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Glossary

Abbreviations

3D Threedimensional
AM Additive Manufacturing
DOF Degree Of Freedom
FDM Fused Deposition Modeling
FNN Feedforward Neural Network
LDR Light-Dependent Resistor
LED Light-Emitting Diode
LSTM Long Short-Term Memory
MSE Mean Squared Error
MVLR Multivariate Linear Regression
MVPR Multivariate Polynomial Regression
PLA Polylactic Acid
RGB Red, Green, and Blue
RGBC Red, Green, Blue, and Clear
SLS Selective Laser Sintering
SVR Support Vector Regression
TPU Thermoplastic Polyurethane

Definitions

3D Printing See Additive Manufacturing
Actuator A device that converts energy to mechanical action in such a way
that it can be controlled. In the case of soft pneumatic actuators, the word
actuator is used to refer to every air chamber that can be independently
controlled
Additive Manufacturing (AM) A manufacturing method based on building
threedimensional objects from digital files, usually by adding material in a
layer-wise manner
Bellow An air chamber that deforms upon inflation. Sometimes used to refer
to the smallest repeating unit within the air chamber
Compliant Mechanism A flexible mechanism that achieves transmission of
force and motion through elastic deformation

vii



Closed-Loop Control A control system in which the control action is
dependent on the output generated by the system
Degrees of Freedom (DOFs) The number of independent aspects of motion
that determine the configuration of a mechanical system such as a (soft) robot
Dexterous Manipulation The ability of a manipulator to perform a task in a
skillful and effective way
Feedforward Neural Network (FNN) Machine learning algorithm consisting
of an artificial neural network with no feedback connections
Fused Deposition Modeling (FDM) An additive manufacturing technology
based on the extrusion of a thermoplastic filament
Gripper A device for prehension purposes
Long Short-Term Memory (LSTM) Machine learning algorithm consisting
of an artificial recurrent neural network structure with feedback connections
Machine Learning Algorithm Algorithm that builds a model based on train-
ing data in order to make predictions, without being explicitly programmed to
do so
Manipulator A device that physically interacts with its environment in order
to perform a task. In this dissertation, it is mostly used to refer to devices that
are aimed at replacing the human hand
Multivariate Linear Regression (MVLR) Machine learning algorithm that
applies linear regression with more than one dependent variables and one or
more predictor variables
Multivariate Polynomial Regression (MVPR) Machine learning algorithm
that models the relationship between more than one dependent variables and
one or more predictor variables as a polynomial
Open-Loop Control A control system in which the control action is indepen-
dent of the output generated by the system
Out-of-Plane Deformation Deformation outside the primary plane in which
the deformation is intended
Photopolymer A class of materials that undergo photochemical reactions
upon exposure to light that result in changes in their structures that modify
their chemical and mechanical properties
PolyJet An additive manufacturing technology that involves jetting pho-
topolymer droplets and solidifying them with an ultraviolet light
Proprioception Perception or awareness of the position and movement of the
body
Robot A machine that can sense, analyze, decide, and act without human
intervention
Selective Laser Sintering (SLS) An additive manufacturing technology in

viii



which a laser is used to selectively induce fusion between powder particles
Soft Robot A robot that is primarily composed of materials with moduli in
the range of the moduli of soft biological materials (Young’s moduli between
104 and 109 Pa)
Support Vector Regression (SVR) Machine learning algorithm based on con-
structing a hyperplane or set of hyperplanes in a high- or infinite-dimensional
space for regression
Underactuated System A system in which the number of actuators is less
than the number of degrees of freedom of the system
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Summary

Agriculture and horticulture depend heavily on human labor to perform
tasks that are often dirty, hazardous, and highly repetitive. One reason for the
lack of automation of these tasks is the absence of suitable robotic handling
equipment. Rigid robotic manipulators are typically incapable of performing
dexterous manipulation tasks such as harvesting apples as they lack the ability
to adapt to objects of various shapes and sizes. Such robotic manipulators
need a large number of sensors and actuators to overcome these challenges,
making them overly complex and not very robust. Therefore, the development
of robotic manipulators for dexterous manipulation tasks has begun to focus
on morphological computation, in which at least some aspects of the control
are outsourced to the body of the robot.

Taking inspiration from grasping mechanisms in natural systems, the field
of soft robotics attempts to address this problem by constructing robots from
soft materials. Although soft robotics may be the key to realizing automa-
tion of dexterous manipulation tasks, the current commercially available soft
robotic grippers are only capable of performing simple pick-and-place tasks
with open-loop control. This limited capability is in large part due to a lack
of techniques to endow these manipulators with a sense of self-movement and
body position, known as proprioception. Proprioception is a simple problem
for conventional robots with rigid members and discrete joints, as the body po-
sition can be easily reconstructed using the information from encoders in the
robots’ joints. However, it is a highly challenging problem for soft robots with
virtually infinite degrees of freedom and above all, no suitable off-the-shelf
sensors.

The objective of this research is to develop a systematic approach to build-
ing soft robotic manipulators with accurate proprioception in order to enable
the development of closed-loop control algorithms for dexterous soft robots.
This approach includes fabricating actuators with desired behavior, designing
sensors to capture the deformation of these actuators, calibrating the sensors,
and reconstructing the deformed shape. How to best accomplish these steps
remains an open question.

This dissertation focuses on soft robots that are actuated through inflation
of soft material air chambers. Pneumatic actuation of soft robots has significant
advantages over other types of actuation as it does not require electric wiring
and allows for customization of the robots’ behavior by altering the shape and
size of the air chambers. The fabrication of these customized designs can be
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realized through additive manufacturing (AM). It is demonstrated in this work
that multiple soft actuators and sensors can be integrated into a monolithic soft
robot.

The presence of the air chambers is then exploited for proprioception pur-
poses. The inner walls of the air chamber are illuminated with one or more
small light sources and the reflected light is measured with multiple optical
(color) sensors. Deformations of the air chamber result in changes in the re-
flection of light and thus in a change in the signal of the optical sensors. The
sensitivity of the sensing method can be increased by optimizing the place-
ment of the sensors as well as by integrating structures that maximize changes
in light intensity and color as a result of deformation. This is demonstrated
through a soft bending actuator that exploits multi-material AM to integrate a
multi-color structure as signal generator inside the air chamber.

A machine learning-based calibration method is employed to translate the
sensor readings to the corresponding shape of the soft actuator. The target
variables are obtained through the capturing of strategically placed markers on
the actuators by one or more cameras, while the actuator undergoes a range
of deformations through a combination of an actuation pressure and external
forces. Results indicate that the coordinates of the markers can be accurately
predicted from the sensor readings even when the actuator is interacting with
objects.

This collection of points must be converted to a soft robot representation
that is useful for real-time visualization and closed-loop control. To this end,
the captured marker coordinates are converted to shape parameters prior to
training of the machine learning model. The machine learning model then
predicts shape parameters that can be used to reconstruct the shape of soft
robots in real-time. This process is demonstrated for the deformation of a soft
continuum joint represented as a transformation matrix and the shape of a soft
membrane represented by the control points of a Bézier-surface.

Besides capturing and reconstructing the shape of soft robots, it is im-
portant to prevent the undesired deformation in soft robots from occurring in
the first place. Out-of-plane deformation in soft pneumatic bending actuators
is a major cause of failed grasps in soft robotic manipulators. Out-of-plane
deformation can be reduced by embedding a stiffening structure inspired by
spatial flexures in the 3D-printed soft actuator. This structure reduces the
out-of-plane deformation without significantly increasing the in-plane bend-
ing stiffness. Thus, the number of degrees of freedom that need to be captured
and reconstructed can be reduced.

In conclusion, this dissertation presents an approach to building soft
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robotic manipulators equipped with accurate proprioception. The compati-
bility of the chosen sensing, actuation, and fabrication techniques allows the
designer to easily realize soft robotic manipulators with the desired behavior
through an integrated design approach. Thus, this research provides an excel-
lent starting point for the development of more advanced closed-loop control
algorithms for soft robotic manipulators. Eventually, this development will
enable soft robotic manipulators to perform dexterous manipulation tasks.
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Samenvatting

Landbouw en tuinbouw zijn zeer afhankelijk van menselijke arbeid voor
het uitvoeren van taken die vuil, gevaarlijk, en zeer repetitief zijn. Een van
de redenen voor het uitblijven van automatisering van deze taken is het ge-
brek aan geschikt gereedschap voor robots om dergelijke natuurlijke objecten
te hanteren. Harde robotische manipulatoren zijn normaliter niet goed in het
volbrengen van taken zoals het plukken van appels omdat ze niet goed in staat
zijn zich aan te passen aan kwetsbare objecten met verschillende vormen en
groottes. Een groot aantal sensoren en actuatoren zijn nodig om dergelijke
functionaliteiten te bewerkstelligen in harde robotische manipulatoren. Om
dit te omzeilen, is de focus in de ontwikkeling van robotische manipulatoren
komen te liggen bij het vereenvoudigen van de aansturing van de robot door
een deel van de aansturing uit te besteden aan het lichaam van de robot.

Geı̈nspireerd door grijp-mechanismen in natuurlijke systemen, richt het
onderzoeksgebied van de zachte robotica zich op het aanpakken van dit prob-
leem door het gebruik van zachte materialen in het bouwen van robots. Hoewel
zachte robotica wel eens de sleutel zou kunnen zijn tot het automatiseren van
taken die fijne motoriek vereisen, zijn de huidige commercieel beschikbare
zachte grijpers slechts in staat tot het uitvoeren van eenvoudige ‘pick-and-
place’-taken met een open regelkring. Dit komt met name door het gebrek
aan middelen om deze grijpers uit te rusten met het vermogen om de positie
van het eigen lichaam en lichaamsdelen waar te nemen (ook wel proprioceptie
genoemd). Proprioceptie is een goed opgelost probleem voor harde robots met
rigide leden en discrete gewrichten, aangezien de positie van de robot gere-
construeerd kan worden aan de hand van de informatie van codeerapparaten
in de gewrichten van de robot. Daarintegen is proprioceptie een zeer uitda-
gend probleem voor zachte robots met vrijwel oneindig veel vrijheidsgraden
en geen geschikte ‘off-the-shelf’ sensoren.

Het doel van dit onderzoek is het ontwikkelen van een systematische aan-
pak om zachte robotische manipulatoren met nauwkeurige proprioceptie te
bouwen om zo de weg vrij te maken voor de ontwikkeling van aansturin-
gen voor zachte robots middels een gesloten regelkring voor het uitvoeren van
taken die fijne motoriek vereisen. Dit omvat het fabriceren van actuatoren met
gewenst gedrag, het ontwerpen van sensoren om de deformatie van de actua-
toren vast te leggen, het kalibreren van deze sensoren, en het reconstrueren van
de vorm van de robot. Hoe deze stappen het best verwezenlijkt kunnen worden
is nog een open vraag.
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Dit proefschrift richt zich op zachte robots die aangedreven worden door
perslucht in luchtkamers gemaakt van een zacht materiaal te blazen. Pneu-
matische aandrijving van zachte robots biedt voordelen boven andere aandrij-
vingen aangezien er geen elektrische bedrading nodig is en het gedrag van de
robot op maat gemaakt kan worden door het aanpassen van de vorm en grootte
van de luchtkamers. Deze op maat gemaakte ontwerpen kunnen gefabriceerd
worden middels additive manufacturing. Zodoende kunnen meerdere zachte
actuatoren en sensoren worden geı̈ntegreerd in een monolithische zachte robot.

De aanwezigheid van de luchtkamers wordt vervolgens benut voor het re-
aliseren van proprioceptie. De inwendige wanden van de luchtkamers wor-
den belicht met één of meerdere lichtbronnen en het gereflecteerde licht
wordt gemeten door meerdere optische (kleuren) sensoren. Deformatie van de
luchtkamer resulteert in veranderingen in de reflectie van het licht en leidt daar-
door tot een verandering in het signaal van de optische sensoren. De gevoe-
ligheid van de meetmethode kan worden verhoogd door de plaatsing van de
sensoren te optimaliseren en door structuren te integreren die de verschillen in
licht intensiteit en kleur ten gevolge van deformatie van de luchtkamer maxi-
maliseren. Dit wordt gedemonstreerd aan de hand van een zachte robot vinger
waarin met behulp van multi-materiaal AM een kleurenstructuur binnenin de
luchtkamer is geı̈ntegreerd.

Een machinaal leren-gebaseerde kalibratie wordt toegepast om de signalen
van de sensoren te vertalen naar de bijbehorende vorm van de zachte actuator.
De doelvariabelen worden verkregen door strategisch geplaatste markers op de
actuatoren met één of meer cameras vast te leggen, terwijl de actuator gede-
formeerd wordt door een combinatie van perslucht in de luchtkamer en externe
krachten. De coördinaten van de markers kunnen nauwkeurig voorspeld wor-
den aan de hand van de sensor signalen, zelfs wanneer de actuator in interactie
is met objecten.

Deze collectie van punten moet worden omgezet naar een representatie van
de zachte robot die bruikbaar is voor realtime visualisatie en het aansturen van
zachte robots met een gesloten regelkring. De vastgelegde marker coördinaten
worden daarom eerst omgezet naar parameters van waaruit de vorm van de
robot efficiënt gereconstrueerd kan worden. Deze vorm-parameters worden
direct als doelvariabelen gebruikt voor het machinaal leren. In dit proefschrift
wordt de deformatie van een zacht continuüm gewricht gerepresenteerd door
een transformatiematrix, en de vorm van een zacht membraan gerepresenteerd
door de controlepunten van een Bézier-oppervlak.

Naast het vastleggen en reconstrueren van de vorm van zachte robots, is
het belangrijk om de deformatie die niet gewenst is te voorkomen. De uit het
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vlak deformatie in zachte robot vingers is een belangrijke oorzaak van mis-
lukte grepen van zachte robotische manipulatoren. Deze deformatie kan gere-
duceerd worden door een structuur in de actuator te integreren. Deze struc-
tuur verminderd de uit het vlak deformatie zonder de stijfheid in het vlak noe-
menswaardig te verhogen. Hiermee kan het aantal vrijheidsgraden dat vast-
gelegd en gereconstrueerd moet worden gereduceerd worden.

In conclusie, dit onderzoek presenteert een aanpak tot het bouwen van
zachte robotische manipulatoren uitgerust met nauwkeurige proprioceptie. De
compatibiliteit van de gebruikte technieken voor het meten, aandrijven, en fab-
riceren van de zachte robot stelt de ontwerper in staat om eenvoudig een ma-
nipulator met het gewenste gedrag te realiseren middels een integrale ontwerp
aanpak. Het onderzoek vormt hiermee een uitstekend uitgangspunt voor het
ontwikkelen van algortihmes voor het aansturen van zachte robotische manip-
ulatoren met een gesloten regelkring. Dit maakt het gebruik van zachte robo-
tische manipulatoren voor het uitvoeren van fijn motorische taken mogelijk.
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1
Introduction

This chapter provides a brief overview of robotic manipulators for the automa-
tion of dexterous manipulation tasks. It then introduces soft robotics as a new
field of research with the potential to revolutionize robotic manipulation. Next,
it identifies the ability to build soft robotic manipulators endowed with accu-
rate proprioception as a crucial step towards advancing this line of research.
The main challenges in achieving this objective are explained and four re-
search questions are defined. The chapter concludes with a discussion of the
research cycles in which the research questions will be addressed, as well as
the organization of the work.

1



2 CHAPTER 1. INTRODUCTION

1.1 Introduction

Ever since the first industrial robots entered the market, robots have been
known for their excellent capabilities in executing high-speed, high-precision,
and high-force tasks in structured and well-known environments. As a result,
industries with the right boundary conditions have drastically increased their
productivity by employing robots to perform these types of tasks. However,
robots have failed to make a similar impact in industries that require the ex-
ecution of tasks in highly unstructured and unpredictable environments, such
as agriculture and horticulture. As a consequence, these industries still heav-
ily depend on human labor to perform tasks that are often dirty, hazardous
and highly repetitive. Moreover, the need for workers to be able to access the
workplace often limits the achievable yield through restrictions in terms of us-
able space and environmental conditions (e.g. temperature and CO2 levels).
The automation of dexterous manipulation tasks in unstructured environments
would allow for a more bio-diverse and thus unstructured use of agricultural
land. This approach to land use would in turn allow for a more sustainable
farming concept known as agroforestry that could mitigate non-point source
pollution, control soil erosion, and create wildlife habitats. One of the main
challenges in automating these tasks is the lack of appropriate handling equip-
ment that can interact with an unknown environment in a desired way.

For example, a task such as harvesting apples (see Figure 1.1) requires
adjusting a caging grasp to the size and shape of the apple, tilting the apple
around its stem, and carefully placing it among the other apples. All these
steps should be largely be performed by touch, as sight is often occluded by
leaves, branches and other apples. Applying too much force or applying the
forces in an incorrect manner will result in damaged apples or a damaged tree.

Conventional position-controlled manipulators with limited degrees of
freedom (DOFs) are incapable of completing such tasks. Taking inspiration
from the way in which the human hand performs these tasks, roboticists have
developed robotic hands with large numbers of sensors, joints, and actua-
tors [1] (e.g., the Utah/MIT Hand [2], the Gifu Hand II [3], and the DLR
Hand II [4]). These features allowed them to sense external forces, and adjust
their behavior accordingly (see, for example, the adaptive control strategy pro-
posed by Craig et al. [5] and the impedance control proposed by Hogan [6]).
Despite the enormous complexity of some of these robotic hands in terms of
design and control, they have not come close to the effectiveness of the human
hand in performing these tasks. Moreover, these robotic hands are very costly
and often lack robustness.
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Figure 1.1: Picking an apple as an example of a dexterous manipulation task per-
formed by the human hand - Photo Credits: Human hand is picking an apple from ap-
ple tree by Laertgreen, https://www.shutterstock.com/video/clip-7906141-human-hand-picking-
apple-tree, License at http://creativecommons.org/licenses/by/2.0.

In an attempt to reduce the complexity of these manipulators while main-
taining their ability to adjust to their environment, research in robotics has ex-
plored the use of morphological computation, in which at least some aspects of
the control are outsourced to the body of the robot. Examples of developments
using this approach include underactuated manipulators in which the number
of actuators is lower than the DOFs [7] (e.g. the BarrettHand grasper [8] and
the Delft Hand 2 [9]), or the addition of an elastic component in between the
actuator and the load (known as series elastic actuators [10]). Nevertheless,
these manipulators still rely on a large number of rigid components such as
bearings, joints, metal links, actuators, sensors, springs, and gears. The almost
exclusive use of rigid materials is in stark contrast to grasping mechanisms in
natural systems, in which soft tissue plays a crucial role in realizing adaptive
and compliant grasping behavior.

This observation has inspired attempts to construct manipulators, and even
complete robots, from soft materials in order to increase their ability to deal
with unpredictable environments. This field of research is known as soft
robotics [11]. In this dissertation, the term soft robots is used to refer to sys-
tems that are capable of autonomous behaviour, and that are primarily com-
posed of materials with moduli in the range of that of soft biological materials,
following the definition by Rus and Tolley [12]. Many soft robotic manipula-
tors with a range of different actuation, sensing, and fabrication methods have
been developed over the past years [13]. However, several challenges in the
use of soft materials in robotics must be overcome in order to to enable soft
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robots to perform dexterous manipulation tasks.

The purpose of this research is to enable the use of soft robots for the
automation of dexterous manipulation tasks.

1.2 Scope of the research

Figure 1.2: State of the art soft robotic manipulators used for pick-and-place tasks -
Photo Credits: softroboticsinc.com

Although soft robotics might be the key to automation of dexterous manip-
ulation tasks, the current commercially available soft grippers (see Figure 1.2)
are only capable of performing simple pick-and-place tasks with open-loop
control due to a lack of perceptive capabilities. Perception is essential to the re-
alization of autonomous and intelligent robots. As external (vision-based) per-
ception is usually not sufficient in unpredictable and complex environments, a
sense of self-movement and body position, known as proprioception, is needed
to move from open-loop control to closed-loop control. Proprioception is a
relatively simple problem for conventional robots with rigid members and dis-
crete joints, as the body position can be easily reconstructed using the infor-
mation from encoders in the robots’ joints. However, it is a very challenging
problem for soft robots with virtually infinite DOFs and no suitable off-the-
shelf sensors. This research addresses the challenges in building soft robotic
manipulators with proprioception. It thus paves the way for the development
of closed-loop control algorithms for soft robotic manipulators and, eventu-
ally, for the development of soft manipulators capable of executing dexterous
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manipulation tasks.

