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ABSTRACT

It is shown that the pre-dual of a σ-finite von Neumann algebra has pro-

perty (k) in the sense of Figiel, Johnson and Pelczyński [12]. This resolves

in the affirmative an open question raised in [12]. It is shown further

that a weakly sequentially complete symmetric space E of τ -measurable

operators affiliated with a semifinite σ-finite von Neumann algebra has

property (k).
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1. Introduction

The present paper finds its origins in the work of Figiel, Johnson and Pel-

czyński [12] which isolates a certain Banach space invariant which they call

“property (k)” and which is a weakening of a stronger invariant, called “pro-

perty (K)”, introduced earlier and studied by Kalton and Pelczyński [16]. Pre-

cise definitions are given below.

It is shown in [12] that each separable subspace of the pre-dual of a von

Neumann algebra has property (k) and that each weakly sequentially complete

Banach lattice with a weak unit has property (k). A principal result of this

paper (Theorem 4.4) is that the pre-dual of each σ-finite von Neumann algebra

has property (K) and therefore has the weaker property (k). This resolves in

the affirmative an open question raised in [12] Problem 6.6. Our approach here

is to show that the Mackey topology on a σ-finite von Neumann algebra with

respect to its pre-dual is metrizable on norm bounded sets. This, in turn, rests

on combining the classical criterion of Akemann [26] that each weakly relatively

compact subset of the pre-dual of a von Neumann algebra is of uniformly abso-

lutely continuous norm (equi-integrable) with a characterisation of such sets in

the pre-dual of a σ-finite von Neumann algebra, due to Raynaud and Xu [24].

We show further (Theorem 8.6) that if (M, τ) is a semi-finite and σ-finite von

Neumann algebra, then each weakly sequentially complete symmetric space of

τ -measurable operators has property (k), and this is an exact non-commutative

counterpart to the corresponding Banach lattice result in [12] referred to above.

Our approach to this latter result is based on the introduction and study,

itself of independent interest, of natural variants of property (k) and property

(K). Indeed, suppose that X is a Banach space and let S be a collection of

bounded subsets of X . The Banach space X will be said to have property

(KS) if every weak∗-null sequence {x∗
n} in X∗ has a sequence of consecutive

convex combinations which converges to 0 uniformly on each member of S. If

S is the class of all relatively weakly compact sets of X , then property KS

coincides with property (K). On the other hand, if S is the class of all subsets

of X which are the continuous linear image of some relatively weakly compact

subset of L1(0, 1), then property KS coincides with property (k). The classes

of sets which play a central role in establishing Theorem 8.6 are the class Sob of

order-bounded subsets and the class San (see Section 7) of bounded subsets of
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uniformly absolutely continuous norm in a symmetric space E of τ -measurable

operators affiliated with a semifinite von Neumann algebra

A key step in the proof of Theorem 8.6 is that the topology of uniform con-

vergence on the class San is metrizable on norm bounded subsets of the Banach

dual E∗ in the case that E has order continuous norm and the underlying von

Neumann algebra is σ-finite (Theorem 7.1). This result is based on a recent

characterisation [7] of sets of uniformly absolutely continuous norm (or E-equi-

integrable sets) in symmetric spaces E of τ -measurable operators, in terms of

sets which are, in some sense, “almost” order-bounded in E. This characterisa-

tion goes back to a similar characterisation due to Raynaud and Xu [24] in the

setting of the non-commutative Haagerup Lp-spaces

The final section of the paper studies property (K) in non-commutative sym-

metric spaces in the case that the trace is finite. In particular, it is shown that

certain non-commutative Orlicz and Lorentz spaces have property (K) and Pro-

position 9.8 shows that property (K) can be “lifted” from a given symmetric

function space E on the interval [0, τ(1)) with order continuous norm to the

corresponding non-commutative symmetric space E(τ).

2. Preliminaries

In this section we recall some of the basic definitions from the theory of non-

commutative integration and also introduce notation and terminology that will

be used.

Let H be a Hilbert space. If a : D(a) → H , where D(a) ⊆ H is the domain

of a, is a self-adjoint operator, the spectral measure of a is denoted by ea.

Suppose that M is a von Neumann algebra onH and that M is equipped with a

fixed faithful normal semi-finite trace τ : M+ → [0,∞]. The unit element of M
will be denoted by 1 and P (M) denotes the complete lattice of all self-adjoint

projections in M. The operator norm in M will be denoted by ‖ · ‖∞.

A linear operator x : D(x) → H is said to be affiliated with M if xu = ux for

all unitary u ∈ M′, where M′ is the commutant of M. A self-adjoint operator

a is affiliated with M if and only if ea(B) ∈ P (M) for all Borel sets B ⊆ R.

A closed, densely defined linear operator x in H is called τ -measurable if x

is affiliated with M and there exists 0 ≤ s ∈ R such that τ(e|x|(s,∞)) < ∞.

The collection of all τ -measurable operators is denoted by S(τ), which is a

∗-algebra with respect to strong sum and product (and with respect to the
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measure topology, S(τ) is a complete metrizable topological algebra in which

M is dense). For details we refer to, e.g., [20], [27].

For x ∈ S(τ), the spectral distribution function d(|x|) : [0,∞) → [0,∞]

of |x| is defined by setting

d(s; |x|) = τ(e|x|(s,∞)), s ≥ 0,

which is right-continuous, decreasing and satisfies lims→∞ d(s, |x|) = 0. The

generalized singular value function μ(x) : [0,∞) → [0,∞] of x ∈ S(τ) is

then defined to be the right-continuous inverse of d(|x|), that is,

μ(t;x) = inf{s ≥ 0 : d(s; |x|) ≤ t}, t ≥ 0.

Note that μ(x) is decreasing, right-continuous and μ(t;x) < ∞ for all t > 0.

Furthermore, μ(0;x) < ∞ if and only if x∈M, in which case μ(0;x) = ‖x‖B(H),

whereB(H) is the algebra of all bounded linear operators in the Hilbert spaceH .

If x, y ∈ S(τ) are such that∫ t

0

μ(s;x)ds ≤
∫ t

0

μ(s; y)ds, t ≥ 0,

then we say that x is submajorized by y, which is denoted by x ≺≺ y.

The following terminology will be used.

Definition 2.1: If E ⊆ S(τ) is a linear subspace equipped with a norm ‖ · ‖E
such that (E, ‖ · ‖E) is a Banach space, then (E, ‖ · ‖E) is termed a:

(i) Banach M-bimodule (of τ -measurable operators) if vxw ∈ E and

‖vxw‖E ≤ ‖v‖∞‖w‖∞‖x‖E , x ∈ E, v, w ∈ M;

(ii) symmetric space if it follows from x ∈ S(τ), y ∈ E and μ(x) ≤ μ(y)

that x ∈ E and ‖x‖E ≤ ‖y‖E;
(iii) strongly symmetric space if E is a symmetric space and its norm has

the additional property that ‖x‖E ≤ ‖y‖E whenever x, y ∈ E satisfy

x ≺≺ y;

(iv) fully symmetric space if it follows from x ∈ S(τ), y ∈ E and x ≺≺ y

that x ∈ E and ‖x‖E ≤ ‖y‖E.

Every symmetric space is a Banach M-module and it is clear that every fully

symmetric space is strongly symmetric. If E ⊆ S(τ) is a Banach M-bimodule,

then x∗ ∈ E and ‖x∗‖E = ‖x‖E whenever x ∈ E. Furthermore, if |x| ≤ |y| in
S(τ) and y ∈ E, then x ∈ E and ‖x‖E ≤ ‖y‖E.
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If x ∈ S(τ), then the projection onto the closure of the range of |x| is called
the support of x and is denoted by s(x).

The carrier projection cE ∈ P (M) of E is defined by

cE =
∨

{s(x) : x ∈ E},

which is a central projection. For further details, see [6], Section 3.1. Without

loss of generality, we will always assume that cE = 1.

Given a Banach M-module E ⊆ S(τ), we define

Eh = {a ∈ E : a∗ = a},

which is a real vector space. For x ∈ E, let

Rex =
1

2
(x+ x∗), Imx =

1

2i
(x− x∗),

and note that x=Re x+i Imx with Re x, Imx∈Eh. Consequently, E=Eh⊕iEh.

Furthermore, we define E+ = {a ∈ Eh : a ≥ 0}, a proper closed cone in Eh

which is also generating (for any a ∈ Eh we have a = a+ − a−). So Eh is an

ordered Banach space.

Suppose now that E ⊆ S(τ) is a strongly symmetric space. By the assumption

that cE = 1, it follows that

L1(τ) ∩M ⊆ E ⊆ L1(τ) +M

with continuous embeddings. See [6], Lemma 25. Here

L1(τ) = {x ∈ S(τ) : ‖x‖L1(τ) < ∞},

where

‖x‖L1(τ) = τ(|x|) =
∫
[0,∞)

μ(x)dm

and m denotes Lebesgue measure.

The Köthe dual E× of E is defined by

E× = {y ∈ S(τ) : sup(τ(|xy|) : x ∈ E, ‖x‖E ≤ 1) < ∞}

and

‖y‖E× = sup(τ(|xy|) : x ∈ E, ‖x‖E ≤ 1), y ∈ E×.

The space (E×, ‖ · ‖E×) is a fully symmetric space with the Fatou property

(that is, if 0 ≤ yα ↑α in E× and supα ‖yα‖E× < ∞, then there exists 0 ≤ y ∈ E×
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such that yα ↑α y and ‖y‖E× = supα ‖yα‖E×). For the details we refer the

reader to [9]. If y ∈ E× and we define

〈x, φy〉 = τ(xy), x ∈ E,

then φy ∈ E∗ (the Banach dual of E) and ‖φy‖E∗ = ‖y‖E× . In the sequel, we

denote 〈x, φy〉 by 〈x, y〉 and this is termed trace duality.

A functional φ ∈ E∗ is called normal if 〈xα, y〉 → 0 whenever xα ↓α 0

in E, and φ is called singular if φ vanishes on some order dense order ideal

in E (for the details we refer to [5]). The collections of normal and singular

functionals on E are denoted by E∗
n and E∗

s , respectively, which are closed

linear subspaces of E∗. Furthermore, E∗ = E∗
n ⊕E∗

s , that is, every φ ∈ E∗ has

a unique decomposition φ = φn + φs with φn ∈ E∗
n and φs ∈ E∗

s ; this is called

the Yosida–Hewitt decomposition of φ. The corresponding projection Pn

in E∗ onto E∗
n along E∗

s is called the Yosida–Hewitt projection and satisfies

‖Pn‖ ≤ 4. Furthermore, the map y �−→ φy, y ∈ E×, is a linear isometry from

E× onto E∗
n.

A strongly symmetric space E ⊆ S(τ) is said to have order continuous

norm if ‖xα‖E ↓α 0 whenever xα ↓α 0 in E. It should be observed that

E has order continuous norm if and only if E∗ = E∗
n and that any strongly

symmetric space with order continuous norm is actually fully symmetric (see

[9]). Furthermore, a strongly symmetric space E ⊆ S(τ) has the Fatou property

if and only if E×× = E (isometrically).

