-sample with
sample (12772 points) e = 0.4 (4272 points)

Figure 2.8: Decimation of a point sample using local feature size preserves points
were needed. [Dey et al., 2001]

An e-sample can be obtained from a densely sampled point cloud of an object
by using the work of Dey et al. [2001] or, and with more efficiency, the work
of Ma et al. [2012]. It is also an effective method to perform feature aware
point decimation based on the MAT, with the advantage that the e-parameter
is scale-independent. See Figure 2.8 for an example.

2.2.3 MAT structure

The medial atoms of the MAT are organised in a branching topology, i.e. a
hierarchical skeleton-like structure [Siddiqi and Pizer, 2008]. In R? this means a
subdivision into medial curves that intersect at points. In R® it typically means
a subdivision into manifold surfaces with boundaries, called medial sheets, that
intersect at Y-intersection curves, called junctions see Figure 2.6b.

More formally, the MAT can be referred to as a Whitney stratisfied set, i.e. a
space formed from a collection of interconnected smooth manifolds of varying
dimensions (see e.g. [Damon, 2003; Mather, 1983]). A formal decomposition can
be made into

surface components/medial sheets smooth 2-manifold surfaces with boundaries,

curve components curves that are not incident to medial sheets, i.e. in the case
of tubular shapes, and

point components points without any incident components, i.e. the case where
S is a sphere.
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2.2 Defining the Medial Axis Transform

One can further decompose the MAT and classify each point or curve boundary
of these components according to their local topology [Giblin and Kimia, 2003;
Siddiqi and Pizer, 2008; Tagliasacchi et al., 2016]. One example is the earlier
mentioned junction curve or Y-intersection curve that forms the intersection
between 3 or more sheets. However, for this thesis it is sufficient to view the
MAT as the composition of medial sheets and junctions.

2.2.4 Notable properties of the MAT

The MAT has a number of valuable properties, e.g. for shape analysis. These
are listed here:

Complete The MAT completely describes the shape of an object. As a result,
we can not only compute the MAT from S, but we can also reconstruct
that boundary using solely the information that is present in the MAT
[Blum, 1967, 1973].

Topology preserving This means that O and M(O) have the same homotopy,
i.e. the same number of connected components, voids and tunnels. This is
interesting for e.g. the segmentation of a scene into distinct objects [Siddiqi
and Pizer, 2008; Tagliasacchi et al., 2016].

Compact MAT components are of most of dimensionality d — 1, hence one di-
mension lower than O itself, and the space in which it is embedded. In
general, structure of a lower dimensionality are easier to analyse and pro-
cess [Siddiqi and Pizer, 2008].

Hierarchical composition The structure of the MAT enables an hierarchical traver-
sal of the different parts (each part corresponds to a medial sheet) that
define an object. [Blum, 1967, 1973].

Symmetry/position The MAT is centred exactly in the middle of a shape [Blum,
1967, 1973).

Instability Small perturbations in the object boundary may cause large perturba-
tions in the Medial Axis of that object. This means the MAT is extremely
sensitive to noise [Attali et al., 2009; Choi et al., 1997; Katz and Pizer,
2003).

Smoothness the MAT components are known to be at least piecewise C? con-
tinuous [Pizer et al., 2003; Siddigi and Pizer, 2008].
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2 Background of the Medial Axis Transform
2.3 Algorithms and methods for the MAT in practice

The MAT has appealing theoretical properties, and for the last two decades re-
searchers have been studying how to bring the theoretical benefits into practice?.
The process of obtaining a useful MAT representation can be described in two
main steps:

Approximation computing a discretised MAT for a given object.

Regularisation and pruning filtering parts of the MAT in order to suppress spu-
rious medial atoms that result from the instability of the MAT and is
sometimes worsened by the chosen discretisation.

While the approximation and regularisation steps are needed in practice for
robustness and efficiency, these processes may introduce significant distortions
to the obtained MAT approximation (see also the excellent overview paper by
Tagliasacchi et al. [2016]). As a result some of the MAT properties that are
guaranteed in theory may not be met in practice. The completeness property
may be violated, because the MAT is only an approximation of an already dis-
cretised object boundary. This makes it for example more difficult to perform
the inverse MAT, i.e. a process called garbing: reconstructing a boundary repre-
sentation from an approximated MAT (see e.g. Amenta et al. [2001]). Also, the
homotopy property may be broken during regularisation, resulting in different
number of connected components. In short, there are many compromises to be
made, and making the right choices also depends on the nature of the input data
and the intended application.

2.3.1 Approximation

Exact computation of the MAT is difficult and computationally expensive, even
for shapes bounded by simple curves in 2D [Attali et al., 2009; Biasotti et al.,
2008]. Fortunately, one can also approzimate the MAT. This is usually much
less expensive in computational terms and gives adequate results in practice. To
approximate the MAT essentially means that a discretised form of the MAT is
computed. This means the MAT is represented using a triangulation, a point
cloud or a set of voxels, rather than an algebraically defined set of surfaces. The
form of discretisation naturally depends on the employed approximation method.
In particular,

1. Voronoi diagram and bisector based methods yield a triangulated MAT,

2. distance transform and thinning based methods represent the MAT as a
set of connected voxels, and

2Shechy et al. [1995] was—as far as I know—the earliest attempt using a computer but it
only targeted a limited set of polyhedral shapes.
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2.3 Algorithms and methods for the MAT in practice

Figure 2.9: The VD can be used to approximate the MAT: the quality of the
approximation (bottom row) increases with an increasing density of the
boundary sample (top row). Sampling density increases from left to
right. [Attali and Montanvert, 1996]

3. ball-shrinking methods yield the MAT as a point cloud.

Below, I will discuss these three groups of methods to approximate the MAT.

Voronoi and bisector based methods

Given a sufficiently dense point sample S of the boundary of a shape O, it can be
observed that a subset of the Voronoi Diagram (VD) of S approximates M(O).
Brandt and Algazi [1992] gave a proof for the two-dimensional case. Observe
from Figure 2.9 that those VD edges that do not intersect the boundary of O
contribute to M(QO). Furthermore, following the duality between the VD and
the Delaunay Triangulation, if we take the dual of the remaining (boundary-
intersecting) VD edges, we end up with an approximation of the boundary that
is sampled by S. Attali and Montanvert [1997], Amenta et al. [1998a] and Gold
and Snoeyink [2001] have used this duality to design algorithms that compute
both this approximation of the boundary of O, and an approximation of M(O).
The approach by Gold and Snoeyink [2001] uses a simple local test to construct
these.

However, these results cannot be easily extended to the three-dimensional case.
As explained by Amenta and Choi [2008], the main difficulty is the presence of
slivers in the 3D DT. These are almost flat Delaunay tetrahedra that appear
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2 Background of the Medial Axis Transform

Figure 2.10: Reconstruction of the boundary of an object from just its MAT. Left:
using a union of a finite number of medial balls. Right: using the power
crust method. Figure from [Amenta and Kolluri, 2001].

when four or more sample points on the boundary of O are (almost) co-circular,
which is quite common in practice. Unlike the two-dimensional case, the Voronoi
vertices corresponding to these slivers lie far from M(O). These slivers are un-
related to the presence of noise in the boundary sample S. In fact an arbitrarily
dense sampling will result in Voronoi vertices that are arbitrarily far from M(O).
As a result, the part of the VD that corresponds to these slivers needs to be fil-
tered out before the MAT of a 3D shape can be approximated using the VD.

Approximating the 3D MAT based on the VD can be achieved in three ways.
One is by iteratively peeling away Voronoi cells starting from the boundary of an
object. In the method of Attali and Montanvert [1997], a cell is only removed if
that does not change the topology of the MAT. Furthermore, they implement a
threshold for filtering slivers. A second approach is based exclusively on filtering
the elements of the VD. To achieve this, Dey and Zhao [2004] use two different
local criteria that are independent of scale and sampling density. This results in
an approximated MAT that insensitive to noise to some extent. Unfortunately
the outputted MAT may have holes, which is topologically incorrect. The third
approach was presented by Amenta and Kolluri [2001]: the power shape. Instead
of using the VD directly to construct the MAT, they use it only to find poles:
the farther vertices of the Voronoi cell of a sample point on the boundary of
O. Amenta et al. [2001] show formally that these poles converge towards the
exact MAT, as the point density of S increases. A weighted VD, i.e. the power
diagram, of poles (weighted with the radius defined by their Voronoi balls) is con-
structed, and the dual of this diagram, the regular triangulation, approximates
the MAT of O. Notice that the power diagram can also be used for garbing,
i.e. to reconstruct the surface of O from the MAT (See Figure 2.10). A draw-
back from the power shape method is that it requires twice the calculation of
a Voronoi-like diagram, whereas other Voronoi-based methods only require one
such calculation. Furthermore, the output includes tetrahedra, which may be
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(b) Volume
rendering of
the distance
transform.

(a) Input model

(c) A =11 voxels (d) X = 15 voxels

Figure 2.11: MAT extraction using the discrete A-MAT method of Chaussard et al.
[2011]. For Fig. 2.11b: Blue-green-yellow-red in order of increasing
distance.

problematic for further processing. Tam and Heidrich [2003] therefore choose to
extend and improve an earlier variant of the power shape algorithm, which out-
puts many duplicate geometries but does not exhibit the sliver problem [Amenta
and Kolluri, 2001]. Miklos et al. [2010] further improved the robustness of the
algorithm and simplified parts of it by assuming the input to be a surface mesh
rather than a point cloud.

Jalba et al. [2012] are eager to point that Voronoi methods, such as the one of
Miklos et al. [2010], which is supposedly one of the best continuous Voronoi-
based MAT approximation algorithms, may suffers from numerical degeneracies
that affect the quality of the output. In theory this can be fixed by using robust
predicates. However, robust predicates are costly and using them would add to
the complexity of the implementation.

Bisector based methods are conceptually similar to the Voronoi based methods,
although they do not explicitly compute the VD. Instead, bisector planes be-
tween surface points—analogous to the faces of a VD—are calculated in a brute
force manner which is computationally very expensive [Barequet et al., 2008;
Culver et al., 2004; Lee, 1982]. The medial scaffold of Leymarie and Kimia
[2007] achieves a higher efficiency by only computing the bisector planes that
are relevant to the MAT. This is achieved by finding particular types of medial
points prior to the bisector computation. Results are similar to Voronoi based
methods and have the added benefit of the medial point classification. However,
the medial scaffold is still more expensive to compute than Voronoi methods
[Tagliasacchi et al., 2016].
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2 Background of the Medial Axis Transform

(b) Reconstructed surface without
pruning.

(d) Reconstructed surface with
medium pruning. Despite the

o simplified MAT, the

(A =6) corresponding boundary surface

remains almost unchanged.

(f) Reconstructed surface with
. . strong pruning. Notice how the
(e) 1\§A_Tlv51th strong pruning tree is separated from the the

(A = 10). ground and that edges have
become rounder.

Figure 2.12: The effect of different levels of pruning on the 2D MAT. Own
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Voxel based methods

This category of approximation methods obtains the MAT as a voxel image.
Thinning methods take a voxel image as input, and iteratively peel away layers
of voxels. A 3D example is described by Borgefors et al. [2008]. A prime feature
of thinning is the preservation of topology. However, the shape of the resulting
skeleton often depends on the order in which voxels are thinned.

Other voxel-based approximation methods are based on the distance transform:
an image where each element is labelled with the shortest distance to the bound-
ary of an object O [Chaussard et al., 2011; Chazal and Lieutier, 2005; Hesselink
et al., 2005; Sud et al., 2004]. Different measures for distance can be used and
will result in different skeletons. From the distance transform the MAT can be
intuitively recognised as a set of ‘ridges’: lines that indicate local directional
maxima. Voxels that contribute to the MAT-approximation can be identified
in a number of ways. Foskey et al. [2003] take the gradient field, a derivative
of the distance transform, where every element consists of a unit vector in the
direction of its closest boundary point. For every pair of adjacent vectors, the
angle between them is computed and if this angle is larger than a threshold 0 a
facet between them is added to their MAT-approximation; the §-SMA.

Voxel based methods are often rotation invariant, i.e. they suffer from spurious
branches in the MAT when the object is not axis-aligned [Borgefors et al., 2008]
(Figure 2.12a illustrates this) and sub-optimally centred, i.e. the axis is not pre-
cisely medial (with the notable exception of Sud et al. [2007]). This is due to the
non-continuous and gridded coordinates the output is not rotation invariant.

While parallelised computation is possible both for the computation of the dis-
tance transform [Cao et al., 2010] and the thinning methods [Saha et al., 2016],
this does not mean that scalability of is feasible. Voxel-based methods are rela-
tively fast for small inputs, but for inputs that have a resolution of 1000® voxels
or more, the algorithms become significantly slower and more memory demand-
ing since these algorithms usually scale linearly with the number of input voxels
[Sobiecki et al., 2013].

Shrinking ball methods

Ma et al. [2012] introduced the shrinking ball algorithm. Like the Voronoi-based
methods and unlike the voxel-based methods, it outputs continuous coordinates,
but it is based on a much simpler idea. It takes an oriented point cloud as input,
i.e. one that includes point normals, and outputs a set of points as the MAT
approximation. If normals are not available, they can be estimated beforehand
using local plane fitting. The shrinking ball algorithm is based on the assumption
that the centre of the medial ball corresponding to a sample point s must be
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2 Background of the Medial Axis Transform

Figure 2.13: Two different approaches to reconstruct a surface MAT in the method
of Jalba et al. [2012]. Left: Delaunay reconstruction, right:
reconstruction based on clustering of sheets (rendered in different
colours).

positioned somewhere along line through the normal of s. Starting with a large
ball B, B is iteratively shrunk until it neither touches nor contains any other
points than s and only one more sample point. During this process a KD-tree is
used as an efficient spatial index. A more detailed description of the algorithm
is given in Section 3.1.

The simplicity of the algorithm makes it very efficient and scalable. According
to Tagliasacchi et al. [2016] the shrinking-ball algorithm is the fastest MAT ap-
proximation method currently available. Compared to the power shape method
of Amenta and Kolluri [2001], it is between 2 and 15 times faster, and an addi-
tional speed up of 5 to 10 times is gained when using a GPU implementation [Ma
et al., 2012]. [Jalba et al., 2012] gained another order of magnitude in computa-
tion time by sacrificing some degree of quality by using an approximate KD-tree
rather than an exact one.

Structuration The main limitation of the ball-shrinking algorithm is that it
outputs only an unstructured set of medial atoms, i.e. the medial sheet surfaces
are not explicitly reconstructed. Structuration is the process of overcoming this
limitation by constructing the sheet surfaces, e.g. as a triangular mesh, from
which explicit structural information about the hierarchy of the MAT can be
obtained [Delame et al., 2016].

If the input shape is available as a mesh, structuration can be achieved by col-
lapsing the surface mesh to the medial atoms along the spoke vectors [Jalba
et al., 2012]. However, this results in a polygons soup of triangles, which cannot
be directly used for analysis or processing operations besides visualisation [De-
lame et al., 2016]. Other methods do not require a surface mesh, and work solely
with the medial atoms. These are typically generic point cloud reconstruction
algorithms, such as the ball pivoting algorithm [Bernardini et al., 1999] as used
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by [Jalba et al., 2012]. However, also with such methods there is no guaran-
tee that a topologically accurate medial mesh is obtained [Delame et al., 2016].
Kustra et al. [2014] have proposed a surface reconstruction method that is de-
signed specifically for extracting complex manifolds with intersecting surfaces.
They show it works well on very dense MAT approximations computed by the
ball-shrinking algorithm.

Comparison of 3D MAT approximation methods

To summarise, I will now list the main characteristics of the three categories of
MAT approximation methods.

For Voronoi-based methods:
e Approximates also the structure of the MAT;
e Proven to convergence to the theoretical MAT;
e Computation of the VD may suffer from numerical degeneracies;
¢ Presence of slivers;

e Most complex implementation and difficult to parallelise (no known par-
allelised variants).

For the voxel-based methods:
o Highly parallelised computation possible;

e Gridded coordinates lead to an output that is not rotation invariant and
has sub-optimal centredness;

e Slow computation for large inputs, when compared to the other approaches;
e Very high memory requirements for large inputs.
For the ball-shrinking methods:
o Fastest and highly parallelisable computation;
e Simple algorithm and thus simple to implement;
o Lower memory requirements than Voronoi methods [Ma et al., 2012];
e Structure of the MAT is not computed;

¢ Requires in advance the approximation of point normals.
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2 Background of the Medial Axis Transform

2.3.2 Regularisation and pruning

Tagliasacchi et al. [2016] remark that virtually all MAT papers mention the
MAT’s instability, i.e. its sensitivity to small shape changes, as the key challenge
in computing a usable MAT. Measures to prevent the occurrence of unstable
medial atoms can be taken before, during or after the MAT approximation.
For instance, some researcher smoothen or simplify the input surface prior to
MAT approximation (see e.g. Dey and Zhao [2004]). However, by far most
methods aim to remove unstable medial atoms after the MAT approximation.
These so-called regularisation or pruning methods usually work by computing
an importance measure for each medial atom, followed by a thresholding step
in which unstable parts of the MAT are filtered out or simplified. Notice that,
while the primary objective is often to remove spurious or noisy parts of the
MAT that overly complicate its structure, pruning methods can often also be
used to simplify the MAT even further with the goal of generalising the input
shape (see Figure 2.14).

&%&Q‘; |

Surfaco Rocosstrectod a Stroagly Simplified Surface Recomstrocted from
from Boundary Points gl Aadinl Ak Snpnel Mol Axi Medial Axis Stroagly Simplified Axis

Figure 2.14: Simplifying the MAT (figure from Tam and Heidrich [2003]).

Following is an overview of prominent 3D pruning methods.

Atom based pruning methods are the most common. They usually define an
importance measure for each medial atom in the MAT and filter medial
atoms by thresholding the importance measure. The resulting (pruned)
MAT is usually a subset of the original MAT. Some methods preserve
topology, others do not or only up to a certain level. The main challenge
is often selecting the optimal threshold value, which often turns out to be
a manual process.

e A-MAT, where A is the shortest distance between the set of boundary
points that correspond to the same point on the MAT [Chazal and
Lieutier, 2005] (see Figure 2.15a). All points on the MAT for which
this distance is higher than A contribute to the A-MAT. Topology is
preserved until the so-called weakest feature size is reached: the largest
A for which the (inner) MAT for a single object is still completely
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(a) \-MAT. (b) 0-MAT (c) Boundary potential.

Figure 2.15: Common pruning measures from literature. They all define a metric
based on the two boundary points p; and p2 that correspond to the
same medial axis point m.

connected (compare Figures 2.12¢ and 2.12¢). The A-MAT has proven
particularly popular in approximation methods that are based on the
continuous distance transform [Chaussard et al., 2011; Hesselink et al.,
2005].

e O-MAT, where 6, or the separation angle, is the angle between two
boundary points that correspond to the same point on the MAT (see
Figure 2.15b). In case of more than two corresponding boundary
points, the ones that result in the largest angle are chosen. The larger
the separation angle of a given point on the MAT, the more stable that
point is considered to be. It is generally not considered to be topol-
ogy preserving. But it has been used by many researchers [Amenta
and Kolluri, 2001; Attali and Lachaud, 2001; Attali and Montanvert,
1996; Foskey et al., 2003]. Sometimes it is used together with other
criteria [Dey and Zhao, 2004], or even in combination with topology-
preserving constraints [Sud et al., 2007].

e The scale axis transform was introduced by Giesen et al. [2009], and
then implemented by [Miklos et al., 2010]. It is different from other
continuous pruning methods because it can result in a superset of the
original MAT, where the other methods always result in a subset.
The idea is to 1) scale the radii of the medial balls of an initial MAT
with a factor s > 1, 2) recompute the MAT of the union of scaled
medial balls, and 3) re-scale the new medial balls with a factor of 1/s.
The resulting MAT has a simplified shape, because many relatively
small medial balls will have disappeared in the second step. When
comparing this method to the 0-MAT, Miklos et al. [2010] argue that
it works in a more global fashion (because medial balls can disappear
due to a merging with relatively far but significantly large balls) and
is therefore of a higher quality. Topology is preserved up to a certain
value of s, where after the topology might change due to the closing of
holes. The resulting object may thus have a different genus. However,
this problem is fixed in the work by Faraj et al. [2013], which improves
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2 Background of the Medial Axis Transform

(a) Before pruning (b) After pruning.

Figure 2.16: Using the part-based pruning method of Tam and Heidrich [2003],

features can be selectively removed from a model.

and extends the scale axis transform. They use a progressive filtration
technique to compute the simplified MAT for all scales at once which
enables real-time exploring for the effects of different scale-threshold.