The research objective is to develop a systematic approach to building soft
robotic manipulators with proprioception in order to enable the development
of closed-loop control algorithms for dexterous manipulation tasks.

1.3 Research Questions

The key challenges in the realization of proprioception in soft robotic manip-
ulators are integrated design, capturing deformation, reconstruction and re-
straining superfluous degrees of freedom. These challenges will be explained
and transformed into research questions.

1.3.1 Integrated Design

Figure 1.3: Challenge of integrated design. A rigid robotic manipulator is assembled
from discrete links, actuators and sensors, whereas the body, actuators, and sensors of
soft robots are intertwined and embedded throughout the entire body of the robot. -
Illustration by M.A. Sandoval Martinez

Rigid robotic manipulators are typically assembled from many off-the-
shelf components that can be designed mostly independently from each other.
For example, the designer of the robot’s joint motors does not need to be aware
of the force sensors used in the fingertip of the manipulator. The desired in-
teraction between the components can be programmed after the construction
of the robot is complete. Such an approach is not possible for soft-bodied
robotic manipulators that have continuously deformable bodies (see Fig. 1.3.
The actuators and sensors of soft robots are heavily intertwined and distributed
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throughout the entire body of the robot. To achieve a desired behavior, the
design and manufacturing of the sensors, actuators, and structure of the soft
robot must be considered in concert. Key to facilitating such an integrated de-
sign approach for soft robots with proprioception is the composition of a set of
compatible actuation, sensing and manufacturing techniques that are flexible
enough to be altered in unison without further complications. For example,
a small change in the design of the actuator should not require a complete
redesign of the sensors or reconsideration of the manufacturing technique. In-
stead, the set of actuation, sensing, and manufacturing techniques should have
sufficient flexibility to accommodate these changes in a streamlined way. The
first research question is therefore defined as:

RQ1 What combination of actuation technique(s), sensing technique(s), and
fabrication technique(s) for soft robotic manipulators can facilitate an
integrated design approach to design the behavior of soft robotic ma-
nipulators with proprioception?

1.3.2 Capturing Deformation

Figure 1.4: Challenge of capturing the deformation of a soft robot. The deformation
of a rigid manipulator occurs only at the joints, whereas the deformation inside a soft
manipulator occurs throughout the entire body. - Illustration by M.A. Sandoval Martinez

Rigid robotic manipulators usually have a limited number of DOFs with
an actuator and a sensor for every DOF. Most deformations in rigid robots oc-
cur very locally. For example, a rigid robotic manipulator commonly has a
joint motor and an encoder to control and measure a rotation around a single
axis. In contrast, soft robots have virtually infinite DOFs. A single actuator
can create deformations throughout the entire robot. Not only are these defor-
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mations dependent on the actuation input, but they also depend on the external
forces that are acting on the robot (see Fig. 1.4). Therefore, sensors for soft
robots should be able to capture and distinguish between a very large number
of possible robot positions. As soft robots deform throughout their entire body,
sensors for soft robots should be capable of withstanding these deformations
as well without impeding the robots movement. No off-the-shelf sensors meet
these requirements. Thus, a major challenge in realizing proprioception in soft
robots is the development of a sensing method that does meet these require-
ments, as addressed in the following researc question:

RQ2 How to endow soft actuators with embedded sensors that accurately
capture the actuator’s deformed shape?

1.3.3 Reconstruction

Rigid robotic manipulators are commonly composed of a chain of rigid bodies
connected by joints with encoders. Therefore, the orientation and position of
the manipulator can be easily computed as a function of the joint variables. A
simple model suffices to translate the encoder output pulses to the speed and
position of a joint. Due to the virtually infinite DOFs in soft robots, on the
other hand, the relationship between the sensor data and the orientation and
position (or shape) of the soft robotic manipulator is much more complex (see
Fig. 1.5).

This complexity makes it challenging to calibrate the sensors and recon-
struct the shape of the robot from this data. The relationship between the sensor
data and the soft robot shape is often complicated and difficult to model. There-
fore, a calibration step is required. Moreover, a simplified model of the soft
robotic manipulator is necessary to reduce the number of parameters needed
to describe the robot’s shape. This model should balance accuracy with com-
putational efficiency for real-time control and visualization. The third research
question is defined as:

RQ3 How to reconstruct the shape of soft robots in real time?

1.3.4 Restraining Superfluous Degrees of Freedom

Besides capturing and reconstructing the deformation of soft robots, it is im-
portant to prevent undesired deformation from occurring in the first place. In
contrast to rigid robots, in which every DOF of the robot has been added with a
specific purpose, the desired DOFs of soft robots are most often accompanied
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Figure 1.5: Challenge of soft robot reconstruction. Whereas the position of a rigid
robot can be easily reconstructed from the encoders in the joints, the signals that cap-
ture the deformation of soft actuators are generally much harder to interpret. More-
over, it is challenging to find a small number of shape parameters that can accurately
describe the large variety of shapes that the soft robot can assume. - Illustration by M.A.
Sandoval Martinez

by DOFs that are not helpful or even worsen the performance of the robot (see
Fig. 1.6). Before allocating resources to measure and reconstruct these super-
fluous DOFs, it is meaningful to take a step back and explore whether these
DOFs can be restrained. Not only would this improve the performance of the
robot, but it would also simplify the problem of capturing the deformation of
the soft robot, calibrating and reconstructing the soft robot, and controlling the
soft robot. Therefore, the fourth research question is defined as:

RQ4 How to restrain superfluous degrees of freedom in soft robotic manipu-
lators?
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Figure 1.6: Challenge of superfluous degrees of freedom. The motion of a rigid
manipulator is restrained to occur in-plane only, resulting in a steady grasp. The soft
manipulator can move out-of-plane resulting in a failed grasp - Illustration by M.A.
Sandoval Martinez

1.4 Research Cycles and Thesis Organization

This thesis is organized around five research cycles (RCs), each addressing one
or more of the research questions (RQs) defined in Section 1.3. An overview
of the organization of the thesis is shown in Fig. 1.7. Each research cycle is
discussed in a separate chapter (Chapters 2–6), preceded by this introduction
(Chapter 1) and followed by a discussion (Chapter 7) and conclusion (Chap-
ter 8). The chapters that discuss the findings from the research cycles comprise
of a collection of conference articles, journal articles, and book chapters. Af-
ter an initial exploration into building a manipulator with proprioception in
RC1, two lines of research are performed in parallel. RCs 2–4 focus on the
challenges regarding the realization of accurate proprioception. Chapters 3–5
focus on the capturing of deformation, calibration, and reconstruction respec-
tively. However, as each chapter is a self-contained publication, some overlap
between these topics exists across the different chapters. RC5 focuses on the
development of a more suitable actuator for manipulation tasks through re-
straining superfluous DOFs. The purpose of the individual research cycles
will be discussed in more detail below.

RC1 The first research cycle served as an exploration into the integrated de-
sign and fabrication of soft robotic actuators and sensors with desired
behavior (RQ1). Additive manufacturing was used to print flexible air
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Figure 1.7: Overview of the research cycles, research questions, and chapters of this
thesis

chambers that served either as pneumatic actuators (by inflating them
with air), or as sensors (by measuring changes in air pressure inside the
chamber upon deformation). The freedom in designing the shape of the
air chambers was exploited to realize a range of different motions, forces
and sensing behavior. Finally, the actuators and sensors were combined
into a soft robotic hand that can be 3D-printed in one go. Through a sim-
ple control system, the soft robotic hand is capable of shaking a human
hand in an interactive way: the robotic hand senses how hard the hand
is squeezed and squeezes back accordingly.

RC2 The soft robotic manipulator developed in RC1 was a step towards de-
signing soft robotic manipulators with desired behavior. However, the
manipulator’s actuators still lacked perception. The air-pressure-based
deformation sensing that was applied in research cycle one has several
limitations. First, measuring the pressure inside an air chamber only
provides a single signal. As there are many soft robot shapes for which
a certain pressure can be realized, this method is incapable of encod-
ing the large number of DOFs in soft robots into unique signals. Sec-
ond, air-pressure-based sensing cannot be used for closed-loop control
of actuators that are controlled by air pressure. In RC2, an optical sens-
ing method for pneumatic actuators was developed. The sensing princi-
ple is based on the use of color sensors in combination with 3D-printed
color patterns inside the air chamber of soft pneumatic actuators. It was
demonstrated that this method is capable of encoding small changes in
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the shape of soft actuators that have a large number of DOFs. Thus,
this research cycle addressed RQ2. It was also demonstrated that the
proposed sensing method is compatible with the use of additive manu-
facturing of soft pneumatic actuators. Hereby, the development of this
sensing method also completes the set of techniques that facilitates an
integrated design approach to designing the behavior of soft robotic ma-
nipulators with proprioception (RQ1).

RC3 In RC2, the signals from the sensors were first merged to a single bend-
ing metric and then calibrated to the angle of a single bellow on the
actuator. This is an overly simplified way of representing the shape
of soft actuators that have many more DOFs. Moreover, the calibra-
tion was performed during unobstructed bending and would therefore
not yield reliable results when the actuator was interacting with objects.
The aim of RC3 was to address the problem of calibration. As the rela-
tionship between the shape of the actuator and the sensor signals cannot
be easily modeled analytically, a machine learning-based approach was
adopted to calibrate the sensors. First, a vision-based system was used
to capture the position of a number of markers on the soft actuator while
it was interacting with objects. Next, a machine learning model was
trained using the raw sensor data as inputs, and the marker coordinates
as outputs. Through this approach, a set of points on the robot could be
accurately predicted from the sensor data, even when the soft actuator
was interacting with objects. This calibration provided the basis for the
reconstruction method (RQ3) discussed in RC4.

RC4 In RC3, it was demonstrated that the captured sensor signals can be used
to accurately predict points that are located on the robot. However, this
collection of points needs to be converted to a robot representation that is
useful for real-time visualization as well as closed-loop control. To this
end, the captured marker coordinates are converted to shape parameters
that are used for training the machine learning model. The shape pa-
rameters that are predicted by the machine learning model can be used
to reconstruct the shape of soft robots in real time (RQ3). The cali-
bration procedure in RC3 was limited to static soft robot postures with
two-dimensional bending deformation. In this research cycle, the sens-
ing, calibration, and reconstruction were demonstrated for soft robots
composed of multiple actuators undergoing dynamic three-dimensional
deformation. With a much larger soft robot workspace, many more train-
ing samples are needed to train the machine learning model. A motion
capture system was deployed to rapidly collect the dynamic data.
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RC5 This research cycle addresses RQ 4. In RC1, it was demonstrated that
a range of different actuation behaviors could be realized by modify-
ing the shape of the air chambers. However, the fingers of the soft
robotic hand had a tendency to slip as a result of out-of-plane defor-
mation. In soft robotic manipulators, this out-of-plane deformation is
a major cause of failed grasps. In this research cycle, the problem of
out-of-plane deformation in soft pneumatic actuators was demonstrated,
and a method for reducing the out-of-plane deformation was developed.
This was achieved through embedding a structure inspired by compliant
mechanisms in the 3D-printed soft actuator. This structure reduces the
out-of-plane deformation without significantly increasing the in-plane
bending stiffness.



2
Integrated Design of Soft Actuators and

Sensors: An Exploration

This chapter explores the integrated design and fabrication of soft robotic ac-
tuators and sensors with desired behavior. Additive manufacturing is used to
print flexible air chambers that serve either as pneumatic actuators (by inflat-
ing them with air) or as sensors (by measuring changes in air pressure inside
the chamber upon deformation). The freedom in designing the shape of the
air chambers is exploited to realize a range of different motions, forces, and
sensing behavior. Finally, the actuators and sensors are combined into a soft
robotic hand that can be 3D-printed in one go. Through a simple control sys-
tem, the soft robotic hand is capable of shaking a human hand in an interactive
way: the robotic hand senses how hard the hand is squeezed and squeezes back
accordingly.1

1This chapter is published as: R. B. N. Scharff, E. L. Doubrovski, W. A. Poelman,
P. P. Jonker, C. C. L. Wang, and J. M. P. Geraedts, “Towards behavior design of a 3D-printed
soft robotic hand”, in Soft Robotics: Trends, Applications and Challenges: Proceedings of the
Soft Robotics Week, April 25-30, 2016, Livorno, Italy. Springer International Publishing, 2017,
pp. 23–29. Note: a few small corrections and/or clarifications have been made to the original
published text.
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2.1 Introduction

Pneumatic actuation is one of the two most-used actuation techniques in soft
robots [12]. This type of actuation is often realized through the inflation of
channels in elastic material. These actuators are promising in soft robotics
since (1) they are under-actuated and compliant, (2) they can be free of internal
electronics and electric components, and (3) their performance can be tuned
through the morphology of the actuated segment [15]–[17]. These features
provide a significant benefit in applications such as soft pneumatic hands [18],
orthotics [19], and locomotion [20]. Previous researchers mainly used molding
techniques to fabricate silicone soft robots [17], [20], [21]. However, the con-
straints of the molding processes limit the design freedom. As a result, in ex-
isting approaches actuators are usually oriented in the same plane or fabricated
separately and later assembled into a functional structure. Additive Manufac-
turing (AM), or 3D printing, is a collection of digital fabrication processes that
build up objects by adding material layer upon layer. AM has been used to in-
tegrate multiple actuators [22], [23] or air pressure sensors [24] with structural
components. In literature, an advanced design method was developed to de-
sign the deformation elasticity of structures fabricated by AM [22]. Neverthe-
less, little attention was paid to the methodology of customizing the behavior
of each specific actuator and sensor within a soft robotic product. This work
presents a case study in which multiple air pressure actuators, sensors, and
structural components are integrated in a single body product using the AM
process Selective Laser Sintering (SLS). To show the possibility of designing
human-like behavior, an interactive setup was made realizing a handshake be-
tween a user and the hand. The air pressure-based robotic hand comprises eight
actuators and two sensors without any internal electronics. The hand measures
the force that is exerted upon it and squeezes back accordingly, adapting itself
to the user’s grip. For each part of the hand, the behavior was customized based
on a given volume and function. The main technical contribution of this work
is the integration of air pressure actuators, air pressure sensors and structural
components that are designed for the desired behavior of this specific volume
within the product.

2.2 Design of Soft Robotic Hand

We simplified the complexity of the human hand and subdivided it into parts
with a specific function as actuator or sensor. The carpometacarpal joint of the
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Figure 2.1: An illustration of different parts used in our design — from left to right,
(a) bending actuators, (b) rotational actuator, (c) bidirectional actuator and (d) sensing
air chambers

thumb is fixed in a position suitable for shaking hands. The design of our soft
robotic hand consists of four different parts (see Fig. 2.1 for an illustration),
including (1) bending actuators, (2) a rotational actuator, (3) a bidirectional
actuator, and (4) sensing air chambers, all shown and discussed below. They
are designed to mimic the behavior of a human’s hand.

2.2.1 Bending Actuators

The principle of a pneumatic bending actuator is based on pressurizing an air
chamber formed by an inextensible bottom layer and an extensible top layer
(see also Fig. 2.1a). The bending range can be improved by creating a more
S-shaped curve of the bellow, whereas the exerted force at a given position can
be improved by increasing the bellow’s stiffness [15]. This principle was used
to create the difference in behavior between the fingers and thumb. Given a de-
signed model and fabrication constraints, the following properties influenced
the design process of bending actuators; we need (1) a minimum bending range
of 90° of the thumb (the angle measured on tip orientation) at a pressure of less
than 400 kPa, (2) a minimum bending range of 180° of the other fingers, to
be achieved with the same pressure, (3) to maximize the exerted force of the
thumb bellow, and (4) to minimize the radial expansion of the bellows.
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2.2.2 Rotational Actuator

The principle of this rotational actuator was inspired by the elephant’s trunk.
The elephant has helical muscles in its trunk that, when contracted, cause rota-
tion of the trunk [25]. This principle can be mimicked by sweeping a radially
expanding bellow over a helical path (see Fig. 2.1b). Here, the design process
is influenced by the following demands on properties; we need to (1) maximize
the radial expansion of the bellow upon inflation, (2) minimize the lateral ex-
pansion of the bellow upon inflation, (3) maximize the structure’s bending and
axial stiffness, (4) minimize its rotational stiffness, (5) at least 45° of pronation
to be achieved with at most 400 kPa pressure. Our design consists of a bel-
low swept over a helical path of 0.4 revolutions over a height of 70 mm. The
bellow is encapsulated between two segments of an X-profile, and the actuator
has a diameter of 50 mm.

2.2.3 Bidirectional Actuator

Two bending actuators that share an inextensible layer were used to mimic
the antagonistic setup of a bidirectional actuator. Pressurizing one of the two
bellows can be used to create palmar or dorsal flexion. Pressurizing both air
chambers will inflate the bellows and therefore enhance the palmar and dorsal
stiffness of the wrist. The following factors are considered in our design of the
bidirectional actuator; we need to (1) minimize the palmar and dorsal bending
stiffness, (2) maximize the radial and ulnar bending stiffness, (3) maximize the
axial and rotational stiffness, (4) achieve minimal palmar flexion of 45° within
400 kPa pressure, (5) obtain minimal dorsal flexion of 45° with the same pres-
sure, (6) maximize the bending stiffness upon pressurization of both actuators.
Our design can be found in Fig. 2.1c. To increase the radial and ulnar bending
stiffness, the inextensible layer of the double bellow is designed rectangular
instead of following the curves of the bellows. The shape of the bellows is ex-
tensively curved to ensure self-collision to create extra stiffness when inflated.
The actuator has a diameter of 50 mm and an effective height of 70 mm.

2.2.4 Sensing Air Chambers

The principle of our sensor was inspired by the work of [24]. Squeezing an air
chamber results in an increase in air pressure, which can be measured exter-
nally from the hand. Our design incorporates the following considerations; we
need to (1) mimic compliance of a human hand at contact areas, (2) provide a
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connection structure between fingers, thumb and wrist, and (3) minimize the
air volume to maximize the sensitivity. Our design is shown in Fig. 2.1d. It
essentially shows the palm of the hand as base to connect wrist and thumb
and two extensions of the palm at which the finger-set is attached. See also
Fig. 2.3. If these extensions are squeezed towards each other they output air
pressure that can be measured and electronically processed by our control sys-
tem.

2.2.5 Pneumatic Control System

A Freescale MP3V5010 sensor with a range of 0-10 kPa was used to measure
the change of air pressure in both air chambers of the hand palm when people
shake our soft-robotic hand. The sensed signal is then mapped to a 0-400 kPa
pressure using a Festo VPPE-3-1-1/8-6-010-E1 proportional pressure regulator
to control the gripping force of the thumb and fingers. The bidirectional and
torsional actuator are manually controlled using a 3/2 valve and a pressure of
100 kPa.

2.3 Design for Manufacturing

The final design was fabricated on an SLS machine by Materialise
(www.materialise.com) using the flexible polyurethane-like TPU92A-1 mate-
rial. It took 12.5 h to print our soft robotic hand. While designing the hand,
the following manufacturing factors were considered:

• Wall thicknesses: A minimum wall thickness of 1 mm was used to
prevent leakages, whereas the maximum wall thickness was limited to
10 mm to prevent excessive warping.

• Removal of unused material: For each air chamber, an aperture with a
diameter of at least 10 mm was required to remove the unused mate-
rial. The powder was removed by inserting a flexible cable through this
aperture. This cable was guided to the end of the air chamber through
its internal geometry. Therefore, all sharp edges inside the air chamber
were smoothened and branched air chambers were not possible. This
means every finger needed to have a separate opening for airflow.

• Fittings: The apertures for the removal of support material were used to
insert G1/4 threaded push-in fittings. Therefore, the aperture diameter
was determined to be 10.5 mm and the depth at least 10 mm. Because
of the flexibility of the material, the apertures were surrounded by a

www.materialise.com
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Figure 2.2: (a) Displacement of thumb design (blue) and finger design (red), (b)
setup for measuring the force of the bending actuators and (c) setup for measuring the
stiffness of the wrist

minimum wall thickness of 5 mm to create a secure connection with the
fitting.