A strongly symmetric space E ⊆ S(τ) is called a KB-space if every upwards

directed system(xα)
∞
n=1⊆E+ satisfying supn‖xα‖E<∞ is norm convergent in E.

It is well-known that a strongly symmetric space E is a KB-space if and only

if E has order continuous norm and the Fatou property. See, for example, [8,

Proposition 3.2]. Furthermore, every strongly symmetric KB-space is actually

fully symmetric. If E ⊆ S(τ) is a strongly symmetric KB-space, then E has

order continuous norm and so the dual space E∗ may be identified with its

Köthe dual E× via trace duality. Furthermore, since E has the Fatou property,

we also have E×× = E (isometrically). It should also be noted that a strongly

symmetric space E is weakly sequentially complete if and only if E is a KB-

space ([4, Proposition 4.8], [8, Proposition 3.2]).

A very extensive class of strongly symmetric M-bimodules E(τ) may be

constructed from concrete symmetric spaces E on the positive semi-axis as may

be found in [17].
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If E is a symmetric space on the interval [0, τ(1)), set

E(τ) = {x ∈ S(τ) : μ(x) ∈ E}, ‖x‖E(τ) = ‖μ(x)‖E , x ∈ E(τ).

It is shown in [8], [9] (see also [2], [6], [18]) that if E is a strongly symmetric

space, then E(τ) is a strongly symmetric space. It should be noted (see [Theo-

rem 5.6][9]) that E(τ)× = E×(τ).

Next we discuss some properties and terminology related to linear operators

between Banach M-bimodules, which will be used, in particular, in Section 8.

Suppose that M and N are two semi-finite von Neumann algebras and that

E and F are Banach M- and N -bimodules, respectively (note that this also

includes the case F = C). We denote by L(E,F ) the Banach space of all

bounded linear operators from E into F (equipped with the operator norm).

For any T ∈ L(E,F ) we define the operator T̄ ∈ L(E,F ) by

T̄ x = (Tx∗)∗, x ∈ E.

It is clear that ‖T̄‖ = ‖T ‖. An operator T ∈ L(E,F ) is called hermitian if

T̄ = T (the reader is warned that this notion of “hermitian” is not related to a

similarly termed concept in the setting of general Banach space theory!).

Lemma 2.2: An operator T ∈ L(E,F ) is hermitian if and only if Ta ∈ Fh for

all a ∈ Eh.

Proof. Suppose that T ∈ L(E,F ) is hermitian and that a ∈ Eh. Then

(Ta)∗ = (Ta∗)∗ = T̄ a = Ta

and so Ta ∈ Fh. Assume now that Ta ∈ Fh whenever a ∈ Eh. Given x ∈ E we

have that

T̄ x = (T (Rex)− iT (Imx))∗ = T (Rex) + iT (Imx) = Tx

and so T̄ = T .

The collection of all hermitian operators in L(E,F ) is denoted by Lh(E,F ),

which is a real linear subspace of L(E,F ). For T ∈ L(E,F ) we define

ReT =
1

2
(T + T̄ ), ImT =

1

2i
(T − T̄ ).

Observing that (Re T )(a) = Re(Ta) and (Im T )(a) = Im(Ta) for all a ∈ Eh, it

is clear that ReT and ImT belong to Lh(E,F ) and that T = ReT + i ImT .
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Hence

L(E,F ) = Lh(E,F )⊕ iLh(E,F ).

If T ∈ Lh(E,F ), then it follows from Lemma 2.2 that

(1) Th := T |Eh
: Eh → Fh,

and so Th ∈ L(Eh, Fh).

Lemma 2.3: The map T �−→ Th, T ∈ Lh(E,F ), is an R-isomorphism from

Lh(E,F ) onto L(Eh, Fh).

Proof. Evidently, the map T �−→ Th is R-linear and ‖Th‖ ≤ ‖T ‖ for all

T ∈ Lh(E,F ). Furthermore, if T ∈ Lh(E,F ) and x ∈ E, then

‖Tx‖F =‖T (Rex) + iT (Imx)‖F ≤ ‖Th(Rex)‖F + ‖Th(Imx)‖F
≤‖Th‖‖Rex‖E + ‖Th‖‖ Imx‖E ≤ 2‖Th‖‖x‖E,

which shows that ‖T ‖ ≤ 2‖Th‖. .
Now, let S ∈ L(Eh, Fh) be given. Define the map T : E → F by setting

Tx = S(Rex) + iS(Imx), x ∈ E.

It is easily verified that T∈Lh(E,F ) and that Th=S. The proof is complete.

Remark 2.4: If in Lemma 2.3 we take F = C, then it is easy to verify that the

map φ �−→ φh, φ ∈ (E∗)h, is an isometric isomorphism from (E∗)h onto (Eh)
∗

(and so there is no danger of confusion to use the notation E∗
h).

An operator T ∈ L(E,F ) is called positive if Tx ≥ 0 whenever 0 ≤ x ∈ E.

The set of all positive operators in L(E,F ) is denoted by L+(E,F ). Every

T ∈ L+(E,F ) is hermitian. Indeed, if a ∈ Eh, then

Ta = T (a+)− T (a−) ∈ F+ − F+ = Fh.

Hence, by Lemma 2.2, T ∈ Lh(E,F ).

Via the map T �−→ Th the cone L+(E,F ) may be identified (up to isomor-

phism) with the cone L+(Eh, Fh).

Definition 2.5: An operator T ∈ Lh(E,F ) is called regular if T = T1−T2 with

T1, T2 ∈ L+(E,F ). An operator T ∈ L(E,F ) is called regular if ReT and ImT

are both regular.
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It should be observed that an operator T ∈ Lh(E,F ) is regular if and only if

the corresponding operator Th ∈ L(Eh, Fh) is regular.

We will now conclude this section by making some additional remarks con-

cerning regular operators.

Remark 2.6: The concept of regular operator, being a linear combination of

positivity preserving operators, is a long established notion in the theory of

partially ordered vector spaces and Banach lattices. For convenience, let E,F

be (real Banach lattices) and recall that a linear operator T : E → F is said to

be order-bounded if T maps order-bounded sets in E to order-bounded sets

in F . Clearly, every regular linear operator T : E → F is order-bounded, and if

F is Dedekind complete, then each order-bounded linear operator T : E → F

is regular, by the classical Riesz–Kantorovich theorem. Consequently, if E is

Dedekind complete, then the regular linear operators coincide with the order-

bounded operators.

More recently, Pisier [22] introduced the following concept. A linear operator

T : E → F is called regular (in the sense of Pisier) if there exists a constant

C > 0 such that

(2) ‖ sup
i≤n

|Txn|‖F ≤ C‖ sup
i≤n

|xi|‖E ,

for all x1, x2, . . . , xn ∈ E and all n ∈ N. We shall refer to operators which

satisfy (2) as Pisier regular. It is easy to see that if T : E → F is regular,

then T is Pisier regular, and if F is an M -space, that is

‖u ∨ v‖F = max{‖u‖F , ‖v‖F}, u, v ∈ F+,

then every bounded linear operator T : E → F is Pisier regular. However, not

every Pisier regular operator is regular. By way of example, let E = L1([0, π])

and let F = c0 equipped with the sup-norm ‖ ·‖∞. Evidently, c0 is an M -space.

For f ∈ L1([0, π]) and n ∈ N, define

an(f) =
2

π

∫ π

0

f(t)cos(nt)dt.

By the Riemann–Lebesgue Lemma, an(f) →n 0. Now define the bounded linear

operator T : L1([0, π]) → c0 by setting

T (f) = {an(f)}n≥1, f ∈ L1([0, π]).
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From the above remarks, it follows that T is Pisier regular. However, T is not

order-bounded, and so is not regular. Indeed, if ϕn(t) = cos(nt), t ∈ [0, π],

n ∈ N, then the sequence {ϕn}n≥1 is order-bounded in L1([0, π]); however, T

maps the sequence {ϕn}n≥1 to the unit vector basis {en}n≥1 in c0 and the

sequence {en}n≥1 is not order-bounded in c0.

To obtain a more positive result, recall first that a Banach lattice F is said to

have the weak Fatou property if every norm-bounded increasing net in the

positive cone of F has a least upper bound in F . It follows immediately that

any Banach latttice with this property is necessarily Dedekind complete. It is

a straightforward exercise now to show that, if the Banach lattice F has the

weak Fatou property, then every Pisier regular operator is order-bounded. In

particular, it follows that, if the Banach lattice F has the weak Fatou property,

then the classes of regular, Pisier regular and order-bounded operators from the

Banach lattice E into F coincide.

It should be observed that, in particular, for operators between Lp-spaces,

the notions of regularity, Pisier regularity and order-boundedness all coincide.

3. Some general observations

We start this section with some general definitions and simple observations.

First, we recall the following definition.

Definition 3.1: Let (xn)
∞
n=1 be a sequence in a (real or complex) vector space

X . A sequence (yk)
∞
k=1 in X is called a CCC sequence of (xn)

∞
n=1 if there

exists a sequence 1 = N1 < N2 < · · · in N and a sequence {ck}∞k=1 in R+ such

that
Nk+1−1∑
j=Nk

cj = 1

for all k and

yk =

Nk+1−1∑
j=Nk

cjxj , k = 1, 2, . . . .

Here CCC stands for “concecutive convex combinations”.

Evidently, if (xn) is a sequence in a locally convex space (X, T ) satisfying

xn
T→ 0 and if (yk) is a CCC sequence of (xn), then yk

T→ 0. The following

simple observation will be useful.
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Lemma 3.2: Suppose that (xn)
∞
n=1 is a sequence in a locally convex Hausdorff

space (X, T ) and let Cn be the convex hull of the set {xk : k ≥ n}, n ∈ N.

Suppose, furthermore, that C ⊆ X is such that Cn ⊆ C for all n and that T
is metrizable on C. If x ∈ C and x ∈

⋂∞
n=1 Cn

T
, then there exists a CCC

sequence (yk) of (xn) such that yn
T→ x.

Proof. Denote by TC the relative topology induced by T in C and let d be a

metric on C which induces TC . Observe that

Cn
T ∩ C = Cn

TC
for all n.

Since x ∈ C1
T ∩C = C1

TC
, there exist N2 > 1 and 0 ≤ cj ∈ R, 1 ≤ j ≤ N2 − 1

with
∑N2−1

j=1 cj = 1 such that the convex combination y1 =
∑N2−1

j=1 cjxj satis-

fies d(x, y1) ≤ 1. Since x ∈ CN2

T ∩ C = CN2

TC
, it follows that there exist

N3 > N2 and a convex combination y2 =
∑N3−1

j=N2
cjxj such that d(x, y2) ≤ 1/2.

Continuing this way, we obtain a CCC sequence (yk) of (xn) such that

d(x, yk) ≤ 1/k,

k ∈ N, and the result follows.

