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Summary
The growing understanding of the physics of superconductor-semiconductor nanostruc-
tures is a key driver for the development of emerging quantum technologies. The elemen-
tary excitations of these hybrid nanostructures are Andreev bound states. To further our
knowledge about their intricate physics, new tools must be used to study them. This thesis
describes the use of magnetic-field compatible superconducting circuits to study and ma-
nipulate Andreev bound states and their spin in hybrid superconducting-semiconducting
nanowire Josephson junctions.

First, we provide an introduction to the physical models describing Andreev bound
states in superconducting circuits and the general methodology used for the circuit design,
device fabrication and experimental setups in the experiments of this work.

We then move on to an initial set of two experiments in Chapters 4 and 5, where we
inductively shunt a superconducting resonator with a nanowire-based radio-frequency su-
perconducting quantum interference device (rf-SQUID). This allows us to study Andreev
bound states in InAs/Al nanowire Josephson junctions using circuit quantum electrody-
namics techniques under various external conditions.

In Chapter 4we use pulsed detection of Andreev bound state parity to demonstrate par-
ity selective spectroscopy. Themain result of this Chapterwas the discovery ofmicrowave-
induced parity polarization, that allows one to set the bound state parity in-situ using
microwave pulses. We then study the evolution of the microwave spectrum of Andreev
bound states in a magnetic field in Chapter 5. Here we find a multitude of phenomena that
arise because of the rich interplay between spin-orbit coupling, the Zeeman effect, super-
conductivity, and electron-electron interactions. We observe evidence of spin-polarizing
microwave transitions, the anomalous Josephson effect, and transitions involving triplet
Andreev spins.

In Chapter 6 we explore an alternative material and junction fabrication method in
combination with the same circuitry. Specifically, we excite Andreev bound states in InS-
b/Al Josephson junctions defined by shadow-wall lithography. We observe low density,
high-transparency Andreev bound states in a range of devices and reproduce the directly
spin-polarizing microwave transition observed in Chapter 5. The results of this Chap-
ter demonstrate the viability of combining hybrid circuit quantum electrodynamics with
advanced material combinations and fabrication geometries.

In the final experiment, Chapter 7, we move back to InAs/Al based junctions. This
Chapter uses previous results from Chapter 5 and works demonstrating the use of a single
superconducting spin as a quantum bit, as a stepping stone. Here, we embed two super-
conducting spin qubits in a single SQUID and demonstrate strong longitudinal coupling
between them over a distance much larger than their wavelengths.

The results and methods developed in this dissertation pave the way for continued ex-
ploration of the intricating physics of superconducting spins and demonstrate early steps
towards their use as a new platform for quantum computing.
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Samenvatting

Het groeiende begrip van de fysica van supergeleider-halfgeleider nanostructuren is een
belangrijke motor voor de ontwikkeling van opkomende kwantumtechnologieën. De ele-
mentaire excitaties van deze hybride nanostructuren zijn Andreev toestanden. Om onze
kennis over hun ingewikkelde fysica te vergroten, moeten nieuwe hulpmiddelen worden
gebruikt om ze te bestuderen. In dit proefschrift bestuderen we Andreev toestanden en
hun spin in hybride supergeleider-halfgeleider nanodraad Josephson juncties. Dit doen
we met behulp van supergeleidende circuits die functioneren in een magnetisch veld.

We beginnen we met een inleiding tot de fysieke modellen die Andreev toestanden
in supergeleidende circuits beschrijven, en vervolgen met de algemene methodiek die ge-
bruikt wordt voor het ontwerpen van de circuits, de fabricage ervan en het opzetten van
de meetopstellingen. Vervolgens gaan we verder met een eerste reeks van twee expe-
rimenten in Hoofdstuk 4 en 5. Hierin aarden we een supergeleidende resonator via een
radiofrequentie supergeleidend kwantuminterferentieapparaat (rf-SQUID. eng) dat een In-
As/Al nanodraad bevat met een Josephson junctie. Dit maakt het mogelijk om Andreev
toestanden in zo’n draad te bestuderen met behulp van circuit kwantumelektrodynamica
technieken onder verschillende externe omstandigheden.

In Hoofdstuk 4 detecteren we de pariteit van Andreev toestanden met microgolfpul-
sen. Dit gebruiken we om spectroscopie te demonstreren die selectief is voor een bepaalde
pariteit van de Andreev toestanden. Het belangrijkste resultaat van dit Hoofdstuk was de
ontdekking van de mogelijkheid tot polarisatie van de pariteit door microgolfpulsen. In
Hoofdstuk 5 bestuderen we de evolutie van het microgolfspectrum van Andreev toestan-
den in een magnetisch veld. Hier vinden we een groot aantal verschijnselen die ontstaan
als gevolg van het rijke samenspel tussen spin-baankoppeling, het Zeemaneffect, super-
geleiding en elektron-elektron-interacties. We meten tekenen van spin-polariserende mi-
crogolftransities, het afwijkende Josephson-effect en microgolftransities waarbij triplet
Andreev-spins betrokken zijn.

In Hoofdstuk 6 onderzoeken we het gebruik van een junctie fabricagemethode met al-
ternatieve materialen in combinatie met dezelfde circuits. We exciteren Andreev toestan-
den in InSb/Al Josephson-juncties gedefinieerd door schaduwmuurlithografie. We meten
Andreev toestanden met lage dichtheid en hoge transparantie in een reeks verschillende
apparaten en reproduceren een directe Andreev-spin polariserende microgolftransitie uit
het vorige Hoofdstuk. De resultaten van dit Hoofdstuk tonen de haalbaarheid aan van
het combineren van hybride circuit kwantumelektrodynamica met geavanceerde materi-
aalcombinaties en fabricagegeometrieën.

In het laatste experiment, Hoofdstuk 7, gaanwe terug naar op InAs/Al gebaseerde junc-
ties. Als basis voor dit Hoofdstuk gebruiken we de resultaten uit Hoofdstuk 5 en werken
die de mogelijkheid aantoonden een enkele supergeleidende spin als qubit te manipule-
ren. In dit experiment plaatsen we twee supergeleidende spin qubits in een enkele SQUID.



xii Samenvatting

Hierdoor kunnen we een sterke longitudinale koppeling tussen hen aantonen over een
afstand die veel groter is dan hun golflengte.

De resultaten en methoden die in dit proefschrift zijn ontwikkeld, maken de weg vrij
voor verdere verkenning van de ingewikkelde fysica van supergeleidende spins en zetten
eerste stappen in de richting van hun gebruik als nieuw platform voor kwantumcompu-
ters.
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1
Introduction

Ik heb het nog nooit gedaan, dus ik denk dat ik het wel kan.

Famous misquote from Astrid Lindgren’s Pippi Longstocking
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2 1 Introduction

1.1 The search for qubit universalis
The practical goal of doing physics is to figure out a way to accurately describe the world
around us. A solely mathematical description is not sufficient, nor is it practical. We want
to use the description to predict what will happen if we do something, and preferably
we want to know this fast, such that we can test many different variations of inputs and
observe the outputs they will generate.

This simulation of various inputs is currently done on computers capable of extremely
fast calculations functioning well for most purposes. However, there are some limitations
to this approach. A bit more than forty years ago, Richard Feynmann posed a now famous
challenge titled: “Simulating Physics with Computers” (Feynman, 1982). He argued that
it is impossible to find a computer as we know them, to simulate quantummechanical sys-
tems properly. And since the world around us comprises of those systems, he suggested:
“Can you do it with a new kind of computer - a quantum computer?”. For example, using
bits to store the state of 50 spin 1/2 particles would require 250 numbers, which becomes
practically impossible if the number of particles grows beyond this. Thus, it would be in-
teresting if we can make and control quantum bits (qubits), that are the spin 1/2 particles
themselves, as computation elements. In this way, the number of required components
scales proportionally to the problem size, and the time required for simulation polynomi-
ally (Lloyd, 1996). Although this merely guarantees that computation times won’t explode
indefinitely, figuring out whether it is possible make such a computer in practise, has been
a long standing goal for quantum-physicists and engineers.

So, how do we make such a quantum bit, and what do we make it of? This is an open
question and also the underlying motivation of the work in this thesis. Given the extreme
success in the scaling of lithographically defined semiconductor based electronics of the
last decades, we focus on quantum bits that can be defined using existing lithography
techniques. Currently, one the widespread variant of these type of quantum bits are those
defined in millimeter-sized circuits made of superconducting material (superconducting
qubits). Another popular method is to trap single electrons in a tiny semiconducting box
on the size less than a millionth of a meter and use their spin as a bit (spin-qubits). Only
recently it became possible to make bits this way, for example, the first superconducting
qubits weremade in 1999 (Nakamura et al., 1999) and also here inDelft in the group ofHans
Mooij (Chiorescu et al., 2003). Note that these “bits” could only hold their information
stored for about 1-billionth of a second!

Fast forwarding to present day, we currently are in the so-called “noisy intermediate
scale quantum computing era” (NISQ) (Preskill, 2018), with, for superconducting qubits, a
number around 100-1000 qubits on the same chip, and some of which have been able to
keep their information up to amillisecond. This is a remarkable improvement of a factor of
one million in twenty years for this type of qubit. Similar to classical bits, error correcting
codes can be used to sacrifice qubit numbers for lifetime or operation quality (Shor, 1995).

NISQ systems have reached a point, where with currently knownmethods, days of the
best available supercomputing time is needed to simulate the output of about 20 layers
of operations on such devices (AI, 2019), taking about 10 minutes to generate. However,
doing truly useful calculations, besides offering a lot of new insights purely from a physics
researcher perspective, has remained out of reach (Preskill, 2023).

There are two ways to perform simulation with quantum bits: analog and digital quan-
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Figure 1.1: The search for qubit universalis. Artist impression of the current effort towards finding the qubit-
equivalent of homo-universalis, based on the sketch of vitruviusman by Leonardo da Vinci.

tum simulation. The first can be seen as building a well-controlled toy model of some spe-
cific system of interest and letting it evolve for some time in order to observe what comes
out, similar as using a windtunnel to simulate aerodynamics. It appears that, already now,
real-world examples of such simulators exist that can perform practically relevant simula-
tions¹ (Daley et al., 2022).

The second, relies on slicing the evolution of the system into small time steps, where
each step can be approximated using error-corrected circuits (Aspuru-Guzik et al., 2005).
This has the advantage that an arbitrary system can be simulated, very similar to current
computers, but potentially comes at the cost of a large computation overhead.

To provide an example, estimates exist that for calculating the ground state energy of
the molecular structure of FeMoCo, a molecule relevant in the Haber-Bosch process for
nitrogen fixation, on a digital quantum simulator, can pessimistically cost several millions
of physical qubits if the error rate of each qubit is around 0.1% per operation (Lee et al.,
2021). This estimate is based on using a specific type of error correcting code (Fowler et al.,
2012). The number of required physical qubits for solving such a problem, depends on the
qubit quality, hence there is an active search for qubits that are ”intrinsically better”.

Here not only the time such a bit can retain it’s state is relevant, but it should satisfy
other important criteria as well regarding addressability, connectivity, scalability and com-
patibility with error correcting codes (DiVincenzo, 2000; Fowler et al., 2012; Bravyi et al.,
2024). Thus, a relevant goal is to find clever tricks, improvements to existing qubit archi-
tectures, or new qubit types, to obtain a “qubit universalis” (see Figure 1.1), for example by
improving addressability and connectivity without sacrifing qubit lifetime or scalability.
One way to address this is to investigate currently unknown physical phenomena that

¹Note that the main current platforms to perform analog quantum simulations have not been mentioned so far,
such as trapped ions, neutral atoms in optical lattices and atom arrays with Rydberg lattices (Daley et al., 2022).
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could potentially aid towards this goal, which is how the contents of this thesis can be
seen in practise.

1.2 Thesis outline
In this thesis, we use superconducting microwave circuits as a detector to study Andreev
bound states that reside in Josephson junctions between two sections of hybrid semicon-
ductor - superconductor nanowires in presence of magnetic field, spin-orbit coupling and
electron-electron interactions. Andreev bound states lie at the heart of the Josephson ef-
fect and are the elementary excitations of hybrid semiconductor - superconductors, which
have been predicted as building blocks for a topologically protected qubit (Kitaev, 2001;
Lutchyn et al., 2010; Oreg et al., 2010) - a key component in the Microsoft led effort to-
wards building more resource efficient scalable quantum computers (Karzig et al., 2017).
By applying amagnetic fieldwe allow investigation into the Andreev bound state spin (Lee
et al., 2014; van Woerkom et al., 2017).

The use of circuit-quantum electrodynamics (circuit-QED) techniques, benefitting from
developments for superconducting qubits (Blais et al., 2004), has led to high-resolution
detection of spinless transitions between Andreev states in atomic break junctions (Jan-
vier et al., 2015) and also in hybrid nanowires (Hays et al., 2018). Two exciting experi-
ments were published during the start of this thesis (Tosi et al., 2019; Hays et al., 2020),
which showed that the attainable resolution (< 1µeV) of circuit-QED techniques allowed
to distinguish transitions between zero-field spin-split Andreev states in long nanowires
with spin-orbit coupling. In parallel, magnetic field compatible circuits (Kroll et al., 2019;
Samkharadze et al., 2016) were developed in combination with superconducting ”gate-
mon” qubits that had hybrid semiconducting - superconducting nanowire Josephson junc-
tions (de Lange et al., 2015; Larsen et al., 2015; Luthi et al., 2018; Kringhøj et al., 2021). The
combination of these results, amongst others, served as a stepping stone for the chapters
described below, aimed at detecting and manipulating spinful Andreev states in supercon-
ducting circuits.

In Chapter 2, we explain the basics of superconductivity, Andreev bound states, their
microwave absorption, and provide a simple picture of their coupling to superconducting
circuits. We then move on in Chapter 3 to explain the methodology and design process
of the circuits used in this thesis, as well as various aspects related to fabrication and
magnetic field control. The Chapter concludes with an explanation of our data-processing
procedure.

In Chapter 4 we use a superconducting resonator galvanically shunted by a radio-
frequency superconducting quantum interference device (rf-SQUID) to inductively mea-
sure time domain dynamics of the fermion parity of Andreev bound states in an InAs/Al
nanowire Josephson junction. We then show that we can polarize this parity in-situ using
a strong microwave drive.

In Chapter 5, in the same device, we apply a magnetic field to detect transitions be-
tween various spinful Andreev states. We observe transitions involving a spin-flip within
a single bound state manifold, as well as transitions involving pairs of singlet and triplet
spins and conclude with a measurement of a gate-tunable anomalous Josephson effect. We
find that both spin-orbit coupling and electron-electron are important ingredients required
to model these devices.
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In Chapter 6, motivated by recent successes with shadow-wall lithographically de-
fined Josephson junctions in InSb/Al (Badawy et al., 2019; Heedt et al., 2021), we ex-
change the InAs/Al nanowire Josephson junction for such a device and measure high-
transparency ABS over extended gate-ranges. By applying a magnetic field, we reproduce
the direct spin-flip transition observed in Chapter 5.

In Chapter 7 we implement a proposal by Padurariu and Nazarov (2010), and build
a circuit to couple two superconducting spin qubits separated by a distance of approxi-
mately 25 µm. We find strong longitudinal coupling between the two spin qubits. In this
chapter, we use a different device design compared to the preceding Chapters and switch
to embed the nanowire SQUID in a transmon qubit².

Finally, inChapter 8we discuss highlights of the results of the previous Chapters and
provide suggestions for future work.

²This is motivated by the requirement of achieving strong coupling between the nanowire Josephson junctions,
which makes the total SQUID inductance much larger than the preceding Chapters. This in turn would cause
the resonator inductance to be dominated by the non-linear inductance of the SQUID loop, effectively making
it a transmon.
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2
Background

We have a theory of everything only to discover that it has revealed exactly nothing about
many things of great importance.

Laughlin and Pines
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The process of Andreev reflection and the resulting bound states provide a fundamen-
tal microscopic picture of the proximity effect of superconductors and the Josephson effect.
It is quite rivetting that after more than 60 years of developments following the original
papers by Andreev (1964) and Kulik (1970), their physics is still considered to be state of
the art condensed matter research and keeps providing new surprises to those who look
at them.

In this Chapter we start with a macroscopic picture of superconductivity in Section 2.1
to describe the basic physics required to understand superconducting circuits in magnetic
fields. Later, in Section 2.2 we will switch to a microscopic picture of superconductiv-
ity and attempt to illustrate the physics of Andreev bound states in a ”realistic” scenario,
which includes the presence of multiple transport channels, spin-orbit coupling, magnetic
fields and finally touch upon the effect of interactions. The combination of the first three
components makes a general analytical description intractable so we provide along the
way a microscopic numerical toy model. Unfortunately the inclusion of electron-electron
interactions additionally greatly increases computational complexity for numerical meth-
ods, so we resolve to a brief overview of the effect of interactions, which can provide
important qualitative insights required to explain the measured data in Chapter 5. Finally
in Section 2.3 we describe the theory of embedding a Josephson junction in a supercon-
ducting circuit.

2.1 Superconductivity
Superconductivity was discovered 1911 by Heike Kamerlink Onnes in Leiden. Later, the
discovery of perfect diamagnetism by Meissner and Ochsenfeld (1933), led to the Lon-
don brothers writing down a phenomenological theory of the electromagnetic proper-
ties of superconductors (London et al., 1935) that could account for this observation. In
1950 Ginzberg and Landau developed an intuitive picture of superconductivity for non-
homogeneous superconductors (Ginzburg, 2009). Pippard (1953) then suggested a non-
local version of the London equations using the concept of a coherence length 𝜉 in order
to explain the strong effects that impurities could have on the extracted penetration depths
of electric and magnetic fields according to the London equations. It was only in 1957 that
Bardeen Cooper and Schrieffer (Bardeen et al., 1957) managed to write down a succes-
ful microscopic theory of superconductivity (BCS theory) of which the key concepts are
summarized below following the books by Tinkham (2015), de Gennes (1999) and Annett
(2011). ¹

A material reaches a superconducting state when the free-energy of a fraction of the
electrons in a small band around the Fermi energy can be reduced significantly by con-
densing into Cooper pairs. These Cooper pairs are a result of an attractive interaction
between two electrons by lattice phonons and cause the key characteristics of a supercon-
ductor: zero resistance to current, an expulsion of magnetic fields from the interior of the
conductor (the Meissner effect) and an energy gap of low-energy excitations of a window
Δ around the Fermi-level, corresponding to the condensation energy gained from pairing
up into Cooper pairs. The Cooper pair condensate forms a macroscopic wavefunction that

¹Tinkham and de Gennes are the classic textbooks. Annett deserves a special mention here because it uses SI
units instead of the older Gaussian units, making it a bit more accessible for contemporary physicists.
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can retain phase-coherence over distances much longer than the normal state electrons
in a metal or semiconductor. As such, before BCS theory was invented Ginzberg-Landau
theory was able to describe most effects of superconductivity with a single position depen-
dent complex order parameter 𝜓 = |Δ|(𝑟)𝑒𝑖𝜙(𝑟), which in the limit of the temperature close
to the critical temperature and variations of the order parameter in space being not too fast,
can be exactly related to the condensate wavefunction |𝜓 (𝑟)⟩ from BCS theory (Gor’kov,
1959).

There are two important length scales that determine the behaviour of superconduc-
tors. The first length scale is the coherence length 𝜉 , which can be seen as the correlation
length of the attractive interaction, or the size of a typical Cooper pair, and can be heuris-
tically derived from Heisenbergs uncertainty principle in a region of the superconducting
gap Δ around the Fermi energy 𝐸𝐹 , i.e. 𝛿𝑥𝛿𝑝 =ℎ̄, where 𝐸𝐹 −Δ < 𝑝2/2𝑚 < 𝐸𝐹 +Δ, yielding

𝜉 ∼ 𝛿𝑥 ∼ ℎ̄/𝛿𝑝 ∼ ℎ̄𝑣𝐹
𝜋Δ , (2.1)

where 𝑣𝐹 is the Fermi velocity. The coherence length is affected by scattering in the super-
conductor (Pippard, 1953), and in presence of strong scattering, this so called dirty limit
results in a renormalization of 𝜉 = √𝜉0𝑙𝑒 < 𝜉0, where 𝑙𝑒 is the elastic scattering length.

Another important length scale is the penetration depth 𝜆, which is the length at
which magnetic field lines can penetrate the surface of the superconductor, before be-
ing cancelled by dissipationless surface currents. The penetration depth can be found by
minimizing the free energy corresponding to the kinetic energy of Cooper pairs partici-
pating in the surface current and the potential energy of the magnetic field penetrating
that surface volume. The result derived by London (de Gennes, 1999) depends on the
phenomenological density of superconducting electrons 𝑛𝑠

𝜆𝐿 = √
𝑚𝑒

𝜇0𝑛𝑠𝑒2
, (2.2)

where 𝜇0 is the Bohr magneton, 𝑚𝑒 the electron mass, 𝑒 the electron charge and 𝑛𝑠 depends
on temperature, reaching the normal state electron density at 𝑇 = 0. Note that dependent
on the material, temperature and thickness 𝜆 can be different than the simple expression
for 𝜆𝐿 above and it is expected to increase in the dirty limit.

Based on the length scales 𝜉 and 𝜆 superconductors can be divided into two classes,
those for which 𝜉0 ≪ 𝜆 (type 1) and those for which 𝜉0 ≫ 𝜆 (type 2). For both supercon-
ductors, after a critical field 𝐻𝑐 , superconductivity becomes energetically unfavorable and
breaks down. Additionally, when a large enough area is exposed to a perpendicular field
that is smaller than the critical field, normal domains that allow flux to penetrate will be
formed in both types. The difference between the two is that for type 1 superconductors,
the surface energy is positive for creating normal domains, while for type 2 superconduc-
tors this is negative. This results in a minimization of the number of normal domains in a
type 1 superconductor, while the superconducting domains retain the full Meissner effect
(see Figure 2.1a). For Type 2 superconductors, the free energy gain by adding a domain
wall is negative, thus as many normal domains are created as is possible to minimize the
free energy. The smallest possible normal domains in a type 2 superconductor are those
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Figure 2.1: Effect of a perpendicular magnetic field on the two types of superconductors. (a) Sketch
of a Type 1 superconductor where 𝜉 > 𝜆 and thus the free energy associated with forming a domain wall is
positive, minimizing the number of domains. (b) Sketch of a Type 2 superconductor where 𝜉 < 𝜆, here the
energy associated with forming a domain wall is negative and thus as many domain walls as possible are formed
resulting in the Abrikosov vortex lattice. Inset shows how supercurrent circulates around a normal vortex core
of size ∼ 𝜉 . (c) Sketch of the free energy landscape of a single vortex in a narrow strip of superconducting wire
of width 𝑤 for an applied magnetic field close to the critical field where a single vortex enters the wire. The
dashed line indicates the reduction of free energy if a pinning site is located at the center of the strip 𝑥 . (d)
Illustrative example of real-life vortices in a superconducting wire. Image taken from Ref. (Stan et al., 2004), an
experimentwhere a thin Nb superconductingwire is cooled below 𝑇𝐶 under an appliedmagnetic field, illustrating
the creation of vortices measured using scanning Hall probe microscopy.

that allow the minimal amount of one magnetic flux quantum Φ0 = 2 ⋅ 10−15 Wb to pene-
trate, called vortices (Abrikosov, 1957) because the normal core where the order parameter
goes to zero is surrounded by a circulating screening current (Figure 2.1b).

The two superconductors that are used in this work are mainly NbTiN (Type 2) and
Al. Al behaves as a type 1 superconductor generally. However, if the thickness of the
material is shorter than the bulk coherence length, the coherence length is reduced by
surface scattering similar to a superconductor in the dirty limit. Thus, thin film type 1
superconductors can behave as type 2 superconductors, including the possible formation
of vortices (Tinkham, 1963; Huebener and Clem, 1974), which were indeed observed in
thin aluminum films (Maloney et al., 1972; Song, 2011).

2.1.1 Kinetic inductance
When a film of superconductor becomes thin enough, such that the (superconducting)
electron density becomes low, the inductance that comes from the inertia of accelerating
Cooper pairs becomes relevant. To see this, let’s assume we apply an AC current 𝐼 =
𝐼0 sin(𝜔𝑡) through a cross section of a volume of area A and length l. This current must be
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Material 𝑙𝑒 𝜉 𝜆 Δ 𝑇𝐶
NbTiN ∼nm 5-10 nm ∼ 300−400nm 1.2-1.5meV 8-10 K

Al (Bulk) ∼µm 1.3 µm 45 nm 180 µeV 1.2 K
Al (∼10 nm) 10 nm ∼100 nm >100 nm 250 µeV 1.6 K

Table 2.1: The various properties related to superconductivity for the materials used in this thesis. The coherence
length quoted for NbTiN is estimated by that observed in NbN and Nb films (Annunziata et al., 2010) and 𝜆
estimated in Kroll et al. (2018) for thin NbTiN films as used in this thesis. For bulk Al values are obtained
from (de Gennes, 1999), and for thin-film Al 𝜆 and 𝜉 are only provided as an estimate. Nevertheless it is expected
to increase, while 𝜉 decreases, due to the lower 𝑙𝑒 (Tinkham, 2015; López-Núñez et al., 2023). The gap is considered
at 𝑇 = 0, with Δ(0) = 1.76𝑘𝐵𝑇𝑐 following BCS theory.

carried by a Cooper pair current, such that 𝐼0 =𝐴𝑒𝑣𝑛𝑠 where 𝑣 is the velocity of the charge
carriers and 𝑛𝑠/2 is the cooper pair density. These carriers have a total kinetic energy of
𝐸 = 𝐴 ⋅ 𝑙 ⋅ 𝑛𝑠 12𝑚𝑒𝑣2, and thus if the density is lowered, 𝑣 needs to increase proportionally to
keep the same current, but the required energy scales quadratically with 𝑣 . In other words,
in order to generate a fixed current one would need much more energy to accelerate a few
charge carriers to high velocity, than many to a low velocity. This increase in the energy
stored can be expressed as an inductance by equating the kinetic and inductive energy
𝐴 ⋅ 𝑙 ⋅ 𝑛𝑠 12𝑚𝑒𝑣2 = 1

2𝐿𝐾 𝐼 2, from which we find (Annunziata et al., 2010)

𝐿𝐾 = 𝑚𝑒 𝑙
𝑒2𝐴

2
𝑛𝑠
. (2.3)

Kinetic inductance thus plays a larger role for thin films with low cooper pair density.
Typical values that are found in this thesis for 20 nm NbTiN are around 10 pH per square,
see Chapter 3.

2.1.2 Vortices
As stated above, vortices arise in type 2 superconductors (Abrikosov, 1957) and can be
seen as small tornados of supercurrent which decay exponentially with length scale 𝜆𝐿
away from a normal core of size ∼ 𝜉 . A schematic is indicated in Figure 2.1b. The total
flux penetrating a normal core is the quantized value Φ0. When an AC current is flowing
through the superconductor, vortices feel a Lorentz force of 𝐽 × 𝐵, which induces move-
ment of the core. This provides a complex impedance often described using a two-fluid
model (Song, 2011). The real part of the impedance comes from movement of the core of
normal electrons, which following the Drude model dissipate energy when moving. The
imaginary part of vortices’ impedance yields an inductive response.

When embedding superconducting circuits in a magnetic field, the vortex impedance
can heavily impact their performance. There are two obvious ways to minimize detrimen-
tal effects of vortices. The most straightforward way is to make circuit components that
have strong current flowing through them thin, because the required field 𝐵𝑐 to nucleate
vortices through a square of area 𝐴 is about a flux quantum, i.e. Φ0 ∼ 𝐵𝑐𝐴 ∼ 2mT ⋅ µm2.
Thus by reducing the area per square of a thin conductor to less than a micron, this can be
made higher than the typical perpendicular fields applied to the sample during the experi-
ments and thus no vortices can nucleate in those sections. When the area of the supercon-
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𝐸 𝑘𝐵𝑇 ℎ𝑓 𝐸𝐽 𝐼𝐶 1/𝐿
4 µeV 𝑇 = 50mK f=1GHz 1GHz 2 nA (160nH)−1

⟨𝐻𝐴⟩ 1
𝜑0

𝑑⟨𝐻𝐴⟩
𝑑𝜑

1
𝜑20

𝑑2⟨𝐻𝐴⟩
𝑑𝜑2

Table 2.2: Unit conversion for experimentalists. Left side of the double column: three ways to rewrite the
same amount of energy in electronvolt, temperature or frequency. Right side: conversion of Josephson energy,
Josephson current and Josephson inductance. Each indicated column scales proportionally with the others and
𝜑0 is the reduced flux quantum Φ0/(2𝜋). Note that L is indicated inversely to indicate that an increase in 𝐸𝐽 or 𝐼𝐶
by a factor of 𝐴 corresponds to a decrease of 𝐿 by that same factor 𝐴.

ducting element cannot be made small, impurities in the material, or artifical pinning sites,
can create a free energy minimum for the vortex core to ”stick” to shown in Figure 2.1c,
thus impeding movement and therefore reducing dissipation. Additionally, sharp corners
or edges in the device design can lower the entry barrier of vortices and should thus be
avoided in device designs that aim to minimize vortex nucleation (Benfenati et al., 2020).

2.1.3 The Josephson effect
In 1962 (a few years after BCS theory), Brian D. Josephson predicted an effect which was
later named after him (Josephson, 1962)². The key thing that he realized was that the
phase of the superconducting wavefunction plays a role when two superconductors are
in close contact. When they have a different phase, a current between them results from
that gradient in phase, and, when a bias voltage is applied over the junction one gets an
oscillating phase difference

ℎ
2𝑒

𝑑𝜙
𝑑𝑡 = 𝑉 , (2.4)

which can be understood using the Einstein relation between frequency and energy (ℎ̄𝜔 =
ℎ𝑑𝜙/𝑑𝑡 = 𝐸 = 2𝑒𝑉 ), where the factor of 2 comes from the fact that we have a Cooper pair
with charge 2𝑒. Note that the prefactor is equal to the magnetic flux quantum Φ0 = ℎ/2𝑒.

Relation between Josephson current, inductance and energy
The current flowing through the junction as a function of the phase difference 𝜙 across
the junction can be found semiclassically by noting that the power dissipated is 𝑑𝐸/𝑑𝑡 =
𝑃 = 𝐼𝑉 , thus using Equation (2.4) we obtain

𝐼 = 𝑑𝐸
𝑑𝑡

𝑑𝑡
𝑑𝜙

2𝑒
ℎ = 1

Φ0
𝑑𝐸
𝑑𝜙 = 1

𝜑0
𝑑𝐸
𝑑𝜑 (2.5)

Inductance describes the proportionality between an AC current and voltage 𝑉 = 𝐿𝐼 ,
thus using Equation (2.4) again this leads to an expression for the inverse of the inductance

𝐿−1 = 𝐼/𝑉 = 1
𝜑20

𝑑2𝐸
𝑑𝜑2 (2.6)

²See also Ref. (Anderson, 1970) for an interesting anekdote by Philip. W. Anderson (from the Anderson model)
how Josephson found this effect.
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These relations are useful especially when replacing 𝐸 with the expectation value of the
energy of a many-body state of interest found by solving a microscopic Hamiltonian 𝐻𝐴
of the junction, as discussed later in this chapter. In Table 2.2 we summarize these re-
lations and additionally typical values of units used for fast conversion between energy,
temperature, current and inductance, which generally comes in handy when performing
experiments. Note that to avoid confusion, for typical long averaged measurements of
supercurrent or inductance, for example in DC transport, one should generally think of
⟨𝐻𝐴⟩ as the expectation of the density matrix Tr{𝐻𝐴𝜌}, where 𝜌 describes a statistical en-
semble of the junction many-body states under a thermal distribution (or non thermal in
presence of quasiparticle poisoning!) .

2.2 Andreev reflection and Andreev bound states
In this section I will summarize the key concepts required to understand Andreev states
in Section 2.2.1 without lengthy derivations and later in Section 2.2.2 we will explore An-
dreev states and their microwave susceptibility in more detail using a microscopic numer-
ical model. Excellent prior works exist reviewing Andreev bound states and their proper-
ties using a scattering formalism from the Quantronics group in Saclay (Bretheau, 2013;
Janvier, 2016; Metzger, 2022) and recently in Yale (Hays, 2021). The problem is there that it
is quite difficult to include the effects of multiple occupied bands and magnetic field under
a single umbrella as is the case in the experiments of Chapters 5 and 6. In sections Sec-
tions 2.2.3 to 2.2.5 we will, using simulations from the model described in Section 2.2.2,
illustrate characteristic cases and the microwave absorption spectrum of a short junction,
finite length junction with and without spin-orbit coupling and briefly consider the effect
of magnetic field. Finally in Section 2.2.6 we will touch upon the effect of interactions in
the junction that go beyond the microscopic model presented in Section 2.2.2.

2.2.1 Key concepts
Andreev reflection
Andreev found in 1964 that in an interface between a normal conductor and a superconduc-
tor evanescent solutions exist inside the superconductor for quasiparticles with energies
below Δ. These solutions allow for charge transport of electrons that have energies below
Δ in the normal conductor by reflecting as a hole with opposite energy andmomentum and
creating a Cooper pair in the superconductor at the Fermi-energy (Andreev, 1964). The
phase 𝜙𝐴 that the electron gains during reflection as a hole then depends on its energy 𝜖
and the phase of the superconducting condensate 𝜙/2 according to

𝜑𝐴(𝜖) = −arccos( 𝜖Δ)±𝜑/2 (2.7)

Phase obtained during propagation of the normal region

From Bloch’s theorem a quasiparticle wavefunction has the phase 𝑒𝑖𝑘⃗⋅𝑟 , where 𝑟 is the
position. In a one dimensional system, the phase gained for a weak link of length 𝐿 in
the 𝑥-direction is thus 𝑘𝑥 ⋅ 𝐿. The wavevector can be related to energy by its dispersion
relation, which if linearized near the Fermi energy yields 𝜖 = 𝑑𝜖

𝑑𝑘𝑥 |𝐸𝐹 𝑘𝑥 = ℎ̄𝑣𝐹 𝑘𝑥 , where 𝑣𝐹
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Figure 2.2: Diagrams of bound states arising from constructive interference involving Andreev reflec-
tion. (a) Short S-N-S junction. An electron can Andreev reflect back as a hole due to the superconducting
pairing potential that couples electrons and holes. The energy dependent phase gained by Andreev reflection
𝜑𝐴 for bound states that consist of electron-hole superpositions adds up to 2𝜋, 𝑛 ∈ 𝑁 . Also indicated with light
arrows is coupling between right and left moving electrons or holes. This can be caused by scattering inside
the junction region, due to disorder for example. (b) Diagram of a junction with a length such that there is a
signifcant phase gained during propagation 𝜑𝑃 . If the junction is long enough (𝐿 > 𝜉 ), there exist multiple solu-
tions of energy below Δ to Equation (2.9). (c) Schematic of a junction where a quantum dot is instead placed in
the normal region and the picture of propagating particles is replaced with a phase gained during tunneling 𝜑𝑇 ,
further discussed in Section 2.2.6.

is the Fermi velocity. Therefore

𝜑prop(𝜖) = 𝜖𝐿
ℎ̄𝑣𝐹

= 𝜖
Δ
𝐿
𝜉 , (2.8)

where in the last equality we used 𝜉 = ℎ̄𝑣𝐹
Δ in the ballistic limit. Thus the phase gained

during propagation both scales with the energy of the bound state and the Fermi-velocity.

Andreev bound states
We are now ready to obtain a simple criterion for the existence of Andreev bound states,
which can be seen as the superconducting equivalent of a particle in a box. When an elec-
tron with energy 𝜖 traverses a normal section gaining a phase during propagation 𝜑prop(𝜖),
impinges on a superconductor, reflects as a hole gaining phase 𝜑𝐴(𝜖), traverses the normal
section again and subsequently reflects back as an electron, constructive interference can
occur if these processes add up to a total phase gain of 2𝜋 .

2𝜑𝐴(𝜖)+2𝜑prop(𝜖) = 2𝜋𝑛, 𝑛 ∈ 𝑁 (2.9)

This yields a transcendental equation for 𝜖 which can be solved to obtain the bound state
energy.

Effect of spin-orbit coupling
Spin-orbit coupling, as its name suggests, couples the spin of a quasiparticle to its orbit
(momentum). This can be expected to create a different phase gain during propagation for
spin up quasiparticles compared to spin-down quasiparticles, because the Fermi-velocity
of propagating quasiparticles becomes spin-dependent (Governale and Zülicke, 2002). The
spin-dependent propagation phase thus creates a different interference condition depen-
dent on spin and can lift the spin-degeneracy of ABS (Chtchelkatchev and Nazarov, 2003;
Park and Yeyati, 2017)

2𝜑𝐴(𝜖)+2𝜑𝜎∈{↑,↓}prop (𝜖) = 2𝜋𝑛, 𝑛 ∈ 𝑁 (2.10)
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Effect of magnetic field
Magnetic field comes into play in two ways. Firstly, it just affects the energy 𝜖 of the prop-
agating quasiparticles by the spin-dependent Zeeman energy 𝜖 ± 1

2𝑔𝜇𝐵𝐵, which both af-
fects the propagation phase and reflection phase, and thus again creates a spin-dependent
bound state energy following Equation (2.9). Secondly, it creates an orbital effect through
the vector potential that acts on the charge of the quasiparticle, resulting in an additional
phase and change of effective propagation length, so this would occur even for spinless
particles, similar to the origin of the Aharanov-Bohm effect. The effect scales with the
total flux threaded through the particle trajectory in real space, so it is often neglected in
junctions with small cross sections. This is also the case in this thesis. See for example Zuo
et al. (2017) for an experimental and theoretical study using 3-dimensional tight-binding
simulations of orbital effects on the critical currents of nanowire Josephson junctions.

2.2.2 Microscopic description of a nanowire Josephson junction
We now continue with a description of a simple two dimensional microscopic model for
the nanowire Josephson junctions studied in this thesis, as this can be used to understand
most of the core ABS physics. There are three main ingredients in the Hamiltonian of the
semiconducting section of the nanowire

𝐻 = 𝐻0+𝐻𝑅 +𝐻𝑍 , (2.11)

which represent the following:
The kinetic and potential energy are described by 𝐻0

𝐻kin =(ℎ̄
2𝑘⃗2
2𝑚∗ −𝐸F−𝑒𝜙(𝑟))𝜎0 (2.12)

where the potential 𝜙(𝑟) is spatially dependent and thus represents disorder or potential
barriers in the nanowire. 𝐸𝐹 is the Fermi energy, or chemical potential. Here 𝑚∗ is the
effective mass, which determines the level spacing of the bands. For InAs and InSb 𝑚∗ is
very small, i.e. 𝑚∗

InAs = 0.023𝑚𝑒 , allowing for level spacings on the order of meV.

The Rashba spin-orbit coupling in general takes the form of 𝛼 ⋅ (𝜎 × 𝑘⃗). Spin-orbit
coupling originates from the effective magnetic field that a moving electron feels in its
rest frame (from special relativity) while traversing an electric potential induced either
by electrostatic gates or the crystal lattice. This can be approximated for a 2-dimensional
system to

𝐻𝑅 = 𝛼𝑦 (𝑘𝑧𝜎𝑥 −𝑘𝑥𝜎𝑧) (2.13)

here 𝛼 denotes the Rashba spin-orbit strength. In InAs/InSb nanowire devices consid-
ered in this thesis, this spin-orbit strength is gate tunable and is typically between 5-
40meVnm (Liang and Gao, 2012; Albrecht et al., 2016; van Woerkom et al., 2017; Tosi
et al., 2019).

The Zeeman energy describes the inclusion of an externally applied magnetic field
𝐵

𝐻𝑍 = 𝑔𝜇𝐵𝐵 ⋅ 𝜎 (2.14)
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where 𝑔 is the Landé 𝑔-factor which depends on the material and for the semiconductors
used in this thesis ranges between 𝑔InAs = −15 and 𝑔InSb = −55. In the above, 𝜎𝑖 denotes
the Pauli matrices acting on the spin degree of freedom.

Superconductivity can be described in themean-field approximation by the Boguliobov
de Gennes Hamiltonian 𝐻BdG, given by (Bogoliubov et al., 1959; Tinkham, 2015)

𝐻BdG =(𝐻0+𝐻𝑅 +𝐻𝑍 Δ̃
Δ̃∗ −(𝐻0+𝐻𝑅)+𝐻𝑍

)
=(𝐻0+𝐻𝑅)𝜏𝑧 +𝐻𝑍 𝜏0+Δcos(𝜑/2)𝜏𝑥 +Δsin (𝜑/2)𝜏𝑦

(2.15)

where the complex superconducting pairing Δ̃ = Δcos(𝜑/2) + 𝑖sin (𝜑/2) to account for
the phase 𝜑 of the condensate wavefunction, mentioned here explicitely for its use in
describing Josephson junctions, and 𝜏𝑖 are the Pauli matrices acting on particle-hole space.
In the BdG Hamiltonian described above, particles and holes are included explicitely to
facilitate diagonalizing the Hamiltonian. This comes at the cost of artificially doubling
the number of solutions and should be corrected for later.

For the theory section and the non-interacting simulations in Chapter 5, tight-binding
simulations of the Josephson junction were performed using the Kwant package (Groth
et al., 2014), and in particular adapting code from Laeven et al. (2020).

Determining the BdG spectrum and many body states
Diagonalization of the BdG Hamiltonian yields the energies∑𝑖,𝜎 ±𝐸𝑖,𝜎 of the Andreev lev-
els (see e.g. Figure 2.4b,e), where the particle hole symmetry enforces a doubling of the
spectrum. These fully determine the system behaviour if we assume no interactions are
present. The low-energy Hamiltonian can be written as a sum over the Andreev levels to
construct the many body states

𝐻 =∑
𝑖,𝜎

𝐸𝑖,𝜎 (𝑐†𝑖,𝜎 𝑐𝑖,𝜎 − 1
2) (2.16)

Where 𝑐†𝑖,𝜎 is the creation operator for the diagonalized basis states with spin included
explicitely as an index 𝜎 . From this we obtain themany-bodywavefunctions by ”counting”
fermionic excitations present (see Figure 2.4c for the case of a single ABS). Zero excitations
gives the energy of the many body ground state |𝑉 ⟩³ with 𝐸𝑔 = − 1

2 ∑𝑖,𝜎 𝐸𝑖,𝜎 , and which is
a product state of the single-particle wavefunctions. The ground state depends on the
phase difference over the junction and other parameters, thus this is what carries the
supercurrent and the maximum current that this can carry is what is measured in standard
current-bias experiments (at exactly 0 temperature).

Excitations from many-body levels
When performingmicrowave, or tunneling experiments, one needs to consider excitations
from the ground state. Following Equation (2.16), in Table 2.3 the different states are

³Note that we indicate the ground state as the vacuum of ABS excitations to keep the notation clear, but this
should not be confused with a vacuum of electrons/holes, see e.g. Refs. (Bretheau, 2013; Datta and Bagwell,
1999) for a deep dive on this topic.
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n manifolds n states parity available basis states
1 2 even |𝑉 ⟩ , |↑𝑎↓𝑎⟩
1 2 odd |↑𝑎⟩ , |↓𝑎⟩
2 4 odd |↑𝑎⟩ , |↓𝑎⟩ , |↑𝑏⟩ , |↓𝑏⟩
2 6 even |𝑉 ⟩ , |↑𝑎↓𝑎⟩ , |↑𝑏↓𝑏⟩,

|↑𝑎↓𝑏⟩ , |↑𝑏↓𝑎⟩ , |↑𝑎↑𝑏⟩ , |↓𝑎↓𝑏⟩
2 6 even |𝑉 ⟩ , |↑𝑎↓𝑎⟩ , |↑𝑏↓𝑏⟩,

(with e-e interactions) 1
√2 (|↑𝑎↓𝑏⟩+ |↑𝑏↓𝑎⟩),

1
√2 (|↑𝑎↓𝑏⟩− |↑𝑏↓𝑎⟩) , |↑𝑎↑𝑏⟩ , |↓𝑎↓𝑏⟩

3 12 even many

Table 2.3: Available low-energy Andreev states dependent on the parity, occupation and number of manifolds
below the gap. The basis are chosen to illustrate the spin-content explicitely. For a description of the

even-parity basis states with e-e interactions, see Chapter 5

shown for the various occupations of the low-energy ABS when considering one or two
manifolds present in the junction. Microwave excitationsmust conserve fermion parity, as
photons are bosonic and cannot create fermions, so transitions between states when using
microwave drives are only between states that have the same parity of excitations in the
ABS. In order to show an overview of the various transitions and basis states for junctions
with one or two manifolds a lexicograph is given in Figure 2.3. Note that in Chapter 4 we
demonstrate that by exciting quasiparticles to a bath of fermions (the leads) it is actually
possible to change the fermion parity of bound states in the junction using microwaves.
But this still conserves global fermion parity.

Microwave absorption of Andreev states
In this section we follow the derivation outlined in van Heck et al. (2017) to obtain the
microwave response of Andreev bound states given the BdG spectrum. When amicrowave
signal is applied to the junction this can be seen as generating an AC voltage difference
over the junction 𝑉 (𝑡) = 𝑉0 cos(𝜔𝑡) at radial frequency 𝜔. This leads in first order to a time
dependent coupling term in the Hamiltonian

𝛿𝐻(𝑡) = ̂𝐼𝐴𝑉0/𝜔 sin(𝜔𝑡) (2.17)

Thus, using linear response theory, themicrowave absorption is proportional to the squared
absolute value of the matrix elements of the current operator ̂𝐼𝐴 between initial and final
states of the transition, scaled by the occupation of the initial and final states. The fre-
quency dependent admittance of the junction is given by 𝑌 (𝜔) = 𝑖𝜒(𝜔)/𝜔, where 𝜒(𝜔)
is the fourier transform of the response function that results from Equation (2.17). The
real part of the addmittance is proportional to the microwave absorption power, which is
what we are interested in and we quote the results below. The set of eigenvalues obtained
from diagonalizing 𝐻BDG +𝐸𝑚 ,−𝐸𝑚 , with corresponding eigenstates Ψ𝑚 ,𝒫 Ψ𝑚 , where 𝒫
denotes the particle-hole operator, can be used to evaluate the current matrix elements⁴

⁴We calculate the current operator 𝐼𝐴 with kwant by using a −𝜎0⊗𝜎𝑧 on-site matrix that is then filled into the
current operator. the current operator is evaluated on a vertical slice in the normal section (e.g the hoppings
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Figure 2.3: Lexicograph of the types of Josephson junctions and their correspondingAndreev levels and
possible transitions. Top row: Short junction where the junction length 𝐿 is much smaller than the coherence
length 𝜉 . Middle row: Long junction where is on the order of 𝜉 such that another Andreev manifold enters
below the gap. Bottom row: Long junction with spin-orbit coupling. Spin now becomes a relevant quantity
and the Kramers doublets split at finite phase difference. Due to spin-orbit coupling, the bands for different
spins are pushed and thus the group velocity (i.e. the derivative of the band vs k) at the Fermi level 𝑣𝑓 becomes
spin-dependent, yielding separate energies for the ABS. Indicated with dashed arrows are (i) Kramers doublet.
(ii) Ground state Andreev ”Cooper pair” (iii) continuum density of states.