The boundary potential of a point on M(O) is defined as the shortest
distance between two corresponding boundary points over the surface
of O (see Figure 2.15c). It was originally introduced in the 2D case
by Ogniewicz and Ilg [1992] and a similar concept was used by Matuk
et al. [2006]. Dey and Sun [2006b] define essentially the same thing,
but call it the medial geodesic function, and uses it to compute the
curve skeleton: a topology equivalent subset of the MAT that has
no area. Jalba et al. [2012] provide an efficient implementation and
argue that it is a good measure because it takes into account the global
shape of an object.

Sheet based pruning means that the MAT is reduced based on the selective
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removal of entire MAT-sheets, usually while preserving topology.

o Tam and Heidrich [2003] introduce a three-step approach: 1) decom-

posing the MAT into parts (the MAT sheets are cut where they meet),
2) assigning a significance value to the parts based on a) the number
of triangles in the part, or b) the volume that would be removed from
the input object as a result of pruning the part, and 3) performing
an ordered pruning process that removes all parts with significance
values within a specified range that do not alter the topology of the
MAT. The order is such that outer parts are removed first. The num-
ber of iterations depends on the required level of simplification. Tam
and Heidrich [2003] specifically mention that their aim is to perform



2.3 Algorithms and methods for the MAT in practice

feature-based pruning, i.e. to remove specific parts of a model as
demonstrated in Figure 2.16.

e Sud et al. [2007] similarly decompose the MAT into parts and iter-
atively remove sheets (starting with the outer ones), but in contrast
to Tam and Heidrich [2003], they assign a significance value based
on the highest separation angle (as defined earlier) in a sheet. Their
primary reason to use part-based pruning is that it preserves topology
and their objective is to identify a stable MAT.

Edge-collapse based pruning methods simplify the MAT structure by collapsing
edges. Evidently a structured MAT is required for these methods, e.g. as
obtained by Voronoi based approximation methods.

e Sun et al. [2013] introduce a MAT-based volume representation called
the medial mesh. An object can be reconstructed from the medial
mesh by buffering its faces and edges while considering the medial
ball radii at the medial vertices in the medial mesh. An initial mesh
is computed using a Voronoi-based MAT approximation methods and
then simplified by collapsing edges. The edge collapses are driven
by a global error between the original input surface mesh and the
reconstruction of the simplified medial mesh. The error metric of
Sun et al. [2013] is based on the one-sided Hausdorff distance and
edges are collapse in order of increasing error until an accepted level
of simplification is reached. Li et al. [2015] propose a very similar
approach, but they use the quadric error metric—originally introduced
by Garland and Heckbert [1997] for mesh simplification—extended
with a term that quantifies the likelihood that an edge is spurious in
the MAT. The advantage over Sun et al. [2013] is that this allows for
optimal vertex placement after collapsing an edge.

An interesting outlier to how most MAT-related noise handling methods work is
the work of Berger and Silva [2012]. They introduce the so-called medial kernel
for surface points, a similarity measure defined as the likelihood that two surface
point belong to a common medial ball. While their method does not explicitly
compute the MAT itself, it is designed specifically for noisy and incomplete
point clouds. The main difference with classical pruning methods is that they
carefully consider the defects in the surface point cloud during the generation of
medial balls, whereas pruning methods are applied only after MAT generation.
In their method they generate a candidate ball for each pair of surface points
and quantify the likelihood it is a medial ball based on the emptiness of the
candidate ball and its tangentiality—i.e. how well pre-computed surface point
normals align with the local medial geometry. Unfortunately, this method has
quadratic time complexity.
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2 Background of the Medial Axis Transform

To conclude, the described pruning methods are mostly applied to a MAT that
was derived from fairly dense and high quality surface meshes or point clouds—
when compared to typical geographical point clouds. For these inputs, existing
pruning methods can be considered to be effective with the main caveat that
pruning is often a trade-off between robustness to noise and the topological
and geometric fidelity of the pruned MAT when compared to the original input
shape.

2.4 Summary

This chapter introduced the MAT and reviewed method and algorithms from
literature. I explained how the MAT is defined in relation to the conventional
boundary representation, that it is a non-manifold structure made out of so-
called medial sheets that are in turn made out of medial atoms that can be
described by their local medial geometry. Then I reviewed existing algorithms
to compute to approximate the MAT, given a boundary surface or point cloud,
and various ways to prune the MAT. I identified the ball-shrinking algorithm by
Ma et al. [2012] as the most promising for geographical point clouds.

In the next chapter I explain how I have modified the ball-shrinking algorithm
to be robust to the kind of noise that is typical for geographical point clouds.
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3 The unstructured MAT

In an ideal world we would have complete access to the MAT of a geographical
data model including all of its properties as described in Chapter 2. But, our
world is not an ideal one. The core contribution of this thesis is that I show
that the MAT can be computed robustly for aerial point clouds in a form that
is practically useful even in our non-ideal reality. In the coming two chapters
I explain the challenges in computing the MAT for real-world datasets, how to
meet them, and what are the resulting implications on the usefulness of the
resulting MAT representation.

The first challenge that we encounter is that—even assuming a perfect repre-
sentation of the surface—there are no algorithms to compute the MAT exactly
for all shapes [Attali et al., 2009]. And although there is a subset of shapes for
which we can compute it exactly, the computational cost of these algorithms
is so high that they are not practical [Attali et al., 2009; Biasotti et al., 2008].
As a result we must work with algorithms that merely approzimate the MAT,
which of course implies that we compromise a bit on the different MAT charac-
teristics (most notably full preservation of information in comparison to surface
representation) that made the MAT so compelling in the first place.

Secondly, as described in Section 1.1, an aerial point cloud is always incomplete
and inaccurate to some degree and even if we had an algorithm that computes
the MAT exactly for all shapes in feasible time, the result would still be distorted
when compared to reality.

The computation of the MAT of a geographical data model thus requires an
approximation algorithm that on the one hand does not assume a continuous
and well sampled surface, and on the other hand is robust to measurement noise,
since the MAT is notably unstable for small distortions in the surface geometry
(as explained in Chapter 2). This is the core topic of this chapter.

Finally, for the next few chapters the reader should be aware that I break down
the MAT into an unstructured part (this chapter) and a structured part (next
chapter). The unstructured MAT (Figure 3.1) concerns its geometry, i.e. the
complete set of medial atoms, whereas the structured MAT concerns the sub-
division of the MAT into medial sheets and the connectivity of those sheets.
Further details and considerations on the implementation of the MAT, such as
data structures and scalability, are given in Chapter 5.
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Figure 3.1: The main steps in computing the unstructured MAT from a point cloud

3.1 The ball-shrinking algorithm

Out of all the known MAT approximation algorithms that I have described
in Chapter 2, I believe the ball-shrinking algorithm from Ma et al. [2012] is
most suitable for the geographical case because it is (1) point-based, (2) simple,
(3) fast, and (4) scalable. Since modern geographical data models are typically
acquired as point clouds it is preferred to have methods that work directly with
points. This avoids costly conversions to limiting lower-dimensional or simply
less accurate representations. One might even say it is the only way that takes
full advantage of the wealth of information that is contained in a point cloud.
Apart from point-based, the ball-shrinking algorithm is also conceptually simple.
With this I not only mean that it is intuitive and easy to understand and that it
can be implemented in a dozen lines of code, it also means it does not suffer from
numerical robustness issues as triangulation algorithms do. Furthermore because
of its simplicity it is also easy to extend and adapt the method. I demonstrate
that in Section 3.3.

The ball-shrinking algorithm was designed on the basis of three important ob-
servations about the MAT:

1. every medial ball touches the surface in at least two feature points,
2. wherever a medial ball touches the surface it is tangent to it, and
3. every medial ball is empty, i.e. there are no surface points on its interior.

From the second observation it immediately follows that the normal vector 1 of
a feature point p must be aligned with the centre of the medial ball c. In other
words, in addition to p, also ¢ must lie on the line L through n.

We then only need one additional point q and we can construct a ball that
touches p and q and is centred on L. If we now consider that both p and q
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3.1 The ball-shrinking algorithm

Algorithm 1: The extended shrinkBall algorithm. Highlighted in
yellow are the denoising heuristics.

Input :a KD-tree of the surface point cloud T,
a surface point p, and
it’s normal vector 11, and
for denoising the parameters 6y and 6,
Output: the medial ball centre c,
the medial ball radius r
11+0
2 T 4 Tinit
38 ¢ + computeCentre(p, i, r)
4 repeat
5 Qnext < nearestNeighbour (7', c)
Tnext < computeRadius(p, i, gnext)
Cnext < computeCentre(p, 1, Tnext)
if Thext > 7 — €cone then
L break

10 else if i = 0 and 6y > ZpCnextUnext then
11 L break

© 0 N o

12 else if i > 0 and 01 > ZpCnextQnext then

13 L break
14 C < Cpext
15 T 4 Tnewt

16 until a break statement is executed

are surface points, then we only need to check if the ball is empty in order to
determine if it is medial. If this is the case then we have found ourselves a medial
ball with the feature points p and q.

We are thus trying to find a medial ball from a given tuple p,i. The question
therefore is: how do we select an appropriate q so that the triplet p, 11, q defines
a medial ball? The ball-shrinking algorithm (see Algorithm 1) does this using
a process of iterative ball shrinking. At each iteration a new candidate ball is
constructed that is smaller than the previous one and closer to the final medial
ball. Every ball is constructed so that it touches p and is centred on L, only q
changes. A new q, denoted gnext, is found by selecting the closest point from
the centre ¢ of the current ball. Using p, 1, qnext We can compute the centre
of the next ball cnext, at which point we move on to the next iteration. The
algorithm terminates when an empty ball is found.

The ball-shrinking algorithm always converges because at each iteration Qnext
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3 The unstructured MAT

Algorithm 2: The shrinkBalls algorithm
Input : an oriented point cloud P,
Output: an interior and an exterior medial ball for each p € P,
T < computeKDTree (P)
foreach p,n € P, do
shrinkBall (T, p, i)
L shrinkBall (7T, p, —n)

B W N R

will be closer to ¢ than q, which means the new ball will always fit inside the
current one. In other words: shrinkage is guaranteed. Finally an empty ball
must occur because we only have a finite number of surface points. According to
Ma et al. [2012] and my own tests, it typically takes less than 10 balls before an
empty one is found, and this empty ball must be medial because it also touches
the surface at two points. Figure ?? shows an example of a series of balls that
is computed for one surface point.

Notice that Algorithm 1 lists my own variant of the core ball-shrinking algorithm.
The main difference from the original pseudo code by Ma et al. [2012] is the
addition of denoising heuristics (lines 10-13). I will further explain these in
Section 3.3, but notice that when these lines are omitted the behaviour of the
original algorithm is obtained. In addition, the shrinkBall algorithm would
typically be run inside a loop that iterates over every point of an oriented input
surface point cloud. In each iteration of that loop, the ball-shrinking algorithm
is ran twice: once with p, i and once with p, —fi. In this way we compute both
the interior and the exterior medial ball for p. Algorithm 2 shows this.

Inputs and outputs

Evidently the ball-shrinking algorithm takes a surface point cloud as input and
in addition to the point coordinates it also requires a normal vector for each
point. Such a point cloud, where each point has an associated normal vector,
is called an oriented point cloud. In Section 3.2 I give further considerations
on how to obtain the normal vectors. On the output side of the algorithm we
basically obtain the ball centres and radii. Because we obtain both the interior
and exterior medial balls, we will compute two medial balls for each surface
point. The space complexity of the output is therefore 2n, thus linear with the
input size.
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3.1 The ball-shrinking algorithm

p
ANe"

e q ® (next
e C

(a) Initial ball (b) Second iteration.

(c) Third iteration. (d) Fourth iteration yields an empty ball.

Figure 3.2: Ball shrinking iterations with the ball-shrinking algorithm. A legend is
given in b.
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Figure 3.3: Geometry functions used in the shrinkBall algorithm.

Supporting functions

Algorithm 1 calls three different functions on lines 5-7:

1. The function nearestNeighbour (7, ¢) simply returns the point from point
cloud P that is closest to the query point q. This function can be imple-
mented efficiently using a KD-tree [Bentley, 1975] and has a time complex-
ity of O(logn). Notice that the KD-tree of P must be constructed prior
to running the nearest neighbour queries, this has a time complexity of
O(nlogn) [de Berg et al., 2000].

2. The function computeRadius(p, i, q) computes the new ball radius in con-
stant time (O(1)).

3. The function computeCentre(p, i, r) computes the new ball centre in con-
stant time (O(1)).

Diagrams for the latter two functions are given in Figure 3.3.

Time complexity
The time complexity of the entire ball-shrinking algorithm is O(nlogn). This
follows from two observations.

1. The shrinkBall algorithm is called 2n times.

2. Each call to the shrinkBall algorithm takes O(logn) time, because the
average number of iterations can be considered to be constant on average
(Ma et al. [2012] around 6 7) and the only non constant time operation is
the nearestNeighbour call on line 5, which takes O(logn) time.
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3.2 Normal estimation

We can therefore conclude that the expected time complexity of the shrinkBalls
algorithm is O(nlogn), which includes the O(nlogn) construction of the KD-
tree. As noted by Ma et al. [2012] the worst-case time complexity is actually
O(nz), i.e. the case where all surface points are visited for the approximation of
each medial ball (e.g. it could happen if the input surface is a sphere). However,
this is extremely unlikely in practice and the real-world performance is described
as ‘near-linear’. I should point out here that the average number of iterations
does depend on the complexity of the shapes in the surface point cloud. For
instance, it will be higher for a surface point cloud with a large number of
curved surfaces.

3.2 Normal estimation

The ball-shrinking algorithm requires an oriented point cloud as input, i.e. each
points should come with a associated normal vector. Earlier works with the
shrinking-ball algorithm [Jalba et al., 2012; Ma et al., 2012] always obtained
these from a high quality mesh in which case the normal is well-defined and easily
obtained everywhere. In the geographical case on the other hand, we usually
deal with unoriented point clouds with a very heterogeneous point distribution.
Because an aerial point cloud does not usually come with normals, we need to
estimate these before we can run the ball-shrinking algorithm. Of course we
should be aware of the effects of all this on the quality of the estimated normals
and the implications for the MAT approximation that we finally obtain.

Normal estimation by local plane fitting

The most popular method to estimate normals for point clouds is to locally fit
tangent planes. If we want to estimate the normal for a point p, we take a set
of points N close to p (usually found using a KD-tree), and fit a plane through
them. The underlying assumption is that these points are 1) all part of the
same surface as p and 2) locally planar. The normal vector should then be taken
orthogonal to the fitted plane. Computing the best fitting plane can be seen as
a least-squares problem that is often solved using a PCA decomposition (see for
instance Gross and Pfister [2011]) and everything is computed locally.

The two main advantages of this method are that it is 1) simple to implement
and 2) fast to execute. The main disadvantage is that the normals are typi-
cally distorted around sharp edges. Furthermore, this distortion effect may be
strengthened by the heterogeneous point distribution of aerial point clouds. Fig-
ure 3.4 illustrates this. The problem here is that a k-neighbourhood of a point is
not always a good approximation of the actual surface, because the neighbouring
points may be part of several different planes.
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3 The unstructured MAT

Figure 3.4: Distortion of normal estimation around edges due to non-planar areas
and heterogeneous point distribution.

Another consideration is that even though an oriented point cloud often approx-
imates a manifold surface, there is no clear distinction between the inside and
the outside of the surface. As a result it is rather difficult to obtain consis-
tent normal orientation throughout the dataset or even within the same object.
For the computation of the MAT using the ball-shrinking algorithm this means
that we cannot simply expect two well distinguished sets of interior and exterior
points merely by flipping the point normals (as done in lines 3-4 of Algorithm 2).
Yet with a consistently oriented point cloud—i.e. one obtained from a mesh—it
would be as simple as that. This problem is addressed in Chapter 4

Other methods

There are more sophisticated normal estimation methods that specifically deal
with the edge problem (e.g. Boulch and Marlet [2012]; Huang et al. [2013]; Li
et al. [2010]).However, while these may deliver better normals around edges, they
are significantly slower (e.g. Boulch and Marlet [2012] says an order of magnitude
slower) and may introduce new problems (e.g. Huang et al. [2013] notice there
method fails around open boundaries). It is therefore questionable if there is a
net benefit of employing these methods. In this thesis I have therefore decided
to use the simple and fast PCA normal estimation. In Section 3.5 I elaborate
on the implication on the approximated MAT and show that a usable MAT can
in fact still be obtained. As a last remark I should point out that there is some
work that indicates that the MAT itself can be used to obtain higher quality
normals [Dey and Sun, 2006a]; i.e. start with quickly approximated normals,
compute the MAT and refine them by using the properties of the MAT.
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Figure 3.5: Effects of noise in surface points on MAT.

3.3 Making the ball-shrinking algorithm robust

The original ball-shrinking algorithm of Ma et al. [2012] was designed to handle
well-sampled point clouds with very little noise. However, aerial point clouds
contain significant noise, and—as explained in Chapter 2—the MAT is by def-
inition highly sensitive to it. The core issue is that small perturbations in the
surface points can lead to large perturbations in the MAT. For geographical
point clouds this is a real problem because the MAT can get scattered to such a
degree that its actual form is no longer perceivable (see for example Figure 3.12).
In this section I first describe in detail how the MAT deforms in the presence
of noise. Then I present a novel extension to the ball-shrinking algorithm that
makes it robust to noise, effectively enhancing the practical usefulness of the
MAT of an aerial point cloud.

3.3.1 The problem of noise

The cause of the MAT’s sensitivity to noise is that every bump in the surface
should by definition have a medial sheet protruding into it. Noisy points cause
many small bumps in the surface and each of them can thus be fitted with one
or more medial balls that contribute to the medial sheets that protrudes into
the bumps. These medial balls are centred close to the surface and away from
the more centralised MAT sheets. This is illustrated in Figure 3.5a.

Let us now consider a point p and its primary medial ball. How do they change
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3 The unstructured MAT

if p is shifted due to noise? See Figure 3.5b. As you can see, the noisy version
of p, denoted Pnoise has only moved by a small amount. The ball on the other
hand has shifted by a much larger amount. One way to explain this is to say
that due to the noise, the secondary feature point of the ball, denoted Qnoise has
actually moved to the surface on the opposite side. Therefore, Qnoise iS much
closer to p than q, and as a result the ball has become much smaller and is now
also centred much closer to p. Thus, even though p was only shifted by a small
amount due to noise, its primary ball changed in four ways: 1) it was shifted by
a relatively a large amount, 2) its radius became much smaller, 3) it no longer
contributes to the central sheet, and 4) its secondary feature point q shifted to
the opposing surface.

How exactly a medial ball changes depends on the normal at p and the magnitude
of the noise. In Figure 3.5b I show a range of different possibilities under the
assumption that the normal of p does not change due to noise. As the figure
shows, this means that B ends up being centred anywhere in between its original
position and p. One could say it is effectively scattered away from its original
place in the central sheet. In case of significant noise in the surface points—e.g.
the geographical case—this means that the entire MAT will be scattered up to
the point it is hardly distinguishable.

In literature, the instability of the MAT in presence of noise is a well-discussed
topic. Unsurprisingly, many solutions have been proposed (see also Section 2.3.2).
Ma et al. [2012] for instance note that the medial ball radii of nearby sample
points should be similar. Noisy medial balls typically are an exception to this
rule, and can therefore be detected by comparing medial ball radii of nearby
surface points. If the ball radius is significantly smaller, the ball is removed.
Pruning methods, e.g. based on ball metrics such as the separation distance or
separation angle (see Figure 2), can also be effective for detecting and removing
noisy samples. However, a common characteristic of the known noise filtering
methods, is in fact that they filter, i.e. they completely remove the noisy medial
balls. While that may be sufficient when the surface point cloud has only very
few noisy points, it is a problem for aerial point clouds since the MAT point
cloud may be thinned considerably . And, to make it worse, the point density in
aerial point clouds is already relativelylow when compared to point clouds ob-
tained from close range laser scanning or mesh sampling. In other words, if one
removes all noisy medial balls in a geographical MAT, there will be hardly any
medial balls left. Noise filtering methods are therefore not adequate for aerial
point clouds.

3.3.2 A novel denoising heuristic

My solution to deal with noisy surface points stands out primarily in the fact
that it is not a filtering method. Instead of removing noisy medial balls, I aim to
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Figure 3.6: Comparison of ball-shrinking iterations with and without noisy surface
points.

denoise, i.e. maintain a version of those medial balls that is robust to the effects
of noise in the surface. I achieve this by extending the ball-shrinking algorithm.
Recall that the algorithm computes a converging series of shrinking balls for each
surface point. The key observation that I make, is that even in case of a noisy
surface point, a ‘good’ medial ball is often computed before it shrinks further to
become a noisy medial ball. Figure 3.6 illustrates this. If we compare the noisy
case (Figure 3.6b) to the noise-free case (Figure 3.6a) we see that an additional
ball is computed, i.e. there is an additional 5" iteration. Yet, the ball of the
4*" jteration—the final and medial ball for the noise-free case—is very similar
in both cases. So even in the noisy case a good medial ball is computed. This
observation lies at the core of the denoising heuristics that I propose.