As a simple illustration of the above lemma, if X is a Banach space and if

(xn) is a sequence in X such that xn
σ(X,X∗)−−−−−−→ x ∈ X , then there exists a CCC

sequence (yk) of (xn) such that yk → x in norm. Indeed, in view of Mazur’s

theorem (for convex sets in X the weak and norm closures coincide) we may

apply the above lemma with T being the norm topology in X .

Suppose that (X, ‖ · ‖) is a Banach space with norm dual X∗. The following

simple observation will be useful.

Lemma 3.3: For a sequence (x∗
n)

∞
n=1 in X∗ satisfying x∗

n → 0 with respect to

σ(X∗, X), the following two statements are equivalent.

(i) For every sequence (xn) inX such that xn → 0 with respect to σ(X,X∗)

we have 〈xn, x
∗
n〉 → 0 as n → ∞.

(ii) For every relatively σ(X,X∗)-compact set A ⊆ X we have

sup
x∈A

|〈x, x∗
n〉| → 0, n → ∞.

Proof. If xn
σ(X,X∗)−−−−−−→ 0 in X , then the set A = {xn : n ∈ N} is relatively

σ(X,X∗)-compact and so the implication (ii)⇒(i) is evident.
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(i)⇒(ii). It should be observed that if a sequence (x∗
n) has the stated pro-

perty, then so has any subsequence of (x∗
n) this property. Let A ⊆ X be a rela-

tively σ(X,X∗)-compact set and suppose that supx∈A |〈x, x∗
n〉| � 0 as n → ∞.

By passing, if necessary, to a subsequence, we may assume that there exists

0 < ε ∈ R such that supx∈A |〈x, x∗
n〉| > ε for all n ∈ N. For each n ∈ N, there

exists xn ∈ A such that |〈xn, x
∗
n〉| > ε. Since A is relatively σ(X,X∗)-compact,

it follows from the Eberlein–Smulian theorem that (xn) has a subsequence (xnk
)

such that xnk

σ(X,X∗)−−−−−−→ x for some x ∈ X , that is,

xnk
− x

σ(X,X∗)−−−−−−→ 0 as k → ∞.

By the assumption on the sequence (x∗
n), this implies that

〈xnk
− x, x∗

nk
〉 → 0, k → ∞.

Since

ε < |〈xnk
, x∗

nk
〉| ≤ |〈xnk

− x, x∗
nk
〉|+ |〈x, x∗

nk
〉|

for all k ∈ N and |〈x, x∗
nk
〉| → 0 as k → ∞ (as x∗

n

σ(X∗,X)−−−−−−→ 0 by hypothesis),

this is a contradiction. Therefore, we may conclude that (ii) holds and the proof

is complete.

Let (X, ‖ · ‖X) be a Banach space. For any bounded subset A ⊆ X , the

semi-norm ρA : X∗ → [0,∞) is defined by setting

ρA(x
∗) = sup{|〈x, x∗〉| : x ∈ A}.

Given a non-empty collection S of bounded subsets of X , the locally convex

topology TS in X∗ generated by the semi-norms

{ρA : A ∈ S}

is called the topology of uniform convergence on the sets of S. It follows

from the Hahn-Banach theorem that TS is Hausdorff if and only if the linear

span of
⋃

A∈SA is norm dense in X .

Recall that the Mackey topology τ(X∗, X) on X∗ is defined as the topo-

logy of uniform convergence on all σ(X,X∗)-compact absolutely convex subsets

of X . In the present setting, the Mackey–Arens theorem states: if T is a Haus-

dorff locally convex topology on X∗, then the dual space of (X∗, T ) equals X
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if and only if T = TS, where S is some collection of σ(X,X∗)-compact abso-

lutely convex subsets of X satisfying
⋃

A∈SA = X (see, e.g., [25, Chapter III,

Section 7]). It follows, in particular, that any such topology T satisfies

σ(X∗, X) ⊆ T ⊆ τ(X∗, X).

Moreover, by [25, Proposition 8] it follows that for any convex set C ⊆ X we

have

C
σ(X∗,X)

= C
τ(X∗,X)

for any convex set C ⊆ X∗

It should be recalled furthermore that (by a theorem of M. Krein and V. Smu-

lian; see, e.g., [11], V.6.4) the absolutely convex hull of any relatively σ(X,X∗)-

compact subset of X is again relatively σ(X,X∗)-compact. Consequently, the

Mackey topology τ(X∗, X) is also equal to the topology of uniform convergence

on all relatively σ(X,X∗)-compact subsets of X . It should be observed that

condition (ii) of Lemma 3.3 states that x∗
n → 0 with respect to τ(X∗, X).

We recall the following definition (see [16], Section 2).

Definition 3.4: A Banach space X is said to have property (K) if every sequence

(x∗
n) in X∗ satisfying x∗

n → 0 with respect to σ(X∗, X) has a CCC sequence

(y∗k) such that 〈xk, y
∗
k〉 → 0 for every sequence (xk) in X satisfying xk → 0 with

respect to σ(X,X∗).

Evidently, every reflexive space has property (K) (cf. the remarks following

Lemma 3.2, applied to X∗ instead of X). Recall now that a Banach space X

is a Grothendieck space if every weak∗ null sequence in X∗ is a weak null

sequence. If X is a Grothendieck space, and if {x∗
n} ⊆ X∗ is a weak∗ null

sequence, then it follows from the remarks following Lemma 3.2, that there

exists a CCC sequence {y∗n} of {x∗
n} such that {y∗n} converges to 0 in norm. In

particular, it follows thatX has property (K). Consequently, each space L∞(μ),

and more generally, any von Neumann algebra, has property (K), since each of

these spaces are Grothendieck spaces [21]. It is observed in [16] Proposition B

that L1(μ) has property (K) for any finite measure μ. It is noted also in [16]

that c0 fails to have property (K). A sharpened version of this result is given

in [12, Proposition 4.9]. See the remark following Definition 4.5 below.

The remarks preceding Definition 3.4 yield immediately the following charac-

terization of Banach spaces with property (K).
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Lemma 3.5: If X is a Banach space, then the following two statements are

equivalent:

(i) X has property (K);

(ii) every sequence (x∗
n) in X∗ satisfying x∗

n → 0 with respect to σ(X∗, X)

has a CCC sequence (y∗k) such that y∗k → 0 with respect to the Mackey

topology τ(X∗, X).

Proof. Suppose that X has property (K) and let (x∗
n) be a sequence in X∗

satisfying x∗
n

σ(X∗,X)−−−−−−→ 0. By hypothesis, there exists a CCC subsequence (y∗k)

of (x∗
n) such that 〈xk, y

∗
k〉 → 0 for every sequence (xk) in X satisfying xk → 0

with respect to σ(X,X∗). Since y∗k → 0 with respect to σ(X∗, X), it follows

from Lemma 3.3 that y∗k → 0 with respect to τ(X∗, X). This shows that (i)

implies (ii).

Suppose now that (ii) holds and let (x∗
n) be a sequence in X∗ satisfying

x∗
n

σ(X∗,X)−−−−−−→ 0. Let (y∗k) be a CCC sequence of (x∗
n) such that y∗k

τ(X∗,X)−−−−−−→ 0. If

(xk) is a sequence in X satisfying xk
σ(X,X∗)−−−−−−→ 0, then the setA={xk :k∈N} is

relatively σ(X,X∗)-compact and so supx∈A|〈x, y∗k〉|→0 as k→∞, which implies,

in particular, that 〈xk, y
∗
k〉→0 as k→∞. Hence X has property (K).

In view of the above observations, the following definition seems to be natural.

Definition 3.6: Given a class of bounded subsets S of a Banach space X , we will

say that X has property (KS) if every sequence (x∗
n) in X∗ satisfying x∗

n → 0

with respect to σ(X∗, X) has a CCC sequence (y∗k) such that y∗k → 0 as k → ∞
with respect to TS, that is, supx∈A |〈x, y∗k〉| → 0 as k → ∞ for all A ∈ S.

According to Lemma 3.5, property (K) corresponds to (KS) whereS consists

of all (absolutely convex) relatively σ(X,X∗)-compact sets. But we may also

take forS the collection of all order-bounded sets in the Banach lattice setting or

the collection of all sets which are of uniformly absolutely continuous norm in a

symmetric (non-commutative) space (for the definitions, see the next sections).

The following observation is useful.

Proposition 3.7: Let X be a Banach space and let S be a collection of boun-

ded subsets of X such that the linear span of
⋃

A∈SA is norm dense in X and

TS ⊆ τ(X∗, X). If TS is metrizable on norm bounded subsets of X∗, then X

has property (KS).
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Proof. Let (x∗
n) be a sequence in X∗ such that x∗

n → 0 with respect to σ(X∗, X)

and define the convex sets Cn by Cn = co{x∗
k : k ≥ n} for n ∈ N. By hypothesis,

we have

0 ∈ Cn
σ(X∗,X)

= Cn
τ(X∗,X) ⊆ Cn

TS
, n ∈ N,

and so 0∈
⋂∞

n=1 Cn
TS
. Denoting byK the absolutely convex hull of the sequence

(x∗
n), it is clear that 0 ∈ K and that K is norm bounded in X∗ (as the sequence

(x∗
n) is norm bounded by the Uniform Boundedness Principle). By hypothesis,

τS is metrizable on K and so the result now follows from Lemma 3.2.

Via Lemma 3.5 we immediately obtain the following consequence.

Corollary 3.8: If X is a Banach space such that the Mackey topology in X∗

is metrizable on norm bounded subsets of X∗, then X has property (K).

Remark 3.9: It may be of some interest to point out some ideas related to the

discussion in the present section. As above, suppose that X is a Banach space

and suppose that S = {An : n ∈ N} is a countable collection of relatively

σ(X,X∗)-compact subsets of X such that the linear span of
⋃

n An is dense in

X . Let TS be the locally convex topology in X∗ of uniform convergence on

the sets An. Then it is clear that TS ⊆ τ(X∗, X) and that TS is metrizable.

Suppose that C is a convex subset of X∗ and that x∗
0 ∈ C

σ(X∗,X)
. It follows

that x∗
0 ∈ C

τ(X∗,X)
and so x∗

0 ∈ C
TS

. Consequently, by Proposition 3.7, there

exists a sequence (x∗
k)

∞
k=1 in C such that x∗

k → x∗
0 as k → ∞ uniformly on all

sets An, n ∈ N.