𝑗𝑛,𝑚 = ⟨Ψ𝑛 |𝐼𝐴|Ψ𝑚⟩. The diagonal elements give the contribution to the supercurrent of a sin-
gle ABS level. The off-diagonal elements are those that determine the possible microwave
transitions. For pair transitions, consisting of breaking a Cooper pair and exciting two
ABS levels, i.e. the even parity spectrum, the result is

Re{𝑌𝑒(𝜔}) = 𝜋
𝜔 ∑

𝑛≥𝑚
|𝑗𝑛,𝒫 𝑚 |2𝛿(𝜔 − (𝐸𝑚 +𝐸𝑛)) (2.18)

where 𝑗𝑛,𝒫 𝑚 is defined as ⟨Ψ𝑛 |𝐼𝐴𝒫 |Ψ𝑚⟩, the energy eigenvalues are ordered and the Dirac-
delta function only selects frequencies that correspond to breaking a Cooper pair and
excite the two occupied levels 𝑛,𝑚. For single-particle transitions, where a quasiparticle
already in the junction is excited to a higher state, i.e. the odd parity spectrum, the result
is

Re{𝑌𝑜(𝜔)} = 𝜋
𝜔 ∑

𝑛≥𝑚
|𝑗𝑛,𝑚 |2𝛿(𝜔 − (𝐸𝑚 −𝐸𝑛)) (2.19)

where here the Dirac-delta function only selects frequencies that equal the difference be-
tween energies of level 𝑛,𝑚. If we include a finite temperature using Fermi factors, to
account for finite populations of excited states, this results in the total response

𝑅𝑒{𝑌 (𝜔)} = Re{𝑌𝑒(𝜔)} [1−𝑓 (𝐸𝑚)− 𝑓 (𝐸𝑛)]+Re{𝑌𝑜(𝜔)} [𝑓 (𝐸𝑚)− 𝑓 (𝐸𝑛)] (2.20)

between two columns of sites).
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where the Fermi-Dirac function at finite temperature T is defined as

𝑓 (𝐸) = 1
𝑒(𝐸−𝜇)/𝑘𝐵𝑇 −1 (2.21)

and the delta function 𝛿(𝜔) is replaced with a finite with Lorentzian function to emulate
finite linewidths of the transitions as is the case in any real experiment.
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Figure 2.4: Simulated short (𝐿 = 5nm) Josephson junction spectrum, many body states and excitation
spectrum. (a) (b-d) A single ABS manifold corresponding to the lowest subband, labeled 𝑎, is present inside
gap. (e-g) A second subband is occupied, thus a second ABS manifold, labeled 𝑏 becomes visible inside the
gap. (b,e) The BdG spectrum (limited to 32 states). (c,f) Many body levels (see (2.16)), corresponding to the
ground state |𝑉 ⟩, the degenerate excited odd parity states |↑𝑖⟩, |↓𝑖⟩ and the excited states |↑𝑖↓𝑖⟩ where 𝑖 ∈ {𝑎, 𝑏}
labels the manifold corresponding to the two subbands. The coloring of the states corresponds to the number
of quasiparticle excitations above the ground state present in each state ranging from 0 (black), 1 (orange) to 2
(blue), the minimum energy of |𝑉 ⟩ is subtracted in the many body spectra (d,g) Excitation spectrum(see (2.20))
where the energy of the pair transitions 𝑆𝑎 , 𝑆𝑏 are shown.

2.2.3 Short junctions
In the short junction approximation 𝐿 ≪ 𝜉 , the length of the normal section is neglected
resulting in 𝜙prop = 0, thus only 𝜙𝐴 plays a role. The solution to this including a barrier
that mimics disorder in the junction was calculated analytically (Beenakker, 1991)

𝐸𝐴 = ±Δ√1−𝜏 sin(𝜙/2)2 (2.22)

where 𝜏 ∈ {0,1} is a measure of the barrier strength in themodel. In Figure 2.4 an example is
shown of a numerical simulation of Equation (2.15) for a 5 nmwide junction. The energies
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resulting from diagonalization of the BdGHamiltonian are shown in Equation (2.15)(a) and
the many-body state energies inEquation (2.15)(b). For the many-body states, the ground
state disperses with phase and thus carries a current. The odd-parity states |↑⟩ |↓⟩ are
degenerate here and do not disperse, thus these carry no supercurrent. This ”blockade”
of supercurrent was clearly observed in the first time-resolved circuit-QED experiments
that probed Andreev states in hybrid nanowires and atomic break junctions (Janvier et al.,
2015; Hays et al., 2018).

Multiple transverse modes
We now consider a situations where a second transverse channel is occupied. This can
be seen as a generalization of Equation (2.22) for a single channel in Landauers picture
of conduction channels, each with their own effective transparancy 𝜏𝑖 (see Figure 2.4 (e-
g)). It is interesting to note that in this case, the odd-parity states |↑𝑎⟩, |↓𝑎⟩ of the lowest
manifold (manifold 𝑎) still have the dispersion of the second manifold 𝑏 and thus carry a
supercurrent, because only that manifold is ”blocked”.

Chemical potential dependence of ABS spectrum
In experiments performed in this thesis, the electrostatic gate voltage is often swept to tune
the density of ABS. This can be seen as changing the chemical potential of the nanowire,
and thus allowing tuning of the number of ABS in the junction. It is informative to look
at the junction spectrum at 𝜑 = 0 and 𝜑 = 𝜋 . If the junction is short and ballistic, the
behaviour is rather trivial, all states at 𝜑 = 0 stick to the gap edge and at 𝜑 = 𝜋 come down
as soon as the chemical potential is high enough for the Andreev approximation to hold,
i.e. no normal reflection at the N-S interface (see Figure 2.5a).

When the junction is short and disordered, as is the case in most experiments, (see Fig-
ure 2.5b), the transmission 𝜏 fluctuates with chemical potential dependend on the disorder
potential, thus the ABS at 𝜑 = 𝜋 fluctuate at finite energy dependend on the ratio of 𝜇 and
the disorder potential strength. At 𝜑 = 0 the ABS still stick to the gap edge.

Finally, in presence of a double barrier potential at each N-S interface (see Figure 2.5c),
resonant behaviour can occur as discussed below.

Effects of confinement in the junction region
A feature that is often observed in realistic experiments on nanowire junctions is that
the Andreev bound state energy at 𝜑 = 0 does not reach the gap Δ, and the gate depen-
dence shows resonant behaviour. This is experimentally often dubbed ”dotty” behaviour,
as the quasi-periodic⁵ resonant structure resembles that of the Coulomb diamonds in the
conductance through resonant levels in a quantum dot (see Figure 2.5c for an example
simulation including disorder and a double barrier potential). Beenakker and van Houten
(1992) calculated the modifications to the bound state energy for the case of having two
barriers at the sides of the junction (representing a quantum dot with negligable charging
energy). Generally, the modifications have to found by solving a transcendental equation
dependent on the resonant level energy 𝜖𝑔 , and tunneling rates through the double barriers

⁵Note that in actual nanowire quantum dots oscillations are not perfectly periodic. A metallic island with charg-
ing energy and zero level spacing has perfect periodicity, but as soon as the level spacing becomes sizable, it is
not periodic anymore. The spacing involves both energy scales and additionally particle-in-a-box levels have
increasing spacing with chemical potential.
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Figure 2.5: Chemical potential dependence of ABS spectra for three characteristic potentials. Top panels
show the positive BdG eigenenergies for 𝜑 = 0 (black) and 𝜑 = 𝜋 (red) versus chemical potential 𝜇. Bottom panels
show the microwave absorption spectrum ((see (2.20))), where 𝑓𝑎 denotes the frequency of the applied tone. (a)
A ballistic junction with no disorder potential. (b) More realistic junction with 8meV random on-site disorder.
The phase-dependence data from Figure 2.4 are taken close to the first (around 1meV) and second (around 8meV)
subband entry, with these disorder settings. (c) Junction with a strong confinement by a 20meV double barrier
potential. This creates Fabry-Perot like resonances and the ABS can peel off from the gap at 𝜑 = 0 even in a short
junction, as described in the Beenakker van Houten model.

Γ1, Γ2 (Beenakker and van Houten, 1992), however for some limits closed form expressions
can be found. For example in the case of equal tunneling rates through the left and right
barriers Γ1 = Γ2 = Γ, we obtain

𝐸𝐴 = ± Δ
1+Δ/Γ √1− ̃𝜏 sin2(𝜙/2) (2.23)
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where ̃𝜏 becomes additionally dependent on the resonant level energy (the distance from
being on resonance) and the tunneling rates. The effect of confinement can be seen as
a reduced coupling to the superconductor, hence the effective superconducting pairing
Δ∗ = Δ

1+Δ/Γ that the ABS ”sees” is reduced. In practise, these states can thus be modeled
simply using the earlier Beenakker formula (Equation (2.22)), but with a renormalized gap.
An important consideration is that for this behaviour to occur, only strong confinement
is necessary, no charging energy. The addition of (weak) charging energy to the solutions
of Andreev states is a topic of ongoing research and is further discussed in Section 2.2.6
and Chapter 5 and recent experiments (Matute-Cañadas et al., 2022; Fatemi et al., 2022;
Bargerbos et al., 2022).

Also in the recent works focusing on creating artificial Kitaev chains using two quan-
tum dots coupled with a superconducting section from our lab (Wang et al., 2022; Dvir
et al., 2023), these kind of confined ABS have been seen very clearly at 𝜑 = 0 and utilized
to couple neighbouring dots with a superconducting flavour at an energy of choice tuned
by using electrostatic gates to modify the chemical potential, and thus the distance to the
gap edge.

2.2.4 Consequences of finite junction length
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Figure 2.6: Consequences of finite junction length for a single occupied subband in the nanowire. (a)
BdG spectrum of a ballistic junction close to the first subband entry, where 𝐿 > 𝜉 . Multiple (spin-degenerate)
ABS appear with spacing of approximately 𝐸𝑇 < Δ. (b) Lower ratio of 𝐿/𝜉 than in (a), by increasing the chemical
potential to change the effective junction 𝐿/𝜉 length via 𝑣𝐹 (𝜇). (c) Zoom in of positive Andreev levels with (solid
lines) and without (dashed lines) random on-site disorder. Disorder opens up gaps at the crossings near 𝜑 = 0
and 𝜑 = 𝜋 because it couples left and right moving orbits. Note that this is an especially symmetric case, and for
a general disorder realization the size of the gaps at 𝜑 = 0,𝜋 does not have to be equal.

For junctions where the traversal time is sufficiently long, i.e. 𝐿 ≫ 𝜉 , and the phase
coherence in the normal section is sufficiently large, higher harmonics can arise similar to
a particle in a box. By combining Equations (2.7) and (2.8) into Equation (2.9) the following
transcendental equation for the ABS energies in a ballistic long junction is obtained (Kulik,
1970)

2arccos( 𝜖Δ)+( 𝐿𝜖𝜉Δ)±𝜙 = 2𝜋𝑛 (2.24)

where 𝑛 ∈ 𝑍 and 𝜙 is the phase difference over the junction. The first term relates to



2.2 Andreev reflection and Andreev bound states

2

23

the phase obtained from the evanescent part of the quasiparticle wavefunction that en-
ters the superconductor 𝜙𝐴 which includes the phase difference of the superconducting
condensates 𝜙 that is picked up. The second term comes from the phase gained during
propagation 𝜙prop by the electrons and holes that are propagating. The phase during prop-
agation for energies below the superconducting gap Δ can become more than 2𝜋 resulting
in the existence of mutliple solutions to Equation (2.9). The dispersion of each Andreev
level is then no longer given by Δ (as in the short junction case) but in the long junction
limit by the Thouless energy⁶ 𝐸𝑇 = 𝜋ℎ̄𝑣𝐹/𝐿, which can be seen from Equation (2.24).

So, if 𝐸𝑇 < Δ we get per conduction channel multiple ABS manifolds below the gap
Δ, with the number of manifolds roughly equal to Δ/𝐸𝑇 , because multiple solutions exist
to Equation (2.24). This ”stacking” of ABS for the lowest subband in a nanowire is shown
in Figure 2.6(a), (b) for a simulation of a 1 µm long junction with two different effective
coherence lengths set by the chemical potential.

Finite transparancy
A finite transparancy can again be modeled effectively by including a potential barrier in
the normal region, now at a position 𝑥0 (due to the finite junction length). The resulting
small modifications to the transcental equation above was calculated by Bagwell (1992)

2arccos( 𝜖Δ)+( 𝐿𝜖𝜉Δ)±𝛼 = 2𝜋𝑛 (2.25)

where the effective phase gained 𝛼 is defined by cos(𝛼) = 𝜏 cos(𝜙)+ (1− 𝜏)cos( (𝐿−2𝑥0)𝜖𝜉Δ ),
with again 𝜏 being the transmission probability through the barrier. A few things to note
here are: as the barrier is moved away from the center the transparancy decreases, addi-
tionally, the expression reduces to the expression for a single conduction channel in the
short junction limit of 𝐿→ 0 and to Equation (2.24) for 𝜏 → 1. The barrier couples right and
left movers, so the resulting spectra can also be interpreted as having an avoided crossing
between states that were right and left moving states without the barrier present in the
ballistic case.

An example of finite transparancy induced by disorder in the nanowire is shown in Fig-
ure 2.6(c) [solid lines].

Effects of spin-orbit coupling
In short junctions, if no magnetic field is applied, spin-orbit effects on the ABS spectrum
are minimized and the ABS energies remain degenerate ⁷. In general, a finite dwell time 𝜏𝑑
in the junction, either due to confinement or finite junction length, can cause the ABS lev-
els to spin-split in energy (Chtchelkatchev and Nazarov, 2003; Béri et al., 2008; Padurariu
and Nazarov, 2010; Reynoso et al., 2012).

The specific application of determining the microwave spectrum of a long Josephson
junction in a few-band nanowire with Rashba spin-orbit coupling was treated in Park and
Yeyati (2017) and recently signatures were experimentally detected in Tosi et al. (2019);

⁶This is generally defined in mesoscopic physics as the energy required for a propagating particle to gain a 𝜋
phase-shift during its trajectory.
⁷A derivation of the degeneracy based on the scatteringmatrix approach is given in (Chtchelkatchev andNazarov,
2003; Béri et al., 2008)
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Figure 2.7: Effect of Rashba spin-orbit coupling on the bandstructure and on the long-junction spectrum. (a)
Band structure without SOC. The chemical potential is indicated with dashed blue line. (b) bandstructure with
Rashba SOC. The second subband interacts with the lowest and changes the slope of the lowest band spin-
dependently, causing the splitting of ABS energies shown in (c). (c) Positive BdG energies of the ABS in a
ballistic junction without (dashed line) and with spin-orbit coupling, keeping other parameters fixed. Note that
the crossing between the upper two manifolds is still avoided, possibly because the chemical potential was
set near a subband entry, where the Andreev approximation does not fully hold, alternatively a small residual
scattering can be induced in simulations because of the finite length of the leads (set here to 3000 nm) that cause
normal reflection at the boundary.

Hays et al. (2020). To understand the origin of the spin-splitting, we consider the case
where the lowest subband is occupied (Figure 2.7(a)), spin-orbit coupling couples higher
subbands spin-dependently to the lowest band (Figure 2.7(b)) and therefore alter the curva-
ture of it. This subsequently creates a spin-dependence of the Fermi-velocity (Governale
and Zülicke, 2002), and thus can create a spin-dependent propagation-phase and construc-
tive interference condition for the ABS energies (Equation (2.10)). Alternatively, this can
be rewritten to result in an effective spin-dependent coherence length 𝜉 (𝑣𝐹 ), which al-
ters the transcendental equation for constructive interference (Equation (2.25)) of a long
junction to (Tosi et al., 2019)

𝜏 cos ((𝜆1−𝜆2) 𝜖/Δ∓𝜙)+ (1− 𝜏)cos ((𝜆1+𝜆2) 𝜖/Δ𝑥0) = cos (2arccos 𝜖/Δ−(𝜆1+𝜆2) 𝜖/Δ) ,
(2.26)

where 𝜆𝑖 = 𝐿/𝜉𝑖 = 𝐿Δ
ℎ̄𝑣𝑖 is a phenomenological parameter that illustrates the effect of a spin-

dependent Fermi-velocity (not to be confused with the London penetration depth 𝜆𝐿). The
ABS spectrum thus breaks spin-degeneracy, with a strength that depends on 𝜑 as shown
in Figure 2.7(c). This reduces to Equation (2.25) if 𝜆1 = 𝜆2 and can be interpreted as now
having a spin-dependent 𝜙𝜎prop as discussed above if 𝜆1 ≠ 𝜆2. However, note that spin is
no longer a good quantum number, as it is coupled to the orbital degree of freedom.

Microwave transition spectra of long junctions with SOC
We now have developed all ingredients to investigate a ”canonical” realistic example of
microwave transition spectra for a long junction with spin-orbit coupling, such as found
in InAs nanowire Josephson junctions. We focus on the lowest two manifolds illustrated
in Figure 2.8a, which is simulated using the parameters from Figure 2.7(c), with an added
random onsite disorder to simulate scattering (see Figure 2.8(a)). The disorder causes the
right and left moving states to couple, again opening gaps around 𝜑 = 𝜋,0.

The many body states for the two lowest manifolds are indicated in Figure 2.8b, which
are separated into odd or even parity by yellow or blue color shades respectively. An
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Figure 2.8: BdG eigenenergies, many body states and microwave transition spectrum of a long junc-
tion with spin-orbit coupling and disorder. (a) BdG eigenenergies of the lowest two junction states. (b)
Many-body levels corresponding to the states indicated. The coloring corresponds to the number of quasipar-
ticle excitations above the ground state present in each state ranging from 0 (black), 1 (orange) to 2 (blue). (c)
Microwave transition spectrum (see Eqs.2.18, 2.19). The transitions correspond to those indicated with the ar-
rows in (b). Dashed lines indicate transitions that involve a spin-flip, which are less visible in the absorption
spectrum on the right hand side. Δ = 0.2meV, 𝐿 = 1000nm,𝑊 = 120nm, 𝛼 = 60meVnm, 𝜇 = 2.9meV.

important distinction with the short junction scenario is that the dispersion of the ABS
many body states, and thus the supercurrent carried by them, now depends on spin.

We can again calculate the full microwave absorption spectrum using the current-
operator matrix elements (limiting the spectrum up to the third ABS manifold, i.e. ne-
glecting states in the continuum), following the description in section Section 2.2.2 at a
temperature of 250mK to emulate a finite population of the lowest ABS manifold. This
spectrum is shown in Figure 2.8(c) on the right hand side, while the left side highlights the
various transitions extracted by simply subtracting the ABS energies.

Starting from the even parity (𝑛 = 0,2) ground state |𝑉 ⟩, several transitions are possi-
ble (indicated with blue arrows in panel b and shown in panel c with the corresponding
label). We observe the singlet transition to the lowest manifold 𝑆𝑎 , indicated in blue, the
dispersion of this transition is very similar to the short junction case, but with a maximum
frequency much lower than the gap Δ because of the finite junction length limits it to 𝐸𝑇 .
Additionally it is possible to drive singlet pair transitions to the second manifold 𝑆𝑏 which
has an opposite dispersion as 𝑆𝑎 .

In the 𝑛 = 1 excitation odd-parity subspace, i.e. a quasiparticle is trapped in the junc-
tion, the available many body states are limited to those shaded yellow in Figure 2.8b.
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Intermanifold microwave transitions 𝐼ab are then possible between manifold 𝑎 and 𝑏, start-
ing from one of the low energy odd-parity states |↑𝑎⟩ , |↓𝑎⟩ in manifold 𝑎 to the final states
|↑𝑏⟩ , |↓𝑏⟩ of manifold 𝑏 (yellow arrows in panel b). This gives characteristic bundles of
four transitions (shown in panel c). The transitions that require a spin-flip are indicated
with dashed lines as they have a smaller matrix element, visible in the accompanying ab-
sorption spectrum. A direct spin-flip within a manifold 𝐷𝑎 ∶ |↓𝑎⟩ → |↑𝑎⟩ is also enabled
by spin-orbit coupling, but the matrix element is generally small at low magnetic field
(dashed orange line near zero in Figure 2.8c).

Additionally, in the even-parity (𝑛 = 0,2) subspace, new types of even-parity transitions
appear. We find sets of four even-parity mixed pair transitions to two different manifolds.
These are labeled 𝑀ab and denote transitions from |𝑉 ⟩ to the basis spanned by the states
{|↑𝑎↓𝑏⟩ , |↓𝑎↓𝑏⟩ , |↑𝑎↑𝑏⟩ , |↓𝑎↑𝑏⟩}.

An interesting observable feature is that transitions that require a spin-flip are gen-
erally much less visible compared to those that do not require a spin-flip. This is also
pointed out in measurements of the applied micrwowave drive power dependence of the
visibility intermanifold transitions in Hays et al. (2020), although the visibility depens also
on the exact chemical potential setting and the way transitions are driven as discussed
in Section 2.2.5.

Transitions in presence of a third manifold
In general, there are often more than two manifolds present in the junction, either due to
multiple transverse modes as shown in Figure 2.4 or due to higher harmonics from a finite
length junction as shown in Figure 2.8. To exemplify the consequences of more manifold,
the same simulated spectrum as in Figure 2.8 including the previously neglected thirdman-
ifold is shown in Figure 2.9. In Figure 2.9b, the additional transitions are indicated that
arise besides those shown in Figure 2.8b. Qualitatively, one new type transition that is
visible in the absorption spectrum is the intermanifold transition 𝐼𝑏𝑐 starting from an ex-
cited quasiparticle in manifold 𝑏. Although these are possible in real devices at the 250mK
temperature used in the simulation to emulate a higher effective quasiparticle population,
the short lifetime (∼ µs) of these states would generally make the quasiparticle relax to
manifold 𝑎 or recombine with another quasiparticle to the ground state. Qualitatively it
is already clear that the spectrum becomes crowded quite fast with increasing numbers
of manifolds considered, lovingly described as the ”beautiful mess” by Hays (2021), but
perhaps better described by ”Andreev spaghetti soup”.

Transitions to the continuum
So far, transitions involving the continuum have been neglected in the above spectra. The
reasoning behind this is that the final states of the continuum are extremely short-lived,
which subsequently makes pair transitions to the continuum states hard to observe in re-
ality. However, there are cases where the continuum can play a significant role in the
microwave spectra. This is the case for transitions that end up exciting a single quasipar-
ticle to the continuum, because as this quasiparticle quickly diffuses away, the result is a
clearly observable (incoherent) change of junction parity. These kind of transitions were
seen in switching current measurements under microwave irradiation at frequencies that
result in exciting a quasiparticle to the continuum (Bretheau et al., 2013b). Several theory
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Figure 2.9: Microwave transition spectrum of a long junction with spin-orbit coupling and disorder
with a third manifold. (a) BdG eigenenergies of the lowest three junction states. (b) Many-body levels corre-
sponding to the states indicated. The coloring corresponds to the number of quasiparticle excitations above the
ground state present in each state ranging from 0 (black), 1 (orange) to 2 (blue). (c) Microwave transition spec-
trum (see Eqs.2.18, 2.19). The transitions correspond to those indicated with the arrows in (b), where only the
transitions are drawn that are not shown in Figure 2.8. Dashed lines indicate transitions that involve a spin-flip,
which are less visible in the absorption spectrum on the right hand side. Δ = 0.2meV, 𝐿 = 1000nm,𝑊 = 120nm,
𝛼 = 60meVnm, 𝜇 = 2.9meV

studies have investigated mechanisms for microwave induced parity changes following
this experiment (Riwar et al., 2014; Riwar, 2015; Klees et al., 2017; Olivares et al., 2014).

In Chapter 4 we report on the observation of parity changes due to microwave irra-
diation in a circuit-QED setup, unexpectedly, also when we drive transitions that do not
involve continuum states directly. An explanation is proposed in the follow-up theoreti-
cal work from Ackermann et al. (2023). Interestingly, we can, dependent on the type of
transition driven, both trap and detrap a quasiparticle in the junction with a pulse much
faster than the quasiparticle switching time, allowing for a dynamical way to initialize
ABS parity.

Effect of magnetic field on band structure
First, we consider effect of the magnetic field on the bandstructure. In principle, a mag-
netic field splits the spin-degenerate bands as shown in the top left panel of Figure 2.10
linearly. However, spin-orbit coupling (top right panel) defines a competing quantization
axis of spin, coupled to the direction of momentum. Thus in presence of both spin-orbit
coupling and externally applied magnetic field, magnetic field generally opens up a gap
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Figure 2.10: Changes to the bandstructure due to an applied magnetic field. From top left to bottom right: Only
applied magnetic field, only SOC on, SOC on together with applied magnetic field perpendicular to the effective
magnetic field seen by propagtingmodes due to SOC and lastly SOC onwith appliedmagnetic field perpendicular
to the spin-orbit field.

when not aligned with the effective magnetic field seen by the propagating modes due to
SOC (bottom right panel). If the magnetic field direction is along the effective spin-orbit
field, the band-structure is tilted instead and no avoided crossings appear because there
still exists a common quantization axis for spin.

Because the band structure plays an important role in the shape of the interband spin-
flip transitions, the dispersion of these transitions could provide insight in the effective
spin-orbit coupling direction as proposed in Tosi et al. (2019).

2.2.5 Effect of magnetic field on the ABS spectrum
We now describe the effect of magnetic field on an isolated ABS manifold, in presence of
spin-orbit coupling. The main effect of magnetic field is to cause a linear Zeeman splitting
of the manifold. In Figure 2.11 we illustrate this. To first order, or for low magnetic field,
the magnetic field causes a linear Zeeman splitting. Denoting the manifold energies by
𝐸𝑎,↑, 𝐸𝑎,↓, the splitting of the Kramers doublet is as follows

𝐸𝑎,↑/↓(𝐵) = 𝐸𝑎 ± 1
2𝑔

∗𝑎 𝜇𝐵𝐵, (2.27)

here 𝜇𝐵 is the Bohr Magneton and 𝑔∗𝑎 is the effective g-factor of the manifold, which is
generally smaller or equal than the bare 𝑔-factor of the semiconductor, which will be clar-
ified in more detail below. The effect of splitting is schematically indicated in Figure 2.11b
for small fields.

To capture the effect of spin-orbit coupling, we proceed with an example of a short
(𝐿/𝜉 ≤ 1) junction in presence of magnetic field parallel to the wire and perpendicular
to the spin polarization axis for the Rashba spin-orbit term considered so far(see Equa-
tion (2.13)). The theory for this case is described in detail in van Heck et al. (2017). Here
we highlight the main consequences relevant for the experiments in this thesis using the
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Figure 2.11: Effect ofmagnetic field on an isolatedABS in presence of spin-orbit coupling. (a) Amagnetic
field is applied parallel to the propagation direction, and thus approximately perpendicular to the magnetic field
generated by the Rashba spin-orbit coupling. (b) Schematic of the effect of magnetic field on an isolated ABS
manifold. A degenerate level at low field is split linearly by the Zeeman energy with an effective g-factor 𝑔𝑎 < 𝑔
set by the chemical potential and spin-orbit coupling. When one of the spin-species crosses zero energy the
ground state changes parity. (c) Example simulation of BdG eigenenergies of a L=300 nm JJ at low chemical
potential such that only the lowest subband is occupied in presence of spin-orbit coupling at 𝜑 = 𝜋 . The low-
chemical potential and finite length allow a second manifold close to the gap edge to come in. However, we
ignore this level as it merges with the continuum at finite magnetic field, so the spectra and many body levels
are only plotted for the lowest manifold. (d) Many-body states associated with the BdG eigenenergies shown
in (c), where the energy of the ground state |𝑉 ⟩ at zero field is subtracted for all fields. (see Equation (2.16) ) (e)
Associated microwave absorption spectrum (see Equation (2.20)) plotted both in linear and log scale at T=250mK.
Parameters are Δ = 0.2meV, 𝐿 = 300nm,𝑊 = 80nm, 𝛼 = 20meVnm, 𝜇 = 2.5meV, 𝑔 = 15.

same microscopic model used so far in this Chapter. A representative example spectrum
is shown in Figure 2.11c for fixed phase difference 𝜑 = 𝜋 . For 𝜑 = 𝜋 , at 𝐵 = 0, the manifold
is degenerate, even in presence of spin-orbit coupling as visible in the phase dispersion
shown earlier Figure 2.7. At low fields the two eigenenergies corresponding to the states
|↑𝑎⟩ , |↓𝑎⟩ split linearly. The Zeeman term competes with spin-orbit interaction, hybridiz-
ing spin and orbital number, and thus spin is no longer a good quantum number (we do
still keep the same notation for convenience). At large enough field the dispersion be-
comes quadratic due to the coupling with higher energy states of the continuum induced
by the Rashba spin-orbit coupling. Without spin-orbit present, these states would simply
cross since they would have opposite spin.

Fermion parity switches: from singlet to doublet ground state
At large enough magnetic field, one of the spin-split eigenenergies can cross the Fermi
level (indicated with the black arrow in Figure 2.11c). At this point, the ground state
becomes that which has a single quasiparticle trapped in the junction (see the schematic
in Figure 2.11b). Hence this is called a fermion parity switch (fps), because the parity of
the number of fermions in the junction ground state changes⁸. This is a quantum phase

⁸Note that the transition is only a change of ground state parity, because if the transition is swept fast, the
junction will remain in the initial parity state unless a quasiparticle enters or leaves the ABS by a poisoning or
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transition from a ground state with singlet spin-character to a doublet ground state, thus
it is also often called a singlet to doublet transition. A related phenomenon is the so called
0-𝜋 transition, where the supercurrent reverses sign (van Dam et al., 2006), because the
energy minimum of the phase dispersion of the ground state is at 𝜑 = 𝜋 instead of 0. Often
a singlet-doublet transition is also a 0-𝜋 transition, but not necessarily, as it depends on
the dispersion of the odd-parity many body state. Even weak interactions can give a 𝜋
shifted contribution to the dispersion of the continuum for the odd parity many body
state, thus making a parity switch also a 0-𝜋 shift (Kurilovich et al., 2021). However, for a
short junction without spin-orbit coupling and interactions, when a quasiparticle enters
the junction at zero field, the supercurrent in that manifold is blocked and the odd parity
state is dispersionless (see section Section 2.2.3), thus having no 0-𝜋 transition. Magnetic
field then is able to cause a 0-𝜋 transition, but this is generally at higher field than the
singlet-doublet transition at 𝜑 = 𝜋 (Yokoyama et al., 2013).

The ground state parity switch can also be seen from the many body state energies,
shown in Figure 2.11d relative to the zero field ground state |𝑉 ⟩, where it becomes clear
that after the parity switch |↓𝑎⟩ is the new ground state.

Towards a directly driven superconducting spin(orbit)-qubit
Another important consequence of a magnetic field perpendicular to the spin-orbit field
is that the matrix element of spin-flip transitions increases, both between manifolds and
within a manifold (Park and Yeyati, 2017) ⁹. Together with an increase in population of
the |↓𝑎⟩ after the parity switch, this enables direct driving of the Andreev spin-flip 𝐷𝑎 ∶
|↓𝑎⟩ → |↑𝑎⟩, as visible in the microwave absorption of Figure 2.11e. However, note that the
matrix element calculated using the current operator in our model is generally still much
smaller than the pair-transition by a factor of 10−100 (van Heck et al., 2017). Therefore
the simulation settings in Figure 2.11 were chosen at a point close to the band bottom,
such that the low lying ABS manifold was only slightly dispersing, and both transitions
were equally visible in the absorption spectrum.

Experiments focusing on transitions involving a spin-flip, either in strongly coupled
junctions (Chapters 5 and 6, Tosi et al. (2019); Hays et al. (2020, 2021)), or in quantum dot
junctions (Chapter 7, Bargerbos et al. (2023a); Pita-Vidal et al. (2023a)), generally observed
for some gate-settings strongly visible spin-flip transitions. This points towards mecha-
nisms other than the current-operator considered in the model as the dominating driving
mechanism such as voltage modulation of chemical potential, barriers, g-factors or EDSR
which is currently an active topic of research (Hays, 2021; Metzger, 2022; Pita-Vidal et al.,
2023a).

Effective g-factor of ABS manifolds
As described by the start of this section, the 𝑔-factor of the Andreev manifold is not nec-
essarily equal to the bare g-factor of the semiconductor. Generally in hybrid systems,
dependent on the wavefunction weight in the superconductor and semiconductor, the 𝑔-
factor lies between that of the superconductor, which for Al is 2, and -15 (-55) for InAs
(InSb) (Winkler et al., 2019). For ABS in a junction with spin-orbit coupling, the effective

pair breaking event.
⁹see also the supplementary information of Chapter 5
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𝑔-factor depends on phase-difference, the bound state transparancy and chemical poten-
tial as well. For a short junction this was analytically calculated in van Heck et al. (2017).
In this work, a few trends can be seen: the effective 𝑔-factor decreases with increasing
chemical potential (i.e. the distance to the band bottom), as the effective spin-polarization
due to Rashba spin-orbit increases with the Fermi-velocity. For the transparency depen-
dence of the bound state two regimes can be identified. At low chemical potential such
that 𝜇 ≪ 𝑚𝛼2 the g-factor scales inversely with transparency, while for the opposite limit
𝜇 ≫ 𝑚𝛼2, the effective 𝑔-factor scales with increasing transparancy.

This has several consequences. First, the ABS transparency is highly tunable with
gates in presence of microscopic disorder, thus the effective 𝑔-factor is expected to vary
with gate, as observed in Chapter 5. Second, the effective 𝑔-factor of different manifolds
is expected to differ from one and another.

Additional effects of magnetic field
A detailed treatment of moremanifolds inmagnetic field and topological phase-transitions
is beyond the scope of this introductory theory and many existing works treat the effect
of magnetic field on the ABS spectrum theoretically (Cheng and Lutchyn, 2012; Väyrynen
et al., 2015; Peng et al., 2016; van Heck et al., 2017; Cayao et al., 2018; Zuo et al., 2017;
Murthy et al., 2020). Here I summarize some of the features that are relevant for the data
in our work.

• Chapter 4 describes the presence of at least two ABS manifolds (either due to mut-
liple conduction channels, or due to higher harmonics from a long junction), spin-
orbit coupling allows driving of mixed pair transitions to parallel spin final states that
can be seen as splitting a Cooper pair and exciting two Andreev levels in different
manifolds with similar spin direction. This implies a coupling of these states to the
ground state, thus inducing local triplet pairing in the junction ground state. This
local triplet pairing can be seen as the hybrid equivalent of the search for triplet su-
percurrent in junctions made of magnetic structures (Khaire et al., 2010; Robinson
et al., 2010; Sprungmann et al., 2010; Linder and Robinson, 2015) and metals with
spin-orbit coupling (Jeon et al., 2020; Cai et al., 2021; Yang et al., 2021; Ahmad et al.,
2022). The triplet Cooper pairs carry a net spin in the junction, which can be rele-
vant for spintronics applications– given the relaxation time of the spin in the leads
is sufficiently long. Additionally, this opens up even parity Andreev spin qubits, i.e.
manipulating the spin of Cooper pairs, coherently. However, it remains to be seen
if the ground state can be tuned into a spin-triplet state, as this was not yet shown
in our work in Chapter 5.

• When several conduction channels are populated, and in presence of spin-orbit cou-
pling, or orbital effect of the magnetic field, the ground state can have a free en-
ergy minimum at a phase difference other than 𝜑 = 0. This is called the anomalous
Josephson effect and implies in general that a DC supercurrent is flowing through
the junction without an applied phase difference (Krive et al., 2004; Zazunov et al.,
2009; Brunetti et al., 2013; Reynoso et al., 2012; Yokoyama et al., 2014, 2013; Bergeret
and Tokatly, 2015; Campagnano et al., 2015). In Chapter 5 we observe this effect
directly in the microwave spectrum.
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• For the type of hybrid superconducting-semiconducting nanowires studied in this
thesis, under specific requirements of disorder (Das Sarma and Pan, 2021), the com-
petition of spin-orbit coupling and the Zeeman effect induced by a parallel magnetic
field is predicted lead to a bulk triplet pairing (Lutchyn et al., 2010; Oreg et al., 2010;
Alicea, 2010; Potter and Lee, 2011), and the associated topological phase with Majo-
rana zero modes (Kitaev, 2001; Ivanov, 2001; Read and Green, 2000). The current
phase relation then becomes 4𝜋-periodic in the adiabatic limit¹⁰, because after a 2𝜋
phase evolution the ground state parity changes and only after a 4𝜋 rotation the junc-
tion is back to the original state. Signatures of this effect in the ABS (microwave)
spectrum are discussed extensively in Refs. van Heck et al. (2017); Peng et al. (2016);
Cayao et al. (2018); Väyrynen et al. (2015); Cayao et al. (2018).

2.2.6 Effects of electron-electron interactions
So far we have neglected electron-electron (𝑒 −𝑒) interactions present in the junction. The
considered case so far has been one where the superconducting leads are strongly coupled
to the junction region, and most charging effects are screened, thus neglecting charging ef-
fects seems to be a reasonable assumption. For the case ofweak coupling between the leads
and the normal region, such that effectively a quantum dot forms between the supercon-
ductor, it is well known that interactions play a strong role (Anderson, 1961; De Franceschi
et al., 2010).

A quantum dot weakly coupled to superconducting leads
We consider a junction where the normal region is only weakly coupled to the supercon-
ductor, for example by electrostatically defining tunnel barriers using gate electrodes in
a nanowire junction (as done in Chapter 7). Here, the model used so far is no longer ap-
plicable as the charging energy 𝑈 becomes an important energy scale. For example, for a

¹⁰ignoring quasiparticle number changing effects by interaction with the environment.
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Figure 2.12: Summary of the effect of interactions for a quantum dot weakly coupled to superconduct-
ing leads. (a) Representation of the single impurity Anderson model with superconducting leads and relevant
parameters. A single degenerate level at energy 𝜖 is coupled with tunneling rates Γ𝐿, Γ𝑅 to two superconducting
leads with gap Δ and phase difference 𝜑. (b) Sketch of the effect of interaction strength 𝑈 on the low lying singlet
and doublet states of the junction according to the Anderson model in the limit Δ→∞ relative to |𝑉 ⟩. (c) Effect
of spin-orbit coupling on the doublet states following the phenomenological model of Equation (2.29) described
in Padurariu and Nazarov (2010), in the regime where 𝑈 ≫ Γ,𝜖 and the doublet is the ground state. This type of
dispersion is observed in Chapter 7. Parameters used were those found in typical experiments ( Pita-Vidal et al.
(2023a), Chapter 7) 𝐸𝑆𝑂 = 1GHz,𝐸0 = 3GHz and 𝐸𝑍 = 0.
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quantum dot with a large level-spacing such that only a single level is relevant, charging
energy can be written as a term of the form

𝐻𝑐 = 𝑈𝑛↑𝑛↓, (2.28)

where 𝑛𝜎 = 𝑑†𝜎 𝑑𝜎 and 𝑑†𝜎 is the creation operator for an electron in the dot with spin 𝜎 .
Thus, 𝑈 represents the energy cost of adding an additional electron after one is already
present due to Coulomb interaction. The consequence of such a term is that it is in general
no longer possible to solve the BdG equation for the single-particle energies and add the
energy of occupied levels together to obtain the many-body states as we did before.

A well-known model for a quantum-dot Josepshon junction is generally given by the
extension of a single impurity Anderson model (Anderson, 1961) coupled to superconduct-
ing leads (Glazman andMatveev, 1994, 1989). A detailed derivation of such a model and its
solutions is beyond the scope of this work, but I refer the interested reader to a recent intro-
ductory chapter written by my colleague (Bargerbos, 2023), review articles (De Franceschi
et al., 2010; Martín-Rodero and Levy Yeyati, 2011; Meden, 2019) and references therein.

The solutions to the extended Anderson model can be parameterized with a few char-
acteristic parameters shown in Figure 2.12a. Namely, the charging energy 𝑈 , tunneling
rates to the left and right lead Γ𝐿, Γ𝑅, energy of the spin-degenerate level 𝜖, superconduct-
ing gap Δ in the leads and phase difference 𝜑 between the superconducting condensate on
the left and right side. The solution to this system is generally not analytically tractable.
Only in certain limits, such as the ”atomic limit” Δ→∞ analytic where BCS-like solutions
exist for the bound state energies (Meng et al., 2009) The main effect of interactions in
the Anderson model that I wish to highlight here is a predicted phase-transition bound-
ary between a singlet ground state and doublet ground state as 𝑈 becomes larger than
both the tunneling rates Γ𝐿, Γ𝑅 and the detuning of the level from the Fermi-level 𝜖, which
arises from the competition between charging energy and superconducting pairing( Fig-
ure 2.12b). Finally, note that the dispersion of the ABS found using the Anderson model
with 𝑈 → 0 reduces to that of a resonant level described by Beenakker and van Houten
(1992).

From Figure 2.12b can be seen that the doublet ground state is predicted to be degen-
erate in the Anderson model. It turns out that it is possible to obtain similar spin-split
dispersions for the doublet states in the weakly coupled regime of small Γ and large 𝑈 as
was shown earlier for the strongly coupled case of a finite length junction without charg-
ing energy( Figures 2.7 to 2.9). This behaviour was observed experimentally in our lab
a recent work Bargerbos et al. (2023a) for 𝑈 ∼ 10Δ. Similar to the strongly coupled case
these effects appear when considering multiple orbitals and spin-orbit coupling. Analo-
gous to spin-dependent Fermi-velocities causing the propagation phase and thus the An-
dreev bound state energy to become spin-dependent ( Equation (2.9)), now the effect is
captured by effective spin-dependent tunneling rates Γ↑,↓𝐿 ,Γ↑,↓𝑅 . Including multiple orbitals
and spin-orbit coupling with interactions, and without considering explicit limiting cases
for Δ,Γ𝐿,𝑅, makes the model not analytically solvable, thus in Bargerbos et al. (2023a)
numerical renormalization group methods were used to model the data. However, an ef-
fective model proposed by Padurariu and Nazarov (2010), turns out to accurately predict
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the doublet state phase dispersion

𝐻 = 𝐸0 cos(𝜑)−𝐸SO sin(𝜑)𝑛 ⋅ 𝜎 + 𝐸𝑍
2 𝜎. (2.29)

Here 𝑛 denotes the direction of the spin-orbit field, which for a quantum dot can in general
point in an arbirtrary direction dependent on the disorder potential and gate voltage (Han
et al. (2023); Pita-Vidal et al. (2023a), Chapter 7), 𝜎 the spin operator, and 𝐸0 and 𝐸SO
are energies of which the magnitude depends on spin-independent and spin-dependent
tunneling respectively and 𝐸𝑍 describes the effect of magnetic field. The simple Equa-
tion (2.29) fully describes the energy phase-relation of a superconducting spin embedded
in a quantum dot (see Figure 2.12c), where the quantum dot adds the advantage of stabiliz-
ing the odd-parity doublet state as the ground state (since quasiparticle poisoning events
become much less energetically favorable with increasing 𝑈 ). This is employed in Pita-
Vidal et al. (2023a), Chapter 7 to built a superconducting spin qubit without the constant
uncontrollable parity switches that we observe in Chapters 4 and 5 and were present in
the first superconducting spin-qubit implementations Hays et al. (2020, 2021).

Interactions in the strongly coupled regime
Now onemight wonder, are interactions relevant in the strongly coupled regime (Γ,Δ > 𝑈 ),
where 𝑈 is mostly screened away? It turns out that even a small 𝑈 can have a non-
negligable effect on the ABS spectra and the microwave response (Kurilovich et al., 2021;
Fatemi et al., 2022; Matute-Cañadas et al., 2022). For pair transitions to multiple mani-
folds, even small interactions compared to the gap can cause significant corrections to the
many-body ABS energies as presented earlier in this section, in the form of singlet-triplet
splitting at zero field (Padurariu and Nazarov, 2012; Matute-Cañadas et al., 2022). Addi-
tionally, interactions cause a particle-number dependent energy shift of the odd states
relative to the even-parity states as shown for a single level in Figure 2.12b, complicating
fitting of the spectra without considering interactions. In Chapter 5 we study the effect
of interactions as a perturbation the ABS excitations and measure the evolution of triplet
ABS excitations in magnetic field. This can be seen as an equivalent to how interactions
create singlet-triplet splittings in multi-orbital quantum dots (Kouwenhoven et al., 2001).
Here the interaction manifests as an effective exchange interaction −𝐽𝑆2 where 𝑆 is the
total spin of the two excitations similar to what was predicted for an isolated mesoscopic
grain (Kurland et al., 2000). We refer the interested reader to Chapter 5 for more details.
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2.3 Embedding Josephson junctions in a superconduct-
ing circuit

The use of superconducting resonators to perform readout of some system of interest
is based on techniques stemming from quantum optics, namely cavity quantum electro-
dynamics(cQED) (Walls and Milburn, 2008) aiming at increasing the naturally extremly
weak interaction between ligth and matter. A cavity (resonator) is used to increase the
electric field strength locally and increase interaction with the dipole moment of atomic
transitions. In circuit-QED, the cavity is implemented by a superconducting resonator and
often the atom is replaced with a superconducting circuit, where the capacitively shunted
cooper pair box qubit (transmon) is a famous example (Blais et al., 2004; Koch et al., 2007).
For transmon qubits the coupling is capacitive, however, probing Andreev bound states in
a Josephson junction naturally requires an inductive coupling instead, more akin to flux-
qubits. These can be seen as the dual of charge qubits like the Cooper pair box and arose
around the same time (Chiorescu et al., 2003). The essential ingredients for describing the
inductive coupling of superconducting circuits to ABS will be explained in this section.

2.3.1 A Resonator galvanically coupled to a Josephson junction
A lumped-element model of a typical resonant circuit is shown in Figure 2.13a, consisting
of a capacitance 𝐶𝑟 and inductance 𝐿𝑟 to ground. The circuit acts as a harmonic oscillator
with a fundamental resonance frequency 𝜔𝑟 = √1/𝐿𝑟𝐶𝑟 , which can be described the single
mode Hamiltonian 𝐻𝑅

𝐻𝑅 =ℎ̄𝜔𝑟 (𝑎̂†𝑎̂ + 1
2) (2.30)

where 𝜔𝑅/2𝜋 is the resonator mode frequency.
In order to utilize the resonator to probe the properties of the nanowire Josephson

junction as done in Chapters 4 to 6, we embed the nanowire Josepshon junction in a rf-
SQUID and place it in series with the inductance of the resonator as shown in Figure 2.13b.
Initial experiments focusing on circuit-QED probing of Andreev bound states coupled via
placing the SQUID loop close to a current antinode (where the magnetic field fluctuations
are largest) of a distributed element resonator, creating a mutual inductance between the
loop and resonator (Janvier et al., 2015; Hays et al., 2018; Tosi et al., 2019). Here we use
a direct galvanic connection between the resonator and SQUID loop in combination with
high kinetic inductance material instead, which has the advantage that the coupling does
not depend on the loop size. This allows to make the effective area of the loop ∼ 3 orders
of magnitude smaller compared to earlier works (Tosi et al., 2019; Hays et al., 2018, 2020,
2021), which reduces flux noise in a largemagnetic field. As explained in the following, the
resulting coupling between the resonator mode and the degrees of freedom of the junction
can still be written as a mutual inductance term.