In the case of Figure 3.6b we thus prefer the ball at the 4" iteration over the one
at the 5" iteration, because it is much closer—almost identical—to the medial
ball that we find in the noise-free case. How do we know which ball to pick
if we do not want the final ball? In agreement with what I explained earlier,
we can see that the secondary feature point q shifts to the opposite side of the
ball. Moreover, when the secondary feature point q flips side, the separation
angle 0 suddenly becomes much smaller (Figure 3.7b). This shift can therefore
be detected by monitoring the separation angle as a function of the iteration
counter. This is illustrated in Figure 3.7a. The simplest way to detect a noisy
ball is thus to set a threshold on the separation angle. The last ball that has
a separation angle higher than this threshold should be a good representative
medial ball. The extended ball-shrinking algorithm (Algorithm 1) implements
two such thresholds on the separation angle, namely 6y and 6; on lines 10-13. If
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Figure 3.7: Comparison of ball-shrinking iterations with and without noisy surface
points.
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the iteration counter i equals 0, 6y is used, and else 6, is used. In practice, this
allows us to better fine-tune the algorithm. Especially for the case that the first
ball encountered is already a noisy ball which normally only happens for exterior
balls on large planar areas. And in the latter case, which typically happens for
interior balls, the threshold can be set lower to achieve a better balance between
robustness and sensitivity to small features in the surfaces.

Key benefits of the denoising heuristic

The main property of the denoising heuristic of the extended ball-shrinking al-
gorithm is that is keeps medial balls on the centre sheets. As a result we obtain
less noisy balls and a denser MAT approximation. The idea of using the sep-
aration angle for noise detection in itself is not new. The novelty lies in how
it is integrated in the ball-shrinking algorithm in such a way that noisy points
are not removed but denoised instead. While it is a simple extension to the
ball-shrinking algorithm, it proves to be very effective in practice, as I will show
in the next section.

An additional benefit of the simplicity of the denoising heuristic is that it does not
increase the time complexity of the ball-shrinking algorithm, nor does it require
an extra pass through the MAT points. In fact, I found that the extended ball-
shrinking algorithm runs faster, since the average number of ball iterations per
point is lower as a result of the denoising heuristic.

3.3.3 Results

In this section I demonstrate the effectiveness of the novel denoising heuristic
that I introduced above. I present experiments both with artificial datasets for
which a noise-free ground truth is known and with aerial LiDAR datasets from
practice.

Figure 3.8 shows the datasets used in this section. Further details on the dif-
ferent datasets used here and throughout the rest of this thesis are given in
Appendix A.

Experiments on artificial data

A noise-free ground truth is important in the evaluation of the effectiveness of
the MAT approximation using my novel denoising heuristic. Only with such
a ground truth, we can know what the noise-free MAT would look like, and
quantify and determine whether the denoising of the MAT actually brings it
closer to the noise-free MAT.

45



3 The unstructured MAT

(a) Dataset 9

(c) Dataset 5 (d) Dataset 1

Figure 3.8: Datasets used for experiments
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The goals of the experiments in this section are
1. to study the effect of surface noise on the approximated MAT,

2. to study the effect of my novel denoising heuristic on the approximated
MAT both in the absence and the presence of noise, and

3. to compare with a conventional noise filtering method.

In particular I will look at 1) the distance between the denoised MAT and the
noise-free MAT and 2) the point density of the denoised MAT approximation.

Experiment 1 For the first experiment two variants of Dataset 9 are used, one
variant with artificially added noise, referred to as P,, and one variant without
artificially added noise, referred to as P. The artificial noise was added using
a Gaussian function with a standard deviation of 0.01% of the bounding box
diagonal of the dataset.

Then, the MAT of P, is approximated using three different approaches, namely
1. the unmodified ball-shrinking algorithm denoted M(P,) [Ma et al., 2012],

2. the unmodified ball-shrinking algorithm followed by a removal of all medial
atoms that have a separation angle § < 30° denoted MF(P,), and

3. the extended ball-shrinking algorithm as developed in this chapter, de-
noted MD(P,) with parameters 8y = 30° and 6; = 60°. This approach
is included to serve as a reference to what is commonly done by other re-
searchers to filter noisy medial atoms (see e.g. Amenta and Kolluri [2001];
Attali and Lachaud [2001]; Attali and Montanvert [1996]; Foskey et al.
[2003]).

Finally, the MAT of each approach is compared to M(P), i.e. the MAT of the
noise-free point cloud approximated using the unmodified ball-shrinking algo-
rithm. Recall that the MAT approximation that we compute using the ball-
shrinking algorithm can be considered a point cloud. Given two point clouds A
and B, we can compute for each point in A the distance to the closest point in B.
The resulted set of distances is denoted A — B. By studying both A — B and
B — A one obtains a good impression of the similarity in the spatial distribution
of points between point clouds A and B.

In Figure 3.9 I present the distance computations for the three approaches to
approximate the MAT. Each column in this figure corresponds to one approach
to approximate the MAT. The upper row shows visualisations of the distances
from the noise-free MAT M(P), i.e. the ground truth, to the MAT obtained using
one respective approach, and the bottom row gives the opposite distances.
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3 The unstructured MAT

(a) M(P) - M(Py,) (b) M(P) —» MF(P,) (c) M(P) - MD(P,,)

(d) M(P,) — M(P) (e) MF(P,) - M(P) (f) MD(P,) — M(P)

Figure 3.9: Experiment 1: Three approaches to approximate the MAT and the
colour coded distances between approximations with and without added
noise for Dataset 9. Large distances in red, small distances in blue. Each
image uses the same colourmap.
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3.3 Making the ball-shrinking algorithm robust

Figures 3.9a and 3.9d show the case without denoising heuristic. From Fig-
ure 3.9a it is evident that the inner parts of the MAT are badly approximated
since the distances M(P) — M(P,) are large, indicating a lack of samples there.
Many points in M(P,) are distributed around the surface points and far away
from M(P) (see Figure 3.9d). This indicates many unstable balls. The outer
sheets that are clearly visible in Figure 3.9a, are almost completely missing in
3.9d.

Figures 3.9b and 3.9e show the effect of simple filtering using the separation
angle. While this approximation has much less points far away from M(P) (see
Figure 3.9¢), it does not solve the problem of a lack of samples on the inner parts
of the MAT, as seen from Figure 3.9b.

This lack of samples is no longer apparent when my denoising heuristic is used
(Figures 3.9¢c, 3.9f). From the small distances in these figures, it can be concluded
that most of M(P) is densely approximated by MD(P,), including the interior
parts of the MAT. The remaining points in MD(P,) that are far from M(P) are
distributed close to the surface points and correspond to relatively small medial
balls similar to the remaining blue points in Figure 3.9e.

From this experiment it can thus be concluded that MD(P,) is 1) significantly
closer to M(P) than MF(P,) and 2) a much denser approximation of M(P)
than MF(P).

Experiment 2 The aim of this experiment is to study in more detail how the
approximated MAT of an aerial LIDAR point cloud is changed, i.e. how medial
atoms are moved towards the MAT of the ground truth, as a result of the de-
noising heuristic. In addition the approximation error of MD(FP, ) with respect
to a ground truth is quantified as a function of the denoising parameter 6.

Since a ground truth is required an actual aerial LIDAR point cloud is not suf-
ficient. Therefore I use Dataset 11: a point cloud that I obtained by simulating
an aerial LiDAR scan of a simple building mesh' (see Figure 3.10a).

Because this dataset is derived from a mesh model, it is possible to generate
a noise-free and very dense MAT approximation. This I consider the reference
MAT (e.g. the ground truth) of the experiment, denoted M(S).

For this experiment two simulated point clouds are considered, namely a simu-
lated point cloud with added noise (P,) and one without added noise (denoted
P). The noise is simulated by adding a normally distributed noise component
with a standard deviation of 2 cm along the scanning direction and an additional
2 cm in the position of the scanner.

! Using industry-standard flight parameters that were used for the acquisition of the national
AHN3 dataset (flight height 400 m, flight line spacing: 400m) and the BlenSor software
[Gschwandtner et al., 2011]
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3 The unstructured MAT

(a) Dataset 11: a simulated aerial LiDAR

point cloud of a building mesh X . .
(dimensions: 10 x 20 x 15 m, 1751 (b) Cross section of simulated point cloud

with noise (Pr), reference MAT (M(S)),
and MD(P,). Red lines indicate how
points MAT are moved as a result of my
denoising heuristic (6p = 30° and

01 = 30°)

points).

Figure 3.10: Experiment 2; dataset and cross-sections
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Figure 3.11: Experiment 2: overall error in MAT approximation with respect to
reference MAT with and without our denoising heuristics.

For both simulated point clouds the MAT is approximated using once M() and
MD() for a range of values for 6;. The case for 6; = 32° is visualised in
Figure 3.10b. In this figure lines are drawn between the medial atoms of M(P,,)
and MD(P,) that correspond to the same surface points. One can thus see how
medial atoms are effectively moved towards M(S] as a result of my denoising
heuristic.

To quantify the quality of the denoised MAT approximation the distances to the
reference MAT are measured for each medial atom, similar to Experiment 1. The
plot in Figure 3.11 show how the standard deviation of distances of MD(P,)
gradually decreases with increasing values of 6;. For instance, an overall decrease
of 31% can be observed in the standard deviation of MD(P,) as a result of the
denoising heuristic (i.e. a drop from 0.33 to 0.22 at a conservative 6y = 20°),
while in this case only 11% of the medial atoms are affected by the denoising
heuristic.

Furthermore, from the plot of MD(P), we see that my denoising heuristic has a
negligible effect on the approximation of the MAT of the noise-free point cloud
P. In other words, it has very little effect on medial atoms that are not affected
by noise.
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3 The unstructured MAT

Experiments on real-world data

From the experiments on artificial datasets we can indeed conclude that we can
obtain a robust and dense MAT approximation from noisy surface point clouds
by using ball-shrinking algorithm with my novel denoising heuristic. Experi-
ments on real data confirm this, as illustrated in e.g. Figure 3.12. As highlighted
in this figure, we can observe two distinct effects on the approximated MAT
due to the denoising heuristic. First, the approximation of the interior MAT is
much denser, i.e. the signal of the medial sheets is significantly stronger as they
are much easier to distinguish. Notice that these medial atoms are mostly af-
fected by the 6, parameter. Second, the visible scatter of medial atoms exterior
to the object is significantly less. These atoms are mostly affected by the 6o
parameter.

The same behaviour can be observed from Dataset 6 (see Figure 3.14). More-
over, Figure 3.13 of the same dataset illustrates very clearly the skeleton-like
nature of the MAT of mountain range, where the ridges and valleys of the
mountain range are translated to branches of the interior and exterior MAT
respectively. However, from Figure 3.14 it can also be observed that some of the
minor medial sheets disappear or shrink in the denoised MAT.

Finally, for Dataset 1 the effect of the denoising heuristic on the estimated local
feature size (LFS, as described in Section 2.2.2) is evaluated (see Figure 3.15).
In this figure the LFS is estimated using 1) a MAT approximated using the un-
modified ball-shrinking algorithm (Figure 3.15a), 2) the same MAT, but with
simple filtering based on the separation angle and separation distance (see Fig-
ure 3.15b), and 3) and denoised MAT obtained using my denoising heuristic (see
Figure 3.15c¢).

From Figures 3.15a and 3.15b it is evident that without the denoising heuristic,
computing the LFS is not feasible since it the distances from the surface points
to the MAT are so heavily distorted by noisy medial atoms. However, with the
denser and cleaner denoised MAT approximation, computation of the LF'S is fea-
sible. This enables applications such as feature-aware point cloud simplification
as described in Chapter 6.

From these experiments it can be concluded that 1) in case of geographical
point clouds a much more distinctive and more useful MAT approximation can
be obtained by using my novel denoising heuristic and 2) there is a trade-off
between the amount of detail captured by the denoised MAT and its robustness
to the noise present in the surface point cloud.
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Figure 3.12:

3.3 Making the ball-shrinking algorithm robust

Without denoising With denoising
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| on medial sheets

scatter of
exterior atoms

MAT approximation for Dataset 3 without denoising (left) and with
denoising (right) for 6 = 20° and 67 = 32°. Shown are top views (top)
and side views (bottom). Interior points in red, Exterior points in
purple.
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3 The unstructured MAT

(c) Interior MAT (d) Exterior MAT

Figure 3.13: The denoised MAT for the Dataset 6. Colours indicate elevation.

Without denoising With denoising

Top-view

Front-view

Figure 3.14: Dataset 6; exterior MAT approximation with and without novel
denoising heuristic. g = 20° and 6; = 32°
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3.4 Impact on computational performance

(c) With my denoising
heuristic; 0 = 20°,
01 = 32° and ball
filtering A < 0.05m

(b) Simple filtering of
(a) Without denoising. atoms with 6 < 20°
and A < 0.05m

Figure 3.15: Local feature size approximations for the urban dataset with different
approaches to denoise. Red indicates low local feature size, blue high
local feature size.

3.4 Impact on computational performance

There are mainly two ways to improve the performance of the shrinking-ball
algorithm, i.e.

1. by decreasing the number of required ball iterations per surface point, and
2. by parallelising the ball-shrinking iterations either on a CPU or on a GPU.

The potential speed-ups are over an order of magnitude [Jalba et al., 2012; Ma
et al., 2012] in the execution time of the ball-shrinking algorithm, and are signif-
icant in practice especially for massive (geographical) point clouds. This leads
us to the question: how does the denoising heuristic impact the computational
performance of the ball-shrinking algorithm?

A simple and effective way to improve performance is to choose a smaller initial
ball radius 7in:t, i.e. one that is close to the final medial ball radius. This
effectively reduces the total number of required ball-shrinking iterations for each
surface point. Ma et al. [2012] do this by processing the surface point cloud in a
spatially coherent order and setting ri,i: to the last found medial ball radius of a
nearby point. This approach requires a sequential processing of the surface point
cloud and is therefore not suitable for parallel computation. Jalba et al. [2012]
propose a CPU parallelisation scheme where each thread processes a chunk of
surface points and a GPU parallelisation scheme where each thread processes
one surface points. Whenever a new medial ball radius is found in any of the
threads, they update a global r;,:: to be a moving average of all medial ball radii
found so far.

Unfortunately, while choosing a small r;,;; may improve performance, it also
interferes with my denoising heuristic. The problem is that the ball-shrinking
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3 The unstructured MAT

process is not reversible, i.e. we can easily find the next—smaller—ball from the
current one, but not the previous—larger—one. This is a problem because, with
the denoising heuristic, once a noisy ball is detected, the previous ball should
be outputted. However, if the previous ball is not known because it was never
computed, it is not possible to output it. Therefore, performance enhancements
based on choosing a smaller r;,;+ should be avoided in case the denoising heuristic
is used.

In principle, the parallelisation schemes of Jalba et al. [2012] are still possible
without their initial radius heuristic. The CPU-GPU parallelisation scheme of
Ma et al. [2012] does not use such an initial radius heuristic and is therefore
also suitable to use with my denoising heuristic. In fact this approach may be
preferred, because the lack of initial radius heuristic leads to a large variance
in the number of required ball-shrinking iterations for each medial atom which
leads to unbalanced threads. That is a problem in GPU computing, and Ma
et al. [2012] take special care to balance these threads by communicating with
the CPU after each iteration.

In my own implementation of the ball-shrinking algorithm I choose to use a
simple CPU parallelisation based on OpenMP, where each thread computes one
medial atom.

Note that my denoising heuristic by itself also decreases the number of required
ball-shrinking iterations, because it is essentially an early break from the ball-
shrinking loop.

3.5 Discussion

With the ball-shrinking algorithm one can very efficiently approximate the MAT
of a point cloud, and with my denoising heuristic this can be done robustly for
geographic point clouds. Yet, very few things come for free, and also in this
case there is a small price that needs to be paid for these benefits. In this
section I elaborate on limitations of the unstructured MAT, as obtained using
the methods described in this chapter. None of these limitations are major
bottlenecks, but knowing exactly its limitations can help to optimally make use
of the unstructured MAT.

3.5.1 Limitations of the ball-shrinking algorithm for geographical
point clouds

Due to the way the ball-shrinking algorithm works there are number of limita-
tions in the way it approximates the MAT.
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Figure 3.16: The effect of surface curvature on the density of approximated MAT
sheets. Grey lines indicate spoke vectors.

1. The density of atoms in a medial sheet is proportional with the curvature of
the surface point density [Siddiqi and Pizer, 2008]. Areas with high surface
curvature lead to a low density of the MAT as illustrated in Figures 3.16a—c.
In some cases this can even lead to a separation of sheets as illustrated e.g.
in Figure 3.16d. The missing part of the MAT that changes the connectivity
of medial sheets is referred to as a ligature in the literature [Siddigi and
Pizer, 2008]. Note that the occurrence of ligatures is not unique to the
ball-shrinking algorithm (see e.g. Foskey et al. [2003]).

2. The unstructured MAT does not capture the 2D surfaces of the MAT, only
a discretised point approximation is obtained. Also the topology between
medial sheets is not captured explicitly. The latter is addressed with the
structured MAT that I introduce in the next chapter.

3.5.2 Limitations of the denoising heuristic

The denoising heuristic that I have introduced comes with one notable compro-
mise.

1. As noted in Section 3.3.3 there is trade-off between robustness to noise and
the sensitivity to small features in the surface, as is the case with pruning
methods for the MAT in general (see Section 2.3.2). This means small
features are sometimes detected as noise.
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3 The unstructured MAT

Figure 3.17: Distorted surface normals around edges affect the position and
separation angle of medial atoms.

3.5.3 Effects of the quality of the surface point cloud

Finally, the quality of the unstructured MAT is affected by several aspects of
the input surface point cloud. Because of their unpredictability and variability
even within the same point cloud, I generally find these more significant than
the limitations listed earlier in this section. The quality aspects of the input
point cloud that affect the quality of the unstructured MAT are:

1. Poor point density in the surface translates to poor point density in the
MAT.

2. Missing surface patches due to shadowing effects can cause erroneous me-
dial sheets (see e.g. Figure 7.10b).

3. Asshown in Figure 3.17 the normals around an edge are typically estimated
in a “smoothened way”. As a result the corresponding medial atoms are
distorted in terms of position and their medial geometry. In combination
with a relatively low point density, this leads to poorly estimated medial
atoms towards the edges of a surface.

4. In case of wrong normal orientation (e.g. a normal that point inward instead
of outward), the separation between interior and exterior medial atoms will
also be wrong. However, this is issue is solved in the structured MAT that
is presented in the next chapter.

3.6 Summary

In this chapter I explain in detail how to approximate the MAT for geographical
point clouds. In particular, I introduced a method to robustly approximate the
MAT for geographical point clouds. I call it the unstructured MAT, because it is
purely a description of the geometry of the MAT, without structural information.
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3.6 Summary

In the next chapter I will explain how to derive the structure of the MAT, i.e. its
decomposition into medial sheets, the topology of the MAT, and its separation
into an interior and an exterior part.
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4 The structured MAT

In Chapter 3 I explained how to robustly obtain the unstructured MAT from a
DSM point cloud using the extended ball-shrinking algorithm. The unstructured
MAT is a collection of medial balls, each represented by a point and attributed
with a radius and two corresponding feature points (the points where the medial
ball touches the surface). This already enables a few useful applications of the
MAT such as point cloud simplification and visualisation (see Chapter 6). It is
however a purely geometric description that lacks an explicit subdivision into
e.g. medial sheets and an explicit representation of the connectivity of medial
sheets through e.g. a graph. More advanced applications of the MAT require a
richer MAT in which the separate medial sheets are labelled, the connectivity of
those sheets is known, and the distinction between the interior and the exterior
sheets is known. This is what I call the structured MAT (Figure 4.1), and in this
chapter I explain what it is and how to obtain it from the unstructured MAT.

The core scientific contributions of this chapter are
1. T explain the behaviour of the MAT specific to the geographical case,

2. I introduce the idea of using region-growing segmentation based on local
medial geometry to segment the unstructured MAT into medial sheets and
so-called medial clusters,

3. I explain how to obtain a graph to explicitly express the connectivity of
medial sheets, and

4. I solve the problem of the inconsistent separation between the interior and
exterior MAT.

X g Xy Ry Kby Ay
>J\( gﬁ/ ~ A=
S =4

1. Unstructured 2. Cluster 3. in/ex-terior 4. Sheet 4. Adjacency
MAT segmentation classification segmentation graph

Figure 4.1: The main steps in computing the unstructured MAT.
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—watercourse

Figure 4.2: For a terrain the MAT is typically subdivided in open clusters that can
correspond to distinct features of the terrain. Exterior MAT in light
blue, interior MAT in dark blue.