2.4 Results

In our design practice, various separate bending actuators of the same length
and number of bellows but different shape of bellows were prototyped to find a
good design for the thumb and fingers. Figure 2.2a shows the performance of
the designs that were later implemented in the hand. For both bellow designs,
the horizontal force was measured in the setup as shown in Fig. 2.2b. When
supplying a pressure with 400 kPa, the exerted force of the thumb bellow was
7.6 N, whereas the finger bellow exerted a force of 1.8 N. The bidirectional
actuator shows a bending angle of 45 ° when a pressure of 90 kPa is applied
to one of the bellows (angle measured at top orientation). The stiffness of the
wrist was measured using the setup as shown in Fig. 2.2c. A 0.8 N force was
needed for a 40 mm displacement of the passive wrist, whereas a 2.9 N force
was needed for the same displacement upon pressurization of the bellows at
400 kPa. The rotational actuator achieved a 45 ° pronation at a pressure of
60 kPa. The final design of our soft robotic hand by integrating all these
actuators, sensors and structures can be found in Fig. 2.3.
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Figure 2.3: The final integrated design of our soft robotic hand, the performance of
which can be found in video: https://youtu.be/AdMhkIM4hwA

2.5 Conclusions and Future Work

This work shows that the design of a set of behaviors in soft-robotic products
does not have to be limited to making use of existing components. In fact, these
behaviors can be deeply embedded in the integral design of a robot’s actuators,
sensors and structures. We showed that it is possible to design bending ac-
tuators, rotational actuators, bidirectional actuators, and sensing air chambers
using mono-material SLS, and create a robotic hand with it for the purpose of
human-machine interfacing, in this case for interactively shaking hands. Since
the hand was created using mono-material AM, the design freedom was lim-
ited because differences in extensibility had to be created through designing
the shape of the bellow’s walls. In contrast, when using multi-material in AM,
relative differences in behavior can also be created through compositions of
complex structures of both rigid and soft materials. Thereby, a desired behav-
ior could be addressed more easily - see [26] for an example.

https://youtu.be/AdMhkIM4hwA




3
Capturing the Deformation of Soft

Robots

The soft robotic manipulator developed in Chapter 2 represents a step to-
wards designing soft robotic manipulators with desired behavior. However,the
manipulator’s actuators still lack perception. The air-pressure-based deforma-
tion sensing that was applied in RC1 has several limitations. First, measuring
the pressure inside an air chamber only provides a single signal. As there
are many soft robot shapes for which a certain pressure can be realized, this
method is incapable of encoding the large number of degrees of freedom in
soft robots into unique signals. Second, air-pressure-based sensing cannot be
used for closed-loop control of actuators that are controlled by air pressure.
In this chapter, the development of an optical sensing method for pneumatic
actuators is described. The sensing principle is based on the use of color sen-
sors in combination with 3D-printed color patterns inside the air chamber of
soft pneumatic actuators. It is demonstrated that this method is capable of
encoding small changes in the shape of soft actuators that have a large num-
ber of degrees of freedom. It is also demonstrated that the proposed sensing
method is compatible with the use of additive manufacturing of soft pneumatic
actuators. Thus, the development of this sensing method also completes the
set of techniques that allow for an integrated design approach to designing the
behavior of soft robotic manipulators with proprioception.1

1This chapter is published as: R. B. N. Scharff, R. M. Doornbusch, X. L. Klootwijk, A. A.
Doshi, E. L. Doubrovski, J. Wu, J. M. P. Geraedts, and C. C. L. Wang, “Color-based sensing of
bending deformation on soft robots”, in 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 4181–4187. Note: a few small corrections and/or clarifications
have been made to the original published text.
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3.1 Introduction

Sensors are widely used in robotic systems to provide feedback to achieve pre-
cise control of operations. However, the compliance of soft actuators precludes
the use of many conventional sensors such as encoders, metal/semiconductor
strain gauges, and inertial measurement units for proprioception purposes [12].
As soft robots can deform in all directions throughout their entire body, sensors
should be able to detect these unpredictable and large deformations. Moreover,
ideal sensors for soft robots should be bendable and/or stretchable, and should
have little influence on the performance of actuators. No off-the-shelf sensor
meets these requirements.

3.1.1 Overview

This work presents a novel color-based sensing approach to provide feedback
for active position control of soft pneumatic actuators. In these actuators,
pressurized air is used to inflate air chambers. The geometrical asymmetry
in the design or constituent materials drives the shape to deform in a desired
way [12]. For example, bending can be realized through pressurization of an
air chamber with an extensible top layer and an inextensible bottom layer. The
basic idea of our deformation sensing approach is to translate the elongations
that occur in the extensible parts of soft actuators into a measurable change
of color ratios captured by a color sensor. This is achieved through flexible
multi-color structures that can be easily fabricated and integrated in or onto
soft actuators through multi-color Additive Manufacturing (AM).

To interpret the raw RGB values obtained from the electric sensor and
correlate them to the level of bending deformation, the signals are analyzed
and transformed into a bending metric (κ). This metric can serve the purpose
of controlling the deformation in a feedback control loop. Details of the signal
analysis and calibration can be found in Section 3.3.

For example, in the actuator shown in Fig.3.1, the RGB values are captured
by an electronic color sensor placed near the root of the actuator (indicated by
a red arrow in Fig. 3.1(a) and (b)). It can be observed that, under a constant
air pressure, the bending deformations without external force (a) and with an
external force (b) are clearly different. Based on the difference in κ values, the
air pressure is adjusted until κ matches the value of κ for the reference bend-
ing (a). Fig.3.1(c) and (d) show that visually indistinguishable deformations
corresponding to (a) can be achieved. Notice that different external forces are
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(a) (b) (c) (d)

Figure 3.1: An example to demonstrate the function of color signals for sensing de-
formations. (a) The deformation of a soft actuator under an air pressure of 3.0 kPa
serves as a reference. (b) The deformation is changed when an external force is ap-
plied to the tip of the soft actuator (indicated by the black arrow), under the same air
pressure. The bending metric κ, calculated from the Red-Green-Blue (RGB) values
measured by the color sensor, enables an accurate control of the deformation. Differ-
ent external loads are applied in (c) and (d), the same deformation to (a) is achieved
by increasing the air pressure until obtaining the same signal κ.

applied in (c) and (d), while they both have the same κ value. The experimental
results of our sensing approach are further discussed in Section 3.4.

3.1.2 Related work

If the geometry of a task is known as a priori, the curvature of an actuator
can be controlled through the applied pressure and mechanical programming
(e.g., [14], [28]). For operations in complex and unstructured environments,
mechanical programming becomes insufficient and sensors are needed.

Exteroceptive measurement of curvature can be achieved through a visual
tracking system (e.g., [18], [29], [30]). However, proprioceptive sensing ap-
proaches have the potential to create more compact sensing systems and fur-
ther improve the autonomy of soft robots. This requires sensors that can be
integrated on soft actuators, such as draw wire encoders [31], resistive sensing
using embedded conductive ink [32], [33], and highly flexible capacitive sen-
sors built from conductive fabrics and silicone [34] or by depositing aluminum
and silver layers on elastomer sheet [35], [36]. A more complete overview of
sensing principles for soft actuators can be found in [37] and [13].

Attempts to further integrate sensors in soft actuators have been made
through integration of resistive flex sensors or magnetic curvature sensors [38]
in the inextensible layer during the fabrication process. Integration of sensors
in other parts of the actuators requires the sensors to be stretchable as well.
Zhao et al. demonstrate curvature control through integration of stretchable
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optical waveguides throughout an actuator in [39], [40]. Integration of EGaIn
sensors in the dorsal surface of an actuator has been demonstrated in [41].

As the high flexibility of soft robots allows for many different deforma-
tions, most of the aforementioned work can use multiple sensors to measure
the curvature more accurately or make a distinction between different types of
deformation. As not all deformations are equally important, Wall et al. [42]
developed a method to find an effective layout from a set of sensors. In this
chapter, we only study the functionality of a single sensor based on color sig-
nals.

3.1.3 Contribution

The technical contribution of our approach is twofold.

• A novel sensing principle integrating multicolored structures to serve as
signal generators and thus provide feedback for deformation control.

• Signal processing and calibration methods for transforming raw color
values into a meaningful bending metric.

Our sensing approach is contactless, easy-to-integrate, cost-effective and has
a low power-consumption. As the measurements directly link to the geometry
of the color printed 3D structures, our approach is less affected by external
loading and time-related material response such as elastic hysteresis.

3.2 Signal Generator

Two embodiments of color-change generating structures are presented in this
work: an external and an internal signal generators. We envision usage of
the first embodiment in soft actuators where elongation of the air chamber is
mainly based on material strain2 (e.g. [43]), whereas the second embodiment
is especially useful for actuators where elongation is mainly realized through
bellow-like geometries (e.g. [17]). Note that we use two contrasting colors
instead of black-and-white patterns to enable filtering out intensity fluctuations
that occur due to the changing structure, as explained in Section 3.3. The use of
color also allows us to further extend the signal generators described below by
embedding more colors in the structures, which generates more color patterns
and therefore is able to sense more complicated deformations.

2Although we test the external generator on a bellow-based pneumatic actuator.
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Figure 3.2: Side view of the structure for an external signal generator in a released
position (a) and a stretched position (b). The dimensions for T-components are lA =
2.2 mm, lB = 1.8 mm, and lg = 0.2 mm. Sixteen pairs of such T-components are
periodically used in our design (c).

3.2.1 External signal generator

The first embodiment of our approach is a structure composed of T-shaped
components with alternating height and color, embedded onto a highly stretch-
able and light-absorbing material (see Fig. 3.2). A color sensor captures sig-
nals from the top-view of the structure. When being stretched, the lower T-
component become less occluded by the higher components – i.e., having more
area observed through the sensing window so that the ratio of colors changes.
The measurement of this color ratio is used to indicate the amount of strain.

The structure is divided into a number of periods, with a period defined as
the smallest repeating structure:

p = lA + lg + ∆l. (3.1)

Here lA is the length of a high T-shaped component, lg is the initial gap size,
and ∆l is the change in length of the non-occluded part of a low T-shaped com-
ponent lB upon stretching. Considering that the width w of a structured strip
is constant, the ratio of areas exposed to the sensing window can be calculated
by

rA =
lA
p
, rB =

lg + ∆l

p
, (3.2)

for the ratio of the high T-shaped component A and low T-shaped component
B respectively. Note that this is only valid when ∆l ≤ lB − lg; otherwise, the
flexible base material will be exposed to influence the quality of color signal.
Strain in the flexible base material can now be obtained as:

ε = ∆l/(lA + lg). (3.3)
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Figure 3.3: The ratios of the exposed surface area of A and B components (i.e., rA(ε)
and rB(ε)) and their difference are all monotonic functions of the strain presented on
the belt. The curves are generated by the structure shown in Fig.3.2.

The relation between the color ratios and the strain are plotted in Fig.3.3 for the
structure given in Fig.3.2. It can be found that the ratio difference ((rA(ε) −
rB(ε))) is monotonic and also very sensitive to the strain presented on our color
signal generator.

Note that the size of a sensing window is not taken into account here.
Fluctuations of the signal presented in Fig.3.3 will be generated when a non-
integer amount of periods is visible within the sensing window. This will be
further discussed in Section 3.3. As we aim to design a structure that can
generate a consistent signal regardless of where the color sensor is placed, this
error is minimized by minimizing the length of a period.

3.2.2 Internal signal generator

The second embodiment of our design is a color signal generator integrated
into an existing design of a soft pneumatic actuator. This is realized by col-
orizing different regions of an Ω-shaped bellow in different colors, as illus-
trated in Fig.3.4. A color sensor is embedded in the inextensible layer of the
bending actuator. Upon pressurization of the air chamber, the inflation of the
bellows leads to a larger area of the originally occluded color being exposed
to the window of the color sensor. As a result, the measurement of the sensor
changes accordingly. The same sensing strategy can be applied to bellow-
based pneumatic actuators of different shapes and dimensions. Although the
measurements are strongly dependent on the particular design of an actuator,
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Figure 3.4: An illustration of a bellow before (a) and after (b) being pressurized. The
pattern of colors that can be captured through the sensing window is also shown at
the bottom. (b) shows a larger red region can be ‘seen’ through the window in the
presence of a large bending deformation. In this example, the dimensions of a bellow
are lsensor = 5.1 mm, lbellow = 11.3 mm and hbellow = 37.0 mm.

a general calibration procedure as discussed in the next section of this chapter
can be conducted to link the measurements of a color sensor to the level of
bending deformation presented on the bellows.

3.2.3 Materials & Fabrication

The hardware realization of the color-change generating structures is shown in
Fig.3.5.

The external signal generator is attached on top of an existing soft pneu-
matic actuator. One end of the belt is mounted at the root of the actuator, while
the other end is attached to the tip of the bellow. The color sensor is also placed
at the root of the actuator. When the actuator is bent, the structure elongates
underneath the sensing window to generate color signals.

For the internal signal generator, miniaturized sensors were designed and
mounted onto plugs. These plugs are inserted in the inextensible layer of the
actuator. The number of sensors and the location of the sensors can be easily
adjusted in our design. Our experimental results are obtained by a single sensor
mounted at the root of the actuator. The outside of the plug and inside of the
plug opening are built from rubber-like photopolymer (Agilus 30) that seals
the air chamber. No air leakage was observed upon full actuation.

The embodiments of our design are fabricated on a Stratasys Objet 350
Connex3 Multi Material 3D printer, which uses Material Jetting technology
and can print combinations of up to three different building materials together
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Figure 3.5: Hardware realization of our color-based deformation sensing approach
on 3D printed soft actuators in an external way (a) and an integrated manner (b). For
illustrating the flexibility of our design, three sensors are presented in (b) although
all the experimental results presented in this chapter are obtained by placing a single
sensor at the root of the actuator.

with a water soluble supporting material. All examples shown in this chapter
are printed using a combination of the flexible Agilus 30 Black, the rigid Ve-
roCyan and the rigid VeroMagenta. Note that 3D printing materials with pure
blue or red colors are not available.

The Agilus 30 Black has an elongation of 220 ∼ 270% at break and
a tensile strength of 2.4 ∼ 3.1MPa – as documented by Stratasys. The
RGB values of the VeroCyan (VC) and VeroMagenta (VM) materials are
RGBVM = (166, 33, 98) and RGBVC = (0, 93, 127) respectively. Brunton
et al. [44] have characterized the VeroCyan and the VeroMagenta materials as
highly translucent. We find that VeroMagenta has an even higher translucency
than VeroCyan. Since translucency of the upper layer will decrease the color
difference upon stretching, the VeroCyan material was chosen for the higher
T-components in the external design and for the region near the ‘neck’ of air
chambers in the integrated design.

3.3 Signal Analysis and Processing

This section starts with an analysis of the signals that are captured by our
sensing approach, and then proceeds to a method for converting RGB values
into a deformation metric κ. Remaining fluctuations in the signal is explained
by simulations. After that, we introduce the calibration method.
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Figure 3.6: The measurement setup for testing the sensor belts. The stretching direc-
tion is indicated with a red arrow.

3.3.1 Raw-data of color signal

A TCS34725 light-to-digital converter with an integrated white LED is used
for the measurement of RGB colors. A miniaturized version of this sensor was
designed to be mounted on the sensor plugs of the internal signal generator
(see Fig.3.5(b)). For both embodiments, we use an integration time of 154 ms
and 1X gain setting to obtain different RGB values from the converter when
different color patterns are exposed to the sensing window. The TCS34725
sensor returns four values for each exposure, namely the R-, G-, B-components
of color plus the light intensity.

To capture a set of raw data to conduct the signal analysis, we clamp a
sample of our external signal generator onto a tensile testing machine. The
sensor is then placed in a case having a window with dimensions 10 mm ×
12 mm (see Fig.3.6). The distance between the belt and the sensor is 4 mm,
and the sensing window is positioned at the boundary of the second period on
the belt. A light absorbing cover is attached to the case of sensing to shield the
belt from environmental light. Note that we use the same sensing window for
the external sensing belt mounted on the bending actuator (see Fig.3.5(a)). The
tensile testing machine moves the upper clamp upwards to stretch the belt in
steps of 0.5 mm while the colors are measured for each step. The color sensor
is connected to the lower clamp and remains fixed.

Figure 3.7 shows a typical RGB measurement of an external signal gen-
erator with a VeroCyan top and a VeroMagenta bottom layer in a tensile test
with strain ranging from 0 to 0.5. Besides the change in colors, stretching
the sensing belt also affects the measured overall intensity. Due to changes in
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Figure 3.7: (Left) The raw data of red (dash-dot), green (dashed), blue (dotted)
and light-intensity (full line) obtained from a color-based sensing setup as shown in
Fig.3.6. (Right) Normalized RGB by dividing by the measured light-intensity.

reflectivity, shadows, distance-to-sensor and the underlaying materials, the in-
tensities of the R-, G- and B-components go up or down simultaneously, which
thereby distorts the signal. The same phenomenon is also observed for the in-
tegrated design. Normalizing the RGB-data by the intensity does not give a
monotonic signal either. A more sophisticated method is presented in Section
3.3.2.

3.3.2 Signal processing

As can be found in Fig. 3.7, the RGB raw data shows a trend of increase in
red and decrease in both blue and green. According to the RGB values of
VeroMagenta (VM) and VeroCyan (VC) materials RGBVM = (166, 33, 98)
and RGBVC = (0, 93, 127), it can be found that the change of colors in three
components is indicating the increase of VeroMagenta and the decrease of Ve-
roCyan. A naive processing of the RGB signals would therefore be

f = −IR + IG + IB, (3.4)

which accumulates the trend of three components, IR, IG and IB, into a single
signal. Note that, if a positive weight is placed in front of IR, the increasing of
red will somewhat cancel out the decrease of IG and IB which leads to a less
significant signal. A problem of processing by Eq.(3.4) is that it does not result
in a monotonic function – i.e., fluctuations still exist (see the left of Fig. 3.8).
We can eliminate the intensity peaks where R, G and B components move up
in intensity with an equal amount (as shown on the left of Fig. 3.7), by adding
weights to the intensities that sum up to zero. Our experimental tests show
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Figure 3.8: Processing color signals into a metric of deformation – (left) by a
naive blending scheme (as Eq.(3.4)) and (right) by a weighted blending scheme (as
Eq.(3.5)).

that using the normalized difference between VeroCyan and VeroMagenta as
weights can generate a monotonic function κ(·). The weighted integration of
IR, IG and IB can be defined as

κ = (R̂C − R̂M)IR + (ĜC − ĜM)IG + (B̂C − B̂M)IB, (3.5)

where the normalized RGB components of VeroCyan and VeroMa-
genta are (R̂C, ĜC, B̂C) = (0, 0.4227, 0.5773) and (R̂M, ĜM, B̂M) =
(0.5589, 0.1111, 0.3300).

For the internal signal generator, this results in a very sensitive monotonic
signal as demonstrated in Section 3.4 and the supplementary video. For the
external generator, the signal is also monotonic, with some small fluctuations
occurring at higher strains (see the right of Fig. 3.8). These fluctuations are an
artifact of the sensing window, as will be discussed in Section 3.3.3.

3.3.3 Simulation

From the normalized signal of colors shown on the right of Fig. 3.7, we can
observe fluctuations where the intensities of red and blue move in opposite
directions. These fluctuations occur whenever a non-integer amount of periods
is visible within the sensing window. The color of the material moving in and
out of the sensing window causes the variations of ratios rA and rB going up
or down. About the influence of the sensing window on the fluctuations of
color signals, the following observations are found:

• Size of sensing window – The fluctuations diminish with an increase of
window size. Similarly, the same phenomenon can be found when de-
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Figure 3.9: Simulation of stretching tests – the signals are obtained by placing the
sensing window at six different positions. The color patterns that can be observed
through a sensor window are also displayed for a few different strains.

creasing the length of the T-components – this is equivalent to enlarging
the relative size of a sensing window.

• Position of sensing window – The fluctuations appear at different re-
gions of strains when we place the sensing window at different places.
However, the appearance of fluctuations cannot be avoided at any place.

A simulation was conducted to study these influences as shown in Fig.3.9,
where the sensing window is placed at the boundary of the second period of
the sensing belt and shifted over the length of a period of the structure in six
steps. At each place, our simulator generates a curve indicating the ratio of the
cyan region’s area over the window’s area (the top curve) and a curve according
to the ratio of the magenta region’s area (the bottom curve). Moreover, we also
generate two curves by (1) using the total area of all cyan regions over the area
of the entire sensing belt and (2) using the total area of all magenta regions
over the entire structured strip, which are displayed in black with dots. These
two curves serve as ideal signals as they are not influenced by the above two
factors – i.e., size and position of sensing window.
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The simulation results shown are consistent with the results presented on
the right of Fig.3.7 and Fig.3.8. When having a large deformation, the rela-
tive size of the sensing window as compared to the dimensions of the periods
becomes small. As a result, larger fluctuations appear on the signals.