The degree of freedom belonging to the Andreev states in the junction are described
by 𝐻𝐴(𝜙), where 𝜙 is the superconducting phase difference between the leads. This phase
difference is further perturbed by a small AC flux coming from the resonator mode (Hays
et al., 2020; Bretheau, 2013), such that the total Hamiltonian is given by

𝐻 = 𝐻𝑅 +𝐻𝐴(𝜙 +𝑝 ̂𝜙𝑧𝑝𝑓 ) (2.31)
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Figure 2.13: Diagrams of superconducting (an)harmonic oscillator circuits used to investigate the nanowire
Josephson junctions in this thesis ordered by increasing anharmonicity and sensitivity of the resonance fre-
quency to the junciton inductance 𝐿𝑗 from left to right. (a) Harmonic oscillator circuit consisting of a linear
capacitance and inductance. (b) Same LC circuit, but with an rf-SQUID put in series with the inductance of the
resonator, used in Chapters 4 to 6 for probing the Andreev spectrum. (c) Transmon circuit where the non-linear
inductance of the Josephson junctions determines all of the inductance of the LC oscillator, making it an an-
harmonic oscillator. This was used in Chapter 7 to enable stronger coupling of the resonance frequency to the
inductance of the nanowire Josephson junction. There, to facilitate readout in presence of the increased anhar-
monicity, the circuit in (c) was coupled capacitively to an additional readout resonator as shown in (a).

where 𝜙 is fixed by the externalmagnetic flux and 𝑝 ̂𝜙𝑧𝑝𝑓 =𝑝 Φ𝑧𝑝𝑓
𝜙0 (𝑎̂+𝑎̂†). In this expression,

𝑝 is the fraction of the resonator mode voltage that drops across the junction. The partici-
pation ratio can be approximated by 𝑝 ≈ 𝐿𝑠

𝐿𝑠+𝐿𝑅 in the limit 𝐿𝑗 ≫𝐿𝑠 . The zero-point fluctua-

tion of the mode Φ𝑧𝑝𝑓 = √
ℎ̄𝑍𝑅
2 is set by the total resonator impedance 𝑍𝑅 = √

𝐿
𝐶 (Vool and

Devoret, 2017). Using a second order Taylor expansion around 𝜙, the Hamiltonian can be
written as

𝐻 ≈ℎ̄𝜔𝑅 (𝑎̂†𝑎̂ + 1/2)+𝐻𝐴(𝜙)+
𝜕𝐻𝐴
𝜕𝜙 (𝜙)

𝑝𝜙𝑧𝑝𝑓
𝜙0

(𝑎̂ + 𝑎̂†)

+ 1
2
𝜕2𝐻𝐴
𝜕𝜙2 (𝜙)

𝑝2𝜙2𝑧𝑝𝑓
𝜙20

(𝑎̂ + 𝑎̂†)2
(2.32)

Additionally, the rotating wave approximation yields ¹¹

𝐻 = (ℎ̄𝜔𝑅 +
𝜕2𝐻𝐴
𝜕𝜙2

𝑝2𝜙2𝑧𝑝𝑓
𝜙20

)(𝑎̂†𝑎̂ + 1/2)

+𝐻𝐴+ 𝜕𝐻𝐴
𝜕𝜙

𝑝𝜙𝑧𝑝𝑓
𝜙0

(𝑎̂ + 𝑎̂†)

= (ℎ̄𝜔𝑅 + 𝐿̂−1𝐴 𝑝2𝜙2𝑧𝑝𝑓 )(𝑎̂†𝑎̂ + 1/2)
+𝐻𝐴+ ̂𝐼𝐴𝑝𝜙𝑧𝑝𝑓 (𝑎̂ + 𝑎̂†)

(2.33)

¹¹dropping fast rotating terms involving 2 resonator photons 𝑎̂†𝑎̂†, 𝑎̂𝑎̂ and making use of [𝑎̂, 𝑎̂†] = 1
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where we dropped the explicit dependence on 𝜙 and in the last line we used the definition

of the inverse inductance operator 𝐿̂−1𝐴 = 1
𝜙20

𝜕2𝐻𝐴
𝜕𝜙2 and the current operator ̂𝐼𝐴 = 1

𝜙0
𝜕𝐻𝐴
𝜕𝜙 .

From this we can see two contributions to the resonator frequency.
One inductive part from the second order term: ℎ̄𝜒2 ≈ ⟨𝐿̂−1𝐴 ⟩𝑝2𝜙2𝑧𝑝𝑓 due to the effective

inductance of the Andreev states. This shift is the same as you would get when you con-
sider the junction as a classical inductor with inverse inductance given by ⟨𝐿̂−1𝐴 ⟩. Recently
in our lab, radio-frequency measurements of quantum capacitance 𝐶𝑞 ∼ ( 𝑑2𝐻𝑑𝑞2 )

−1
(de Jong

et al., 2019), where 𝑞 is the charge, have led to fast high-fidelity readout of quantum dots.
Thus, for radio-frequency readout of Josephson junctions, the readout of quantum induc-
tance can be seen as the dual of quantum capacitance as charge is the dual of phase. A
good summary of this viewpoint can be found in Park et al. (2020).

One other contribution to the resonator frequency shift comes from the first order cou-
pling term ̂𝐼𝐴𝑝𝜙zpf (𝑎̂ + 𝑎̂†) ¹². As shown in Section 2.3.2, the current operator correspond-
ing to a single Andreev level is generally not diagonal in the basis of energy eigenstates,
and contains an off-diagnal 𝜎𝑥 term (Zazunov et al., 2005; Metzger et al., 2021), where 𝜎𝑖
denote the Pauli matrices for the two-level system spanned by the Andreev states under
consideration. This term leads to a typical dispersive shift of the resonator frequency as
discussed below for the simplest pair transition example.

In the design of the shunt inductance for the SQUID there are two practical constraints:

• The shunt inductance 𝐿𝑠 must be much smaller than the resonator inductance 𝐿𝑟
to keep the resonator sufficiently linear. This ensures that the resonator frequency
remains fixed up to a reasonable average photon-number occupation used for read-
out.

• The shunt inductance must be small enough to ensure a linear relation between the
applied flux through the loop and the resulting phase drop over the junction. The
calculation for this geometry is provided in Chapter 5.

2.3.2 Short junction expression for resonator-junction coupling
We now discuss how the current and inductance operators would look like for the general
expression of Equation (2.33) in the simplest case where𝐻𝐴 consists of a single manifold in
the short junction limit as described by Beenakker (1991). Themicrowave transition under
consideration is the pair transition, where a cooper pair is broken and two degenerate ABS
levels are excited (shown schematically in the upper row of Figure 2.3).

Assuming a single transparent ABS doublet, the current operator can be written as (Za-
zunov et al., 2003, 2005; Bretheau, 2013):

̂𝐼𝐴 (𝜙) = 𝐼𝐴 (𝜎𝑧 + √1−𝜏 tan (𝜙/2)𝜎𝑥) (2.34)

¹²Note that the term ̂𝐼𝐴𝑝𝜙zpf (𝑎̂ + 𝑎̂†) is simply the product of current and voltage drop over the junction, which
could have been written down directly as well as the coupling term, i.e. 𝐻𝑐 = 𝐼𝐴𝑉RMS/𝜔𝑟 . This term is a bit
more intuitive at it is clear that this has units of energy and shows how the voltage induced by the resonator
drive a current through the JJ. However, it is nice to see that the Taylor expansion results in the same term if
only expanded up to first order.
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where and 𝐼𝐴 = Δ∗
4𝜙0

𝜏 sin(𝜙)
√1−𝜏 sin2(𝜙/2)

is the expected supercurrent for a single transparent chan-

nel, and 𝜎𝑖 indicate the Pauli matrices for the two-level system spanned by the even parity
subspace. The inductance operator is given by

𝐿̂−1𝐴 (𝜙) = 𝐿−1𝐴 (𝜙)(𝜎𝑧 −
2√1− 𝜏 sin (𝜙)
𝜏 + (2− 𝜏)cos (𝜙)𝜎𝑦), (2.35)

with 𝐿−1𝐴 = 𝐼𝐴
𝜑0

𝜏+(2−𝜏)cos(𝜙)
2sin(𝜙) .

Combining Eqs. (2.33) and (2.34) we obtain an effective coupling strength to first order

ℎ̄𝑔 = 𝑝𝜙zpf𝐼𝐴 √1−𝜏 tan (𝜙/2), which yields a dispersive shift 𝜒disp = 𝑔2
(𝜔𝐴−𝜔𝑟 ) . The inductive

shift is given by combing Eqs. (2.35) and (2.33) yielding 𝜒ind = 𝑝2𝜙2zpf𝐿−1𝐴 /ℎ̄, which be-
comes the dominant contribution away from 𝜙 = 𝜋 for highly transparent ABS. The total
resonator shift 𝛿𝑓 is obtained by summing the dispersive and inductive shift

2𝜋𝛿𝑓 (𝜙) = 𝜒disp(𝜙)+𝜒ind(𝜙). (2.36)

In Figure 6.14 we plot the resulting dispersive and inductive shift and their sum, these
are used to fit the data in Chapter 6. For more complex situations, involving longer junc-
tions and spin-orbit coupling, i.e. multiple ABS manifolds and odd-parity states, the total
shift is the sum of all invidual shifts caused by each possible transition between available
ABS levels. Recently, Metzger et al. (2021) beautifully mapped out how each of the possible
transitions contribute to the total resonator frequency shift, without a magnetic field and
e-e interaction present. Additionally, in presence of interactions Kurilovich et al. (2021)
show that the continuum, which is often neglected, also plays a non-negligable role in
the total shift. Although at the time of writing of this thesis, no explicit works aimed at
calculating the expected resonator shifts in magnetic fields exist, examples do exist that
discuss the linear microwave response (the first order term) in presence of magnetic field,
e.g. van Heck et al. (2017); Peng et al. (2016) for short junctions and Väyrynen et al. (2015)
for longer junctions.

2.3.3 Embbeding the nanowire Josephson junction in a transmon
For the experiments of Chapter 7 we embedded the nanowire Josephson junction into a
transmon circuit as shown in Figure 2.13c. This can be seen as the limit where 𝑝 → 1
and thus the ”resonator” inductance is dominated by the non-linear inductance of the
junction and the oscillator becomes anharmonic. This allows for stronger sensitivity of
the resonance frequency of the transmon to the states in the junction, which is useful to
detect spin-splitting and ground state properties. Additionally, by coupling an additional
(linear) readout resonator to the transmon, the sensitivity can be tuned in situ by moving
the transmon frequency either closer or further away from the resonator, this additional
tuning knob was exploited with success in the recent works from our group (Bargerbos
et al., 2022, 2023a; Pita-Vidal et al., 2023a).

The description of the transmon becomes somewhat different compared to the descrip-
tion of the coupling between the harmonic oscillator and the junction. So far, we have
considered the phase difference over the Josephson junction as a classical variable. In a
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transmon circuit, the phase-fluctutations are no longer small and thus, the macroscopic
phase difference over the JJ is no longer a good quantum number and we have to replace it
with a quantum operator. The typical Hamiltonian for a transmon circuit is given by (Koch
et al., 2007)

𝐻𝑇 = 4𝐸𝐶 𝑛̂2+𝐻𝐽 ( ̂𝜙) (2.37)

Where 𝐸𝐶 = 2𝑒2
𝐶Σ is the charging energy of the island and 𝐶Σ the total island capacitance.

For a tunneling junction, or a nanowire junction openedwith a gate into themany channel
regime we obtain to first order:

𝐻𝐽 = −𝐸𝐽 cos( ̂𝜙) (2.38)

The anharmonicity 𝛼 of the transmon is approximately 𝛼 = −𝐸𝐶 and the charge dispersion
scales as 𝑒−√8𝐸𝐽/𝐸𝐶 . To illustrate some numbers, for Chapter 7 we use 𝐸𝐶/ℎ = 200MHz
(𝐶Σ = 100fF) and 𝐸𝐽/ℎ ∼ 6− 20GHz, which is tunable with the gate voltage underneath
the nanowire. Thus we have 𝐸𝐽/𝐸𝐶 ≥ 30.

In our experiments SQUID loop in Figure 2.13 contains two junctions, thus the total
Hamiltonian is given by

𝐻𝑇 = 4𝐸𝐶 𝑛̂2+𝐻𝐽 ( ̂𝜙)+𝐻𝐴( ̂𝜙 −𝜙𝐸) (2.39)

where 𝜙𝐸 = 2𝜋Φ𝐸/Φ0 , if the Josephson junction is a quantum dot as used in Bargerbos
et al. (2022, 2023a); Pita-Vidal et al. (2023a) and Chapter 7, 𝐻𝐴(𝜙) = 𝐸𝐼𝐽 cos(𝜙)+𝐸𝜎𝐽 𝜎𝑧 sin(𝜙)
(as discussed in Section 2.2.6), where 𝐸𝐼𝐽 denotes the spin-independent contribution, 𝐸𝜎𝐽 the
spin-dependent contribution and 𝜎𝑧 refers to the spin degree of freedom of the Andreev
spin. In Chapter 7, we describe the extension of this circuit for creating strong spin-spin
coupling. There we embed two Andreev spin qubits in the SQUID by adding another
junction in paralllel as proposed by Padurariu and Nazarov (2010).
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3
Experimental methods

Beter één vogel in de hand, dan tien in de lucht…

Dutch proverb

This chapter is authored by Jaap J. Wesdorp and Marta Pita-Vidal and adapted to fit each thesis.
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3.1 Superconducting chip design
In this thesis, we use superconducting circuits to probe physics with radio-frequency (RF)
microwave signals. The advantage of using superconducting circuits as a tool to probe
condensed matter is that it allows to design for high sensitivity to the device under test
and high energy resolution spectroscopy. This unfortunately comes with a drawback: the
circuit design becomes non-trivial. Thus, the lead time to go from an experimental idea
towards actually starting the fabrication is often much longer compared to using conven-
tional DC-transport techniques. Additionally, all time spent on optimizing and designing
the circuit is time not spent on studying the underlying physics. For this purpose, we have
tried to optimize the workflow in our team to allow for the least possible time lost in the
design and fabrication¹, which is summarized in Fig. 3.1.

Set target Design Simulation
• MW office
• Comsol

Short CD
• SC circuit only

Long CD
• Fully fabricated

• Parametrized
   in gdspy

Fabricate

Screen
• OM, Probe,
       SEM

1

2

• Analytics

3

4

Figure 3.1: Device creation process. Each block describes a process performed, with arrows indicating the next
step. At some points, arrows point towards steps that have already been performed and create feedback loops
(same shade background) that describe iterative processes. The numbers indicate the smallest enclosing feedback
loop. For example, loop 1 is the iterative process where the output of the design is simulated and subsequently
modified to converge towards the target parameters. Detailed explanation for the steps and acronyms can be
found in the main text.

The first step of every project is to set the target. Next to the wish-list of on-chip
components, this consists of analytical calculations of desired couplings and frequencies
and how that translates to physical capacitances, inductances and size. This is followed by
coding up the chip design, which is done in Python using the gdspy package. The design
step results in a .gds file, which is a standard integrated circuit (IC) fabrication file type
and consists of layers of 2-dimensional patterns that each represent an e-beam lithography
patterning step. The design philosophy here is, that by defining the chip design in Python,
each chip element can be parameterized and thus quickly adapted when needed, without
requiring a complete overhaul of all other parts of the design. This requires initially more

¹Unfortunately this is still in general a considerable fraction of the total time spent in a project and improvements
the flow are definitely welcome and recommended.
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effort on the design side compared to using graphical drawing software such as AutoCAD
(which used to be the standard in our group), but saves a lot of time in the following
iteration steps. A second advantage is that one has programmatic access to the geometry,
allowing estimations of the total inductance of a resonator instantly when changing the
design.

We then perform simulation of the circuit layer in Comsol for calculating capacitances
and in Microwave Office (MWO) for obtaining resonator frequencies and coupling quality
factors. Here we tried to automate as much as possible by making the design code output
an inverted version of the superconducting circuit layers and include only a small ground-
plane region around each resonator to limit the simulation time. Microwave Office uses
a finite element simulation of the microwave response with a 2.5-dimensional method of
moments solver, which can efficiently combine layers, i.e. dielectrics, that do not vary in
the x-y plane with circuit layers that do vary. This is especially suited for IC design sim-
ulation. The simulations often result in design changes, as indicated by loop 1 in Fig. 3.1.
For the Microwave Office simulations to be accurate, the dielectric constant of the Si sub-
strate, 𝜖𝑟 = 11.7, and the kinetic inductance per square, around 10pH/□ for a 20 nm thick
NbTiN film , are added as material settings.

When the simulations indicate that the couplings, quality factors and resonance fre-
quencies are as desired we continue towards the fabrication of the chips, of which the
precise steps are described in section 3.2. During the fabrication, each step and the final
result is screened using for instance optical microscopy (OM), probing of the sheet resis-
tance of the NbTiN film and scanning electron microscopocy (SEM) to get accurate doses
for the sub-micrometer wide features such as the inductors and gates. The screening at
each fabrication step can provide early warning signs that a step failed and the fabrication
should start over, indicated with loop 2 in Fig. 3.1. To increase the yield when faced with
many required fabrication steps, we often fabricate in a pyramid-scheme where we start
out in the first step with several dies with many chips each (as there is often no additional
time cost associated with doing a single step on many chips). Subsequent steps are then
performed only on a selection of the devices such that when a step inevitably fails the
chips that are one step behind can be used and the fabrication can be continued. The hope
is that, at the last step, we are left with at least one working device, without having to
start the whole pyramid anew.

When a design is new and untested, we generally first perform the fabrication steps
involving only the superconducting circuit patterning, which is then loaded in either a
quick-test fridge² or (if available) the dilution refrigerator for a short cooldown (CD). This
only takes a few days of loading and cooling down and can already show whether the
circuit is behaving as designed and the resonators are ”alive”. As this is unfortunately often
not the case, feedback loop 3 indicates going back to the design phase and updating the
circuit design before running this test again. This step also serves as the best feedback on
what kinetic inductance we should use in the simulations to target resonator frequencies,
as this can vary typically by approximately 10 − 20% for 20nm NbTiN films, dependent

²Often we use the Heliox, a dipstick kindly made available to us from the neighbouring superconducting qubit
group of L. DiCarlo. This dipstick includes a sorb with He−3 and can reach 300mK, which is well below the
9 K critical temperature of NbTiN films. Additionally, below 1K we generally don’t see the internal quality
factors of the resonators decrease so this can also test how well the resonator design in combination with the
fabrication stack performs.



3

44 3 Experimental methods

on whether it is a newly deposited film and location on the wafer. If this step succeeds,
it dramatically increases the certainty that when you claim you need time in the dilution
refrigerator (and ask your coworkers to deposit nanowires for you), you can actually use
it to measure a working device! Finally, the last and the longest loop, number 4, indicates
that after a long cooldown (CD), we still find features in the circuits that can be improved
in next design generations or in designs of other group members. This serves more as
a ”collective memory” of the group. Examples of these elements include optimization
of the gateline filter order, resonator shapes and geometry, hole-patterning areas, and
asymmetric input ports for the feedline.

3.1.1 Description of superconducting circuit elements
In this section we give an overview of the typical elements used in our superconducting
circuits, accompanied when relevant with simulations.
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Figure 3.2: Feedline withmultiple devices coupled to it for transmission readout. (a) Zoom in of example
lumped element resonator that is capacitively coupled to the feedline (dashed box in (b)). The capacitance of the
resonator is implemented using an in-plane capacitance to ground 𝐶r and to the feedline 𝐶c. The capacitor plate
is connected to ground via an thin meandering strip of NbTiN that has a high kinetic inductance 𝐿r forming the
LC resonance circuit. (b) Left and right sides of a full (7mm-long) chip with in total 9 resonators (3 not shown)
coupled to it, which was fabricated for a resonator test run.

The feedline
All our devices start with a feedline, this is an impedance-matched coplanar waveguide
that has an input and output port (see Ref. Pozar (2012) for an introduction to distributed
element microwave components). Since the characteristic impedance of commercially
available coaxial cables is 50Ω, we match the printed-circuit board lines (see section 3.3.2)
and the on-chip waveguides to have 50Ω characteristic impedance as well. This is done
to minimize reflections that arise from impedance mismatches, and thus allow most of
the signal that we send to our device to arrive there. Additionally, due to interference, a
not-well matched configuration can have standing waves which appear as resonances, or
large (periodic) peaks/dips in the transmitted signal through your system³.

Although, in principle, a feedline is not needed ―one can simply bond from the PCB
to a resonator directly, as is often done― we generally employ it because it allows us
to use one input/output line with multiple coupled devices⁴. The number varies gener-

³The appearance of spurious dips/peaks in the transmitted signal through a set of lines is often used as an indi-
cation that there is some issue with a cable and for the trained eye the shape or frequency of the dip(s) can tell
a lot about what the precise issue is!
⁴We generally call one resonator a device, as it then either incorporates the nanowire as part of the induc-
tance (Chapters 4 to 6), or a transmon coupled to it, which contains the nanowire SQUID loop (Chapter 7).
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ally between 2 and 8 depending on the size of each device and other required input lines.
This allows us to increase the chances of obtaining a working device in a single cooldown.
When using nanowires or other semiconducting elements, the yield is generally not as
high as for ”pure” superconducting circuits. Additionally, having (limited) statistics about
the reproducibility of the physics observed by measuring multiple devices is another ben-
efit of this approach.

In (1) Out (2)

(a)
In (1) Out (2)

(c) (d)

(b)

(d)(b)

0.5 mm 50 µm

50 µm

1.4 41
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Figure 3.3: Feedline input capacitor design and simulation of the current distribution. (a) Circuit di-
agram of a coplanar-waveguide transmission line with a capacitor at its input port. (b) Design of the input
capacitor, where blue denotes the NbTiN regions. (c) Current magnitude yielded by a microwave simulation
performed with Microwave Office. A current node forms at a distance of approximately 𝑙 = 𝜆/2 away from the
capacitor, where 𝜆 denotes the wavelength at the intended resonator frequency. (d) Enlargement of the region
where the current node forms. The green arrows indicate the current direction at each point.

We later added an input capacitor to the feedline (see Fig. 3.3). One of the disadvantages
of measuring in transmission with symmetric input and output ports, is that you always
lose around 50% of the input photons that go out through the input port after reflecting
of the resonator under investigation (Girvin, 2014). This reduces the signal-to-noise ratio
by a factor of two. For simple characterization experiments this is not really an issue
(generally one can increase the readout power to compensate). However, when interested
in single-shotmeasurements, or photon-number sensitivemeasurements, the factor of two
can save a lot of time! Thus, in Chapter 7 , we use an input port that is weakly coupled to
the feedline. From a quantum optics point of view, the feedline can then be seen as having
one very transparent mirror (to the output line) and one very reflective mirror. Thus, for
an attenuation of roughly 20 dB, 99% of all photons that enter the feedline, exit through
the output line. Besides the above-mentioned advantage, this brings some complications
with it as well. The length of the feedline now becomes relevant, as standing waves will
form as we now impose a boundary condition at the input capacitor (see Fig. 3.3(c)). Thus,
dependent on the resonance frequency of the resonator that is coupled, it should be placed
at a voltage anti-node, as the capacitive coupling is reduced otherwise and the resonance
lineshape becomes very asymmetric. This effect is similar to if one would have a very
badly impedance-matched feedline, see for example Khalil et al. (2012) for a mathematical
description of this effect. Additionally, the required input power for the same amount of
microwave power at the resonator rises by about 20 dB.
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The resonators
Throughout this thesis we use lumped element resonators, consisting of a coplanar ca-
pacitance to ground 𝐶r, coupling capacitance to the feedline 𝐶c and inductance 𝐿r set by
the kinetic inductance of a thin line to ground (see Fig. 3.2). All of these elements are
patterned in a single step in the NbTiN film. The resonator that we designed specifically
for the ABS spectroscopy measurements is a continuation of the design used in Pita-Vidal
et al. (2020) and shown with detailed SEM images in Chapters 4 and 6.⁵

We now discuss a few considerations that led to the design and choice of these res-
onators shown in( Figure 3.2a). We use lumped element resonators with thin wires of
NbTiN as inductors (Samkharadze et al., 2016; Pita-Vidal et al., 2020). The main goal was
to make them magnetic field compatible, for this reason they were made out of thin-film
NbTiN, where we choose 20 nm thick films, and 300 nm wide inductors to balance mag-
netic field compatibility, with fabrication tolerances for frequency targeting.

Some advantages for our applications to highlight over the more ”standard” coplanar
waveguide resonators, which can also be made field-compatible (Kroll et al., 2019) are: The
higher harmonics only arrive at higher frequencies at the self-resonance of the inductor.
For the resonators in Chapter 5 we estimated it to be around 28GHz for a resonator with
𝑓𝑟 ∼ 4.8GHz. Additionally, the required perpendicular field for creating vortices near the
inductors depends on the width of the inductor. Thus, they are more stable in perpendic-
ular fields, requiring less precise magnetic field alignment in field sweeps.

For ease of design, the capacitor was made such that you could fairly independently
vary 𝐶𝑐 and 𝐶𝑟 by placing it closer or further away from the feedline, or change the dis-
tance between the ground plane and the capacitor. In a single chip, we generally fixed the
capacitance and varied the inductor length only, to change the resonator frequencies. This
would make sure that all resonators move equally up or down in case of misestimate of
the inductance. Generally there were global shifts of around ∼ 500MHz due to variations
in the kinetic inductance in the films.

The inductor also allowed for simple targeting of the coupling between the nanowire
SQUID and resonator as discussed in Section 2.3.1, by turning the participation ratio 𝑝 =
𝐿𝑠

𝐿𝑟+𝐿𝑠 of the shunt inductance 𝐿𝑠 of the total resonator inductance into a simple fraction
of shunt arm length versus resonator inductor length.

For Chapter 7 we used a newer iteration of these resonator designs that was optimized
and designed by another member of our lab (Feldstein Bofill, 2022).

The electrostatic gates and filters
One of the main advantages of using semiconducting components is that they allow the
electron density, and thus their conductivity or inductance, to be tuned by applying an
electrostatic voltage with a metal gate. However, incorporating those in superconducting
circuits should be done with some care, as they can act as a loss channels for microwave

⁵The microwave simulations, design and testing of these resonators took quite some work in the early stages
of this PhD and is described extensively in the master and bachelor theses of the former students that I had
the pleasure of working with on the projects. Sebastiaan Roelofs thesis (Roelofs, 2019), contains an extensive
tutorial on how to useMicrowave office for beginners and part of the design simulations for Chapters 5, 4. Arjen
vaartjes’ thesis (Vaartjes, 2020) contains more design simulations and resonator targeting results for Chapters 5
and 4. Finally, the thesis of Pepijn Rot (Rot, 2022) contains simulations performed for Chapter 6, including
detailed simulations of our first iteration of thin-film flux lines used for Chapter 7.
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Figure 3.4: Low-pass filters for the gate lines. (a) First order low-pass on-chip LC filter, a design which
was followed up by (b). (b) Design of a fourth-order Chebyshev filter, which is simulated using the indicated
microwave ports, labeled as (1) and (2), at each end of the gate line section. (c) Circuit diagram of a fourth-order
LCLC Chebyshev filter, composed of inductances 𝐿1 = 5.21 nH and 𝐿2 = 6.13 nH and capacitances 𝐶1 = 2.45 pF
and 𝐶2 = 2.08 pF. Equivalent diagram of (a) is indicated with the grey dashed box (with other inductance /
capacitance). (d) Simulated transmission from the input to the output port, as a function of frequency, 𝑓 . The
grey and green lines correspond to the circuit in (c) and to the simulation in (b), respectively.

photons. For the gates used in our devices, we generally add an on-chip low-pass LC filter
that attenuates strongly at the resonance frequency of the resonator that contains the
nanowire with gates . For Chapters 5, 6 and 7 we use a coplanar filter similar to that in Mi
et al. (2017a), with a spiral inductor and an interdigitated capacitor (see Fig. 3.4(a)). Later,
to increase the filtering strength, wemoved in Chapter 7 to an improved higher order filter
design where we replaced the interdigitated capacitor by parallel plate capacitors inspired
by Harvey-Collard et al. (2020). We realized that we could implement the parallel-plate
capacitors without an additional fabrication step because they were made at the same time
as the overpasses that we already made to connect the ground plane around the gate lines
(see section 3.2).

Note that the length of the gate line from the bondpad to the device can also act as a
resonator. We thus tried tomake this section as short as possible to keep the self-resonance
frequency, where a standing wave can form inside the element, as high as possible and
covered the distance from the PCB to the gate bondpads with long bond wires. Finally,
if space allows it, we recommend making the bondpads for the gates large (200×200 µm)
to prevent shorting your device by a misbond at the final step of device preparation⁶, and
facilitate rebonding the device if ever necessary.

⁶or find out the hard way like we did
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Figure 3.5: Scanning electronmicrographs of various chip elements. (a) Large NbTiN bridge overpass over
a gate line to connect the ground plane on each side. These structures are also used as parallel plate capacitors
for the filter design of the gate. (b) Example of a smaller overpass to connect a gate line across a SQUID loop. (c)
Part of the capacitor plate of the resonator, which is patterned with ∼ 80nm diameter vortex trapping holes in a
triangular lattice.

Drive lines
In Chapter 7 we use one of the gate lines for driving spin-flip transitions, thus here we
cannot apply the low-pass filtering and we directly connect it to a 50Ω coplanar waveg-
uide.

In this case, as opposed to the DC gate lines, we put the bondpads as close to the edge
of the chip as possible to minimize the bond length and with it impedance mismatches,
similar to the feedline bondpads and how it is typically done in larger superconducting
qubit devices (see for instance Krinner et al. (2022)).

In Chapters 4 to 6 we utilize a single transmission line to drive four on-chip devices
in order to save input lines. The coupling is then facilitated with additional capacitive
coupling elements for each resonator to the drive line.

On-chip overpasses
Our standard fabrication recipe involves both a dielectric (for the gates) and a NbTiN
deposition (for the contacts) step after having defined the base circuit layer. We thus
use these existing steps to define bridges that connect the ground plane around the DC-
lines. Since these bridges have only a ∼ 28nm layer separating the two NbTiN layers, we
do not use them to connect the ground plane across the feedlines and drivelines as they
would drastically change the impedance of these elements. In superconducting circuits,
air-bridges are typically used in a final fabrication step, which have vacuum instead of
dielectric with thus a much smaller dielectric constant Stavenga et al. (2023).

Prevention of flux jumps
An important element of the chip design is the patterning of holes in the whole chip to
minimize detrimental effects of vortices. Although it is customary in the field of circuit-
QED to pattern the ground plane with large holes to facilitate flux to penetrate the large
area of superconductor (even the Earthmagnetic field of around 40 µT is relevant there due
to the large area) without inducing vortices, we additionally pattern small holes in a large
area around the resonator and inside capacitors (Kroll et al., 2019) to trap vortices that
are unavoidibly present in the film when exposed to magnetic fields of several hundred
mT(see section 2.1.2) .
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The flux bias line
For the device in Chapters 7, 6 , we use on-chip flux-bias lines to control the flux through
the SQUID loops. The SQUID loops that we use are generally small, on the order of sev-
eral tens of µm2. Additionally, the flux line is fabricated in the ∼ 20nm thick base layer
of NbTiN. Hence, we needed to make sure that the line can sustain enough supercurrent
to allow the current that generates several flux quanta to pass through. Additionally, for
compatibility with future experiments, we wanted to allow for the ability of fast-flux puls-
ing up to ∼ 1GHz. The flux-line was therefore designed in large part as a 50Ω coplanar
waveguide similar to the feedline and driveline, which is shorted to ground near the loop
that is flux-biased.

From measurements of the critical current in the flux lines, we found that we could
apply maximally between around 3mA of on-chip current before the thinnest section of
the flux line on-chip turned normal. Additionally, we found that the line kept around 50%
of its critical current up to 1.5 T. In order to still be able to drive several flux quanta, the
flux line needed to be placed close to the loop (as 𝐵 ∝ 1/𝑟 , with 𝑟 being the distance from
the flux line). To mitigate losses through the flux line, which we found to be significant in
an earlier design iteration (see Chapter 6 ), we implemented an on-chip low-pass LC-filter
similar to the gate lines. The difference is now that we could not use the thin inductors
to keep the critical current maximal. We therefore implemented the filter using solely a
parallel-plate capacitor, which combined with the existing inductance of the transmission
line gave the filter response shown in Fig. 3.6.
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Figure 3.6: Flux-bias line with a low-pass LC-filter. (a) Circuit diagram of an LC filter, composed of an
inductance 𝐿1 = 1 nH and a capacitance 𝐶1 = 22 pF. An extra inductor segment, with inductance 𝐿2 = 0.08 nH
is included at the end of the filter to account for the non-idealities of the real implementation of the flux line.
(b) Schematic of the simulated part of the flux line including the input and output microwave ports, labeled as
1 and 2, at each of its ends. (c) and (d) Simulated transmission from the input to the output port, as a function
of frequency. The grey lines correspond to the circuit in (a) and the green lines correspond to the circuit in (b).
The impedance of the input port is 50Ω in both cases, while the impedance of the output port is 1 Ω in (c) and
200Ω in (d).
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3.1.2 COMSOL to calculate capacitance matrices
Besides simulations in Microwave Office, we often additionally use Comsol following the
approach outlined in Ref. friedel (2017), to simulate coupling capacitances between res-
onator and feedline, resonator and transmon and between either the resonator or trans-
mon to all other gate- and or drive-lines to checkwhether they are small enough to prevent
leakage. An example of the simulation performed on the device used in Chapter 7 is shown
in Fig. 3.7.

(a)
(b)

0 0.3 0.6
V (a.u.)

100 µm

Figure 3.7: Capacitance simulations. (a) Circuit model of a feedline (with inner conductor in green) capac-
itively coupled to a resonator island (yellow) which is in turn capacitively coupled to a transmon island (red).
Ground is indicated in purple. (b) Result of an electrostatics simulation performed with Comsol showing the
potential, 𝑉 , distribution when a certain charge is applied to the resonator island. This simulation is used to
estimate the capacitance between each pair of elements.

3.2 Standard nanofabrication for InAs devices
The fabrication process for the InAs/Al nanowire-based devices employed in the exper-
imental sections of this thesis initiates with the preparation of a complete 4-inch wafer.
Over this wafer, a layer of NbTiN is deposited before the wafer is diced into smaller chips.
As opposed to individual chip preparation, this method allows for higher homogeneity of
the film properties across different devices and for more accurate targeting of the kinetic
inductance for each device.

Most of the nanofabrication steps undergone by our hybrid devices are visually sum-
marized in Fig. 3.8 and detailed in the following sections.

3.2.1 Wafer preparation
The wafer preparation steps prior to dicing are shown in Fig. 3.8(a)-(e). We use high re-
sistivity silicon substrates coated with low-pressure chemical vapor deposited (LPCVD)
SiN𝑥 ⁷. We generally found that the LPCVD SiN𝑥 was not limiting resonator internal qual-
ity factors compared to subsequent fabrication steps, but allowed for higher gate-voltages
before significant leakage currents appeared as opposed to for example high-resitivity sil-

⁷The SiN𝑥 was deposited by Paolo M. Sberna at the Else Kooi Laboratory of the TU Delft.
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Figure 3.8: Nanofabrication steps. Diagrams showing the cross-section view after each of the nanofabrication
steps undergone to fabricate a device, starting from a substrate (a) and ending with the depositing the nanowire
contacts (z). The marker step and the two dicing steps —one between (e) and (f) and the other after (z)— are not
shown.

icon without the SiN𝑥 layer (Splitthoff et al., 2022). Prior to the deposition of NbTiN, the
substrate is cleaned with fuming nitric acid.

Subsequently, a thin film of NbTiN is sputtered onto the entire 4-inch wafer, with the
film thickness determined by the targeted kinetic inductance of the film. Opting for a
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thinner film results in a higher kinetic inductance and higher field compatibility. How-
ever, excessively thin films can lead to a larger variation of the kinetic inductance across
the wafer, hindering accurate kinetic inductance targeting To strike a balance, we choose
a film thickness of approximately 20 nm for the experiments requiring a modest kinetic
inductance in the range of 10 to 15 pH/2.

(a) (c)

2 cm50 μm 50 μm

50 μm100 μm

(b)

Figure 3.9: Wafer preparation. (a) Optical microscope images of ill-defined platinum markers obtained by
performing a single evaporation step. (b) Optical microscope images of well-defined platinum markers obtained
by performing three subsequent evaporation steps with cooldown times in between. (c) Photograph of a 4-inch
wafer covered by dicing resist and diced onto smaller chips.

In a subsequent step, not shown in Fig. 3.8, we pattern markers across the entire wafer.
The markers have a size of 20× 20 μm2 and are used for alignment at the various e-beam
lithography steps. When choosing the marker material, various aspects, such as fabrica-
tion ease, contrast under the electron beam and compatibility with subsequent nanofab-
rication steps, must be taken into consideration. One efficient option fabrication-wise
would be to define negative-tone⁸ markers together with the initial NbTiN dry etching
step (see next section). However, given the typically small thickness of our NbTiN layers,
this approach could lead to reduced contrast under the e-beam, hampering subsequent
alignment steps. Moreover, the patterning of the base etching layer for the different de-
vices presented in this thesis involves several layers that are written with different beams.
Such layers must be aligned with each other, which requires alignment markers to be
present before performing this first patterning step. An alternative approach, which we
used for Chapters 5, 4 , is using positive-tone gold markers with high enough thickness,
on the order of 100 nm. Gold markers offer nanofabrication benefits, as they can be de-
posited at multiple evaporators of the Kavli Nanolab and are very easy to lift off. More-
over, the high gold atomic number translates into enhanced e-beam contrast, thanks to
an increased backscattered signal. However, due to potential cross-contamination issues
with other materials, gold is prohibited within certain deposition and etching cleanroom
systems. In particular, it is not allowed in the reactive ion etching system used for Chap-
ter 7 For these Chapters, we explored different alternative materials. One such option
which also has a large atomic number, thus leading to high e-beam contrast, is platinum
(Pt). We often found that thin films of platinum showed a high surface roughness when
deposited on 4-inch wafers, resulting in ill-defined markers. Fig. 3.9(a) and (b) show Pt

⁸Negative-tone and positive-tonemarkers respectively appear darker and brighter than the surroundingmaterial.
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markers obtained from two different depositions. Despite both Pt evaporation processes
using identical parameters, the Pt markers in the first deposition exhibit lift-off imperfec-
tions, absent in the second deposition. The only differences lay in that, for the markers
in Fig. 3.9(a), the deposition was done over a complete 4-inch wafer and in a continuous
manner, while, for those in Fig. 3.9(b), it was performed over half of a 4-inch wafer and in
three subsequent deposition steps with 20min cooldown intervals between them. We hy-
pothesize that the imperfections found in the first deposition may be attributed to either
high tensile stress on the films Afshar et al. (2010) or inadequate thermalization during
metal evaporation. To avoid the complications found for Pt marker fabrication, for 6 and
7 we instead converged to using palladium (Pd) markers. Pd markers have proven simple
to fabricate in a reproducible way, show enough e-beam contrast, and are compatible with
most nanofabrication tools.

After marker deposition and lift-off, the wafer is coated with dicing resist and diced
onto smaller chips of approximately 1×1 mm2, as shown in Fig. 3.9(c). Subsequently, the
chips are reserved and used to fabricate the different devices. The dicing resist is left on
each of the chips, serving as a protective layer. The chips are then stored in a cleanroom
space until further processing, a period typically spanning from a few days to several
months after the wafer’s initial preparation.

3.2.2 Substrate preparation prior to nanowire deposition
For each individual chip, we maximize the number of nanofabrication steps that are per-
formed before depositing the Al/InAs nanowires. This is done to mitigate potential detri-
mental effects on the nanowire, which could arise from the different nanofabrication steps.
Such effects can be due to factors such as electrostatic discharge, mechanical stress during
e-beam resist application and lift-off, or elevated processing temperatures leading to dif-
fusion of the aluminium shell onto the InAs nanowire core. The steps performed prior to
nanowire deposition are schematically depicted in Fig. 3.8(f)-(o) and involve the definition
of the NbTiN circuitry by dry etching and the subsequent deposition of the bottom gate
dielectric.

The processing of an individual chip begins by removing the dicing resist using an
organic solvent (not shown in Fig. 3.8). Following this, we define all of the NbTiN base
layer structures using electron beam lithography. To enhance precision in regions with
finer structures, such as gates and narrow inductors, we use an electron beam with a
low current and a small spot size. For the coarser structures are instead patterned with an
electron beamwith a higher current and larger spot size, thus reducing the exposition time.
Strategically adjusting the current and spot size of the electron beams across different
layers results in significant reductions in overall writing time, from multiple hours down
to approximately 10 to 20 minutes.

During the base layer definition step, we also pattern holes in the superconducting
layer Kroll et al. (2019). The holes configuration, while always distributed in a honeycomb
lattice, varies depending on the region of the device and on their function. For the regions
of the ground plane near any microwave circuitry structures, as well as for the capacitive
transmon and resonator pads and the inner conductor of the feedline and drive lines, we
use small holes. These holes serve as pinning sites for magnetic vortices and their specific
geometry varies among chapters, with diameters ranging from 70 to 100 nm and inter-hole
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distances spanning 320 to 550 nm. This minimizes the disruption to the transmon and
resonator capacitance, as well as to the impedance of the feedline and drive lines, values
which we simulate without accounting for vortex pinning sites. For the wide ground plane
regions which are far away from the main structures, we instead use larger holes with a
squared shape to allow for magnetic field penetration and reduce the amount of ground
plane surface that is exposed to it. These bigger holes have an edge length of 500 nm and
an inter-hole spacing between 1.5 and 2.2 µm depending on the chapter, to reduce the total
writing time.

(a) (b)

400 nm

(c) (d)200 nm 165 nm
40 nm 200 nm 110 nm

400 nm

400 nm 400 nm

Figure 3.10: Fine structures optimization. (a), (b) Scanning electron micrographs (SEMs) of the typical in-
ductors after NbTiN etch for two different resist thicknesses: 200 nm and 165 nm, respectively. (c), (d) SEMs of
quantum dot junction bottom gates after NbTiN etch for two different resist thicknesses: 200 nm and 110 nm,
respectively. The top panels show schematics of the device cross-section after resist development in each case.

Finally, during the e-beam patterning of the base layer we consider different aspects
to enhance the definition accuracy of the fine structures. Apart from using a small-sized
beam with a precisely calibrated dose, we use proximity effect correction (PEC) in the
vicinity of narrow gates and inductors. Additionally, for certain devices, we develop us-
ing the critical point drying (CPD) method to ensure a more gentle process. Moreover, we
found that using too thick resist can lead to undesired outcomes, as exemplified in Fig. 3.10.
Whenwe employ a 200 nm-thick e-beam resist layer (Fig. 3.10(a)), the resist often collapses
due to its high aspect ratio after development, resulting in poorly defined inductor shapes.
Using instead a resist layer of 165 nm leads to more reproducible and well-defined struc-
tures (Fig. 3.10(b)). In Chapter 7 we pattern 40 nm-wide gates spaced roughly 40 nm apart.
A 200 nm-thick resist layer often leads to two neighboring gates shorting due to the resist’s
high aspect ratio, as shown in Fig. 3.10(c). Using 110 nm-thick resist instead leads to better
defined gates (Fig. 3.10(d)). Note that the minimum resist thickness that can be used is in
each case determined by the duration of the NbTiN etching step (Fig. 3.8(i)), during which
the resist is etched at a rate of approximately 1.8 nm/s. This constrains the thickness to
be at least 100 nm for Chapter 7.

For all experiments performed in this thesis, we use a SiN𝑥 layer of approximately
28 nm as the gate dielectric. This dielectric film is first epitaxially grown over the entire
chip using plasma-enhanced chemical vapor deposition (PECVD)(see Fig. 3.8(k)). It is sub-
sequently etched so that it only remains over specific regions (see Fig. 3.8(l-o)).
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3.2.3 Nanowire-specific steps
The nanowire-related nanofabrication steps, schematically depicted in Fig. 3.8(p)-(z), in-
clude the nanowire deposition process, the junction etching and the establishment of elec-
trical contact between the nanowire and the underlying circuitry. Optical images of the
device chip before and after each of these steps are shown in Fig. 3.11. The InAs nanowires
used in this thesis are grownwith the vapor-liquid-solid (VLS)method and have a length of
approximately 10 µm. They have a hexagonal cross-section and are covered by epitaxially
grown aluminum on two of their facets Krogstrup et al. (2015).

The transfer from the growth chip to the device chip is performed under an optical mi-
croscope using a commercially available tungsten needle attached to a micromanipulator⁹.
During the design and fabrication of the device chip, different aspects can be considered to
streamline the nanowire deposition process. As the deposition can be performed with an
accuracy of approximately 1 µm in the longitudinal direction, maintaining a short distance
between contact pads (7 µm or less) facilitates comfortable nanowire placement. Similarly,
wider contact pads result in a broader deposition area, with 2 µm providing adequate space
for comfortable nanowire deposition.
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SiNx

NbTiN

nanowire resist window
for junction etch

NbTiN

Figure 3.11: Nanowire-specific nanofabrication steps. Optical microscope images of the nanowire area.
(a) Right after dielectric etch and before nanowire deposition (Fig. 3.8(o)). (b) Right after nanowire deposition
(Fig. 3.8(p)). (c) Right after junction etch (Fig. 3.8(t)). (d) Right after contact lift-off (Fig. 3.8(z)). The top panels
show schematics of the device cross-section at each step.

Following the nanowire deposition, the junctions are defined by etching away the alu-
minium on a nanowire section on top of the pre-patterned gates The resist mask used
for selectively wet-etching of these aluminium segments can be seen in Fig. 3.11(c). After
etching, the e-beam resist that covers the nanowires is not removed, to prevent poten-
tial nanowire displacement on the chip surface. Instead, a new layer of resist is applied
(Fig. 3.8(u)) and used to pattern the contacts that galvanically connect the nanowire to the
underlying circuitry.

The contact fabrication process entails the removal of surface oxides through argon
milling (Fig. 3.8(x)), followed by sputtering a 120 nm-thick layer of NbTiN (Fig. 3.8(y)).
These two processes are also used to define NbTiN structures in other chip areas, as needed

⁹For Chapter 6 the deposition is performed by N. van Loo and, for all other chapters, it is performed by Lukas J.
Splitthoff.
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depending on the device. Finally, in Chapter 7 this step is also used to fabricate the top
capacitor plate of the flux line low-pass filter and, as shown in Fig. 3.11(d), the loop twist
overjump.

3.2.4 Postfab and final device checks
The final fabrication steps prior to loading the device into the cryogenic refrigerator, which
are not included in Fig. 3.8, comprise dicing, probing and wire-bonding the device to the
printed circuit board (PCB).

The chips are diced to match the size of the PCB sample area (see Sec. 3.3.2 for PCB
details),which is 6 × 6 mm2 . To prevent damage to the nanowires due to electrostatic
discharge during dicing, the process is only initiated when the dicing water resistivity
drops below 1Ω.

Subsequently, the room temperature resistance of different circuit elements is deter-
mined by probing the device using tungsten needles, as shown in Fig. 3.12(a). Measuring
the resistance between the resonator island and the ground plane facilitates estimating
the resonator inductance and in turn its resonance frequency. A similar estimate can be
obtained by probing the resistance between input and output feedline ports for the de-
vices without an input capacitor. Similarly, the resistance between the transmon island
and ground provides information about the quality of the nanowire contacts. For work-
ing devices as those in Chapter 7, resistance measurements ranging from 20 to 200 kΩ are
typically observed between the transmon island and ground. Additionally, the resistance
between chip lines and ground is probed to identify potential short circuits.

Figure 3.12: Optical image of a diced chip being probed at the probing station prior to wire-bonding.