4.1 The structured MAT as a geographic data model

So far, research on the MAT has been almost exclusively focused on shapes
that are closed manifolds [Tagliasacchi et al., 2016]. My focus, however, is on
the geographical context. Because this is rather different from how shapes are
typically considered in mainstream MAT research, I will now elaborate on how
this affects the structure of the MAT.

To start with, the geographical MAT is different because—even though we are
talking about a single manifold surface—it does not guarantee that the MAT is
connected. This is true for both the interior and the exterior MAT. For example,
as can be seen from the interior MAT in Figure 4.2, the geometry of the terrain
induces a separation of the interior MAT into separate, or nearly separate, parts.
I call these parts medial clusters. As shown in Chapter 7, medial clusters of a
terrain are very helpful in detecting urban features, such as buildings, or certain
pronounced features of the natural terrain, such as hills or watercourses.

Second, for the geographical MAT there is a clear added value in maintaining
both the interior and exterior MAT'. In contrast, mainstream MAT research often
exclusively considers the interior MAT (see e.g. Jalba et al. [2012]; Ma et al.
[2012]). This is understandable, since the exterior MAT is redundant. One can
in theory completely describe a shape using solely its interior MAT. However,
the geographic case is different for mainly two reasons. First, some features
like the water course in Figure 4.2 can be captured more elegantly in a single
exterior medial cluster, rather than two separate interior clusters. And second,
considering the relatively poor quality of an aerial point cloud (see Section 1.1),
I would argue that the redundancy can actually be helpful. This is especially
the case for surfaces with a low point density, where sharp edges may be more
accurately represented by the exterior MAT.
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4.2 Segmenting the unstructured MAT

Last, I propose a novel way to organise the MAT called the structured MAT.
In literature, obtaining the explicit connectivity of the MAT after construction
is commonly referred to as structuration (also see Chapter 2). Delame et al.
[2016] defines structuration as the process of obtaining from the medial atoms
the explicit surfaces and curves of the MAT, i.e. as (triangular) meshes and
polylines. Their research shows that structuration is quite challenging, even for
an MAT approximated from a high quality mesh. The available structuration
methods struggle to maintain key structural properties of the MAT, such as
that sheets are manifold and that they properly intersect at the junction curves.
I therefore opt not to explicitly reconstruct the curves and surfaces from the
medial atoms of unstructured MAT. Instead, I choose to maintain the point
cloud representation in the structured MAT, representing medial sheets simply
as sets of points. The connectivity of the structured MAT is represented as an
abstract graph. It is the dual graph of the MAT, where each node represent a
medial sheet, and the medial curves are implied by edges that signify adjacencies
between sheets. This novel way to organise the MAT, i.e. the structured MAT, is
easier and more robust to compute, without loosing its usefulness for advanced
MAT applications such as object detection and classification (see Chapter 7).

In summary, and as illustrated in Figure 4.1, the main features of the structured
MAT are

1. segmentation of the MAT into medial clusters,

2. segmentation of the MAT into medial sheets,

3. explicit connectivity of medial sheets through a graph, and
4. distinction between interior and exterior parts of the MAT.

In the following sections I introduce the algorithms to compute the structured
MAT. Naturally I have implemented these algorithms (see Chapter 5 for more
details), and throughout this chapter I show the results of the algorithms on
Dataset 10. Figure 4.3 shows the surface points and the medial points of the
unstructured MAT for this dataset.

4.2 Segmenting the unstructured MAT

An important feature of the structured MAT is its organisation into its con-
stituent elements, e.g. medial clusters and medial sheets. In this section I de-
scribe a novel approach to identify medial clusters and sheets in the unstructured
MAT using a segmentation algorithm.

For the segmentation of the unstructured MAT I use the growRegion algorithm
(see Algorithm 3) that is conceptually similar to the one described by Rab-
bani et al. [2006]. However, I have based the segmentation on the local medial
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4 The structured MAT

(a) Surface points. (b) Medial points coloured by medial
radius using a repeating colourmap.

Figure 4.3: Dataset 10

atom geometry, instead of local surface geometry (i.e. Rabbani et al. [2006]
use the difference in normal vectors of surface points). In the algorithm, each
region (or segment or sheet) is started from an arbitrary seed atom and grad-
ually grows by considering neighbouring atoms. The neighbours are tested us-
ing validCandidate and the region is complete when all of its neighbours are
tested.

4.2.1 Segmentation into medial clusters

The goal of segmentation into medial clusters is to decompose the unstructured
MAT into disjoint parts. This means that the medial balls of different medial
clusters do not intersect (see Figure 4.4a). The union of all medial balls within
one cluster, however, should be a connected space. This leads to the following
lemma.

Lemma 4.1. The medial balls of nearby atoms in the same medial cluster
intersect.
This lemma forms the basis of the region growing condition that I use for cluster

segmentation.

To quantify the intersection between two medial balls I use a simple fraction as
illustrated in Figure 4.4b and given below.

_ri+re
- d

The distance between the two medial atoms is denoted d, and the radii of the
two respective medial balls are denoted r1 and 72. If and only if 0o > 1 there is
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4.2 Segmenting the unstructured MAT

Algorithm 3: The growRegion algorithm.

Input : S; a set of medial atoms, i.e. the structured MAT
validCandidate (a, b); a function that tests whether medial

atoms a and b should be in the same medial sheet

Output: Each medial atom is enriched with a segment label

11+ 0

2 while S # 0 do

3 segment(S)« 0

4 s < pop(S)

5 C < a stack initialised with s

6 segment(s) < 4

7 while C # 0 do

8 ¢ < pop(C)

9 foreach n in nearestNeighbours(c) do
10 if validCandidate(c,n) then
11 push n to C'

12 segment(n) < ¢
13 S+ S—n
14 141+ 1

an intersection between the medial balls in theory, which then implies that they
belong to the same cluster.

In practice it proves to be useful to test for o > toperiap in the validCandidate
function of Algorithm 3, where toveriap > 1 is a user-defined parameter. The
higher the value of toyeriap the bigger the required intersection, thus the more
robust the resulting segmentation is to potentially noisy medial atoms.

Figure 4.5 shows the cluster segmentation for Dataset 10. All exterior sheets
are all assigned to one big cluster and all building structures have clearly been
assigned their own medial clusters. In Section 7.2 I present more results on
different real-world datasets.

4.2.2 Segmentation into medial sheets

This section describes a novel method to decompose the unstructured MAT
into separate medial sheets based on the local medial geometry of the medial
atoms. Notice that Kustra et al. [2014] and Kustra et al. [2016] also perform
sheet segmentation based on a medial point cloud, respectively using patch-based
surface reconstruction and the medial geodesic function (similar to the boundary
potential that is described in Section 2.3.2). Unfortunately these methods are
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(a) Interior and exterior parts of the MAT have (b) intersection expressed as the
no intersecting medial balls. ratio of the summed ball radii
over the distance between the
balls.

Figure 4.4: The intersection between medial balls as a region growing condition.

Figure 4.5: Medial cluster segmentation with ¢,yeriap = 4.

66



4.2 Segmenting the unstructured MAT
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diverger extrema in
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(a) Bisectors induce (b) Bisectors induce (c) In the parallel plane
segmentation into further segmentation case the bisector is
medial sheets. into sub-sheets unstable.

Figure 4.6: Behaviour of the medial bisector in different cases.

not suitable for the geographic case, because Kustra et al. [2014] requires a very
dense surface point cloud, and Kustra et al. [2016] even requires a surface mesh
and is computationally highly expensive especially for large inputs.

I will now explain what properties of the local atom geometry are best suited for
the sheet segmentation, and how to employ those in a region-based segmentation
algorithm. The medial bisector proves to be effective for sheet segmentation. It
is based on the following lemma, that is true with the notable exception of two
special cases that I will treat later.

Lemma 4.2. Nearby medial atoms in medial sheet have similar medial bisectors.

Recall from Chapter 2 that each medial ball is characterised by a medial bisector;
the vector that bisects the spoke vectors and is always tangent to the medial
sheet. Figure 4.6a illustrates the two main reasons why the medial bisector is
effective for sheet segmentation. First, the medial bisector for nearby atoms on
the same medial sheet is typically similar. This is true because the the medial
bisector points in the direction of decreasing ball radius along a medial sheet.
Second, the medial bisector is different for atoms of different sheets around a
junction curve. This is true because the different sheets that meet at a junction
curve are not overlapping and the bisector is always tangent to its medial sheet.
Thus, the medial bisector is effective for sheet segmentation because we can use it
to 1) identify medial atoms that are part of the same sheet, and 2) to distinguish
between different sheets at the junction curves. The latter is especially important
because it means that at the curves where different sheets meet we are able to
achieve a clear separation and we prevent under-segmentation.

For sheet segmentation validCandidate (a,b) should initially be a comparison
between the medial bisectors of atoms a and b. The test succeeds if the angle
between the medial bisectors is below a user defined threshold tp;sec.. What is
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a good value for tp;sec depends on the atom density and the amount of noise in
the medial sheet.

Special cases

Notice that the geometry of the surface may be such that the bisectors are not lo-
cally similar—or continuous—within one sheet. This is illustrated in Figure 4.6b.
It occurs when there is a local extrema in the radius field of the sheet. In the
figure there are minima in the radius field on the sheets and the medial bisectors
point towards this minima from both sides, introducing a local singularity in the
radius field. The effect on the segmentation is that those sheets may be split at
the singularity. With the 3D MAT that only happens when there is no path of
locally similar radii around the singularity, i.e. when it stretches from one sheet
boundary to another. In my experience this is not a problem in practice, in fact
one could consider these separate sheets split by a 2-junction curve, similar to
the 3-junction (or Y-intersection) curves described in Section 2.2.3.

There is one other notable case where the medial bisector is not effective for
sheet segmentation. This is depicted in Figure 4.6¢c. Here the surface comprises
of two parallel planes, which often happens in building structures. Then, the
medial ball radius is equal and the separations angle is 180° throughout the
sheet. In this case the medial bisector is unstable because there is no direction
of decreasing radius. The bisector direction, albeit still tangent to the sheet, is
therefore arbitrary and not reliable for sheet segmentation. See e.g. the bisectors
for the central sheet in Figure 4.7a.

Fortunately, the parallel plane case is not a problem in practice. It can be easily
detected by looking at the separation angle, because in this case it must be equal
to 180° by definition, see e.g. Figure 4.7b. In addition, because of the arbitrary
bisector directions, the bisector-based growRegion algorithm will not find any
significant regions there. A significant region in this case means a region that
contains more than a few, e.g. 1 — 5, atoms. As a result, the medial atoms on
these sheets can easily be detected and be given the ‘unsegmented’ label. After
that, they can be segmented in a second run of the growRegion algorithm with
a test based on the separation angle. Figure 4.7c shows the final result.

The full sheet segmentation algorithm thus includes two runs of the growRegion
algorithm is given in Algorithm 4. As can be seen on lines 1 and 5, the
validCandidate function is defined differently for each run. First it is based
on the angular difference in medial bisector and then it is defined based on the
separation angle. Furthermore, the second call of growRegion only runs on the
set of medial atoms that are unsegmented and have a separation angle that is
approximately straight. In this way, it already segmented atoms and otherwise
irrelevant atoms are not affected.
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(a) Medial bisectors only. (b) Medial points coloured (c) Medial sheets and
by separation angle. medial bisectors.
The red colour
indicates a value close
to 180°.

Figure 4.7: Medial sheet segmentation based on medial bisector and separation
angle.

Figure 4.8a shows the result for Dataset 10. From this figure and especially
Figure 4.7c it can be observed that the separation of medial sheets is very good
where different medial sheets meet.

4.3 Finding the connectivity of the medial sheets

After sheet segmentation the next step towards the structured MAT is to capture
the connectivity of the sheets in a graph. The connectivity of medial sheets is an
important feature of the MAT. And having this connectivity explicit in a graph
data-structure is essential, because it allows us to analyse and manipulate the
structured MAT using common graph algorithms. As will be described in Chap-
ter 7, this enables key applications such as object detection and reconstruction.
There are two graphs that I construct here:

Adjacency graph In this graph the nodes are sheets, and the edges represent
adjacencies between sheets.

Flip graph In this graph the nodes are sheets, and each edge relates an interior
sheet to an exterior sheet if they have feature points on the surface in
common.

They are illustrated in Figure 4.9. Using these two graphs one can easily 1)
navigate inside interior or exterior parts of the MAT and 2) navigate from an
interior sheet to a corresponding exterior sheet.
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(a) Medial sheet segmentation with tp;sc. = 8°.

/LN AR Y4

(b) A connected component analysis of the sheet adjacency graph.

Figure 4.8: Medial sheet segmentation and corresponding sheet adjacency graphs.
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4.3 Finding the connectivity of the medial sheets

Algorithm 4: The segmentSheet algorithm.

Input :S; a set containing all medial atoms that need to be segmented
tmincount; & threshold indicating minimum atom count for a
region
tstraight; a tolerance for straight angles
tpisec; a threshold for the angular difference in medial bisectors
to; a threshold for separation angle difference
Output: a segmentation of S
validCandidate(a,b) <+ Z bisector(a) bisector(b) < tpisec
growRegion(S, validCandidate)
remove all segments that contain fewer than ¢mincount atoms
M < all unsegmented atoms a from S with a straight separation angle,
i.e. separation(a) > tstraight
validCandidate(a,b) < | separation(a)—separation(b) | < tg
6 growRegion(M, validCandidate)

BW N R

o

Finding the adjacency graph

Algorithm 5 lists the adjacency algorithm that I developed to find what sheets
are adjacent. The adjacency graph is comparable to the topology graphs be-
tween planar segments in the surface point cloud computed by e.g. Schnabel et al.
[2008], Elberink and Vosselman [2009] and Verma et al. [2006] As all previous al-
gorithms that I presented, the adjacency algorithm relies on k-neighbourhoods.
The output of the algorithm is an adjacency list of sheet-pairs with an associated
value that indicates the strength of the adjacency between those sheets. This
output is computed by counting for each atom the numbers of neighbours that
belong to another sheet (see Figure 4.10a). These counts are aggregated for each
unique sheet pair. Generally speaking, a higher count corresponds to a higher
likelihood that a pair of sheets is indeed adjacent.

Figure 4.11a shows the adjacency graph for a single medial cluster as computed
by the adjacency algorithm. Furthermore, medial clusters can also be obtained
from the adjacency graph by means of a connected component analysis (e.g. as
described by Hopcroft and Tarjan [1973]). This gives a set of sub-graphs whose
nodes are connected to any other nodes in the adjacency graph, or in terms of the
MAT: it gives groups of medial sheets that are not adjacent to any other sheets
in the MAT; i.e. the medial clusters. Figure 4.8b illustrates this But, note that
this is a computationally more expensive way to obtain medial clusters when
compared to the cluster segmentation described in Section 4.2.1.
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—e— adjacency graph

—o0— flip graph

Figure 4.9: Adjacency and flip graphs

Common

feature points sj;urfa(:c

exterior MAT

(a) Adjacency between sheets are found (b) The flip graph is found by counting
by counting atom neighbours. common feature points between
different sheets.

Figure 4.10: Effects of noise in surface points on MAT.
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4.3 Finding the connectivity of the medial sheets

Algorithm 5: The adjacency algorithm.

Input : S; the list of medial atoms
Output: A; an associative array with as keys tuples of two sheet and as
values the number of connecting neighbours
1 A < an empty associative array
2 foreach atom a in S do

3 foreach atom n in nearestNeighbours(a) do
4 if segment(a) # segment(n) then

5 if segment(a) < segment(n) then
6 L I+ (a,n)

7 else

8 L I+ (n,a)

9 if [[0] = 0 then

10 L go to next iteration
11 if [ is not a key of A then

12 L Al + 1
13 else

14 L increment A[l] with 1

Finding the flip graph

The flip graph (recall Figure 4.9) is computed by counting common feature
points between medial sheets. The f1lip algorithm (see Algorithm 6) computes
the flip graph as an associative array by iterating over the medial atom pairs
of the surface points. As illustrated in Figure 4.10b, these pairs consist of the
two atoms that were generated from the same surface point (i.e. by flipping the
normal vector, as described in Section 3.1). Figure 4.11b shows the flip graph
as computed by the flip algorithm.

Time complexity

The adjacency and flip algorithms are both implemented using an associative
array (also called dictionary or (hash) map) that, provided the right implemen-
tation, has constant-time lookup. This brings the expected running time of both
algorithms to O(n), where n is the number of atoms in the MAT, assuming that
the nearest neighbours for each medial atom are precomputed (for the adjacency
algorithm).
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(a) Adjacency graph (b) Flip graph.
for a single medial
cluster.

Figure 4.11: Connectivity of medial sheets in Dataset 10. Graph nodes are drawn
on the average coordinates of each medial sheet.

Figure 4.12: The z-components of medial bisectors can be used to determine whether
a medial cluster is interior (direction up) or exterior(direction down).
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4.4 Interior and exterior classification of MAT clusters

Algorithm 6: The flip algorithm.
Input : S; the list of medial atoms
Output: A; an associative array with as keys tuples of two sheet and as
values the number of common feature points
1 A < an empty associative array
2 foreach pair of atoms a,b in S that correspond to the same surface
point do
if segment(a) # segment(b) then
if segment(a) < segment(b) then
| 1+ (a,b)
else

L I+ (b,a)

8 if {[0] = 0 then

L go to next iteration

10 if [ is not a key of A then
11 L Alll +1

12 else
13 L increment A[l] with 1

4.4 Interior and exterior classification of MAT clusters

It is very helpful to know whether a medial cluster is part of the interior or the
exterior MAT. As explained in Section 4.1 it can help in finding certain types of
features in the terrain, e.g. watercourse are easier to find with exterior clusters
as shown in Chapter 7, while buildings are more conveniently described by their
interior cluster.

Due to the problem of inconsistent normals (see Section 3.2), we can not get
the distinction between interior and exterior medial atoms directly from the
unstructured MAT. However, under the assumption that the boundary surface
is manifold, we know that an entire medial cluster should be either interior or
exterior. This raises the following question: can we determine whether a medial
cluster is interior or exterior based on the properties of its medial atoms?

As shown by Figure 4.12, in case of a terrain the sheets of the MAT grow into the
features of the surface either from above, or from below. One could say that the
exterior MAT comes from the sky above, whereas the interior MAT comes from
the earth below, simply because the manifold surface representing the terrain
has an above and an underneath. We can in fact quantify this by looking—once
again—at the medial bisectors of the medial atoms in each cluster. In case of
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4 The structured MAT

an exterior cluster, the medial bisector should predominately point downwards,
and vice versa for an interior cluster.

Therefore, if we analyse the medial bisectors of a cluster, i.e. by looking at the
average z-component of all bisector in the cluster denoted as B., we can say
whether it is probably interior or probably exterior. Thus, if B, > 0 a cluster
is internal and if B, < 0 a cluster is external. Figure 4.13 shows the resulting
interior clusters for Dataset 10, as well as the corresponding surface points. In
Section 7.2 I present more results on different real-world datasets.

4.5 Summary

In this chapter I have proposed methods to enrich the unstructered MAT with
structural and topological information. In the resulting structured MAT the de-
composition into individual medial sheets is known. In addition there is explicit
information on their connectivity and their organisation into so-called medial
clusters. Also the separation of the MAT into an exterior and interior part is
made explicit, something that was not directly apparent from the unstructured
MAT due to inconsistent point normal orientations.

The following chapter offers details on how to practically implement the methods
proposed in this chapter and the previous one.
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(a) Interior medial clusters.

(b) Surface points corresponding to interior medial clusters.

Figure 4.13: Interior MAT part in Dataset 10.
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5 Implementation and data-structures

In the last two chapters I explained how to make the MAT useful for geographical
point cloud modelling by computing the unstructured and the structured MAT.
In this chapter I elaborate on the practical aspects of the implementation of these
methods. In particular I will look at 1) the prototype software that I developed
for this thesis, 2) the data-structures I used and developed to represent both the
structured and the unstructured MAT, and 3) how to scale the computation of
the unstructured MAT for surface point clouds that are too big to store in a
computer’s main memory.

5.1 Prototype implementation

Over the course of this PhD research, I have developed a number of software
packages to prototype my MAT-based algorithms. The most notable ones are:

masbcpp is a set of command line utilities programmed in C++ to compute the
unstructured MAT?. It has support for parallel computing with OpenMP?
and includes:

« a tool for normal estimation based on local plane fitting (an obligatory
pre-processing step for the ball-shrinking algorithm),

« an implementation of the ball-shrinking algorithm of Ma et al. [2012]
with my novel denoising heuristic to compute the unstructured MAT
as described in Chapter 3, and

¢ a tool to perform MAT-based point cloud simplification based on the
method described in Section 6.1.2.