3.3.4 Calibration

With the help of the processed signals as shown in the right of Fig.3.8(b),
we are able to determine an algebraic function ε(κ) indicating relationship
between color-signal and the level of deformation by a calibration process.
Specifically, the parameters of the following function are determined by a
least-square fitting,

ε(κ) = a+ bκ+ c log(κ). (3.6)

For the sensing belt data shown in the right of Fig.3.8, we obtain a = 4.845,
b = −0.0005137 and c = −0.8711 with R-square being 0.9899.

Similar to stretching tests, bending tests are conducted on the integrated
design. We calibrate a function α(·) in terms of bending ‘angle’. That is

α(κ) = ã+ b̃(κ+ d̃) + c̃ log(κ+ d̃), (3.7)

with α indicating the level of deformation (e.g., bending angle of the bellow
that is captured by the sensor, as shown in Fig.3.12 C). As negative values
are allowed for the bending metric κ, a coefficient d̃ is added to ensure the
validity of a log(·) function. The calibrated coefficients for the bellow shown
in Fig.3.12 are (ã, b̃, c̃, d̃) = (2038, 0.1133,−303.3, 1301) with R-square be-
ing 0.9968. Each newly printed strip or bellow needs to be calibrated, as the
performance is also dependent on the fabrication process.

3.4 Experimental Results

This section discusses the experimental results of our sensing approach. Both
actuator embodiments and the separate sensing belts have been tested under
extreme lighting conditions, ranging from near darkness to illumination by two
Menik LS-1200 LED panels (with 7380 Lumen) placed at a distance of 20 cm
on both sides of the actuators. The differences in bending metric caused by
lighting variation were marginal, as is also demonstrated in the supplementary
video material by turning off the LED panels during measurement.
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Figure 3.10: Average result of the bending metric κ over five measurements for three
different sensing belts. The standard deviations are indicated along with the curves.

3.4.1 Results by external signal generator

Three identical sensing belts have been 3D-printed and tested using the setup
described in Section 3.3. Each sample was tested five times using the same
clamping. The raw data points were re-sampled at every step of 0.025 in the
strain. An average was calculated for the five tests, and the standard deviations
are shown as well in Fig.3.10. Although a separate calibration is needed for
each sensing belt, different measurements of the same belt are very consistent.
Integration of the sensing belt on a bending actuator to control the position
and detect obstacles is demonstrated in Fig.3.11. Upon touching an object, the
bending metric κ starts to deviate from the curve corresponding to collision-
free motion.

3.4.2 Results by internal signal generator

A single miniaturized color sensor was used and placed at the first bellow of
the integrated design (as indicated in Fig.3.1). The progressive results of the
integrated sensing approach are shown in Fig.3.12. Here, the bending metric is
plotted with reference to the pressure during unobstructed bending. Note that
the signal generator is still sensitive at full actuation, and thus covers the whole
range of actuation. Figure 3.1 has already demonstrated how the deformation
of a bellow can be controlled through the bending metric κ.
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Figure 3.11: Before and until the moment of touching, the measured bending metric κ
of the bellow’s motion follows that of the collision-free motion (A & B). Upon touch-
ing, the bending metric of an obstructed bellow (C) deviates from the unobstructed
bellow (D) when the same pressure is applied.
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Figure 3.12: The bending metric κ plotted w.r.t. the bellow angle α. The angles
have been measured over the deformed bellow as indicated at bellow C. The signal is
monotonic and sensitive to small changes.
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3.5 Conclusion and Discussion

We present a method to provide feedback for the deformation control of soft
robotic actuators using 3D printed color-patterns. Two designs are presented:
1) an external signal generator that translates a change in strain to a change
in color ratio, and 2) an internal signal generator that generates a change in
color ratio upon a change in bellow shape. Along with the novel structural
design, we have investigated methods for converting the color signals into a
monotonic metric that can be used as an indicator for the flexure in bending
deformation. The effectiveness of the color-based sensing approach has been
verified in experimental tests.

In our current practice (e.g., Fig. 3.1), the placement of a sensor is de-
termined by trial-and-error to obtain the most sensitive signal. When moving
the sensor to the middle of the actuator, the value of κ is less sensitive to the
global shape of the actuator. This is because this color-based sensing method
only provides information about a local shape deformation. To obtain a pre-
cise shape estimation, the data from multiple sensors needs to be fused, which
we plan to investigate in the near future. Moreover, different types of defor-
mations, rather than bending, such as twisting and elongation, also will be
considered in our future research.





4
Calibrating Sensors for Soft Robot

Proprioception

In the second research cycle, the signals from the sensors were first merged
to a single bending metric and then calibrated to the angle of a single bellow
on the actuator. This is an overly simplified way of representing the shape of
soft actuators that have many more degrees of freedom. Moreover, the cali-
bration was performed during unobstructed bending and would therefore not
yield reliable results if the actuator were interacting with objects. The aim of
the third research cycle was to address the problem of calibration. As the re-
lationship between the shape of the actuator and the sensor signals cannot be
easily modeled analytically, a machine learning-based approach was adopted
to calibrate the sensors. First, a vision-based system was used to capture the
position of a number of markers on the soft actuator while it was interact-
ing with objects. Next, a machine learning model was trained using the raw
sensor data as inputs, and the marker coordinates as outputs. Through this ap-
proach, a set of points on the robot can be accurately predicted from the sensor
data, even when the soft actuator is interacting with objects. This calibration
provided the basis for the reconstruction method (RQ3) discussed in research
cycle four.1

1This chapter is published as: R. B. N. Scharff, R. M. Doornbusch, E. L. Doubrovski,
J. Wu, J. M. P. Geraedts, and C. C. L. Wang, “Color-based proprioception of soft actuators
interacting with objects”, IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 1964–
1973, 2019. Note: a few small corrections and/or clarifications have been made to the original
published text.
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4.1 Introduction

Due to their intrinsic compliance, actuators made from soft materials have
shown great potential in many tasks such as grasping. The flexibility of soft
materials allows the actuator to passively adapt its shape in response to phys-
ical contacts with objects. The control of soft robot actuators is typically per-
formed in an open loop. For grasping objects with known geometry, the cur-
vature of a pneumatic actuator can be controlled through applied pressure and
mechanical programming (e.g., [14], [28]). However, for precise operations in
unstructured environments and dexterous manipulation [46], mechanical pro-
gramming becomes ineffective and closed-loop control is needed. A funda-
mental step towards feedback control of soft actuators is the development of
proper proprioception methods [42], [47].

Our work focuses on soft pneumatic actuators. This type of actuator is
commonly used in soft robotics. It uses pressurized air to inflate chambers.
The asymmetry in the geometry of internal chambers or physical properties
of constituent materials drives the shape to the intended deformation [12].
Specifically, downward bending can be realized through pressurization of an
air chamber with an extensible top layer and an inextensible bottom layer [17].
In this chapter, we present a novel method to accurately sense and reconstruct
the bended shape of soft pneumatic actuators during real-time interaction with
objects.

4.1.1 Related Work

Sensing in soft actuators

The use of exteroceptive sensing devices such as visual tracking systems has
been reported in soft robotics (e.g., [18], [29], [30]). However, proprioceptive
sensing approaches have the potential to create more compact sensing systems
and further improve the autonomy of soft robots. This requires sensors that
can be embedded in soft actuators. Ideally such sensors shall be bendable
and/or stretchable, and thus do not prevent the deformation of soft actuators.
An overview of sensing principles for soft actuators can be found in [13], [37],
[48].

A commonly used approach to realize position sensing in soft robots is
through embedded channels filled with conductive inks [32], [36] or liquid
metals [33], [41] that change electrical resistance upon deformation. Other
resistive sensors make use of conductive polymers that can be directly 3D-
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Figure 4.1: A soft pneumatic actuator with red glass-headed pins inserted in the in-
extensible layer, serving as makers for the training of the neural network (left). The
deformed shape is represented by the red dots, the locations of which are predicted
from four color sensors embedded in the actuator (middle and right). Note that the
predicted locations of the red dots accurately match the red pins, in the absence of
object interaction (middle) and during interaction with objects (right).

printed [49], [50], or off-the-shelf flex sensors [51]. An overview of resistive
flex sensors is given by Saggio et al. [52]. An alternative use of electrical prop-
erties includes highly flexible capacitive sensors built from conductive fabrics
and silicone [34] or aluminum and silver layers on an elastomer surface [35].

Some contactless sensors have also been developed, using optics [53] or
magnetics [38]. For instance, Zhao et al. developed stretchable optical waveg-
uides in soft prosthetic hands to feel the shape and softness of objects [39],
[40].

Many of existing sensors suffer from elastic hysteresis, fabrication com-
plexity and compromise in compliance, or can hardly be extended for the inte-
gration of multiple sensors throughout the actuator, which is necessary for re-
constructing complex global deformation. Our color-based sensing approach
overcomes all these difficulties.

Actuator model

Besides the development of accurate sensors, the actuator model which de-
scribes the global deformation and to which the sensing is calibrated is im-
portant for feedback control. Existing algorithms for shape reconstruction of
soft robots are oversimplified, and do not address complex / local deforma-
tions [48]. The global deformation of soft actuators is typically described by
using a simple descriptor such as average curvature [38], [39], [41], [54] or
bending angle [49]–[51]. These univariate models are representative for bend-
ing in the absence of object contacts. However, the soft actuator continuously
adapts its shape during interaction with objects. A single parameter thus be-
comes ineffective to accurately describe the global deformation (e.g., the sig-
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moid curve in Fig. 4.1). Other soft robot sensing methods [40], [55] focus on
object detection rather than shape sensing, bypassing the need for a continuous
actuator model.

While the kinematics can be analytically derived for robots composed of
rigid links, the deformation and motion for soft robots involves a lot more
degrees of freedom (DoFs). A promising direction for soft robots is the use
of learning algorithms to directly predict the deformed shape of the actuator
based on sensor values. Giorelli et al. [56], [57] used a Feed-forward Neural
Network (FNN) to learn the tip position of a cable-driven soft tentacle based
on the cable forces. Runge et al. [58] suggested Finite Element Analysis (FEA)
based training to learn a kinematic model of a soft pneumatic actuator through
a neural network. Neural networks have also been applied to calibrate soft
sensors to estimate the magnitude and the location of a contact pressure [59].
Wall et al. [42] used polynomial regression learning methods to find the most
effective layout of sensors from a redundant layout of sensors on a soft pneu-
matic actuator. In parallel with our work, Van Meerbeek et al. [60] predict the
bending and twisting of a soft foam with embedded optical fibers, comparing
several learning techniques. Thuruthel et al. [61] show that temporal relations
in the sensor data can be used to predict the fingertip position of a soft actuator
using a recurrent neural network known as Long Short-Term Memory (LSTM).
However, neither of them has demonstrated the capability of predicting the de-
formation generated by unknown interactions as shown in our work. An FNN
is used in this chapter to reconstruct the global deformation. It demonstrates
that learning algorithms can be used to fuse information of multiple sensors
that overlap with each other. Benefited from our novel color-based sensing
approach, this is the the first approach that can accurately predict the global
shape of an actuator interacting with objects.

4.1.2 Overview and Organization of the Work

The basic idea of our shape sensing approach is to translate the bending that
occurs in the extensible parts of soft actuators into a measurable change in
colors. The color signals are captured by a miniaturized color sensor that is
embedded in the inextensible layer of the soft actuator. To translate structural
deformation into changes in color, we developed a multi-color structure that
can be fabricated by 3D printing. With the local deformations of the actuator
detected by a set of embedded color sensors, we make use of an FNN to re-
construct the global deformation. As shown in Fig. 4.1, the deformed shape of
a pneumatic actuator can be accurately reconstructed by the proposed method,
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Figure 4.2: Illustration of multi-color bellows inside a soft pneumatic actuator for
translating deformation into changes in color. The dimensions of the bellow used in
our experiments are lsensor = 5.1 mm, lbellow = 11.3 mm and hbellow = 37.0 mm.

even after the inextensible bottom layer is largely distorted into a sigmoid-like
curve. The reconstructed global deformation can provide much more infor-
mation than (averaged) curvature or bending angle as used in many existing
approaches (e.g., the 3D printed soft hand in [14]) to the control system of soft
actuators.

Note that, this chapter is an extension of the previous chapter [27], which
proved the principle of color-based curvature sensing. Here, we extend it to
reconstruct the multivariate shape deformation by integrating multiple color
sensors. To this end, machine learning is employed for deformation recon-
struction.

The rest of this chapter is organized into five sections. Section 4.2 presents
the developed color-sensing method and discusses the design and fabrication
of the actuator with integrated signal generators. In order to generate training
data set for accurately estimating a deformed shape, the method for data ac-
quisition is introduced in Section 4.3. Both the hardware setup and the steps of
sampling will be discussed. After that, an FNN-based method is employed in
Section 4.4 to fuse the color signals captured by multiple sensors to reconstruct
the deformed shape of an actuator. The experimental results will be presented
in Section 2.5 and the chapter ends with conclusion in Section 4.6.
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Figure 4.3: Illustration of a bellow before and after being pressurized. The pattern of
colors that can be captured through the sensing window is shown at the bottom.

4.2 Color-based Sensing

4.2.1 Sensing Principle

The sensing principle is based on multi-color structures, the color and intensity
of which gradually change upon deformation. The changes can be observed
by cost-effective color sensors. To substantiate this principle, as illustrated in
Fig. 4.2, inside a soft pneumatic actuator Ω-shaped bellows are colored by two
distinct colors, distinguishing different parts of a bellow. Beneath each bel-
low a color sensor, embedded in a plug, is plugged into the inextensible layer
of the bending actuator. Upon pressurization of the air chamber, the bellows
inflate, exposing a large area of the initially occluded color (i.e., magenta) to
the window of the color sensor (see Fig. 4.3). Consequently, the measurement
of the sensor changes accordingly. This sensing principle can be applied to
bellow-based pneumatic actuators of different shapes and dimensions. The
length of the inflatable part in our design is 45.2 mm. The main dimensions
of the actuator are indicated in Fig. 4.2. Although the measurements depend
on the particular actuator design, a general learning procedure, which will be
presented in Section 4.4, can be conducted to map the measurements of the
color sensors to the deformed shapes of an actuator.

4.2.2 Sensor Crosstalk

Although each color sensor is influenced most by the signal generated by the
bellow directly above it, it is also influenced by adjacent bellows, as illustrated
in Fig 4.4. The degree of influence is not constant but depends on the defor-
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Figure 4.4: Illustration of sensor crosstalk – each sensor captures signals generated
by the bellow directly above it and the neighboring bellows.

mation of the actuator.

This ‘crosstalk’ between sensors would normally be undesirable, as it com-
plicates signal processing. We propose the use of neural network based method
for fusion, which does not suffer from this undesirable effect as it can learn the
deformed shape of an actuator at a global level. In fact, as will be demon-
strated in Section 2.5 this crosstalk situation can actually be used to reduce the
number of sensors. This would not be possible when using a separate sensor
calibration for each bellow segment.

4.2.3 Color Sensors

A color sensor is plugged into the inextensible layer of the actuator at each
bellow segment. To reduce the size of color sensors, we customized the color
sensor with a design of two-layer PCBs, mounted on a 3D-printed plug (see
Fig. 4.5). The shape of the plug creates an airtight seal. The detailed design
of the sensor can be found in Appendix 8.2.3. The color sensor has a built-
in LED that emits light to the multi-color structures above it. Similar to the
sensor crosstalk, the light is also shed on the neighboring bellow segments.

For color sensing, the TCS34725 light-to-digital converter is used. The
sensor returns four values, namely Red, Green, Blue and Clear (RGBC), for
each exposure. The clear value is IR filtered light, which gives an indication
of overall light intensity. The sensor integration time is set to 50 ms and the
gain to 60X . An Adafruit Feather HUZZAH with ESP8266 reads the sensor-
data of the four sensors with a negligible delay between each sensor by using a
TCA9548A I2C Multiplexer. The Feather HUZZAH runs code using Adafruit’s
TCS34725 library. A command to collect a data sample is sent from the main
Matlab script through serial communication. The collected data is then sent
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Figure 4.5: Both an exploded view of the sensor plug design (left) and the assembled
sensor plug (right) are shown. In the exploded view (left), from the bottom up – the
lower PCB, rigid bottom, flexible plug and upper PCB. Note that the rigid bottom and
flexible plug are printed as one piece.

back to Matlab.

4.2.4 Materials & Fabrication

The embodiment of our design is fabricated on a Stratasys Objet 350 Con-
nex3 multi-material 3D printer, which uses Material Jetting technology and
can print combinations of up to three different building materials in addition
to a water soluble support material. The overall structure of the actuator is
printed with the flexible Agilus 30 Black, while the multicolored bellows are
printed with the rigid VeroCyan and the rigid VeroMagenta. Note that pure
blue or red colors are not available for this 3D printing system. As the colored
materials are rigid, we want to apply a layer as thin as possible. VeroMagenta
and VeroCyan but not VeroYellow materials are chosen as VeroYellow has a
higher translucency.

The Agilus 30 Black has an elongation of 220 ∼ 270% at break and
a tensile strength of 2.4 ∼ 3.1MPa – as documented by Stratasys. The
RGB values of the VeroMagenta (VM) and VeroCyan (VC) materials are
RGBVM = (166, 33, 98) and RGBVC = (0, 93, 127) respectively.

4.2.5 Color Signal

Figure 4.6(a) shows the raw data that was obtained by reading out the RGBC-
data of a color sensor during unobstructed progressive bending. A clear de-
crease in overall intensity can be observed. This is due to the increased mea-
surement distance towards the hidden (magenta) elements that appear upon
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(a) Raw RGBC data (b) RGB normalized by the Clear value

Figure 4.6: (a) Raw RGBC data of a color sensor measured at pressure intervals
during unobstructed bending. Besides a clear decrease in intensity due to an increased
measuring distance, a change in color can be observed as well. (b) RGB normalized
by the Clear value. The ratio of red gradually increases from 0.1918 to 0.2088, while
the blue ratio decreases from 0.4235 to 0.4071.

bending, as well as the decrease in overlap of the light of the LEDs upon
bending (similar to the crosstalk in the sensors explained in subsection 4.2.2).
Besides the change in intensity, a color change can be observed as well. As
shown in Fig. 4.6(b) the raw RGB values are normalized by dividing the raw
RGB values by the Clear value. The normalized RGB color codes show a
clear increase in red and a clear decrease in blue, confirming the appearance of
a larger magenta area. Similar observations can be made from sensors embed-
ded in other slots, as can been seen in Fig. 4.7. We do not observe a clear trend
in the green ratio upon bending. This can probably be attributed to the fact
that the VeroCyan material contains less green than real cyan while the Vero-
Magenta contains more green than real magenta, and the AgilusBlack also
contains some green.

4.3 Data Acquisition

This section focuses on describing how the data, used in the learning for recon-
struction procedure, was acquired. We built a setup that randomly changes the
actuation pressure and the position of an obstacle. It then captures an image
of the deformed actuator and collects the measurements of the color sensors.
Two readings are made during one loop – due to hysteresis the actuator will
slowly deform after reaching a certain pressure. Both readings are collected
into the set of training samples. This allows for generating more samples in a
shorter timespan. The sample data collection process is automatic. The main
loop, running in Matlab, looks as follows:

1. Set random obstacle angle;
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(a) RGB ratio at the first measurement:
[0.1918, 0.3508, 0.4235]. RGB ratio at the last
measurement: [0.2088, 0.3496, 0.4071]

(b) RGB ratio at the first measurement:
[0.2006, 0.3597, 0.4295]. RGB ratio at the last
measurement: [0.2188, 0.3548, 0.4074]

(c) RGB ratio at the first measurement: [0.1902,
0.3646, 0.4286]. RGB ratio at the last measure-
ment: [0.2129, 0, 3666, 0.4001]

(d) RGB ratio at the first measurement:
[0.1612, 0.3428, 0.4679]. RGB ratio at the last
measurement: [0.1894, 0.3466, 0.4367]

Figure 4.7: RGB values of the four sensors plugged underneath the four bellows. The
RGB ratio data is obtained by dividing the raw RGB values by the Clear value. For
each sensor there is a clear increase in red and decrease in blue.

2. Set random actuation pressure;
3. Take first picture;
4. Read out data of the color sensors;
5. Wait for 2 seconds;
6. Take second picture;
7. Read out data of the color sensors;
8. Set pressure back to zero;
9. Set obstacle back to default position.