Finally, the chip is mounted onto the printed circuit board and wire-bonded to it using
aluminum bonds. We include short bonds along the chip edge that connect the ground
plane of the chip to that of the PCB. In addition to establishing a homogeneous ground
connection, these bonds serve as a path for heat dissipation away from the chip during
cool-down. For each device, the radio-frequency (RF) lines design is realized to position
their bonding pads in close proximity to corresponding bonding pads on the PCB. This
configuration enables the use of wire bonds that are as short as possible, minimizing the
potential for undesirable RF signal reflections resulting from impedance mismatches, as
the longer wire-bonds have a large inductance (see Fig. 3.13(a) and (b)). This consider-
ation, however, does not apply to the direct current (DC) lines, whose on-chip length is
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insteadminimized to prevent unwanted line self-resonance. Consequently, the wire bonds
arriving at the DC lines’ bond pads are relatively longer (see Fig. 3.13(a) and (b)).

Finally, we incorporate on-chip bonds that interconnect different ground plane regions.
Such bonds prevent the formation of unwanted resonance modes and result in a more uni-
form ground reference across the chip, resulting in higher internal quality factors of the
resonators. An extreme example of a case where we initially had only a single on-chip
bond on a chip with four resonators (we hoped this minimized the flux jumps discussed
below), is visible in Fig. 3.13 ((a), black curve in (c)). We then later warmed up the device
and added extra on-chip bonds, as shown in panel (b), red curve in (c). This made the
internal quality factors increase significantly, and even some resonators that earlier were
so shallow (meaning lossy) that they were only visible when sweeping the gate and sub-
tracting the background, now became visible. Note that the middle two resonators had
lower internal quality factors even after rebonding due to being overcoupled to on-chip
flux lines, which was not related to the bonding.
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Figure 3.13: Comparison of spectra with and without on-chip bonds. (a) Optical microscope image of
a chip with four resonators (one of the devices used in Chapter 6) , with only a single on-chip bond. The
ground plane was simply-connected on-chip because the resonators are encircled with ground strips. (b) Optical
microscope image of the same device after warming up and adding many on-chip bonds. (c) Microwave response
through the feedline for the cooldown of the bond configuration of panel a (black), and panel b (red), illustrating
the increase in internal quality factor after adding on-chip bonds. The curve without on-chip bonds is offset by
25 dB to account for attenuation and cable changes at the room-temperature equipment between the cooldowns.

3.2.5 Specifics for nanofabrication of InSb-based devices
Although we focused on the InAs/Al with etched Josephson junctions so far, in Section 6.2
we describe the differences in fabrication used to create circuit-qed devices containing
InSb/Al nanowires with shadow-wall defined Josephson junctions.

3.3 Experimental setup
3.3.1 Cryogenic setup
The experiments presented in this thesis are performed at temperatures of a few tens
of mK to suppress thermal excitations, and they involve magnetic fields on the order of
1 T. To achieve these conditions, all experiments are performed using cryogenic dilution
refrigerators equipped with vector magnets. An exception is made for fast resonator char-
acterization at zero field, performed while iterating the chip designs, which are carried out
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using an Oxford Instruments Heliox system, a sorption-based 3He insert. In particular, for
Chapters 5, 4 we use a Bluefors XLD refrigerator, nicknamed ”QT3”. For part of the mea-
surements in Chapter 6 we use a custom made Leiden cryogenics refrigerator, nicknamed
”B3”. Finally, for Chapter 7 and part of the measurements of Chapter 6 we use a Triton
300 refrigerator, nicknamed ”K1”.
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Figure 3.14: Dilution fridge and sample puck. (a) Diagram of a dilution refrigerator. Different colors denote
different temperature stages. The shields prevent radiation from the outer temperature stages towards the inner
ones. The puck (blue rectangle, enlarged in (b)) is thermally anchored to the lowest temperature stage and
placed at the center of the vector magnet. The loading gates at the bottom of the fridge (black rectangles) permit
inserting the puck into the fridge while keeping the fridge cold and under vacuum. (b) Puck formed by an
outer can and various copper enclosure boxes which shield against radiation. The gap between the outer can
and the outer enclosure box is filled with Eccosorb foam, which absorbs stray microwave radiation. The outer
enclosure box is moreover pained on both sides with a mixture of silicon carbide grains, Stycast and carbon
powder Bargerbos (2023).

A simplified schematic of a Triton 300 system is shown in Fig. 3.14. The inside of
the fridge is maintained under high vacuum and separated by the exterior by the outer
shield shown in red. Within it, multiple layers of inner shields, each thermally anchored
to a different temperature stage, prevent radiation towards the interior of the fridge. The
fridge is equipped with a multi-axis vector magnet capable of reaching magnetic fields
up to 6 T in the vertical direction and up to 1 T in the horizontal plane. This magnet is
thermally anchored to the PT1 plate, which is kept at around 4K, thus maintaining the
superconducting state of the magnet coils. The sample is situated within a cylindrical
enclosure known as the puck. The puck is situated at the center of the magnet but is
thermally anchored to the lowest temperature stage, referred to as the mixing chamber
(MC). The MC can reach a base temperature of 10 to 20mK.

A bottom-loading mechanism enables sample exchange while maintaining the sys-
tem’s low temperature¹⁰ and vacuum conditions Batey et al. (2014). The bottom-loading

¹⁰Note that, during sample exchange, the system is not at base temperature. As the 4He/3He mixture has to be
collected during sample exchange, the MC temperature raises to a few Kelvin before and during the sample
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gates, depicted in black in Fig. 3.14(a), open when pushed upward by the exchange mech-
anism and allow passage of the puck from the outside to the inside of the fridge, and
vice-versa. When the puck is pressed onto the MC stage, its lines are connected to those
inside the fridge.
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Figure 3.15: DC cryogenic wiring and filtering. (a) DC wiring from the top of the fridge (left) to the bottom of
the fridge (right). The dashed lines indicate the different temperature stages, with the same legend as in Fig. 3.14.
(b) Photographs of the three subsequent filter boards placed on the mixing chamber. The frequencies in the
labels denote the 3 dB point of each filter.

The refrigerators used in this thesis are equipped with both radio-frequency (RF) and
direct-current (DC) lines. The precise attenuation, filtering and amplification of each RF
line differ based on its intended function, as detailed in the supplementary section of each
of the experimental chapters (Krinner et al., 2019). A schematic of the DC lines is shown
in Fig. 3.15.

The DC lines, totaling 48 in number, are connected to the room-temperature DC elec-
tronics outside of the fridge via two separate Fischer cables, each containing 24 lines. At
the higher temperature stages within the fridge, these lines are divided into two distinct
bundles of 24 lines each. Successive sections of these bundles are interconnected at each
temperature stage using micro-D (Ohmnetics) connectors. In the mixing chamber stage,
each line passes through a series of low-pass filters (see Fig. 3.15(b)). Each filter board
is thermally anchored to the MC through a large surface to enable efficient heat dissipa-
tion¹¹. Upon entry into the puck, the two bundles merge into a single group, soldered to
a nano-D (Ohmnetics) connector. Within the puck itself, a nano-D to flat flexible cable
(FFC)¹² adapter directly connects the DC lines to the printed circuit board (PCB). On the
PCB, each DC line features an additional low-pass filter, as discussed in Sec. 3.3.2. On the

exchange process. Right after inserting the new sample, the system temperature reaches a few tens of Kelvin
due to the extra heat load.

¹¹The design of these filter boards was carried out by Maja Cassidy and Rogier van de Berg from DEMO, the
electronics shop of TU Delft.

¹²Although similar flexible cables are commercially available, the FFCs used in this thesis were designed in-
house and tailored to fit the particular needs of the experiments conducted in this thesis. This was done by
Jason Mensingh and by Kees Esser from DEMO, the electronics shop of the TU Delft.
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PCB, 16 of the lines are directly routed to the sample and 4 other lines are combined with
RF lines via bias tees (see Fig. 3.16(d)). The remaining 24 lines are shorted to ground and
remain unused in the configuration.

3.3.2 Hybrid printed circuit board details
Throughout this thesis, we used hybrid DC-RF printed circuit boards to route the DC and
RF signals from the fridge lines to the chip. We detail the design used for Chapters 6 and
7.¹³. The latest version of this hybrid PCB design from our lab at the time of writing¹⁴, is
presented in Fig. 3.16. The hybrid PCB has a total thickness of 705 µm and it is composed of
four copper layers separated by insulating layers of different materials and thicknesses, as
indicated in Fig. 3.16(b). The board is gold-plated to prevent oxidation of the outer copper
layers. Throughout the board, through-hole ground vias (indicated by black circles in
Fig. 3.16(e-h) uniformly interconnect the ground reference of all layers. The sample area,
with a squared shape, is situated in the central part of the board and is surrounded by
bonding pads that permit bonding the chip to different DC and RF PCB lines.

The 48 fridge DC lines from the fridge reach the board through an FFC connector
(see Fig. 3.16(c)). To prevent problems derived from electrostatic discharge during loading
and unloading the puck from the fridge, two copies of the FFC connector are placed on
the front and back of the PCB, shorted to each other. This arrangement ensures that all
lines remain grounded when a shorting strip is connected to one of the FFC connectors
while the other one becomes connected or disconnected from the fridge. Among the 48
fridge DC lines, only 20 are used; the rest are shorted to ground. Each of the 20 lines is
filtered on the PCB with a low-pass 𝜋-filter with a cutoff frequency of 80MHz. These 𝜋-
filters are arranged as a capacitance to ground, followed by an inductor, and then another
capacitance to ground, resembling the shape of the Greek letter 𝜋 . Twelve of the 𝜋-filters
are situated on the top part of the board (visible in Fig. 3.16(a) and (c)). The remaining
eight are instead placed on the bottom part (see filter pads in Fig. 3.16(h)). Following the
filters, all DC lines are connected to the third layer of the PCB. For the DC lines that come
from the top of the PCB, this connection is established via blind vias, while, for the ones
that come from the bottom, it is done via through-hole vias, as indicated in Fig. 3.16(b).
All DC lines are then routed on the third layer until reaching the sample area, as shown in
Fig. 3.16(g). Subsequently, additional blind vias bring the DC lines up to the top PCB layer,
where they reach the bond pads situated at the edge of the sample area. All blind vias are
machined by Fineline using the back-drilling technique. This method involves a first step
where a complete through-hole via is fabricated. Such through-hole via is subsequently
selectively drilled to a precise depth using a drill tool with a diameter larger than that of the
hole of the original via (see Fig. 3.16(b)). This procedure prevents undesirable antenna and
cross-talk effects that could be caused by the unconnected vias parts or stubs, enhancing

¹³Note that, for the earlier Chapters5 and 4, we used a different enclosure and hybrid DC-RF PCB with the
Bluefors XLD refrigerator. This was an In sealed CuBe box filled with ecosorb, obtained from collaborators
in Copenhagen. For the resonator characterization measurements performed at the Heliox, we instead used
simpler only-RF PCBswith a circular shape and formed by just two copper layers separated by a single dielectric
layer.

¹⁴This design, adapted by Kees Esser to accommodate a greater number of DC lines and larger chip sizes, is an
extension of Maja Cassidy’s original concept, and incorporates elements from a variation by Angela Kou. The
boards are machined by Fineline.
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Figure 3.16: Printed circuit board (PCB) design. (a) Photograph of the hybrid PCB from an angle. The
cross-section is enlarged in (b). (b) Diagram of the PCB cross-section (not to scale) showing four copper layers
separated by three insulating layers. Through-hole vias connect all four copper layers together. Blind vias
connect only the three topmost layers. Not shown is the gold-plating layer which covers all exposed metallic
surfaces. (c) Top view of the PCB showing the different components assembled on the top layer. (d) Enlargement
of the bias tee, composed of a resistor and a capacitor. (e-h) Diagrams of each of the four layers.

overall signal integrity.

The RF signals instead reach the board through six non-magnetic Rosenberger sub-
miniature push-on (SMP) connectors, serving as both entry and exit points. From there,
the RF lines are routed through the surface of the board until the edge of the sample
area. The surface RF lines are implemented with conductor-backed coplanar waveguide
(CPW) transmission lines with a 50Ω impedance and use the second layer as the bottom
ground reference layer (see Fig. 3.16(f)). Out of the six RF lines, two are directly routed
to the edge of the sample area and are used as input and output lines for transmission
measurements. The remaining four RF lines incorporate pads with 0402 footprint, allow-
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ing versatile component integration based on the specific experimental requirements. For
instance, in Chapter 7, one of the RF lines is purposed as a flux line by connecting a 0Ω
surface-mounted device (SMD) resistor to it. Another RF line is instead used as a drive
line through an electrostatic gate. To combine the DC and RF components of the signal,
we mount a bias tee on the line, as shown in Fig. 3.16(d). On the DC part of the bias tee, we
connect a 100 kΩ SMD resistor of the thin-film type (Panasonic ERA-2AEB104X), while on
the RF part, we connect a 100 pF SMD multilayer ceramic capacitor (MLCC) of type NPO
(Kemet C0402C101J5GACTU). These components result in an RC time constant of 10 µs,
equivalent to a cutoff frequency of 16 kHz.

3.3.3 Details on magnetic field control
One of the key ”new” parameters swept in the experiments presented in this thesis, when
compared to other experiments with superconducting circuits, is the global magnetic field.
Thus, naturally, we spent some time optimizing the setting of this field. All devices that are
shown in this thesis are cooled down in dilution refrigerators with a commercial 6-1-1 axis
vector magnet. These magnets are generally made by three independent superconducting
coils (cooled by thermal anchoring to the 4 K stage). Each coil is controlled with its own
current source. Typically the coil constants of the 1 T axes are around 60A/T and these of
the 6 T axes are 12-16A/T. Thus for using the full field range one needs a large 100A rated
current source, which is output by commercially available sources that are delivered with
the magnets (in our case from mercuryIPS (see Fig. 3.17(b)) and American Magnetics Inc.).
Due to the large operation range, the minimum step size of these sources is generally quite
large, for example, the AmericanMagnetics Inc. current source has a quoted programming
accuracy of 50mA and a stability of 25mA, which corresponds to about 1mT and 0.5mT
resolution and stability respectively (in reality the resolution and stability aremuch better).
For the mercuryIPS the quoted stability is±2mA (33 µT) andminimum step size is 0.15mA
(2 µT).
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Figure 3.17: Triton dilution refrigerator with a 6T-1T-1T vector magnet and current sources used for
magnetic field control. (a) Top panel: Triton dilution refrigerator with all shields installed and bottom loader.
Bottom panel: 6-1-1 T vector magnet attached to the still shield. The probe is loaded via the bottom loader in the
bore of the magnet. (b) Large (bottom) and small (top) current sources used to control the magnets. (c) Zoom
in on the Yokogawa GS610 current source used for fine-stepped field control connected to the magnet leads,
together with a diode protection box wired in parallel as shown in the wiring diagram (bottom panel).
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Since for flux control we only apply fields of a few millitesla, we used smaller current
sources to control these axes. For example, if one has a 10µm2 area SQUID loop, the
field required to thread one flux quantum is approximately 200µT (12mA). The current
sources used were Yokogawa GS200(GS210), rated up to 200mA, and the GS610 source
measure unit, rated up to 3A with minimum current step size of 1 µA for < 200mA, 10 µA
for < 3A (see Fig. 3.17(c)). During an in-house stability test by Raymond (our electronics
expert), we found the output current to drift during setting it at 1 A for about one hour
(no temperature control applied) by approximately 60µA (1 µT).

The larger current sources supplied with the magnets have built-in quench protection.
To protect the Yokogawa current sources in case of a sudden quench of the magnet, which
is not rated for such large inductive loads, we built a small box¹⁵ (see Fig. 3.17c) containing
two antiparallel rows of several Schottky diodes in series that all together can be added in
parallel with the magnet current loop. The main functionality is that when a large voltage
develops —a rapid change in current during a quench generates a voltage proportional to
the inductance of the magnet which is several Henry— it allows current to flow through
the diodes such that the voltage stops increasing, but when the voltage is low, no current
should flow (otherwise the magnet field setting might be affected). The choice of diodes
thus was aimed at having a negligible current at the operation voltages, while being able
to handle the full 3 A current in case of a quench. In Fig. 3.17(d) the current is written
given a certain voltage drop. At 5 V the maximum current of 3A is reached, which is well
below the maximum allowed voltage of the GS610, rated up to 12V.

Loop design considerations for proper flux control
We found that even after circuit optimizations with holes and thin components, small
out-of-plane fields of several tens of µT could still cause both large and small flux jumps
through the superconducting SQUID loops, hindering the use of flux as a controlled param-
eter in our initial experiments. However, we found that the suspension of the nanowire
with a superconducting shell on the gate and dielectric creates a small vertical loop with
typically an area of around 0.3µm2 for 28 nm SiNx of gate-dielectric. With this design, it
is then possible to use a magnetic field parallel to the chip plane for flux biasing with a pe-
riod of several mT per flux quantum. This has the advantage that the total exposed area of
superconducting film to flux becomes proportional to the thickness (tens of nanometers)
of the NbTiN film instead of the width of the chip (several millimeters), greatly reducing
the observed flux jumps (see fig .. for a direct comparison between flux biasing with out of
plane or in-plane field ). Various sketches of possible loop designs are shown in Fig. 3.18,
with the loop area exposed to out-of-plane and in-plane fields shown in the accompany-
ing diagrams. Interestingly it would be possible to design a SQUID that has no loop in the
vertical direction at all, as shown in Fig. 3.18)(c), which could allow for compact circuits,
or loops with small footprint.

In Chapterss 5, 6 and 4 we use a gradiometric design (see Fig. 3.18b). In this design,
the total flux is proportional to the area difference between the two loops. By designing
the areas to be equal (up to the accuracy of the nanowire placement), one can become
nearly insensitive to a global out-of-plane magnetic field. One of the advantages of this
design is that each of the individual loops can still be large, simplifying the design of large

¹⁵Without labor costs, the box total cost was about €2,50, a small price to pay for an insurance policy.
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Figure 3.18: Schematic of vertical loop superconducting quantum interference devices for parallel field
flux biasing. (a) RF-SQUID with a single loop and Josephson junction. The suspension of the junction allows
flux biasing using either a parallel or a perpendicular field. (b) Gradiometric RF-SQUID design, which cancels
perpendicular flux and amplifies parallel flux by a factor of two. (c) Vertical RF-SQUID loop solely defined by
the elevated nanowire. See de Lange and Wesdorp (2023) for more details. A fourth iteration of a loop design is
given in 7 , where the loop is twisted (Pita-Vidal et al.).

shunt-inductances or allowing the use of on-chip flux lines in combination with a global
magnet, as we do in Chapter 7

Flux jumps due to on-chip wirebonds
Even while using the in-plane magnetic field for flux control, flux jumps can still occur.
We found that the presence of on-chip wire bonds can lead to undesired flux jumps when
sweeping the 𝐵𝑦 component of the magnetic field (parallel to the chip plane and perpen-
dicular to the nanowires). This phenomenon is attributed to the wire bonds having a
cross-sectional area in the 𝐵𝑦 direction, as the ones shown in Fig. 3.19(d). As, at zero mag-
netic fields and cold temperatures, these wire bonds are superconducting, an applied 𝐵𝑦
field produces a circulating supercurrent that passes through them and through the chip
plane. This circulating supercurrent in turn generates an out-of-plane field that affects
the flux through the device loop. As the magnitude of 𝐵𝑦 is swept, spurious currents are
produced in the loop that contains the bond wire, resulting in unwanted flux jumps on the
device.

Throughout this thesis, different strategies are used to mitigate such undesired effect.
For chip 1 in Chapter 6, the flux jumps are observed in the absence of a magnetic field.
To circumvent them, we apply 10mT and turn the bond wires normal. In this way, su-
percurrents can not circulate through the bond wire, resolving the issue (see Fig.6.11 in
Chapter 6). This is however not a general solution, as in general we need to measure the
flux dependence of devices also in the absence of a magnetic field. In Chapter 7 we

However, when the on-chip bonds are instead arranged parallel to the 𝐵𝑦 direction (as
those in Fig. 3.19(c)), we find that the frequency of flux jumps is substantially reduced.
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Figure 3.19: Field-alignedwire-bonding. (a) Optical microscope image of a chip bonded with an on-chip bond
configuration that results in multiple flux jumps when sweeping the 𝐵𝑦 on-chip component of the magnetic field.
This bonding configuration includes multiple bonds with a 𝑦 cross-section underneath on-chip bonds that are in
the region nearby the nanowire region. (b) Similar to (a) but for an almost identical device for which the on-chip
bonds are instead made along the 𝑦 direction. The length of the side of the chip is 6mm. (c)-(d) Scanning electron
micrographs (SEM) showing enlargements of different wire-bonds. These images correspond to a device almost
identical but different from the ones shown in (a)-(b). (c) shows wire bonds with a 𝑦 cross-section placed over
the resonator. (d) show wire bonds without a 𝑦 cross-section that connected the pieces of ground plane on both
sides of the feedline and drive line, respectively.

Alignment of the chip with respect to the magnet axes

In general, there exists a slight misalignment of the sample in the PCB with respect to the
magnet axes (typically of a few degrees). In the case of large applied fields, or strong sen-
sitivity to small fields in one of the field directions, the misalignment should be corrected
for. Our general approach for this is to apply a 3-dimensional coordinate transformation
that corrects this misalignment. For this purpose, we denote the original coordinate vector
of the magnetic field by 𝐵𝑒 , where 𝑒 stands for Cartesian coordinates (e.g the x, y, z system
of the vector magnet that is used). In principle, there are many general transformations
possible, but some are easier to find experimentally than others. It can be proven, that
with three rotations around at least two different axes, any general 3-dimensional trans-
formation can be performed (Euler angles). The rotation matrices around a single axis are
given by

𝑅𝑧(𝜙) = (
cos(𝜙) −sin(𝜙) 0
sin(𝜙) cos(𝜙) 0
0 0 1

) 𝑅𝑥 (𝜙) = (
1 0 0
0 cos(𝜙) −sin(𝜙)
0 sin(𝜙) cos(𝜙)

)



3

66 3 Experimental methods

𝑅𝑦 (𝜙) = (
cos(𝜙) 0 sin(𝜙)

0 1 0
−sin(𝜙) 0 cos(𝜙)

) . (3.1)

We use intrinsic rotations around 3 different axes. The original field vector then is
transformed 𝐵𝑒 →𝐵𝑢 →𝐵𝑣 →𝐵𝑤 , where the subscript denotes the new coordinate system
of the 𝐵-vector after each rotation. 𝐵𝑤 is thus the chip coordinate system. We aim to find
the rotation angles 𝛼 , 𝛽 and 𝛾 such that 𝐵𝑤 → 𝐵𝑒 via

𝐵𝑤 = 𝑅𝑥 (𝛾 )𝐵𝑣 = 𝑅𝑥 (𝛾 )𝑅𝑦 (𝛽)𝐵𝑢 = 𝑅𝑥 (𝛾 )𝑅𝑦 (𝛽)𝑅𝑧(𝛼)𝐵𝑒
With this sequence, after the first two rotations one can get the x and y axes aligned with
the chip plane (which are most important for flux control). With a third rotation, one can
align the in-plane nanowire axis¹⁶ with the z-axis of our coordinate system (so we can
apply a truly ”parallel field” to the nanowire). Note that from a linear algebra viewpoint
this boils down to having to find the coordinate transformations 𝐴𝑖→𝑗 to go from basis 𝑖
to 𝑗. The first transformation 𝐴𝑒→𝑢 is given by

𝐵𝑢 = 𝐴𝑒→𝑢𝐵𝑒 = 𝑅𝑧(𝛼)𝐵𝑒
where 𝐵𝑒 and 𝑅𝑧 are expressed in the Cartesian coordinates 𝑒.

We find the angles of rotation using the following procedure. Generally, the devices
are more sensitive to a perpendicular field than to other field directions. Thus, we can
detect when the ”true” out-of-plane field is 0. So we can obtain 𝛼 by sweeping 𝑥𝑒 for
various 𝑦𝑒 and determining for each 𝑦𝑒 set for which 𝑥𝑒(𝑦𝑒), 𝑥𝑢 = 0. We can then perform
a linear fit to obtain the slope 𝑎𝑦𝑥 and we can calculate the first rotation angle by

𝛼 = tan−1(1/𝑎𝑦𝑥 )

Then we continue
𝐵𝑣 = 𝐴𝑢→𝑣𝐵𝑢 = 𝑅𝑦 (𝛽)𝐵𝑢

So if we express the new sweep in the rotated coordinates using 𝛼 then from 𝑥𝑣 = 0 (per-
pendicular field out of chip plane) versus 𝑧𝑢(= 𝑧𝑒),𝑥𝑢(≠ 𝑥𝑒).

𝛽 = tan−1(−1/𝑎𝑧𝑥 )
where 𝑎 is the slope of 𝑧𝑢(𝑥𝑢 |𝑥𝑣 = 0)

Finally, we should be able to find the in-plane rotation of the NW by minimizing the
flux change due to 𝑧𝑣 .

𝐵𝑤 = 𝐴𝑣→𝑤𝐵𝑤 = 𝑅𝑥 (𝛾 )𝐵𝑣
Again if we express the new sweep in the rotated coordinates using 𝛽,𝛼 then from 𝑦𝑤 = 0
(perpendicular field in chip plane) versus 𝑧𝑣 , 𝑦𝑣

𝛾 = tan−1(1/𝑎𝑧𝑦 )
¹⁶Dependent on the placement accuracy of the nanowires the degree of misalignment can vary quite a bit from
device to device.
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where 𝑎𝑧𝑦 is the slope of 𝑧𝑣 (𝑦𝑣 |𝑦𝑤 = 0). Note that in all cases, there can be an offset from
zero by field coming from other sources (like circulating currents on chip) so by fitting
linear functions 𝑎𝑖𝑗 + 𝑏 we account for this. Note, additionally, that using intrinsic rota-
tions is preferred, because it allows to perform the next angle measurement in the new
coordinate system of the previous one, without worrying about corrections to other axes.
However, if the angles are small enough, extrinsic and intrinsic rotations yield the same
result.

3.3.4 Measurement and data processing
As has become the standard in experimental condensed matter physics, we use Python to
code up measurement scripts, analysis and plotting. In general, our approach to taking
data can be summarized in the following statements:

1. A measurement should contain sufficient metadata, such that a person who did not
do the measurement can still figure out what all instrument settings were.

2. It should be clear what measurements came before and after each measurement.

3. The intention of the experimenter for taking the measurement should be retrievable.

To adhere to the first item, we use qcodes as our measurement framework. For each
instrument in the setup, qcodes generates a snapshot of its settings that is saved along with
each dataset. We extend this by creating so-called virtual instruments, which are simply
used to store some additional state of interest during our experiment in the snapshot. For
example, we have a class (instrument) that is calledMagnet3D and saves all the settings of
the alignment angles used (see the alignment paragraph in section 3.3.3) and has additional
functions that allow one to sweep various coordinates in the rotated frame of the chip. In
general, the principle is that, if you feel like it is important to write down a certain value
in your lab notebook, it is probably worth it to make an instrument for it. This both saves
you time from having to write it down, and it makes sure that you can be certain of the
actual value that is set, without relying on your memory. This can also be a digital twin
of your device for example, which stores the bare resonance frequency of the resonator,
transmon frequency, flux periodicity of the loop, etc.

To adhere to the second point, qcodes stores the data in a sqlite database that contains
timestamps and incrementing IDs. Together with the plottr software package, one can
easily inspect the data in chronological order, and do some rudimentary plotting, with a
graphical user interface to quickly get an overview of what data is where.

The third point is then covered by making annotations in the lab notebook, for which
we use OneNote. The idea is here, that because all data is saved in the qcodes snapshot one
should never have to write down a setting or value in the lab notebook, because it can
be extracted directly from the data itself. Thus, OneNote is reserved to write down the
interpretation and motivation behind the datasets, together with plots of the results.

Data processing for a manuscript
We now describe the typical procedure we follow when a collection of data appears com-
plete enough tomake amanuscript. Recently, a large effort from the university has been di-
rected towards promoting open science, and especially towards open data. Here, open data
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Store rawMeasure Select Convert Analyse Plot

Plot

Store

Log Publish
Level 0

Level 1

Figure 3.20: Data processing pipeline. Two routes are illustrated, with icons representing the specific software
or package used for the step. A fast route to go frommeasurements to logging the data in the lab notebook during
day-to-day work (in orange), and a longer route that prepares a selection of the data for publication. Grey boxes
indicate which steps need to be included in order to reach the open data standards as defined in Ref. Akhmerov
and Steele (2019).

basically means that anyone should be able to find the raw data underlying themanuscript,
reproduce the figures, inspect the analysis line-by-line of code, and, of course, allow them
to perform their own analysis on the data. All this should be possible on their own hard-
ware, with ideally similar effort as opening and reading themanuscript pdf. More formally,
the following open data levels are suggested Akhmerov and Steele (2019):

1. Level 0: Publication of the processed data files as plotted in the figures in the paper.

2. Level 1: Publication of the raw data, as recorded by our computers, along with
software and processing scripts that derive the plotted data from the raw data

We have generally adhered to level 1 using the steps shown in Fig. 3.20. First, we se-
lect the data of interest and convert it (without processing) to a more generally accessible
format .netcdf using the xarray package. The advantage here is that access to variables
in arrays is done by the variable name, such that the analysis code that follows it be-
comes much more readable. The selected data is then analysed using a combination of
custom-written functions (usually shared within the team with git version control) and
open-source libraries. The results of this analysis are then stored again using xarray or
pickle for unsupported formats. Finally, the processed data is plotted (without additional
processing) using Python and input in the manuscript.
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4
Dynamical polarization of the
fermion parity in a nanowire

Josephson junction

Josephson junctions in InAs nanowires proximitized with an Al shell can host gate-tunable
Andreev bound states. Depending on the bound state occupation, the fermion parity of the
junction can be even or odd. Coherent control of Andreev bound states has recently been
achieved within each parity sector, but it is impeded by incoherent parity switches due to
excess quasiparticles in the superconducting environment. Here, we show that we can polar-
ize the fermion parity dynamically using microwave pulses by embedding the junction in a
superconducting LC resonator. We demonstrate polarization up to 94%± 1% (89%± 1%) for
the even (odd) parity as verified by single shot parity-readout. Finally, we apply this scheme
to probe the flux-dependent transition spectrum of the even or odd parity sector selectively,
without any post-processing or heralding.

A version of the work in this chapter has been published as: J. J. Wesdorp, L. Grünhaupt, A. Vaartjes, , M.
Pita-Vidal, A. Bargerbos, L. Splitthoff, P. Krogstrup, B. van Heck, and G. De Lange, Dynamical polarization of
the fermion parity in a nanowire Josephson junction, Physical Review Letters 131, 117001 (2023).

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.117001
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4.1 Introduction
Josephson junctions (JJs) play an essential role in the field of circuit quantum electro-
dynamics (cQED) (Blais et al., 2004), providing the non-linearity required for quantum-
limited amplification and quantum information processing (Devoret and Schoelkopf, 2013;
Roy and Devoret, 2016; Wendin, 2017; Kjaergaard et al., 2020). Microscopically, the Joseph-
son current is carried by Andreev bound states (ABS) (Kulik, 1970; Beenakker, 1991). Re-
cent advances in hybrid circuits with JJs consisting of superconducting atomic break junc-
tions (Bretheau et al., 2013a; Bretheau, 2013; Janvier et al., 2015) or superconductor - semi-
conductor - superconductor weak links (de Lange et al., 2015; Larsen et al., 2015; Casparis
et al., 2018; Pita-Vidal et al., 2020) have opened up exciting research avenues due to the
presence of few, transparent, tunable ABS.

ABS are fermionic states occurring in Kramers degenerate doublets (Beenakker, 1991).
Their energy depends on the phase difference across the JJ, and the degeneracy can be
lifted in the presence of spin-orbit coupling (Chtchelkatchev and Nazarov, 2003) or mag-
netic field. Each doublet can be occupied by zero or two, or one quasiparticle (QP), giving
rise to even and odd parity sectors. Theoretical proposals have investigated both sec-
tors as qubit degrees of freedom (Zazunov et al., 2003; Despósito and Levy Yeyati, 2001;
Chtchelkatchev and Nazarov, 2003; Padurariu and Nazarov, 2010), relying on conservation
of fermion parity. These “Andreev qubits” combine the beneficial small size of semicon-
ductor qubits with strong (spin) state-dependent supercurrents allowing fast, high-fidelity,
microwave based readout and manipulation similar to superconducting qubits (Hays et al.,
2021; Janvier et al., 2015; Hays et al., 2018).

A difficulty is that superconducting circuits contain a non-equilibrium population of
QPs (Glazman and Catelani, 2021; Aumentado et al., 2004; Lenander et al., 2011; Sun et al.,
2012; Ristè et al., 2013; Wenner et al., 2013; Pop et al., 2014; Vool et al., 2014; Wang et al.,
2014; Riwar et al., 2016; Serniak et al., 2018; Uilhoorn et al., 2021), which can enter the
junction and “poison” the ABS on timescales of ≈ 100µs (Zgirski et al., 2011; Hays et al.,
2018; Janvier et al., 2015). Despite this, recent experiments have demonstrated remarkable
control over the ABS dynamics using microwave drives. Refs. (Janvier et al., 2015; Hays
et al., 2018) were able to demonstrate coherent manipulation in the even parity manifold,
while Refs. (Tosi et al., 2019; Hays et al., 2020, 2021) focused on the odd manifold and
coherently controlled a trapped QP and its spin. In both cases poisoning events must be
monitored to operate in the intended parity sector.

So far, the strategy to control the ABS parity has been to engineer the free energy land-
scape via electrostatic (vanDam et al., 2006; De Franceschi et al., 2010) or flux (Zgirski et al.,
2011) tuning to make the QP trapping and de-trapping equilibrium rates strongly unbal-
anced. Applications like Andreev qubits (Zazunov et al., 2003; Despósito and Levy Yeyati,
2001; Chtchelkatchev and Nazarov, 2003; Padurariu and Nazarov, 2010; Park and Yeyati,
2017; Janvier et al., 2015; Hays et al., 2018, 2021) or Majorana detection (Prada et al., 2020)
for topological qubits (Karzig et al., 2017) require to dynamically set the parity without
changing gate or flux settings - e.g. using a microwave drive. While microwave photons
are only allowed to drive transitions that preserve parity, they should be able to polar-
ize the fermion parity of a JJ by exciting one QP into the continuum of states above the
superconducting gap in the leads (Chtchelkatchev and Nazarov, 2003; Riwar et al., 2014;
Klees et al., 2017; Olivares et al., 2014; Riwar, 2015). However, so far microwaves have
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Figure 4.1: (a) False-colored scanning electron micrograph of the InAs/Al nanowire JJ formed by etching a
≈ 150nm section of the Al shell, and sketch of the detrapping of a QP (purple circle) from an ABS by microwave
irradiation (yellow arrow). ABS arise in the semiconducting junction due to constructive interference from con-
secutive Andreev reflection into the Al leads (Hays et al., 2018, 2020; Tosi et al., 2019). (b) Setup schematic. Two
parallel inductances shunt the gate-tunable junction (blue dotted box) and form a gradiometric RF-SQUID (red).
For dispersive readout of the ABS spectrum, we integrate the SQUID into an LC resonator (blue) capacitively cou-
pled to a transmission line (orange) and probed with a near-resonant tone at frequency 𝑓r ≈ 4.823GHz. A second
transmission line (green) allows direct driving of ABS transitions via microwave tones (𝑓d, 𝑓p). (c) Schematic
energy levels of ABS inside the superconducting gap Δ and the lowest doublet occupation configurations for
even and odd junction parity. (d) Energy diagram (Tosi et al., 2019) of levels shown in (c) versus phase bias
𝜑 = 2𝜋Φ/Φ0 applied via an external flux Φ. Also indicated are parity-conserving transitions starting from the
odd or even parity occupation of the lowest ABS doublet, with colors matching the parity of transitions shown
in (e). Blue connected arrows denote transition within the even parity sector starting from the ground state,
yellow arrows denote transitions within the odd sector starting with one of the lower levels occupied by a QP.
(e)Measured spectrum containing the transitions indicated in (d), starting from odd (yellow) or even (dark blue)
parity. Note that spectral copies of the transitions likely are visible due to multi-photon processes involving the
cavity photons at 𝑓d±𝑓r (Section 4.8; cf. footnote 3). Colorbar indicates real part (𝐼 ) of the complex amplitude 𝐴
of the transmitted tone at 𝑓r (Section 4.8).

only been observed to increase the rate of QP escape (Levenson-Falk et al., 2014; Farmer
et al., 2021; Hays et al., 2021) or trapping (Bretheau et al., 2013b) from the junction, while
deterministic polarization towards either parity has not yet been demonstrated.

In this Chapter, we demonstrate dynamical polarization of the fermion parity of ABS
in a nanowire JJ using only microwave control. We first demonstrate single shot readout
of the ABS parity. We then show that we can polarize the ABS into either parity depend-
ing on the frequency and power of a second pumping tone. Using a two-state rate model,
we infer that the pumping tone can change the transition rate from even to odd parity, or
vice versa, by more than an order of magnitude. Finally, we show that we can determinis-
tically polarize the ABS parity over a wide range of flux by pumping at a flux-dependent
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frequency, as confirmed by parity-selective spectroscopy without post-selection or herald-
ing.

We focus on the microwave transition spectrum of ABS confined to an InAs nanowire
JJ embedded in a radio-frequency superconducting quantum interference device (RF SQUID) [Fig-
ure 4.1(a)] (Clarke and Braginski, 2004) acting as a variable series inductance in an LC res-
onator tank circuit [Figure 4.1(b)] (Section 4.8). For driving ABS transitions we include a
separate transmission line that induces an AC voltage difference across the junction. The
number of ABS levels is controlled by applying a voltage 𝑉g to the bottom gates (Doh, 2005;
van Woerkom et al., 2017; Goffman et al., 2017). In order to have a consistent dataset, we
keep the gate fixed at 𝑉g = 0.6248 V (Section 4.8).

At this particular 𝑉g, ABS transitions are visible using two-tone spectroscopy [Fig-
ure 4.1(e)] in the flux range between 0.3Φ0 and 0.7Φ0, where Φ0 = ℎ/2𝑒. Due to QP poison-
ing, the parity of the ABS fluctuates during the measurement (Hays et al., 2018; Janvier
et al., 2015; Zgirski et al., 2011). Thus, the measured spectrum [Figure 4.1(e)] is the com-
bination of two sets of transitions with an initial state of either even or odd parity. In Fig-
ure 4.1(c) we depict a schematic (Section 4.8) of the relevant ABS levels for this particular
𝑉g. The lowest doublet consists of two spin-dependent fermionic levels (energies 𝐸↑𝑜 ,𝐸↓𝑜 )
that can either be occupied by a QP or not (van Heck et al., 2017). The occurrence of odd-
parity transitions [yellow lines in Figure 4.1(e)] requires the presence of another doublet
at higher energies, as generally expected in finite-length weak links or in the presence of
multiple transport channels. The ABS levels are spin-split at zero field and finite phase
drop 𝜑, because spin-orbit coupling induces a spin- and momentum-dependent phase shift
gained while traversing the weak link (Governale and Zülicke, 2002; Park and Yeyati, 2017;
Hays et al., 2020; Tosi et al., 2019), as depicted in Figure 4.1(d) (Tosi et al. (2019), Section 4.8).
Colored arrows indicate transitions visible in Figure 4.1(e) with initial odd (yellow) or even
(blue) parity.

4.2 Parity selective spectroscopy
Without a driving tone, the junction switches between two parity-dependent ground states
corresponding to the lowest-energy ABS doublet being empty or occupied by a single QP ¹.
We first demonstrate parity readout by doing pulsed spectroscopy conditioned on the out-
come of a strongermeasurement pulse [Figure 4.2(a)] ². Readout for both the parity and the
spectroscopy pulse is performed with a 20 µs near-resonant pulse which is short compared
to the parity lifetime (∼ 0.5ms) at 𝑓r ≈ 4.823GHz that traverses the readout line and inter-
acts with the resonator. From the resulting complex transmitted amplitude 𝐴 = 𝐼 + 𝑖𝑄 we
time-integrate the real (𝐼 ) and imaginary part (𝑄). The inductive coupling of the ABS to the
resonator causes a state-dependent dispersive frequency shift of the resonator (Hays et al.,
2018; Janvier et al., 2015; Metzger et al., 2021). The 𝐼 ,𝑄-values of the parity measurement

¹Configurations with one or more QPs trapped in higher ABS doublets are also possible, to which our parity
readout is not sensitive. However, when QPs are trapped in these configurations, they presumably relax to their
parity-dependent ground state on timescales much faster than the measured switching time of ∼ 0.5ms that we
report in Figure 4.3(f). This is supported by recent works on similar nanowires (Hays et al., 2020, 2018), which
reported 13 µs for the even excited state, or 3 µs for the odd excited state.
²For clarity, in Figure 4.2(a) we indicate each pulse combination with a colored card and a symbol representing
the type of operation, so it can be easily compared with the pulse sequences of Figure 4.3(b), Figure 4.4(a).
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Figure 4.2: Spectroscopy conditioned on the result of an initial single shot parity readout. (a) Pulse sequence.
We first measure the initial junction parity with a strong 20 µs readout pulse at frequency 𝑓r (blue card) and
subsequently perform a spectroscopy pulse (red card) consisting of using a weaker 20 µs pulse at 𝑓r at the same
time as a pulse at variable 𝑓d on the drive line. (b) Top - 2D Histogram of rotated parity measurement outcomes
at Φ = 0.44Φ0 in the I-Q plane. Bottom - histogram of the projection to the I-axis (grey bars) fitted to a double
Gaussian distribution (dashed black line). Blue (orange) lines show single Gaussians using the previously fitted
parameters indicating even (odd) initial parity. Dashed grey line indicates the threshold used for parity selec-
tion. (c) Post-processed spectroscopy results of the second pulse conditioned on the initial parity, i.e the first
measurement being left or right from the threshold indicated in (b). Post-selection separates the data based on
initial parity [cf. Figure 4.1(e), where the same data is shown without post-processing]. (d) Signal to noise ratio
(SNR) of the parity measurement.

are thus distributed in two Gaussian sets corresponding to the two parities [Figure 4.2(b)].
We fit a double Gaussian distribution to the projection towards the 𝐼 -axis (black line) from
which we extract the even (𝑝e) and odd (𝑝e) populations of the ABS (Section 4.8). We then
post-select the second pulse data conditioned on the measured 𝐼 in the first pulse being
left or right from a Φ-dependent threshold [grey line in Figure 4.2(b)] (Section 4.8). This
allows us to verify that the parity measurement outcomes belong to the even (odd) parity
sector by comparing the resulting two-tone spectra of Figure 4.2(c) to Figure 4.1(e). Finally,
we quantify the ability to select on parity by investigating the signal to noise ratio (SNR)
of the parity measurement [Figure 4.2(d)] (Section 4.8). The SNR changes with Φ, reflect-
ing the strong flux dependence of the dispersive shifts of the resonator corresponding to
different transitions (Janvier, 2016; Metzger et al., 2021).
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Figure 4.3: Dynamical polarization of the junction parity via microwave pumping. (a) Continuous parity
monitoring (20 µs integration time, 15ms trace), while applying a second tone resonant with one of the odd
(𝑓oe = 27.48GHz) or even (𝑓eo = 29.72GHz) parity transitions at low, medium and strong drive power. Grey his-
tograms show all measured points in the 2 s trace. (b) Pulse scheme used to verify the polarization for panels (c-g).
A 50 µs polarization pulse (Section 4.8) at frequency 𝑓p (green card) is followed after a delay 𝜏 by the same parity
measurement used in Figure 4.2 (blue card). (c) Flux-dependent map of measured parity polarization 𝑀P versus
𝑓p used for the first pulse, where +1 (-1) indicates complete polarization to even (odd) parity. (d) Histograms
of 𝐼 -values of the parity measurement after polarization (𝑃p=14 dBm, 𝜏 = 4µs) to even (odd) parity via pumping
at 𝑓p = 𝑓oe (𝑓p = 𝑓eo). Flux and 𝑓p set-points are indicated by same colored dots in (c). (e) Phenomenological
two state rate model used to describe the parity dynamics and polarization process. Dependent on 𝑓p, either
the trapping rate Γeo or de-trapping rate Γoe increases from its equilibrium value. Sketches of possible processes
that increase the rates are shown. Full black arrows indicate the driven transitions, smaller arrows sketch a QP
subsequently exiting the junction changing the final state parity and blocking the pumping process. (f) Decay
time experiment. First we polarize (𝑃p=14 dBm) the junction into even (blue dots) or odd (orange dots) parity
and then vary 𝜏 before the parity measurement. Numbers indicate equilibrium parity switching rates Γoe, Γeo
extracted from an average of fits (solid lines) of the rate model for different 𝑓p (Section 4.8). (g) Pump power
dependence of 𝑀P for extracting 𝑅 = Γoe/Γeo with 𝜏 = 4µs. Error bars in (f, g) are smaller than the markers.
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4.3 Dynamical polarization of the junction parity using
a microwave drive

In the absence of drive, repeated parity measurements yield a near 50-50 split between
even and odd [Figure 4.2(b)], as reflected by the telegraph noise measured under continu-
ous readout of the cavity at 𝑓r [Figure 4.3(a, top)]. A second drive tone at a frequency 𝑓p
comparable to the ABS transition frequency changes this balance [Figure 4.3(a, middle)],
with the effect increasing at stronger pumping powers 𝑃p [Figure 4.3(a, bottom)]. In order
to rule out a direct effect on the parity readout by the strong drive, we continue with a
pulsed experiment [Figure 4.3(b)]. We send a pulse at 𝑓p to polarize the parity, followed by
a parity measurement (same as in Figure 4.2) on the final state. A delay 𝜏 = 4µs is inserted
between pulses to make sure the resonator is not populated by the polarization pulse. We
also expect the delay to allow ABS excitations to decay to their parity-dependent ground
state before the readout.

To map out the frequency and flux dependence of the parity polarization, we perform
a similar pulse sequence at high 𝑃p versus Φ and 𝑓p [Figure 4.3(c)]. We quantify the po-
larization 𝑀P = 𝑝e −𝑝o via the parity population imbalance at the end of the sequence.
For some 𝑓p the effect is to almost completely suppress one of the two measurements
outcomes, indicating that at the end of the pulse the ABS are initialized in a given par-
ity [Figure 4.3(d)]. For instance, at Φ = 0.44Φ0 we reach 𝑀P = 0.94±0.01 for pumping on
an odd parity transition (𝑓p = 27.48GHz) and 𝑀P = −0.89± 0.01 for pumping on an even
parity transition (𝑓p = 29.72GHz). Note that the resulting parity is opposite to the parity
of the pumped transition.

We interpret the polarization to result from the effect of the drive on the parity transi-
tion rates. To quantify this, we use a phenomenological model involving two rates Γoe (for
QP de-trapping) and Γeo (for QP trapping) at which the junction switches between even
and odd ground states [Figure 4.3(e)] (Section 4.8). We can estimate Γoe and Γeo by varying
the delay 𝜏 between the drive and measurement pulse at the optimal drive frequencies that
initialize the parity [Figure 4.3(f)]. In the absence of the drive, two rates are comparable:
on average, 𝑅 = Γoe/Γeo = 1.06 and Γ = Γoe+Γeo = 4.01±0.04ms−1 (Section 4.8). The rates
are independent of 𝑓p or 𝑃p used for polarization before the measurement, indicating that
when the pump is off, they go back to their equilibrium value on timescales faster than
the measurement time and delay used.

To investigate the effect of the drive power on the transition rates, we perform the
same pulse sequence as in Figure 4.3(b), keeping 𝜏 = 4µs but varying 𝑃p. From the power
dependence of 𝑀P we extract 𝑅 versus power [Figure 4.3(g)], by assuming that we have
reached a new steady state at the end of the pump tone (Section 4.8). We see that the rates
become strongly imbalanced, reaching 𝑅 = 32±9 (𝑅−1 = 17±2) for pumping at 𝑓oe (𝑓eo).
From Fermi’s golden rule, a single photon process would result in a linear increase of the
rates with power. However, a phenomenological fit [solid lines in Figure 4.3(g)] indicates
an exponent larger than one (Section 4.8). We therefore suspect multi-photon processes
are at play.