The company Safe Software contributed to the development of masbcpp
and included it in their FME 2017.1° software as the PointCloudSimplifier
transformer. FME is widely used program for geographical data integra-
tion.

skel3d is a Python library for working with the unstructured MAT?, e.g. to

'https://github.com/tudelft3d/masbcpp
Zhttp://www.openmp.org
Shttps://www.safe.con/fme/fme-desktop/
4h‘t:tps ://github.com/Ylannl/skel3d
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5 Implementation and data-structures

(a) Flowchart and plot windows. A scatter plot of medial radius
versus separation angle is shown for the medial cluster visualised
in (b).

eoe Vewer

saLayer Custers

(b) 3D viewer window. Medial points and spoke vectors are
visualised as well as the surface points and their normal vectors.

Figure 5.1: Screen shots of pyvi; the interactive flowchart and 3D viewer software I
developed.
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calculate properties of the medial geometry, and methods to compute the
structured MAT, e.g. the segmentation and graph methods, as introduced
in Chapter 4.

pyvi is an interactive flowchart and visualisation tool®. Using the flowchart any
possible processing pipeline can be quickly set up, debugged, evaluated and
saved for later use. It is implemented using Python and OpenGL°.

These three packages are open source and depending on open source libraries.
Their source code can be found through the links in the footnotes.

The general workflow for using the MAT for geographical point cloud modelling
is to first obtain the unstructured MAT using the masbcpp tool, then possibly do
further processing such as segmentation of the MAT using skel3d, followed by a
visualisation using the pyvi tool. Figure 5.1 showcases the user interface of pyvi.
With the interactive flowchart shown in Figure 5.1a I can quickly test different
processing pipelines. After a change in the parameters of a processing node or the
connections between the processing nodes the rest of the processing pipeline and
the resulting visualisations are immediately updated. Many processing nodes
directly use functions of skel3d. This allows for much more convenient and
specialised development than possible with other visualisation software.

5.2 Data-structure for the unstructured MAT

Ma et al. [2012] and Jalba et al. [2012] do not explicitly describe any data-
structure for efficiently storing the unstructured MAT. Therefore, I describe a
simple and efficient data-structure to store the unstructured MAT as computed
by the ball-shrinking algorithm described in Chapter 3. ct that geographical
point clouds are typically very large in storage and that the unstructured MAT
has twice as many medial atoms as input points, the goal is to use as little storage
space as possible without making a sacrifice in the functionality of the medial
atoms. This means that for each medial atom we should be able to retrieve in
constant time

1. the coordinates of the medial point,
2. the radius of the medial ball,

3. the coordinates of the two corresponding feature points in the surface point
cloud,

4. the medial bisector and the separation angle.

Shttps://github.com/Ylannl/pyvi
Shttps://www.opengl.org
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5 Implementation and data-structures

n | Pn n, Z;t Z;

Figure 5.2: Compact representation of the unstructured MAT by extending the
surface point cloud array. Each record contains an oriented surface point
(and primary feature point) and indices to two secondary feature points,
one for each normal orientation. With this information the complete
local medial geometry can be reconstructed in constant time.

Some of these properties are redundant, e.g. one can compute the medial radius
from the medial point and a feature point, or the medial point can be computed
from the primary feature point, its normal vector and the medial radius. Here I
aim to have minimal redundancy without sacrificing any functionality.

The unstructured MAT is a collection of medial atoms and each atom can be
considered a (medial) point with a number of attributes. The unstructured
MAT can thus be seen as a separate point cloud. However, in case of the ball-
shrinking algorithm each surface point generates exactly two medial atoms; one
in the positive normal direction and one in the negative normal direction. As a
result each medial atom is uniquely related to a surface point, i.e. its primary
feature point, in the surface point cloud. And, inversely, each surface point is
the primary feature point of two medial atoms As I will explain in the following,
this means that the coordinates of the medial points do not need to be stored
explicitly, and it is in fact possible to store the entire unstructured MAT by
adding just two attributes to the surface points cloud.

A point cloud is typically stored as an array of records, where each point cor-
responds to one record (see e.g. LAS [2013]). Each record is a collection of a
fixed number of fields in a particular order. In the case of an oriented point
cloud the fields of the record are the three coordinates of the point and the three
components of the corresponding normal vector. Additional point attributes can
be added by adding additional fields to the record.

Figure 5.2 illustrates how the array of the oriented surface point cloud can be
extended to incorporate the medial atoms that form the unstructured MAT. Two
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fields are added that are indices that point to other surface points in the array.
Each of these indices implies one medial atom. Both medial atoms have the
surface point of that record as the primary feature point. The secondary feature
point is referenced by the two respective indices i and i~. In combination with
the point normal in the record, it is now possible to derive the complete local
atom geometry, most notably the medial radius r and the medial point ¢ by
using the constant time computeRadius and computeCentre functions as given
in Figure 3.3.

5.3 Computation of the unstructured MAT for very large
datasets

Geographical point clouds can be massive (e.g. contain billions of points) and
not fit a computer’s main memory, consequently in-core computation of the un-
structured MAT can be problematic. Since this has not been researched before,
Lam [2016] investigated a number of approaches to circumvent this problem
by not loading all surface points at once into main memory (out-of-core). His
preliminary conclusion is that a simple tiling scheme is most effective.

Here I propose an out-of-core tiling scheme for the ball-shrinking algorithm that
processes the surface point cloud sequentially in small chunks that each fit main
memory. This is possible because the only global operation performed by the
ball-shrinking, i.e. the nearest neighbour query, is actually bounded by the initial
ball radius rin;+ which is a user-defined parameter. Only medial balls with a
radius up to 7in;t are constructed, and the radius of the largest medial ball of
an object typically depends on the approximate size of that object. A sensible
choice for the value of 7, is therefore an approximate size of the largest object
in the input. For example, for urban datasets with structures that are up to
200 m in size, a value for 7, of approximately 100 m should suffice. This
does mean that medial atoms with a radius larger than 100 m can no longer
be constructed, but using this approach it is possible to spatially subdivide and
process a massive dataset with a limited amount of main memory.

To partition, I subdivide the dataset into square tiles of fixed dimensions. The
tile-size is chosen such that the contained points easily fit in main memory.
Additionally, every tile is buffered with the value of ;. (see Figure 5.3). Then,
the tiles are processed one by one. First I compute a kd-tree for the complete tile
(including the buffer) to speed up nearest neighbour queries. Then I approximate
the point normals and the MAT itself for the points that are inside the tile but not
in the buffer region. With this simple out-of-core scheme I can obtain identical
outputs compared to the regular in-core approach.
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I
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Figure 5.3: Simple tiling scheme. Each tile is buffered with the initial ball radius

Tinit-

Figure 5.4 shows the memory usage of my simple partitioning scheme during
the MAT computation of a 1.3 billion point dataset (apart from the pointcount
similar to Dataset 1). I must note that this experiment was performed us-
ing an early implementation of the extended ball-shrinking algorithm that has
inefficient memory management, which is inherent to the used programming
language (Python). The memory measurements in Figure 5.4 are therefore ex-
hibiting a slightly increasing trend over time (i.e. as the number of processed
points increases) that is not related to the theoretical memory requirements of
the algorithm. Nonetheless, I make the key observation that the amount of re-
quired memory is successfully reduced. The amount of required memory is now
bounded by the largest number of points inside a tile rather than the total point
count of the dataset. As a result I am able to process massive surface point
clouds.

The simple partitioning scheme that I have implemented effectively limits the
amount of memory required to complete the computation of massive datasets.
The main limitation of this approach is that the number of points in a tile is still
bounded by the amount of available memory. Also, the size of a tile should be
at least as large as the buffer radius. Thus for extremely dense datasets it may
no longer be feasible to process reasonably sized tiles. However for the tested
dataset, with point densities up to over 100 points per square meter, this was
not a problem.

84



5.3 Computation of the unstructured MAT for very large datasets

1400 ‘ 1e630
— Total memory usage
Number of points per tile

1200

N
w

1000 2.0

800

Memory usage (MB)
=
n

600

Iy
=)

Number of points in tile

400

o
U

200 ! ! ! ! ! ! 00
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Total pointcount 1e9

Figure 5.4: Memory consumption as a function of the number of processed points for
the MAT approximation of the 1.3 billion point urban dataset.
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6 Applications of the unstructured MAT

In Chapters 3 to 5 I laid out the groundwork for geographical point cloud mod-
elling with the MAT. In this chapter I present a three applications based on
unstructured MAT (Chapter 3). The novelty of the these methods lies in the
application of the unstructured MAT to aerial point clouds.

I present two applications of the MAT that both aim to deal with the potentially
massive size of aerial point cloud datasets. First, in Section 6.1 I present a
method for feature-aware point cloud simplification, i.e. reducing the number
of points in a point cloud in a way that relatively preserves areas with a small
feature size (e.g. having a high curvature). Second, in Section 6.2, I present a
method for feature-aware point splatting for visualisation purposes that be seen
as an extension of the feature-aware point cloud simplification method. This
section is based on the paper:

Robust approximation of the Medial Axis Transform of LiDAR
point clouds as a tool for visualisation. Ravi Peters and Hugo
Ledoux. Computers € Geosciences 90(A), March 2016, pp. 123-133,
doi: 10.1016/j.cageo.2016.02.019

Both sections are based on the same theoretical foundation: the concepts of Local
Feature Size (LFS) and the epsilon-sample (as described in Section 2.2.2).

Section 6.3 presents a third application for point cloud-based visibility analysis.
This section is based on the paper:

Visibility Analysis in a Point Cloud Based on the Medial Axis
Transform. Ravi Peters, Hugo Ledoux and Filip Biljecki. FEurographics
Workshop on Urban Data Modelling and Visualisation 2015, November
2015, pp. 7-12, doi: 10.2312/udmv. 20151342

6.1 Simplification

With recent advances in remote sensing technologies such as aerial LIDAR and
photogrammetry we are able to acquire samples of the Earth in unprecedented
quantities and with very high accuracy.
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6 Applications of the unstructured MAT

The elevation points collected are samples of a digital surface model (DSM)
where every objects, natural (e.g. mountains and valleys) and man-made (e.g.
buildings, dikes and bridges), are represented. A prime example is the Dutch
national elevation the urban dataset AHN2' which has a total of over 600 billion
points.

While such point clouds have a broad range of applications (such as flood mod-
elling, dike monitoring, crisis management and city modelling [Snyder, 2013]),
practitioners have problems dealing with them because of their massive size.
They do not fit a computer’s main memory, and, as a result, standard software
(such as GIS or environmental modelling) can simply not be used.

This problem can be alleviated by designing algorithms so that the limitations
of the computer’s main memory are never exceeded, e.g. by using the geom-
etry streaming paradigm [Isenburg et al., 2006] or designing external memory
algorithms [Aggarwal and Vitter, 1988]. However, the former is only useful for
certain local problems (e.g. interpolation and creation of grids), global prob-
lems such as visibility or flow modelling are not suitable. The latter requires
careful design of algorithms for different problems (e.g. for extracting contour
lines [Agarwal et al., 2008] or watersheds [Arge et al., 2006], which limits its use.
Hence, in some cases it is preferred or even necessary to reduce the size of the
point cloud prior to processing.

Massive point clouds often contain a lot of redundant information. A high sam-
pling density is often preferred because this leads to a clearer definition of the
sampled surface, especially for small features that may otherwise be undersam-
pled. Yet, at the same time many large (and relatively planar) features may be
adequately represented using a less dense sampling, i.e. they could be represented
with only a subset of their original samples.

Point cloud simplification aims at lowering the overall point count, while main-
taining a sufficiently dense sampling of both large and small features. As a result,
the same overall surface shape can be adequately described with fewer samples,
and less computational resources are needed for any subsequent processing. Joao
[1998] even states that various spatial analysis methods can be performed more
accurately with a simplified terrain than with the original one. Simplification
also implies that practitioners can continue using their current tools, and no new
algorithms or tools have to be developed to be able to deal with massive point
clouds.

Current simplification methods either require the knowledge of the surface im-
plied by the points (which is not a priori known, and is challenging to compute
in practice), or randomly select a subset of the points (which ignores the features

1h1:tp://w‘.\vw.ahn.nl
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6.1 Simplification

of the surface). I propose to use a simplification method based on the unstruc-
tured MAT that is feature-aware and does not require explicit knowledge of the
surface.

The key MAT-based concept that I employ in this chapter is the local feature
size [Amenta et al., 1998b], i.e. the shortest distance between a surface point to
the MAT. It effectively permits us to identify the points where the curvature
is high or where the boundary of a shape is close to itself, thus giving a useful
definition of the geometric significance of a point. I use this concept to preserve
features in a DSM, e.g. roof tops, ridges, valleys, fences.

6.1.1 Related work in 3D point cloud simplification

Following is a discussion of point cloud based simplification methods. I do not
elaborate on more traditional 2.5D approaches of simplification and visualisation
that are based on raster grids or TINs (see for example Garland and Heckbert
[1995]; Gold and Edwards [1992]; Heller [1990]; Kraus and Pfeifer [1998]; Lee
[1989]; Vosselman [2000]).

Tools from GIS practice often offer simplistic simplification algorithms for point
clouds: a subset is constructed using gridding or random or n*" point selection.
From a scientific point-of-view, Pauly et al. [2002] implement and review three
common approaches for point cloud simplification of densely-sampled smooth
shapes. While aerial point clouds are not necessarily smooth and the sampling
density varies greatly, I discuss these three approaches and assess them for aerial
point clouds.

1. Clustering subdivides the point cloud into clusters that are each replaced by
one representative sample. The cluster may be defined by the non-empty
cells of a regular grid that is superimposed on the input point cloud, in
which case the clusters are replaced by the centre points of these cells.
Because of the fixed cell size the resulting points are uniformly distributed,
which makes it impossible to achieve a sampling density that depends on
local curvature or feature size. Alternatively, cluster may be more loosely
defined as groups of neighbouring samples that are approximately planar.
Each cluster is then replaced by the centroid of the cluster’s points.

2. Iterative simplification, which can be considered a generalization of Lee
[1989], reduces the number of points based on an error metric that quanti-
fies the error that results from the removal of a point. Points are removed
in order of increasing error, and every point removal affects the error of
surrounding points. Pauly et al. [2002] choose the quadric error metric
that was introduced by Garland and Heckbert [1997] for mesh simplifi-
cation and adapt it for point clouds using estimated point normals and
k-neighbourhoods.
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3. Particle simulation: the idea is to use a point repulsion algorithm to redis-
tribute a user defined number of particles that are randomly placed on the
sampled surface. The points in the input point cloud exert a force on the
simulated particles until an equilibrium is reached. This approach depends
on local surface approximations that prevent particles from drifting away
from the sampled surface. To push more particles to regions of high cur-
vature Pauly et al. [2002] weigh the repulsion forces inversely with surface
variation, a metric that is similar to curvature.

All of the three described approaches depend on approximate point normals.
These are computed for each point by performing a principal component anal-
ysis of its k-nearest neighbours. The surface variation defined by Pauly et al.
[2002] quantifies the variation along the approximated normal with respect to
the tangent plane. They show that surface variation closely resembles curvature,
but argue that surface variation is a more meaningful metric for point cloud sim-
plification. Because, when two surfaces come close together, i.e. closer than the
smallest enclosing sphere of the k-neighbourhood of the point in question, this
is also leads to a higher surface variation. This is interesting because the local
feature size metric, that I use in this section, also quantifies this, even without
depending on k-neighbourhoods.

6.1.2 Method

I use the MAT-derived local feature size (LFS) (see Section 2.2.2) in order to
perform feature-aware point cloud simplification. Using the LF'S, one can com-

pute an e-sample, i.e. a sampling of the surface S that relates point density to
the LFS.

An e-sample can be approximated from the full surface point cloud by iteratively
removing points that do not break the e-sampling criterion. Ma et al. [2012]
compute an approximate e-sample from an oversampled input point cloud P by
testing for each p € P whether the ball B(p,ef(p)) contains any point from P
other than p itself. If it does, p is removed from P.

Ma et al. [2012] implement the approach using a KD-tree This is inefficient in
practice, because it requires many nearest neighbour queries on a changing KD-
tree, and dynamically removing points from a KD-tree makes it unbalanced and
hampers its performance.

My approach is novel in the sense that I do not use a KD-tree for the simplifica-
tion. Instead I overlay a three-dimensional regular grid on the input point cloud
and use a simple calculation to approximate the thinning factor for each grid
cell, which is then randomly thinned accordingly. This algorithm is simple to
implement and runs in linear time. Therefore it is much faster than the approach
of Ma et al. [2012].
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6.1 Simplification

The thinning factor for each grid cell ¢ in three steps. Cellsize d, the minimum
and maximum pointcounts per cell nmin and Nmqez, and € are user parameters.

1. Compute the average LFS fq.,4 of all points in ¢,

2. Compute the expected number of points niarget = Fava

3. Ensure that nmin < Ntarget < Nmaz, clamp otherwise.

Ntarget
n

4. Randomly thin the points in ¢ using a factor z = , where n is the

number of points in c.

I thus obtain a fast geometry dependent simplification of the point cloud where
areas with a large LFS are represented with relatively fewer points than areas
with a small LFS.

6.1.3 Results

In Figure 6.1 the simplification results for the urban dataset are shown for dif-
ferent values of e.

I have experimented also with a variant of e-sampling, where the point density
depends quadratically (ef?(p)) rather than linearly (¢f(p)) on the local feature
size. By quadratically modelling this relation I increase the difference in sampling
density between points with relatively low local feature size and points with
relatively high local feature size.

For comparison I have also simplified the point cloud using random thinning and
grid clustering.

I evaluate these results visually, because there is no trivial method to measure
a quantitative approximation error for simplified point clouds (this is also noted
by Pauly et al. [2002]).

The following observations can be made. For the e-samples, points are clearly
more concentrated around small features in terrain and man-made structures.
The edges in the block-like structures are relatively densely sampled for all e,
even more so in case of the squared e-samples. Planar features such as the
ground and the sides of the blocks have lower sampling densities. And despite
the lower sampling density on vertical walls when compared to the roofs, the e-
samples have comparable densities on both surfaces (unlike the random thinning
result). This is expected because an e-sample should not be affected by the input
sampling density, as long as the MAT can be reconstructed adequately.
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(g) Random thinning to 10%, 74746 (h) Grid clustering, with cell size 0.8m,
points 68896 points

Figure 6.1: Simplification results for the urban dataset and corresponding point
counts
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6.1.4 Limitations of LFS-based simplification

I will discuss two limiting aspects of the approach I introduce in this section.

First, the local feature size based simplification and splatting both depend on the
estimated local feature size and thus on the quality of the approximated MAT.
Distortions in the approximated MAT are therefore visible in the simplification
results. While the denoising heuristic as described in Chapter 3 makes the
MAT robust to small scale noise in the input point cloud, significant outliers
in the input point cloud can still cause distortions that affect the simplification.
Furthermore, the denoising heuristic causes a reduced sensitivity for areas with a
small local feature size, which leads to a slight overestimation of the local feature
size and somewhat affects the effectiveness of the simplification in those areas.

Second, there are a number of parameters for the simplification algorithm that
I introduce such as the cellsize that need to be set by the user. While this gives
the user more control of the output, an automated parameters setting may be
preferred for convenience.

6.1.5 Conclusions

In this section I have made two main contributions. First, I have applied the
unstructured MAT, as described in Chapter 3, to aerial point clouds. Second I
present a novel method to quickly approximate an epsilon-sample.

As a result I am able to effectively perform feature-aware point cloud simplifi-
cation.

6.2 Feature-aware point splatting based on the MAT

The effective visualisation of massive point clouds is perhaps the most essential
instrument a scientist has to analyse and understand a point cloud. As argued by
Dykes et al. [2005], visualisation can and should support the entire geoscientific
process from the intitial data exploration to synthesis, analysis, evaluation and
presentation. However, the visualisation of point clouds is currently hampered by
two main problems: (1) due to their massive size they fit neither a computer’s
main memory nor a computer’s graphics memory; and (2) how to achieve a
visually pleasing rendering that strengthens the viewer’s perception of depth and
her sense of structure when only sparse and unstructured points are rendered. As
I further describe in Section 6.1.1, it is indeed possible to visualise point clouds
that exceed the capacity of a computer’s internal memory through the use of out-
of-core spatial indexing schemes and by applying methods such as view-frustum
culling and multi-resolution hierarchies to select a subset of the points [Kreylos
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Figure 6.2: Point cloud rendered with shaded fixed-sized points. When zoomed in it
is hard to perceive structure and depth, due to the large screen distances
between points.
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et al., 2008; Richter and Dollner, 2010; Wimmer and Scheiblauer, 2006]. Thus
a high frame-rate can be achieved by limiting the number of points that is sent
to the graphics card of a computer. I argue that the visual quality is linked to
the spatial distribution of points on the screen and the applied point rendering
technique. However, current point cloud visualisation methods often use the
most basic point rendering techniques and always apply a regular grid-based
point simplification scheme that fails to take into account the geometry of the
sampled surface. See for instance Figure 6.2 that illustrates how the viewer’s
sense of depth and structure is distorted at closer viewing distances because of
the large gaps between points.