This observation has the following interesting (but, sometimes overlooked)

consequence, in the commutative setting due to A. Grothendieck [13] (with a

similar proof). Let M be a von Neumann algebra equipped with a faithful

normal trace τ satisfying τ(1) = 1. The corresponding non-commutative Lp-

spaces (1 ≤ p ≤ ∞) satisfy Lp1(τ) ⊆ Lp2(τ) and ‖ · ‖p2 ≤ ‖ · ‖p1 whenever

1 ≤ p2 ≤ p1 ≤ ∞. Recall furthermore that Lp(τ)
∗ = Lq(τ) via trace duality,

whenever 1 ≤ p < ∞ and p−1 + q−1 = 1. If Bq denotes the closed unit

ball in Lq = Lq(τ), then Bq is σ(Lq, Lp)-compact (p−1 + q−1 = 1) and hence

(relatively) σ(L1, L∞)-compact in L1 whenever 1 < q ≤ ∞. Let (qn)
∞
n=1 be a

sequence in (1,∞) satisfying qn ↓ 1 and put An = Bqn , n ∈ N. The collection

S = {An : n ∈ N} of subsets of X = L1 satisfies the conditions of the first part

in this Remark. If (yk)
∞
k=1 is a sequence in L∞ such that yk → y ∈ L∞ uniformly

on the sets An, then ‖y− yk‖pn → 0 as k → ∞ for all n (p−1
n + q−1

n = 1). Since
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pn ↑ ∞, this implies that ‖y − yk‖p → 0 for all 1 ≤ p < ∞. Therefore, we may

conclude that: if C ⊆ L∞(τ) = M is a convex set and if y ∈ C
σ(L∞,L1)

, then

there exists a sequence (yk) in C such that ‖y − yk‖p → 0 as k → ∞ for all

1 ≤ p < ∞.

4. Property (K) in pre-duals of von Neumann algebras

In the present section it will be shown that the pre-dual M∗ of any σ-finite von

Neumann algebra M has property (K), as defined in Definition 3.4. Recall first

that a von Neumann algebra is said to be σ-finite if it admits at most countably

many mutually orthogonal projections. See [26, Definition I.3.8].

For any ϕ ∈ M∗ and x ∈ M, the elements xϕ and ϕx of M∗ are defined by

setting

(xϕ)(y) = ϕ(yx), (ϕx)(y) = ϕ(xy), y ∈ M.

A subset A ⊆ M∗ is said to be of uniformly absolutely continuous norm if

pα ↓α 0 in P (M) implies that

sup
ϕ∈A

‖pαϕpα‖M∗ →α 0.

It is convenient now to recall the well-known theorem of C. A. Akemann

(see [26], Theorem III.5.4) that a bounded set A ⊆ M∗ is relatively σ(M∗,M)

compact if and only if A is of uniformly absolutely continuous norm.

The unit ball in M will be denoted by BM. We shall need the following

simple observation.

Lemma 4.1: If ϕ ∈ M∗, then each of the sets BMϕ, ϕBM are of uniformly

absolutely continuous norm (and hence are relatively σ(M∗,M) compact).

Proof. It may clearly be assumed that 0 ≤ ϕ. It will suffice to show that BMϕ

is of uniformly absolutely continuous norm. To this end, suppose that pα ↓α 0

holds in P (M). Using the fact that ϕ ≥ 0 and the Cauchy-Schwarz inequality

([26], Proposition I.9.5), it follows that

sup
x∈BM

‖pαxϕpα‖M∗ = sup
x,z∈BM

|ϕ(pαzpαx)|

≤ sup
z∈BM

ϕ(pαzz
∗pα)

1
2 sup
x∈BM

ϕ(x∗pαx)
1
2

≤ ϕ(pα)
1
2ϕ(1)

1
2 →α 0,

where the final assertion follows from the normality of ϕ.
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The following result, due to Raynaud and Xu ([24], Proposition 4.13), will

be crucial in what follows. It is a refinement in the special case of σ-finite

von Neumann algebras of a characterisation of sets of uniformly absolutely

continuous norm in arbitrary von Neumann algebra pre-duals. As details needed

to derive this refinenent are not given in [24], they will be included here for the

convenience of the reader.

Proposition 4.2: Suppose that M is a σ-finite von Neumann algebra. There

exists a 0 ≤ ϕ0 ∈ M∗ such that for every A ⊆ M∗ of uniformly absolutely

continuous norm and every ε > 0, there exists a constant 0 < Cε ∈ R such that

A ⊆ Cε(ϕ0BM +BMϕ0) + εBM∗ .

Proof. Let ε > 0 be given and suppose that A ⊆ M∗ is a bounded set of

of uniformly absolutely continuous norm. By [Proposition 4.13 (ii)][24], there

exists ϕε ∈ M∗ such that

A ⊆ ϕεBM +BMϕε + εBM∗ .

Since M is σ-finite, it follows from [Proposition II.3.19][26] that there exists

0 ≤ ϕ0 ∈ M∗ with support s(ϕ0) = 1. By [Lemma 4.7][24], M· ϕ0 and ϕ0 ·M
are dense in M∗. Consequentiy, there exist xε, yε ∈ BM and positive constants

0 ≤ Aε, Bε, such that

ϕε ∈ ϕ0Bεyε + εBM∗

and

ϕε ∈ Aεxεϕ0 + εBM∗ .

If now Cε = max{Aε, Bε} then

A ⊆ ϕ0BεyεBM + εBM∗ · BM + AεBMxε · ϕ0 + εBM∗ · BM + εBM∗

⊆ Cε(ϕ0 ·BM +BM · ϕ0) + 3εBM∗ .

Proposition 4.3: If M is a σ-finite von Neumann algebra, then the Mackey

topology τ(M,M∗) is metrizable on norm bounded subsets of M.

Proof. Let 0 ≤ ϕ0 ∈ M∗ be as in Proposition 4.2 and set W = ϕ0BM+BMϕ0.

Define the semi-norm ρ on M by setting ρ(x) = supϕ∈W |ϕ(x)|, x ∈ M, and

let T0 denote the locally convex topology in M generated by ρ. By Lemma 4.1,

W is σ(M∗,M)-compact, so it is clear that T0 ⊆ τ(M,M∗).

We claim that T0 and τ(M,M∗) coincide on norm bounded subsets of M.

It suffices to show that the two topologies agree on the unit ball BM. For this
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purpose, suppose that (xn) is a sequence in BM and x ∈ BM is such that

ρ(x− xn) → 0 as n → ∞. Let A ⊆ M∗ be a relatively σ(M∗,M)-compact set.

By Akemann’s theorem (cited above), A is of uniformly absolutely continuous

norm. Consequently, given ε > 0, it follows from Proposition 4.2 that there

exists a constant 0 < Cε ∈ R such that A ⊆ CεW + εBM∗ . If ϕ ∈ A and we

write ϕ = ϕ1 + ϕ2, with ϕ1 ∈ CεW and ϕ2 ∈ εBM∗ , then we find that

|ϕ(x− xn)| ≤|ϕ1(x − xn)|+ |ϕ2(x− xn)|
≤Cερ(x− xn) + 2ε

and so

sup
ϕ∈A

|ϕ(x − xn)| ≤ Cερ(x− xn) + 2ε.

Since ρ(x− xn) → 0 as n → ∞, this implies that

lim sup
n→∞

sup
ϕ∈A

|ϕ(x − xn)| ≤ 2ε.

This holds for all ε > 0 and hence lim supn→∞ supϕ∈A |ϕ(x − xn)| = 0. This

suffices to complete the proof of the proposition.

It should be observed that this result may be considered a strengthening

of the result that may be obtained by a combination of Theorem III.5.7 and

Proposition II.2.7 in [26], as we do not assume that the underlying Hilbert space

is separable.

The next result follows immediately from a combination of Proposition 4.3

and Corollary 3.8.

Theorem 4.4: If M is a σ-finite von Neumann algebra, then the pre-dual M∗

has property (K).

In their paper [12], T. Figiel, W. B. Johnson and A. Pelczyński introduced

the following property in Banach spaces.

Definition 4.5: A Banach space X is said to have property (k) if for every

σ(X∗, X)-null sequence (x∗
n)

∞
n=1 in X∗ there exists a CCC sequence (y∗k)

∞
k=1 of

(x∗
n)

∞
n=1 such that for every bounded linear operator T : L1(0, 1) → X and for

every weakly null sequence (fk)
∞
k=1 in L1(0, 1) satisfying supk ‖fk‖∞ < ∞, we

have

lim
k→∞

〈Tfk, y∗k〉 = 0.
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Proposition 4.6: If a Banach space X has property (K), then X has pro-

perty (k).

Proof. If (fk)
∞
k=1 is a weakly null sequence in L1(0, 1) and

T : L1(0, 1) → X

is a bounded linear operator, then (Tfk) is a weak null sequence in X . Let

(x∗
n)

∞
n=1 be a weak∗ null sequence in X∗. Since X has property (K), there

exists a CCC sequence (y∗n) of (x∗
n) such that y∗n →n 0 uniformly on each

relatively weakly compact subset of X . In particular

sup
k
〈Tfk, y∗n〉 →n 0,

and this implies that X has property (k).

It should be noted that it is shown in [12, Proposition 4.9] that, if a Ba-

nach space X contains a complemented subspace isomorphic to c0, then X fails

property (k) (and so also fails property (K)). In particular, c0 does not have

property (k).

Theorem 4.4 together with Proposition 4.6 now has the following immediate

consequence, which answers affirmatively Problem 6.6 raised in [12] and is one

of the main results of this paper.

Corollary 4.7: The pre-dual M∗ of every σ-finite von Neumann algebra M
has property (k).

The preceding Corollary 4.7 was established in [12, Proposition 4.7] in the

special case that the von Neumann algebra M has separable pre-dual. It is

worth noting, therefore, that a σ-finite von Neumann algebra M need not have

separable pre-dual, even in the case that M is commutative. Indeed, if σ is the

product measure on an uncountable number of copies of the unit interval [0, 1]

equipped with Lebesgue measure, and if M is L∞(σ) acting by multiplication

on L2(σ), then M is a finite (and hence σ-finite) von Neumann algebra, but the

pre-dual M∗ = L1(σ) is not separable. Details may be found in [28, Exercise

23.21].

It might be helpful for the reader’s understanding to point out further that

the σ-finiteness assumption in Theorem 4.4 and Corollary 4.7 is crucial. Indeed,

this is the case even in the commutative setting as is shown by [12, Example

4.1] which exhibits an abstract L-space that fails property (k).
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5. Property (Kob) in Banach lattices

In the present section we will discuss property (KSob
) for Banach lattices E,

where Sob is the class of order-bounded sets. Only real Banach lattices will be

considered as the extension to the complex case is straightforward. For basic

properties and terminology from the theory of Banach lattices, we refer to [19].

Let E be a Banach lattice and recall that a subset A ⊆ E is called order-

bounded if there exists 0 ≤ w ∈ E such that A ⊆ [−w,w], where

[−w,w] = {x ∈ E : −w ≤ x ≤ w}.

The collection of all order-bounded sets in E is denoted by Sob. Let Tob denote
the locally convex topology in E∗ of uniform convergence on order-bounded

subsets of E, that is, Tob is the locally convex topology in E generated by the

collection {ρA : A ∈ Sob} of semi-norms on E∗, where

ρA(x
∗) = sup{|〈x, x∗〉| : x ∈ A}, A ∈ Sob.