The single-photon threshold frequencies expected for trapping and de-trapping are Δ
+ min{𝐸↑𝑜 , 𝐸↓𝑜 } and Δ−𝐸↑,↓𝑜 (Riwar et al., 2014; Klees et al., 2017; Olivares et al., 2014; Riwar,
2015), respectively, corresponding to the breaking of a pair into one QP in the continuum
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and one in the ABS, and to the excitation of a trapped QP in the continuum. However,
we observe polarization at drive frequencies lower than these thresholds: Γeo increases
already by driving at a frequency 𝐸↑𝑜 +𝐸↓𝑜 , while Γoe increases when driving resonant with
any odd-parity transition ³. We suspect that the combination of a crowded spectrum -
from the multiband-nature of our wire and other modes in the circuit (Olivares et al.,
2014) - together with a strong drive allows ladder-like multi-photon processes [sketches
in Figure 4.3(e)], as suggested in earlier experiments (Hays et al., 2021; Levenson-Falk et al.,
2014). A recent theory work proposed a possible explanation for the parity polarization
via a bath-induced coupling of the higher ABS doublet to the continuum (Ackermann et al.,
2023).

4.4 Deterministic initialization of the junction parity
To demonstrate the effectiveness of the parity control, we perform parity-selective two-
tone spectroscopy without post-selection or heralding. We deterministically initialize the
parity of the junction before each spectroscopic measurement via the pumping scheme
demonstrated in Figure 4.3 followed by a spectroscopy measurement [Figure 4.4(a)]. As
indicated in Figure 4.4(b), at each Φ we adjust the pumping frequency to initialize in the
even state to the optimum value experimentally determined in Figure 4.3(c), while a con-
stant pumping frequency of 22.76 GHz is adequate to initialize the odd state at all Φ (Sec-
tion 4.8). In Figure 4.4(c) the result is shown for even (odd) initialization on the left (right).
The similarity with the post-selected results of Figure 4.2 provides conclusive evidence for
the deterministic parity polarization.

³Note that we also see peaks in the polarization at transitions 𝑓even,odd ± 𝑓r due to multiphoton processes in-
volving the cavity. This could be explained by the fact that a weak readout tone was on during the pumping
for Figure 4.3(c) (Section 4.8). Additionally, the copy of the odd-parity transition bundle (also visible in Fig. 2)
could be due to the presence of a third ABS doublet in the junction.
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Figure 4.4: Deterministic parity initialization verified by spectroscopy for a range of flux values. (a) Pulse
sequence. We initialize the parity using a flux-dependent 𝑓p for 100 µs together with a low power tone at 𝑓r
(green card). This is followed after 5 µs by a spectroscopy pulse of 20 µs similar to Figure 4.2.(a), but without any
post-selection or heralding (red card). (b) Pump frequency 𝑓p used to increase Γeo (dots) and Γoe (dashed line).
(c) Result of the second spectroscopy pulse after initializing into even (left panel) or odd parity (right panel).
Linecuts at Φ = 0.43Φ0 demonstrate the disappearance of odd (even) transitions after initialization in even (odd)
parity.

4.5 Summary and conclusion
In summary, we demonstrated deterministic polarization of the fermion parity in a nanowire
Josephson junction using microwave drives. For pumping towards even parity the maxi-
mal polarization is limited by parity switches during the measurement pulse (Section 4.8).
This mechanism is not sufficient to account for the higher residual infidelity when polar-
izing to odd parity, which we suspect is due to a finite pumping rate towards the even
sector during the polarization pulse. These results enable fast initialization of ABS parity
and thus provide a new tool for studying parity switching processes, highly relevant for
Andreev (Hays et al., 2021; Janvier et al., 2015; Hays et al., 2018) and topological (Karzig
et al., 2017) qubits.
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4.7 Data availability
Raw data and analysis scripts for all presented figures are available online at https://doi.
org/10.4121/17876240.v1

4.8 Supplementary information
4.8.1 Methods
Author contributions
JJW, AV, LJS, MPV contributed to sample fabrication and inspection. JJW, LG, AV con-
tributed to the data acquisition and analysis with input from GdL, BvH, AB, MPV. JJW,
LG, AV, wrote the manuscript with comments and input from GdL, BvH, AB, LJS, MPV.
Nanowires were grown by PK. Project was supervised by GdL, BvH.

Fabrication
The whole circuit [Figure 4.5] is patterned in a sputtered 22 nm thick NbTiN film with a ki-
netic inductance of around 11 pH/square using SF6/O2 reactive ion etching. Subsequently,
28 nm of Si3N4 is deposited using plasma-enhanced chemical vapor deposition (PECVD) at
300 ∘C and patterned using a 3 minute 20:1 BOE (HF) dip with surfactant, serving both as a
bottom gate-dielectric and as isolation for 75 nm sputtered NbTiN bridges connecting the
separated ground plane around the gate lines. The hexagonal nanowire has a diameter of
≈ 80 nm and is epitaxially covered (Chang et al., 2015) on 2 facets by a 6 nm Al shell [Fig-
ure 4.1(a)]. It is transfered using a nanomanipulator on top of a NbTiN gate structure
separated by Si3N4 dielectric. The ≈ 150nm junction is etched with a 55 second MF321
(alkaline) etching step. Finally the nanowires are contacted by 150 nm of sputtered NbTiN
after 3 min of in-situ AR-milling at 50W.

Circuit design
The circuit shown in Figure 4.1(b) consists of a lumped element readout resonator with
a resonance frequency 𝑓c = 4.823GHz (𝐿r ≈ 21nH,𝐿s ≈ 0.7nH, 𝐶r ≈ 47fF), which is over-
coupled to a 50Ω transmission line. A chosen 𝐶c ≈ 4fF results in a coupling quality factor
𝑄c = 1.7 ⋅ 103. The coupling and internal quality factor 𝑄i = 15 ⋅ 103 are extracted using the
model in (Khalil et al., 2012) for a fit at average intra-cavity photon number ⟨𝑛ph⟩ ≈ 1800
(Bruno et al., 2015) as shown in Figure 4.6 (a fit at ⟨𝑛ph⟩ ≈ 17 gave similar results). Typical

coupling to the ABS was designed to be 𝑔/ℎ = 𝐼s 𝐿s
𝐿s+𝐿r √

ℎ̄𝑍Lc
2 ≈ 250MHz at 𝜑 = 𝜋 using a

single channel ABS model (Zazunov et al., 2003) with 𝐼s ≈ 10nA. Note that the actual cou-
pling strength depends on flux and 𝐼s, which also depends on 𝑉g. We setΦ using amagnetic
field with a vector magnet applied perpendicular to the nanowire but in plane with the
NbTiN film, to reduce flux jumps. The effective loop area then consists of twice the area 𝐴
under the nanowire between the contacts due to the gradiometric design (see Figure 3.18).
The field corresponding to one flux period is 3.65mT (𝐴 = 0.28µm2). By choosing 𝐿s ≪𝐿j,
we ensure that the phase drop 𝜑 over the junction is proportional to the external flux
threading the loop 𝜑 = 2𝜋Φ/Φ0 (Clarke and Braginski, 2004).

https://doi.org/10.4121/17876240.v1
https://doi.org/10.4121/17876240.v1
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Figure 4.5: Additional images of the measured device. (a, b) The chip contains four devices of which one was
fully functional and studied in this work. Readout was performed for all devices via a single transmission line. A
second transmission line is coupled to all devices via coupling elements acting as an effective capacitance to the
device. This allows using a single line to drive multiple devices. The gate lines had on-chip LC filters to reduce
high frequency noise (Mi et al., 2017b). (c-e) Additional scanning electron micrographs of the device described
in Figure 4.1. In a 21µm radious around the resonator, as well as in the capacitor plate, transmission-lines and
drive-line, 80 nm diameter round vortex pinning sites were patterned to reduce flux jumps and vortex induced
losses when applying magnetic fields (Kroll et al., 2019). Furthermore the ground plane was patterned with
500nm square holes to trap residual flux.

Wiring diagram
A wiring diagram is shown in Figure 4.7. A R&S ZNB 20 VNA was combined with a
standard homodyne detection circuit using a splitter. A Zurich instrument high frequency
lockin amplifier (UHFLI) both generated and demodulated a microwave tone between 500
MHz and 600 MHZ using the same internal oscillator. This signal was upconverted by
mixing it with the RF output of a R&S SRS 100Amicrowave source set to a fixed frequency
of 4237.11 MHz resonant with the frequency of another resonator on the chip to minimize
LO leakage. After traveling through the fridge, the signal was amplified at 4K using a
LNF 4-8 GHz HEMT amplifier as well as by two amplifiers at room temperature. This was
then downconverted by mixing with the LO output of the SRS100A microwave source
and demodulated in the UHFLI to obtain the I,Q values shown in the main text. All RF
instruments were synced using a 10MHz rubydium reference.

Pulse sequences were generated on both a Tektronic AWG 5208 and the internal AWG
of the UHFLI and were both set to a clock frequency of 1.8 GHz. The UHFLI AWG was
set to a sampling frequency of 225MHz. The Tektronic AWG send pulses (square) on 2
channels:

1. A first long pulse gated UHFLI data streaming -allowing for a low duty-cycle mea-
surement to circumvent ethernet bandwidth problems when streaming at a UHFLI
sampling rate of ≈1 MHZ. The same pulse triggered the UHFLI internal AWG to
start.
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Figure 4.6: Measurement and fit of resonance of the readout resonator shown in Figure 4.5.

2. A second pulse controlled the R&S SMR drive pulse-modulation used to pump parity.

The UHFLI internal AWG also send two pulse sequences:

1. The first sequence amplitude modulated the internal oscillator output of the UHFLI

2. the second sequence was send to the pulse-modulation input of the Agilent E8267D
microwave source used for the spectroscopy drive.

The roughly 150 ns delay due to activation of pulse modulation and fridge traveling time
were calibrated out using the internal scope function of the UHFLI. Readout amplitudes
𝐴 quoted in this work correspond to 𝐴 = 𝑉pp/1.5V of the carrier sine wave at 𝑓r used for
readout pulses.



4.8 Supplementary information

4

81

Figure 4.7: Full wiring diagram of the experiment.
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Measurement methods
For all two tone spectroscopy data in the paper, we determined the optimal readout point
by fitting a simple Lorentzian to |𝑆21| [Figure 4.6 (a)] by taking a frequency dependence for
eachΦ value. We then took the readout point to be at theminimumof this fitted Lorentzian.
We found fitting a single Lorentzian worked even in the case of a split resonator from the
dispersive shift of the even state close to Φ = 0.5Φ0. This resulted in measuring in the
middle between the even/odd shifted resonator, allowing for both even and odd parity
readout.

Gate operation point
In Figure 4.6(a) we show an RF version of a typical pinch-off trace of the supercurrent.
Here we monitor the magnitude of the transmitted signal, which is a proxy for a change
in resonance frequency 𝑓𝑐 of the resonator. At 0.5Φ0 as shown here, 𝑓𝑐 goes up when
the magnitude of the supercurrent increases - or similarly the inductance decreases. The
trace shows mesoscopic oscillations as often seen in these systems (Doh, 2005), but nev-
ertheless has an increasing trend with 𝑉g. We stay close to pinch-off such that we stay
in the few-mode regime as shown in a two tone trace at Φ = 0.6Φ0 [Figure 4.6(c)]. The
gate dependence of odd and even states show a clear opposite trend (Tosi et al., 2019),
since when the transparency of ABS decreases, the interband odd transitions go down in
frequency while the even transitions go up. As described in the main text, for all data
taken in the main text figures we kept the gate voltage fixed at 𝑉g = 0.6248 V during the
three weeks of data taking for this experiment in order to have a consistent dataset. 𝑉g
was chosen to minimize overlap between even and odd parity transitions in the spectrum.
The lowest available transition was taken to be far away from the resonator to prevent
non-linearities in the cavity at high 𝑛ph and facilitate parity readout. We expect the po-
larization to be possible also at other gate voltages where ABS transitions are available.
However, since we suspect the polarization is caused by ladder-like processes, it might be
that the polarization becomes harder (easier) when the spectrum is less (more) crowded.
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Figure 4.8: (a) Pinch-off trace, monitoring the magnitude |𝑆21 | of the transmitted signal at fixed frequency in-
dicated versus applied gate voltage. Also indicated is the operating point 𝑉g = 0.6248V for all other data taken.
(b) Two tone trace taken at Φ ≈ 0.6Φ0 showing the ABS dispersion versus a small gate range. Grey dashed line
indicate again the operating point.

4.8.2 Data analysis and additional information
In general, for all figures, the measured I-Q values during a parity or spectroscopy pulse
pulse give twoGaussian distributed sets of outcomes in the I-Q plane [see e.g. Figure 4.2(b)].
These are rotated to maximize the variance in the I-quadrature. Subsequently they are pro-
jected towards 𝐼 for each Φ separately, since the readout frequency is Φ dependent. For 2D
measured spectra(c.f Fig 1., Fig 2, Fig 4.) we also subtracted a flux-dependent background
- the median of 𝐼 of all 𝑓d for each Φ - to compensate for the change in 𝑓r(Φ).

Parity selective spectroscopy - Figure 4.1, Figure 4.2
We now describe the analysis steps used to create the results of Figure 4.1.(e) and Fig-
ure 4.2. For the spectroscopy data of Figure 4.1, we used the average of all shots of the
measured data in the spectroscopy pulse for Figure 4.2 - e.g without any post-selection.
For the pulse sequence used in Figure 4.2 (a), we first sent a 20 µs readout pulse at fre-
quency 𝑓r (𝐴 = 0.05), followed by a 20 µs two-tone spectroscopy sequence, i.e reading out
at 𝑓r (𝐴 = 0.025) while driving at 𝑓d (𝑃d = 10dBm). To empty the cavity between parity
measurement and spectroscopy, we inserted a 5 µs wait time. Note that the drive power
is sufficient to also induce parity pumping (see Figure 4.13) in addition to exciting the
transition directly. We found this to increase the contrast in the spectrum. The sequence
was repeated every 1.2ms for each shot, in order to make sure the junction returned to
its equilibrium state. This also made sure any parity pumping in the spectroscopy did not
affect the subsequent shot. From the total line attenuation and adding ≈ 6dB loss due to
the skin-effect and insertion losses, we estimate average photon number in the resonator
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during parity readout to be ⟨𝑛ph⟩ ≈ 44 (𝑃in = −118 dBm) and ⟨𝑛ph⟩ ≈ 11 (𝑃in = −124 dBm)
during the spectroscopy pulse (Bruno et al., 2015).

For the parity readout pulse, the rotated 1D histograms of 𝐼 are fitted to a double

Gaussian distribution (black line in Figure 4.2) of the form 𝑐(𝑥) = 𝑎1/√2𝜋𝜎21 exp(−(𝑥 −
̄𝑥1)2/2𝜎21 )+𝑎2/√2𝜋𝜎22 exp(−(𝑥 − ̄𝑥2)2/2𝜎22 ). For each Φ we determined a selection thresh-

old 𝐼𝑇 (Φ) = (𝐹−1(0.4)+𝐹−1(0.6))/2where 𝐹−1 denotes the inverse function of the cumula-
tive normalized histogram of measured 𝐼 values. The threshold for Φ = 0.44Φ0 is indicated
in Figure 4.2(b). We then post-select the data of the second pulse conditioned on having
𝐼 < 𝐼𝑇 (𝐼 > 𝐼𝑇 ) in the first pulse, keeping all data. Note that it is possible to improve the
accuracy of the selection if we selected further away from the threshold, keeping less data.
We define the signal-to-noise ratio as SNR = | ̄𝑥𝑒 − ̄𝑥𝑜 |/2𝜎 (de Jong et al., 2019). Here, ̄𝑥𝑒( ̄𝑥𝑜)
is the mean of the fitted Gaussian belonging to the even (odd) parity and 𝜎 the standard
deviation, which is kept fixed to the values found in [Figure 4.2(b)] and kept the same for
both Gaussians. Note that for 0.46Φ0 < Φ < 0.54Φ0 we see a slight deviation from the fit,
reducing the validity of the SNR estimate, possibly due to a small readout-induced excited
population. Letting 𝜎 free as a fit parameter then results in a maximally 8% reduction
in the extracted SNR. Extracting 𝑅 versus Φ from the fitted amplitudes resulted in a ≈0.1
variation in 𝑅 over the flux range.

Pulsed polarization measurements - Figure 4.3
We now describe the procedure used to obtain the data in Figure 4.3(d-g) using the pulse
sequence of Figure 4.3(b). For this data, we varied the pump power 𝑃p for four pump
frequencies 𝑓p. This was repeated for each delay time 𝜏 . An additional 1ms of waiting
time was introduced after the two-pulse sequence to get back to equilibrium before the
next sequence. For each 𝑓p, we do a double Gaussian fit to the rotated 𝐼 histograms of the
2nd pulse measurement shots for all 𝑃p together to obtain a single 𝜎 and two means 𝑥1, 𝑥2.
We then keep the means and the single 𝜎 fixed for each 𝜏 . Measuring each 𝜏 versus power
took about 30 minutes so we allowed for a small variation in the mean of the Gaussians
due to slow drift in the setup. We fit 𝑎1 and 𝑎2 for each 𝑃p. We then obtain the populations
by normalizing 𝑝o = 𝑎1

𝑎1+𝑎2 ,𝑝e =
𝑎2

𝑎1+𝑎2 . Uncertainties in𝑀P and 𝑅 follow from propagating
the error in the fit uncertainties of 𝑎1, 𝑎2.

The pump-frequency map of Figure 4.3 (c) was analysed similarly as described above,
but keeping 𝜎 fixed at all fluxes. By inspection of the fits and the residuals 𝜒2, for some
drive frequencies the fit residuals were very large (e.g. the data did no longer match a
double Gaussian), resulting in horizontal lines in the plot. These we attribute to circuit
resonances affecting the readout when excited with the drive tone. As stated in the main
text, the second pulse (parity readout) was the same used for Figure 4.2, Figure 4.3(d-g).
However, for the pumping pulse, next to a tone at 𝑓p, a second weak tone at 𝑓r(𝐴 = 0.02)
was present (see in Figure 4.9), which we expected to help the pumping (see discussion
in Section 4.8.7). The wait time after each shot was reduced to 200 µs in order to save
measurement time for the large 2D map, which is also the case for Figure 4.4.
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Figure 4.9: Pulse sequence used in Figure 4.3(c)

Deterministic parity initialization spectroscopy - Figure 4.4
For this dataset we used Figure 4.3 to estimate the best pumping frequency for the polar-
ization emperically for 𝑓eo(Φ), by looking where𝑀P(Φ,𝑓p)was maximal. We then applied
the pulse sequence described in Figure 4.4, for the even and odd initialization separately.
Note that for 𝑓oe(Φ)we pumped at a fixed frequency 𝑓oe = 22.76GHz, because the crowded
spectrum of odd transitions there gave a finite pumping rate over the whole required flux
range.
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4.8.3 Comparison of measured spectrum to theory

Figure 4.10: Fit of the ABS spectrum with to a single barrier model (Tosi et al., 2019) used to construct the
energy levels of Figure 4.1(d). (a) Black and white solid lines indicate the fitted even and odd transitions and
dashed lines are copies, displaced by -𝑓r (4.82 GHz) that are visible in the data due to a finite ⟨𝑛ph⟩ in the cavity
during spectroscopy. The optimal single barrier model parameters are: Δ=37.1 GHz, 𝜆1=1.37, 𝜆2=1.82, 𝜏=0.76,
𝑥𝑟=0.68. (b) Corresponding spin-down (solid) and spin-up (dashed) Andreev levels also shown in Figure 4.1(d)

We applied the phenomenological model described in Tosi et al. (2019); Park and Yey-
ati (2017) to fit a pair of even and odd transitions simultaneously. This model considers a
junction with 2 sub-bands in presence of spin-orbit coupling. Only the lowest sub-band
is occupied, and the lowest levels gain a spin-dependent Fermi-velocity 𝑣𝐹 𝑗 due to spin-
orbit interaction with the higher band. The resulting ABS energy spectrum is used in Fig-
ure 4.1(d) to illustrate the two types of transitions.

Even and odd transitions were extracted from the spectrum by thresholding I. The fit
was performed by firstmapping the theoretical lines to 2D by assigning an artificial 0.2GHz
wide step-function, and applying a Gaussian filter over both theory and extracted data.
Finally the resulting 2D arrays are compared. The extracted model parameters are: Δ=37.1
GHz, 𝜆1=1.37, 𝜆2=1.82, 𝜏=0.76, 𝑥𝑟=0.68. Here, Δ is the superconducting gap; 𝜆𝑗 is the ratio
of the effective junction length 𝐿 and the ballistic coherence length, 𝜆𝑗 = 𝐿/𝜉 = 𝐿Δ/(ℎ̄𝑣𝐹 𝑗),
𝜏 is the transmission probability of a single scatterer located at 𝑥𝑟 used to model a finite
normal reflection probability due to elastic scattering in the junction. We refer the reader
to Refs (Park and Yeyati, 2017; Tosi et al., 2019) for further details about the parameters.

We are hesitant to relate these parameters to microscopic properties of the junction,
because the fit was very sensitive to the initial guess and the model assumes only a single
occupied sub-band, while in gate sweeps we generally see multiple ABS present (c.f Fig-
ure 4.6), which can significantly distort the extracted fit parameters. However, the model
shows qualitatively good agreement with the shape of the transitions shown in the data,
clearly demonstrating the parity nature of the two transitions which is what is important
for the conclusions drawn in this work.
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4.8.4 Rate equations and additional fits
The simple rate model illustrated in Figure 4.3 (e) is given by

̇𝑝e = Γoe𝑝o−Γeo𝑝e
̇𝑝o = Γeo𝑝e−Γoe𝑝o

(4.1)

The general solution for a given population 𝑝e(0) and 𝑝o(0) at 𝑡 = 0 is given by

𝑝e(𝑡) = 𝑝e(0)+
Γoe𝑝o(0)−Γeo𝑝e(0)

Γ (1−Γ𝑒−Γ𝑡)
where Γ = Γoe + Γeo and 𝑝o(0) = 1 − 𝑝e(0). Note that we are under the (simplified)

assumption that we don’t have population in the excited states of each parity branch. We
denote the populations in both spin-split levels with 𝑝o, since we do not resolve spin in
our measurement.

Fit of equilibrium rates
We fit the data from Figure 4.3 (f) to the above model in order to extract Γ, 𝑅 when the
drive is off. This is done by setting 𝑡 = 0 at the end of the drive pulse and then evolving
the undriven rate model for a time 𝜏 in Equation (4.1) (adding 10µs to compensate for
decay during the measurement pulse). In Figure 4.11 we show the fit results for the two
frequencies used in Figure 4.3 (f) of the main text, as well as for two additional pumping
frequencies on which we performed the same experiment.

Using the equilibrium values for Γ and 𝑅, we can infer that the residual infidelity of the
parity pumping towards even of Figure 4.3(d) is limited by the decay back to equilibrium
during the wait time 𝜏 and the measurement pulse. This is because evolving the equilib-
rium rates starting from a fully pumped 𝑀P = 1 for the duration of the delay and of half
the measurement pulse width (14 µs) would give 𝑀P = 0.946 (the full 24 µs would give 𝑀P
= 0.91). The same explanation is not enough to explain the residual depolarization when
pumping towards odd parity. This could be due to a finite power dependent pumping
towards even at those frequencies, for example due to higher order odd transitions ± 𝑓r
occurring at high powers, since the odd spectrum is more crowded in general.

Fit of power dependence of pumping
In an attempt to shed light on the order of the processes involved during pumping, we
now consider a modification to Equation (4.1) by assuming Γoe, Γeo are changed during
the pumping pulse. We adopt the following phenomenological model to account for a
power-dependence of the transition rates

{if 𝑓p = 𝑓oe, Γoe = ΓEqoe +𝑘𝑃𝑥p , Γeo =ΓEqeo
if 𝑓p = 𝑓eo, Γoe = ΓEqoe Γeo =ΓEqeo +𝑘𝑃𝑥p

(4.2)

Here, 𝑃𝑝 is the applied pumping drive power at de-trapping (trapping) frequency 𝑓oe (𝑓eo)
and 𝑘,𝑥 are fitting parameters that may depend on the pump frequency. Here, 𝑘 is a
measure of the frequency response of the circuit and tranmission lines at 𝑓p from the
microwave source to the sample, which is assumed constant versus pump power. The
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extracted 𝑥 gives information on the order of the process involved during the pumping.
In accordance with Fermi’s golden rule, a single photon process would result in 𝑥 = 1.
ΓEqoe ,ΓEqeo represent the equilibrium rates extracted in Figure 4.11. To reduce the amount
of fit parameters, we assume that pumping on an even (odd) transition at 𝑓eo (𝑓oe) only
changes Γeo (Γoe).

For each power, we evolved the ratemodelwith one of the ratesmade power-dependent
for the duration of the pump pulse, followed by evolving the un-driven model for the wait
time 𝜏 and half the measurement pulse length. We apply this procedure to fit the power
dependence at four 𝑓p with 𝑘 and 𝑥 as free fit parameters [Figure 4.12]. The average of the
best fit results of 𝑥 for the four different 𝑓p is 𝑥 = 1.4±0.1.

The extracted value of 𝑘 varied with 𝑓p, because 𝑘 represents the absolute power as a
function of frequency that arrives at the sample. Therefore, 𝑘 depends on the frequency
response of the setup plus on-chip lines, which is not easily known from an independent
measurement at frequencies outside the amplifier bandwidth. Since 𝑘,𝑥 had a large corre-
lation coefficient in the fit, in Figure 4.12 we display additional fits keeping 𝑥 fixed at the
values indicated and fitting only 𝑘. The fact that 𝑥 = 1 doesn’t fit well points towards a
multiphoton nature of the polarization processes, also suggested for de-trapping in Hays
et al. (2021). Care has to be taken for extraction of 𝑥 at high powers, since from the anal-
ysis of continuously readout traces in Section 4.8.8 we found that eventually both rates
start increasing, which violates one of the simplifying assumptions of the model in Equa-
tion (4.2).

Extraction of R
By assuming the system is in equilibrium at the end of the pump pulse, we can solve Equa-
tion (4.1) directly: 𝑅 = 1/𝑝o−1. This is used in Figure 4.3 (g) to extract the power depen-
dence of 𝑅. This gives a conservative estimate of 𝑅, because a steady state is not reached
for a pump pulse length of 50 µs. Furthermore we neglected decay during 𝜏 and measure-
ment time which also reduces the extracted 𝑅. Note that we could have also gotten 𝑅 as a
function of power from fitting Equation (4.2), which would slightly increase the estimates
shown in the main text.
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Figure 4.11: (a) Fits of the population decay shown after pumping at different 𝑓p in the main text, and two
additional datasets used to extract 𝑅,Γ. (b, c) extracted ratios 𝑅 and Γ from the delay time fits of (a) versus
𝑃p, at lower pump powers the contrast goes down and the fits become more inaccurate. The fact that 𝑅 stays
constant vs 𝑃p indicates that there is no drive induced long time scale process (longer than 4𝜇𝑠 governing the
parity imbalance (e.g a non-equilibrium QP population that remains after turning the pump off).



4

90 4 Dynamical polarization of the fermion parity in a nanowire Josephson junction

Figure 4.12: Power dependence at the same 𝑓p as in Figure 4.11 with fits using Equation (4.2) with both 𝑥,𝑘 as
free parameters. Two additional fits are shown keeping 𝑥 fixed to 1,2 and fitting only 𝑘.
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4.8.5 Effect of pump pulse length on the polarization
In Figure 4.13 we show how the polarization depends on the length of the pumping pulse
𝜏p and pump power at the same pump frequencies and flux value used in the main text Fig-
ure 4.3 and Figure 4.12. At high 𝑃p we reach 𝑀P > ±0.9 already after 5 µs which could be
beneficial for state-initialization protocols with high repetition rates.

In the bottom panel Figure 4.13 we show results of the rate equation model Equa-
tion (4.2) for varying pump lengths 𝜏p keeping all parameters fixed to those obtained in
the fit of the 50 µs pulse in Figure 4.12. This is done both at 𝑓oe and 𝑓eo. The agreement
with the model for most 𝜏p indicates that transient effects (a time dependent 𝑅 after the
drive is turned on) become relevant at 𝜏p < 5µs, where the steady state rate equation starts
deviating from the data.

Figure 4.13: Pump length dependence of the polarization. Top panels show dependence of 𝑀P on the length of
the pumping pulse 𝜏𝑝 for two pump powers 𝑃p (black dashed lines in bottom panel). Grey dashed line indicates
𝜏𝑝 = 50µs, which is used in Figure 4.3. Bottom panel indicates polarization power dependence for each 𝜏𝑝 (mark-
ers). Solid lines are evaluations of the driven rate model keeping all fit parameters fixed to the values obtained
in Figure 4.12 (for 𝜏𝑝 = 50µs) and only varying 𝜏p according to the experimental setting. Used pump frequencies
and pulse scheme were the same 𝑓p as used in Figure 4.3 in the main text.
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4.8.6 Parity population after readout pulse at 𝑓r
We performed a calibration experiment to make sure that the parity measurement does
not influence the populations, and therefore 𝑀p, at the readout amplitude used for Figs. 2
and 3. We first apply an initial 20µs readout pulse at a flux-dependent 𝑓r (using the fit-
ting protocol described in Section 4.8.1) with variable amplitude 𝐴1, simulating the parity
readout used in the rest of this work. Then, after waiting 5µs to reset the cavity, this is
followed by another 20µs pulse at 𝑓r at low amplitude 𝐴2 = 0.02 to measure the resulting
parity populations. This was repeated for multiple flux values Φ.

Figure 4.14: Effect of parity readout on the parity population. (a) Pulse scheme. A first 20 µs variable amplitude
parity readout pulse is sent in, followed after waiting 5 µs by another low power 20µs parity readout pulse.
(b) Population difference (odd 𝑝𝑜 , minus even 𝑝𝑒 ) induced by the initial parity measurement resonant with the
cavity frequency 𝑓0 versus flux and parity pulse amplitude 𝐴1 as measured by the second low power readout
pulse (𝐴2 = 0.02). The black dashed line indicates the amplitude used for the parity readout (𝐴1 = 0.05) of the
parity readout pulse in the rest of the paper. This is well below the values where the parity starts being pumped
by a cavity tone alone. (c) Line-cuts at different Φ (indicated in colorbar) versus 𝐴1. For reference, an estimate
of 𝐿𝑃in = 𝑉 2𝑟𝑚𝑠/𝑍 , with 𝑍 = 50Ω and 𝑉rms = 𝐴1

2 √2 ⋅ 1.5V, at the input of the chip is given on the top axis. Here the
attenuation 𝐿 includes line attenuation, known conversion losses and an additional estimated 6dB loss from the
skin-effect and other sources. See Figure 4.7. In the region of the oscillations at high𝐴1 the response of the cavity
(when inspecting the first pulse I-Q outcomes) becomes highly non-linear which makes a clear interpretation
challenging.

After rotation we fit a double Gaussian to a combined histogram of the rotated 𝐼 values
of the 5 lowest𝐴1 (to obtain more counts and a better fit) at Φ= 0.535Φ0 where we had the
largest SNR. Secondly, keeping 𝜎1, 𝜎2 = 𝜎 fixed to 𝜎 = (𝜎1+𝜎2)/2 ∀ Φ, we fitted for each Φ
the means 𝑥1, 𝑥2 of again the 5 lowest 𝐴1 combined. Then finally keeping all 𝑥1, 𝑥2, 𝜎1, 𝜎2
fixed to the values obtained for each Φ we fitted the amplitudes 𝑎1, 𝑎2 for each Φ,𝐴1 value.
Note that by inspection of the fits we discarded the data at Φ < 0.37Φ0 and Φ > 0.62Φ0
since there the SNR was too low to do a proper double Gaussian fit.

The result of the second pulse parity measurement is shown in Figure 4.14. At the
amplitude 𝐴1 = 0.05 used for the parity measurements of the main text, the populations
are not affected by the parity measurement itself. However, at higher readout power, the
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parity can be pumped by the readout tone alone, as also found in previous works (Janvier,
2016). Note that the pump direction due to photons in the cavity switches sign around
0.43Φ0 and 0.57Φ0, pumping towards even instead of odd parity. This feature is not fully
understood: it could be related to the change of ABS transition frequencies with flux rel-
ative to other resonances coupled to the cavity, or to multi-photon transitions involving
the cavity (Olivares et al., 2014).

4.8.7 Readout power dependence of pulsed pumping process
The pumping sequence of Figure 4.4 and Figure 4.3(c) had a weak (𝐴1 = 0.02) cavity tone
on during the pumping, since we assumed that would facilitate multi-photon transitions
towards the continuum. We investigate the effect of pumping parity when a second tone
at 𝑓r is present in Figure 4.15. The pulse sequence of Figure 4.9 was used. We then varied
the amplitude of the first pulse tone at 𝑓r as well as 𝑃p. In Figure 4.14 we already found that
a readout tone can polarize the parity by itself, where the polarization direction depends
on the applied phase bias. The results of Figure 4.15 show that indeed for lower pump
powers a weak cavity tone helps the pumping process (in both directions). However, at
strong pump power the highest polarization is actually achieved for 𝐴1 = 0 in both pump
directions. A possible explanation could be thatwith increasing ⟨𝑛ph⟩ in the cavity the total
Γ increases (as seen in Figure 4.18), reducing 𝑅 effectively. A general trend of pumping
towards even parity with 𝐴1 is also visible.

Figure 4.15: Pump versus readout power dependence of the pumping pulse at Φ = 0.44Φ0. The pulse sequence
of Figure 4.9 was used. Depicted is 𝑀P versus squared readout amplitude 𝐴1 of the tone at 𝑓r and 𝑃p of the tone
at 𝑓p for 𝑓p = 𝑓oe = 27.48 GHz (left graph) and 𝑓p = 𝑓eo = 29.72 GHz (right graph) for different 𝑃p as indicated on
the colorbar.

4.8.8 Continuous readout during pumping
As an alternative verification of the parity pumping process, we perform experiments with
continuous driving and readout of the ABS (two traces shown in Figure 4.3 (a)), similar
to e.g. Janvier et al. (2015); Hays et al. (2018). Opposed to the pulsed experiments de-
scribed before, we now send a continuous microwave tone at fixed frequency and power
to readout and drive line, respectively, and record traces of 2 s for various combinations
of drive frequency 𝑓d, drive power 𝑃d and readout amplitude 𝐴ro. The experiments were
performed at the same 𝑓p and a flux Φ = 0.46 close to the pulsed experiments in order to
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Figure 4.16: Analysis procedure for driven parity switching traces. (a) 2D histogram of the raw (left) and rotated
(right) measured data in the 𝐼𝑄 plane to project parity information solely into the 𝐼 quadrature. The top panel
shows the original data with 𝑡int = 2µs, while the bottom panel shows the data obtained by summing five con-
secutive points. (b) Histogram of the 𝐼 quadrature of rotated raw measurement data (points) and fit of a double
Gaussian distribution (solid black line) for three different drive tone powers. At high drive power the ampli-
tude of one Gaussian decreases, indicating the decreasing presence of the associated junction parity. (c) Power
spectral density of the projection to the 𝐼 quadrature of the rotated time resolved data (colored lines, legend of
panel (c) applies) and fit of a Lorentzian (dashed line) yielding a characteristic transition rate (Machlup, 1954).
(d) Time resolved 𝐼 quadrature projection of the rotated data (top) and corresponding state assigned using a
two-point filter (Vool et al., 2014). Green (red) points indicate the data for 2 µs (10 µs) integration time. Shaded
areas indicate ±1𝜎 . (f) Histogram of dwell times in the even and odd parity for 2 µs (green) and 10 µs (red) inte-
gration time. In the distributions should be identical and single exponential for both integration times assuming
sufficient SNR, and a purely Poissonian switching process. We attribute the double exponential distribution for
short integration time to a finite overlap between the two Gaussians, i.e. too low SNR.

pump on the same transitions. After down-conversion and demodulation we integrate the
signal for 2 µs per point and store 106 points per trace. Given the relatively slow equilib-
rium parity switching rates, we sum five consecutive points from the original raw data to
increase separation between the two clusters of points, i.e. increase SNR, while sacrificing
time resolution with an effective integration time of 𝑡int = 10µs [see top vs. bottom panel
of Figure 4.16(a)]. We rotate the time series of points in the 𝐼𝑄 plane such that we achieve
maximum contrast in the 𝐼 quadrature[cf. right panels of Figure 4.16(a)]. Following this
we fit again a double Gaussian distribution to a histogram of the 𝐼 values of the rotated
data.

To extract the characteristic transition rates between even and odd paritywe obtain the
power spectral density (PSD) of the time series 𝐼 (𝑡) extracted from the rotated complex data
by fast-Fourier transformation [cf. Fig.4.16(c)]. To reduce the noise in the PSD, we take the
original 2× 105 samples long time trace and reshape it into 20 non-overlapping segments
of equal length, finally we average the 20 PSD obtained from the individual segments
(Bartlett, 1948). We fit the averaged PSD of a random telegraph switching process with
two characteristic rates Γ = Γoe+Γeo (Machlup, 1954) 𝑃𝑆𝐷(𝜔) = 𝑎4Γ/(Γ2+𝜔2)+ 𝑐, where
𝑐 accounts for constant background noise. By assuming a two state rate equation model
in steady state, we are finally able to extract the individual parity switching rates from the
fitted values of Γ = Γoe+Γeo and the fitted Gaussian amplitudes 𝑎1/𝑎2 = Γoe/Γeo.



4.8 Supplementary information

4

95

To check the underlying assumption of the analysis outlined above, namely uncor-
related parity switching events, we also analyze the recorded 𝐼 (𝑡) directly in the time
domain by applying a two-point filter (Vool et al., 2014). Figure 4.16 (d) illustrates the
raw recorded time traces for 2 µs integration time for a drive power of −48 dBm in green,
with the green shaded area indicating ±1𝜎 of the Gaussian histogram of all data points [cf.
Figure 4.16 (b)]. Red data points indicate the average of 5 consecutive raw points similar
to Figure 4.16(a). The lower panel of Figure 4.16(d) shows the parity assigned by the two
point filter in the color corresponding to the data on which it is based. If a Poisson pro-
cess governs the parity switches the histogram of the dwell times in even and odd parity
should show an exponential distribution. Note, however, that non-Poissonian quasiparti-
cle processes have been observed (Vool et al., 2014) and could in principle also be present
in the device investigated in this paper. Figure 4.16(e) shows typical histograms of the
dwell times in even and odd parity extracted from the state assignment by the two-point
filter for 2 (green) and 10 µs (red) integration time. For short integration time, we observe
a large excess count of short dwell times. We attribute this to be an artifact of the limited
SNR. By increasing the integration time, and consequently also SNR, the excess counts of
short dwell times vanish and we recover exponential distributions of the dwell times in
even and odd parity as expected for Poissonian processes.

By fitting an exponential distribution to the dwell time histograms we extract the char-
acteristic transition rates for even and odd parity directly from the time series. We observe
good agreement between PSD and two-point filter method for low drive powers and rates
that are much slower than 1/𝑡int. However, for increasingly fast transition rates the corre-
sponding histogram of dwell times has a rapidly decreasing number of points making the
fit of the exponential distribution unreliable. For consistency, we therefore use the PSD
method for all analysis presented in the following sections.

4.8.9 Power dependence of transition rates
Similarly to the analysis of the pulsedmeasurements in Figure 4.3, we extract parity switch-
ing rates as a function of drive power. The top row of Figure 4.17 shows the transition
rates between even (orange) and odd (blue) parity for the four different driving frequen-
cies as a function of drive tone power. The markers indicate the rates obtained following
the PSD approach (cf. Section 4.8.8) using 𝑡int = 10µs. A light-gray dashed line indicates
1/𝑡int to show where the extracted rate becomes comparable to the time resolution of the
measurement, and the sum of both rates is indicated by a dark grey dashed line. We fit
the obtained rates (Γoe, Γeo) using a generic model

Γ(𝑃) = Γ0+𝑘 𝑃𝑥 , (4.3)

where the power 𝑃 is given in Watt. The top row of Figure 4.17 shows the rates together
with the best fit curves.

Different exponents for the different driving frequencies, and onsets of the rate change
could be either due to the underlying physical process, or a due to the frequency depen-
dent transmission of the drive line. For high drive powers, the transition rates surpass the
time resolution ≈ 1/𝑡int, and the observed flattening is likely an artifact of this fact. We
show the ratio 𝑅 = Γoe/Γeo in the middle row of Figure 4.17, and observe a power depen-
dent change in the ratio up to a factor ≈ 10. Finally, the bottom row indicates the mean
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value of the two Gaussians forming the double Gaussian distribution of the measurement
results in the 𝐼𝑄-plane. As can be seen, the Gaussian indicating the parity we are dynam-
ically polarizing to stays constant, while the mean position of the parity polarized away
from moves towards the former. Additionally, we observe a decrease proportional to 𝑅
in the pumped parity Gaussian’s amplitude. Finally, due to the increased transition rates
between the two parities, the Gaussian we are polarizing away smears out and gradually
merges into the Gaussian indicating the dynamically polarized parity. For 𝑓p = 22.76GHz
we see an opposite trend compared to Figure 4.12 ( Γeo increases first while Figure 4.12
shows an increase of Γoe). We attribute this to the 0.02Φ0 difference in flux setting causing
a move off resonance with the odd transition. This is not the case for the other 𝑓p (see
Figure 4.3(c) for the mapping).

Figure 4.18 shows the power dependence of transition rates between even and odd
parity driving on resonance with the lowest available even transition 𝑓d = 17.5GHz,Φ =
0.60, for three different readout amplitudes 𝐴ro applied at 𝑓r. Note that, compared to
driving a higher frequency even transition [cf. Figure 4.17], the fitted exponent is lower
here, while the onset of pumping starts ∼20 dB higher. Since the drive frequency we are
using here is lower, we would expect a higher order process, which is consistent with the
larger power needed for the onset of pumping, but inconsistent with the smaller fitted
exponent. Increasing the readout amplitude by about a factor of two results in ∼ 3 times
larger switching rate from even to odd parity (orange dots). We hypothesize this is due to
effective parity pumping by the readout tone [cf. Figure 4.14].

For all three readout amplitudes, the ratio between the parity transition rates follows
a similar trend (see middle plot in last column of Figure 4.18), and decreases by about an
order of magnitude. For even higher powers 𝑅 increases again until the rate extraction
becomes uncertain due to Γ ∼ 1/𝑡int. Similar to the bottom row of Figure 4.17, the bot-
tom row of Figure 4.18 shows the means of both Gaussians, which constitute the double
Gaussian distribution indicating the two parities. For drive powers > 0dB the Gaussian
associated with even parity moves towards the constant mean of the odd parity Gaussian.

In summary, the continuously measured traces support the conclusions as presented
with the pulsed experiments. Here we can obtain both rates separately when the drive
is on. This shows that with stronger readout amplitude as well as with strong drive
power, both rates increase. However, the analysis does not capture excited ABS popu-
lations which are present (the driven blob starts spreading outward in Figure 4.16). At
high drive powers possible distortions of the readout signal due to the strong drive tone
come into play as well. This is why we applied a pulsed scheme that avoids these caveats
to support the main conclusions of this work. Future work could include excited popula-
tions in the model for the jump traces, which we did not attempt here because the short
coherence times relative to our SNR did not allow for a clear separation of the excited
populations from their parity ground state.
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Figure 4.17: Parity switching rates as a function of drive power at frequencies indicated at Φ = 0.46Φ0 . Top
Parity transition rates as a function of drive power (blue, orange marker), and sum of both rates (grey dashed
line). Colored lines are fits of the corresponding data to Eqn. 4.3 with fitted exponents given in the respective
panels. The horizontal grey dashed line indicates 1/𝑡int, roughly themaximum resolvable transition rate. Middle
Ratio of Γeo/Γoe as a function of drive power. Bottom Means of the two Gaussian distributions indicating even
(orange) and odd (blue) parity. As the transition rate approaches 1/𝑡int the mean of the Gaussian associated with
the pumped parity moves towards the other one, and the normalized reduced 𝜒 2 (grey line, right y-axis) deviates
strongly, indicating that the goodness of fit decreases due to approaching the limit of the experimental time
resolution.
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Figure 4.18: Parity switching rate as a function of drive power at 𝑓d = 17.5GHz resonant with the lowest available
even pair transition for three different readout powers. Note that there was 6 dB less attenuation on the drive
line compared to the drive-power axes of all previously presented data. Top Parity transition rates as a function
of drive power (blue, orange markers), and sum of both rates (grey dashed line). Colored lines are fits of the
corresponding data to Equation (4.3) with fitted exponents given in the respective panels. The horizontal grey
dashed line indicates 1/𝑡int, the maximum resolvable transition rate. The right most panel compares the total
rates as a function of drive power for the different readout amplitudes and indicates an increase of the rates with
increasing readout power. Middle 𝑅 as a function of drive power. The rightmost panel compares the drive power
dependend ratios for the three different readout amplitudes (same legend as in the top row applies). Bottom
Means of the two Gaussian distributions indicating even (orange) and odd (blue) parity. As the transition rate
approaches 1/𝑡int the mean of the Gaussian associated with the pumped parity moves towards the other one, and
the normalized reduced 𝜒 2 (grey line, right y-axis) deviates, indicating that the goodness of fit decreases due to
approaching the limit of the experimental time resolution.



5

99

5
Microwave spectroscopy of
interacting Andreev spins

Andreev bound states are fermionic states localized in weak links between superconductors
which can be occupied with spinful quasiparticles. Microwave experiments using supercon-
ducting circuits with InAs/Al nanowire Josephson junctions have recently enabled probing
and coherent manipulation of Andreev states but have remained limited to zero or small
magnetic fields. Here we use a flux-tunable superconducting circuit compatible in magnetic
fields up to 1 T to perform spectroscopy of spin-polarized Andreev states up to ∼ 250mT,
beyond which the spectrum becomes gapless. We identify singlet and triplet states of two
quasiparticles occupying different Andreev states through their dispersion in magnetic field.
These states are split by exchange interaction and couple via spin-orbit coupling, analogously
to two-electron states in quantum dots. We also show that the magnetic field allows to drive
a direct spin-flip transition of a single quasiparticle trapped in the junction. Finally, we
measure a gate- and field-dependent anomalous phase shift of the Andreev spectrum, of mag-
nitude up to ∼ 0.7𝜋 . Our observations demonstrate new ways to manipulate Andreev states
in a magnetic field and reveal spin-polarized triplet states that carry supercurrent.

A version of the work in this Chapter has been published as an editors suggestion under: J. J. Wesdorp, F. J.
Matute-Cañadas, A. Vaartjes, L. Grünhaupt, T. Laeven, S. Roelofs, L. J. Splitthoff, M. Pita-Vidal, A. Bargerbos, D.J.
van Woerkom, P. Krogstrup, L.P. Kouwenhoven, C. K. Andersen, A. Levy Yeyati, B. van Heck, and G. De Lange,
Microwave spectroscopy of interacting Andreev spins, Physical Review B 109, 045302 (2024).