Furthermore, because the geometry of the sampled surface is not taken into ac-
count during regular grid-based simplification, fine details can not be adequately
represented.

6.2.1 Visualisation of massive point clouds

Kreylos et al. [2008] have implemented a multi-resolution out-of-core octree-
based renderer. Their octree-based downsampling scheme is constructed in a
pre-processing phase and designed to achieve a uniform point distribution at
every level of detail, so it does not consider the geometry of the sampled objects
in any way. At any time a subset of the input point cloud is displayed and points
are rendered as simple fixed-sized squares with optional shading. While fast and
simple to implement, this results in a distorted sense of depth and structure at
closer viewing distances (see Figure 6.2). This is due to the presence of holes in
the surface when the distances between points become too large on the screen.
It is especially a problem for sparsely sampled areas such as vertical surfaces
(walls) in aerial point clouds. Wand et al. [2008], Scheiblauer [2014]; Wimmer
and Scheiblauer [2006], Richter and Déllner [2010, 2014] and Elseberg et al.
[2013] all showcase comparable out-of core octree-based visualisation frameworks
for large point clouds with uniform point downsampling. Elseberg et al. [2013]
visualise coarser level of details presumably by rendering sets of octree cells as
points located in the cells’ centre rather than using a subset of the original point
cloud.

As illustrated by Figure 6.3, splatting is a point rendering technique where points
are rendered as surface aligned disks that are parametrised by some radius r
(see also Gross and Pfister [2011]). Usually r is chosen such that the splats are
overlapping each other so that holes are absent and the point cloud appears to
be a closed surface on the screen regardless of the viewing distance, because r is
defined in object space (i.e. in the coordinate system of the point cloud).

Wand et al. [2008] briefly discusses the possibility of using rectangular point
splats that are aligned according to the two greatest principal components of
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Figure 6.3: A splat is defined for each point as a normal-oriented disk with a radius
r. Usually r is chosen such that there are no holes.

a k-neighbourhood. Scheiblauer [2014] and Richter and Déllner [2014] both
implement a form of point splatting. The approach of Scheiblauer [2014] differs
because he does not use point normals, and the size of his splats depends on the
rendered level of detail or on a local point density estimate.

Kovaé¢ and Zalik [2010] propose to use a precomputed quadtree index that facili-
tates on-the-fly point loading and normal computation, but assumes good spatial
coherence and is designed to work only for 2.5D surfaces. Points are rendered
as oriented splats using the approach of Botsch and Kobbelt [2003]. They apply
random subsampling and fixed splat radii, which does not necessarily result in a
hole-free visualisation of the scene. As the authors themselves note, the holes are
partly caused by inadequate sampling densities in some parts of the point cloud.
Indeed, vertical and transparent surfaces are often relatively sparsely sampled
in airborne LiDAR point clouds.

It can be concluded that many of the described approaches have solved the issue
of managing huge point clouds using out-of-core spatial indexes, and that some of
the approaches apply splatting, but none of them takes the geometry of sampled
objects in consideration.

6.2.2 Method of feature-aware point splatting

I make the splat radius adaptive to the LFS by rendering each point as a splat
with a radius set to ef(p) (see Figure 6.4). Points in areas with a lower point
density in the e-sample are therefore drawn with larger splats. Moreover, because
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Figure 6.4: The local point density and the radius of the splat for p. For this figure
e~ 0.5.

both the splat radii and the e-sample are both based on the distance ef(p), the
resulting visualisation is such that a surface-like impression is obtained where
holes are minimised despite the non-homogeneous geometry-aware point simpli-
fication.

Results of feature-aware splatting

Figures 6.5 and 6.6 demonstrate the effect of the MAT-based simplification and
splats with their radii adapted to the LFS.

In both cases the simplification removed 90% of the original points (¢ = 0.4), yet
when rendered with LFS-sized splats the resulting visualisation is similar to the
original splatted point cloud with fixed splat-radii. While the simplified LFS-
splatted rendering is not absolutely free from holes for the urban dataset (see
mark 2 in Figure 6.6), one can also observe that, despite the reduction in points,
the sparsely sampled vertical surfaces (walls) now appear as solid surfaces (see
mark 1 in Figure 6.6d). This is a notable improvement over fixed-sized splats,
because this amplified the viewer’s sense of structure and depth at all viewing
distances.

Figure 6.7 illustrates further how the distribution of points in the simplified
point cloud respects the geometry of the sampled surface. Splats are drawn
there with a decreased radius so that it is clearly visible that 1) more points
are drawn in areas with a relatively high curvature such as the creases in the
valleys and 2) the corresponding splats have a smaller radius when compared
to the planar areas with fewer and larger splats (also apparent in Figure 6.6d).
Finally, in Figure 6.8a I compare fixed-sized splats with LFS-sized splats for
the simplified mountain dataset. The flat region has fewer samples due to the
relatively high LFS. But, in the case of LFS-sized splats, the larger splat radii
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(b) Full point cloud with fixed-radius

(a) Full point cloud with simple points

splats
< _ARNALY e
= e
o N L e
— - 3 ¥ _——
,-l'/f ya "3
7~ 3 -
&, ot = -
s
(¢) Simplified point (90% of points (d) Simplified point (90% of points
removed) cloud with simple points removed) cloud with Ifs-radius splats

Figure 6.5: Visualisation results for the Mountain dataset (e = 0.4).

splats

(¢) Simplified point (90% of points (d) Simplified point (90% of points
removed) cloud with simple points removed) cloud with Ifs-radius splats

Figure 6.6: Visualisation results for the Urban dataset (¢ = 0.4). Note the different
point-densities on vertical and horizontal surfaces (marked 1 and 2).
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Figure 6.7: MAT-based simplification and splat-radii. The splat radii in this image
are reduced for illustrative purposes.

(a) fixed-sized splats (b) Ifs-sized splats

Figure 6.8: Simplified point cloud (e = 0.4) of mountain dataset.
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effectively compensate for the coarser point distribution, leading to a virtually
hole-free visualisation.

6.2.3 Conclusions

In this section I have made two main contributions. First, I have applied the
unstructured MAT, as described in Chapter 3, aerial point clouds. Second,
I introduce the idea to use the local feature size for determining point splat
radii.

As a result T am able to effectively perform visualisation in which it is easier to
perceive depth and structure in the rendered aerial point cloud, while rendering
only a fraction of the full point cloud.

6.3 MAT-based Visibility analysis in point clouds

Visibility analysis is a prominent use case of 3D GIS data, since this provides
information about spatial relations and potential obstacles in the line of sight
between two points in space. For instance, such analyses have been done in
estimating the visibility of a landmark Bartie et al. [2010], and in finding the
optimal location to place a surveillance camera Yaagoubi et al. [2015]. An im-
portant variant of the visibility analysis is the estimation of shadows, since the
position of the sun is variable and it is located at a practically infinite dis-
tance Biljecki et al. [2016]. Shadow analysis has gained importance in several
disciplines. For instance, shadows are important to account for the loss of the
photovoltaic potential Eicker et al. [2015]; Nguyen and Pearce [2012], for deter-
mining solar envelopes Knowles [2003], for assessing the value of real estate Hel-
bich et al. [2013], for estimating the thermal comfort Hwang et al. [2011]; Yezioro
and Shaviv [1994], and for geovisualisation Lovett [2003].

Visibility analysis is usually performed on a 3D city model, i.e. a boundary
representation model that is reconstructed from elevation information, e.g. an
airborne LiDAR point cloud, and sometimes combined with 2D datasets (e.g.
building footprints from a topographic map). The visibility analysis involves
testing if a line of sight (ray) intersects a face in the dataset, usually with algo-
rithms developed in the computer graphics domain, e.g. Moller and Trumbore
[1997]. However, the creation and maintenance of 3D city models often involves
manual labour and typically results in a generalised version of the city that only
contains the terrain and the buildings Alexander et al. [2009]; Biljecki et al.
[2014]; Rottensteiner [2003], and in only in some cases other man-made objects
such as roads, overpasses, and trees Oude Elberink [2010]. Despite the fact that
many 3D city models are reconstructed from very dense points clouds, which
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practically contain all urban features, many of these details are lost in the final
city model. One cause is that many, especially automatically generated city
models, are in fact 2.5D, which means it is not possible to model truly 3D fea-
tures such as balconies and trees. And even though a number of algorithms
for 3D surface reconstruction have been proposed and implemented (see for in-
stance Amenta et al. [2001], Kolluri et al. [2004] and Dey and Sun [2006a]),
these have several assumptions on the input point cloud, which usually come
from close range laser-scanners and are therefore not suitable for e.g. airborne
LiDAR point clouds that are sampled sparsely, have irregular sampling density
and often contain significant noise and holes. Hence, despite the availability of
highly detailed airborne point clouds, visibility analysis on a derived city model
typically deviates significantly from reality.

Here I attempt to bypass the generation of a 3D city model, and conduct shadow
analysis directly on the geometry of the point cloud by using the 3D MAT.
Apart from not having to first generate and store a city model, it yields a more
realistic visibility analysis because it includes scanned objects in their true 3D
appearance.

Figure 6.9 illustrated my approach to visibility analysis using the MAT. Medial
balls are obtained using the ball shrinking algorithm with denoise heuristic as in-
troduced in Chapter 3, and used to construct a view-dependent depthmap, which
is then used to perform fast point visibility queries. To investigate the viability
of this approach I present experiments on artificial and real-world datasets using
a prototype implementation.

6.3.1 Related work

Katz et al. [2007] introduced the hidden point removal operator to determine
the visible points in a point cloud as viewed from a given viewpoint by first
performing a spherical flipping on the point cloud and then a convex hull com-
putation. The algorithm does not require point normals, and is shown to be
useful for shadow mapping and view-dependent surface reconstruction. Mehra
et al. [2010] extend the algorithm from Katz et al. [2007] for handling noisy point
clouds. However, unlike the algorithm that I present in this chapter, the hidden
point removal operator can only determine the visibility of points that are part
of the point cloud itself, which limits its potential applications.

Pfister et al. [2000], Sainz and Pajarola [2004] and Kobbelt and Botsch [2004]
compute visibility for well-sampled and oriented point clouds as part of a point-
based rendering pipeline. They render points as splats; disks that are aligned
with the point normals. With these splats a depthmap is computed for the
viewport to determine point visibility. However, when the sampling density of
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(a) Surface point cloud (b) Approximated unstructured MAT

(c) Construction of depthmap (d) Point visibility querying

Figure 6.9: Visibility analysis using the MAT.
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the point cloud is low and non-uniform it becomes non-trivial to choose opti-
mal splat radii. My method does not have this problem. Another significant
difference with the approach I present in this section is that I compute a volu-
metric representation of the sampled surface, whereas a splatting approach can
represent only the boundary of the sampled surface. Holes are therefore handled
quite differently (see also Figure 6.14).

Wald and Seidel [2005] perform ray-tracing in a point cloud based on an im-
plicit surface representation. It works well for high quality point clouds that are
densely sampled.

Finally, Jalba et al. [2012] implement a rendering pipeline that performs on-
screen surface reconstruction by directly rendering interior medial balls. This is
somewhat comparable to my approach, however they only implemented that for
visualising the MAT of small point clouds and not for the purpose of visibility
analysis.

6.3.2 MAT-based visibility computation

The key idea of MAT-based visibility analysis is to use interior medial balls
to volumetrically represent objects and ‘block’ lines-of-sight from a user-defined
viewport to a given set of query points as illustrated in Figure 6.9. This idea has
not been applied earlier to perform generic visibility analysis on point clouds.
Here I present one possible implementation to this approach, but note that
other implementations, e.g. based on ray-tracing using a KD-tree, are possible..
My implementation here is based on the computation of a depthmap, i.e. by
rasterising all visible medial balls to a user-defined viewport. Whether the line-
of-sight to a query point is blocked or not is then determined by the use of a
depthmap that encodes the distances from the viewport to all visible medial
balls.

For the sake of simplicity an orthographic projection is assumed and only point
visibility queries are considered. This is sufficient to be able to asses the general
viability of the idea of MAT-based visibility analysis. Future more comprehensive
implementations can address this limitation, as I explain in Section 6.3.6.

6.3.3 Depthmap computation

Prior to performing the visibility queries I generate a depthmap of the interior
medial balls. The depthmap is computed for a viewport that is described by a
point po to fix its position, two vectors ¥, and vy to fix its orientation and size
in model space and a scalar s that scales model units to the pixels on the screen
(see Figure 6.10).
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Figure 6.10: Parameters that define the viewport

Algorithm 7: The projPoint algorithm.

Input : a point in model coordinates pm and the viewport parameters
Po, 1733, 17y, S
Output: pm in screen coordinates denoted as ps
1 U4 Po— Pm

2 lg, < 6;62171

v vl

TTy —

3 lg, ‘ryl“vy
4 ps.x < (lg, + |Ua]) 7y
5 Ps.Y < (lﬂy + |"7y|) |17sy|
6 7+ (Uy X Uy)
7 Ps.z — %

Computing the depthmap is a fairly straightforward process that involves first
projecting each medial ball centre, rasterising the ball to the viewport and finally
performing a depth test for each pixel of the rasterised ball. Figure 6.9b illus-
trates this process. Algorithm 7 is used to project a point’s model coordinates
to the viewport and to compute its depth (i.e. its distance perpendicular to the
viewport).

Algorithm 8, which updates the depthmap for one medial ball, first projects the
ball centre to the viewport. Then for each pixel in the ball’s projected image it
computes the depth, and performs a depthtest. When a depth test succeeds (i.e.
the depth of the ball is smaller than the current pixel depth), the pixel in the
depthmap is updated.

Prior to calling writeBall for each medial ball, the depthmap is initialised with
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Algorithm 8: The writeBall algorithm

Input : a ball with centre c and radius r,the viewport parameter s and
depthmap D
Output: D is updated with the depths of ball (c,r)
1 ¢s < projPoint (c)
2 for integer = in range —rs to +rs do
3 for integer y in range —rs to +rs do
h+ /22 +y?
if h smaller than rs then
d +cs.z—(rs—h)
d < Dlcs.x + z,¢Cs.y + Y]
if d’ smaller than d then
L Dics.x + z,cs.y +y] + d’

© 0 N o ok

Algorithm 9: The queryPoint algorithm

Input : a querypoint gm in model coordinates, depthmap D
Output: whether qm is visible or not
Qs < projPoint (qm)
d < Dlgs.z, gs.y]
if qs.z smaller than d then
L Qm is visible

SR C R

else
L Qm is not visible

o o

an infinite depth for each pixel.

6.3.4 Point visibility queries

After the depthmap has been computed, Algorithm 9 is used to perform the point
visibility queries. Query points are projected onto the viewport, and their depth
is compared with the depthmap (similar to Williams [1978]). As illustrated in
Figure 6.9c the query point is visible only if its depth test succeeds. The depth
test will fail for query points that are behind any medial ball as seen from the
viewport.
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6.3.5 Implementation and results

I have implemented the method described above using Python. OpenCL ? is
used for parallel execution of the algorithms listed in Section 6.3.3 and 6.3.4.

I ran experiments on two datasets:

1. Dataset 8: A simple artificially generated point cloud with its points and
normals derived from a triangular mesh (2 690 points), and

2. Dataset 7: an airborne LiDAR dataset of a housing block in Zagreb, Croa-
tia (24 647 points).

For the latter dataset the normals were approximated using principal component
analysis of the 6 nearest neighbours of each point. For a good separation of the
interior and exterior MAT it is important that the normals are properly ori-
ented. This can be achieved by flipping the normals with respect to the scanner
position at the time a point is acquired. However, because this information is
not present in the LiDAR dataset a city model was used to properly orient the
point normals.

For the visibility queries I randomly generated 1 million query points that are
uniformly distributed inside the bounding box of the respective dataset. The
time complexity for the computation of the depthmap is O((rs)>N), with N the
number of medial balls, r the ball radius and s the number of pixels per model
unit. This is the most expensive algorithm of my approach, and it needs to be
recalculated for every new viewport. However, once the depthmap is computed
point visibility queries are extremely fast, since they run in constant time (thus
independent of depthmap resolution or size of the dataset).

Figure 6.11 shows the results for the artificial dataset. From the depthmap
(6.11a) it is clear that three-dimensional features in the point cloud (6.11b) are
accurately modelled by the medial balls, given a sufficiently dense and complete
sampling. The invisible or ‘shadowed’ points (inside the bounding box of the
point cloud) as seen from the viewport (6.11a) are depicted in Figure 6.11c.

Figures 6.12, 6.13 and 6.14 illustrate the results for the LiDAR dataset. The
following observations can be made.

1. Despite the low number of samples on the vertical segments, the building
facades are still modelled without holes (6.12d,e).

2. Sparsely sampled details on the buildings such as dormers and chimneys
are represented with only a small number of medial balls (6.12b and 6.13).

2h1:tps ://www.khronos.org/opencl/
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depth
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Figure 6.11: Artificially generated dataset. (a) Depthmap for viewport, (b)
top-down view of point cloud and (c) point visibility from viewport
with medial balls

Figure 6.12: Aerial LiDAR point cloud dataset. Top-down view of point cloud (a)
and point visibility with medial balls (b). Viewport view with point
cloud (c), medial balls (d) and depthmap (e).
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Figure 6.13: Visible (top) and invisible (bottom) points for viewport and LiDAR
dataset of Figure 6.12

3. In case of a complete lack of samples for surfaces such as the right side
of the roofs in Figure 6.14 an object may be wrongly represented due to
protruding medial balls.

4. In the case of trees the orientation of point normals becomes rather am-
biguous, which leads to a fuzzy definition of what is an interior or an
exterior medial ball, which can lead to medial balls that protrude the tree
canopy (see Figure 6.14).

6.3.6 Conclusions

I propose a new approach to visibility analysis in urban scenes directly from a
point cloud, thus without the need of an overly simplified intermediate 3D city
model. Experimental results using a prototype implementation show that the
basic idea of the approach is valid and works on real world data.

There are a number of limitations in the current implementation of the ap-
proach:

1. The computation of the depthmap, which needs to happen once for every
viewport, is computationally expensive.

2. Only the orthogonal projection is supported.
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Figure 6.14: Detail view of LiDAR dataset for point cloud (top) and medial balls
(bottom)
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3. A good separation between the interior and exterior MAT is required. This
requires consistently oriented normals that are not typically available for
geographical point clouds.

In Section 8.2 I give some ideas on how to overcome these limitations.

110



7 Applications of the structured MAT

In Chapter 4, I introduced the structured MAT, a robust organisation of the
medial atoms of the unstructured MAT into a set of connected medial sheets.
In this chapter I demonstrate and explore how to make use of the unstructured
MAT mainly for object detection.

Section 7.1 is about the detection of watercourses in the Dutch landscape. This
case study uses the medial sheet segmentation that I introduced in Section 4.2.2.
Single medial sheets are used to detect watercourses and to reconstruct a 2D
centreline for them. This work is based on the paper:

Automatic identification of watercourses in flat and engineered
landscapes by computing the skeleton of a LiDAR point cloud .
Tom Broersen, Ravi Peters and Hugo Ledoux. Computers & Geosciences
106, September 2017, pp. 171-180, doi: 10.1016/j.cageo.2017.06.003

Section 7.2 focuses on the detection of building-like structures using medial clus-
ters, i.e. connected sets of medial sheets, as explained in Section 4.2.1.

7.1 Watercourse detection

Several areas around the world, such as the Netherlands, are characterised by
low lying, flat, and engineered agricultural lands. The drainage network of these
areas—which is artificial—consists of connected linear features such as channels,
culverts, and reshaped gullies [Bailly et al., 2011]; we refer to these hereafter
as “watercourses”. These form a network that transits water from the fields
into larger canals [Bouldin et al., 2004]. Typically, these areas have very little
variation in elevation, see in Figure 7.7b how the elevation varies only by about
1m over an area of more than 2 km?. Because engineered lands are sensitive to
flooding [Parry et al., 2007], it is of the utmost importance to have an up-to-date
and accurate model of the watercourses [Cavalli et al., 2013]. Such a model will
consist of the planimetric geometry of the watercourses (their centreline), their
connectivity, but also of other characteristics such as the width and the shape of
the banks (which is useful to calculate the storage capacity). This information
can help us design measures to avoid floods [Cazorzi et al., 2013], and can play
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an important role in designing drainage channels and pumping stations [Malano
and Hofwegen, 1999].