Our data acquisition setup is illustrated in Fig. 4.8. Its main components are
discussed in the following.

We took samples from 500 random pressure/obstacle-configurations for
the training. Two samples were taken for each configuration, so a total of 1000
data samples were collected. The total data collection procedure took less than
5 hours.
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Figure 4.8: The data acquisition setup: (A) the soft pneumatic actuator, (B) the four
color sensors, (C) the variable obstacle, (D) the pressure regulator and (E) the camera.

4.3.1 Shape of Actuator

We used the soft actuator design as discussed in Section 4.2. Our actuator has
four bellows. Red glass-headed pins are inserted into designated pin holders in
the inextensible layer, serving as markers (see Fig. 4.1). An additional marker
is placed on the origin of the actuator. The positions of the origin marker and
the first marker are fixed (see Fig.4.9), and the distance between the markers
is known. These markers are used to determine the orientation of the actuator
and to convert from pixel positions to metric positions in the unit of mm. As
a result, the shape of an actuator can be obtained by processing the images
captured by camera.

4.3.2 Variable Obstacle

An obstacle is attached through a 3D-printed arm linked to to a stepper mo-
tor (see Fig.4.8(C)), and thus its location can be varied by the stepper. To
(roughly) align the trajectories of the obstacle and the actuator and thus cre-
ate valid obstructing, the arm has a length of 140 mm and its axis is located
100 mm above the inextensible layer of the actuator. At the start of one loop,
the obstacle angle is randomly chosen between 15 and 32 degrees. We have
a resolution of 65 uniform steps within this range. We use an Arduino Uno
and Pololu DRV8825 stepper driver to control the stepper (see Fig.4.8(C)).
The random obstacle position is controlled the main Matlab program through
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Figure 4.9: An example sample of the raw camera data when the actuator interacts
with an obstacle. Six red markers are used to describe the actuator’s shape. The two
most right markers at the root of actuator are fixed.

serial communication.

4.3.3 Pressure Regulator

The actuator requires low pressures to generate relatively large changes in actu-
ator deformation. For the data acquisition, we need to generate stable actuator
deformations with a high resolution within the actuator’s actuation range of 0
to 5 kPa. This is realized by a syringe based pressure regulator. Specifically, a
stepper motor moves the plunger of a syringe to add air to, or subtract air from,
the actuator (see the illustration in Fig.4.8(D)). The pressure inside the actuator
is measured using an NXP MP3V5050GC6U pressure sensor with a range of
0−50 kPa. A desired pressure can then be achieved by a PID-controller using
Arduino.

4.3.4 Camera

We use a Logitech C922 Pro Stream Webcam to capture the positions of mark-
ers. The camera is placed at a distance of 250 mm to the actuator markers. We
capture images with a resolution of 1920× 1080p. The camera settings are set
manually and are kept constant over all captured images. A sample of the raw
image captured by camera is shown in Fig. 4.9.
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Figure 4.10: Samples that were collected during a pilot acquisition and training,
where the samples indicated by a cross are interacting with the obstacle. Although
the training performed quite well on the test-data and we can well predict the un-
obstructed bending, the learned shape predictor had inferior results when confronted
with other types of obstacles not presented in the training set.

4.3.5 Sampling Strategy

During a pilot acquisition, the pressure was varied between 0 and 5 kPa and
the obstacle angle between 0 and 32 degrees, as shown in Fig. 4.10. However,
our experiments suggest that a relatively high amount of constrained config-
urations in the training data can improve the training results. Therefore, we
increased the minimum value of the obstacle angle to 14.5 degrees. The re-
sults of the final sampling are shown in Fig. 4.11. Note that the maximum
pressure was also reduced to increase the life-span of the actuator.

4.4 Deformation Reconstruction

The global deformation of an actuator can be represented by the coordinates of
the six markers in the inextensible layer. This section discusses the reconstruc-
tion of the deformation from the sensor data. We use a Feed-forward Neural
Network to train the global actuator shape based on the sensor data. To train the
network, we use the RGBC-data of the sensors as inputs and the coordinates
of six markers as outputs. The RGBC-data of the four sensors can be directly
fed into the FNN. Some processing is needed for the marker coordinates as the
set of training data.
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Figure 4.11: The final sampling strategy that was applied to collect the training data.
After introducing more contacted samples into the training set, the predictor can re-
construct very accurate shape of an obstructed actuator. the predictor gives a better
reconstruction of obstructed actuator shapes, while maintaining its accuracy on unob-
structed actuator shapes.

First, we undistort the captured images using the parameters obtained from
a multi-plane camera calibration. Our calibration has a Mean Pixel Error of
0.44. Using the fixed distance of 11.4 mm between the first two markers on
the right, we make a conversion from pixel-scale to millimeter-scale at the rate
of 6.8875 : 1. This means the mean error of the calibration is 0.064 mm.
We remove the red cables shown on the right of Fig. 4.9, by simply cropping
out the right of the picture to a resolution of 1300 × 1080p. After cropping,
we use Matlab’s Computer Vision System Toolbox functions to extract the x-
and y-coordinates of the six red markers in millimeter. The positions of the
markers are ordered by solving a Travelling salesman problem. These values
are used as outputs of the FNN.

A graphical representation of the FNN is shown in Fig. 4.12. The two-layer
network has a hidden layer with ten neurons. The hidden layer uses a sigmoid
transfer function and the output layer uses a linear transfer function. We have
a total of 16 inputs (four sensors with four measurements) and 12 outputs (x-
and y-coordinates of six markers).

Unless otherwise specified, we use a block division of our samples, where
the first 70% of our samples are used for training, the next 15% as validation
set and the remaining 15% as test set. We apply the Levenberg-Marquardt
algorithm to train the network, and obtain a shape predictor with the raw data
of the sensors as input.
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Figure 4.12: Graphical representation of the Neural Network configuration used in
our training process and the shape predictor.

Figure 4.13: The error distance between the real and the predicted positions for each
marker. The box plot shows the median, the 25th / 75th percentile, and the minimal /
maximal bounds.

4.5 Results

4.5.1 Accuracy

The error distance between the real and the predicted marker positions is calcu-
lated for all marker positions of the samples in the test-set. The error distance
is calculated as

εi =
√

(xRi − xPi)
2 + (yRi − yPi)

2, (4.1)

where subscripts R and P indicate the real and predicted coordinates respec-
tively and i indicates the sample number. The results are given in Fig. 4.13.
It shows that the median prediction error is lower than 0.1 mm for all marker
coordinates. As would be expected, the largest error is observed on the marker
at the tip of the actuator, and the error decreases when moving closer towards
the root of the actuator. The error is smallest for the marker at location ‘5’.
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Figure 4.14: The mean MSE of the predicted outputs on the test-set for all 15 pos-
sible sensor configurations. Each configuration was trained 10 times. The standard
deviation is indicated on the error chart.

To validate the advantage of using multiple sensors, we trained the FNN
for all possible sensor quantities and sensor configurations. In Fig. 4.14, the
mean Mean-Squared Error (MSE) of each configuration is plotted in a bar
graph. We trained each configuration 10 times in these experiments.

The results show that the sensor at the root of the actuator (i.e., the config-
uration ‘C0001’) individually provides the most complete information (with
the mean MSE: 8.542× 10−3mm). As an individual sensor, configuration
‘C0010’ (with the mean MSE: 6.551× 10−2mm) provides better information
than the configuration where the sensor is placed at the second bellow from the
tip (i.e., ‘C0100’ with the mean MSE of 2.749× 10−1mm). However in a two
sensor configuration, a combination of the second and the fourth sensors from
the tip is the best (i.e., ’C0101’ with the mean MSE: 1.818× 10−3mm)) as the
second sensor contains information that the root sensor is missing. The results
show that two well-placed sensors can already achieve very accurate results
and only small improvements are realized by adding more. This demonstrates
that each sensor indeed captures information from neighboring bellow seg-
ments as well. Note that we train the predictor for the separate sensors by
selecting the sensor outputs of the sensor of interest from the same data acqui-
sition, in which the LEDs of all sensor plugs are on.

Our training based predictor also performs well on objects different from
the trained obstacles. This is demonstrated in Fig. 4.15, where we test the
sensing method on other objects.
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Figure 4.15: While projecting the predicted positions of markers onto the camera
images, it can find that our method also gives very accurate prediction in scenarios
that are different from the training set. Some have complicated curvatures – e.g., the
‘S’-shape shown in the left figure.

The position of the actuator can be predicted in real time. In the sup-
plementary video (https://youtu.be/zgOexw8YLQc), the predicted coordinates
are projected on top of the live camera images to demonstrate the accuracy of
the method in various scenarios. Due to the simplicity of the FNN configura-
tion, the capturing (50 ms for the integration time) and evaluation (0.232 ms)
of a new set of inputs is very efficient. This makes our approach very suitable
for real-time feedback control. The relative slow loop in the supplementary
video is due to the visualization of the 1920× 1080p camera image.

4.5.2 Robustness

We tested the actuators under some extreme conditions to explore how it would
perform on load cases that were not included in the training set. Although some
accuracy is lost, the neural network is still able to predict most of the extreme
load cases quite well. The right of Fig.4.1 shows the prediction on a sigmoid-
curved actuator shape that is realized by bending and rotating the actuator’s tip
at the same time.

It should be noted that our light-based sensing method is almost not af-
fected by external lighting conditions. This is due to the light absorbing black
flexible air chamber and the bright LEDs placed in the sensor plugs. We

https://youtu.be/zgOexw8YLQc
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demonstrate this in the supplementary video where the actuator is tested in
dark and extremely bright conditions.

Another aspect of robustness, repeatability, has also been tested in our ex-
periments. As demonstrated in the supplementary video, sensors can be pulled
out and inserted back in while regaining nearly the same result.

4.5.3 Importance of Color Signal

The raw RGBC data in Fig. 4.6 showed that, due to intensity changes that
occur upon bending, the Clear signal on itself was already a good indicator of
the bending deformation, To test the performancewhen only using the Clear
signal to predict an actuator’s shape, we trained our network with the Clear
signal of the sensors as inputs. The training was able to realize a mean MSE
of 2.633× 10−3mm on the test set (over 10 trainings) as compared to a mean
MSE of 1.602× 10−3mm when including the RGB data as addition. This
proves that the changes in color upon bending are very necessary for improving
the accuracy of shape prediction.

Whereas the mean MSE of the ‘1001’ sensor configuration was
very close to the ‘1111’ configuration when using all RGBC-data as
inputs (1.994× 10−3mm and 1.602× 10−3mm respectively), the mean
MSE increases more significantly when only the Clear value is used
(5.165× 10−3mm for configuration ‘1001’). This means that the color sig-
nals are very important to ensure the robustness of our sensing approach.

When an application can accept the aforementioned error of
2.633× 10−3mm, fast and low-cost shape sensing can be achieved by
embedding off-the-shelf photo-detectors such as LDRs, and LEDs into a
soft pneumatic actuator fabricated in a single color. This is considered as
a simplified version of our approach with reduced accuracy and robustness,
which can be applied to more durable actuators fabricated by silicone casting.

4.5.4 Comparison to Multivariate Polynomial Regression

To demonstrate the effectiveness of a neural network, we compare the MSE of
the training result to the MSE obtained when using Multivariate Polynomial
Regression (MVPR). For both the MVPR and the FNN, we use the first 850
samples for training, and evaluate the accuracy of prediction (by MSE) on the
remaining 150 samples. A multivariate linear regression (MVLR) results in a
predictor with an MSE of 0.0377 mm, whereas a quadratic MVPR results in an
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Figure 4.16: The distances between the real positions and the positions predicted
by the multivariate linear regression (MVLR), the quadratic multivariate polynomial
regression (MVPR), the tuned MVPR and the FNN. The predictions generated by the
FNN have smaller errors.

MSE of 0.0788 mm. Such errors are 23.5× and 49.2× that of the prediction by
the FNN which has an MSE of 1.602× 10−3 mm. After manually tuning the
polynomials of the MVPR by removing some of the quadratic terms, we were
able to obtain a prediction with an MSE of 0.0079 mm, which is still 4.9× that
of the corresponding MSE of the FNN. Moreover, the FNN-based predictor is
robust and does not involve any manual tuning of parameters. Figure 4.16
shows the error distances over all markers by using the MVLR, the quadratic
MVPR, the tuned MVPR and the FNN.

4.6 Conclusion

We have demonstrated a complete method to fabricate a soft pneumatic actua-
tor with integrated color signal generators to realize accurate shape estimation
in both obstructed and unobstructed situations. We have shown that our color-
based sensing approach is robust and performs well on obstacles that were not
included in the training data. This realization of accurate shape sensing is a
significant step towards the application of soft robots in many dexterous tasks.

Our future work will focus on improving the performance on cases under
specific loading conditions by collecting additional training data for these load-
cases. Moreover, 3-dimensional load cases and data collection could be used
to include the effects of twisting of the bellow upon contact. Optimization



58 CHAPTER 4. CALIBRATING SENSORS

could be performed to minimize the amount of samples needed without losing
accuracy. Another existing problem is the long-term reliability of a 3D-printed
actuator. It is worthy to work towards digital fabrication of soft actuators using
materials with longer durability. Lastly, we will also work on how to estimate
the complete actuator shape based on the predicted coordinates on the inexten-
sible layer (e.g. by using elasticity simulation).



5
Reconstructing the Deformed Shape of

Soft Robots

In the previous chapter, it was demonstrated that the captured sensor signals
can be used to accurately predict points that are located on the robot. How-
ever, this collection of points must be converted to a robot representation that
is useful for real-time visualization as well as closed-loop control. To this end,
the captured marker coordinates are converted to shape parameters that are
used for training the machine learning model. The shape parameters that are
predicted by the machine learning model can be used to reconstruct the shape
of soft robots in real time. The calibration procedure presented in Chapter 4
is limited to static soft robot postures with two-dimensional bending deforma-
tion. In this chapter, sensing, calibration and reconstruction are demonstrated
for soft robots composed of multiple actuators undergoing dynamic three-
dimensional deformation. With a much larger soft robot workspace, many
more training samples were needed to train the machine learning model. A
motion capture system was thus deployed to rapidly collect the dynamic data.1

1This chapter is published as: R. B. N. Scharff, G. Fang, Y. Tian, J. Wu, J. M. P. Geraedts,
and C. C. L. Wang, “Sensing and reconstruction of 3D deformation on pneumatic soft robots”,
IEEE/ASME Transactions on Mechatronics (under review), 2020. Note: a few small corrections
and/or clarifications have been made to the original submitted text.
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5.1 Introduction

Proprioception for soft robots is a challenging problem because of the virtually
infinite degrees of freedom (DOFs) of the deformable bodies, and because
there is no off-the-shelf sensor available. However, accurate proprioception is
crucial for closing the loop of control. Existing solutions generally conduct
a simplified model according to a specific soft robot design – e.g., sensing a
single bending angle [51] or curvature [39]. A general and easy-to-fabricate
solution for sensing 3D deformation is needed. In this chapter, we propose
a method using low-cost sensors to realize accurate proprioception and real-
time 3D shape reconstruction. Our approach is based on a data-driven strategy
that can be generally applied to different designs based on their own shape
parameterization.

5.1.1 Related Work

The literature is reviewed from three angles, namely sensors, deformation ac-
quisition and machine learning.

Sensors for proprioception

A large variety of sensors have been developed for proprioception in soft
robotics. For soft bending actuators, proprioceptive sensing is commonly
achieved by embedding paths of conductive materials that change their re-
sistivity upon deformation, such as liquid metal [41], a 3D-printed carbon
black/PLA compound [49], [50], commercial flex sensors based on conductive
ink [51], EMIM-ES ionogel [63], PDMS impregnated with carbon nanotubes
[61], or laser-cut patterns from off-the-shelf conductive silicone [64]. Propri-
oception can also be achieved by magnetic sensing [38] and inductance-based
sensing [65]. The inductance-based sensing method can also be applied to a
continuum joint [66]. However, most of the sensors mentioned above can-
not accommodate very large strains or cannot capture multiple DOFs, making
them unsuitable for other types of actuators, such as elongational actuators or
three-dimensionally deforming surfaces. Moreover, integrating these sensors
into an actuator is usually cumbersome during fabrication.

The use of optical sensing for proprioception in soft robots has been shown
to have great potential. Examples of optical sensing for soft robots include the
stretchable optical waveguides for use in bending actuators [39], [67], mac-
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robend optical sensing for elongational actuators [68], optical distance sensors
on a helical flexible printed circuit board for a soft robotic joint [69], fiber
optics in a three-dimensionally deforming surface [70], the use of fluidic chan-
nels in combination with an external camera [71], and embedded cameras for
tactile sensing [72]–[74] and inflatable bellows [75]. However, some of these
approaches can only sense relatively simple deformation (e.g., it is difficult to
embed optical waveguides and fluidic channels inside three-dimensionally de-
forming surfaces or elongational actuators). Furthermore, the image-texture-
based methods can only be used in large actuators because of the size of cam-
eras.

In previous work, we demonstrated that accurate proprioception of soft
robots could be achieved by integrating a light source, color sensors (pho-
todiodes) and color patterns inside the air chambers of pneumatic bending
actuators [27], [45]. Deformation of the air chamber changes the reflection
and traveling distance of the light coming from the light source(s), which lead
to changes in the light intensity and the colors observed by the optical sen-
sors. A similar principle was applied for a linear bellow by using only four
phototransistors [76]. Following the same working principle, we demonstrate
in this chapter that accurate proprioception of three-dimensionally deformed
soft robots can be realized by using only light-dependent resistors (LDRs) and
light-emitting diodes (LEDs). In contrast to existing solutions, this solution
can be easily integrated into many different types of soft pneumatic actuators
while achieving highly accurate proprioception for soft robots interacting with
their environment.

Deformation acquisition

An important challenge in sensing soft robot deformation is how to obtain ac-
curate ground truth information in deformation. Simplified information has
been sensed in prior research, including the bending angle [51], the curva-
ture [39] and the position of the tip point [57], [60]. However, important in-
formation on the shape of a soft robot is lost. A straightforward solution is
to increase the number of sensed points on the actuator. However, the num-
ber of points is limited when physical manipulators [60] or sensors (e.g., in-
ertial measurement units [66] or electromagnetic sensors [68], [77]) are used
to determine the position of each point. For these reasons, systems that cap-
ture markers on a soft robot with one or more camera sensors are a popular
choice for capturing ground truth information of soft objects (ref. [45], [66],
[70], [78], [79]). The captured marker coordinates on the robot can be used
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to reconstruct the complete shape of a soft robot [80]. Therefore, we use this
approach to capture ground truth information for soft actuators with different
types of deformation.

Machine learning

Due to the highly nonlinear deformation presented on soft bodies, it is difficult
to build an accurate analytical sensing model for soft robots. Simplified ana-
lytical models can only be applied to a specific type of design and thus lack of
generality. Machine learning methods, particularly artificial neural networks,
have proved to be a powerful tool to learn these nonlinearities while being
applicable to a wide range of designs. Feedforward neural networks (FNNs)
have been used to learn the kinematics of soft robots [57], [58] and to char-
acterize various types of soft sensors [45], [60], [79]–[81]. When sequential
data is collected, a recurrent neural network (RNN) or long short-term memory
(LSTM) network can be used to include time-variant effects such as hysteresis
in the sensing model [59], [61], [64], [71]. As a powerful tool when working
with camera data as sensor input, a convolutional neural network (CNN) has
been employed in combination with an LSTM to calibrate a soft tactile sensor
for detecting the hardness of objects [82]. We employ neural networks in our
learning process to establish the mapping between the signals from sensors and
the shape parameters that are extracted from the captured positions of markers.

5.1.2 Our Approach

Our approach endows soft pneumatic actuators with the sensing capability for
real-time 3D shape reconstruction through four steps (see Fig. 5.1):

1. Embedding optical sensors and lamps into the air chambers of soft
robots to translate deformations of the air chambers to the variation of
light intensity;

2. Capturing the ground truth deformation of the soft robot using markers
placed on the robot;

3. Extracting shape parameters that can represent deformation more com-
pactly from the positions of markers;

4. Learning the mapping between the signals captured on sensors and the
corresponding deformation represented by shape parameters.

To the best of our knowledge, this is the first work that provides a full pipeline
for real time 3D reconstruction of pneumatic soft robots consisting of multiple
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Figure 5.1: Overview of our approach for enabling the sensing capability of 3D shape
on soft robots in four steps: (1) sensor integration, (2) data collection, (3) shape pa-
rameterization, and (4) learning the mapping.

interacting actuators. This was made possible due to the following technical
contributions:

• Accurate proprioception method for pneumatic soft robots consisting of
multiple interacting actuators undergoing 3D deformation;

• A method to efficiently reconstruct the three-dimensionally deformed
overall shape by directly learning the mapping between the sensed sig-
nals and the shape parameters.