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.109.045302
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5.1 Introduction
Experimental results in recent years have advanced our understanding of the Josephson
effect in terms of Andreev bound states (ABS) (Kulik, 1970; Beenakker, 1991; Klapwijk,
2004). When two superconductors (S) are separated by a normal (N)material, the transport
of Cooper pairs between them is mediated by Andreev reflections at the N-S interfaces.
The consequent formation of current-carrying, discrete Andreev states in SNS junctions
can be observed with microwave spectroscopy (Bretheau et al. (2013a); Janvier et al. (2015);
Bretheau et al. (2013b); vanWoerkom et al. (2017); Hays et al. (2018); Tosi et al. (2019); Hays
et al. (2020, 2021); Metzger et al. (2021); Fatemi et al. (2022); Matute-Cañadas et al. (2022),
Chapter 4) .

In 𝑠-wave superconductors, which preserve time-reversal symmetry, Cooper pairs are
formed with opposite spins in singlet states with zero total spin. On the other hand, in
semiconductors with strong spin-orbit coupling that are proximitized by an 𝑠-wave super-
conductor (Gor’kov and Rashba, 2001; Reeg and Maslov, 2015), a parallel magnetic field
can induce a triplet 𝑝-wave component in the superconducting pairing due to the compe-
tition of the spin-orbit interaction and the Zeeman effect (Lutchyn et al., 2010; Oreg et al.,
2010; Alicea, 2010; Potter and Lee, 2011). Such triplet pairing is of fundamental interest,
in part because it is a key ingredient to create topological superconducting phases with
Majorana zero modes (Read and Green, 2000; Ivanov, 2001; Kitaev, 2001).

The consequences of triplet pairing on the Josephson effect have been widely inves-
tigated theoretically and include the occurrence of the anomalous Josephson effect and
of spin-polarized supercurrents (Krive et al., 2004; Buzdin, 2005; Reynoso et al., 2008;
Yokoyama et al., 2014; Konschelle et al., 2015). The experimental detection has, how-
ever, proven more challenging. Early signatures of triplet supercurrent have been re-
ported in Josephson junctions with magnetic materials (Khaire et al., 2010; Robinson et al.,
2010; Sprungmann et al., 2010; Linder and Robinson, 2015) and more recently in experi-
ments making use of materials with spin-orbit coupling to induce spin-mixing (Jeon et al.,
2020; Cai et al., 2021; Yang et al., 2021; Ahmad et al., 2022). In hybrid semiconductor-
superconductor systems, a precursor of triplet pairing stems from the observation of the
anomalous Josephson effect in InAs/Al nanowires (Szombati et al., 2016; Strambini et al.,
2020) and in 2-dimensional electron gases (2DEGs) (Mayer et al., 2020). Additionally,
there are indications of triplet pairing from microwave susceptibility measurements of
resonators made out of InAs/Al 2DEGs (Phan et al., 2022) and from spin-polarized crossed
Andreev reflection in InSb/Al nanowires (Wang et al., 2022). Evidence of spin-polarized
triplet pairs based on microwave absorption and their associated supercurrent has, how-
ever, been elusive.

Embedding nanowire Josephson junctions in microwave superconducting circuits al-
lows for probing of individual Andreev states with a remarkable energy resolution of
∼ 100MHz (i.e. ∼ 0.4 µeV) (Hays et al., 2018, 2020, 2021; Tosi et al., 2019;Metzger et al., 2021;
Matute-Cañadas et al., 2022; Fatemi et al., 2022) and with potential spin-sensitivity (Tosi
et al., 2019; Hays et al., 2020, 2021; Metzger et al., 2021). Thus, such circuits provide an
excellent platform to study the (spin) properties of Andreev bound states. In fact, mi-
crowave spectroscopy has already revealed that spin-orbit coupling (Tosi et al., 2019; Hays
et al., 2020) and electron-electron interactions (Matute-Cañadas et al., 2022; Fatemi et al.,
2022) are crucial ingredients that determine the many-body Andreev spectrum of hybrid
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nanowire Josephson junctions. However, so far, such experiments using superconducting
circuits have been limited to zero or small magnetic fields.

In this work, we demonstrate measurements of the Andreev spectra of an InAs/Al
nanowire Josephson junction embedded in a superconducting circuit with magnetic fields
up to ∼ 250mT. The magnetic field dependence of the microwave absorption spectrum
shows clear signatures of excitepd Andreev levels in a triplet state. The spectrum can
be well understood based on a minimal model which includes spin-orbit coupling, the
Zeeman effect, and ferromagnetic exchange interaction between Andreev bound states,
originating from electron-electron interactions in the junction. A particularly interesting
feature of the data is the presence of a singlet-triplet avoided crossing. Due to quasiparti-
cle poisoning (Glazman and Catelani, 2021), the microwave absorption spectra also reveal
transitions between odd-parity states, which were recently used to realize Andreev spin
qubits (Hays et al., 2021). Here, we detect the direct driving of the spin-flip transition of
an Andreev bound state, activated by the magnetic field. Finally, at high fields we ob-
serve a gate-tunable anomalous Josephson effect and resolve the individual contributions
of Andreev bound states to the anomalous phase shift. In the next Section, we kick-off the
presentation of our results by discussing the experimental setup and the ingredients that
made these measurements possible.

5.2 Field compatible design and operation
Previous microwave experiments probing Andreev states with superconducting circuits
have traditionally used thick (150 nm) coplanar-waveguides (Tosi et al., 2019; Janvier et al.,
2015;Metzger et al., 2021;Matute-Cañadas et al., 2022) or coplanar stripline resonators (Hays
et al., 2018, 2020, 2021; Fatemi et al., 2022). Here we use thin-film (20 nm) lumped-element
resonators due to their proven resilience to parallel fields shown earlier in fluxonium de-
vices (Pita-Vidal et al., 2020). Additionally, the second harmonic of the resonator is ex-
pected to be at higher frequencies (28.5GHz, see Section 5.8.1) relative to the lowest mode
compared to a coplanar geometry of equal fundamental frequency. This helps with spec-
troscopic measurements at frequencies up to the superconducting gap Δ ≈ 44GHz.

We fabricate multiple resonators on a chip, one of which is shown in Figure 5.1(a).
The resonator is coupled to a common feedline that is used for microwave readout. The
lumped-element resonator, with resonance frequency 𝑓0 = 4.823GHz, consists of a capac-
itor (𝐶r ≈ 47fF) that is connected to the ground plane via an inductor (𝐿r ≈ 22nH). The
inductance is dominated by the kinetic inductance of the thin-film NbTiN (Annunziata
et al., 2010). The inductor has a width of 300 nm, such that the required perpendicular
field for vortex generation corresponding to one magnetic flux quantum through 3002
nm2 is > 20mT in locations where the current is strongest. This is well above perpendic-
ular fields expected due to misalignment when using a vector magnet. We patterned vor-
tex traps with a diameter of 80 nm within a 8 µm radius in the capacitor and surrounding
ground planes with a 200nm gap from structure edges to prevent flux jumps due tomoving
vortices (Kroll et al., 2019) ¹. The inductor is connected to ground via a gradiometric radio-
frequency superconducting quantum interference device (RF-SQUID) [Figure 5.1(b)] (Pita-

¹We found that holes closer spaced to the edges of structures reduced the flux jumps significantly, compared to
a 1µm spacing used in Kroll et al. (2019)
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Figure 5.1: Field compatible circuit design and operation principle. (a) Device image and circuit schematic. A
lumped element resonator is capacitively coupled (𝐶c) to a transmission line (orange). The resonator consists of
a capacitor (blue) with capacitance 𝐶r to ground (light grey), and inductor (𝐿r, white) connected to ground via a
gradiometric RF-SQUID that modulates the total inductance. (b) The SQUID consists of two loops of inductance
𝐿s that shunt a nanowire Josephson junction with gate-tunable Josephson inductance 𝐿J. A drive-line (yellow) is
used for spectroscopy at frequency 𝑓d. The gradiometric design reduces sensitivity to perpendicular field 𝐵𝑦 and
the shunt-inductance determine the coupling strength to Andreev bound states in the junction. The magnetic
field coordinate system aligned to the nanowire and used throughout the text is indicated. (c) Amplitude and
phase response of the resonator when the junction is pinched-off. (d) 3D sketch of the SQUID loop. An InAs
nanowire (blue) with Al shell (silver) and a 144 nm junction (Chapter 4) is suspended on gate dielectric (teal)
above bottom gates (gold). By applying an in-plane field 𝐵𝑥 , we can thread a flux through a vertically defined
loop (dashed dots). (e) SQUID oscillations when applying 𝐵′𝑥 . (f) Gate dependence of the junction without
applying flux. 𝑓0 increases as the critical current (inductance) of the junction increases (decreases).

Vidal et al., 2020), which consists of a nanowire Josephson junction shunted on two sides
by an inductance (𝐿s ≈ 0.7nH) forming two nearly equal sized loops. We define a Joseph-
son junction by selectively etching away a 144nm section in a ∼ 6nm thick aluminum
shell that covers two facets of a hexagonal InAs nanowire of ∼ 80nm diameter (Chang
et al., 2015). The nanowire is placed on bottom gates defined in the NbTiN layer, which
are covered with a 28 nm Si3N4 dielectric before nanowire placement. To each resonator,
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we add capacitive coupling to an additional transmission line to drive transitions in the
junction and perform spectroscopy.

The specific gradiometric loop design [Figure 5.1(b, d)] was optimized to allow for
flux-biased measurements in high magnetic field. The phase difference over the junction
𝜑 = 2𝜋Φ/Φ0 can be tuned by applying a flux Φ through the SQUID, where Φ0 = ℎ/2𝑒 is
the magnetic flux quantum. In a gradiometric geometry, the two loops create opposite
circulating currents through the nanowire Josephson junction under applied flux by out
of plane field 𝐵𝑦 (see Section 5.8.2). The effective loop area is therefore proportional to
the area difference between the loops, which here is determined by the inaccuracy of
the nanowire placement with respect to center axis of the two loops (∼ 300nm). The
resulting effective loop area (≈ 0.77µm2,Φ0 ∼ 2.6mT) is much smaller than the individual
patterned loop areas (≈ 50µm2) and those used in previous works (> 1000µm2) that did
not measure Andreev spectra in substantial magnetic fields (Hays et al., 2018, 2020, 2021;
Tosi et al., 2019). A small effective loop is desired to render the SQUID insensitive to flux
from out-of-plane field (𝐵𝑦 ), reducing flux noise in presence of strong external fields. The
gradiometric design also allows for picking a shunt inductance 𝐿s – which determines the
coupling strength to the Josephson junction – nearly independent of the loop size, which
makes for easier design and fabrication.

Additionally, our device design exploits the nanowire placement for optimal flux tun-
ing. That is, by placing the nanowire on top of the bottom gates, we lift the nanowire
and thus elevate part of the loop vertically in the 𝑧-𝑦 plane [Figure 5.1(d)]. This allows
flux biasing the SQUID with an in-plane field 𝐵𝑥 parallel to the rest of the superconduct-
ing circuit. Since the magnetic field 𝐵𝑥 induces currents flowing in the same direction
through the nanowire Josephson junction, the effective flux is proportional to twice the
out-of-plane loop area (𝐴 = 0.28µm2, Φ0 ∼ 3.65mT). This is shown by in the measured
SQUID oscillations on the device over a range of 20mT [Figure 5.1(e)]. Due to the thin-
film NbTiN, the area of superconducting film that is exposed to parallel field 𝐵𝑥 is much
smaller compared to the area exposed to perpendicular field 𝐵𝑦 . This is essential for flux
biasing without flux jumps (see Figure 5.9 for a comparison between tuning with 𝐵𝑥 and
𝐵𝑦 ), because vortex nucleation and circulating currents are proportional to the total area
of superconducting film exposed to magnetic field (Benfenati et al., 2020; Tinkham, 2015).

Throughout this work we define 𝐵 as the magnetic field aligned to the chip-plane
and with 𝑧 along the nanowire axis [Figure 5.1(d)] and 𝐵′ as the magnetic field direction
output by each of the coils of the used vector magnet (see Section 5.8.3 for the alignment
procedure). We operationally define Φ as Φ = 𝐵′𝑥/3.65mT+ 𝑐 where c is an offset added
to compensate for fluxoids trapped in the outer loop, flux due to the 𝐵′𝑥 -component of
applied 𝐵𝑧 and a small residual (∼ 0.05Φ0, see Section 5.8.4).

We operate the devices by sending a near resonant probe tone at frequency 𝑓r through
the feedline and monitoring the transmitted complex scattering parameter 𝑆21 using a
vector network analyser. Out of the four resonators we focus on the only one in which
the junction showed considerable gate response (𝑓0 = 4.823GHz). At 𝑓r = 𝑓0 there is a dip
in the magnitude |𝑆21| and a ∼ 60∘ shift in the phase ∠𝑆21 [Figure 5.1(c)]. The Josephson
junction then acts as a gate- and flux-tunable inductor 𝐿J [Figure 5.1(b)] that changes 𝑓0
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via

𝑓0 = 1
2𝜋 √(𝐿r+𝐿squid)𝐶

where 𝐿−1squid = 𝐿−1J +2𝐿−1s . Thus, by monitoring changes in 𝑓0 we get access to 𝐿J, which
is related to the Andreev bound state energies and their occupation (Zazunov et al., 2003;
Bretheau, 2013; Park et al., 2020). As we increase the gate voltage 𝑉g on the bottom gates,
we observe a trend that more current carrying channels start to conduct in the junction,
which decreases 𝐿J and increases 𝑓0 [Figure 5.1(f)]. The smaller modulations on top of the
general trend can be attributed to mesoscopic fluctuations of the transparency of individ-
ual Andreev states (Doh, 2005; Goffman et al., 2017). As shown later, we use this to tune
the Andreev energies over a large range within small mV gate ranges. From the change in
inductance at 𝜑 = 0 between the junction being in an open configuration (𝑉g = 1.68V) and
pinched-off (𝑉g = 0V, 𝐿J = ∞), we estimate 𝐿J = 38 nH at 𝑉g = 1.68V, resulting in an esti-
mate for the maximal critical current 𝐼c ≈ 𝜑0/𝐿J = 8.5nA. In general, the Andreev states
induce a state-dependent frequency shift (Metzger et al., 2021) which generates changes in
∠𝑆21 monitored at 𝑓r. This allows us to perform spectroscopy by sweeping a drive tone 𝑓d
via the drive line, which results in changes in∠𝑆21 when 𝑓d is equal to an energy difference
between Andreev levels of the same parity.

5.3 Andreev bound state spectrum
In a nanowire Josephson junction, Andreev states arise due to constructive interference
after consecutive Andreev reflections from the hybrid superconducting leads (Kulik, 1970;
Beenakker, 1991) [Figure 5.2(a)]. The energy of an Andreev state depends on an energy-
dependent phase gained while Andreev reflection occurs, as well as a phase gained while
traversing the junction. In the presence of time-reversal symmetry, which holds at 𝜑 = 0
or 𝜑 = 𝜋 when the magnetic field is zero, the Andreev energies are two-fold degenerate
because of Kramers’ theorem. The number of Kramers doublets (manifolds) present below
the gap depends on the number of the occupied sub-bands in the leads, and on the length
of the junction. In what follows, we restrict our attention to the two lowest manifolds of
Andreev levels, labeled 𝑎 and 𝑏 ².

Recent works have highlighted the importance of both spin-orbit interaction (Park and
Yeyati (2017); Hays et al. (2020); Tosi et al. (2019), Chapter 4) and electron-electron interac-
tion (Matute-Cañadas et al., 2022; Fatemi et al., 2022) to understand the Andreev spectrum
of nanowire Josephson junctions. While Andreev bound states are spin-degenerate at all
phases in the absence of spin-orbit interaction, the latter may lift the degeneracy away
from 𝜑 = 0 and 𝜑 = 𝜋 . This occurs in junctions of finite length such that a phase shift accu-
mulated due to a spin-dependent Fermi velocity becomes relevant (Governale and Zülicke,
2002; Chtchelkatchev and Nazarov, 2003; Krive et al., 2004; Béri et al., 2008; Yokoyama
et al., 2013, 2014; Konschelle et al., 2016; Park and Yeyati, 2017), see Figure 5.2(b). The
typical phase dispersion of the resulting spin-split manifolds is illustrated in Figure 5.2(c).
As inferred in Refs. (Matute-Cañadas et al., 2022; Kurland et al., 2000), electron-electron

²Note that the labels can refer either to manifolds that originate from the same transverse sub-band, due to
finite-length effects, or to orbitals from different transverse sub-bands
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Figure 5.2: Hybrid nanowire Josephson junction hosting spin-split Andreev bound states at zero field. (a)
Schematic of two Andreev reflection processes in the nanowire junction. Spin-orbit induced sub-band hybridiza-
tion rotates the spins of the bottomAndreev states and lowers the Fermi velocity (𝑣F). Note that the time reversed
processes are also possible (not shown), and that the Andreev states are generally superpositions of these four
Andreev reflection processes. (b) Electron band structure indicating hybridized sub-bands due to spin orbit in-
teraction. The anti-crossings lead to a rotated spin of the inner Andreev mode and a spin-dependent 𝑣F. (c)
Phase dependence of two low lying spinful Andreev manifolds (𝑎, 𝑏) in the non-interacting picture (Tosi et al.,
2019). Arrows denote possible parity conserving microwave transitions. Pairs of blue arrows indicate even-
parity transitions starting from the ground state. Yellow arrows indicate transitions starting from one of the two
lowest levels occupied with a quasiparticle. (d) Evolution of even parity transitions at phase difference 𝜑 = 𝜋
using Eq. (5.1), illustrating the effect of exchange interaction 𝐽 , spin-orbit interaction and Zeeman energy using
𝛼|| < 𝐽 < Δ, which resembles the experiment. 𝐽 splits the four mixed states {𝑀𝑎𝑏} into a singlet 𝑆𝑎𝑏 and three
triplet transitions {𝑇 } = {𝑇0,𝑇+, 𝑇−}. Spin-orbit interaction hybridizes 𝑇0 and 𝑆𝑎 , moving the now hybridized ̃𝑇0
up and ̃𝑆𝑎 down in energy. Finally, a magnetic field splits 𝑇±.

interaction manifests itself via a ferromagnetic exchange interaction −𝐽𝑆2 between two
quasiparticles in a state of total spin 𝑆, each occupying a different manifold.

We now present a minimal model that captures the combined effect of spin-orbit inter-
action, exchange energy and the Zeeman effect of an external magnetic field on the two
manifolds, restricting our attention to the case 𝜑 = 𝜋 . To do so it is convenient to consider
the Andreev states {|↓𝑎⟩ , |↑𝑎⟩ , |↓𝑏⟩ , |↑𝑏⟩} belonging to the 𝑎 or 𝑏 manifold and with spin up
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or down with respect to the 𝑧-axis, running parallel to the nanowire. Denoting with 𝛾†𝑖𝜎
the operator which creates a quasiparticle with spin 𝜎 in the 𝑖 = 𝑎, 𝑏 manifold, the model
Hamiltonian is:

𝐻 = ∑
𝑖,𝜎

(𝐸𝑖+𝜎𝑔∗𝑖 𝐵𝑧)𝛾†𝑖𝜎 𝛾𝑖𝜎 −𝐽/2𝑆2

+∑
𝜎
𝑖 ̄𝜎𝛼⟂𝛾†𝑎𝜎 𝛾𝑏𝜎 + 𝑖𝛼∥𝛾†𝑎 ̄𝜎 𝛾𝑏𝜎 +h.c. . (5.1)

Here, 𝐸𝑖 is the energy of the Andreev manifold in the absence of spin-orbit interaction;
𝐵𝑧 is the parallel magnetic field and 𝑔∗𝑖 is an effective 𝑔-factor which can depend on the
manifold; 𝑆 = 1

2 ∑𝑖,𝜎 ,𝜎 ′ 𝛾†𝑖𝜎 (𝜎)𝜎,𝜎 ′𝛾𝑖𝜎 ′ is the total spin, where 𝜎 is the vector of Pauli matrices;
and finally, 𝑖𝛼|| and 𝑖𝛼⟂ are the matrix elements of the spin-orbit interaction described
with a 2D Rashba model, respectively in the direction parallel and perpendicular to the
nanowire. More details about each term are given in Section 5.11.2.

Within this minimal model, it is straightforward to find the single-particle and two-
particle energy levels, which determine the transitions measured in spectroscopy. In par-
ticular, the simultaneous occupation of the junction by two quasiparticles results in six
possible states. These are two singlet same-manifold states |𝑆𝑎⟩ = |↑𝑎↓𝑎⟩ and |𝑆𝑏⟩ = |↑𝑏↓𝑏⟩
as well as four states corresponding to a mixed occupation of the two manifolds. For the
latter, it is natural to pick the basis of simultaneous eigenstates of 𝑆2 and 𝑆z. These are
the singlet |𝑆𝑎𝑏⟩ = (|↑𝑎↓𝑏⟩ − |↓𝑎↑𝑏⟩)/ √2 and the triplet states |𝑇0⟩ = (|↑𝑎↓𝑏⟩ + |↓𝑎↑𝑏⟩)/ √2,
|𝑇+⟩ = |↑𝑎↑𝑏⟩, and |𝑇−⟩ = |↓𝑎↓𝑏⟩. Note that without exchange interaction, a more natural
basis of mixed states would be {|𝑇−⟩ , |↑𝑎↓𝑏⟩ , |↓𝑎↑𝑏⟩ , |𝑇+⟩}. Also, note that spin-orbit inter-
action breaks spin-rotation symmetry by hybridizing spin and spatial degrees of freedom.
Therefore, in its presence, spin is in general not a good quantum number, and the singlet
and triplet states hybridize. Nevertheless, for many parameter regimes the eigenstates of
Eq. (5.1) are well approximated by the singlet or triplet states, with expectation values of
the spin close to zero and one. With this in mind, in the rest of the manuscript we will
for simplicity keep referring to singlet, doublet and triplet states, except in cases where
spin-orbit effects change this simple picture appreciably.

In microwave spectroscopy, we only have access to transitions between many-body
states of the same fermion parity. In Figure 5.2(c) we label the possible transitions in both
even and odd parity sectors. In the even parity sector, we only consider transition from
the ground state of the junction |0⟩, with no quasiparticle excitations. There are therefore
six possible transitions (pairs of blue arrows, the transition to |𝑆𝑏⟩ is not shown), which we
will denote by their final state. The lowest energy transition is the singlet pair transition
𝑆𝑎 from |0⟩ to |↑𝑎↓𝑎⟩. The four transitions that involve breaking a Cooper pair and splitting
over the two different manifolds 𝑎 and 𝑏 will be globally denoted as {𝑀𝑎𝑏} [blue arrows
on the right side of Figure 5.2(c)]. Note that these four transitions are degenerate in the
absence of spin-orbit interaction and exchange interaction.

In the odd parity sector, we denote the lowest doublet intra-manifold transitions as
𝐷𝑎 ∶ |↑𝑎⟩ ↔ |↓𝑎⟩. This is a direct spin-flip of a quasiparticle occupying the lowest Andreev
manifold [left yellow arrow in Figure 5.2(c)]. Furthermore, we denote the set of four inter-
manifold transitions of a single quasiparticle from {|↑𝑎⟩ , |↓𝑎⟩} to {|↑𝑏⟩ , |↓𝑏⟩} as {𝐼𝑎𝑏} [set of
yellow arrows in Figure 5.2(c)]. In the data presented in Section IV, we find signatures of



5.3 Andreev bound state spectrum

5

107

moremanifolds present at higher energies, due to additional inter-manifold transitions, i.e.
{𝐼𝑎𝑐}, {𝐼𝑎𝑑 }. However, because the even parity transitions corresponding to those manifolds
are at frequencies outside the measurement range at zero magnetic field and only appear
at higher fields, we restrict the modeling and data analysis to the lowest two manifolds
𝑎, 𝑏.

In Figure 5.2(d) we sketch the resulting modifications to the two-particle spectrum as
predicted by the model of Eq. (5.1). The exchange interaction lowers the energy of the
triplet states and, in doing so, partially lifts the degeneracy between the singlet transition
and triplet transitions [Figure 5.2(d) - left panel]. The role of spin-orbit interaction is
different: it breaks the spin-rotation symmetry and lifts the degeneracy of single-particle
states away from the time-reversal invariant points 𝜑 = 0,𝜋 . The combination of spin-orbit
interaction and exchange interaction can completely lift the degeneracy of the triplet states
even at 𝜑 = 0,𝜋 (Matute-Cañadas et al., 2022). In the minimal model, this occurs partially,
by hybridizing |𝑇0⟩ and |𝑆𝑎⟩. Wewill denote the transitions to the hybridized states | ̃𝑇0⟩ and
| ̃𝑆𝑎⟩ by ̃𝑇0 and ̃𝑆𝑎 respectively [Figure 5.2(d) - middle panel]. The remaining degeneracy
within the manifold of two-particle states, that of the triplet states |𝑇±⟩, is lifted by the
external magnetic field via the Zeeman effect [Figure 5.2(d) - right panel].
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5.4 Andreev spectroscopy: singlet, doublet and triplet tran-
sitions

With the theory developed, we now continue with the measurement results. We first mea-
sure the junction spectrum at zero magnetic field versus applied flux Φ [Figure 5.3(a)].
The gate is set to 𝑉g = 625mV, where we have a few Andreev transitions present and the
spectrum is dominated by the lowest two manifolds (see Figure 5.10 for additional gate de-
pendence). Due to the presence of quasiparticle poisoning, the junction fluctuates between
the even parity ground state |0⟩with no Andreev level occupied, and, when a quasiparticle
has entered the junction due to a poisoning event, one of the odd parity doublet states |↑𝑎⟩,
|↓𝑎⟩. In a related work performed on the same junction, we measured typical poisoning
times of ≈ 0.5ms (Chapter 4), much smaller than the integration time per point ∼ 100ms:
thus, the measured spectra are an average of those resulting from initial states with and
without a quasiparticle. Odd and even parity transitions can be distinguished by their op-
posite sign in the dispersive frequency shift induced on the resonator (Metzger et al., 2021)
and characteristic dispersion. For instance, the phase response near Φ = Φ0/2 is negative
(blue) for even parity and positive (yellow) for odd parity.

We first establish that we detect the same types of transitions as in recent experimen-
tal works (Tosi et al., 2019; Hays et al., 2020). These are the even-parity transition with
parabolic dispersion around 16GHz at Φ = Φ0/2, and the transitions starting from the poi-
soned doublet state, 𝐼𝑎𝑏 , with the characteristic “spider-like” shape due to the spin-orbit
splitting of the Andreev levels in manifolds 𝑎, 𝑏. Note that the lowest bundle is associated
with {𝐼𝑎𝑏} and higher bundles likely correspond to transitions from manifold 𝑎 to higher
manifolds 𝑐, 𝑑,… present in the junction at higher energies. We investigate the splitting of
the {𝐼ac} transitions due to 𝐵𝑥 and 𝐵𝑧 in Figure 5.12. A symmetric splitting due to 𝐵𝑧 and
asymmetric splitting due to 𝐵𝑥 was used in Tosi et al. (2019) to infer that the direction of
the effective magnetic field generated by spin-orbit interaction was in-plane and perpen-
dicular to their full-shell nanowire. Here, we do not observe such a clear differentiation
between symmetric and asymmetric splitting. This leads us to suspect that the effective
spin-orbit field is not parallel to 𝐵𝑥 , which is consistent with recent findings indicating
that, in partial-shell wires, the spin-orbit direction depends strongly on the direction of
the local electric field in the wire, which in turns depends on the position and number of
Al facets and gate geometry (Bommer et al., 2019; de Moor et al., 2018).

Furthermore, we see a second even-parity transition dispersing in a similar way as the
first, but at higher frequency, with a minimum around 30GHz. The identification of the
final states in the even transitions visible at zero field is resolved later in this Section on
the basis of the magnetic field dependence. The horizontal bands visible in Figure 5.3(a,b),
mostly at higher frequencies, are attributed to resonances in the drive line and connected
circuit, resulting in a frequency-dependent driving strength.

Next, we measure a parallel field dependence of the Andreev spectrum, while keep-
ing the gate fixed [Figure 5.3](b), in order to investigate the spin texture of the excited
states. By aligning the magnetic field, we keep the phase drop over the junction fixed
at 𝜑 ≈ 𝜋 (see Section 5.8.3 for the alignment procedure) and polarize the spins with 𝐵𝑧
[see Figure 5.1(d)]. A rich spectrum emerges, with several notable features in both the
even and odd transitions.
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We start by describing the even-parity spectrum observed in Figure 5.3(b). Based
on the phase-response at Φ ≈ Φ0/2 in Figure 5.3(a) and known dispersion from earlier
works (Bretheau et al., 2013a; Janvier et al., 2015; van Woerkom et al., 2017; Hays et al.,
2018; Matute-Cañadas et al., 2022), we can distinguish even-parity transitions as spectral
lines with a negative (blue) response. The even transitions observed at 16GHz and 31GHz
at 𝐵𝑧 = 0 remain approximately constant at low fields, as expected from a transition to a
final state with a small spin polarization, thus essentially insensitive to the Zeeman effect.
We also observe two even-parity transitions that disperse linearly in field in opposite di-
rection starting at approximately 24GHz. We thus infer that the final states reached by
these transitions are sensitive to the Zeeman effect and must therefore have some degree
of spin polarization along the field direction. The fact that they originate from nearly
the same frequency as the bundle of four odd-parity transitions 𝐼𝑎𝑐 at Φ ≈ Φ0/2 (visible
in Figure 5.3a at ∼ 23GHz) , is a coincidence and depends on the specific 𝑉g set point. No-
tably, they also display an avoided crossing with the non-dispersing even transitions at
𝐵𝑧 ≈ 50mT, confirming that these transitions are of equal parity.

In order to label the even-parity transitions correctly, we first attempt to fit the main
features of the spectrum to our model of Eq. (5.1) without assuming electron-electron
interactions. For this, we assume the even transition at 16GHz in Figure 5.3(a,b) is 𝑆𝑎
while the one at 31GHz is due to a second Andreev manifold, i.e. the pair transition 𝑆𝑏 . We
then perform a best fit to the extracted transition frequencies at 𝐵𝑧 = 0, while imposing a
constraint that 𝐽 = 0. While such a fit is possible, this choice of parameters also predicts the
presence of two additional spectral lines corresponding to the mixed final states without
exchange interaction∼ |↑𝑎↓𝑏⟩ , |↓𝑎↑𝑏⟩. These even-parity states disperse with the difference
of the effective 𝑔-factors of the two manifolds and should thus appear as two additional
lines with a negative (blue) phase response, which are not observed in the field-dependent
data. We have investigated, using a standard non-interacting tight-binding model for the
nanowire Josephson junction, whether the absence of these transitions could be explained
on the basis of a selection rule, i.e. vanishingmatrix elements (see Section 5.11.1). We have
indeed found cases where transitions to |↑𝑎↓𝑏⟩ and |↓𝑎↑𝑏⟩ have vanishingly small matrix
elements at 𝜑 = 𝜋 . However, even in these cases, the non-interacting model predicts them
to be typically more visible than 𝑇+ and 𝑇− at phase differences away from 𝜑 = 𝜋 . The
latter fact can be understood on the basis that, unlike |𝑇+⟩ and |𝑇−⟩, the final states |↑𝑎↓𝑏⟩
and |↓𝑎↑𝑏⟩ do not require a spin-flip and thus should be more easily observable at small
magnetic fields. Overall, this picture is inconsistent with additional measurements of the
phase-dependence of these states at finite magnetic field (see Figures 5.13 and 5.14), where
we did not observe the additional transitions.

Having thus disfavored a scenario based on the absence of interactions between An-
dreev states, we proceed by analyzing the consequence of setting 𝐽 ≠ 0 in Eq. (5.1). Only
in presence of both a finite spin-orbit interaction 𝛼⟂, 𝛼|| ≠ 0 and 𝐽 ≠ 0we can reproduce the
spectrum produced by the lowest two manifolds 𝑎, 𝑏 for small magnetic fields, as seen in
the data [Figure 5.3(c) - right panel]. From the fit of the data positions at zero field, we find
𝐽 = 17GHz and 𝛼⟂ = 4.2GHz (see Figure 5.29 for lines on top of the data). The extracted
exchange is comparable to estimated values of the effective charging energy of the normal
region in a similar device (∼0.1Δ) (Matute-Cañadas et al., 2022), and thus singlet-doublet
ground state phase transitions are not expected. This is different to the situation reported
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in (Fatemi et al., 2022) (∼Δ), or when a quantum dot is gate-defined in the junction, such as
in Bargerbos et al. (2022) where the interaction is estimated to be ∼10Δ. With these param-
eters, the two even transitions that do not disperse in field in Fig. 5.3 are identified with
the hybridized states ̃𝑆𝑎 and ̃𝑇0, motivating the ordering of transitions displayed in Fig-
ure 5.2(d). Note that the fit simultaneously takes into account and matches the position
of the odd-parity inter-manifold transitions 𝐼𝑎𝑏 (yellow dashed lines) at zero field, visible
in Figure 5.3(a) but only occasionally and feebly in Figure 5.3(b). 𝐼𝑎𝑏 is more visible at other
flux values shown in the phase-dependence at finite 𝐵𝑧 in Figure 5.13. The reason why the
𝐼𝑎𝑐 transitions starting at ∼ 23GHz in Figure 5.3(b) are more visible at Φ0/2 compared to
𝐼𝑎𝑏 is presently unclear.

The effective 𝑔-factors of the Andreev manifolds are not varied in the fit, but fixed
to values extracted separately, as discussed in the next Section. From the fit, together
with the wire diameter, we can estimate a lower bound on the Rashba spin-orbit strength
𝛼R of 𝛼R ≥ 2meVnm (see Section 5.11.2). This is on the lower side of typical values of
5-40meVnm found in literature for InAs nanowires (Liang and Gao, 2012; Albrecht et al.,
2016; vanWoerkom et al., 2017; Tosi et al., 2019). Finally, the avoided crossings between 𝑇−
and ̃𝑆𝑎 , circled in Figure 5.3 and between 𝑇+ and ̃𝑇0 are only reproduced by the model if we
include a finite parallel spin-orbit component 𝛼∥, set to 1GHz for visibility. The extracted
size of the 𝑇−, ̃𝑆𝑎 crossing from the data, approximated by half the frequency difference of
the transitions in the center of the crossing, is ≈ 0.5GHz. Overall, the observation of the
triplet transitions 𝑇−, ̃𝑇0, 𝑇+, in finite magnetic field, together with the fact that they have
a strong phase-dispersion (see Figure 5.13), implies that part of the supercurrent flowing
in the junction is carried by spin-polarized triplet pairs. From the slope of the transition
𝑇− versus phase at 𝐵𝑧 = 95mT, we can estimate a change in current of approximately
2.3nA with respect to the supercurrent flowing when the junction is in the ground state
(see Figure 5.15). This is a measure of the supercurrent carried by the spin-polarized pair.

At higher fields we observe a strong downward trend of the transition frequencies. We
suspect that this is dominated by the orbital effect of themagnetic field in the nanowire (Zuo
et al., 2017), since the 6 nm aluminum shell has a much higher critical field exceeding
1 T (Chang et al., 2015). In Section 5.9.5, we investigate the presence of a revival of the
Andreev spectrum in fields up to 1T, motivated by observations of a plasma mode revival
on similar nanowires in a transmon geometry (Kringhøj et al., 2021; Uilhoorn et al., 2021)
and supercurrent revival (Zuo et al., 2017) due to interference effects, but we do not find
it. The presence of a revival would open up the path towards detection of signatures in
the microwave response of a topological phase transition in presence of multiple Andreev
manifolds (Väyrynen et al., 2015), manifesting as the fractional Josephson effect (Fu and
Kane, 2009; Lutchyn et al., 2010).

5.5 Directly driven Andreev spin-flip
So far we have mostly considered the even-parity part of the spectrum of Figure 5.3(b).
However, when the junction initially is in one of the doublet states due to QP-poisoning,
we can distinguish a linearly upwards dispersing transition 𝐷𝑎 with a positive (yellow)
phase response [Figure 5.3(b)] at finite field. We attribute this to a directly driven spin-flip
between the spin-up |↑𝑎⟩ and spin-down |↓𝑎⟩ levels of the lowest Andreev manifold [Fig-
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ure 5.3 (c)].
From the slope of𝐷𝑎 we can extract an effective 𝑔-factor 𝑔∗𝑎 = 5.3 of the lowestmanifold.

The triplet transitions 𝑇+ and 𝑇− should disperse in fieldwith the half sum of the effective 𝑔-
factors of the two manifolds: 𝑔∗ =±1/2(𝑔∗𝑎 +𝑔∗𝑏 ) = 7.8. Thus, we infer that the higher dou-
blet has a higher effective 𝑔-factor of 𝑔∗𝑏 = 10.3. These values are used for the fit to the the-
ory model presented in [Figure 5.3(c)] and are consistent with hybridized states where the
𝑔-factor should be between |𝑔Al| ≈ 2 and |𝑔InAs| ≈ 15. On the other hand, ̃𝑇0 and 𝑆𝑎𝑏 disperse
weakly in field. We attribute this to a competition between the exchange and the difference
in Zeeman energy of each manifold. By solving the model without spin-orbit interaction,

the eigenenergies of |𝑇0⟩ and |𝑆𝑎𝑏⟩ result in 𝐸𝑎 +𝐸𝑏 − 𝐽/2 ± √(𝐽/2)2+(𝜇B𝐵𝑧)2(𝑔∗𝑎 −𝑔∗𝑏 )2
which is linear in 𝐵𝑧 when 𝐵𝑧 ≫ 𝐽 and quadratic in 𝐵𝑧 when 𝐵𝑧 ≪ 𝐽 . Thus for large fields
their dispersion converges to that of the non-interacting states |↑𝑎↓𝑏⟩ , |↓𝑎↑𝑏⟩. A possible
cause of the large difference in the 𝑔-factors of the Andreev manifolds is that, the Fermi
velocity of the first sub-band is higher than that of the second sub-band, due to the larger
distance from the band bottom. Therefore the effective spin-orbit strength is higher for
the first sub-band (van Heck et al., 2017), reducing 𝑔∗𝑎 more than 𝑔∗𝑏 .

We note that we do not observe the intra-doublet transition 𝐷𝑏 of the higher doublet,
which would have a larger slope due to the higher 𝑔-factor. This can be explained by the
fact that the initial state of this transition is too short-lived: any quasiparticle occupying
the higher manifold quickly decays into the lowest manifold. A comparison of the mea-
sured parity lifetimes ∼ 0.5ms that we recently reported for this device (Chapter 4), to
measured lifetimes ∼ 4µs of an excited quasiparticle in the higher manifold in InAs/Al
nanowires (Hays et al., 2020), supports this.

So far, we have exclusively inferred the observation of a direct Andreev spin-flip tran-
sition 𝐷𝑎 from data at Φ ≈ Φ0/2. In order to provide additional evidence supporting this
observation, we now explore the phase dispersion of 𝐷𝑎 [Figure 5.4]. To facilitate this,
we exploit the gate-tunability of the nanowire Josephson junction to move to a nearby
gate setting 𝑉g = 628mV where the lowest manifold has a high transparency and thus
𝐷𝑎 is energetically separated from the rest of the spectrum (see Figure 5.10 for the gate
dependence at 𝐵𝑧 = 0 T). In Figure 5.4(a) we show the evolution of the phase dispersion
when increasing 𝐵𝑧 . At 𝐵𝑧 = 0, we only see the singlet transition 𝑆𝑎 . When we increase
𝐵𝑧 , we observe both 𝑆𝑎 and the odd-parity spin-flip doublet 𝐷𝑎 as indicated in the diagram
of Figure 5.4(b). As the dispersive shift in presence of resonator crossings in general can
switch sign (Metzger et al., 2021), which would change their color in Figure 5.3, we have
confirmed the odd-parity nature by performing parity-selective spectroscopy (Chapter 4)
at 𝐵𝑧 = 100mT in Figure 5.17. As expected, the phase dispersion of 𝑆𝑎 stays constant at
small fields since it is spin-singlet or hybridized with 𝑇0, while 𝐷𝑎 moves up in frequency
linearly [Figure 5.4(c)] with 𝑔∗𝑎 ≈ 6.5. Note that 𝑔∗𝑎 differs from the previous gate-setting
(see also Figure 5.24).

The lack of 𝐷𝑎 at zero field can be explained by two possible causes. At 𝐵𝑧 = 0, the
steady state population of |↑𝑎⟩ and |↓𝑎⟩ could be nearly equal due to the near-degeneracy
in energy, reducing signal when driving 𝐷𝑎 . Additionally, the matrix element to drive 𝐷𝑎
is expected to vanish at zero field (van Heck et al. (2017) Section 5.11.1), which is why
recent works on coherent manipulation of an Andreev spin qubit (Hays et al., 2021) were
forced to utilize Raman transitions to be able to achieve population transfer. Additionally,
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Figure 5.4: Phase dependence of the singlet 𝑆𝑎 and directly driven spin-flip doublet 𝐷𝑎 transition in the lowest
Andreev manifold at finite magnetic field. (a)Measured low energy transition spectra at 𝑉g = 628mV for increas-
ing magnetic fields where the transparency of the lowest Andreev state is at a local maximum. The spin-flip
doublet transition is visible at 𝐵𝑧> 50mT. (b) Schematic of the two transitions at zero and finite field. A mag-
netic field induces a finite matrix element to allow observation of the 𝐷𝑎 : |↑𝑎⟩ ↔ |↓𝑎⟩ transition in the spectrum.
(c) Extracted doublet transition frequency versus phase at Φ = Φ0/2 indicated by stars in (a) . The transition
evolves linearly versus field until spin-orbit interaction causes the lowest Andreev level to interact with higher
levels that come down with 𝐵𝑧 bringing down the transition frequency.

recent observations of 𝐷𝑎 at zero field (Metzger et al., 2021) indeed observed a vanishing
of the transition around 𝜑 = 𝜋 . A finite magnetic field in combination with spin-orbit
coupling increases the matrix element, thus facilitating direct driving of this transition at
𝐵 > 0 [thicker yellow line in Figure 5.4(b)]. The field also favors the occupation of |↑𝑎⟩,
possibly increasing the population difference and therefore the strength of the signal.

Although 𝑆𝑎 has a large dispersion, 𝐷𝑎 only has a small phase dispersion (≈ 2GHz).
This is consistent with expectations, since the dispersion is only caused by the effective
spin-orbit splitting of the Andreev levels (Park and Yeyati, 2017). Finally, note that the
minimum of 𝐷𝑎 is not aligned with 𝑆𝑎 . Using tight-binding simulations of a similar sce-
nario (see Figure 5.28), we found that a possible explanation could be due to a component
of the effective spin orbit field 𝐵SO parallel to 𝐵𝑧 consistent with the earlier mentioned
field-dependence of the interband odd-parity transitions. The observation of the spin-flip
transition in a magnetic field opens up the path towards directly driven superconducting
spin qubits (Chtchelkatchev and Nazarov, 2003; Padurariu and Nazarov, 2010) and allows
tuning the qubit frequency over a wide range of frequency depending on the field strength.
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Figure 5.5: Gate-dependent anomalous Josephson effect of both individual Andreev transitions and aggregate
supercurrent in presence of finite magnetic field: 𝐵𝑧 = 220mT and 𝐵𝑥 = 45mT. (a) In the two-tone spectra, we
follow a transition shifting to the left with increasing gate voltage. We suspect this is an odd-parity transition
(see Section 5.10.2 for the identification and comparison of even and odd-parity phase shifts). Dashed vertical
lines indicate the positions of the maximum (black) and minimum (white) of the reference gate voltage. (b)
Diagram of the SQUID loop with B indicating the direction of the field. (c) SQUID oscillations in the resonator
frequency in the same field and gate settings as the spectra in (a). They undergo a leftward phase shift with
an increasing gate voltage. The blue dots indicate the positions of the maxima for each 𝑉g. The distortion of
the lines in the middle region are caused by avoided crossings between Andreev state transitions frequencies
and the resonator when the transparancy of the junction is high. (d) Phase shift extracted from the two-tone
excitation spectra (colored markers indicate the corresponding panel in (a)) with respect to a reference gate
voltage 𝑉0 = 620.6mV. Additionally the phase shift Δ𝜑 𝑓0 extracted from resonator SQUID oscillations (c) are
shown.

5.6 Gate-dependent anomalous Josephson effect at finite
fields

In Figure 5.3(b) we have shown the field evolution at fixed phase difference. The entire
phase dispersion is also of interest, because of the possible presence of the anomalous
Josephson effect (AJE) (Krive et al., 2004; Zazunov et al., 2009; Brunetti et al., 2013; Reynoso
et al., 2012; Yokoyama et al., 2014, 2013; Bergeret and Tokatly, 2015; Campagnano et al.,
2015). To investigate its occurrence, we measured finite-field spectra at different gate volt-
ages, several of which are shown in Figure 5.5(a) (see Section 5.10 and the data-repository
for all data). We track the minima and maxima of this transition, indicated with the white
and black stars respectively. As we increase the gate voltage, the transition starts to shift
horizontally to the left, demonstrating the phase shift in the spectrum. Both even and
odd-parity transitions (offset with a nearly 𝜋-phase) exhibit a shift.

In Figure 5.5(d) we show the extracted shift of the maxima for all measured spectra
versus gate, resulting in a continuously gate-tunable relative shift up to Δ𝜑 = 0.72𝜋 at
𝑉g = 629mVwith respect to the reference phase at 𝑉0 = 620.6mV. For these measurements,
the magnetic field is set to 𝐵𝑧 = 220mT and we add a perpendicular component 𝐵𝑥 = 45mT
(equivalent toΦ= 12.3Φ0) [Figure 5.5(b)]. The perpendicular component is added to reduce
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flux-jumps due to zero-field crossings. Additionally we expected the AJE to be stronger in
presence of a perpendicular field component (Yokoyama et al., 2013; Szombati et al., 2016).
The choice of field was limited in the 𝐵𝑥 direction by the maximum output of the current
source. Beyond 𝐵𝑧 = 220mT, we lost visibility in the two-tone spectra.

In essence, the AJE occurs because coupling between different Andreev levels pushes
their minima away from 𝜑 = 0 (Yokoyama et al., 2014, 2013). The minimum of the ground
state energy, which is a sum over all the Andreev energies, then also shifts away from 𝜑 = 0
and the junction will assume a phase difference that minimizes the ground state energy at
𝜑 = 𝜑0, or, if a phase difference is imposed externally in a loop geometry, a finite current
will flow at zero external flux through the loop.

For the AJE to occur, breaking of time-reversal symmetry is a necessary but not suf-
ficient condition. Additional spatial or spin-rotation symmetries need to be broken de-
pending on the setup (Liu and Chan, 2010; Rasmussen et al., 2016; Assouline et al., 2019).
A Zeeman field breaks time-reversal symmetry and spatial symmetries can be broken by
spin-orbit interaction in presence of a non-symmetric potential (Campagnano et al., 2015)
or multiple sub-bands (Yokoyama et al., 2014). In our system we are clearly in a regime
with multiple occupied sub-bands [Figure 5.3] evident by the many Andreev transitions
visible at higher fields. Due to the asymmetry of the gates with respect to the junction
(see device images in Chapter 4) we would not expect a symmetric potential. Thus we
expect to see the AJE. In recent experiments demonstrating the AJE, measurements of the
DC supercurrent (Szombati et al., 2016; Assouline et al., 2019; Mayer et al., 2020; Strambini
et al., 2020), or of the ground state Josephson energy (Pita-Vidal et al., 2020), were used
to probe the anomalous phase shift caused by the summed contributions of all Andreev
levels. In Figure 5.5(a) we add to this by showing the underlying microscopic origin of
the anomalous supercurrent: the phase shifts of Andreev transitions, which imply shifts
of the individual Andreev levels, and which we can measure directly in magnetic fields
strong enough to produce this effect.