This application is about the automatic detection of the network of watercourses
in flat and engineered landscapes. Currently, such networks are typically iden-
tified with a semi-automatic methodology using LiDAR point clouds, aerial im-
agery and field surveys. This is labour-intensive, and subjective [Gandolfi and
Bischetti, 1997]. The vast majority of methods and algorithms developed in
interdisciplinary studies have not been designed for our case, but for natural
landscapes. These usually assume that the slope along a watercourse is always
positive [Costa-Cabral and Burges, 1994; Lohani and Mason, 2001], or that the
curvature of the terrain is higher than a certain threshold [Brzank et al., 2005;
Meisels et al., 1995; Passalacqua et al., 2010], which may not be true for flat land-
scapes. Another problem with existing methods is that, when LiDAR datasets
are used, usually a derived product of the original dataset is used as input, e.g.
a 5mX5m gridded digital elevation model (DEM) seems standard. This is a
problem since they contain missing data where the water is located (due to the
absorption of LiDAR signals by water), and because the conversion to grids in-
evitably implies a certain decrease of accuracy, due to the interpolation process
and the resampling [Brzank et al., 2008; Fisher, 1997; Gold and Edwards, 1992].
Furthermore, a 5 m resolution DEM is insufficient for our case because water-
courses can be less than 1 m wide, and several ones can be closer than 5m to
each other.

In Section 7.1.2 two skeleton-based approaches are introduced for the automatic
detection of water course in flat and engineered landscapes. Both approaches,
respectively called the 2D-skeleton method and the 3D-skeleton method, work
on the basis of a high resolution LiDAR point cloud. The first is based on
conventional 2D GIS operations, and the second is based on the 3D MAT. Both
approaches are tested on three study areas in the Netherlands of soil types—this
affects the shape of the watercourse profile—and use the national AHN3 point
cloud dataset.

7.1.1 Related work

Bailly et al. [2008] identifies watercourses in agricultural areas using LIDAR by
analysing the profile at defined locations perpendicular to field boundaries, and
choosing a threshold for the curvatures (those above the threshold are ditches).
They achieved ditch omissions of around 50%, and ditch commissions of around
15%. They attribute the poor performance to insufficient density of LiDAR
points (while they have 10 points/mg), and to vegetation coverage along the
ditches. Their method only works if the boundaries of fields are given as input,
and may not perform well for watercourses which are largely filled with water.
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==]Identified water courses ==Reference water courses

— Missed water courses — Erroneously identified water courses
(a) Error of omission (b) Error of commission

Figure 7.1: Identification of watercourses by Passalacqua et al. [2012] (with GeoNet
software) for an area with peat soil near Utrecht in the Netherlands. The
dataset is compared to a reference dataset provided by the HDSR
(background aerial photo courtesy of www.pdok.nl).

Passalacqua et al. [2012] argue that watercourses can typically be characterised
by positive curvature, and by high values of flow accumulation. Their method
was designed specifically for flat and engineered landscapes. They successfully
extracted the network using a 3m DEM for the low-relief human-impacted land-
scape of an area along a basin in the USA. However, their study area has el-
evation differences of up to 60 m, and therefore seems to be less flat than the
study areas used in this study (see Figure 7.7 and Section 7.1.3). Their method
is freely available in the package GeoNet [Sangireddy et al., 2016]. Figure 7.1
shows that it performs poorly for the peat study area used in this study (many
errors of omission and commission), although it performed slightly better for the
clay area. It struggles in places with very low relief since there is little surface
curvature, and thus picks the slightest change.

Cazorzi et al. [2013] extracts local low-relief features from a 1 m DEM, and
extract the network by labelling peak values based on a threshold value that
is taken as the standard deviation of the local relief. Their results proved to
be more reliable than their outdated cartography-based reference data, and a
median distance of reference points to the extracted watercourse network was
registered to be about 1 m. The usage of a threshold on the local relief can have
implications on the ability of the method to identify watercourses of different
forms, and as stated above, is less suitable for low-relief watercourses.

Cho et al. [2011] detect stream channels in very low-relief landscapes, based on
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Figure 7.2: Workflow to obtain watercourses from the 2D skeleton.

local minima and maxima in elevation values from a 1m DEM, but comment
that the method requires significant training and computation.

Possel et al. [2010] try to detect very wide (100 m) buried channels in an area
in the Netherlands from a 2 m DEM with a maximum likelihood classifier based
on slope, curvature and relative elevation.

Hofle et al. [2009] extract the edges of a water body by modelling the locations of
laser shot drop-outs along with the surface roughness, after which potential water
regions are detected by using a region growing algorithm. Toscano et al. [2014]
proposes a similar method that requires less pre-processing, but the method uses
a DEM. The original LiDAR samples are converted (pixels having no LiDAR
signal get a low value) and then an analysis of the height histogram allows them
to identify low area (which should be water). Histogram analysis may not suffice
for small water bodies found in the Netherlands, since these do probably not
generate high enough peaks in the elevation data. Both Hofle et al. [2009] and
Toscano et al. [2014] are unable to classify dry watercourses or those completed
covered by canopy.

7.1.2 Methods

Two skeleton-based approaches to automatically detect watercourses from a clas-
sified aerial LIDAR point cloud are introduced here. The first one (see Figure 7.2)
uses the alpha-shape (also commonly called “concave hull”) of ground and vege-
tation points to compute water polygons from which the centrelines are derived
using a 2D skeleton. The second one (see Figure 7.3) computes centrelines as
the lower envelope of the 3D skeleton (used here as a synonym for the 3D MAT)
of ground points and aims at detecting concave profiles, which means it can also
detect dry watercourses and watercourses covered partly by canopy.

Note that both methods assume the input point cloud to be classified. The 2D
skeleton uses the ground and vegetation classes, whereas the 3D skeleton uses
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Figure 7.3: Workflow to obtain watercourses from the 3D skeleton.

solely the ground class.

2D skeleton-based watercourse detection

The 2D skeleton-based approach takes advantage of a key property of red laser-
based LiDAR datasets above open water bodies: it is almost completely ab-
sorbed, only LiDAR signals emitted at or near nadir are reflected strong enough
to be detected by the sensor. The few LiDAR measurements which did reflect
on the water bodies can be filtered out [Hofle et al., 2009].

As input for this method we use two sets of points: 1) ground points (which
includes the building points to fill the voids in the ground class where buildings
are), 2) vegetation points. What remains is a dataset with separate disconnected
groups of ground points, with voids in between these groups representing the
waterbodies.

As illustrated in Figure 7.2 the 2D skeleton-based comprises of 5 steps:
1. Projecting the points to the ground plane, i.e. z = 0.

2. Seperately converting the ground points and vegetation points into multi-
ple disconnected ground and vegetation polygons using alpha-shapes (see
Edelsbrunner et al. [1983]). Then use the vegetation polygons to fill holes
in the ground polygons.

3. Constructing water polygons from the voids in between the filled ground
polygons.

4. Compute the Voronoi diagram from the densified boundaries of the water
polygons.

5. Construct the 2D skeleton from the Voronoi edges that are completely
contained by the water polygons. Prune and simplify. The remaining
edges are the centrelines found by this approach.
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Figure 7.4: Profile view of 3D skeleton of the terrain

See Broersen et al. [2016] for more details on the construction of the 2D skeleton-
based approach that is used here.

3D skeleton-based watercourse detection

The 3D skeleton, i.e. the 3D MAT, is used to detect watercourses based on the
three-dimensional morphology of the landscape. The 3D skeleton-based method,
illustrated in Figure 7.3, computes centrelines as the lower envelope of the 3D
skeleton of ground points and aims at identifying concave profiles, which means it
can also identify dry watercourses and watercourses covered partly by canopy.

As depicted in Figure 7.4b, the 3D skeleton of a typical watercourse results
in three medial sheets: one exterior (above ground), and two interior (below
ground). The exterior medial sheet of a watercourse thus forms a ‘centre plane’
that contains the centreline of the watercourse. The centreline of a watercourse
is defined as the projection to the zy-plane of the lower envelope of its exterior
medial sheet (see also Figure 7.3).

For the computation of the 3D skeleton the extended shrinking ball algorithm
that is given in Chapter 3 is used. The 3D skeleton is computed for all surface
points that are classified as ground. The result is a point approximation (i.e.
a point cloud) of the 3D skeleton. Next, a segmentation of the point cloud
into distinct medial sheets is performed using a region-growing segmentation
algorithm based on the medial bisector as described in Section 4.2.2. An added
benefit of this approach is that outliers in the 3D skeleton point cloud can be
omitted, since they are not part of any medial sheets and are therefore not
assigned to a segment. Figure 7.5 shows the segmentation result for a LiDAR
dataset of watercourses. Observe that each watercourse is delineated by a medial
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(a) Perspective view of skeleton and ground (b) Plan view of exterior skeleton
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Figure 7.5: Segmentation of 3D skeleton sheets. Each distinct sheet was assigned a
random colour. The surface points are coloured by elevation (yellow =
low; blue = high).

sheet.

Prior to deriving the 2D centreline representation of each sheet, the medial sheets
are triangulated using the ball pivoting algorithm from Bernardini et al. [1999].
A centreline of the water surface can then be derived by selecting the lower
edges on the boundary of the triangulated sheet (see also step 4 in Figure 7.3).
These lower edges are found by walking around the boundary edges of the tri-
angulation (i.e. those edges that are only incident to one triangle), and then
selecting the edges whose two endpoints are below (i.e. having a lower z coordi-
nate) the opposite vertex in the triangle to which that edge belongs. Finally, a
2D representation of the resulting polyline is obtained simply by omitting the
z-coordinates.

7.1.3 Experiments & results

In the following experiments we compare the 3D skeleton method with a 2D
skeleton method. The 2D skeleton method was implemented using primarily
QGIS! and LAStools?. See Chapter 5 for details on the implementation of the
3D skeleton method. Only for the ball pivoting algorithm, Meshlab® was used.

1QGIS: http://www.qgis.org.
2LAStools: https://rapidlasso.com/lastools/.
3MeshLab: http://meshlab.sourceforge.net.
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Figure 7.6: The three study areas.

Study area & experiments

The study areas for these experiments are all 3x3 km and are situated around
the city of Utrecht, the Netherlands (see Figure 7.6). This area consists for
the most part of flat (elevation typically ranges between -2 m to +6 m) and
engineered landscapes (see Figure 7.7). We have selected three different types
of environments with different characteristics that can be classified according to
their subsoils; clay, peat, and sand:

Clay: little vegetation and fairly wide watercourses with a very clear concave
profile.

Peat: little vegetation and very wide watercourses with a less clear concave pro-
file.

Sand: a lot of vegetation and narrow watercourses with a clear concave profile.
More detailed information on the study areas can be found in Table 7.1.

The publicly available AHN3* aerial LiDAR point cloud data was used, which
is the most current version of the national elevation dataset of the Netherlands,
it has a point density of around 10 points per square meter. For validation pur-
poses, an existing centreline dataset was used, which was obtained with a semi-
automatic method, from HDSR (Hoogheemraadschap De Stichtse Rijnlanden,
i.e. the water board responsible for water management in the study areas).

4yww.ahn.nl
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Figure 7.7: Terrain elevation of the study areas. Interpolated from ground points.
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Table 7.1: Details on study areas. The specified location in EPSG:28992 is the lower
left coordinate of the area (they are all 3x3 km in size). The percentage of
vegetation coverage is based on the relative number of vegetation points
in the point cloud. The percentage of water coverage is computed by
taking the total surface area of all water polygons in the HDSR reference
dataset and dividing it by the total surface area of the study area.

Area

Characteristic Clay Peat Sand
Location (EPSG:28992) (120279 (116785 (147565

,440768)  , 457391)  , 446180)
Location (city / village) Cabauw Zegveld Langbroek
Vegetation coverage (%) 5 8 47
Water coverage (%) 9 14 5
Elevation range (cm) -250/4300 -250/+150  +150/+600

For the experiments, first the two skeleton-based approaches were tested sepa-
rately on all three study areas. In addition a combined approach is tested, where
the centrelines of both skeleton-based appraoches are merged by computing the
2D skeleton of the union of the buffers of both approaches.

The resulting sets of centrelines were compared to the HDSR dataset of wa-
tercourses, i.e. our reference dataset. The following error metrics are used (see
Lillesand et al. [2008]):

e Positional accuracy: Refers to the extent to which the actual position of
the watercourses is correctly indicated. It can be estimated by calculating
the average positional deviation for multiple watercourses in the generated
dataset with respect to the reference dataset.

e Error of omission: The percentage of watercourses in the reference dataset
that are not in the generated dataset.

e Error of commission: The percentage of watercourses in the generated
dataset that are not in the reference dataset.

To compute the error metrics the centrelines are uniformly discretised into
points, and for these points the shortest Euclidean distance to the centreline
in the reference dataset is found. By aggregating and averaging these point
distances per centreline, an estimate is obtained of the generated dataset’s posi-
tional accuracy. To obtain the mapping accuracies we use threshold distances,
e.g. if a threshold distance of 2 m is set, and the distance between a point on
the generated centreline and the reference centreline is larger than this distance,
then this point counts as an error of commission. Similarly, points can be se-
lected on the generated centreline to find the error of omission. The metrics are
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Table 7.2: This table lists the metrics which were computed for the centrelines
generated by the 2D skeleton, the 3D skeleton, and the combined
approach, for clay, peat and sand areas.

dataset

Error metric Clay Peat Sand

Positional accuracy (m) 2D skeleton 0.5 0.7 0.6
3D skeleton 0.6 0.8 0.8
Combined 0.6 0.7 0.9

Error of omission (%) 2D skeleton 5 5 58
3D skeleton 4 15 26
Combined 2 3 24
Error of commission (%) 2D skeleton 1 2 4
3D skeleton 8 8 17
Combined 8 8 17

computed by taking the number of points omitted or committed, relative to the
total number of points.

Notice that this evaluation method is comparable to the one proposed by Heipke
et al. [1997]. The main difference is that Heipke et al. [1997] use a buffer to match
line features between the reference and the generated data instead of the shortest
distance between the points on the line features. A benefit of the approach used
here is that it can do partial matching, i.e. a parts of the same line feature are
matched separately, whereas Heipke et al. [1997] match only the complete line
features. This is an advantage especially in the case where the topology of the
networks of the reference and the generated datasets are different, which is very
likely since they are generated using different methods.

7.1.4 Results

The outcome of the experiments, for all combinations of methods and study
areas, are shown in Table 7.2 and summarised below.

Both skeleton-based methods perform very well for the clay area with only 5%
of watercourses missing (error of omission) and a low error of commission. The
2D skeleton method works based on the assumption that water surfaces can be
detected from the point cloud because water typically is the only surface type
that does not reflect red laser. The 3D skeleton method on the other hand works
based on the assumption of concavity, i.e. watercourses often have significant
surface curvature at the water banks. It is therefore not surprising that both
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methods perform well on the clay area that has significant concavity and wide
watercourse surfaces with little vegetation covering it.

For the peat area, the 2D skeleton performed nearly equally well, since water
surfaces are even wider and again there is little vegetation covering these surfaces.
However, the watercourses show less clear concave profiles, since relative water
levels are higher here (thus many watercourses have only very small banks),
which impedes the effectiveness of the 3D skeleton. Although the 3D skeleton
performs less for this area, it still manages to identify some of the watercourses
which were not identified by the 2D skeleton method. This is indicated by the
fact that the combined method identifies roughly 97% of the watercourses, which
is more than the 2D skeleton method identified by itself.

The sand area clearly stands out in Table 7.2 since the errors for both methods
are significantly worse than for the two other areas. Especially the 2D skeleton
method does a poor job at identifying the watercourses with a 58% error of
omission. The main problems here are: (1) the fact that water is not well visible
in this landscape, (2) water surfaces are often narrower than 1m, and (3) many
patches of forest are present. The 3D skeleton is much more effective with only
26% error of omission, but it also struggles with the detection of the narrower
watercourses that are naturally also represented with relatively few points in
the point cloud. The combined method for the sand area raises the commission
error only marginally to 24%, indicating that the 3D skeleton method identified
almost all of the watercourses identified by the 2D skeleton, and is clearly the
better performing method for this area.

7.1.5 Discussion

The 2D- and 3D-skeleton methods introduced here both have different strengths
and limitations. Summarising, it can be said that the 2D skeleton method is
particularly efficient with open water watercourses of sufficient width. The (lack
of) surface curvature does not affect its effectiveness. And it is characterised
by a low error of commission. Its limitations are watercourses with a width of
less than 1 m (i.e. depending on the parameters used while creating the alpha-
shapes, which itself depends on the density of the LiDAR point cloud; for a
denser point cloud, this parameter could be lowered significantly), the presence
of large patches of vegetation that cover water bodies (due to the cleaning method
of vegetation artefacts), and voids in the LiDAR point cloud that are not the
result of waterbodies. The former also means that the 2D skeleton method is
ineffective in case of low water levels at time of LiDAR measurements. Thus,
the 2D skeleton method is particularly suited for use in areas where water levels
are high and water is a predominant feature of the landscape. The 3D skeleton
on the other hand does not depend on the presence of water or voids in general,
and is effective as long as the canopy is not too dense and allows the LiDAR
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— Reference water courses
— Erroneously identified water courses

(a) Artefact centrelines in (b) Error of commission of
the 3D skeleton caused the sand area for the
by local relief. 3D skeleton.

Figure 7.8: Remarkable cases in the results of our experiments.

signal to pass through. The limitations of the 3D skeleton are its dependence
on surface curvature (high water levels may obfuscate this) an its tendency to
find concavities in the landscape where one would not immediately expect a
watercourse, e.g. levees or piles of earth or dirt (see Figure 7.8a). The 3D
skeleton method is therefore mostly suited for areas with watercourses that have
a low water level, clearly concave profiles and may be covered with large patches
of vegetation.

7.2 Building detection detection based on the structured MAT

The structured MAT is very promising for applications like object detection and
object classification.. There are two main reasons for this. First, the structure of
the MAT, i.e. its organisation into medial clusters and medial sheets, implies an
intuitive decomposition of shapes into meaningful parts. And second, with the
local medial geometry of medial atoms, we have a powerful way to describe and
characterise the geometry of those parts. These two properties together make
the MAT very appealing for applications that require the detection and effective
characterisation of objects in geographical point clouds.

This section describes initial attempts to use the structured MAT for building
detection, based on experiments on real-world datasets. Building detection is
a form of object detection, i.e. a way to decompose a point cloud into subsets
that correspond to meaningful objects. It is an important step (see e.g. Sun and
Salvaggio [2013]) toward more advanced and automated applications like object
classification, object matching and object reconstruction.

In the previous section, i.e. the detection of watercourses, the decomposition
of the MAT into medial sheets was sufficient, since one watercourse typically
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Figure 7.9: The correspondence between medial clusters and objects in a scene.

corresponds to one medial sheet. However, the MAT of a building is likely a
composition of multiple medial sheets, i.e. a medial cluster, as the geometry of
a building is more complex. In Chapter 4 I explained how to obtain medial
clusters from the unstructured MAT. In this Section, I investigate how buildings
can be detected using these medial clusters in two steps. First, I discuss the
correspondence between medial clusters and objects in the point cloud. Then, I
discuss how to identify which medial clusters are buildings.

7.2.1 The medial cluster of a building

As explained in Section 4.1 the MAT of a scene, e.g. an urban landscape, can
be decomposed into medial clusters. The central idea of using the MAT for
building detection is that each interior medial cluster corresponds to a distinct
object in the landscape. This is certainly true if we consider the theoretical
case of a collection of watertight manifold shapes embedded in R? as depicted
in Figure 7.9a. If one would compute the MAT of this scene, indeed each object
would by definition result in one separate set of connected medial sheets, i.e. a
medial cluster.

The geographical case is different because objects are not be closed manifolds in
geographical scenes, since—as depicted in Figure 7.9b—only the surface visible
from above the ground is represented in the point cloud (I also discuss this in
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Section 2.1). In theory this should entail that the MAT of all objects in the
terrain is connected. In practice, however this is not a problem for flat terrains,
since in that case the point where the clusters of two nearby buildings would
connect is infinitely far away and will not be present in the approximation of
the MAT that I compute. Buildings in hilly terrain may be part of the same
cluster.

On the other hand, due to the manner of acquisition of a geographical point cloud
as described in Section 1.1, the MAT that we compute in practice is deformed.
This may cause

1. connecting sheets between the interior (e.g. in the earth) and the exte-
rior (e.g. in the earth) parts of the MAT (see Figure 7.10a), I call this a
supercluster, and

2. single buildings that are composed out of multiple medial clusters (see
Figure 7.10b), I call this a fragmented cluster.

As a result the one-to-one correspondence between a medial cluster and object
in the urban landscape can not be taken for granted.

Experiments with simple medial clustering

I have performed a number of experiments to roughly demonstrate the effec-
tiveness of the structured MAT for building detection. For each dataset I have
simply computed the interior medial clusters form the structured MAT using the
methods described in Sections 4.2.1 and 4.4. For visual purposes medial each
cluster is a assigned a random colour in the following figures.

Figure 7.11 shows the interior medial clusters for Dataset 2. The terrain is
flat and all buildings correspond to one or more medial clusters and are thus
effectively detected. Some building structures are fragmented clusters. In par-
ticular building parts with flat roofs are often in separate clusters, very similar
to the case illustrated in Figure 7.10b. See for example Figure 7.11d; two of the
dormers on the gabled roof are separate clusters, while the two dormers on the
other side of the roof are not. Other examples of fragmented clusters are the flat
roofed buildings in the back of the scene.