Due to the small number of sensors as well as the efficient mapping between
the sensor readings and the shape parameters used for reconstruction, both the
sensing and the reconstruction steps can run at 50 Hz on a consumer-level
device.

Two vastly different robot designs – a robotic joint and a deformable
membrane – were selected to demonstrate the flexibility of the proprioception
method as well as the shape parameterization. The robotic joint is composed
of three interacting bellows that can extend and bend to a great extent without
presenting large material strains. As the bellows are connected to the same
rigid body as end-effector, the deformation can be parameterized as a transfor-
mation matrix to compute the forward kinematics easily. On the other hand,
the deformable membrane is composed of four modules that inflate the stretch-
able silicone layer to form a 3D freeform surface. Real-time reconstruction of
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free-form surfaces is challenging. In this work, shape of the deformable mem-
brane is parameterized by the control points of a Bézier surface.

5.2 Sensing Deformation on Soft Actuators

This section explains the importance of using multiple sensors to capture the
deformation of pneumatic actuators on soft robots. Deformation of an actuator
with one DOF can often be captured by a single sensor. However, the signals
captured by a single sensor cannot distinguish the configurations of deforma-
tion in multi-DOF actuators. Attempts have been made to increase the number
of signals that can be captured by using a camera instead of single (optical)
sensors (ref. [71]–[75]). For example, if images are taken at the resolution of
1280×720, this method can capture up to 1280×720×3 = 2, 764, 800 differ-
ent signals. However, in practice, the number of sensors required for captur-
ing 3D deformation is much smaller than this as redundancy exists in sensing
and computation. Besides the excessive computing time, another downside
of camera-based sensing is the difficulty of integrating it into a narrow space,
which is quite common in many soft actuators. In our approach, we place
LEDs and LDRs inside each air chamber to capture the deformation inside a
chamber. The signals captured in all chambers are later fused to reconstruct a
3D shape of the soft robot driven by these chambers.

It is important to capture the deformation on each chamber. As shown
in the experiment of Fig. 5.2, the 3D transformation can already be well re-
constructed even if only one bellow (i.e., the air chamber) is equipped with
sensors. However, as multiple configurations exist for which a single sensor
gives the same reading, a chamber should have multiple sensors to make a dis-
tinction between these configurations – see the difference between blue (only
one LDR inside the bellow) and light red (with four LDRs inside the bellow).
As the ends of the three bellows are connected to the same rigid frames, their
deformations are somewhat coupled. Therefore, the accuracy obtained using
four LDRs in one bellow already approaches that of using four LDRs in every
bellow (i.e., 4× 3 = 12 LDRs in total). However, this is not the case for many
other soft robots with multiple actuators, such as the deformable membrane
shown in Figs.5.1 and 5.4.
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Figure 5.2: (Top row) The mean prediction errors generated by using different num-
bers of light-dependent resistors (LDRs) inside either only one bellow or inside all
three bellows. (Bottom row) The predicted transformation is already highly accurate
when using four LDRs in one bellow (light red). For the purpose of comparison, the
predictions by using only one LDR in one bellow (blue) and four LDRs in all three
bellows (gray) are also given. The ground truth transformation is calculated from
markers located on the robot by using a motion capture system, and displayed in dark
red. The layout of LDRs and light-emitting diodes (LEDs) and the illustration of their
working principle are also given in the bottom row.

5.3 Soft Robot Realization

In this section, we present the realization of our sensing and reconstruction
method on two different designs of soft robots. Methods for data acquisition
and shape parameterization are also introduced. Lastly, we discuss the feasi-
bility of using different machine learning approaches. The process from data
acquisition to training the machine learning model is described by the frame-
work diagram shown in Fig. 5.3, which also presents the pipeline for real-time
reconstruction.
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Figure 5.3: (Top) The framework diagram for training the neural network and (bot-
tom) the pipeline for real-time reconstruction.

5.3.1 Two Soft Robots

Soft continuum joint

The design of a soft continuum joint is indicated in Fig. 5.2. The soft contin-
uum joint is composed of three inflatable bellows, the top and bottom of which
are attached to two rigid frames. The centers of these frames are connected
by a cable that constrains the longitudinal expansion of the bellows such that a
multi-directional bending motion can be generated upon inflating the bellows.
The maximum bending angle α (see Fig. 5.2) is at least 26 degrees in all di-
rections and the operating pressure is in the range of [0, 10] kPa. The top and
bottom frame of the joint are fabricated by using fused deposition modeling
(FDM) with black polyactic acid (PLA) filaments. The leads of the LEDs and
LDRs are fed through small holes in the frames and sealed with epoxy glue.
The bellows are off-the-shelf Freudenberg V6-00400 bellows, which are sealed
around the cylindrical parts of the frame using cable ties. In each bellow, four
LDRs are mounted on the bottom frame to measure the light intensity inside
the bellow. This light is generated by three LEDs mounted on the top frame of
each bellow. Deformations of the bellows result in variation of light intensity
that is sensed by the LDRs. The change of sensed light intensity is indicated
by the changed lengths of the black arrows illustrated in the inset of Fig. 5.2.
This information can be used to determine the deformed shape of a bellow.
As different external forces are applied to the joint when the gripper mounted
on top of the arm holds different objects, rotation and translation of the joint
cannot be determined from the pressure of air inside the bellows. Sensors are
needed to determine the rotation and translation of the joint based on the shape
variation of the bellows. Due to the application of machine learning, an accu-
rate mapping between the sensor signals and soft robot shape can be learned
regardless of variations in the sensors or their placement.
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Figure 5.4: The hardware setup of the deformable membrane and its main dimen-
sions. An illustration of the inflated module and its inner layout is shown in the bottom
right.

Soft deformable membrane

The design of a deformable membrane is as shown in Fig. 5.4. This hardware
setup is composed of four chamber modules that can be inflated separately. The
bottom of each module is rigid and mounted with three LEDs and three LDRs.
The chamber is sealed by a lid with a thin inflatable silicone layer. The modules
have been fabricated using a combination of FDM and silicone casting. A
mechanical interlocking structure, as proposed by Rossing et al. [83], is used
to create an airtight bond between the 3D-printed part and the silicone. The
silicone used is Smooth-On Dragonskin with a shore hardness of 30A colored
with black silicone pigment. The filament used is black PLA. The materials
were selected for their opacity in order to eliminate the influence of external
lighting conditions on the sensor readings. When the chamber of a module
is pressurized, the silicone layer inflates. This inflation results in a change in
reflection and traveling distance of the light emitted by the LEDs, which is
sensed by the LDRs. This information can be used to determine the shape
of the inflated silicone. Four modules are mounted on a frame in a 2 × 2
layout and covered by a thin layer of silicone to create a smooth deformable
membrane. The operating pressure is in the range of [0, 15kPa]. The modules
can be inflated to a height of up to 40mm. Note that as all four inflatable
modules interact with the silicone layer and therefore are coupled, the shape of
each module cannot be determined from the air pressure of each chamber. This
effect is amplified by the highly non-linear material behavior of the silicone.
Therefore, sensors are essential to determine the shape of the membrane.
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5.3.2 Data Acquisition

This subsection introduces the method of generating the dataset for training.

Setup for data acquisition

A motion capturing system of Vicon was used to capture a number of strategi-
cally placed markers on the soft robots. For the soft continuum joint, markers
were placed at the top and the bottom frame of the joint (see Fig. 5.2). For the
soft deformable membrane, a layout of 7× 7 markers was placed on top of the
membrane. Additional markers were placed on the rigid frame as reference
points for sensing its orientation. These markers are illustrated in Figs. 5.1 and
5.5. Upon data collection, the positions of markers were collected at a fre-
quency of 100 Hz, whereas data of all 12 LDRs was collected at a frequency
of 1000 Hz. The data was synchronized using the Vicon Lock Sync Box.

Sampling strategy

A good sampling scheme that spans the robot’s workspace as well as a wide
range of external loads was found crucial to prevent overfitting in data-driven
learning. For the soft continuum joint, a range of weights were added on top
of the actuator to enable accurate predictions when different external loads
were applied to the joint. The weights held by the gripper on top of the arm
varied from 0 to 500g in steps of 50g. A total of 242, 131 samples were col-
lected in 40m21s. Note that each sample refers to a collection of the markers’
positions. The data collection was divided into three batches. These batches
were collected at different times of a day and with an altered orientation and
position of the soft robot in the room to guarantee independence of external
lighting conditions and the calibration of the motion capturing system. For the
deformable membrane, the actuation sequence was varied to ensure that sam-
ples can span the entire working space. The data was collected in two batches
with varying positions and orientations of the robot as well as varying lighting
conditions. A total of 44, 403 samples were collected in 7m24s for the soft
deformable membrane.

Data Preparation

Before further processing of the data, the captured marker positions were con-
verted into a more convenient system aligned with the robots. The origin of
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the soft continuum joint was selected as the center of the bottom triangle of the
joint. The z-axis was aligned with the triangle’s normal pointing upwards, the
y-axis pointed from origin towards one of the markers, and the x-axis was then
defined as orthogonal to these two axes (see Fig. 5.2). For the soft deformable
membrane, the centroid of the fixed markers on the frame was selected as the
origin. The axes were defined such that the x- and y-axes aligned with the
frame’s boundary and z-axis pointed upwards.

5.3.3 Shape Parameterization

The most intuitive way to present the shape of a deformed soft robot is to
describe it by the predicted locations of markers [45]. However, this approach
is redundant in many scenarios. Two shape parameterizations are introduced
below for the hardware setups employed in our work, which provides a more
compact and effective way to reconstruct the shape of deformed soft robots.

Soft continuum joint

A parameterization with physical meaning is demonstrated for this hardware
setup. The collected marker positions are converted to a rigid transformation
represented by a rotation matrix R together with a translation vector T, which
describe the rotation and translation from the bottom triangle of the joint to
the top triangle of the joint. For a set of points (i.e., markers) on the bottom
triangle denoted as {mi} and the corresponding set of points on the top triangle
as {di}, the mapping between them can be described as

di = Rmi + T + vi (5.1)

where vi is a noise vector to incorporate the errors of marker placement and
measurement. The best solution of R and T can then be determined by
the unit-quaternion approach in the sense of minimizing a least-squares er-
ror (ref. [84]). The set of (R,T) determined from motion capture are used as
samples for training and testing.

Soft deformable membrane

For the soft deformable membrane, a parameterization based on Bézier sur-
faces is conducted to represent its shape more compactly than by the positions
of markers on the robot. The positions of 7× 7 (N = 49) markers are used to
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provide raw data for presenting the shape of a deformed membrane. A surface
fitting process is conducted to generate the control points of a Bézier surface
patch for describing the shape. In general, a Bézier surface maps parameters
(u, v) to surface point coordinate p ∈ <3 as

p(u, v) =
m∑
i=0

n∑
j=0

Bi,m(u)Bj,n(v)ci,j (5.2)

where {ci,j} are control points of the surface and Bi,m(u) and Bj,n(v) are
Bernstein basis polynomials defined as

Bi,m(u) =
(
m
i

)
ui(1− u)m−i. (5.3)

For this hardware setup, the positions of markers can be captured by the mo-
tion capture system. For a marker with position pk, we can determine its
parameters (uk, vk) by the marker’s planar coordinate when the membrane is
flat – that is, before pumping air into the chambers. The control points can be
determined by minimizing the following energy, which measures the square
distances between the real coordinates of markers (captured by cameras) and
the positions obtained by surface description

E =

N−1∑
k=0

(pk −
m∑
i=0

n∑
j=0

Bi,m(uk)Bj,n(vk)ci,j)
2. (5.4)

With the help of Bézier surface fitting, the deformable membrane could be
expressed as the linear combination of several control points, thus removing
the redundant information embedded in the marker positions. Moreover, this
compact representation is more robust to noises and outliers. The accuracy of
the shape representation is dependent on the number of control points of the
Bézier surface. As the Bézier surface is a special case of B-spline surface, the
extension to a B-spline surface is also straightforward. However, increasing
the number of control points means that more information needs to be gener-
ated from the sensed signals. As a result, a more complex machine learning
model is needed, and such a model generally must also be fed by more training
samples. As the dataset is obtained through physical experiments, the collec-
tion of additional samples is time-consuming and thus expensive. Figure 5.5
displays a comparison of the fitting of a Bézier surface with 16, 25, and 36
control points. It can be seen that a Bézier surface with 5 × 5 control points
can already describe the deformable membrane with accuracy at a satisfactory
level.
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Figure 5.5: Surface fitting for a deformed surface (top row) with 49 markers’ positions
determined by a motion capture system. The results by using 4× 4, 5× 5, and 6× 6
control points are given from left to right (bottom row). The black points indicate the
measured coordinates of markers, the blue points present the control points obtained
by surface fitting and the fitted Bézier surfaces are visualized as the purple grids.

5.3.4 Machine Learning

Machine learning is applied to learn the relationship between the sensor data
and the shape-oriented parameters. We studied different learning models to
determine the best model for different hardware setups. For this purpose, ac-
curacy was tested on different trained models, including an LSTM network, an
FNN, a support vector regression (SVR), and a multivariate linear regression
(MVLR). The network design of these models is presented below.

• The LSTM network has a hidden layer of 50 neurons with tanh(·) as
the activation function. In the output layer, a linear function is used
for learning the translation and the control points of the Bézier surface,
while tanh(·) is employed for learning the rotation matrix.

• For the learning model by FNN, we also use a hidden layer of 50 neurons
with sigmoid as the activation function. The output layer is designed
identical to the LSTM network.

• For SVR, we chose standard radial basis functions (RBF) as kernels and
used 1.0 as the C-parameter for regularization.

• An ordinary least squares multivariate linear regression is used for
MVLR.

For the soft deformable membrane, we obtained the datasets for training,
validation, and testing from the readings from 12 sensors in 10 subsequent
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Table 5.1: Datasets for Machine Learning

# Samples in Different Datasets
Hardware Setups Training Validation Test
Continuum Joint 168, 251 50, 510 23, 370
Deformable Membrane 21, 396 11, 503 11, 504

time-steps at 1000 Hz, resulting in 12 × 10 = 120 readings as input for each
prediction. Positions of markers were captured by cameras and converted into
control points of a Bézier surface – specifically, we generated different control
polygons with 4 × 4, 5 × 5, and 6 × 6 to explore the best result. To verify
the generality of a learning model’s performance, the actuation sequence that
was used to generate the dataset of the test must be different from the actuation
sequence used to generate the training dataset. For the soft continuum joint, the
datasets were also obtained from the readings from 12 sensors and the captured
positions of markers in 10 subsequent time-steps at 1000 Hz, again resulting
in 12 × 10 = 120 readings as input for each prediction. The positions of
markers were converted into a rotation matrix and a translation vector to form
a sample. The performance of learning models was evaluated on the dataset
captured while external loads were applied. Note that these specific external
loads were not applied while generating training data so that the generality of
a learning model is well verified. The total numbers of samples in different
datasets and the comparison of mean prediction errors are given in Table 5.1.

5.4 Results

This section presents the experimental results of applying our approach on the
two hardware setups – the soft continuum joint and the soft deformable mem-
brane. Quantitative analysis was conducted to verify the performance of our
method. The performance of different machine learning models is compared
and displayed in Fig. 5.6 for the soft continuum joint and the soft deformable
membrane. It is found that both LSTM and FNN perform well in general.
However, we did not find clear indicators to predict which of these two net-
works will perform better on a specific shape parameterization.
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Figure 5.6: Comparison of the mean prediction errors by using different learning
models for the soft continuum joint and the soft deformable membrane.

Figure 5.7: Histograms of the prediction errors for the rotation (left) and the transla-
tion (right) of the soft continuum joint, where the prediction is generated by the LSTM
network.

5.4.1 Soft Continuum Joint

To provide a more meaningful interpretation of the errors in the rotation matrix,
the prediction errors of a rotation matrix are translated to Tait-Bryan Euler
angles following the z-, y′-, and x′′–convention (intrinsic rotations) – referred
to as yaw, pitch, and roll respectively. The best performance was achieved
using the LSTM with mean prediction errors as 0.44, 0.63, and 2.76 degrees
in yaw, pitch, and roll, respectively. Prediction error of the translation vector
is evaluated by the error vector’s magnitude. According to the evaluation of
the test dataset, SVR gives the smallest error as 3.05 mm. LSTM’s error is
3.53 mm, which is comparable to SVR. Therefore, by combining rotation and
translation, the LSTM learning model provides the best performance. Mean
prediction errors and their distribution are shown in Fig. 5.7.

A side-by-side comparison of the reconstructed joint and the real joint po-
sition for a time sequence of 16 seconds is shown in Fig. 5.8 and also the
supplementary video. This reconstruction is based on the predictions obtained
from the LSTM model, which demonstrate the capability of accurate predic-
tion regardless of the external load.

A prediction for the rotation and translation can be generated within 4 ms
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Figure 5.8: Comparison of the rotation and translation predicted by the LSTM net-
work on the continuum joint and the actual rotation and translation (obtained from mo-
tion capture) for a sequence without external load (left) and with external load (right).
The transformation obtained from motion capture is displayed in dark red, while the
reconstructed transformation from LSTM prediction is rendered in gray. LDRs sensor
readings in different modules throughout the time sequences are shown at the bot-
tom. Bellows and their corresponding set of LDR sensor readings are visualized in
matching colors.

on a consumer-level device (i.e., a laptop PC with 2.3GHz CPU + 16GB
RAM), whereas the calculation of the forward kinematics is very fast. In prac-
tice, the sensor readings can be obtained at the rate of 1000 Hz, and each pre-
diction is made by using readings from 10 time-steps. Therefore, we can make
a prediction in a single-thread computation (see the bottom row of Fig. 5.3)
every 14 ms, which makes it possible to run the reconstruction in real-time
(at the rate of 50 to 70 Hz). The speed of visualizing deformed 3D models as
shown in Fig. 5.8 depends on the mesh density.
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Distance Errors 1 LDR 2 LDRs 3 LDRs

Mean Values 2.21mm 1.79mm 1.18mm
Standard Deviation 2.44mm 2.06mm 1.39mm

Figure 5.9: Histogram showing the distribution of the distance errors between the
real and the predicted marker positions for the samples in the test dataset when using
different numbers of LDRs in each module.

Figure 5.10: Comparison of the mean distance error for the fitted surface vs. the cap-
tured markers, and the predicted surface vs. the captured markers on Bézier surfaces
with different numbers of control points.

5.4.2 Soft Deformable Membrane

The prediction error of the soft deformable membrane is indicated on the right
side of Fig.5.6. For each marker, its uv-parameters can used to generate the
marker’s position on the predicted surface. The distance between the real po-
sition of a marker (obtained from motion capture) and its predicted position is
employed as a metric to evaluate the error. When comparing the mean errors,
FNN gives the best result with 1.18 mm as the mean of distance errors. An er-
ror histogram is given in Fig. 5.9. It is also interesting to study the influence of
different numbers of sensors. Therefore, we also generated results by the test
dataset using only two LDRs and one LDR per module. Their corresponding
error histograms are also shown in Fig. 5.9. It can be observed that the mean
distance error by using only one LDR within each module is nearly twice the
error when using three LDRs.

We also studied the errors by using different numbers of control points for
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Bézier fitting. The errors were measured as the distances between the positions
of markers and their corresponding points on the resultant surface of fitting. It
is obvious that more control points lead to less fitting error (see the left side
of Fig. 5.10). However, the error of a surface (with 6 × 6 control points)
predicted from sensor readings can be larger than the error on a surface with
5 × 5 control points (see the right of Fig. 5.10). The reason is twofold. First
of all, the surface fitting error of 5 × 5 is already very close to the error of
6 × 6. Secondly, the information from 12 sensors is not sufficient to predict
36 control points. Therefore, we used 5 × 5 control points to represent and
reconstruct the soft deformable membrane.

A visual comparison of the physically deformed membrane and the recon-
structed surface over a period of 29 seconds can be found in Fig. 5.11 and
also the supplementary video. The surface is predicted by FNN from the light
intensities captured by LDRs in each module. The distance errors between
the surface predicted from sensor readings and the surface generated by fitting
camera captured positions of markers are visualized as color maps.