To compare with supercurrent measurements, we also measure the SQUID oscilla-
tions in the resonator in the same gate-regime [Figure 5.5(c)]. The blue datapoints in Fig-
ure 5.5(d) correspond to the maxima in the single tone (ST) resonator traces in Figure 5.5
(c). The frequency shift of the resonator 𝑓0 originates from the dispersive coupling with
the junction in the ground state, and so it is a measure of the phase shift of the ground
state current-phase relation of the junction. Since the total 𝜑0 results from contributions of
different channels, which may lead to cancellation if these channels have different phase
shifts (see Section 5.10.3 for a larger frequency range than Figure 5.5(a) illustrating the
different shifts per Andreev state), it is not surprising that the phase shift in 𝑓0 is smaller
than the phase shift of the individual lowest Andreev states in Figure 5.5(d).

A gate-induced phase shift can have other explanations different than the AJE, and
we now discuss measures we took to rule those out. When sweeping the large vector
magnet, flux can be trapped or de-trapped on-chip or drift over time, which can cause
unwanted phase shifts. To rule out flux drift, we measured the 3D map in the spectra
of Figure 5.5(a) by sweeping 𝑓d for each 𝑉g before stepping flux. This ensures that the
change in phase is caused by 𝑉g. Alternatively, a change in total supercurrent can change
the phase-drop over the junction when the shunt-inductance is large due to a non-linear
relation between Φ and 𝜑. In Section 5.8.2 we estimate that we should be in a linear regime
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for the given 𝐿s and typical 𝐼c. Also, we measured data at lower field strengths and we
saw no anomalous shift at 𝐵 = 0. To exclude a trivial origin of the observed phase shift
by a gate-induced change in effective loop size, we have also kept track of the difference
between twomaxima in the two-tone spectra as an estimate of the total period. We saw no
clear correlation with the phase shift. Fluctuations of the period were around ΔΦ = 6mΦ0.
This can at most account for a phase shift ofΔ𝜑 = 0.14𝜋 , much smaller than what we report
here. To further investigate the cause of the gate-dependence of the AJE we performed
a series of parallel field sweeps versus gate in Section 5.10.6. Here by inspecting the 𝐷𝑎
transitionwhere it was visible, we extracted 𝑔∗𝑎 as a function of 𝑉g which is correlated with
the size of the phase shift. This would indicate the AJE scales with the effective Zeeman
energy of the lowest Andreev manifold. We have also performed measurements of the
AJE with the field vector reversed, both for the SQUID oscillations and the spectroscopy.
Here we observe a reversal of the phase shift as expected (see Section 5.10.4). We thus
conclude that the observed phase shift [Figure 5.5] is indeed due the AJE and not due to
the alternative causes mentioned above.

5.7 Conclusions
In this work, we have performed microwave spectroscopy of Andreev bound states in a
nanowire Josephson junction in a magnetic field, using a field-compatible superconduct-
ing resonator. By aligning the magnetic field parallel to the nanowire, we have investi-
gated the field dependence of the many-body spectrum at fixed phase difference over the
junction (𝜑 = 𝜋 ), for both even and odd fermion parity. In the even parity sector, we dis-
tinguished singlet and triplet-like Andreev states, hybridized by spin-orbit interaction and
split by exchange interaction. In the odd parity, at finite field, we observed the direct dou-
blet spin-flip transition in the lowest Andreev manifold. At fields larger than 𝐵𝑧 = 170mT,
we found a strong gate-tunable anomalous Josephson effect in the many-body spectrum,
currently of interest due to its envisioned application in spintronics (Linder and Robinson,
2015). Our findings confirm that both spin-orbit interaction and electron-electron interac-
tions are important to understand Andreev spectra in InAs/Al Josephson junctions.

The observed hybridization of triplet and singlet Andreev transitions is consistent with
predictions that in a finite magnetic field, the induced superconducting pairing in the semi-
conducting nanowire is a mixture of singlet and triplet components (Lutchyn et al., 2010;
Oreg et al., 2010). However, our measurements probe states localized at the Josephson
junction, which depend on both local and bulk properties, and we cannot exclude that
spin-orbit interaction is only active in the junction, but not in the leads. Thus, our mea-
surements should be complemented with methods that can single out the bulk properties
of the nanowire (Rosdahl et al., 2018; Phan et al., 2022; Splitthoff et al., 2022).

It remains an open question to explore the dependence of the Andreev spectra on
the electron density, in both the proximitized leads and in the junction itself, which is of
importance for topological superconductivity. Signatures of topological phase diagrams
could be observable in microwave spectroscopy (Väyrynen et al., 2015; Peng et al., 2016;
Murthy et al., 2020) due to the onset of the fractional Josephson effect, but it seems crucial
to extend available theory to understand the effect of interactions and 𝑔-factor renormal-
ization. To prevent the closing of the spectral gap due to orbital interference, it would be
interesting to perform these measurements in devices with a lower density of states. This
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could be aided by another choice of material, e.g. InSb, which has a lower effective mass
and smaller band-offset with Al (Winkler et al., 2019) compared to InAs.

Spectroscopy of Andreev states using superconducting circuitry allow the combina-
tion of spectroscopicmeasurementswith high time-resolution, allowing e.g. parity-selective
spectroscopy as we have shown recently at zero field (Chapter 4). In future, when com-
bined with on-chip flux control and parametric amplification readily available in the su-
perconducting circuit community, this combination should allow for fast measurements
of the phase-periodicity of individual Andreev levels in timescales of GHz to MHz. This
type of measurement could provide a more controlled way towards the detection of the
fractional Josephson effect, not hindered by the presence of QP-poisoning (Lutchyn et al.,
2010) or Landau-Zener effects (Laroche et al., 2019).

Additionally, the observation of the spin-flip transition as well as a singlet-triplet
avoided crossing can provide newways to manipulate Andreev (spin) qubits (Janvier et al.,
2015; Hays et al., 2018, 2020, 2021), that exploit an external field. In particular, the direct
spin-flip transition activated by the magnetic field makes it possible to circumvent the
need to use used Raman techiques (Hays et al., 2021) involving a second bound state in
order to manipulate the spin of an Andreev state (Park and Yeyati, 2017). Furthermore,
the singlet-triplet avoided crossing is particularly interesting as it opens up the possibil-
ity to manipulate Andreev pairs in analogy with singlet-triplet qubits in semiconducting
quantum dots (Burkard et al., 2023; Padurariu and Nazarov, 2012).

5.8 Methods
The sample is fabricated using the methods described in Chapter 4. Since this is the
same device as used in Chapter 4, we refer to the supplementary information there for
detailed device images, a fit of the resonator quality factor at zero field and targeted cou-
pling strength to the Andreev bound states (ABS) and measurement methods. Similar to
Chapter 4, we subtract in 2D spectra a median background for each x-coordinate, to com-
pensate for a change in readout frequency with the swept gate, flux or magnetic field. A
wiring diagram of the setup is shown in Figure 5.6. Measurements were performed at a
temperature of≈ 20mK in a Bluefors XLD dilution refrigerator. Amagnetic field is applied
using a 6-1-1 Tesla vector magnet thermally anchored at the 4K stage. The Z-axis (6 T) is
controlled with a large AMI430 current source (60A max). For the X and Y axis we used
smaller Yokogawa GS210 (200mAmax) and GS610 (3A max) sources respectively in order
to get finer flux control and more precise alignment with the out-of-plane (Y) field. This
limited the maximum field to ∼ 45mT (3mT) in the X (Y) direction.

5.8.1 Resonator frequency targeting
We targeted the resonator frequencies using simulations in AWR Microwave office, that
uses the method of moments to solve quasi-3D geometries. The simulation consists of a
stack of materials infinite in the z-plane and finite in the x-y plane. The stack consisted of
500 µm silicon with a dielectric constant of 𝜖r = 11.7𝜖0, where 𝜖0 is the vacuum permittivity,
followed by a metal with the circuit design, and finally a layer of vacuum. To emulate the
kinetic inductance of the metal, we simulated kinetic inductance as a fixed inductance per
square in the thin-film approximation. The kinetic inductance per square was estimated
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Figure 5.6: Wiring diagram of the experimental setup.

from normal state resistance measurements of the feedline using a dirty superconductor
approximation (Annunziata et al., 2010). We found a normal state sheet resistance of the
NbTiN film 𝑅□ = 87Ω and used a critical temperature 𝑇c = 10.6K found in similar devices
to obtain an estimate of 𝐿𝑘/□ = 11.3pH. Using these simulations, we reproduced the fun-
damental mode of the resonator at 4.82GHz when using 𝐿k/□ = 14.5pH. Using the same
settings, the first higher harmonic was found to be the self-resonance of the inductor at
28.5GHz, making the lumped-element resonators very suitable for spectroscopy in the
frequency range of interest.

5.8.2 Linearity of flux-phase in gradiometric SQUID
To verify that we can measure the un-distorted phase dispersion of ABS, we model the
phase difference over the junction 𝜑 as a function of the externally applied magnetic flux
Φ. The relation should be linear and limits the maximum allowed shunt-inductance in the
SQUID loop design. We use a procedure that calculates 𝜑(Φ) assuming a sinusoidal current
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phase relation (CPR) with typical critical current strength as this remains approximately
valid in the case of a few channel-wire with a modified CPR.

Figure 5.7: Sketch of the gradiometer SQUID (top view)

We begin by a change of variables from the current flowing through the left loop 𝐼l
and right loop 𝐼r to the total outer loop current 𝐼 and the middle branch current 𝐼m.

𝐼r = 𝐼 + 1
2 𝐼m (5.2)

𝐼l = 𝐼 − 1
2 𝐼m (5.3)

The first step is to quantize the flux in the loops. See e.g. Plantenberg (2007) and Clarke
and Braginski (2004) Sections 2.3 and 2.1.

2𝜋
𝜙0

[𝜙r−𝐿r𝐼r+𝑀𝐼l]+𝜑 = 2𝜋𝑛r (5.4)

2𝜋
𝜙0

[𝜙l−𝐿l𝐼l+𝑀𝐼r]−𝜑 = 2𝜋𝑛l (5.5)

Here, 𝜙0 is the flux quantum, 𝜙r, 𝜙l the externally applied flux in each of the sub-loops. 𝐿r,𝐿l
correspond to the total inductance, kinetic and geometric, in the right loop and left loop
respectively and 𝐼r, 𝐼l are the currents inside each of the loops. 𝑀 is the mutual inductance
between the loops.

Adding Eq. (5.4) and Eq. (5.5) gives a condition for the total loop flux 𝜙E = 𝜙l+𝜙r while
the middle branch drops out

𝜙r+𝜙l−𝜙w = (𝑛r+𝑛l)𝜙0 (5.6)

with 𝜙w = 𝐼 (𝐿r+𝐿l−2𝑀)− 𝐼m (𝐿l−𝐿r
2 ) the total flux coming from the current in the big

loop. Taking the difference of the loop equations results in an expression for the JJ phase
difference 𝜑 as a function of external fluxes

𝜋
𝜙0

[𝜙r−𝜙l+𝐼 (𝐿l−𝐿r)− 𝐼m (𝐿r+𝐿l
2 +𝑀)]+𝜑 = 𝜋 (𝑛r−𝑛l) (5.7)
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Replacing the current in the big loop 𝐼 using the sum of the flux quantization equations
and combining that into the difference of the flux quantization equations results in an
expression for 𝜑 which only depends on itself, the CPR 𝐼m(𝜑) and known factors

𝜑 + 𝐼m (𝜑) 𝜋𝜙0
[ (𝐿l−𝐿r)2
2(𝐿r+𝐿l−2𝑀) −

1
2 (𝐿r+𝐿l)−𝑀] =

𝜋 (𝑛r−𝑛l)− 𝜋
𝜙0

(𝜙r−𝜙l)− 𝜋
𝜙0

𝐿l−𝐿r
𝐿r+𝐿l−2𝑀 (𝜙0 (𝑛r+𝑛l)−𝜙r−𝜙l)

(5.8)

We can solve this equation numerically assuming a sinusoidal CPR 𝐼m(𝜑) = sin𝜑 and get
the phase drop over the junction as a function of applied external field as a result. Using the
above model, for a critical current 𝐼c = 10nA and the inductances specified in the circuit,
we have investigated the relation and remain well in the linear regime. Non-linearities
start appearing at 𝐼c ∼ 100nA, much bigger than what we estimate the nanowire to have
based on the change in 𝑓0 of the resonator (see discussion near Figure 5.1).

5.8.3 Magnetic field alignment procedure

Figure 5.8: Magnetic field alignment. (a) 𝛼 and 𝛽 define the chip rotation and 𝛾 describes the rotation of
the nanowire on the chip plane. The rotation angles are exaggerated for clarity. (b) 𝛼 alignment (front and
top view). The maxima of the resonance frequency parabolas indicate a zero 𝐵𝑦 component. Black and red
lines, indicating forward and backward sweeps, show a slight hysteresis. The slope of the linear fits through
the maxima determine the rotation angle around the 𝑧-axis: 𝛼 = −0.0030 ± 0.0002. (c) Determination of the
rotation angle around the 𝑥-axis, 𝛽 = 0.0047± 0.00006 (d) Here, minima of an even ABS transition in two-tone
spectroscopy are used to determine the nanowire angle 𝛾 . Linear fits give 𝛾 = 0.058±0.0002. The minimas are
extracted by the procedure described in appendix 5.10.1. Note that the hysteresis in the magnet and on-chip
trapped flux due to circulating currents and vortices cause a larger effective uncertainty than quoted here based
on the fit uncertainty alone.

Here we explain the alignment of the magnetic field with the nanowire coordinate
system. We denote the raw field vector as 𝐵′ and the aligned coordinate vector as 𝐵. Figure
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5.8 (a) shows a schematic of the misaligned chip with respect to the coordinate system of
the magnetic field. The rotation of the nanowire with respect to the magnet coordinate
system is defined by three (extrinsic) Euler angles: 𝛼 , 𝛽 and 𝛾 . 𝛼 and 𝛽 determine the
orientation of the whole chip, whereas 𝛾 defines the on-chip rotation of the nanowire.
The Euler rotation matrices are given by

𝑅𝑧(𝛼) = (
cos(𝛼) −sin(𝛼) 0
sin(𝛼) cos(𝛼) 0

0 0 1
) 𝑅𝑥 (𝛽) = (

1 0 0
0 cos(𝛽) −sin(𝛽)
0 sin(𝛽) cos(𝛽)

) (5.9)

𝑅𝑦 (𝛾 ) = (
cos(𝛾 ) 0 sin(𝛾 )

0 1 0
−sin(𝛾 ) 0 cos(𝛾 )

) .

We transform from 𝐵′ to 𝐵 as follows

𝐵 = 𝑅𝑦 (𝛾 )𝑅𝑥 (𝛽)𝑅𝑧(𝛼)𝐵′, (5.10)

or in matrix form:

(
𝐵𝑥
𝐵𝑦
𝐵𝑧

) =

(
cos(𝛼)cos(𝛾 )+ sin(𝛾 )sin(𝛽)sin(𝛼) −cos(𝛾 )sin(𝛼)+ sin(𝛾 )sin(𝛽)cos(𝛼) sin(𝛾 )cos(𝛽)

cos(𝛽)sin(𝛼) cos(𝛼)cos(𝛽) −sin(𝛽)
−sin(𝛾 )cos(𝛼)+ cos(𝛾 )sin(𝛽)sin(𝛼) sin(𝛾 )sin(𝛼)+ cos(𝛾 )sin(𝛽)cos(𝛼) cos(𝛾 )cos(𝛽)

)

(
𝐵′𝑥
𝐵′𝑦
𝐵′𝑧

)

(5.11)
Due to increase of Cooper-pair breaking rate (Samkharadze et al., 2016; Annunziata

et al., 2010), the kinetic inductance of a thin-film resonator increases with out-of-plane
magnetic field more strongly than with in-plane magnetic field. Additionally, the induced
circulating screening current in the outer loop of the gradiometer due to perpendicular
magnetic flux increases the kinetic inductance by effectively current-biasing the loop (An-
nunziata et al., 2010; Tinkham, 2015). This causes the resonance frequency to decrease
parabolically with an increasing out-of-plane magnetic field, and we can use the maxi-
mum of this parabola to determine where the out-of-plane field is zero. In order to avoid
additional changes in the resonance frequency due to SQUID oscillations, we go to gate
voltages where the wire is pinched-off and measure the resonance frequency as a function
of the (out-of-plane) field 𝐵′𝑦 . This measurement is repeated for increasing steps of 𝐵′𝑥 (for
𝛼) or 𝐵′𝑧 (for 𝛽), such that for each step a parabola is measured. At the maxima of the
parabola’s, 𝐵𝑦 = 0. By applying the rotation matrix in Eq. (5.10), we can calculate 𝛼 and
𝛽 :

𝐵𝑦 = cos(𝛽)sin(𝛼)𝐵′𝑥 + cos(𝛼)cos(𝛽)𝐵′𝑦 − sin(𝛽)𝐵′𝑧 = 0 (5.12)
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For the 𝛼 measurement, where 𝐵′𝑧 = 0, this leads to

− 𝐵′𝑦
𝐵′𝑥

= sin(𝛼)
cos(𝛼) ≈ 𝛼 (5.13)

Likewise, for 𝛽
𝐵′𝑦
𝐵′𝑧

= sin(𝛽)
cos(𝛼)cos(𝛽) ≈ 𝛽 (5.14)

To determine 𝛾 we align the field vector 𝐵′ with the chip plane first:

𝐵″ = 𝑅𝑥 (𝛽)𝑅𝑧(𝛼)𝐵′. (5.15)

Then, the last rotation is simply given by 𝑅𝑦 (𝛾 )

𝐵 = 𝑅𝑦 (𝛾 )𝐵″. (5.16)

Since the last Euler angle 𝛾 determines the rotation of the nanowire in the plane of the
superconducting circuit, we can no longer use the previous strategy to determine the orien-
tation. Instead, wemake use of the SQUID-loop, bymeasuring two-tone spectroscopy data
and keeping track of the even ABS minima, as we increase 𝐵″𝑧 . Due to the pre-alignment
step in Eq. (5.15), 𝐵𝑦 = 𝐵″𝑦 = 0. Therefore, the flux shift of an ABS transition is caused by
the 𝐵𝑥 component of 𝐵″𝑧 . Filling in Eq. (5.16) on the minima leads to

𝐵𝑥 = cos(𝛽)𝐵″𝑥 + sin(𝛾 )𝐵″𝑧 = 𝑐 (5.17)

where 𝑐 is a constant. To first order, 𝛾 can be expressed as

𝛾 = −𝐵″x
𝐵″z

+𝑐, (5.18)

which is found by extracting the slope of a linear fit through the ABS minima.

With all the angles known, we can calculate the raw magnetic field vector 𝐵′ necessary to
create the desired field 𝐵 in the rotated coordinate system via the inverse of the rotation
matrix in Eq. (5.11).

5.8.4 Flux axis considerations
Throughout this workwe use in-plane field to control the flux as discussed in themain text,
this greatly reduced flux jumps compared to using 𝐵𝑦 (see also Figure 5.9 and de Lange and
Wesdorp (2023)). We define external flux Φ as the flux threading the loop by 𝐵𝑥 . Due to the
small misalignment, flux is swept with the x-axis current source (𝐵′𝑥 ) around an aligned
coordinate unless explicitly written as 𝐵𝑥 to prevent having to set all three sources at each
flux point. In Figures 5.3, 5.4, 5.11 and 5.12 we shift the flux axis by Φ0/2 to compensate for
an uneven number of trapped fluxoids in the loops, i.e. Φ = Φ′+((𝑛r−𝑛l) mod 2)Φ0/2+ 𝑐
where Φ′ = (𝐵′𝑥 − sin𝛾𝐵𝑧)/3.65mT is the applied external flux compensated for the flux
induced by the 𝐵′𝑥 component of (large) 𝐵𝑧 and 𝑐 is a small additional offset discussed below.
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Fluxoids get trapped when cooling down below the critical temperature in a small residual
field and their number changes on timescales of months. Note that, dependent on the
history of the magnetic-field sweep, a small additional residual flux was often present due
to hysteresis in themagnet coils or on-chip currents. We found that hysteresis using the in-
plane field (𝐵′𝑥 ) was much less than the out-of plane field. Tominimize effects of hysteresis,
we performed the aligned field sweeps (e.g. Figure 5.3) by first finding the minimum of the
even ABS and using that as a starting point for the aligned z-sweep. Similarly, define the
position of the minimum of the even-parity transition to be 0.5Φ0 at 𝐵𝑧 ∼ 0 in this work
to compensate for small fixed flux offsets (i.e. 𝑐 ∼ 0.05Φ0, see data-repository) that arise
after large fields have been swept or small residual 𝐵′𝑦 ,𝐵′𝑧 components are present.

Figure 5.9: Flux tuning without jumps using a parallel magnetic field. Comparison of consecutive two-tone
spectra taken using out-of-plane (𝐵′𝑦 ) and in-plane magnetic field (𝐵′𝑥 ) to tune flux at the same gate setting. The
use of perpendicular field with respect to the superconducting chip plane exposes a large area to magnetic flux
and thus creates vortices and circulating currents that cause flux jumps. We found that we could strongly reduce
this using in-plane magnetic field through a vertical loop area defined by nanowire length times the vertical
distance between the nanowire shell and the base NbTiN layer. For these measurements the gate voltage is set
far away from the setpoint used in the rest of the manuscript (1.3V).
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5.9 Supporting datasets
5.9.1 Gate dependence of the spectrum
Figure 5.10 shows the transition spectrum as a function of the gate voltage at Φ ≈ 0,Φ0/2.
The gate voltage tunes the transparency of the ABS. We show flux and field dependence
at various points in gate space varying from low to high transparancy later in this Section.
For Φ = 0, the even transitions (bright lines) are at a maximum and the odd transitions
(dark lines) at a minimum. For Φ = Φ0/2 the opposite is true, which can be seen in the
flux dependence in Figure 5.2. The colors for even and odd parity are reversed at Φ = 0,
since the sign of the shift is related to the curvature of the ABS energies, which switches
sign (Park et al., 2020; Metzger et al., 2021). Similar to Tosi et al. (2019), we observe oppo-
site dispersion of even and odd transitions as a function of gate voltage.

Figure 5.10: Gate dependence of the Andreev spectrum. Taken at external Flux: (a) Φ = 0 and (b) Φ = Φ0/2.
Vertical bars indicate gate positions of Figure 5.11 (red), Figure 5.3, Fig. 5.11 & 5.12 (white) and Figure 5.4,
5.17 & 5.16 (green). Note that the green bar is indicative only and is not placed at 627mV (full bar) where the
high transparancy data was measured, but is put at 628mV (dashed bar) as the data at high transparency was
measured amonth later after a gate jump occurred, and this gate sweep is from before the jump. The jump shifted
the spectrum by ≈1mV and caused additional small changes in the ABS energies at the shifted gate settings; gate
jumps in general happened on timescales of weeks to months.
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5.9.2 𝐵𝑧 dependence at 𝑉g = 619.95mV (low transparency)
We show the spectrum at 619.95mV where the ABS have low transparency, both as a
function of flux at zero field, and as a function of parallel field at Φ = 0.5Φ0. Here, the
slope of the linearly increasing odd intra-manifold spin-flip transition corresponds to an
effective g-factor of 3.1, see extraction in the data-repository. The slight upward deviation
of the odd-parity transition from the linear fit at higher fields could be explained by two
possible causes. At higher magnetic field we can no longer keep the phase difference to
stay at 𝜑 = 𝜋 , i.e. due to the anomalous Josephson effect, thus the transition can move
away from its minimum upward. Secondly, as shown in Figure 5.28, the 𝐷𝑎 transition
can obtain a relative phase shift with respect to the 𝑆𝑎 transition, causing the transition
to move upward. Finally, for even higher fields we expect the transition to come down
again (as visible in Figure 5.4) because of the interaction with higher ABS manifolds and
the continuum which come down with field.

This dataset was taken at the setpoint used to calculate the alignment angle 𝛾 in Sec-
tion 5.8.3.

Figure 5.11: Parallel field dependence at 𝑉g = 619.95mV. (a) Zero field spectrum vs. flux (b) Spectrum as a
function of parallel field, taken at constant flux Φ = 0.5Φ0. No data was taken in the grey area.
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5.9.3 Additional data at the gate voltage of Figure 5.3: 𝑉g = 625mV
(medium transparency)

Field dependence of odd transitions

Figure 5.12: Field dependence of the odd transitions for parallel and perpendicular field, at the same gate voltage
as Figure 5.3. We observe asymmetric splitting when applying parallel field 𝐵𝑧 , which is opposite from the
symmetric splitting observed in Tosi et al. (2019). This could indicate that the effective spin-orbit field is not
fully along the 𝑦-axis as expected for a wire with the transport direction along the 𝑧-axis, but has a component
along the 𝑧-axis as well. Note that flux Φ is denoted here by Φ̄, because it is swept here using 𝐵𝑥 (as opposed to
𝐵′𝑥 ) around the field setpoint written in the panels and an offset 𝐵𝑥 is subtracted to center the minimum of the
even transition at 0.5Φ0.
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Flux dependence during parallel field sweep

Figure 5.13: Flux dependence at the same gate as in Figure 5.3. Note that the ̃𝑇0 transition keeps its minimum at
𝐵𝑥 = 2mT up to 𝐵𝑧 = 160mT, demonstrating the correct alignment, possibly compensating for some linear AJE,
of the magnetic field used in Figure 5.3.
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Additional flux dependence on spin-split even transitions

Figure 5.14: Flux dependence of hybridized singlet and triplet transitions at the same gate used in Figure 5.3: 𝑉g =
625mV versus parallel magnetic field. This data was taken at 10 dBm higher drive power and finite 𝐵x = 22mT
to increase visibility of the 𝑇− and 𝑇+ transitions. This data was measured to demonstrate the phase-dispersion
of the triplet states and explore whether there are no other transitions than 𝑇−, 𝑇+ visible between the lowest
even transition identified as 𝑆𝑎 and the higher transition labeled as 𝑆𝑏 without interactions. The non-interacting
model would require two more transitions visible with similar dispersion, c.f. Fig.3 (c) in the main text and the
discussion in Section 5.11.1. Additionally, hints of a camel-back shaped transition become visible above ̃𝑇0 which
could correspond to 𝑆𝑎𝑏 similar to what was observed in a recent work (Matute-Cañadas et al., 2022) (see labels
at 𝐵𝑧 = 15mT). Note that at higher fields the transitions get distorted, possibly due to hybridization with other
manifolds.
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Estimate of supercurrent change due to the triplet state

Figure 5.15: Estimate of the supercurrent change when exciting the triplet and singlet at 𝐵𝑧 = 94mT, where the
two transitions are clearly visible and 𝑇− is already split below ̃𝑆𝑎 (the last panel in Figure 5.14). To provide a
rough estimate of the supercurrent carried by the triplet state 𝑇−, we manually approximate the phase-dispersion
of the even transitions (left panel) with 𝑓𝐴 = 𝐴∗ sin(𝜑 + 𝑏) + 𝑐 resulting in 𝐴 = 2.3GHz, 𝑐 = 14GHz for 𝑇−and
subsequently calculate the resulting supercurrent through the derivative 1/𝜑0 ∗ 𝑑𝑓𝐴/𝑑𝜑 with 𝜑0 = ℎ̄/2𝑒 (right
panel). Note that the ̃𝑆𝑎 transition seems very well approximated by using a twice as large amplitude 2𝐴 but
𝑐 = 20GHz. This could be due to a much larger dispersion of the lower manifold compared to the higher manifold,
see the discussion in Matute-Cañadas et al. (2022)
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5.9.4 Figure 5.4 full dataset : Phase dependence at 𝑉g = 627mV (high
transparency)

Figure 5.16: Full dataset corresponding to Figure 5.4. From 60mT onwards, we see a bright, flat line coming up,
which is the intra doublet transition 𝐷𝑎 indicated with a black star at the extracted points used for Fig.4 (c) of the
main text. Measurement taken at 𝑉g = 627mV versus 𝐵𝑧 . In the even parity manifold, 𝑆𝑎 remains approximately
constant near Φ = Φ0/2 while reducing at Φ = 0 due to interaction with other transitions. The spectra also show
a strongly dispersing even triplet transition 𝑇− come down in field faintly in the beginning but more apparent at
higher fields.
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Parity selective-spectroscopy at 𝐵𝑧 = 100mT
In the main text, the junction parity was implied from the sign of the dispersive shift. The
presence of crossings between the ABS and the resonator mode can result in sign-changes
of the shift (Metzger et al., 2021). In order to make sure that we correctly labeled the parity
of the transitions we have performed parity selective spectroscopy using the techniques
of Chapter 4 at 𝐵𝑧 = 100mT.

Figure 5.17: Parity selective spectroscopy at the gate voltage of Fig.4 at 100mT confirming the odd parity nature
of the intra-doublet transition indicated with a white star. (a) Spectra at 100mT after post-selection on initial
junction parity using the pulse sequence in (b). (b) The pulse sequence consists of a 20 µs readout pulse that
measures the junction parity followed by a 20 µs spectroscopy pulse conditioned on the outcome of the first
pulse. To increase contrast of the parity selection, we thresholded the parity selection keeping roughly 20% of
the data. This was measured with the setup described in Chapter 4

5.9.5 Extended 𝐵𝑧 dependence up to 1 T
An extended field sweep could show a revival of the spectrum if the gap was limited by
the orbital effect (Kringhøj et al., 2021; Winkler et al., 2019; Antipov et al., 2018) or by a
transition to a topological phase (Kitaev, 2001; Lutchyn et al., 2010; Oreg et al., 2010). At
positive back-gate voltages, which is the case here, the hybrid states can form ring-like
shapes due to surface accumulation (Winkler et al., 2019). Destructive interference then
occurs at roughly half integer flux quanta threading through the nanowire cross-section
with diameter 𝑑 , i.e. 1

4𝜋𝑑𝐵z = Φ0/2 (Kringhøj et al., 2021). In Figure 5.18.(a) we perform
an aligned parallel field sweep for different initial fluxes to test the limiting field where
we can observe the spectrum without being affected by a shift in phase due to the AJE or
flux-jumps. We observe a crash of the spectrum at ≈ 300mT and extract 𝑑 = 65nm close
to the 80 nm nanowire diameter. The sweep is continued up to 1 T as one would expect a
revival around Φ0 ∼600mT if limited by orbital effects of a single state. We do not observe
this, which can be the case if the many visible ABS have different effective wavefunction
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cross-sections (Winkler et al., 2019). Another cause for the low visibility at high-fields
could be a wrong choice of readout point due to ABS crossing the resonator.

Figure 5.18.(b) shows 𝑓0, coupling quality factor 𝑄𝑐 and internal quality factor 𝑄i as
a function of 𝐵𝑧 during the sweeps. For each 𝐵𝑧 , these quantities are extracted by fitting
resonator traces to an asymmetric resonator model measured in transmission (Khalil et al.,
2012). At least up to 𝐵𝑧=1 T, we do not observe a significant trend in the resonator’s quality
factors. Fluctuations may be caused by avoided crossings between ABS transitions and the
resonator. Figure 5.18.(b) shows the loss of visibility in the spectrum around 𝐵z = Φ0/2, is
not related to limited field compatibility of the resonator. Furthermore, we observe an ESR
dip in 𝑄i at 𝐵𝑧 = ℎ𝑓0/(|𝑔e|𝜇B) = 172mT with 𝑔e the electron g-factor where the resonator
frequency matches the surface electron spin-flip frequency.

Figure 5.18: Extended 𝐵𝑧 dependence up to 1 T (a) Parallel field sweeps at four different starting external flux
points, to see the maximum field where a signal remains in spectroscopy. No revival is observed after the gap
closing at 325mT due to the orbital effect. Grey regions denote regions where no data is measured. (b) The
resonance frequency 𝑓0 extracted from a fit for the different flux points and field during the two-tone sweeps.
Fits with a large 𝜒 2 are discarded in order to filter out points where the ABS have avoided crossings with the
resonator. 𝑓0 Shows a parabolic decline with parallel field 𝐵𝑧 due to an increase in kinetic inductance, which is
caused by a magnetic-field induced increase in Cooper-pair breaking rate (Samkharadze et al., 2016; Kroll et al.,
2019). 𝑄c stays fixed as a function of 𝐵𝑧 and 𝑄i stays > 10k, except at points where crossings occur. There is
however a clear dip in 𝑄i visible corresponding to the electron-spin-resonance frequency (2𝜇B 𝐵𝑧 = h𝑓0).
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5.10 Supporting data 𝜑0-effect
5.10.1 Data extraction procedure
To obtain the minima and maxima in Figure 5.5 of the main text and panel d of Figure 5.8,
we performed the following data extraction protocol. This example is for finding a maxi-
mum.

1. Make an initial guess of the coordinates (Φ,𝑓d) of the minima and maxima. Then,
construct a guess parabola 𝑝: a parabola ofwhich themaximum is located at (Φmax, 𝑓d,max).

2. Select a region of interest around the guess parabola: Φ ∈ [Φmax − 0.2Φ0; Φmax +
0.2Φ0] ∩ 𝑓𝑑 ∈ [𝑝(Φ) − 0.8GHz; 𝑝(Φ) + 0.8GHz]. In this region, we save the phase
points exceeding a threshold as raw datapoints. We set the threshold to the 95th
percentile of the selected region’s phase data. For each flux point Φ, at most one
datapoint is extracted by taking the median of the raw datapoints. The standard
deviation 𝜎 is calculated for each flux value as well.

3. Fit a second order polynomial through the extracted datapoints, weighted by the
inverse variance 1/𝜎2.

4. Subsequently, after visually inspecting the fits, we identify the coordinates of the
maximum of the good fits as an estimate of the transition line maximum.

Figure 5.19: Data extraction steps. (a) Construct guess parabola. (b) Select region of interest, and extract data-
points with a threshold. (c) Fit a parabola through the extracted datapoints. (d) Identify the vertex of the parabola
as the maximum.

5.10.2 Identification of parity of the transitions at high field for 𝜑0
sweeps

To extract the anomalous phase 𝜑0 from the two tone spectra in Figure 5.5, we followed the
extrema of a single transition line as a function of gate voltage. Figure 5.20 (a) shows the
anomalous phase shift of a transition line of both parities, where the white datapoints are
used in the main text. We observe similar trends for both even and odd parity. To identify
states of even and odd parity at the high magnetic field setting used here, we compare
the gate dependence of the y-coordinate (𝑓d) of the extracted maxmima and minima for
both parities with the gate spectrum at zero field, see Figure 5.20. Although the transition
frequencies are significantly lowered due to the reduction of Δ, the even and odd traces
still peak and dip at the same gate points as same parity transitions at 𝐵𝑧 = 0. From this
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we concluded that the transition traced in the main text have odd-parity. We therefore
tracked an even-parity state as well, which gave a similar 𝜑0 shift as the odd state.

Figure 5.20: Even and odd labeling. (a) Scatterplot of extracted minima (�) and maxima (△) for an odd (white)
and even (black) transition in the two-tone dataset of Figure 5.5. For both parities, we observe a similar down-
ward trend, indicating a negative phase shift as a function of the gate voltage. (b) Comparison of the extracted
datapoints with the gate two-tone scans at zero field. The white datapoints qualitatively follow the behaviour of
the yellow lines, and the black points behave oppositely, like the blue lines, justifying the labeling of the white
triangles as odd and the black triangles as even.

5.10.3 Symmetry breaking in two-tone spectrum
Figure 5.21 shows one panel of Figure 5.5 (a). At 𝑉g=622.2mV, 𝐵𝑧=220mT and 𝐵𝑥=45mT,
highlighting that there is not only a global shift of the whole spectrum, but that the An-
dreev transitions are also strongly shifted with respect to each other and that there is no
symmetry axis to be found at 𝜑 = 0,𝜋 . Note that this observation alone rules out most
trivial explanations for the AJE.
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Figure 5.21: Symmetry breaking. Zoom-in of one of the panels of Figure 5.5(a) of the main text. Black and white
triangles are guides to the eye placed on the extrema of even and odd transitions, respectively indicating strong
asymmetry between different ABS transitions.

5.10.4 𝜑0 under field-reversal
We have performed measurements of the 𝜑0-effect under reversal of the field vector (𝐵𝑥 =
45mT, 𝐵𝑧 = 225mT), both for the spectroscopy and squid oscillations. This helps verify
that indeed there is no phase shift due to a non-linear flux-phase relation (see Section 5.8.2),
which could in turn be caused by a large shunt inductance relative to the junction induc-
tance.

Figure 5.22: 𝜑0 effect under reversal of the field vector. (a) SQUID oscillations for both field directions. The
vertical straight features are flux-jumps due to vortices in vicinity of the resonator, which appear as vertical
lines because the gate is swept as the fast-axis. (b) Extracted phase shift from the SQUID oscillations for positive
and negative fields. (c) Extracted 𝜑0-effect in two-tone spectroscopy under field reversal.
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5.10.5 Field dependence of the 𝜑0-effect
We investigate the field-dependence of the anomalous Josephson effect by reducing the
magnitude of the 𝐵 starting from the vector shown in Figure 5.5(𝐵𝑥 = 45mT, 𝐵𝑧 = 225mT),
while keeping the angle the same. We measure two-tone spectra, keeping track of the
lowest visible transition. At 0 field, we do not find a significant phase-shift as expected,
while for increasing field we observe a steep transition to a large phase shift. The data pre-
sented here resulted from tracing the transitions by hand, as the crowding of the spectra
and lower resolution did not allow for the numerical methods presented above. To allow
for verification, we have provided collections of images of the spectra with the traced max-
ima/minima in the data-repository. At some gate and field values data is missing because
the transition was no longer visible in spectroscopy. We define 𝜑ref as the maximum phase
extracted of the first 5 lowest gate values where we have data of the transition, as for some
datasets the maxima/minima were not visible at 𝑉g = 620mV. By tracing the frequency of
the traced transitions versus 𝑉g we could additionally extract the parity of the transitions
indicated for even parity by closed (open) symbols in Figure 5.23.

Figure 5.23: (a)Gate dependence of the anomalous phase for increasing magnetic field strength applied along the
vector defined in Figure 5.5 of the main text. The markers represent two datasets tracing the maxima (minima) of
visible low lying ABS versus gate and flux by upward (downward) triangles for dataset A and leftward (rightward)
triangles for dataset B. (b) Same data as in (a) but shown as the total relative phase shifts (average of minima and
maxima) for the gate values indicated by the same colored line-cuts in (a) versus field strength. Errorbars show
the difference between the extracted relative phase shift of the minima and maxima of the same state, when data
is available for both the minima and maxima.

5.10.6 Extracted 𝑔-factor of the lowest ABS manifold versus 𝑉g
In an attempt to find a cause for the gate-dependence of the AJE, we have performed par-
allel field scans similar to Fig.3 (b) of the main text for the gate range where we measured
the AJE. By extracting the slope of the spin-flip transition when visible we can extract the
effective 𝑔-factor of the lowest ABS manifold. We found a strong gate-dependence of the
effective 𝑔-factor of the lowest ABS manifold, correlated with the anomalous phase shift.
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This is consistent with the scaling of the AJE magnitude with an effective Zeeman term.

Figure 5.24: Extracted g-factor of the lowest ABS manifold varying with 𝑉g. (a) 𝜑0 Of two-tone spec-
troscopy shown in main text (blue markers) versus 𝑔∗a extracted by tracking 𝐷a using parallel field sweeps at
Φ ≈ 0.5Φ0 for various 𝑉g (red markers). The thicker red markers indicate the extracted g-factors shown in Fig-
ure 5.3, S5, measured separately. (b) Correlation between 𝜑0 and 𝑔∗a . (c) Example parallel field sweeps, see
corresponding colored markers in (a), that were used to extract 𝑔∗a of the lowest doublet transition 𝐷a. Full
dataset is provided in the data-repository. Note that in a similar sweep after a gate-jump had occured, we found
a much less steep dependence of 𝑔∗a on 𝑉g (see data-repository) but there we did not have the 𝜑0 sweeps available
to compare the correlation between the two.

5.11 Theoretical modeling
5.11.1 Non-interacting tight-binding simulations
Tight-binding simulations of the Josephson junction were performed using the Kwant
package (Groth et al., 2014), and in particular adapting code from Laeven et al. (2020).
We use the following two-dimensional Hamiltonian including Rashba spin-orbit coupling,
Zeeman effect and a position dependent barrier potential

𝐻 =(ℎ̄
2k2
2𝑚 −𝐸F)− 𝑒𝜙(r))𝜎0

+𝛼(𝑘𝑧𝜎𝑥 −𝑘𝑥𝜎𝑧)
+EZ ⋅ 𝜎

(5.19)

From numerically solving the tight-binding Hamiltonian we obtain the BdG eigenenergies
which give all required information as we assume no exchange interaction is present. We
first take only the positive eigenvalues, due to the degeneracy induced by PH symmetry,
{𝐸𝑖,𝜎 }, where 𝑖 stands for the manifold index and 𝜎 the pseudo-spin direction. The low-
energy Hamiltonian then is a sum over the Andreev levels (van Heck et al., 2017)

𝐻 =∑
𝑖,𝜎

𝐸𝑖,𝜎 (𝑐†𝑖,𝜎 𝑐𝑖,𝜎 − 1
2) (5.20)
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We simulate the junction using a 2D-grid with lattice constant of 5 nm. The grid con-
sists of a 100 nm wide and 3000 nm long superconducting lead, where Δ ≠ 0 on each side
of a 500 nm long junction, where Δ = 0, and the rest of the parameters are kept equal in
both sections. To approach the data qualitatively, we add two three side wide barriers at
the left and right edge of the Josephson junction to emulate the effect of a reduction in the
maxima of the ABS due to confinement (Beenakker and van Houten, 1992). In the device,
the reduction of screening in the uncovered Josephson junction and possible Al-InAs inter-
face barriers can cause these potential barriers. The resulting tight-binding grid is shown
in Figure 5.25 together with a chemical potential sweep illustrating the first and second
subband entry. Fabry-Perot oscillations are visible in the transparency due to the strong
confinement. Settings used here are, 𝛼 = 40meVnm, 𝑔 = 15, Δ = 0.2meV, 𝑚 = 0.0023𝑚𝑒
with 𝑚𝑒 is the electron mass and the potential barrier height is set to 13meV.

Figure 5.25: Kwant model. (a) Tight binding grid used for the simulations. (b) Chemical potential sweep using
the grid in (a).

We first attempt to gain qualitative insight into the ABS spectrum by searching for
a chemical potential that approximately matches the two lowest manifolds in the exper-
imental data. We thus fine-tune to a ”gate” point at 𝜇 = 9.20meV right after the second
subband-entry where we have two ABS that disperse similarly in phase, see Figure 5.26(a).
Here we perform a parallel-field dependence and observe the twoABSmanifolds spin-split
in field Figure 5.26(b), with different effective g-factors similar to the data. Next we will
stay at this point and investigate the microwave absorption.

Matrix elements
We follow van Heck et al. (2017) to calculate the matrix elements of the current operator
that give the transition spectrum. From diagonalizing 𝐻BdG we get a set of eigenvalues
+𝐸𝑚 ,−𝐸𝑚 and with corresponding eigenstates Ψ𝑚 ,𝒫 Ψ𝑚 , where 𝒫 denotes the particle-
hole operator. We can thus evaluate the current matrix elements 𝑗𝑛,𝑚 = ⟨Ψ𝑛 |𝐼𝐴|Ψ𝑚⟩. The
diagonal elements give the contribution of the supercurrent of a single ABS level. The off-
diagonal elements are useful when considering possible microwave transitions. We can
use linear response theory to calculate the finite-temperature microwave susceptibility of
the junction and thus get the absorption spectrum. This results in (van Heck et al., 2017)

𝜒(𝜔) = ∑
𝑛≥𝑚

|𝑗𝑛,𝒫 𝑚 |2𝛿(𝜔 − (𝐸𝑚 +𝐸𝑛)) [1−𝑓 (𝐸𝑚)− 𝑓 (𝐸𝑛)]+

∑
𝑛≥𝑚

|𝑗𝑛,𝑚 |2𝛿(𝜔 − (𝐸𝑛 −𝐸𝑚)) [𝑓 (𝐸𝑚)− 𝑓 (𝐸𝑛)]
(5.21)
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Figure 5.26: Tight binding simulations at 𝜇 = 9.20meV with the same settings as used in Fig.5.25. (a) Phase
dependence of ABS energies at 𝐵𝑧=0. Two manifolds are visible inside the gap, spin-split due to spin-orbit
interaction. (b) Field evolution at 𝜑 = 𝜋 of the ABS energies. (c) Linear response illustrating the resulting
spectrum versus 𝐵𝑧 at an effective temperature of 20 µeV. The vertical line is due to a ground state fermion
parity switch which swaps the assignment between even and odd for the lowest ABS. (d) Matrix element 𝑗0,1
multiplied by the odd parity fermi-factor 𝑓F = [𝑓 (𝐸0)−𝑓 (𝐸1)] and transition frequency of𝐷𝑎 at the same effective
temperature.

Figure 5.27: Matrix elements of even {𝑀ab} transitions at 𝜇 = 9.20meVmultiplied by the even-parity Fermi-factor
𝑓F = 1−𝑓 (𝐸𝑚)− 𝑓 (𝐸𝑛). The transitions (bottom panels) are colored with the same color as their corresponding
matrix elements (top panels). (a) Phase dependence at 𝐵𝑧 = 0. Here, only 𝑇0and 𝑆𝑎𝑏 have a finite matrix element.
(b) Phase dependence at 𝐸Z−𝑧 = 1.2Δ. This illustrates that at 𝜑 = 𝜋 , 𝑇− and 𝑇+ have a finite matrix element while
𝑇0 and 𝑆𝑎𝑏 have zero matrix element there. (c) Field dependence at 𝜑 = 𝜋 without perpendicular field. At 𝜑 = 𝜋 ,
𝑆𝑎𝑏 , 𝑇0 transitions have a zero matrix element. (d) Field dependence at 𝜑 = 𝜋 at finite 𝐵𝑥 (𝐸Z−𝑥 = 0.1Δ). Here the
𝑆𝑎𝑏 , 𝑇0 get a finite matrix element as well.

where 𝑗𝑛,𝒫 𝑚 is defined as ⟨Ψ𝑛 |𝐼𝐴|𝒫 Ψ𝑚⟩ and the Fermi-Dirac function at finite temperature
T is defined as

𝑓 (𝐸) = 1
𝑒(𝐸−𝜇)/𝑘𝐵𝑇 −1 (5.22)

where we take 𝜇 = 0
In Figure 5.26(c) we show the microwave absorption versus field, similar to Figure 5.3.

Note that we see qualitatively similar features: the odd (yellow) 𝐷𝑎 transition coming up,
the even 𝑆𝑎 and the mixed transitions 𝑇−, 𝑇+, dispersing in field. Additionally, we do not
observe the |0⟩ → |↑a↓b⟩ , |0⟩ → |↓a↑b⟩ transitions.

