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A Five-Port Deembedding Method
for Floating Two-Port Networks

Reza Mahmoudi and Joseph L. Tauritz,Member, IEEE

Abstract—Radio frequency (RF) high-power bipolar transistors
are often constructed with the collector accessible at the bot-
tom of the device. Characterization is carried out on substrate
mounted devices. The classical methods developed for the “on
wafer” capacitance–voltage (CV) and alternating current (ac)
measurement of grounded devices are then no longer applicable.
A (general) deembedding algorithm is presented in which the
medium surrounding the transistor is taken to be a generic five
port and the transistor is treated as a floating two port. Using
this approach, one can model a wide variety of configurations,
including coupled lines, bondwire complexes with mutual cou-
pling, vias and packages enabling one pass deembedding. Use
of this algorithm facilitates an integrated approach improving
accuracy and speed. Implementation of the five-port algorithm
in HP’s—microwave design software, MDS, and HP’s parameter
extraction software, IC-CAP as well as its application to high-
frequency power transistor modeling are described.

Index Terms—Admittance matrix, five-port circuits, microwave
amplifiers, microwave measurement.

I. INTRODUCTION

A CCURATE extraction of parameter sets representative of
an active device’s electrical performance is an activity of

increasing importance to high-frequency specialists.
Usually the collector of a radio frequency (RF) high-power

transistor is accessible through the bottom of the device so
that the transistor must be mounted on a substrate, often a PC
board, for characterization (see Fig. 1). In practice, an assort-
ment of lumped and distributed components may be present
between the reference planes at which the measurement is
carried out and the active device (the transistor).

Standard deembedding procedures (see [1] and [2]) re-
quire the use of quite a number of matrix manipulations
(involving and parameters). In many cases,
the very complexity of the environment makes simplification
of the equivalent circuit mandatory decreasing implicitly the
accuracy of the deembedded data. In order to avoid the use
of unhandy procedures and to maintain the integrity of the
equivalent circuit a new solution to the general deembedding
problem has been sought.

In this work, the transistor mounting environment is treated
as a generic five port and the problem of deembedding the
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Fig. 1. A standard layout for the mounting and measurement of power
transistors.

measured data back to the internal terminals of the active
devices considered in some depth.

II. A GENERAL EXPRESSION FORFIVE-PORT DEEMBEDDING

In order to derive a general expression for deembedding,
we take in Fig. 2.

• The active device mounting environment is a five
port, represented by the mathematically symmetrical
impedance matrix . Two ports of the five port are
external ports and the other three are treated as internal
ports.

• The transistor is a “floating two-port network” represented
by .

• The mounted transistor is a grounded two port represented
by .

The above -ports can be defined as

Our aim is to derive an expression for as a function
of and . In Fig. 2 we identify nine boundary
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Fig. 2. Illustration of a transistor embedding in the five port.

conditions, namely

These relations lead to a set of nonlinear and frequency
independent equations “F” (1) derived using the symbolic
computation programMAPLE, in which the impedance matrix
of the transistor is expressed in terms of the impedance matrix
of the environment , as well as the impedance matrix of
the measured data as shown in (1) at the bottom of
the page (see Appendix).

III. T HE DEEMBEDDING PROCEDURE

The procedure which is used to carry out the deembedding
is outlined in Fig. 3. To initialize the deembedding procedure
two preparatory steps are required.

Fig. 3. The deembedding prodecure.

1) The impedance matrix of the five-port dataset which is
representative of the three terminal network’s mounting
environment is generated as a function of frequency and
written to a file.

2) The overall two-port impedance matrix of the mounted
three terminal network is measured at the same frequen-
cies as in the previous step.

Using this approach, one is able to deembed the measured
data. The accuracy of the processed data is dependent on

• the appropriateness of the assumed equivalent circuit,
• the accuracy of the models used to represent the elements

of the equivalent circuit, and
• the accuracy of the simulation program.

(1)
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Fig. 4. The equivalent circuit for Fig. 1 implemented in MDS, consisting of coupled lines, Vias, and a model for the bondwire complex.