Prediction of the control points from sensor readings can be generated
within 1 ms on a consumer-level device. Again we made a prediction by using
the readings from 10 time-steps, which is captured at the rate of 1000 Hz. The
speed of visualization as shown in Fig. 5.11, strongly depends on the density
of the grid – for example, a visualization with a 30× 30 grid can be generated
within 6ms using a C++ implementation. Incorporating all these computations,
our system can be operated in real-time at the rate of more than 50 Hz.

5.5 Conclusion

In this chapter, we presented a method to sense and reconstruct 3D deforma-
tion on pneumatic soft robots composed of multiple actuators. Our method is
based on integrating multiple low-cost sensors inside the chambers of pneu-
matic actuators and then using machine learning to fuse the captured signals
into shape parameters of the soft robots. These shape parameters can be used
to efficiently reconstruct the 3D shape of the soft robot. The sensing and shape
prediction pipeline can run at 50 Hz in real time on a consumer-level device.
This is an important step towards the development of more advanced closed-
loop control for soft robots.

In this work, LDRs were chosen to capture the changes in light conditions.
It should be noted that the resistivity of these semiconductors changes with
temperature and humidity. In our experiments, this did not raise any issues
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Figure 5.11: Visual comparison of the FNN predicted surface represented by 5 × 5
control points and the physically deformed soft membrane during a time sequence of
29 seconds. The positions of markers obtained from motion capture are displayed in
black dots, while their corresponding points on the predicted surface are connected
by red line segments. The errors between the predicted surface and the captured sur-
face (by fitting camera-captured positions of markers) are visualized as color maps.
The sensor readings of the LDRs within the different modules throughout the time se-
quence are shown in the bottom graph. Modules and their corresponding set of LDR
sensor readings are indicated in matching colors.
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when testing under mildly varying (room temperature) conditions. If a robot
is required to operate under severe temperature changes, it is recommended
to replace the LDRs with photodiodes as our previous work [45] or to add a
temperature sensor for further calibration. Future research could investigate
the use of transfer learning to reduce the required number of new training sam-
ples when a minor modification is applied to a design. Lastly, the simulation
of light variation inside the air chambers could be a promising direction for
optimizing the placement of the optical sensors and the light sources inside air
chambers. This simulation could also be used for integrating other effective
signal generators, such as color patterns [27], to further increase the accuracy
of proprioception.



6
Restraining Superfluous Degrees of

Freedom of Soft Robots

This research cycle addresses the restraining of superfluous degrees of free-
dom in soft robots. In Chapter 2, it was demonstrated that a range of different
actuation behaviors could be realized by modifying the shape of the air cham-
bers. However, the fingers of the soft robotic hand had a tendency to slip as
a result of out-of-plane deformation. In soft robotic manipulators, this out-of-
plane deformation is a major cause of failed grasps. In this chapter, the prob-
lem of out-of-plane deformation in soft pneumatic actuators is demonstrated
and a method for reducing the out-of-plane deformation is developed. This
is achieved through embedding a structure inspired by spatial flexures in the
3D-printed soft actuator. This structure reduces the out-of-plane deformation
without significantly increasing the in-plane bending stiffness.1

1This chapter is published as: R. B. N. Scharff, J. Wu, J. M. P. Geraedts, and C. C. L. Wang,
“Reducing out-of-plane deformation of soft robotic actuators for stable grasping”, in 2019 2nd
IEEE International Conference on Soft Robotics (RoboSoft), 2019, pp. 265–270
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6.1 Introduction

One practical application of soft robots is to pick and place objects in unknown
environments. In soft robots, the grasping motion is often realized by the bend-
ing of soft pneumatic actuators, induced by the inflation of air chambers that
are made of soft material [13], [17], [86], [87]. While the soft actuators are de-
signed to bend in a specific direction, their flexibility allows them to deform in
other directions when the reaction force from the objects is asymmetric – that
is, not in the plane of intended bending. As illustrated in Fig. 6.1, out-of-plane
deformations include sidewards bending (B) and a combination of bending and
twisting (C). This type of deformation is not typically observed either in human
hands or in conventional rigid robotic grippers [2], [7], [88], [89]. Both rigid
robotic grippers and human hands, composed of rigid phalanxes connected by
joints, have a limited number of degrees of freedom (DOFs). In contrast, soft
pneumatic actuators have a large number of DOFs which allows complex de-
formation when they are confronted with different loading conditions. As soft
actuators are intended to operate in situations where the shape and position of
objects are unknown, the chance of having these asymmetric loadings is high.

Figure 6.1: Besides in-plane bending (A), the flexibility of soft pneumatic actuators
allows out-of-plane deformations including sidewards bending (B) and a combination
of bending and twisting (C), which could reduce the stability of grasping.
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Figure 6.2: A three-fingered soft pneumatic gripper failed to grasp a spherical object
due to the progressive out-of-plane deformation. Slipping occurs at a pressurization
of about 400 kPa.

Instability of soft grippers due to out-of-plane deformation was discussed
at the early stage of soft robotics research [90]. Dexterous grasping using
soft pneumatic actuators revealed significant out-of-plane deformations [18].
A sensorized version of the soft hand confirmed that significant twisting and
lateral bending occur when grasping a spherical object [42]. In line with this,
in Fig. 6.2 we demonstrate that a three-fingered soft pneumatic gripper failed to
stably grasp a sphere due to the out-of-plane slippage of the actuators. Similar
failure is also reported for a four-fingered gripper [41], [90].

The out-of-plane behavior is often not reported during evaluation of soft
pneumatic actuators. For example, force measurements of soft pneumatic actu-
ators are commonly performed using symmetric loadings [17], [91], [92]. Fur-
thermore, optimization of the actuators commonly focuses only on the in-plane
deformation [17], [93], neglecting the consequences of the design changes on
the out-of-plane behavior of the actuator.

In early works spring models were developed to understand slipping phe-
nomena of soft grippers [90], [94]. Morrow et al. [41] suggested the use of
lower friction fingertips to prevent some out-of-plane slippage. This comes
with a loss of desired in-plane friction as well. To reduce out-of-plane de-
formation, a simple way is to increase the stiffness by fabricating the actua-
tors using stiffer materials. However, this also increases the in-plane stiffness
and therefore requires a higher actuation effort. Anisotropic stiffnesses can
be created using paper layers [17], or fiber reinforcements [43]. However, it
is not known how these principles can be applied to reduce out-of-plane de-
formation. Different from existing works, we improve grasping stability by
structural design that increases out-of-plane stiffness without modifying the
in-plane stiffness.
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6.1.1 Our approach

In this chapter, we approach the problem of out-of-plane deformation by struc-
tural analysis. Our purpose is two-fold. First, we demonstrate the effects
of out-of-plane deformation on the grasping stability of soft actuators (Sec-
tion 6.2). This demonstration, through the physical experiments and numeri-
cal simulations, is performed on a pair of actuators which have the same in-
plane bending stiffness but different stiffnesses to out-of-plane deformation.
We evaluate these actuators in terms of exerted forces when they bend towards
a flat and an angled surface. This demonstration serves as a guideline for struc-
tural optimization of soft actuators.

Second, we propose a stiffening structure to increase the out-of-plane stiff-
ness (Section 6.3). This stiffener pattern has a marginal in-plane bending stiff-
ness, but provides strong resistance to the out-of-plane deformation. Our de-
sign is inspired by the spatial flexures [95]–[97]. The improved actuator is
fabricated by 3D printing using a single material, and is verified by physical
experiments (Section 2.5).

6.2 Out-of-Plane Deformation

This section is dedicated to demonstrate and analyze the importance of the
resistance to out-of-plane deformation for stable grasping. The out-of-plane
slipping of soft pneumatic actuators includes the effects of sidewards bending,
twisting and twist-coupled bending. The influences of these deformations to
the stability of grasping depend not only on the actuator design but also on the
loading that is applied. Moreover, the actuator’s stiffness with regards to these
deformations changes over the actuation range. Analytical description of such
complex deformation is difficult. Our approach thus mainly relies on physical
experiments and numerical simulations.

To isolate the out-of-plane deformation from other factors, we test a pair of
actuators which have an equal stiffness to in-plane bending, but with different
stiffnesses to out-of-plane deformation. Building upon a commonly used type
of soft actuators as the basis, an extra beam is added to its inextensible layer
(see Fig. 6.3). The extra beam is placed along the full length of the actuator.
For small in-plane deflections, the radius of curvatureR of a beam is calculated
by

R =
EIz
M

, (6.1)
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Figure 6.3: Experimental setup. We measure the vertical component of the in-plane
force for an actuator interacting with an object. In this scenario, the object has a 45°
angled surface.

where E and M are Young’s modulus and the applied bending moment, re-
spectively [98]. Iz is the area moment of inertia around the z-axis,

Iz =
bh3

12
, (6.2)

where b indicates the base width and h indicates the height of the beam.

We compare two beams with different dimensions of the cross-section,
one with a width b = 20 mm and a height h = 2 mm, and the other one with
6 mm × 3(≈ 3

√
80/3) mm. The height is designed smaller than the width

to prevent buckling on the beams. The area moment of inertia for in-plane
bending, Iz , for these two beams is the same. In contrast, the area moment of
inertia for sidewards bending (Iy) has a difference of around 25 times – with
the one having b = 20 mm being stiffer. This is calculated by switching b and
h when considering another bending direction.

The torsional stiffness of the actuator is also changed when different beams
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Figure 6.4: Vertical component of the in-plane forces exerted by an actuator having
a 6 mm beam (blue) or a 20 mm beam (orange). When confronted with a flat surface
(symmetric loading), the exerted forces as represented by solid curves are nearly the
same for both actuators. When confronted with an angled surface (asymmetric load-
ing), the actuator with 20 mm beam exerts comparable forces (dashed, blue) as in the
case of symmetric loading. In contrast, the actuator with 6 mm beam exhibits smaller
forces (dashed, orange) and fails to consistently exert a force when the pressure is
larger than 240 kPa.

are attached. The torsional stiffness k of a beam can be calculated by

k =
JTG

l
(6.3)

where l is the beam’s length, G is the shear modulus and JT is the torsional
constant. When b ≥ h, the torsional constant of a rectangular cross-section
can be approximated by

JT ≈ bh3
(1

3
− 0.21

h

b

(
1− h4

12b4

))
(6.4)

with an error not greater than 4% (ref. [98]). Therefore, the torsional stiffness
of the 20 mm-width beam is around 35% higher, which is also good against
the unwanted out-of-plane deformation.

To ensure identical contacts with the object in the presence of variably
sized beams, we add a fingertip-beam along the z-axis to the free-end of the
actuator. Both actuators are fabricated by a 3D printer using Fused Deposition
Modeling (FDM). A flexible filament (Ultimaker TPU 95A) is used.
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6.2.1 Experimental Analysis

To quantify the actuator’s resistance to different deformations during grasp-
ing, we test the force exertion of the actuators on a flat surface (symmetric
loading) and a surface under an angle of 45 degrees (asymmetric loading, cf
setup in Fig. 6.3). The contact surfaces of both objects have been printed flat
on the printbed to ensure identical friction coefficients. The distance (d) be-
tween the first contact and the tip of the actuator (i.e., the inextensible layer)
is 20 mm. When the actuator is pressurized, it exerts a force to the flat (or
inclined) surface. The vertical component of this force is recorded. We pro-
gressively increase the pressure by using 40 kPa pressure intervals. As the
actuators show very slow slipping, we wait 10 seconds at each pressure be-
fore recording the corresponding force. When the actuator bends towards the
inclined surface its free-end slips down along the surface. We consider the ac-
tuator as slipped away when its sidewards displacement reaches 20 mm (zmax,
cf Fig. 6.3). Each actuator is tested three times. Here we purposely measure
the contact interaction when the actuator is already in a bent configuration,
as this more closely simulates a real grasping situation. The actuator’s stiff-
ness with respect to the out-of-plane deformations such as sidewards bending
and twisting usually decreases rapidly when the bending of the actuator is in-
creased.

The experimental results are shown in Fig. 6.4. The solid curves represent
the measured vertical forces under symmetric loadings. These two curves are
very close. This confirms that the in-plane bending behavior of actuators with
the same Iz (Eq.(6.2)) is almost identical. The dashed curves are correspond-
ing to vertical forces when the actuators are confronted with an angled surface,
i.e., an asymmetric loading condition. The actuator with a wider beam is still
able to exert a large force. In contrast, the other actuator slipped away before
the pressure reaches 250 kPa, and failed to apply a large force onto the angled
surface. Slippage points are indicated with a star in Fig. 6.4. This comparison
reveals the importance of the out-of-plane stiffness for grasping stability.

6.2.2 Numerical Simulation

We further verify the different behaviours in deformation by using numerical
simulation.

First of all, the tensile properties of the material (Ultimaker TPU 95A)
were determined from experiments. A total of 10 dumb-bell test pieces were
3D printed in different XY-orientations on the printbed. We used a test length
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Figure 6.5: Average stress-strain relationship for 10 TPU 95A dumbbells and fitted
nonlinear material model.

of 25 mm and a test speed of 500 mm/min, according to the ISO 37 norm (test
piece type 1). The (average) stress-strain relationship is plotted in Fig. 6.5. As
the material behavior is nonlinear, a second order polynomial strain energy
function was selected to fit the measured data. The friction coefficient was
estimated through a sliding test. The slipping point of the Ultimaker TPU 95A
surface on an angled surface of smooth PLA (all obstacle contact surfaces are
printed flat on the buildplate) was determined at 25 degrees. Therefore, the
static friction coefficient was determined at µ = arctan(25°) ≈ 0.47. The
pressure is increased slowly in our experiments to assume the static friction
holds.

Numerical simulations were performed using ABAQUS. The NLgeom op-
tion in ABAQUS is used to enable simulating large displacements. The actua-
tor and the obstacle have been positioned in the same configuration as shown
in Fig. 6.3. For the angled obstacle, we use a finite sliding formulation. For
the flat obstacle, we use a small sliding formulation. We also include the effect
of gravity on the actuator and detect self-contact between the bellows. After
applying a pressure of 400 kPa to the actuators. We output the in-plane com-
ponents of the forces due to the contact pressure and the frictional stress on the
obstacle.

The simulation results are reported in Figs. 6.6-6.8. Fig. 6.6 confirms that
the 6 mm beam actuator and 20 mm beam actuator exhibit the similar in-plane
bending in the absence of obstacles. Fig. 6.7 (a) and (c) show that the actua-
tors deform similarly when they are resisted by a flat surface. When they are
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(a) (b) (c) (d)

Figure 6.6: The actuator with a 6 mm-width beam (a) and the actuator with a 20 mm-
width beam (b) show almost identical bending behavior (demonstrated at a pressure
of 400 kPa). The simulation results ((c) & (d)) agree with the physical experiments.
The colors projected on the deformed actuators indicate the magnitude of the spatial
displacement of the nodes, ranging between 0 mm (dark blue) and 120 mm (dark red)
for all simulation results.

confronted with an angled surface, the actuator with a 6 mm beam, Fig. 6.7(b),
has a larger sidewards deformation than the one with a 20 mm beam (d). The
vertical contact forces in numerical simulations are plotted in Fig. 6.8. Similar
to the physical test results plotted in Fig. 6.4, it shows that the actuator with
the 6 mm beam failed to exert a larger force on the angled surface (dashed or-
ange curve). Although the simulation of contact force on a flat surface is in
good agreement with the physical tests shown in Fig. 6.4, the simulation for
the cases with the angled surface agrees less well with the forces measured in
physical experiments. This indicates the difficulty of simulating the slipping
phenomenon, and therefore the need for conducting physical experiments.

6.3 Reducing Out-of-Plane Deformation

In the previous section, it has been demonstrated that a smaller out-of-plane de-
formation is beneficial for maintaining a firm contact with objects while under
the same in-plane bending stiffness. Thus, it can potentially improve grasping
stability. In the experiments, we increased the relative stiffness to out-of-plane
deformation through an extra beam that was attached to the inextensible layer,
which necessitates a higher actuation effort.

In this section, we present a newly designed stiffening-structure which has
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(a) (b) (c) (d)

Figure 6.7: Simulated deformation of the actuator with a 6 mm-width beam ((a) &
(b)) and the one with a 20 mm-width beam ((c) & (d)). An obstacle with a flat surface
((a) & (c)) or an angled surface ((b) & (d)) is in the way of bending. The deformation
results are similar in the case of a flat surface, while in the case of an angled surface
the actuator with a 20 mm-width beam (d) shows a smaller sidewards deformation.

Figure 6.8: Simulated vertical force between the actuators and the flat or angled sur-
face.

marginal effects on the in-plane bending but significantly increases the out-of-
plane stiffness. The structure is shown in Fig. 6.9. The design is inspired by
the infinity-flexure presented in [96]. We use the inextensible layer as the main
flexure and add auxiliary flexures in perpendicular direction between each bel-
low segment. Then, the auxiliary flexures are connected at the ends through
additional elements. Loading the actuator in torsion rxl

will load the auxil-
iary flexures in the constrained ryl-direction (see Fig. 6.9). As the auxiliary
flexures are connected in series, their deflection angle is much smaller than
the total deflection angle of the actuator α, thereby limiting the decrease of
stiffness in ryl-direction. This ensures that the actuator retains a significant
torsional stiffness at large deflection angles. At the same time, the auxiliary
flexures barely increase the bending stiffness about the rzl-direction.
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Figure 6.9: The improved soft actuator design with stiffening structure.

The heights of the auxiliary flexures above and below the inextensible layer
are empirically determined and indicated in Fig. 6.9. A smaller height hb in-
creases the in-plane bending stiffness. However, a large hb results in severe
self-contact when the actuator bends forward. At the fingertip, no auxiliary
flexures are added below, to avoid undesired interaction between the flexures
and the grasping targets. We note that the upper auxiliary flexures are bene-
ficial for forward bending. Collisions between the flexures and the expanding
bellows effectively increase the elongation of the extensible layer, thus improv-
ing the bending performance [17]. On the other hand, these flexures reduce the
range for reverse bending, which is sometimes required for grasping larger ob-
jects. In this case, the distance between the bellows should be increased.
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(a) (b)

Figure 6.10: (a) Fabricated design with and without stiffening structure. (b) Self-
collision between the bellows and the stiffening-structure results in an increase in the
exerted force.

6.4 Results

We compare our design to a reference design with an identical inextensible
layer with a thickness of 0.8 mm and a width of 20 mm (see the bottom of
Fig. 6.10(a)). We test the actuators using the same setup shown in Fig. 6.3.
Figure 6.11 shows the vertical forces exerted on the flat surface and the 45°
angled surface. The design with stiffening-structure was able to exert a force
of 3.11N on a 45° angled surface before reaching a sidewards displacement of
20 mm. This force is more than 70% higher than that of the reference design
(1.82N ). It is also observed that at the same pressure the stiffening-structure
reinforced design exerts a larger in-plane force on the flat surface. This can
be explained by the accelerated self-collision between the bellows due to the
stiffening-structure, as is highlighted in Fig. 6.10(b).

We integrate the bellows with stiffening-structure onto a gripper with three
fingers. Figure 6.12 shows the newly designed gripper grasping a variety of
objects stably at a pressure of 500 kPa. It should be noted that the gripper with
the 6 mm-width beam failed to grasp the spherical object (Fig. 6.2) before
reaching such a pressure, with a failure happening at a pressure of 400 kPa.
Similarly, a gripper built from the reference design actuators (Fig. 6.10(b))
showed several failed grasps for the tape-measure, the wrench and the marker
at pressures below 500 kPa due to out-of-plane deformation. The design with
stiffening-structure also increases the quality of the successful grasps in terms
of holding force. Note that oblong objects such as the wrench and the marker
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(a)

(b)

Figure 6.11: Vertical component of the in-plane force exerted by different designs on
a 45° angled surface (top) and a flat surface (bottom). Slippage points are indicated
by a star.

are held in place in a straight orientation, whereas the reference gripper would
hold these objects in a less stable orientation due to out-of-plane deformation
of the gripper fingers. We further demonstrate the improved grasping stability
in the supplementary video material.

6.5 Conclusions

This chapter demonstrates the importance of the out-of-plane stiffness of
soft actuators for grasping stability. Under the same in-plane deformation,
a smaller out-of-plane deformation is beneficial for stable grasping.
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(a) (b) (c) (d)

Figure 6.12: A gripper consisting of three actuators with the stiffening-structure can
stably grasp a variety of objects at a high pressure of 500 kPa.