Since each A ∈ Sob is contained in [−w,w] for some 0 ≤ w ∈ E, it is clear

that Tob is the locally convex topology generated by the lattice semi-norms

{ρw : 0 ≤ w ∈ E}, where

(3) ρw(x
∗) = sup{|〈x, x∗〉| : x ∈ E, |x| ≤ w} = 〈w, |x∗|〉, x∗ ∈ E∗

where the last equality is given in [19, Theorem 1.3.2]. We will say that E has

property (Kob) if it has property (KSob
), as introduced in Definition 3.6. Note

the following simple observation.

Lemma 5.1: For a Banach lattice E, the following two conditions are equivalent:

(i) E has property (Kob);

(ii) every sequence (x∗
n) in E∗ satisfying x∗

n → 0 with respect to σ(E∗, E)

has a CCC sequence (y∗k) such that |y∗k| → 0 with respect to σ(E∗, E).

Proof. It will be sufficient to show that a sequence (y∗k) in E∗ satisfies

supx∈A |〈x, y∗k〉| → 0 as k → ∞ for all order-bounded subsets A ⊆ E if and

only if |y∗k| → 0 with respect to σ(E∗, E).

If the sequence (y∗k) in E∗ is such that supx∈A |〈x, y∗k〉| → 0 as k → ∞ for all

order-bounded subsets A ⊆ E, then

|y∗k|(u) = sup
|x|≤u

|〈x, y∗k〉| → 0, k → ∞,

for all 0 ≤ u ∈ E, which implies that |y∗n| → 0 with respect to σ(E∗, E).
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Now suppose that (y∗k) in E∗ is such that |y∗k| → 0 with respect to σ(E∗, E).

If A ⊆ E is order-bounded, then there exists 0 ≤ u ∈ E such that A ⊆ [−u, u].

Consequently,

sup
x∈A

|〈x, y∗k〉| ≤ sup
|x|≤u

|〈x, y∗k〉| = |y∗k|(u)

and so supx∈A |〈x, y∗k〉| → 0 as k → ∞.

We recall that an element 0 ≤ e in the Banach lattice E is said to be a weak

order unit for E if and only if e ∧ x = 0, x ∈ E implies x = 0. The Banach

lattice E is said to have order continuous norm if ‖xα‖E ↓α 0 whenever

xα ↓α 0 in E.

Proposition 5.2: If E is a Banach lattice with order continuous norm and

weak order unit, then the topology Tob is metrizable on norm bounded subsets

of E∗.

Proof. It is sufficient to show that Tob is metrizable on the closed unit ball BE∗

in E∗. Let 0 ≤ w ∈ E be a weak order unit. It will be shown that Tob on BE∗ is

the same as the topology induced by the semi-norm ρw (see (3)). The topology

induced by ρw is evidently weaker than the one induced by Tob.
We claim that for every 0 ≤ v ∈ E and ε > 0 there exists k ∈ N such that

(4) [−v, v] ⊆ k[−w,w] + εBE .

Indeed, since w is a weak order unit, we have v ∧ (kw) ↑k v and so the order

continuity of the norm implies that

‖v − v ∧ (kw)‖ → 0 as k → ∞.

Given ε > 0, let k ∈ N be such that ‖v−v∧(kw)‖ ≤ ε, that is, ‖(v−kw)+‖ ≤ ε.

If x ∈ [−v, v], it follows that |x|∧(kw) ∈ k[0, w] and ‖(|x|−kw)+‖ ≤ ε. Writing

x = x1 + x2 with

x1 = {x+ ∧ (kw) − x− ∧ (kw)}, x2 = {(x+ − kw)+ − (x− − kw)+}

we have

−(|x| ∧ (kw)) ≤ x1 ≤ |x| ∧ (kw) and − (|x| − kw)+ ≤ x2 ≤ (|x| − kw)+,

which implies that x1 ∈ k[−w,w] and x2 ∈ εBE . This proves the claim.

Suppose that (x∗
n) is a sequence in BE∗ such that ρw(x

∗
0 − x∗

n) → 0 for some

x∗
0 ∈ BE∗ . It will be sufficient to show that ρv(x

∗
0 − x∗

n) → 0 for all 0 ≤ v ∈ E.

Given 0 ≤ v ∈ E and ε > 0, it follows from the first part of the present proof
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that there exists k ∈ N such that (4) holds. If x ∈ [−v, v], then x = x1 + x2

with x1 ∈ k[−w,w] and x2 ∈ εBE, so

|〈x, x∗
0 − x∗

n〉| ≤|〈x1, x
∗
0 − x∗

n〉|+ |〈x2, x
∗
0 − x∗

n〉|
≤kρw(x

∗
0 − x∗

n) + 2ε,

and hence ρv(x
∗
0 − x∗

n) ≤ kρw(x
∗
0 − x∗

n) + 2ε. This implies that

lim sup
n→∞

ρv(x
∗
0 − x∗

n) ≤ 2ε.

This holds for all ε > 0 and so we may conclude that ρv(x
∗
0−x∗

n) → 0 as n → ∞.

The proof is complete.

The above proposition has the following consequence, which is the main result

in the present section.

Theorem 5.3: If E is a Banach lattice with order continuous norm and weak

order unit, then E has property (Kob).

Proof. Since E has order continuous norm, each order interval in E is σ(E,E∗)-

compact (see, e.g., [1], Theorem 12.9) and so σ(E∗, E) ⊆ Tob ⊆ τ(E∗, E). By

Proposition 5.2, Tob is metrizable on norm bounded subsets of E∗ and hence,

by Proposition 3.7, E has property (Kob).

Even for Banach lattices with a strong order unit, the converse of Theorem 5.3

is not valid. Indeed, it follows from the remarks following Definition 3.4 that

each Grothendieck Banach lattice has property (Kob). In particular, l∞ has

property (Kob), but the norm on l∞ is not order continuous.

In combination with Lemma 5.1, we obtain the following consequence of The-

orem 5.3

Corollary 5.4: Let E be a Banach lattice with order continuous norm and

weak order unit. If (x∗
n) is a sequence in E∗ satisfying x∗

n

σ(E∗,E)−−−−−→ 0, then (x∗
n)

has a CCC sequence (y∗k) such that |y∗k| → 0 with respect to σ(E∗, E).

The above result is implicit in the proof of Proposition 4.5 in [12] and improves

Sublemma 2.5 in [15].
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6. Sets of uniformly absolutely continuous norm in non-commutative

symmetric spaces

Let M be a semi-finite von Neumann algebra on a Hilbert space H , equipped

with a fixed semi-finite, normal, faithful trace τ : M+ → [0,∞]. We assume

that E ⊆ S(τ) is a strongly symmetric space with carrier projection equal to 1,

that is,
∨
{s(x) : x ∈ E} = 1. In that case we have

(L1 ∩ L∞)(τ) ⊆ E ⊆ (L1 + L∞)(τ),

with continuous embeddings. The hermitian part of E is denoted by Eh, that

is,

Eh = {a ∈ E : a = a∗},
and the positive cone of E is denoted by E+, that is,

E+ = {a ∈ Eh : a ≥ 0}.

For w ∈ E+, the order interval [−w,w] ⊆ Eh is defined by setting

[−w,w] = {x ∈ Eh : −w ≤ x ≤ w}.

It should be observed that any strongly symmetric space with order continu-

ous norm is actually fully symmetric, that is, if x ∈ S(τ), y ∈ E and x ≺≺ y,

then x ∈ E and ‖x‖E ≤ ‖y‖E.
The following terminology and results will be used. See [7, Definition 3.3].

Definition 6.1: A subset A ⊆ E is said to be of uniformly absolutely conti-

nuous norm if A is bounded and

sup{‖enxen‖E : x ∈ A} → 0, n → ∞,

for all sequences (en)
∞
n=1 in P (M) satisfying en ↓ 0.

Note that if the set A ⊆ E is of uniformly absolutely continuous norm, then

also the set A∗ = {x∗ : x ∈ A} is of uniformly absolutely continuous norm

and consequently, the sets ReA and ImA are both of uniformly absolutely

continuous norm.

Examples of sets of uniformly absolutely continuous norm are provided in the

following lemmas.

Lemma 6.2: Suppose that E has order continuous norm. If w ∈ E+, then the

order interval [−w,w] is of uniformly absolutely continuous norm.
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Proof. It should be observed that E+ is a 2-normal cone, that is, it follows from

a ≤ b ≤ c in Eh that ‖b‖E ≤ 2max(‖a‖E, ‖c‖E) (see [5]). Indeed, it follows

from b ≤ c that

0 ≤ b+ = eb[0,∞)beb[0,∞) ≤ eb[0,∞)ceb[0,∞)

and so ‖b+‖E ≤ ‖eb[0,∞)ceb[0,∞)‖E ≤ ‖c‖E. Similarly, −b ≤ −a implies that

‖b−‖E ≤ ‖a‖E, from which the claim follows.

Suppose now that (en)
∞
n=1 in P (M) is such that en ↓ 0. If x ∈ [−w,w], then

−enwen ≤ enxen ≤ enwen and so ‖enxen‖E ≤ 2‖enwen‖E for all n. The order

continuity of the norm implies that ‖enwen‖E → 0 as n → ∞ (see [7, Theorem

3.1]) and the result follows.

Lemma 6.3: If E has order continuous norm, then for every y ∈ E, the sets

yBM and BMy are of uniformly absolutely continuous norm.

Proof. Suppose that (en)
∞
n=1 is a sequence in P (M) satisfying en ↓0. If x∈BM,

then

‖enyxen‖E ≤ ‖eny‖E‖xen‖∞ ≤ ‖eny‖E
and so supz∈yBM ‖enzen‖E ≤ ‖eny‖E . Since E has order continuous norm, it

again follows from [7, Theorem 3.1] that ‖eny‖E → 0 as n → ∞ and we may

conclude that yBM is of uniformly absolutely continuous norm. The proof for

BMy is similar.

The proposition which follows is a special case of [7, Theorem 3.12]. For the

case of non-commutative Lp-spaces (1 ≤ p < ∞), this result may be obtained

from the paper [24] by Y. Raynaud and Q. Xu.

Proposition 6.4: Suppose that E ⊆ S(τ) is a strongly symmetric space with

order continuous norm and suppose that (pn) is a sequence in P (M) such that

pn ↑n 1 and τ(pn) < ∞ for all n. If A ⊆ E is of uniformly absolutely continuous

norm, then for every ε > 0 there exists n = n(ε) ∈ N and 0 < Cε ∈ R such that

A ⊆ Cε(pnBM +BMpn) + εBE.

We shall need the following result, which is [7, Proposition 4.1].

Proposition 6.5: Suppose that E ⊆ S(τ) has order continuous norm. If

A ⊆ E is of uniformly absolutely continuous norm, then E is relatively weakly

compact.
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A particular consequence of the preceding proposition and Lemma 6.2 is that

order intervals are relatively weakly compact in any strongly symmetric spaces

E ⊆ S(τ) with order continuous norm.