IV. GENERATING DATASET

Generation of the five-port dataset is essential to the deem-
bedding procedure. In order to construct a suitable model
representative of the medium surrounding the floating two port
(e.g., the transistor), one can use a combination of electro-
magnetic and circuit simulation programs including but not

restricted to
• momentum,to provide an accurate model of (coupled)

transmission lines;
• HFSS,to provide an accurate model of capacitance and

connectors;
• MDS, to provide models of (coupled) transmission lines,

inductors, etc.;
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TABLE I
THE VERIFICATION BETWEEN THE ORIGINAL AND THE DEEMBEDDED DATA. THE ALGORITHMS IMPLEMENTED IN MDS ARE GIVEN IN THE APPENDIX

• the DelftCoupled Bondwire Model(see [3]–[5]), to create
a data set representing the five port.

V. VERIFICATION

Using MDS we constructed a three step verification proce-
dure.

• First, we implemented a complete equivalent circuit for
the medium surrounding the bipolar power transistor
of Fig. 1. This equivalent circuit which is composed
of coupled transmission lines, vias and bondwires (an
internal Delft model) is depicted in Fig. 4.

• The related five-port dataset is generated using HP’s MDS
for a frequency range from 0.8 to 2.8 GHz.

• A two-port data set is connected to the internal ports
3–5, of the equivalent circuit, as illustrated in Fig. 4.
Using MDS, the overall two-port impedance matrix is
then determined.

• The deembedding algorithm describe above, as imple-
mented in MDS, in combination with the five-port dataset
generated in the previous step, is then used to deembed
the data.

The embedding and deembedding procedure are uncorre-
lated so that the deembedded data provides a suitable control of
the validity of the deembedding procedure. Table I illustrates
the discrepancies found in comparing the original and the
deembedded data.

VI. A N APPLICATION

The extraction procedure has been carried out for an ex-
perimental Philips discrete bipolar power transistor, which
is mounted on a substrate and connected by bondwires for
characterization (see Fig. 1). In order to execute the new
deembedding procedure, we used MDS to generate a dataset
for the five-port network as described in the preceding section.
We then import the dataset into HP’s—parameter extraction
software, IC-CAP, and execute in PEL (the internal IC-CAP
language) implemented deembedding algorithms. Modeling
of the mounting environment of the transistor is a two step
process:

• CV measurements, are used to determine the bondpad
capacitances, and

• the bondpad capacitances are then added to the equivalent
circuit of the test structure.

A. CV Measurement

Depletion capacitance values are needed to properly extract
the transistor parameters. The layout design is such that
standard cv equipment cannot be used due to insurmountable
calibration problems. In order to determine the capacitances
(see Fig. 5) one can measure the scattering matrix under
the special condition that V V, V V.
Next, convert the S-matrix to the impedance matrix, carry
out deembedding and transform to the admittance matrix
facilitating the calculation of the capacitances as follows:

Imag Imag

Imag Imag

Imag

where

the base-emitter depletion capacitance;
the base-collector depletion capacitance;
the emitter-collector bondpad capacitance;
the base-collector bondpad capacitance;
a process dependent constant.

B. AC Measurements

Adding the bondpad capacitances, we have:

• the emitter-collector bondpad capacitance, , to ports
5 and 4 and

• the base-collector bondpad capacitance, , to ports 4
and 3, of the equivalent model shown in Fig. 4, one can
generate a new data set for transistor parameter extraction.
As an example the measured and deembedded “” curves
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Fig. 5. Depletion capacitances and bondpad capacitances of the experimental
bipolar power transistor.

Fig. 6. Measured deembeddedft curves as a function of collector cureent.

are compared in Fig. 6. These deembedded parameters are
then used in the modeling of the transistors.

VII. CONCLUSION

A five-port generic algorithm that enables one to deembed
high-frequency power transistor measurement data in one step,
without compromise, regardless of the complex mounting
environment of the transistor is introduced and illustrated
with examples from practice. When using this method the
accuracy of the deembedded data is primarily dependent on
the exactness and accuracy of the models used to generate the
five-port dataset.

APPENDIX

THE DEEMBEDDING ALGORITHM IMPLEMENTED IN MDS

__ The measured mounted transistor data.
__ The simulated five-port dataset.
__ The deembedded data.
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