The newly designed stiffening-structure increases the out-of-plane stiff-
ness with minimal influence on the in-plane stiffness. The stiffening-structure
retains a significant out-of-plane stiffness when it is in a bent configuration.
An actuator with the reinforced out-of-plane stiffness is able to exert higher
forces without slippage when confronted with asymmetric loadings.



7
Discussion

In the previous chapters, the results of the five research cycles of this research
project were presented. The research has focused on the development of soft
actuators with proprioception in order to move towards the use of soft robotic
manipulators for dexterous manipulation tasks. In this chapter, the implica-
tions of this development are discussed. First, the role of proprioception in
performing dexterous manipulation tasks with soft robots is discussed. Sec-
ond, the implications of soft robotic manipulators for dexterous manipulation
tasks such as harvesting on sustainability are discussed, with a focus on the
role of proprioception. Third, the impact on jobs caused by the automation of
these tasks is briefly discussed. Finally, we argue that the necessity of an inte-
grated design approach for developing soft manipulators with proprioception
will further implicate product designers in the development of robots. The last
paragraph of this discussion discusses the role of the designer in the develop-
ment of soft robots.
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7.1 Implications of the Research

7.1.1 Proprioception for Dexterous Manipulation

The soft robotic manipulators developed in this work are intended to complete
dexterous manipulation tasks by employing a grasping strategy that is inspired
by that of the human hand. To allow for similar control strategies, this work is
aimed at realizing a similar level of proprioceptive accuracy as well. However,
systems that are completely composed of soft materials and have virtually in-
finite DOFs (e.g. the tentacles of the octopus) commonly show a very different
approach to dexterous manipulation than an articulated hand. Here, the ac-
curacy of proprioception and control is often less important and compensated
for by the compliance of the soft structures [99]. The commercially available
soft grippers mentioned in Chapter 1 have shown that the control of an adap-
tive caging grasp with multi-finger grippers can be greatly simplified as well
through the use of soft materials and without the presence of any propriocep-
tion. However, for dexterous manipulation tasks such as harvesting an apple,
the brain needs to be involved in the task execution as well. For example, har-
vesting an apple requires finding the stem of the apple by touch and tilting the
apple around it, which requires knowledge of what an apple looks like. For
the planning of such tasks, the brain has to rely on accurate proprioceptive
signals. Similarly, accurate proprioception of the soft actuators is needed to
decide upon the actuation strategy. Exploiting the softness of the actuator, the
execution of the adaptive caging grasp that follows can still be greatly simpli-
fied in terms of control.

7.1.2 Sustainability

Agriculture is currently facing serious sustainability challenges. Intense farm-
ing has negatively impacted the environment through deforestation, reduced
biodiversity, soil-erosion and -degradation, and plastic waste. While agricul-
ture needs to make a transition to more sustainable practices, it must also deal
with the consequences of climate change and an increasing food demand due
to a rapidly growing world population [100].

Part of the solution may lie in moving from monocultures, in which fields
only contain a single crop at a time, towards polycultures in which mul-
tiple species are grown at the same time. Examples of such agricultural
land management systems include combining agriculture with growing trees
(agroforestry [101]) and growing multiple crops in close proximity (intercrop-
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ping [102]). Their benefits include increased biodiversity; soil quality; nutrient
management; water-holding capacity; control of weeds, diseases, and pests;
pollination services; carbon sequestration; energy efficiency and reduction of
warming potential; resistance and resilience to climate change; and crop pro-
ductivity [103], [104].

Figure 7.1: Example of agroforestry (left) and intercropping (right)
- Photo Credits: Duchy apple agroforestry July 2014 by Phil Sumption
ORC, https://www.flickr.com/photos/agforward/14875280528/ (left), and Roma-
nia, https://commons.wikimedia.org/wiki/File:Romania.jpg (right), License at
http://creativecommons.org/licenses/by/2.0.

However, the maintenance of diversified agroecosystems generally re-
quires more manual labor and skills than mechanized monocultures. A major
barrier to the adoption of these systems is the shortage of qualified human la-
bor [105]. Research into soft robotics as enabling technology for diversified
agroecosystems concludes that there are opportunities for soft robots to make
these systems more feasible through their potential ability to manage intricate
agricultural tasks [105]. However, the research also indicates that there are
several open questions on control and sensing for soft robots. This research
contributes to addressing these challenges.

Besides the potential of soft robotics to aid the adoption of more sustain-
able agricultural practices, it also faces challenges with respect to sustainabil-
ity. Firstly, there is a challenge with respect to food waste. Harvesting is
already a critical loss point in the food supply chain [106]. Therefore, it is
important that automation of harvesting tasks does not come at the cost of in-
creased food losses due to poor handling. Although it is not unimaginable that
soft manipulators could outperform manual labor in terms of effectiveness in
the future, the current state of the art is not capable of doing so. The develop-
ment of accurate proprioception methods for soft robots is an important step in
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this direction.

Secondly, there are sustainability challenges regarding the durability, re-
cyclability, and reuse of soft robots. The soft robots presented in this thesis
commonly have a shorter lifespan than traditional rigid robots. This is mainly
due to the use of fragile materials, imperfections in the manufacturing pro-
cesses, and a knowledge gap as to how to design structures that undergo large
deformations. However, through new smart materials and design methodolo-
gies, soft robotics has also allowed for replication of operations and function-
alities of biological organisms that exploit softness [107]. Examples include
biodegradable soft robots [108], edible soft robots [109], and self-healing soft
robots [110]. Taking inspiration from nature, we can start to think of soft robots
as organisms that live, die and decay with minimal impact on the environment.

7.1.3 Jobs

Many countries face a shortage of skilled agricultural workers [111]. A short-
age of qualified human labor in agriculture is responsible for food losses dur-
ing harvesting [106] and hinders the adoption of more sustainable agricultural
systems [105]. The shortage of qualified labor is likely to grow due to an
aging farming population [112] and mobility restrictions on seasonal migrant
workers (e.g. due to the COVID-19 pandemic [113]). Therefore, automation
of dexterous harvesting tasks is likely to be necessary to sustainably feed the
growing world population.

It is likely that the development of soft manipulators capable of perform-
ing dexterous manipulation tasks will also impact other sectors. The tasks
that are most likely to be automated are those that are highly repetitive, physi-
cally heavy, or dangerous, or that deal with labor shortage. Examples of such
tasks are waste disposal and sorting, swab collection during a pandemic, and
supporting the elderly in everyday life. For many of these tasks, robots are
required to closely collaborate with the human. As soft robots are safer to in-
teract with, the use of soft robots is a promising direction for enabling humans
and robots to work closely together (e.g. human–robot coproduction [114]).
Even for soft robots, proprioception is needed to guarantee safe interaction.

7.1.4 Industrial Design Engineering

In contrast to rigid robots, the specializations and components required to build
a soft robot are highly dependent on each other. Thus, an integrated design ap-
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Figure 7.2: Integrated design of a soft robotic fish (left), soft robotic car seat (middle),
and soft robotic gripper with silicone fingertips (right) - Photo Credits: Sander van den
Berg (left), Alice Buso (middle), and Lars Rossing (right)

proach is needed in which all factors are taken into consideration during the
entire design process. The integration of color patterns inside a soft pneumatic
actuator to aid proprioception (Chapter 3) and the use of a structure that limits
unwanted out-of-plane deformation and thereby simplifies sensor calibration
and control (Chapter 6) are examples of how better solutions can be realized
when components such as sensors and actuators are designed with a holistic
approach. Due to the multidisciplinary nature of soft robotics, such a holistic
approach often requires bringing together knowledge from various disciplines
such as material science, mechatronics, zoology, computer science and indus-
trial design. Moreover, to develop soft robots that successfully solve real-world
problems, all stakeholders need to be involved throughout the design process.
Industrial designers are adept at tackling such complex problems through an
integrated design approach. Therefore, designers are expected to play a cru-
cial role in advancing the field of soft robotics. To illustrate this point, three
projects that were executed in collaboration with students or alumni from the
Integrated Product Design (IPD) Master at Delft University of Technology are
highlighted below.

The first project is a graduation project by Sander van den Berg (Fig. 7.2
[left]). The goal of the project was to develop a high-speed free-swimming
soft robotic fish. The tuna-inspired design was able to achieve speeds of up
to 0.85 m/s, outperforming the previously reported fastest free-swimming soft
robotic fish by a margin of 27 % [115]. This feat could only be achieved
through incorporating input from marine engineers and zoologists throughout
the entire design process.

The second project is a graduation project by Alice Buso (Fig. 7.2 [mid-
dle]). The goal of this project was to use soft robotics to improve the comfort
of BMW car seats. The final result is a layout of soft inflatable modules that



98 CHAPTER 7. DISCUSSION

can sense and control the pressure distribution in the seat [76]. Stakeholders
such as BMW’s seat factory, BMW’s business unit, and the end user were in-
volved throughout the entire design process to ensure a good fit between the
actuator’s design and its application.

The third project was executed in collaboration with IPD-alumni Lars
Rossing (Fig. 7.2 [right]). The goal of this project was to fabricate soft robots
that contain thermoplastic as well as silicone elements. This was achieved
through a hybrid manufacturing method that combined 3D-printing of a ther-
moplastic structure with silicone casting [83]. This design could only be real-
ized through simultaneous consideration of the manufacturing method and the
design of the soft robots.



8
Conclusion

Following the discussion on the implications of the research, this chapter sum-
marizes the main contributions of this research. The research questions defined
in Chapter 1 are answered. Hereafter, the limitations of this research and op-
portunities for future work are discussed.
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8.1 Contributions

The research presented in this thesis aims to address the challenges in building
soft robotic manipulators with proprioception. It thus paves the way for the
development of closed-loop control algorithms for soft robotic manipulators
and, ultimately, the development of soft manipulators capable of performing
dexterous manipulation tasks. The research objective was divided into four
research questions, which were answered through five research cycles. The
answers to the research questions are discussed below.

8.1.1 Answers to the research questions

RQ1 What combination of actuation technique(s), sensing technique(s), and
fabrication technique(s) for soft robotic manipulators can facilitate
an integrated design approach to design the behavior of soft robotic
manipulators with proprioception?

A combination of pneumatic actuation, optical sensing with ma-
chine learning-based calibration, and additive manufacturing (AM) was
found to facilitate an integrated design approach to design the behavior
of soft robotic manipulators with proprioception. Soft pneumatic
actuators provide designers with the possibility of realizing a wide
range of forces and motions merely by adjusting the geometry of
the air chambers, which allows them to adjust the behavior of the
manipulator according to the application’s requirements. AM allows
multiple of these complexly shaped actuators to be fabricated in one
go directly from the CAD file, almost regardless of the complexity
of their geometry and without the need for design-specific tooling or
assembly. This potential is demonstrated in Chapter 2. As the soft robot
is driven by the inflation of the air chambers, the shapes of these air
chambers are excellent indicators of the global soft robot shape. This
feature, combined with the fact that these air chambers are insulated
from external light, can be exploited to realize proprioception. A low
number of small optical sensors and LEDs can be integrated into the
air chambers to capture their shape (Chapter 3). In contrast to sensors
that capture changes at specific locations of the soft robot, the signals
captured by the optical sensors are always affected by the complete
shape of the air chamber. Therefore, making changes in the design
of the actuator (e.g. making the air chamber longer or changing the
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design of the bellow segments) does not require changing the design
of the sensor. For each design, machine learning can be applied to
learn the specific mapping between the sensor signals and the shape of
the robot. From a design perspective, this model-free calibration has
the advantage of being applicable to a wide range of designs without
requiring changes in the approach.

RQ2 How to endow soft actuators with embedded sensors that accurately
capture the actuator’s deformed shape?

As discussed above, the shape of the air chambers of pneumatic
soft robots are excellent indicators of their global shape. The deformed
shape of soft pneumatic actuators was accurately captured by a number
of optical sensors placed inside the inflatable air chambers. The signal
for these optical sensors is realized by multiple light sources inside
the air chamber. The amount of light from these light sources that is
captured by the optical sensors depends on the shape of the air chamber
at that time. Thus, the captured signals give a reliable indication of
the actuator’s shape, even when the soft robot is interacting with its
environment. To enhance the change in signal upon deformation,
color-based signal generators were embedded in the soft actuators such
that a deformation would result in a change of color observed by color
sensors. This sensing principle was demonstrated in Chapter 3. A com-
parison between the use of color signals and a single-intensity signal
for a soft bending actuator is demonstrated in Chapter 4. Although the
color signals enhance the accuracy, they are not necessary for capturing
the shape of soft actuators with good accuracy. This finding is further
demonstrated by the actuators presented in Chapter 5, which do not
include colored patterns. The placement of the sensors also plays an
important role in the accuracy with which the deformation is captured.
A comparison of the obtained accuracy for different sensor layouts is
presented in Chapter 4. With good placement, only a small number of
signals is needed to capture the robot’s deformation. A major advantage
of using a small number of optical sensors is that they can be easily
integrated inside the air chambers of soft actuators, such as on the
inextensible layer of a soft bending actuator (Chapter 3)

RQ3 How to reconstruct the shape of soft robots in real time?
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This research presents a method for reconstructing the shape of
soft actuators from the signals of the optical sensors. First, the positions
of a number of markers on the robot are captured using one or more
cameras. Second, a large number of marker coordinates and their
corresponding sensor signals are collected while the soft robot moves
throughout its entire workspace and interacts with objects (Chapter 4
and 5). Next, the marker coordinates are converted to a reduced number
of shape parameters that can be used to represent and reconstruct the
shape of the soft robot in a computationally efficient way. Hereby,
the solution for bending actuators presented in Chapter 4 can be
scaled to complex structures with multiple interacting actuators and
three-dimensional deformation. For example, the coordinates of a
number of markers on a soft deformable membrane can be reduced
to the control parameters of a Bézier surface, and marker coordinates
on a soft continuum joint can be reduced to a rotation matrix and
translation vector (see Chapter 5). A neural network is then deployed
to learn the mapping between the signals from the optical sensors and
the soft robot’s shape parameters. By directly predicting the shape
parameters instead of the marker coordinates, the sensing, prediction,
and visualization of complex soft robot shapes can run in real time.

RQ4 How to restrain superfluous degrees of freedom in soft robotic manipu-
lators?

This dissertation demonstrates how superfluous degrees of free-
dom in a soft robotic bending actuator can be restrained through the
design of the soft actuator. This is achieved through embedding a
structure inspired by compliant mechanisms in the 3D-printed soft
actuator. This structure reduces the out-of-plane deformation without
significantly increasing the in-plane bending stiffness (see Chapter 6).
Thus, the grasping performance could be significantly improved.

8.2 Limitations and Future Work

The research presented in this thesis has several limitations and also indicates
several opportunities for future work. These will be discussed below.
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8.2.1 Process Automation

In this thesis, a set of actuation, sensing, and manufacturing techniques were
proposed to facilitate an integrated approach to designing the behavior of soft
robots with proprioception. However, multiple steps in this approach could be
automated and optimized to further streamline and improve the design process.

• First, the design of the actuators could be automated and optimized. Al-
though it was demonstrated that a wide range of behaviors can be real-
ized through modifying the geometry of pneumatic actuators, it is still
unclear what exact geometry should be generated to realize a desired
behavior. The use of generative design methods could be an interesting
direction towards automated generation of an actuator geometry based
on the desired behavior as well as the manufacturing constraints. For an
overview of design optimization methods for soft robots, see [116].

• Second, the placement of the optical sensors and light sources within
the air chambers could be automated and optimized. For an example of
sensor layout optimization for soft robots, see [42]. In this thesis, the
indentification of a sensor and light-source layout for which the sensors
are highly sensitive to changes in the shape of the actuator was largely
based on empirical evidence. Future research may focus on evaluating
and optimizing layouts through simulating the light inside the air cham-
bers. This could lead to higher proprioceptive accuracy and a possible
reduction of the number of sensors and light sources required inside the
air chambers.

• Finally, the amount of training data required for calibration of the sen-
sors could be optimized. In this thesis, a complete set of training data
was collected across the entire soft robot workspace for every soft robot
design, which is time-consuming. When fabricating multiple soft robots
with a similar design and sensor layout, it might be possible to reuse
training data that was acquired on other designs. Transfer learning may
be used to calibrate a new soft robot based on only a small amount of
new training data [117].

8.2.2 Durability

This thesis adopts AM of soft materials as a technology for fabricating soft
pneumatic manipulators aimed at performing dexterous manipulation tasks in
agricultural environments. This application area requires manipulators to be
food-grade and to last for hundreds of thousands of actuation cycles. The soft
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pneumatic manipulators presented in this thesis do not meet those require-
ments. The multi-material actuators presented in Chapter 3 and 4 are built
using PolyJet technology. The photo-polymers used in this process are not
suitable for agricultural applications as they are too fragile and not food-grade.
In contrast, selective laser sintering (adopted in Chapter 2) and fused deposi-
tion modeling (adopted in Chapter 6) allow for the use of high-quality ther-
moplastics. Although these actuators can typically last thousands of cycles,
inconsistencies in manufacturing processes often lead to leaking air chambers.
Further development of durable and food-grade soft materials for AM, consis-
tent and precise AM processes, and a better mechanical design of soft actuators
are needed to achieve the durability required for agricultural applications. A
promising direction is the use of hybrid fabrication approaches to fabricate soft
actuators, such as our method combining fused-deposition-modeling printing
of thermoplastic polyurethane and casting of food-grade silicones [83]. An ad-
ditional durability challenge for the soft robotic manipulators presented in this
thesis is the wiring to the sensors that are mounted on a moving body. These
wires are prone to failure due to fatigue or might break while the actuator is
interacting with an object. Flexible printed circuit boards or 3D-printed elec-
tronics are both promising solutions for addressing this challenge [118]. More
durable actuators and wiring would also allow for studying the long-term per-
formance of the proprioception method. The prototypes developed in this work
were typically tested over a period of several months without a noticeable de-
cline in proprioceptive accuracy over time. However, sensor drift and changing
mechanical properties of the soft actuators might worsen the performance over
an extended amount of time. Future research might also focus on applying
more advanced machine learning techniques to compensate for such long-term
changes.

8.2.3 Closed-loop Control

This thesis presents a method for developing soft manipulators with accurate
real-time proprioception. This is an important step towards using soft manipu-
lators to perform dexterous manipulation tasks as it enables the development of
closed-loop control algorithms. For an overview of control algorithms for soft
robotic manipulators, see [119]. However, even with accurate proprioception,
the development of such strategies is nontrivial (e.g. due to underactuation). It
is expected that this research will contribute to solving control problems in soft
robots, by providing a means of studying the dynamic behavior of soft robots
while they are interacting with objects. This ability is expected to lead not only
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to the development of novel control algorithms for existing soft robot designs,
but also perhaps to more knowledge on what DOFs should be restrained (such
as in Chapter 6), how parts of the control can be outsourced to the body of
the robot, and where additional actuators should be added to actively adjust
the behavior of the soft robot. Such design improvements may in turn reduce
the complexity of the final proprioceptive system that is required to perform
a task. For example, a structure that reduces the out-of-plane deformation of
soft bending actuators (see Chapter 6), eliminates the need for integrating ad-
ditional sensors to capture the out-of-plane deformation. Moreover, a simpler
2D model with less shape parameters can be used to represent the actuator
shape. This will not only speed up the reconstruction, but also reduces the
amount of training data that is required to learn the mapping between the sen-
sor signals and shape parameters. Finally, the machine learning model can be
less complex as well.
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Y. Clough, C. Violle, D. Giralt, G. Bota, I. Badenhausser, G. Lefeb-
vre, B. Gauffre, A. Vialatte, F. Calatayud, A. Gil-Tena, L. Tischendorf,
S. Mitchell, K. Lindsay, R. Georges, S. Hilaire, J. Recasens, X. O.
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Appendix

Color Sensor PCB Design

This appendix discusses the sensor design. The design of the sensor plug has
been shown in Fig. 4.5. The body of the plug is fabricated by a PolyJet 3D
printing system using the rigid VeroCyan and the flexible Agilus30 photopoly-
mers. Two Printed Circuit Boards (PCBs) – both customized – are mounted
on the top and the bottom parts of the plug. The designs of these PCBs are
shown in Fig. 8.1. The schemes of the upper and the lower PCBs can be found
in Fig. 8.2. Wires are guided through the 3D-printed plug to connect the upper
and lower PCB in an airtight way.

Figure 8.1: The design of the upper PCB (left with dimension: 10.80 mm×5.08 mm)
and the design of the lower PCB (right with dimension: 12.07 mm× 6.35 mm
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Figure 8.2: Scheme of the upper PCB (left) and lower PCB (right)
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