In Figure 7.12 the results for Dataset 5 are shown. A few observations can
be made. First, the majority of buildings is detected with the interior medial
clusters in Figure 7.12b, despite the dataset’s low point density and the lack
of virtually all vertical surfaces (e.g. the walls of the buildings). This confirms
the idea that the MAT can be effective even for incompletely sampled objects.
Notable are the flat roofed buildings on the right side of the dataset. The medial
sheets of these buildings are not in separate clusters. The case of Figure 7.10a
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(a) Building objects may contain multiple interior medial clusters or be part of a larger
exterior medial cluster.

(b) Due to the discrete nature of the unstructured MAT, some connecting medial sheets
(ligatures) will not be reconstructed. As a result some building structures will be
represented using more than one medial cluster. Spoke vectors shown with grey lines.

Figure 7.10: Due to missing vertical surfaces (dashed lines) the interior and exterior
parts of the MAT may get connected.
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Figure 7.11: Building detection in Dataset 2.
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(a) Full surface point cloud with elevation colourmap.
e o = e T o T Y B RIS e & Jcogter Wi 7 L G ¥
- ‘EE\.“UI S :. “ - Y p R

ey Rk - @7
¢ % . g & b TANE” PR
" [f\ . ﬁ, A

- ‘/Q‘

S a

(b) Surface points corresponding to interior medial clusters. Each cluster has a random

colour.
~ 4
S )
bl & 5
<4

’

r ‘

¢ :
Y

(c) Surface points corresponding to interior MAT clusters with an average separation angle
of at least 70° and an atom count of at least 50.

Figure 7.12: Building detection in Dataset 5. Some of the big buildings structures
with flat roofs on the right side are not detected.
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(a) Surface points. (b) Medial sheets.

(d) Interior clusters with an average

(c) Interior medial clusters. X o
separation angle greater than 50°.

Figure 7.13: Building detection in Dataset 4. This point cloud was created using
dense image matching from oblique imagery.

applies here.Due to the missing wall surfaces the clusters of these buildings are
not well separated from the exterior clusters.

Finally, in Figure 7.13 results for a point cloud obtained from dense image match-
ing are shown.

7.2.2 Filtering unwanted interior medial clusters

In Figures 7.11c and 7.12b most interior medial clusters correspond to building
structures. However, some of the interior clusters in Figure 7.12b correspond to
sloped or hilly parts in the terrain. In addition there are many small clusters
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that do not correspond to a building. These clusters can be filtered out based
on properties such as the number of medial atoms in a cluster, the minimum
or maximum medial ball radius or the average separation angle. Figure 7.12c
demonstrates that such simple thresholds can be effective in eliminating many
of the unwanted medial clusters.

A richer way to characterise a medial cluster is by examining in more detail its
medial sheets. Figure 7.14 shows how this can be achieved. Here, each medial
sheet is characterised in terms of the relation between the medial radii and the
separation angles. Evidently, this relation is characterised by the type of sheet,
i.e. it depends on the surface geometry that generated the sheet. Two simple
examples are given: 1) the case of a sheet between to parallel surface patches
(Figure 7.14a) and 2) the case of a sheet between to converging linear surface
patches (Figure 7.14b). This is a compact way to describe and potentially classify
a medial sheet. Furthermore, the combination of sheets in a medial cluster may
give a good indication of the type of object represented by the medial cluster
(Figure 7.14c). While I have not implemented this, I believe it could be the basis
for an effective object classification approach based on the structured MAT.

7.2.3 Conclusions

Based on these initial experiments the MAT is indeed appropriate for building
detection in geographical point clouds.

First, the segmentation of the unstructured MAT into medial clusters is straight-
forward and it immediately gives us the ability to detect entire objects and only
requires a raw point cloud. However, the correspondence between a building and
a medial cluster is not always one-to-one, which means the decomposition is not
always consistent across comparable buildings.

Second, I have applied simple thresholding to remove medial clusters that are not
corresponding to buildings. This method can be effective, but requires manual
fine-tuning and may inadvertently remove building clusters as well.

Thus, for both the clustering and the filtering part, future research should be
focused on making the method more robust and accurate. 1 give some suggestions
for future work in Chapter 8. Ultimately, the experiments have shown that the
MAT can be used to detect building-like objects in geographical points clouds,
and therefore potentially other types of objects for which well-defined interior
medial clusters.
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Figure 7.14: Characterisation of a medial cluster by the medial radii (r) and
separation angles (0) of its sheets. Given a medial sheet, the plot of the
medial radius against the separation angle of its medial atoms forms a
compact description of its geometry.
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8 Conclusions and future work

With this thesis I have investigated the 3D MAT as a new approach for geo-
graphical point cloud modelling. Key benefits of the MAT for geographical point
cloud modelling are 1) it is fully 3D, 2) it can be used to intuitively structure
and decompose a point cloud into objects, 3) it clearly separates a point cloud
into interior and exterior volumes, and 4) it is able to compactly characterise
geometrical properties of a shape though its local medial geometry.

Prior to this thesis the 3D MAT was never applied to geographical point clouds,
because of their relatively poor quality in terms of point distribution and acqui-
sition noise (to which the MAT is particularly sensitive). Previous methods in
geographic point cloud modelling often relied on the boundary representation of
shape and often used 2D or 2.5D techniques. I have shown that the 3D MAT is
a viable alternative in geographical point cloud modelling.

My main contributions are:

1. T have shown that the 3D MAT can be robustly computed even for typical
geographical point clouds using the shrinking ball algorithm [Ma et al.,
2012] with my novel denoising heuristic. The resulting approximation of
the MAT, i.e. the unstructured MAT, in itself is a point cloud without any
form of organisation.

2. I have proposed a novel method to decompose this point cloud into its con-
stituent medial sheets and to explicitly obtain the topology of those medial
sheets, i.e. the structured MAT. Together, these two contributions form the
foundation of a usable geographical point cloud modelling framework based
on the 3D MAT.

3. I demonstrated the feasibility of this MAT-based geographical point cloud
modelling framework, by implementing a number of applications, namely
point cloud simplification, visualisation, visibility analysis and object de-
tection.

The 3D MAT offers a new way to analyse and semantically enrich such point
clouds, so that they can be used in fields like asset management, crisis manage-
ment, city and landscape planning, and environmental simulations [Axelsson,
1999; Snyder, 2013]. However, I believe that with this research I have merely
scratched the surface of what is possible with the MAT for geographical point
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clouds. In Section 8.2 I have therefore listed what I think are the most promising
topics for future research, most of which is focused on the further development
of the structured MAT. But first, I will get back to the research questions that
I presented in Chapter 1 in Section 8.1.

8.1 Research questions

Can the MAT be robustly computed or approximated for geographical
point clouds?

Yes, robust and efficient MAT approximation of geographical point cloud, i.e.
the unstructured MAT, is possible using the ball shrinking algorithm from Ma
et al. [2012] extended with my novel denoising heuristic. The denoising heuristic
does come at the expense of a slight reduction in sensitivity of the MAT for small
features, as is the case for all known noise handling methods for the MAT.

After approximation of the MAT using the extended ball-shrinking algorithm,
the topology of medial sheets in the MAT, i.e. the structured MAT, can be
obtained explicitly. This can be achieved by applying a region-growing seg-
mentation based on the medial bisector to decompose the MAT into its medial
sheets, followed by the construction of a sheet adjacency graph. With the ad-
jacency graph a geographical point cloud can be decomposed into constituent
objects through graph operations like connected component analysis and further
classified (e.g. into the interior and exterior MAT) by analysing the aggregated
medial geometry of the resulting MAT components, i.e. medial clusters.

An important aspect of working with the MAT for geographical point clouds
is the balance between feature size and the local noise levels and point density.
This is especially critical for particularly small or thin objects and near sharp
edges. In these cases the medial atoms may get distorted in their position and
separation angle due to poorly estimated surface normals and medial balls that
protrude through the boundary surface. For this reason the effective applications
of the MAT are limited to cases where the objects of interest have sufficient
thickness and have sufficient surface point density. In practice these are objects
that have a clearly defined volume in the point cloud such as for example houses
and landscape features but not trees and thin street furniture.

What applications benefit most from MAT-based geographical point
cloud modelling?

I show that the unstructured MAT, that lacks an organisation into medial sheets,
by itself is already useful for applications such as point cloud simplification. How-

134



8.2 Future work

ever, I believe most value lies in the application of the structured MAT. In this
thesis I have shown that using fairly simple methods, it is already possible to
detect objects such as watercourses and buildings in a geographical point cloud.
Consequently, the MAT proves to be a powerful tool for decomposing a geo-
graphical point cloud into separate objects. Furthermore, using the local medial
geometry, medial clusters can be further characterised. This opens the door to
applications such as object classification (I already classify interior and exterior
clusters) and shape matching. I further elaborate on these in Section 8.2.

8.2 Future work

8.2.1 Core methodology

Improve robustness of unstructured MAT In this thesis I have shown that the
MAT can in fact be robustly approximated for geographical point clouds.
Nonetheless, I believe that further improvements to the robustness of the
MAT approximation should be explored. A very interesting research di-
rection would be to improve the point normals that are used during ap-
proximation. As discussed in Section 3.5.1, the MAT approximation can
be distorted due to point normals that are estimated in a ‘smoothened’
fashion around sharp edges. To improve, one might for instance consider
changing the position of a medial atom and the related point normals in
such a way that point normals are aligned with all touching medial balls.
This might be achieved by e.g. considering that nearby medial atoms in the
same medial sheet should have similar medial geometry and could be im-
plemented as a post-processing step to the current method to approximate
the unstructured MAT. Note that this would not only improve the quality
of the MAT approximation, but also give us a better way to estimate point
cloud normals, which is a useful result by itself. In addition, one could con-
sider extending the current denoising heuristic by using additional criteria
to detect instabilities such as a ball-emptiness measure as used by Berger
and Silva [2012]. This should also improve the accuracy of the unstruc-
tured MAT e.g. by better preserving small surface features, that may now
be missed in noisy point clouds that require relatively aggressive denoising
parameters.

Further development of structured MAT In Chapter 4 I developed a method to
decompose the MAT into medial clusters and medial sheets using a region-
growing segmentation approach. This is a new result in MAT research that
could help in the problem of structuration [Delame et al., 2016]; explicit
reconstruction of the medial surfaces as e.g. a triangulation. Conventional
structuration methods are not aware of such a decomposition into different
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sheets of a medial point cloud and often produce invalid geometries even
for non-geographical point clouds. Structuration is hard because one needs
to deal with difficult cases such as the intersection of multiple sheet sur-
faces at one curve. However, when the sheet decomposition is known, the
structuration can be performed on a sheet by sheet basis which is much
easier since sheets typically do not intersect themselves. In addition, one
can use the local medial geometry in the sheet to aid in the reconstruction
of the sheet surfaces, something that has not been done before as far as I
know.

8.2.2 Application of the MAT

Object detection In Section 7.2 I discuss the use of the MAT for building de-
tection in geographical point clouds. The approach is promising but needs
further development. It has difficulties with missing vertical surfaces in the
surface point cloud, because in that case medial clusters are not properly
separated and the interior and exterior parts of the MAT may get con-
nected. This may be improved e.g. by using a a graph-cut segmentation
(see e.g. Sun and Salvaggio [2013]) of problematic sheets that aims to op-
timise the separation of the interior and exterior MAT based on properties
of the medial geometry.

Object classification After object detection follows object classification or shape
matching between objects. To this end, it would be interesting to investi-
gate whether an effective feature descriptor can be designed that is based
on the medial sheet decomposition of an object and its local medial geom-
etry, e.g. by correlating properties of medial geometry for each sheet (see
also Section 7.2.2). Ideally, this feature descriptor could then be used for
computing a similarity measure between different objects and for object
classification.

Feature aware terrain surface reconstruction This would be an extension of the
feature aware point cloud simplification that was described in Section 6.1.
Researchers have shown before that it is possible to use a MAT with tri-
angulated medial surfaces for surface reconstruction of high quality point
clouds (see e.g. [Amenta et al., 2001] or [Sun et al., 2013]). If one is able
to obtain such explicit medial surfaces for the MAT of geographical point
clouds, a logical next step would be to attempt surface reconstruction of
e.g. terrains in a feature aware manner so that different levels of detail
could be generated.

Object reconstruction The reconstruction of individual objects in the terrain,
e.g. the polyhedral reconstruction of buildings, can also benefit from the
MAT. In particular the MAT’s ability to separate between the interior and
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Oriented point cloud MAT + topological data structure Topological data structure +
reconstructed polyhedron

Figure 8.1: From point cloud to polyhedron using the MAT topology

exterior of an object is relevant here. For instance, the approach of Verdie
et al. [2015] derives the interior /exterior separation from a photogrammet-
ric mesh and use it to drive a 3D arrangement of planes in an optimisation
procedure from which a watertight polyhedral mesh is computed. With
the MAT, such method could be adapted for the case an input surface
mesh is not available, i.e. when only a point cloud is available, by deriv-
ing the interior/exterior separation from the MAT instead of the surface
mesh. Another approach could be based on mapping the topology of me-
dial surfaces to the boundary faces of an object. I explored this idea and
developed a prototype implementation (see Figure 8.1) that works for care-
fully prepared artificial datasets. The main challenge in making such an
approach work for real-world geographical point clouds is to robustly find
the topology between medial sheets.

Breakline detection The MAT has been used before for edge detection in poly-
hedral meshes [Hisada et al., 2002; Kustra et al., 2016]. A similar method,
i.e. based on detecting the surface points that correspond to the outer
boundaries of medial sheets, could be applied for breakline detection in the
context of terrain analysis. In Section 7.1 I already explained a method for
the detection of 2D centrelines of watercourses using medial sheets. The
detection of 3D breaklines is a natural extension of this work. In the MAT
a breakline should occur where the medial atoms have a zero radius. Un-
fortunately, those atoms are rarely constructed in practice due to surface
noise and the application of the denoising heuristic. A possible solution
to this problem would be to extrapolate medial sheets in the direction of
decreasing medial radius, after which the explicit 3D linear geometry of
the breakline would have to be computed. The problem would be easier to
solve if the medial sheet surfaces are available, e.g. as a triangulation.
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Watercourse analysis In Section 7.1 I showed how the MAT can be used for the

detection of watercourses as 2D centrelines. This work can be possibly
extended in a number of ways. For example, one could investigate if the
MAT can be used for computing cross-sections of a watercourse, for recon-
structing the entire 3D surface of a watercourse, and for the estimation of
the volume of a watercourse (i.e. the so-called storage-capacity).

Visibility analysis In Section 6.3 I introduced a method for visibility analysis

138

based on the MAT. Some of the limitations of that approach, i.e. the high
computational cost and that only the orthogonal projection can be used,
may be addressed by using a different implementation based on ray-tracing
a KD-tree of medial balls (similar to e.g. [Wald and Havran, 2006]). Such
an implementation should yield exactly the same visibility results, but
in a more efficient and flexible way. In addition the approach should be
extended to make use of the interior/exterior separation of the MAT as
described in Section 4.4.



A Datasets

Table A.1: Overview of datasets and their details

#  Acquisistion Point count Point density = Source
1 ALS 746351 30-100 m~2?  Hoogtebestand
Rotterdam 2012
2 ALS 708416 30-100 m—2 Hoogtebestand
Rotterdam 2012
3 ALS 93483 30-100 m—2 Hoogtebestand
Rotterdam 2012
4 DIM 784673 504+ m—2 FBK, Bergamo/Italy
5 ALS 3776182 5 m~2 ISPRS Benchmark,
Vaihingen/Germany
6 ALS 1632040 2 m—2 OpenTopography,
Dragons Back Ridge
7 ALS 24647 10 m—2 private
8 AH 2690 n/a n/a
9 AH 69634 n/a n/a
10 AH 186577 n/a n/a
11 AS 1751 n/a n/a

ALS = Aerial Laser Scanning
DIM= Dense Image Matching
AH = Artificially generated with homogeneous sampling

AS = Artificially generated with ALS simulated sampling
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Summary

A geographical point cloud is a detailed three-dimensional representation of the
geometry of our geographic environment. Using geographical point cloud mod-
elling, we are able to extract valuable information from geographical point clouds
that can be used for applications in asset management, crisis management, city
and landscape planning, and environmental simulations. During this process the
point cloud is semantically enriched, e.g. by performing classification, and struc-
turally enriched, e.g. by performing segmentation or surface reconstruction.

In this thesis I propose a new approach to geographical point cloud modelling
based on the 3D Medial Axis Transform (MAT), a skeleton-like representation
of shapes that explicitly models both the topology and the geometry of shapes.
While the 3D MAT has been used before in other fields, its application to ge-
ographical point clouds is novel. Advantages of the MAT over existing mostly
2.5D and boundary representation-based methods include that 1) it is fully 3D,
2) it can be used to intuitively structure and decompose a point cloud into ob-
jects, 3) it clearly separates a point cloud into interior and exterior volumes, and
4) it is able to compactly characterise geometrical properties of a shape though
its local medial geometry.

I make three core contributions. First, I explain how to robustly approximate
the 3D MAT for large real-world geographical point clouds. This is critical for
geographical point clouds because they are inherently noisy due to the challeng-
ing acquisition conditions and the fact that the MAT in itself is highly sensitive
to noise. Second, I show how to structure the MAT into a connected set of medial
sheets that form so-called medial clusters that give us a natural decomposition of
the point cloud into objects. Third, I demonstrate how the MAT can be applied
for feature aware point cloud simplification and visualisation, visibility analysis,
watercourse detection, and building detection.

Due to noise and limitations in the point density of geographical point clouds,
the MAT performs best for objects that have a clearly defined volume in the
point cloud such as for example houses and landscape features. It is less suitable
for object like trees and thin street furniture.

The core result of this thesis is that I prove that the 3D MAT is a useful and
practically viable tool for geographical point cloud modelling.
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Samenvatting

Een geografische puntenwolk is een gedetailleerde drie-dimensionale representa-
tie van de geometrie van onze geografische omgeving. Uit geografische punten-
wolken kan waardevolle informatie worden verkregen die gebruikt kan worden
voor toepassingen in asset management, crisismanagement, gebiedsontwikkeling
en studies over milieu en natuur. Deze informatie wordt uit de puntenwolk
verkregen door het inbrengen van semantiek en structuur, door middel van bij-
voorbeeld classificatie, segmentatie en oppervlakte reconstructie.

Ik introduceer een nieuwe aanpak voor het modelleren van geografische punten-
wolken die gebaseerd is op de 3D Medial Axis Transform (MAT), een skelet-
achtige representatie van vormen waarin zowel de topologie als de geometrie
expliciet wordt gemodelleerd. Alhoewel de 3D MAT al eerder in andere vakgebie-
den is gebruikt, is de toepassing op geografische puntenwolken nieuw. Voordelen
van de MAT ten opzichte van bestaande methodes die veelal 2.5D zijn en op de
boundary-representatie gebaseerd zijn: 1) het is een volwaardige 3D methode, 2)
met behulp van de MAT kan een puntenwolk gestructureerd en opgedeeld wor-
den in losse objecten, 3) er wordt een duidelijke scheiding aangebracht tussen
volumes aan de binnen- en buitenkant van objecten, en 4) de MAT bevat attri-
buten (de zgn. local medial geometry) waarmee de geometrische eigenschappen
van een vorm op compacte wijze beschreven kunnen worden.

In dit proefschrift maak ik drie belangrijke bijdrages. Ten eerst leg ik uit hoe de
3D MAT op robuuste wijze berekend kan worden voor grote geografische pun-
tenwolken. Dit is erg belangrijk aangezien geografische puntenwolken altijd een
significante hoeveelheid ruis bevatten door de uitdagende inwinnings omstandig-
heden. Bovendien wordt de vorm van de MAT zelf in hoge mate beinvloed door
ruis. Ten tweede laat ik zien hoe de MAT georganiseerd kan worden tot een
verzameling medial sheets die zogenaamde medial clusters vormen waarmee een
puntenwolk op natuurlijke wijze opgesplitst kan worden in losse objecten. Ten
derde demonstreer ik hoe de MAT toegepast kan worden voor slimme puntenwolk
simplificatie en visualisatie, zicht analyses, en het detecteren van watergangen
en gebouwen.

Door ruis en de beperkte punt dichtheid in geografische punten wolken, werkt
de MAT het beste voor objecten met een goed gedefinieerd volume in de punten
wolk. Dit zijn bijvoorbeeld gebouwen en vormen in het lanschap zoals dijken.
Objecten zoals bomen en lantaarnpalen zijn minder geschikt.
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Samenvatting

Het belangrijkste resultaat uit dit proefschrift is dat ik bewezen heb dat de 3D
MAT een nuttige en praktisch toepasbare methodiek is voor het modelleren van
geografische puntenwolken.
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