7. Property (KS) in symmetric spaces

As before, we assume that E ⊆ S(τ) is a strongly symmetric space, where

(M, τ) is a semi-finite von Neumann algebra. The collection of all subsets

of E which are of uniformly absolutely continuous norm is denoted by San.

The topology in E× of uniform convergence on sets of San is denoted by Tan.
Assuming that E has order continuous norm, it follows from Lemma 6.5 that

σ(E∗, E) = σ(E×, E) ⊆ Tan ⊆ τ(E×, E) = τ(E∗, E),

where, as before, τ(E×, E) denotes the Mackey topology. The following result

is one of the key ingredients in the present section. In contrast with some of

the previous results, the hypothesis of being σ-finite is essential in the following

theorem.

Theorem 7.1: Suppose that (M, τ) is a semi-finite and σ-finite von Neumann

algebra. If E ⊆ S(τ) is a strongly symmetric space with order continuous norm,

then the topology Tan is metrizable on norm bounded subsets of E×.

Proof. Since M is semi-finite and σ-finite, there exists a sequence (pn)
∞
n=1 of

projections in P (M) such that pn ↑ 1 and τ(pn) < ∞ for all n ∈ N. Define the

set Wn ⊆ E by setting

Wn = pnBM +BMpn, n ∈ N,

and define the semi-norms ρn : E× → [0,∞) by

ρn(y) = sup
x∈Wn

|〈x, y〉|, y ∈ E×.

Observe that the semi-norms ρn, n = 1, 2, . . ., separate the points ofE×. Indeed,

if y ∈ E× is such that ρn(y) = 0 for all n, then, in particular, τ(pnxy) = 0 for

all x ∈ BM and all n. Taking x = v∗, where y = v|y| is the polar decomposition

of y, it follows that τ(pn|y|) = 0 for all n. Since pn ↑ 1, the normality of the

trace implies that y = 0.



150 B. DE PAGTER, P. G. DODDS AND F. A. SUKOCHEV Isr. J. Math.

Let T0 be the metrizable locally convex topology in E× generated by

{ρn : n ∈ N}. By Lemma 6.3, each of the sets Wn is of uniformly absolu-

tely continuous norm and so τ0 ⊆ τan. We claim that Tan and T0 coincide on

norm bounded subsets of E×. It suffices to show that Tan and T0 coincide on

the closed unit ball BE× . To this end, suppose that (yk)
∞
k=1 is a sequence in

BE× and that y ∈ BE× such that yk → y with respect to T0. Let A ⊆ E be

a set of uniformly absolutely continuous norm. Given ε > 0, it follows from

Proposition 6.4 that there exist n ∈ N and 0 < Cε ∈ R such that

A ⊆ CεWn + εBE .

If x ∈ A, then x = x1 + x2 with x1 ∈ CεWn and x2 ∈ εBE and so

|〈x, y − yk〉| ≤|〈x1, y − yk〉|+ |〈x2, y − yk〉|
≤Cερn(y − yk) + 2ε,

which shows that

sup
x∈A

|〈x, y − yk〉| ≤ Cερn(y − yk) + 2ε

for all k. By hypothesis, ρn(y − yk) → 0 as k → ∞ and so

lim sup
k→∞

sup
x∈A

|〈x, y − yk〉| ≤ 2ε.

This holds for all ε>0, hence limk→∞supx∈A|〈x, y−yk〉|=0. This holding for any

set A ⊆ E which is of uniformly absolutely continuous norm, we may conclude

that yk → y with respect to Tan. This suffices to complete the proof.

We will say that a strongly symmetric space E ⊆ S(τ) has property (Kan) if it

has property (KSan). The following corollary is now an immediate consequence

of Theorem 7.1 in combination with Proposition 3.7 and Proposition 6.5.

Corollary 7.2: Suppose that (M, τ) is a semi-finite and σ-finite von Neu-

mann algebra. If E ⊆ S(τ) is a strongly symmetric space with order continuous

norm, then E has property (Kan), that is, every sequence (zn) in E× satisfying

zn → 0 with respect to σ(E×, E) has a CCC sequence (yk) such that yk → 0

uniformly on all subsets of E which are of uniformly absolutely continuous norm.

Before formulating the next result, it is convenient to introduce the following

terminology.
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Definition 7.3: Let E ⊆ S(τ) be a strongly symmetric space. A subset A ⊆ E

is called order-bounded if there exist w, v ∈ E+ such that

A ⊆ [−w,w] + i[−v, v].

Note that a subset A ⊆ E is order-bounded if and only if there exists w ∈ E+

such that

A ⊆ [−w,w] + i[−w,w]

(indeed, replace w and v in the definition by w + v). The collection of all

order-bounded subsets of E will be denoted by Sob. If E has order continuous

norm, then it follows from Lemma 6.2 that every order-bounded subset of E is

of uniformly absolutely continuous norm, that is, Sob ⊆ San.

A strongly symmetric space E ⊆ S(τ) is said to have property (Kob) if it has

property (KSob
). In view of the above observations, the following result is now

clear.

Corollary 7.4: Suppose that (M, τ) is a semi-finite and σ-finite von Neu-

mann algebra. If E ⊆ S(τ) is a strongly symmetric space with order continuous

norm, then E has property (Kob).

Proof. By Corollary 7.2, E has property (Kan). Since Sob ⊆ San, it follows

that E has property (Kob).

The following proposition is another consequence of Corollary 7.2 which may

be noteworthy. It will be convenient to prove first the next lemma. For x ∈ S(τ)

we denote

Ω(x) = {y ∈ S(τ) : y ≺≺ x}.
If E ⊆ S(τ) is a strongly symmetric space with order continuous norm, then

Ω(x) ⊆ E for every x ∈ E, as E is fully symmetric.

Lemma 7.5: If τ(1) < ∞ and E ⊆ S(τ) is a strongly symmetric space with

order continuous norm, then for each x ∈ E, the set Ω(x) is of uniformly

absolutely continuous norm.

Proof. Let x∈E be given. We claim that for every ε>0 there exists 0<Cε∈R

such that

Ω(x) ⊆ CεBM + εBE .

Indeed, since E has order continuous norm and τ(1) < ∞, it follows from [9,

Proposition 1.8], that M = L∞(τ) is norm dense in E. Therefore, there exists
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x1 ∈ M such that ‖x− x1‖E ≤ ε. If y ∈ Ω(x), then

y ≺≺ x = x1 + (x− x1)

and so, there exist y1, y2 ∈ S(τ) such that y = y1 + y2, y1 ≺≺ x1 and

y2 ≺≺ x− x1 (see [9], Proposition 4.10). This implies that ‖y1‖∞ ≤ ‖x1‖∞
and ‖y2‖E ≤ ‖x− x1‖E and hence

y ∈ CεBM + εBE ,

with Cε = ‖x1‖∞. This proves the claim.

By Lemma 6.3, the set BM is of uniformly absolutely continuous norm in

E. It now follows easily that Ω(x) is also of uniformly absolutely continuous

norm.

Proposition 7.6: Suppose that τ(1) < ∞ and that E ⊆ S(τ) is a strongly

symmetric space with order continuous norm. If (zn)
∞
n=1 is a sequence in E×

such that zn → 0 with respect to σ(E×, E), then there is a CCC sequence (yk)

of (zn) such that ∫ ∞

0

μ(t;x)μ(t; yk)dt → 0, k → ∞

for every x ∈ E.

Proof. Suppose that (zn)
∞
n=1 is a sequence in E× such that zn → 0 with respect

to σ(E×, E). By Corollary 7.2, the space E has property (Kan) and so there is

a CCC sequence (yk) of (zn) such that yk → 0 uniformly on subsets of E which

are of uniformly absolutely continuous norm. By Lemma 7.5, this implies that

sup
y∈Ω(x)

|〈y, yk〉| → 0

for all x ∈ E.

Recalling that∫ ∞

0

μ(t;x)μ(t; yk)dt = sup{|τ(yyk)| : y ≺≺ x} = sup
y∈Ω(x)

|〈y, yk〉|

(see [8], Theorem 4.12), the result of the proposition follows.

Remark 7.7: If τ(1) = ∞, then the result of Proposition 7.6 does not hold. By

way of example, let E=L1(0,∞) and define the sequence (xn) in E×=L∞(0,∞)

by setting xn = χ(n,∞) for all n ∈ N. If (yk) is any CCC sequence of (xn), then

for every k there exists Nk∈N such that yk(t)=1 for all t≥Nk and so μ(yk)=1
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for all k. Consequently, if x ∈ L1(0,∞), then
∫∞
0

μ(t;x)μ(t; yk)dt = ‖x‖1 for

all k.

8. Property (k) in symmetric spaces

The following characterization of property (k) will be convenient.

Lemma 8.1: For a Banach space X the following statements are equivalent:

(i) X has property (k);

(ii) every weak∗ null sequence (x∗
n)

∞
n=1 in X∗ has a CCC sequence (y∗k)

∞
k=1

such that for every bounded linear operator T : L1(0, 1) → X and for

every order-bounded set A ⊆ L1(0, 1) we have

sup
f∈A

|〈Tf, y∗k〉| → 0, k → ∞;

(iii) every weak∗ null sequence (x∗
n)

∞
n=1 in X∗ has a CCC sequence (y∗k)

∞
k=1

such that for every bounded linear operator T : L1(0, 1) → X and for

every relatively weakly compact set A ⊆ L1(0, 1) we have

sup
f∈A

|〈Tf, y∗k〉| → 0, k → ∞.

Proof. (i)⇒(ii). Let (x∗
n)

∞
n=1 be a weak∗ null sequence in X∗ and let (y∗k) be a

CCC sequence of (x∗
n) satisfying the condition of Definition 4.5. First, suppose

that A ⊆ L1(0, 1) satisfies A ⊆ [−1,1]. If supf∈A |〈Tf, y∗k〉| � 0 as k → 0, then,

by passing to a subsequence if necessary, we may assume that |〈Tfk, y∗k〉| ≥ δ > 0

for all k and some sequence (fk) in A. Since [−1,1] is weakly compact, we may

also assume (by passing to a further subsequence) that fk
σ(L1,L∞)−−−−−−→ f ∈ [−1,1].

Since fk−f
σ(L1,L∞)−−−−−−→ 0 and ‖fk−f‖∞ ≤ 2 for all k, it follows from the property

of the sequence (y∗k) that 〈Tfk − Tf, y∗k〉 → 0 as k → ∞. Since (y∗k) is a weak∗

null sequence (being a CCC sequence of the weak∗ null sequence (x∗
n)), it follows

that 〈Tf, y∗k〉 → 0 and hence, 〈Tfk, y∗k〉 → 0. This is a contradiction and so we

may conclude that supf∈A |〈Tf, y∗k〉| → 0 as k → 0.

Suppose now that A is an arbitrary order-bounded subset of L1(0, 1), that is,

A ⊆ [−w,w] for some 0 ≤ w ∈ L1(0, 1). Since ‖w−w ∧n1‖1 → 0 as n → ∞, it

follows that for every ε > 0 there exists n ∈ N such that A ⊆ n[−1,1] + εBL1 .

Since, by the first part of the present proof, supf∈[−1,1] |〈Tf, y∗k〉| → 0, it now

follows easily that supf∈A |〈Tf, y∗k〉| → 0 as k → 0.

(ii)⇒(iii). If A ⊆ L1(0, 1) is relatively weakly compact, then it follows from

the well-known Dunford–Pettis theorem (see [19] Theorem 2.5.4) that for every
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ε > 0 there exists 0 < w ∈ L1(0, 1) such that A ⊆ [−w,w] + εBL1. The

implication now readily follows.

(iii)⇒(i). This is evident, since for any weak null sequence (fk) in L1(0, 1)

the set A = {fk : k ∈ N} is relatively weakly compact.

Remark 8.2: As was observed in [12], Remark 4.4, the condition supk ‖fk‖∞<∞
may be omitted in Definition 4.5. Note that this follows immediately from the

equivalence (i)⇔(iii) in Lemma 8.1.

LetM be a semi-finite von Neumann algebra equipped with a fixed semi-finite

normal faithful trace τ : M+ → [0,∞]. The main purpose of the present section

is to show that any strongly symmetric KB-space E ⊆ S(τ) has property (k)

whenever M is σ-finite (Theorem 8.6). One of the main ingredients in the proof

is Proposition 8.5. For the proof of this proposition we need some preparation.

Recall the following definitions and facts concerning ordered Banach spaces:

(1) Suppose that (V, ‖ · ‖) is an ordered Banach space, that is, V is a real

Banach space with a closed positive cone V + which induces a partial

ordering in V . The positive cone is called proper if V +∩ (−V +) = {0}
and it is called generating if V = V + − V +.

(2) The positive cone V + of an ordered Banach space V is called α-normal

(for some 0 < α ∈ R) if it follows from a ≤ x ≤ b in V that

‖x‖ ≤ αmax(‖a‖, ‖b‖). Note that any α-normal positive cone is proper.

The cone V + is called α-generating if every x ∈ V admits a decom-

position x = x1 − x2, where x1, x2 ∈ V + and ‖x1‖+ ‖x2‖ ≤ α‖x‖.
(3) Let (V, ‖ ·‖) be an ordered Banach space. The dual positive cone (V ∗)+

in V ∗ is defined by setting

(V ∗)+ = {φ ∈ V ∗ : φ(x) ≥ 0 ∀x ∈ V +}.

(4) According to a theorem of J. Grosberg and M. Krein (1939), if V is

an ordered Banach space with α-normal cone V +, then the dual cone

(V ∗)+ is α-generating in V ∗ (see, e.g., [14], Theorem 3.6.7).

(5) A Banach lattice E is called injective if, whenever F is a Banach

lattice, G ⊆ F a Banach sublattice and T : G → E is a positive linear

operator, there exists a positive linear operator T̂ : F → E such that

T̂ |G= T and ‖T̂‖ = ‖T ‖ (see [19], Definition 3.2.3).

(6) Suppose that F is a Banach lattice and that E is a Banach sublattice of

F . If E is injective, then there exists a positive projection P : F → F
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such that P (F ) = E and ‖P‖ = 1. Indeed, the identity operator

IE : E → E has a positive extension P : F → E ⊆ F .

(7) If K is an extremally disconnected compact Hausdorff space, then the

Banach lattice C(K;R) is injective (indeed, C(K;R) is a Dedekind com-

plete M -space with unit; see [19], Theorem 3.2.4).

The proposition which follows and its dual version Proposition 8.5 may be

a kind of folklore, but we were not able to trace the relevant proofs in the

literature.

Proposition 8.3: If V is an ordered Banach space with an α-normal positive

cone V +, then every bounded linear map T : V → LR

∞(0, 1) is regular, that is,

there exist positive bounded linear maps Tj : V → LR

∞(0, 1), j = 1, 2, such that

T = T1 − T2

(and ‖Tj‖ ≤ α‖T ‖).

Proof. The space LR

∞(0, 1) is Banach lattice isometrically isomorphic to a space

C(K;R), whereK is an extremally disconnected compact Hausdorff space. The-

refore, we may consider T : V → C(K;R). Let �∞(K;R) be the Banach lat-

tice of all real bounded functions on K (equipped with the sup-norm). Since

C(K;R) is a Banach sublattice of �∞(K;R) and C(K;R) is an injective Banach

lattice, there exists a positive projection P : �∞(K;R) → �∞(K;R) onto the

subspace C(K;R) with ‖P‖ = 1.

For t ∈ K we define the positive linear functional δt on �∞(K;R) by setting

〈f, δt〉 = f(t), f ∈ �∞(K;R).

For each t ∈ K define φt ∈ V ∗ by setting

〈x, φt〉 = 〈Tx, δt〉, x ∈ V.

Note that ‖φt‖ ≤ ‖T ‖ for all t ∈ K. Since the positive cone V + is assumed to

be α-normal, the dual cone (V ∗)+ is α-generating and so for each t ∈ K there

exist φ
(1)
t , φ

(2)
t ∈ (V ∗)+ such that

φt = φ
(1)
t − φ

(2)
t , ‖φ(1)

t ‖+ ‖φ(2)
t ‖ ≤ α‖φt‖.

For j = 1, 2, define the linear operator Sj : V → �∞(K;R) by setting

(Sjx)(t) = 〈x, φ(j)
t 〉, t ∈ K,x ∈ V.
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Note that

|(Sjx)(t)| = |〈x, φ(j)
t 〉| ≤ ‖φ(j)

t ‖‖x‖ ≤ α‖φt‖‖x‖ ≤ α‖T ‖‖x‖, t ∈ K,

so Sjx ∈ �∞(K;R) and ‖Sjx‖∞ ≤ α‖T ‖‖x‖, x ∈ V . Hence the operators Sj

are bounded with ‖Sj‖ ≤ α‖T ‖, j = 1, 2. Moreover, since the functionals φ
(j)
t

are positive, it is also clear that the operators Sj are positive.

For every x ∈ V we have

(Tx)(t) = 〈x, φt〉 = 〈x, φ(1)
t 〉 − 〈x, φ(2)

t 〉 = (S1x)(t)− (S2x)(t), t ∈ K,

and so T = S1 − S2 (considering T as a map from V into �∞(K;R)).

Defining Tj = PSj , j = 1, 2, it follows that Tj : V → C(K;R) are positive

bounded linear operators such that T = T1 − T2 and ‖Tj‖ ≤ α‖T ‖.

Now we return to the situation where (M, τ) is a semi-finite von Neumann

algebra and (E, ‖ · ‖E) is a Banach M-bimodule. It should be observed that

the positive cone E+ is 2-normal (see the proof of Lemma 6.2).

Corollary 8.4: If E ⊆ S(τ) is a Banach M-bimodule, then every bounded

linear operator T : E → L∞(0, 1) is regular.

Proof. Writing T = ReT + i ImT , it is sufficient to consider the case that T is

hermitian. Let

S = Th : Eh → LR

∞(0, 1)

be the corresponding operator S ∈ L(Eh, L
R

∞(0, 1)) as defined in Section 2 via

(1). As observed above, Eh is an ordered Banach space with 2-normal cone E+.

Hence it follows from Proposition 8.3 that there exist Sj ∈ L+(Eh, L
R

∞(0, 1)),

j = 1, 2, such that S = S1 − S2. Now define Tj ∈ L+(E,LR

∞(0, 1)), j = 1, 2,

such that Sj = (Tj)h (see Lemma 2.3). It is now clear that T = T1 − T2 and so

we may conclude that T is regular.

The following result is well-known in the Banach lattice setting (see, e.g., [1],

Theorem 15.3).

Proposition 8.5: If E ⊆ S(τ) is a strongly symmetric KB-space, then every

bounded linear operator T : L1(0, 1) → E is regular.

Proof. As in the proof of Corollary 8.4, it is sufficient to consider the case that

T is hermitian. Consider now the adjoint operator T ∗ : E∗ = E× → L∞(0, 1)
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and observe that T ∗ is hermitian as well. Indeed, if y = y∗ ∈ E×, then for all

f ∈ L1(0, 1) we have

〈f, T ∗y〉 =〈f, T ∗y〉 = 〈T (f), y〉 = 〈(Tf)∗, y〉
=〈Tf, y∗〉 = 〈Tf, y〉 = 〈f, T ∗y〉

and , T ∗y = T ∗y, that is, T ∗y ∈ LR

∞(0, 1).

It follows from Corollary 8.4 that there exist positive operators

Sj ∈ L+(E×, L∞(0, 1)), j = 1, 2,

such that T ∗ = S1 − S2. This implies that T ∗∗ = S∗
1 − S∗

2 and it is clear that

S∗
1 and S∗

2 are positive operators. Let Pn : (E×)∗ → (E×)∗ be the Yosida–

Hewitt projection (see Section 2). In particular, Pn is a positive projection

onto (E×)∗n
∼= E××. Since E has the Fatou property, we also have E×× = E.

Hence P may be considered as a positive linear map P : (E×)∗ → E. Defining

Tj = PS∗
j |L1(0,1): L1(0, 1) → E, j = 1, 2,

it is now clear that Tj ∈ L+(L1(0, 1), E) and T = T1 − T2. Therefore, we may

conclude that T is regular.

It was shown by Figiel, Johnson and Pelczyński (see [12], Proposition 4.5)

that any weakly sequentially complete Banach lattice with a weak unit has

property (k). Keeping in mind that a Banach lattice is weakly sequentially

complete if and only if it is a (KB) space, we now present a non-commutative

counterpart which is the principal result of this section.

Theorem 8.6: Let M be a semi-finite and σ-finite von Neumann algebra. If

E ⊆ S(τ) is a strongly symmetric KB-space, then E has property (k).

Proof. We will show that E satisfies condition (ii) of Lemma 8.1. Let (xn)

be a sequence in E∗ = E× such that xn
σ(E×,E)−−−−−−→ 0. By Corollary 7.4, E

has property (Kob) and so there is a CCC sequence (yk) of (xn) such that

yk → 0 uniformly on all order-bounded subsets of E. Let T : L1(0, 1) → E be a

bounded linear operator and A ⊆ L1(0, 1) an order-bounded set. By Proposition

3.7, T is regular from which it follows that the set T (A) is order-bounded in E.

Consequently,

sup
f∈A

|〈Tf, y∗k〉| = sup
z∈T (A)

|〈z, y∗k〉| → 0, k → ∞.
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This suffices to complete the proof of the theorem.

This theorem has the following immediate consequence.

Corollary 8.7: Let M be a semi-finite and σ-finite von Neumann alge-

bra. If E is a symmetric KB-space on [0, τ(1)), then the corresponding non-

commutative symmetric space E(τ) ⊆ S(τ) has property (k).

Proof. Since E is a symmetric KB-space on [0, τ(1)), it follows that E(τ) is

a strongly symmetric KB-space. Indeed this follows from [9], Proposition 3.6

and Proposition 5.2.

Hence the result follows now from Theorem 8.6.

As observed earlier (see the remarks following Corollary 4.7), the assumption

that M be σ-finite is essential, even in the case that M is commutative.

9. Property (K) in non-commutative symmetric spaces

It might be observed that if (M, τ) is a semi-finite, σ-finite von Neumann al-

gebra and if E ⊆ S(τ) is any strongly symmetric space with order continuous

norm with the further property that each relatively weakly compact set is of

uniformly absolutely continuous norm, then it follows from Corollary 7.2 that E

has property (K). For the special case that E = L1(τ), this is a special case of

Theorem 7.3. However, there is a large class of spaces for which the notions of

relative weak compactness and uniformly absolutely continuous norm coincide.

For the case that τ(1) < ∞, such spaces may be characterised as those with

the property that sequences which are null sequences for both the weak and

measure topologies are null sequences for the norm topology. Spaces with this

latter property are said to have Property (Wm). The following result is proved

in [7], Proposition 6.10.

Proposition 9.1: Suppose E ⊆ S(τ) is strongly symmetric. If τ(1) < ∞ then

the following statements are equivalent:

(i) E has property (Wm).

(ii) Each relatively weakly compact set in E is of uniformly absolutely con-

tinuous norm.

It is worth noting that if τ(1) < ∞ and if E ⊆ S(τ) is a strongly symmetric

space with property (Wm), then E is a KB-space. See [7], Lemma 6.9.
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From the preceding proposition, and Corollary 7.2, we now obtain the follo-

wing consequence.

Corollary 9.2: Suppose E ⊆ S(τ) is strongly symmetric. If τ(1) < ∞ and

if E has property (Wm), then E has property (K).

By way of example, let φ denote an increasing concave function on [0, τ(1))

for which φ(0) = 0 = φ(0+) and let Λφ be the corresponding Lorentz space on

[0, τ(1)) with norm given by

‖x‖Λφ
=

∫
[0,τ(1))

μ(x)dφ.

It is shown in [7, Corollary 6.14] that each Lorentz space Λφ(τ) has property

(Wm).

Corollary 9.3: If τ(1) < ∞, then the Lorentz space Λφ(τ) has property (K).

It is, perhaps, not without interest to note that the spaces Λ(φ) are not

Grothendieck spaces.

Suppose now that Φ is an increasing convex function on [0,∞) such that

Φ(0) = 0. Let LΦ be the corresponding Orlicz space on [0, τ(1)) equipped with

the norm

‖x‖LΦ = inf

{
λ : λ > 0,

∫
[0,τ(1)

Φ(|x(t)|/λ)dt ≤ 1

}
,

and let Ψ be the complementary function. The class of Orlicz spaces LΦ for

which the complementary function Ψ satisfies the condition

lim
t→∞

Ψ(Ct)/Ψ(t) = ∞

for some C > 0 will be denoted by Δ3. It is shown in [7, Proposition 6.19] that

if τ(1) < ∞ and if LΦ ∈ Δ3 then the corresponding non-commutative space

LΦ(τ) has property (Wm). Consequently,

Corollary 9.4: If τ(1) < ∞ and if LΦ ∈ Δ3, then the Orlicz space LΦ(τ) has

property (K).

We recall that a Banach lattice E is said to be a KB-space if every norm-

bounded upwards directed system in E is convergent, and to have the Fatou

property if 0 ≤ xα ↑α⊆ E and supα ‖xα‖E < ∞ implies that there exists

0 ≤ x ∈ E such that x = supxα holds in E and ‖x‖E = supα ‖xα‖E.
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It is well known that the Banach lattice E is a KB-space if and only if E has

order continuous norm and has the Fatou property.

Proposition 9.5: Let E be a Banach lattice with order continuous norm. If

E has property (k) (in particular, if E has property (K)), then E has the Fatou

property.

Proof. If E does not have the Fatou property, then E is not a KB-space. It

follows from [19, Theorem 2.4.12] that there exists a closed vector sublattice F

of E which is a vector lattice and norm isomorphic to c0. Since the norm on E

is order continuous, it follows from [19] Corollary 2.4.3 that F is complemented

in E. By [12, Proposition 4.9], it follows that F does not have property (k). It

then follows that E does not have property (K) and this is a contradiction.

Now suppose that τ(1) = 1 and that N ⊆ M is a von Neumann subalgebra

with trace σ given by the restriction τ |N of τ to N . The conditional expectation

EN : L1(τ) → L1(σ)

is defined as in the commutative setting via the equality

(5) σ(xEN (y)) = τ(xy), x ∈ N , y ∈ L1(τ)

and an appeal to the fact that L1(σ),N are dual in the sense of Köthe. See [9,

Theorem 5.6]. The following observation will be needed. See [10, Lemma 5.1].

Lemma 9.6: If E is a fully symmetric space on [0, τ(1)), then EN (y) ∈ E(σ)

for all y ∈ E(τ) and

(6) σ(xEN (y)) = τ(xy), x ∈ E(σ)×, y ∈ E(τ).

Observe that M may be identified via the map x → x ⊗ 1 with the von

Neumann subalgebraM⊗C1 of the von Neumann tensor product M⊗L∞[0, 1)

equipped with the tensor product trace τ⊗dm, with dm denoting Lebesgue me-

asure. Let E denote the corresponding conditional expectation. Using Lemma

9.6, the result which follows is proved in [10, Theorem 5.2].

Lemma 9.7: If E is a fully symmetric space on [0, 1), then the mapping

x → x⊗ 1 ∈ E(τ ⊗ dm)×, x ∈ E(τ)×

is σ(E(τ)×, E(τ)) to σ(E(τ ⊗ dm)×, E(τ ⊗ dm)) continuous.
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Proposition 9.8: Suppose that E is a symmetric space on [0, 1) with order

continuous norm. If E has property (K) then E(τ) has property (K).

Proof. We assume first that M is non-atomic, that is, M does not have any

minimal projections. Since E has order continuous norm, it follows from [9,

Proposition 3.6] that E(τ) has order continuous norm and so E(τ)∗ = E(τ)×.

Suppose now that (xn)
∞
n=1 is a sequence in E(τ)× such that xn →n 0 for the

weak topology σ(E(τ)×, E(τ)). It follows from Proposition 7.6 that there exists

a CCC sequence (yn) of (xn) such that∫
0,1

μ(t;x)μ(t; yn)dt →n 0, ∀x ∈ E(τ).

This implies that μ(yn) →n 0 for the weak topology σ(E×, E). Indeed,

suppose that f ∈ E. Using the fact that M is non-atomic, let π : E → E(τ) be

an isometric *-isomorphism which preserves singular values. See, for example,

[2], Proposition 2.2 and Remark 2.1. It follows that∣∣∣∣
∫
[0,1)

f(t)μ(t; yn)dt

∣∣∣∣ ≤
∫
[0,1)

μ(t, f)μ(t, yn)dt

=

∫
[0,1)

μ(t;π(f))μ(t; yn)dt →n 0.

Since E has property (K), there exists a CCC sequence (gj)
∞
j=1 of the sequence

(μ(yk))
∞
k=1 such that

(7) sup
f∈B

∫
[0,1)

f(t)gj(t)dt →j 0

for each relatively σ(E,E∗) = σ(E,E×) compact subset B ⊆ E. For each

j ≥ 1, set

gj =

nj+1−1∑
i=nj

αijμ(yi),

nj+1−1∑
i=nj

αij = 1, αij ≥ 0, n1 < n2 < n3 · · · .

Now set

zj =

nj=1−1∑
i=nj

αijyi, i ≥ 1.

It follows that (zj)
∞
j=1 ⊆ E(τ)× is a CCC sequence of the sequence (yk)

∞
k=1 and

since the latter is a CCC sequence of the sequence (xn)
∞
n=1, it follows also that
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(zj)
∞
j=1 is a CCC sequence of the sequence (xn)

∞
n=1. Note that

μ(zj) ≺≺
nj+1−1∑
i=nj

αijμ(yi) = gj , j ≥ 1.

Suppose now that A ⊆ E(τ) is relatively σ(E,E×) compact and set

B = {μ(x) : x ∈ A}.

By Proposition 9.5, E has the Fatou property. This implies that the natural

embedding of E into E×× is a surjective isometry, so that E may be identified

with E××. It now follows from [8, Proposition 2.10] (or [10, Theorem 5.4]) that

B is relatively σ(E,E×) = σ(E,E∗) compact. Now observe that

sup
x∈A

|τ(xzj)| ≤ sup
x∈A

∫
[0,1)

μ(t;x)μ(t; zj)dt ≤ sup
x∈A

∫
[0,1)

μ(t;x)μ(t; gj)dt

≤ sup
f∈B

∫
[0,1)

f(t)μ(t; gj)dt →j 0,

where the final assertion follows from (7).

To remove the assumption that M is non-atomic, we identify M via the map

z → z ⊗ 1, z ∈ M with the von Neumann subalgebra M ⊗ C1 of the non-

atomic von Neumann algebra tensor product M⊗L∞[0, 1), equipped with the

tensor product trace τ ⊗ dm. We denote by E the corresponding conditional

expectation. Suppose then that (xn)
∞
n=1 is a sequence in E(τ)× such that

xn →n 0 for the weak topology σ(E(τ)×, E(τ)). It follows from Lemma 9.7

that xn ⊗ 1 →n 0 for the weak topology σ(E(τ ⊗ dm)×, E(τ ⊗ dm)). Since

M⊗L∞[0, 1) is non-atomic, it now follows from the first part of the proof that

there exists a CCC sequence (yn)
∞
n=1 of (xn)

∞
n=1 such that, if B ⊆ E(τ ⊗ dm)

is σ(E(τ ⊗ dm), E(τ ⊗ dm)×) relatively compact, then

(8) sup{|τ ⊗ dm((yn ⊗ 1)w)| : w ∈ B} →n 0.

Now suppose that A ⊆ E(τ) is σ(E(τ), E(τ)×) relatively compact. Since E× is

fully symmetric and E = E××, the equality (6) may be applied to E× rather

than to E. Consequently, if w ∈ E(τ ⊗ dm)×, then there exists a unique

z ∈ E(τ)× such that E(w) = z ⊗ 1. Consequently, for all y ∈ E(τ),

τ ⊗ dm((y ⊗ 1)w) = τ ⊗ dm((y ⊗ 1)E(w)) = τ(yz).

This implies that the map y → y⊗1 ∈ E(τ ⊗dm), y ∈ E(τ), is σ(E(τ), E(τ)×)

to σ(E(τ ⊗ dm), E(τ ⊗ dm)×) continuous. Therefore, B = A ⊗ 1 is relatively
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σ(E(τ ⊗ dm), E(τ ⊗ dm)×) compact. It now follows from (8) that

sup{|τ(ynz)| : z ∈ A} →n 0

and this suffices to complete the proof of the Proposition.
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