To explore this further, we investigate the current operator matrix elements. The
odd transition matrix element is shown in Figure 5.26(d) and increases with field as ex-
pected (Park and Yeyati, 2017; van Heck et al., 2017). The even-parity matrix elements
are shown in Figure 5.27. Here we see that only at 𝜑 = 𝜋 the elements for the |0⟩ →
|↑a↓b⟩ , |0⟩ → |↓a↑b⟩ are zero and thus the transitions should appear when measuring the
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Figure 5.28: Relative shift in minimum of 𝐷𝑎 transition compared to the 𝑆𝑎 transition at high transparency (𝜇 =
13.12meV) versus different field directions. (a) BdG energies at 𝜇 = 13.12meV. We observe two nearly degenerate
manifolds. (b) - (d) Transition spectra of the lowest ABS manifold illustrating both the 𝑆𝑎 (blue) and 𝐷𝑎 (yellow)
transition for increasing field strength and 3 different field directions. Darker colors indicate higher fields. The
Zeeman energy used in (b), (d) ranges from 𝐸Z = 0.2 → 2Δ in equal steps. For (c), the parallel field direction, the
Zeeman energy ranges from 𝐸Z = 0.1 → 0.5Δ

phase-dependence as we did in Figure 5.14. Furthermore, we show the matrix elements
versus field, and see that indeed only the 𝑇−, 𝑇+, matrix elements become finite at 𝜑 = 𝜋 ,
while the others stay zero. This is lifted by applying a small 𝐵𝑥 , where now also |0⟩ →
|↑a↓b⟩ , |0⟩ → |↓a↑b⟩ obtain a finite matrix element at 𝜑 = 𝜋 . Thus we would have expected
to see |0⟩→ |↑a↓b⟩ , |0⟩→ |↓a↑b⟩ transitions in the data. This is by no means a complete data
set as there are many parameters to vary, but we have investigated similar spectra at a few
other chemical potential points – including for junctions without the double barrier close
to the first sub-band entry, where the manifolds disperse oppositely and behave like the
analytical expressions shown in (Park and Yeyati, 2017) – and found qualitatively similar
conclusions. The visibility of the even-mixed transitions heavily depended on the exact
chemical potential setting, and often they were not visible at all.

Field directions for a single ABS manifold
Wenow shift towards a chemical potential where the lowest ABSmanifold ismore transparant,
to qualitatively match the situation in Figure 5.4. In Figure 5.28, we investigate the dis-
persion of the odd spin-flip transition 𝐷𝑎 for three magnetic field directions relative to
the effective spin-orbit field. We observe that the case displayed in Figure 5.28(c) is most
similar to the data where 𝐵 ∥ 𝐵SO as for the other directions there is no relative shift of the
minimum of 𝐷𝑎 with respect to the minimum of 𝑆𝑎 . Thus, the data observed in Fig.4 of
the main text and Figure 5.16 is consistent with a component of the spin-orbit along the
wire axis, i.e. the 𝑧-axis. Note that we have not investigated whether a random disorder
potential can change this picture.

5.11.2 Minimal model including exchange interaction
Here, we supply additional information about the minimal model including interaction
presented in Eq.(1) in the main text to provide insight on the effect of each ingredient.
The aim in this minimal model is to keep tunable the parameters that are relevant to
reproduce the qualitative hierarchy of the lines (spin-orbit, magnetic field and Coulomb
interaction) but to avoid an explicit description of other features such as the size of the
junction, its transparency, the chemical potential or the superconducting pairing. To this
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end, we consider the basis of two lowest spinless bare ABSsmanifolds 𝑖 = 𝑎, 𝑏, with energies
𝐸𝑖 implicitly taking into account the latter features of the junction, and then introduce the
spin-orbit, the magnetic field and the Coulomb interaction within this basis.

To describe the spin-orbit coupling, we project it on the bare ABSs, writing the spin-
orbit Hamiltonian as:

𝐻̃𝑆𝑂 = ∑
𝑖𝜎 𝑖′𝜎 ′

⟨𝑖𝜎 |𝐻𝑆𝑂 |𝑖′𝜎 ′⟩ 𝛾†𝑖𝜎 𝛾𝑖′𝜎 ′ , (5.23)

where 𝛾†𝑖𝜎 creates a quasiparticle with spin 𝜎 in manifold 𝑖, and 𝐻𝑆𝑂 = 𝛼/ℎ̄(𝑝𝑧𝜎𝑥 −𝑝𝑥𝜎𝑧) is
described with a 2D Rashba model, 𝑧 being the direction parallel to the nanowire. Impos-
ing time reversal symmetry on 𝐻̃𝑆𝑂 , we get the relations ⟨𝑖𝜎 |𝐻𝑆𝑂 |𝑖′𝜎⟩ = ⟨𝑖 ̄𝜎 |𝐻𝑆𝑂 |𝑖′ ̄𝜎 ⟩∗ and
⟨𝑖𝜎 |𝐻𝑆𝑂 |𝑖′ ̄𝜎 ⟩ = −⟨𝑖 ̄𝜎 |𝐻𝑆𝑂 |𝑖′𝜎⟩∗, where it has been used 𝒯 𝑐𝛾𝑖,𝜎𝒯 −1 = 𝑐∗𝜎𝛾𝑖, ̄𝜎 . Thus, we can
write:

𝐻̄𝑆𝑂 = 𝑖𝛼∥ (𝛾†𝑎↑𝛾𝑏↓+𝛾†𝑎↓𝛾𝑏↑)− 𝑖𝛼⟂ (𝛾†𝑎↑𝛾𝑏↑−𝛾†𝑎↓𝛾𝑏↓)+H.c. , (5.24)

where 𝛼⟂(∥) ∈ ℝ are treated as fitting parameters but can be relatedwith the spatial profile of
the basis wavefunctions 𝑖𝛼⟂(∥) = (𝛼/ℎ̄) ⟨𝑎|𝑝𝑥(𝑧) |𝑏⟩. A more general spin-orbit Hamiltonian
can be devised just imposing time reversal symmetry, resulting in the non-diagonal terms
𝛼𝑠𝛾†𝑎↑𝛾𝑏↑+𝛼∗𝑠 𝛾†𝑎↓𝛾𝑏↓+𝛼𝑑 𝛾†𝑎↑𝛾𝑏↓−𝛼∗𝑑 𝛾†𝑎↓𝛾𝑏↑+𝐻.𝑐., with 𝛼𝑠,𝑑 ∈ ℂ. We checked that this coupling
provides qualitatively similar results.

Assuming that these basis wavefunctions are separable in |𝑖⟩ = |𝜙𝑖𝑧⟩ |𝜙𝑖𝑥 ⟩, we expect
the transverse part 𝑖𝛼⟂ = −(𝛼/ℎ̄) ⟨𝜙𝑎𝑧 |𝜙𝑏𝑧⟩ ⟨𝜙𝑎𝑥 | 𝑝𝑥 |𝜙𝑏𝑥 ⟩ to be negligible in situations with
almost spatially symmetric transverse confining potentials (𝑉 (𝑥) ≈ 𝑉 (−𝑥)) where both
manifolds share the same channel. This would happen because both |𝜙𝑎𝑥 ⟩ and |𝜙𝑏𝑥 ⟩would
have approximately the same spatial parity around 𝑥 = 0, and thus ⟨𝜙𝑎𝑥 | 𝑝𝑥 |𝜙𝑏𝑥 ⟩ ≈ 0. How-
ever, our case likely corresponds to a multichannel situation, given the moderate length of
the junction and the existence of multiple intermanifold single QP transitions visible in the
spectroscopy over 𝜑. Thus, each ABSs manifold would arise from a different transverse
channel, enabling a finite 𝛼⟂. Still, this separation is not complete because of the anticross-
ings, which are a consequence of a non-zero 𝛼∥ ∝ ⟨𝜙𝑎𝑥 |𝜙𝑏𝑥 ⟩. Nevertheless, for simplicity,
in order to estimate a lower bound for the spin-orbit strength we use the case where the
manifolds 1,2 strictly correspond to different channels. This yields | ⟨𝜙𝑎𝑥 | 𝑝𝑥 |𝜙𝑏𝑥 ⟩ | ≤ℎ̄𝐶/𝑊 ,
with 𝑊 the width of the nanowire and 𝐶 a factor of order ∼1 that depends on the confine-
ment potential. Then, using the fitted parameter 𝛼⟂≈5GHz and | ⟨𝜙𝑎𝑧 |𝜙𝑏𝑧⟩ | ≤ 1, we get
𝛼 = 𝛼⟂ℎ̄/(⟨𝜙𝑎𝑧 |𝜙𝑏𝑧⟩ ⟨𝜙𝑎𝑥 | 𝑝𝑥 |𝜙𝑏𝑥 ⟩) ≥ 0.02𝑊 meVnm (𝑊 in nm). This provides a lower bound
of ∼2 meVnm for 𝑊∼100nm.

It must be highlighted that even if the actual specific microscopic origin of the spin
orbit effective parameters is arguable, their presence is necessary in order to reproduce
the structure of the even transitions and their anticrossings. Note that the spin-orbit
interaction must be taken into account even though we are considering the case 𝜑 = 𝜋 ,
where it does not affect the single-particle Andreev levels degeneracy due to Kramers’
theorem (Béri et al., 2008), since we are interested in the two-particle states as well. Nev-
ertheless, the predicted unbroken degeneracy of 𝑇± at zero field (Fig. 5.29(a)iii) suggests
that it should be improved to account for the full splitting in 𝜑 = 𝜋 that is sometimes ob-
served in other spectra, for example introducing a third manifold, which allows to avoid
that degeneracy.
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The behaviour of ABSs energies with small Zeeman fields depends on the interplay
between the spin orbit, the transmission of the junction and the chemical potential (van
Heck et al., 2017). In our simple model, we introduce effective g-factors for the bare ABSs
as fitting parameters.

Finally, to describe the Coulomb interaction we use a ferromagnetic effective exchange.
The Coulomb interaction in the nanowire is strongly screened by the environment and its
free charges, rendering the interaction approximately local. However, the form of the in-
teraction in the subspace of the ABSs is more convoluted because of their spatial overlap.
In the states with 2 QPs, due to this overlap, the interaction leads to an effective ferro-
magnetic coupling between the quasiparticle spins, as in the case of Hund’s rule in atomic
physics.

The full Hamiltonian is projected over the states with 1 and 2 quasiparticles, resulting
in the matrices

(𝐻)1𝑄𝑃 =
⎛
⎜⎜
⎝

𝐸𝑎 +𝑔∗𝑎𝐵𝑧 0 −𝑖𝛼⟂ 𝑖𝛼∥
0 𝐸𝑎 −𝑔∗𝑎𝐵𝑧 𝑖𝛼∥ 𝑖𝛼⟂
𝑖𝛼⟂ −𝑖𝛼∥ 𝐸𝑏 +𝑔∗𝑏 𝐵𝑧 0
−𝑖𝛼∥ −𝑖𝛼⟂ 0 𝐸𝑏 −𝑔∗𝑏 𝐵𝑧

⎞
⎟⎟
⎠
, (5.25)

in the basis ℬ1𝑄𝑃 = {|1 ↑⟩ , |1 ↓⟩ , |2 ↑⟩ , |2 ↓⟩}, where the constant term − 3𝐽
8 has been ne-

glected, and

(𝐻)2𝑄𝑃 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2𝐸𝑎 0 𝑖𝛼∥ 𝑖 √2𝛼⟂ −𝑖𝛼∥ 0
0 𝐸𝑎+𝐸𝑏 0 (𝑔∗𝑎−𝑔∗𝑏 )𝐵𝑧 0 0

−𝑖𝛼∥ 0 𝐸𝑎+𝐸𝑏−𝐽 0 0 −𝑖𝛼∥
+(𝑔∗𝑎+𝑔∗𝑏 )𝐵𝑧

−𝑖 √2𝛼⟂ (𝑔∗𝑎−𝑔∗𝑏 )𝐵𝑧 0 𝐸𝑎+𝐸𝑏−𝐽 0 −𝑖 √2𝛼⟂
𝑖𝛼∥ 0 0 0 𝐸𝑎+𝐸𝑏−𝐽− 𝑖𝛼∥

(𝑔∗𝑎+𝑔∗𝑏 )𝐵𝑥
0 0 𝑖𝛼∥ 𝑖 √2𝛼⟂ −𝑖𝛼∥ 2𝐸𝑏

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(5.26)
in the basis ℬ2𝑄𝑃 = {|𝑆𝑎⟩ , |𝑆𝑎𝑏⟩ , |𝑇+⟩ , |𝑇0⟩ , |𝑇−⟩ , |𝑆𝑏⟩}.

In order to visualize the effect of each ingredient, we plot in Fig. 5.29 the evolution
with magnetic field in 3 situations. In Fig. 5.29(a.i), without 𝐽 and 𝛼 , in Fig. 5.29(a.ii) with
𝐽 without 𝛼 , and in Fig. 5.29(a.iii) with 𝐽 and 𝛼 . The combination of SO and interaction
acts as an effective anisotropic exchange (Katsaros et al., 2020). Note that the ordering of
the lines depends on the relative strenghts of 𝐽 and the energies 𝐸𝑎 and 𝐸𝑏 , therefore with
stronger 𝐽 it is possible to have 𝑆𝑎 above 𝑇0 and thus flip ̃𝑆𝑎 and ̃𝑇0. This is actually the
case in the fit of the data in the main text in Fig.3, but since they are strongly hybridized,
we kept the notation where ̃𝑆𝑎 is the lowest state for clarity.

An overlay of the simple fit using the LMFIT package (Newville et al., 2021) shown in
Fig.3(c) of the main text is shown in Fig. 5.29(b). For the fit, we extracted the positions of
the four lowest even transitions and the lowest odd interband transitions at zero field by
fitting lorentzians to the peak positions (see data-repository). We then let LMFIT deter-
mine the energies 𝐸𝑎 , 𝐸𝑏 , 𝐽 and 𝛼⟂ by fitting both the odd and even parity diagonalization
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simultaneously [white markers in Figure 5.29(b)]. The dispersion in field in the low-field
limit is determined solely by the g-factors of manifold 𝑎, 𝑏. For the g-factors we first extract
the coordinates of the 𝐷𝑎 [yellow markers in Figure 5.29(b)], 𝑇+ and 𝑇− transitions [blue
markers in Figure 5.29(b)] for low fields where they are visible (see data-repository for
extraction details). The g-factor of the lowest manifold 𝑔∗𝑎 is then fit by fitting the slope
of the data corresponding to 𝐷𝑎 in the range between 80 and 120mT and 𝑔∗𝑏 is extracted
via 𝑔∗ = ±1/2(𝑔∗𝑎 +𝑔∗𝑏 ) from the average slope 𝑔∗ of 𝑇+ and 𝑇−, which is extracted for data
up to ∼ 30mT to make sure the avoided crossing does not interfere with the fit. For the 𝑇+
and 𝑇− the transitions were not visible at zero field, so we used the average of the crossing
point of the linear fits with the y-axis as an estimate for their zero-field position. We set
𝛼|| separately to the size of the avoided crossing extracted from the data.

In themodeling of the data we have so far focused on fitting the transitions correspond-
ing to the two lowest energy manifolds. As discussed in the main text, and visible in the
spectrum in Fig.3a, 3b (or Figure 5.29), more bundles of odd-parity transitions are present
in the data at higher frequency, which we presume correspond to transitions from the
lowest manifold 𝑎 to manifold 𝑐, 𝑑, ... Notice that it could be possible to include more man-
ifolds in the modeling to account for the higher frequency odd-parity transition bundles
𝐼ac, 𝐼ad at ∼ 23GHz, ∼ 29GHz (yellow colored in Figure 5.29), without affecting qualita-
tively the low-frequency even-parity spectrum. Unfortunately, this introduces many ad-
ditional parameters for the spin-orbit matrix elements and exchange couplings between
manifolds and, as a result, a meaningful fit and analysis of these parameters would require
the knowledge of the even-parity transitions at frequencies beyond the measured range.
Yet, for the sake of completeness we show in Fig. 5.30 the result of introducing a third
manifold, which allows to model the bundle 𝐼ac. In this case, and in general for a similar
model with several manifolds, the spin-orbit Hamiltonian 𝐻̄𝑆𝑂 includes combinations for
all pairs of manifolds 𝛼 and 𝛽 , with matrix elements 𝛼𝛼𝛽𝑠 , 𝛼𝛼𝛽𝑑 . To model the interaction,
we use effective intermanifold exchange couplings −𝐽 𝛼𝛽𝑆𝛼𝑆𝛽 .
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Figure 5.29: (a) Minimal model with example parameters to illustrate the effect of each ingredient separately. (i)
the spectrum without exchange interaction and equal g-factors, (ii) the spectrum with exchange interaction, but
zero spin-orbit interaction, (iii) the spectrum both with spin-orbit and exchange interaction. This motivates the
sketch made in Fig 2.d in the main text. Unitless parameter chosen are: 𝐸𝑎 = 1.2, 𝐸𝑏 = 2.4, 𝛼⟂ = 0.5,𝛼|| = 0.1,𝑔∗𝑎 =
𝑔∗𝑏 = 0.8,𝐽 = 0.85. (b) Fit of the data using real units as shown in Fig.3(c) of the main text overlayed on the data.
White markers indicate extracted data points used for the fit of 𝐸𝑎 ,𝐸𝑏 , 𝛼⟂, 𝐽 and yellow and blue markers for the
fitting of 𝑔∗𝑎 and 𝑔∗ respectively.
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Figure 5.30: Model with 3 manifolds reproducing the second set of odd-parity bundles 𝐼ac at ∼ 23GHz. Several
even transitions lie beyond the 40GHz limit. Spin-orbit coupling produces anticrossings between 𝑇+ and one
of the higher even transitions, and between some lines of the 𝐼ab and 𝐼ac bundles. Parameters (in GHz): 𝐸𝑎,𝑏,𝑐 =
15.3,29.38,30.37, 𝑔𝑎,𝑏,𝑐 = 4.77,17.46,2.043, 𝐽𝑎𝑏,𝑎𝑐,𝑏𝑐 = 81.97,−0.23,−29.83, 𝛼𝑎𝑏,𝑎𝑐,𝑏𝑐𝑠 = 4.91𝑖,−6.34𝑖,2.46𝑖, 𝛼𝑎𝑏,𝑎𝑐,𝑏𝑐𝑑 = 0.5𝑖.
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6
Andreev bound states in InSb-Al

nanowire Josephson junctions
defined using shadow-wall

lithography in a circuit-QED
architecture

To expand the toolbox of semiconductor-superconductor hybrid circuit electrodynamics, we
demonstrate shadow-wall lithography techniques on a superconducting NbTiN circuit to
study Andreev bound states (ABS) in gate-tunable InSb-Al hybrid Josephson junctions. We
embed the junctions into a radio-frequency SQUID that modulates the inductance of a
magnetic-field-compatible resonator. In the gate-dependence of Andreev pair transitions
when half a flux quantum is penetrating the SQUID loop, we observe high transparency ABS
over a large range in gate voltage. Furthermore, by investigating the flux and magnetic field
dependence up to 200mT we observe the direct spin-flip transition in the lowest manifold,
yielding an effective 𝑔-factor of ∼ 16.5. Finally we compare the device parameters which we
extract from microwave spectroscopy to those obtained from an additional Josephson
junction characterized by transport measurements and fabricated following the same
fabrication flow. The results and methods of this work may guide the design of future
hybrid circuits with more complex geometries and material combinations.

The work in this chapter has been authored by J.J. Wesdorp, P. A. Rot, N. van Loo, A. Vaartjes, M. Pita-Vidal, L.
J. Splitthoff, A. Bargerbos, J. C. Wolff, G. P. Mazur, L. P. Kouwenhoven and C. K. Andersen
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6 Andreev bound states in InSb-Al nanowire Josephson junctions defined using shadow-wall lithography

in a circuit-QED architecture

6.1 Introduction
Circuit quantum electrodynamics (circuit-QED) techniques have been shown to provide
high energy and time resolution in the study of semiconductor-superconductor hybrid de-
vices. So far, most applications involving semiconductor-superconductor hybrid nanowires
in superconducting circuits have focused on InAs-Al nanowires with etched junctions due
to their established fabrication process (de Lange et al., 2015; Larsen et al., 2015; Pita-Vidal
et al., 2020; Hays et al., 2018, 2020, 2021; Wesdorp et al., 2023, 2024; Splitthoff et al., 2022;
Bargerbos et al., 2020, 2022; Pita-Vidal et al., 2023a). Recently, shadow lithography (Khan
et al., 2020; Heedt et al., 2021; Borsoi et al., 2021; Goswami et al., 2023), where the junc-
tion remains untouched by an etchant, has been shown to produce highly transparent
and pristine Josephson junctions. Furthermore, using on-chip shadow-walls has enabled
versatile junction geometries and allowed noninvasive contacting of small sections of the
nanowire, a key element in a series of recent experiments demonstrating high efficiency
Cooper pair splitting (Wang et al., 2022) and artificial Kitaev chains (Dvir et al., 2023; Bor-
din et al., 2023). However, the incorporation of shadow-wall lithography with circuit-QED
devices has remained elusive due to the increased fabrication complexity in combination
with potentially increased dielectric losses in the microwave circuits.

In this work, we combine on-chip shadow-wall lithography of nanowire Josephson
junctions with a magnetic field compatible superconducting circuit. The technique can be
used for various material combinations. Here we use InSb nanowires coated with epitaxial
Al (Heedt et al., 2021; Borsoi et al., 2021). InSb has several properties that differ from InAs
typically used in previous works involving superconducting circuitry. InSb has a lower
disorder (Van Weperen et al., 2013; Plissard et al., 2012; Gül et al., 2015; Gill et al., 2016;
Kammhuber et al., 2016; Badawy et al., 2019), lower effective mass, stronger spin-orbit cou-
pling (vanWeperen et al., 2015; Kammhuber et al., 2017) and higher 𝑔-factor (VanWeperen
et al., 2013; Kammhuber et al., 2016). These properties are beneficial for the creation of
local triplet pairing, relevant for the search of topological phases of matter (Kitaev, 2001;
Lutchyn et al., 2010; Oreg et al., 2010), as well as for creating and manipulating the spin
of Andreev bound states to make Andreev spin qubits (Hays et al., 2021; Pita-Vidal et al.,
2023a,b).

We investigate the microwave spectrum of Andreev bound states in shadow-defined
InSb-Al Josephson junctions. Andreev bound states (ABSs) are microscopic fermionic
states that carry supercurrent in Josephson junctions and come in spin-degenerate Kramers
pairs (Kulik, 1970; Beenakker, 1991), which we will refer to as manifolds in the following.
They are sensitive to the microscopic details of the junction and serve as excellent probes
of the junction properties. Since the superconducting gap ΔAl of aluminum is around
ℎ ⋅ 45GHz, where ℎ is Planck’s constant, we use conventional circuit-QED techniques to
probe transitions between Andreev levels that have energies < ΔAl. The use of super-
conducting circuits to probe ABSs directly has recently brought about a series of exciting
results, including manipulating individual bound states in atomic break junctions (Janvier
et al., 2015) and InAs nanowires (Hays et al., 2018), observing sub-µeV spin-splitting of
bound states due to spin-orbit coupling (Tosi et al., 2019; Hays et al., 2020), coherent con-
trol over a single superconducting spin (Hays et al., 2021; Pita-Vidal et al., 2023a) and prob-
ing of multiple interacting superconducting spins in a single junction (Wesdorp et al., 2024;
Matute-Cañadas et al., 2022) and in two junctions separated by a long distance (Pita-Vidal
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Figure 6.1: Illustration of the shadow wall-lithography technique and our device. (a) Schematic of Josephson
junction creation using shadow-wall lithography. Al (grey) is deposited under an angle (direction indicated
with the arrows) on an InSb nanowire (purple), while an HSQ wall (light blue) creates a shadow that defines
the Josephson junction. Other circuit elements are not shown here. (b) Fabrication flow. (i) An InSb nanowire
(purple) is deposited on a dielectric (green) separating a pre-patterned NbTiN readout circuit (teal) with shadow
walls (light-blue) already deposited and lithographically defined. (ii). Aluminum (grey) is deposited globally on
the chip under a 15 and 45 degree angle (shadow of the wall is not shown here). (iii) The aluminium is removed on
the rest of the chip except for a small region around the nanowire defined by a removable soft mask (dark-blue).
(iv) The remaining aluminum is contacted to the NbTiN circuit and the smart walls are removed during liftoff.
(c-e) False colored scanning electron micrographs of the complete circuit of a representative device (device C;
identically designed to device B). (c) Zoom in of the SQUID loop [dashed box in (e)] with the removed shadow
wall indicated by the dashed line (light blue). Colored are the gate line (red), and the drive-line (yellow). (d)
Zoom in of the nanowire Josephson junction (dashed box in (c)). The materials are colored corresponding to (a),
(b). (e) Complete circuit for the device. The resonator consists of a capacitor (purple) that is connected through
an inductor (green) via the SQUID loop to the ground plane. The resonator is capacitively coupled to a feedline
(amber). The nanowire is placed in the central arm of the SQUID and is tunable with an electrostatic gate (red),
a microwave drive is capacitively coupled to a drive-line (yellow).

et al., 2023b). These new developments motivate the extension of superconducting cir-
cuits to study Andreev states in more complex geometries and material platforms, which
we present here.

In this research article, we first studymicrowave transitions that excite Cooper pairs to
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an Andreevmanifold using amicrowave drive. We focus on the dependence of such transi-
tions versus applied electrostatic gate voltage as well as magnetic flux. These transitions
are especially sensitive to disorder in the junction region when the applied flux equals
half a flux quantum (Beenakker, 1991). At this flux setting, we find high-transparency
bound states over large ranges of gate voltage consistent with an elastic scattering length
𝑙𝑒 ≥𝐿∼ 150−300nm, where 𝐿 is the junction length. We proceedwith applying an in-plane
magnetic field, observing a switch in the ground state parity of the lowest Andreev man-
ifold. This parity switch, together with spin-orbit coupling, allows for a directly driven
spin-flip excitation of a quasiparticle occupying the lowest-energy Andreev manifold, re-
producing recent results in InAs nanowires (Wesdorp et al., 2024), relevant for direct ma-
nipulation of Andreev spin qubits (Pita-Vidal et al., 2023a,b). Finally we measure a junc-
tion using conventional DC transport techniques for a device that has seen an identical
fabrication flow, to complement the results obtained using microwave spectroscopy.

6.2 Fabrication details
The superconducting circuit and gate dielectric are patterned using the methods described
in Wesdorp et al. (2023). The circuit consists of a layer of ∼ 20nm NbTiN sputtered on a
high resistivity Si wafer. The wafer is initially covered with 100 nm Si3N4 deposited using
low pressure chemical vapor deposition and cleaned with HNO3 prior to the NbTiN de-
position. The circuit is subsequently patterned using standard electron-beam lithography
and etched using fluor-based reactive ion etching (SF6/O2). The ∼ 28nm Si3N4 gate dielec-
tric and the dielectric for overpasses to connect the ground plane across the DC lines are
then deposited using plasma-enhanced chemical vapor deposition at 300∘, patterned using
lithography and etched using buffered oxide etchant. Finally, another layer of approximate
60nm NbTiN is sputtered and patterned using liftoff to create on-chip overpasses.

We then proceed with adding shadow walls on the chip and placing the nanowires.
This step is followed by the shadowed evaporation of aluminum as described in (Borsoi
et al., 2021; Heedt et al., 2021). In particular, the walls are patterned using hydrogen
silsesquioxane (HSQ) (Mazur et al., 2022), which results in high-aspect ratio SiOx walls
of height 800 nm and width varying between 150 and 300 nm to define the junction size.
After the wall placement, hexagonal InSb nanowires (Badawy et al., 2019), of nominal di-
ameter ∼ 110nm are placed on the gates close to the walls using a nanomanipulator. The
interface of the semiconductor is crucial to obtaining a good proximity effect (Chang et al.,
2015), thus prior to the Al deposition the native oxide is removed from the nanowire by
exposing the device to a flow of atomic hydrogen radicals thermally dissociated by a fil-
ament at 1700 K at 550 K substrate temperature after which the Al is deposited at 138K
without breaking the vacuum and oxidized at 200 mTorr for 5 minutes while cold (Heedt
et al., 2021; Borsoi et al., 2021). The InSb is proximizited by Al after a double-angle Al de-
position under 15 and 45 degrees with respect to the substrate (4 times 4.5nm is deposited
alternating the angle at 0.05Å/s) to cover 3 facets of the nanowire resulting in ∼ 17nm Al
at the central facet, and ∼ 8nm Al at the substrate and top and bottom facets. The shadow
wall prevents Al deposition in a short section of the wire defining the Josephson junction.
An illustration of the core principle of the shadow-wall lithography is shown in Figure 6.1a.
The use of Al as a superconductor in combination with InSb is known to show intermix-
ing at the Al/InSb interface, an effect that scales with temperature (Boscherini et al., 1987;
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Thomas et al., 2019). This unstable Al/InSb interface increases the difficulty of fabrication
as all processes subsequent to the Al deposition have to be performed at room-temperature
which prohibits hot baking of resist (Heedt et al., 2021; Borsoi et al., 2021) and requires
freezing of the sample in storage.

Since the Al is deposited globally on the chip, we perform a coarse etch using transene-
D after lithographically defining a vacuum baked soft poly-methyl-methacrylate (PMMA)
etch mask around the junction region (Moehle et al., 2022), which covers the whole
nanowire to prevent damage during the etch, depicted in Figure 6.1b, step (iii). The re-
maining aluminum is subsequently contacted in a final NbTiN liftoff step preceded by
argon-milling to remove the native oxide on the aluminum. The additional contacting
step is necessary, because the evaporated Al does not provide good contact to the NbTiN
base layer. Note that the contacting step is not on the nanowire, potentially avoiding spu-
rious heating of the wire in the Ar milling step. Additionally, because of the (removable)
PMMA mask we can define arbitrarily large contact areas, which increased the yield of
our devices. The shadow walls are removed from the chip during the lift-off of the NbTiN
contacts.

6.3 Circuit Design
Having established the junction fabrication process, we now explain the superconducting
circuit elements in more detail. The resonator, visible in Figure 6.1e consists of a super-
conducting island with a large capacitance to ground and connected to ground via an in-
ductor in series with a radio-frequency superconducting interference device (rf-SQUID),
see Section 6.8.1 for detailed circuit parameters. The resonator is capacitvely coupled to
an on-chip transmission line for readout. An electrostatic gate below the nanowire tunes
its electron-density. A drive line is used to excite transitions between Andreev levels in
the Josephson junction by creating an RF voltage difference over the SQUID to ground.
The junction can be phase-biased using an externally applied magnetic flux Φ through
the SQUID loop, either by using an on-chip flux-bias line, or by applying a magnetic field
perpendicular to the nanowire axis, but in the chip plane (Wesdorp et al., 2024). The loop
design is gradiometric, to minimize the effective area sensitive to perpendicular field and
the magnetic field is aligned using the methods described in Ref. (Wesdorp et al., 2024),
which has a similar loop design. Field alignment is essential to minimize the creation of
vortices which may cause flux jumps when changing the field.
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6.4 Microwave Spectroscopy
We carried out measurement on two chips each with four devices as well as additional test
devices for DC transport measurements (see Sec. 6.8.6). For each of the eight resonator
deviceswe show the gate and flux characterizationmonitoring only the resonator response
in Section 6.8. We found that all resonators responded to gate voltages and allowed for
full pinch-off of the junctions. Additionally, all devices showed SQUID oscillations, an
indication that the Josephson junctions are functional.

First, we test the resonator quality factors. For the four resonators that do not include
an on-chip flux line we find internal quality factors 𝑄i ranging from 20 ⋅103−35⋅103, much
larger than the quality factor due to the coupling to the readout line 𝑄𝑐 ∼ 2⋅103−3⋅103 and
comparable to similar devices fabricated using InAs etched junctions (Wesdorp et al., 2024,
2023). These results indicate that we successfully managed to integrate the InSb nanowire
with shadow defined junctions into a circuit-QED platformwithout introducing additional
large dielectric losses. The devices with an on-chip flux bias line had much lower internal
quality factors 𝑄i ∼ 𝑄c due to overcoupling of the resonator to the flux line.

In the following section, we focus on two devices, A and B, both of which do not
have on-chip flux lines, and we measure the Andreev spectra of the shadowed Josephson
junctions.

6.4.1 Electrostatic control of highly transparent Josephson junctions
Using device A, we set the flux atΦ= 0.5Φ0, whereΦ0 = ℎ/2𝑒 is the magnetic flux quantum,
for having the ABS pair transitions at their energy minima and we vary the electrostatic
potential of the gate underneath the nanowire, shown in Figure 6.2. For each gate voltage,
we measure the transmission through the transmission line 𝑆21 with a tone at 𝑓r in a range
around the resonance frequency of the resonator, 𝑓0 ∼ 5.31GHz (Figure 6.2d-f), and the
excitation spectrum (Figure 6.2a-c) interleaved. From the measurement of the absolute
value of the response |𝑆21| we determine 𝑓0 of the resonator and measure spectroscopy at
a readout point near 𝑓0. When the drive frequency 𝑓d is resonant with an ABS transition,
this results in a change of the transmission 𝛿𝑆21 (see Section 6.8.1 for more details), due
to the coupling between ABS transitions and the resonator mode (Zazunov et al., 2003;
Metzger et al., 2021).

In Figure 6.2a,d, when the voltage is strongly negative at -0.85V and below, the nanowire
does not conduct and therefore no modulations of the resonator frequency are visible.
When we increase the voltage, isolated resonances start appearing in the spectrum, re-
sembling a situation where the chemical potential of the junction is comparable to the
disorder potential and, thus, for certain values of the gate voltage we observe resonant in-
creases in the junction transmission. At the junction resonances, the resonator frequency,
𝑓0, is pushed downward, resulting from the dispersive and inductive shift induced by the
Andreev pair transitions (Janvier et al., 2015; Hays et al., 2018; Metzger et al., 2021). As the
gate voltage increases (Figure 6.2b,e) and the chemical potential of the junction increases,
we observe an Andreev pair transition that resides at low frequencies for extended gate
ranges. Additionally, we observe avoided crossings between the resonator and the ABS
transitions when their frequencies are below 𝑓0. This continuous high transparency over
a large gate range, as opposed to isolated resonances, is consistent with what one would
expect from low-disorder junctions, where the junction length 𝐿 is on the order of the
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Figure 6.3: Flux dependence of device B at 𝑉g = −560mV. (a) Two tone spectrum versus flux. Inset shows a fit of
the extracted even pair transition frequency to Equation (6.1) yielding Δ∗/ℎ = 25GHz, 𝜏 = 0.983. (b) Resonator
spectroscopy in the same flux range as in panel (a). The data in (b) is measured interleaved with the data in
(a). Overlayed with a dashed line is the total flux dependent resonator shift calculated from the extracted pair
transition shown in (a) without additional fit parameters (See Section 6.8.3 for details). For Φ away from 0.5 the
dashed line falls on top of the resonator trace.

elastic scattering length 𝑙𝑒 . At the largest gate voltages (Figure 6.2c,f), we observe addi-
tional higher frequency transitions in the measurement range, indicating that multiple
Andreev levels are present below the superconducting gap. This is expected when several
transverse subbands in the proximitized semiconductor are occupied, i.e an increase in the
electron density, within the wire for more positive gate voltages (see Appendix 6.8.7 for
additional gate-dependence of this device and of device B).

6.4.2 Flux dependence
We will now further investigate the regime where the density of Andreev levels in the
nanowire is low by studying the flux dependence of the Andreev transition frequency us-
ing device B (see Table 6.1 for an overview of the devices, additional flux dependence of
device A at 𝑉𝑔 = 661.5mV is shown in Appendix 6.8.3). In Figure 6.3a we observe the typ-
ical dispersion of an Andreev pair transitions as well as in Figure 6.3b the accompanying
resonator response. The pair transition frequency moves towards its minimum frequency
around Φ/Φ0 = 0.5, which corresponds to the flux setpoint of Figure 6.2. As displayed
in the inset of Figure 6.3a, we fit the transition frequency to the flux-dependence of a
single-channel junction model (Beenakker, 1991)

ℎ𝑓𝐴 = 2Δ∗ √1−𝜏 sin2 (𝜋Φ/Φ0), (6.1)

where Δ∗ represents an effective superconducting gap, discussed further below, and 𝜏 is
the transparency of the manifold. From the fit, we extract an effective gap Δ∗/ℎ = 25GHz
and a transparency 𝜏 = 0.983 indicating high tranparancy. We subsequently calculate the
expected shift in resonator frequency 𝛿𝑓 due to this single pair transition using the esti-
mated circuit parameters (see Section 6.8.3). This estimate is shown as the dashed line



6.4 Microwave Spectroscopy

6

155

0.45 0.55
Φ/Φ0

4.26

4.28

f r 
(G

H
z) (d)

Bz=5 mT
0.45 0.55
Φ/Φ0

(e)

Bz=20 mT

0.45 0.55
Φ/Φ0

4.26

4.28

f r 
(G

H
z) (f)

Bz=40 mT
0.45 0.55
Φ/Φ0

(g)

Bz=75 mT

5

10

15

20

25
f d

 (G
H

z)
(a)

δRe{S21}

g *
a ≈16.5

50 100
Bz (mT)

4.26

4.28

f r 
(G

H
z) (b)

|S21|

−0.010 0.005

0.005 0.015

0 π 2π 3πϕ
0.0

0.5

1.0

U
 (1

0−
2 Δ

)

(a)   (b)    (c)    (d)    (e)   (f)   | ↑ a⟩    
g *
a      fd    fr  Bz   E   g *

a μBBz/2 

    tpulse   Δ  ∝ √1− τ

0 π 2π 3πϕ
0.0

0.5

1.0

U
 (1

0−
2 Δ

)

(a)   (b)    (c)    (d)    (e)   (f)   | ↑ a⟩    
g *
a      fd    fr  Bz   E   g *

a μBBz/2 

    tpulse   Δ  ∝ √1− τ

0 π 2π 3πϕ
0.0

0.5

1.0

U
 (1

0−
2 Δ

)

(a)   (b)    (c)    (d)    (e)   (f)   | ↑ a⟩    
g *
a      fd    fr  Bz   E   g *

a μBBz/2 

    tpulse   Δ  ∝ √1− τ

0 π 2π 3πϕ
0.0

0.5

1.0

U
 (1

0−
2 Δ

)

(a)   (b)    (c)    (d)    (e)   (f)   | ↑ a⟩    
g *
a      fd    fr  Bz   E   g *

a μBBz/2 

    tpulse   Δ  ∝ √1− τ

Figure 6.4: Parallel magnetic field dependence at Φ ≈ 0.5Φ0 at 𝑉𝑔 = −560mV in device B. (a) Microwave
spectroscopy of the Andreev levels as a function of the magnetic field 𝐵𝑧 at approximately fixed flux (see Ap-
pendix 6.8.1 for the flux calibration and Figure 6.10 for additional data illustrating the spin-flip transition). The
lowest pair-transition (also shown in Figure 6.3) is highlighted with round dots at the extracted peak positions.
At higher field, the intra-manifold spin-flip transition is highlighted with crosses. From the initial slope of the
spin-flip transition we extract a 𝑔-factor 𝑔∗𝑎 = 16.5±0.2 of the lowest ABS manifold. (b)Accompanying resonator
spectroscopy measured interleaved with (a). (c) Level diagram of the lowest ABS manifold visible. At zero field
we drive the pair transition, indicated with two blue arrows. The Zeeman energy splitting causes the spin down
level to cross the Fermi level making the singly occupied ABS the ground state and allows driving of the direct
spin-flip transition at frequency 𝑔∗𝑎 𝜇𝐵𝐵𝑧/ℎ indicated with a single amber arrow. (d-g) Resonator spectroscopy
versus flux at selected 𝐵𝑧 .

in Figure 6.3b. The good match indicates that, although other ABS manifolds may be
present above the measured range, the resonator response is dominated by a single ABS.

6.4.3 Magnetic field dependence
We now focus on the spin-character of the bound state by additionally exploring the de-
pendence on a parallel magnetic field, see Figure 6.4, at the same gate voltage as used
in Figure 6.3. We align the magnetic field with respect to the chip plane to mitigate flux
jumps (see Ref. (Wesdorp et al., 2024) for the alignment procedure). In Figure 6.4(a) the
dependence of the Andreev spectrum on the field 𝐵z along the wire axis is shown at ap-
proximately Φ∼ 0.5Φ0. To measure the data, for each step in 𝐵𝑧 , a flux sweep around 0.5Φ0
is performed in which we can readily identify the even pair transition as well as the flux
point Φ = 0.5Φ0 at the minimum of the dispersion (see Section 6.8). The resulting data at
Φ ∼ 0.5Φ0 is shown in Figure 6.4a and the interleaved resonator measurements are shown
in Fig. 6.4(b). In particular, we highlight two main features of a single ABS manifold in
magnetic field, the pair transition (Janvier et al., 2015; Hays et al., 2018) (see the circles
in Figure 6.4a) and the direct spin-flip transition within the manifold (Wesdorp et al., 2024;
Metzger et al., 2021) (see the crosses in Figure 6.4a) which appears only at larger magnetic
field. Around zero field, the pair transition does not disperse since it involves exciting op-
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posite spin Andreev levels. However, at larger magnetic field, the pair transition is pushed
by interaction with higher energy Andreev manifolds (van Heck et al., 2017). In contrast
to the pair-transition, the odd-parity direct spin-flip transition scales linearly with field
at fields below around 50 mT and allows for the direct extraction of the effective Landé
𝑔-factor of the lowest Andreev manifold 𝑔∗𝑎 ∼ 16.5. This hybrid 𝑔-factor is consistent with
InSb/Al as |𝑔InSb| ∼ 30−50 and |𝑔Al| ∼ 2.

For fields below 50mT, we observe a splitting of the resonator response (Figure 6.4b)
corresponding to even or odd parity occupation of the lowest ABS manifold, as typically
observed in experiments on InAs nanowires (Hays et al., 2018, 2020, 2021; Tosi et al., 2019;
Wesdorp et al., 2023, 2024). The occupations are indicated schematically by the Cooper-
pair and single quasiparticle in the lowest Andreev level in Figure 6.4c, respectively. This
splitting is also seen in the flux dependence of the resonator response, shown in Figure 6.4d
for selected field values. When the lowest-energy spin state crosses the even parity zero
field ground state energy (fixed at 0 energy in Figure 6.4c), a quantum phase transition oc-
curs where the ground state parity switches from even to odd (van Woerkom et al., 2017;
Bargerbos et al., 2022). In the odd-parity phase, the resonator response, see Figure 6.4g, is
no longer strongly dispersing with flux, as expected, because the dispersion of the excited
Andreev level cancels the dispersion of the unoccupied state in the manifold. Although,
note that spin-orbit and charging effects could cause a small dispersion (Park and Yeyati,
2017; Chtchelkatchev and Nazarov, 2003; Kurilovich et al., 2021). The zero energy crossing
and associated ground state parity switch can also be seen in the ABS spectrum as a cross-
ing of the pair transition and the direct spin-flip transition (van Woerkom et al., 2017; van
Heck et al., 2017). Note that the appearance of the odd-parity transition is rather gradual
since the phase transition from even-favored occupation to odd-favored occupation is not
discrete, but continuous. Possibly due to a high effective bath temperature of quasiparti-
cles, often seen in superconducting circuits (Glazman and Catelani, 2021). Nevertheless,
the magnetic-field-induced parity switch stabilizes the odd parity ground state and thus
can be exploited for the creation of Andreev spin qubits similar to the use of charging en-
ergy in superconducting quantum dots (Bargerbos et al., 2022; Pita-Vidal et al., 2023a). The
remaining visibility of the pair transition after the parity switch could be related to a small
residual even parity population and microwave induced parity polarization effects (Wes-
dorp et al., 2023).

6.5 DC transport measurements
We now proceed with measurements of a Josephson junction on the same chip as device A
with leads that allow DC access, shown in Figure 6.5a. Using this device, we complement
the microwave spectroscopy characterization with standard DC characterization measure-
ments of a device fabricated with the same steps. These transport measurements are done
using standard lock-in amplifier techniques. When the device is current-biased, see Fig-
ure 6.5b, we can measure the differential voltage drop across the Josephson junction and
observe a switching current of ∼ 10nA at 𝑉𝑔 = 0, and maximally ∼ 18nA in the more open
regime (see Section 6.8.6). When applying a parallel magnetic field, the switching current
gradually goes to zero at around 200mT. Atmagnetic fields around 200mT, themicrowave
response of the two tone spectroscopy disappeared, which we now understand as being
due to vanishing critical current of the junctions.
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Figure 6.5: DC supercurrent characterization of device D - a device following the same fabrication flow as the
resonator devices and located on the same chip as device A. The shadowed junction is 150nm long. (a) Optical
microscope image of the device and measurement schematic, with the position of the shadow wall sketched
in blue. (b) Current-bias versus in-plane magnetic field 𝐵𝑧 while measuring the differential junction resistance
𝑑𝑉/𝑑𝐼 using standard lock-in techniques. (c) Voltage bias measurements (corrected for series line resistance)
versus applied gate voltage on the bottom gate electrode. (d) Linecuts at the gate settings indicated in (c), the
upper three linecuts are each shifted by 3 times 𝐺0 = 2𝑒2/ℎ per linecut for visibility. From the peaks at 2Δ we
extract a gap of Δ= 202µeV= ℎ⋅48GHz (grey markers). Additionally, we observe gate-dependent peaks at values
∼ 2Δ/𝑛𝑒, where 𝑛 is a positive integer and 𝑒 is the absolute value of the electron charge, corresponding to multiple
Andreev reflection processes indicated by blue markers.

We also explore the device in voltage bias, where we measure the differential con-
ductance versus applied voltage on the electrostatic gate underneath the nanowire. Note
that the lever arm of the gate is not comparable to that of the devices measured with mi-
crowave spectroscopy, due to a small gap in the gate-line, connecting to the bottom gate
shown in Figure 6.5a. In the gate-dependence, Fig. 6.5c, we observe typical peaks corre-
sponding to the superconducting gap Δ at 𝑒𝑉 = ±2Δ, where 𝑉 is the applied bias voltage
and 𝑒 the absolute value of the electron charge, (see Fig. 6.5d and additional information
in Section 6.8.6) yielding Δ ∼ ℎ ⋅48GHz ∼ 202µeV. Additionally, we observe peaks in con-
ductance at voltages of Δ/2𝑛𝑒, where 𝑛 is a positive integer, corresponding to multiple
Andreev reflections of order 𝑛, up to third order (blue indicators in Figure 6.5d). These
are an indication of high junction transparency, consistent with the measurements of the
microwave spectrum.

6.6 Discussion
In this work, we have performed microwave spectroscopy of Andreev bound states in
an InSb-Al Josephson junction. In addition to the measurements discussed so far, we
have studied the transition linewidths of the pair transitions, see Appendix 6.8.4, for var-
ious setpoints in device A, resulting in typical transition linewidths of 150 − 400MHz
(∼ 0.5 − 1.5µeV) varying with 𝑉g and the transition frequency. Moreover, we measured
the dependence of the linewidth 𝛾 on gate and power for an additional device C and found
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𝛾 ≥ 2𝜋 ⋅250MHz minimal at extrema versus gate voltage (Appendix 6.8.4) consistent with
the linewidth being charge-noise limited, as also suggested in a previous work (Hays et al.,
2020). When saturating the transition with a strong drive pulse, we find relaxation times
of around 4µs, see Appendix 6.8.5. On the other hand, possibly due to the strong dephas-
ing, we did not observe coherent Rabi oscillations and, consequently, we cannot extract a
dephasing time for the pair transition.

A key technical challenge in this work was the integration of shadow evaporation with
circuit-QED devices. In an earlier iteration of the devices, a Si3N4 hard mask deposited at
room-temperature and patterned using liftoffwas used for theAl etching step. However, in
this way, the dielectric mask remains on the junction, which we suspect to contain trapped
charges and thus noise close to the vital junction region. This in turn could cause ABS
linewidths of up to several GHz, negating most advantages of embedding the junctions in
a circuit-QED setup.

From additional DC transportmeasurement, we found a superconducting gap of around
Δ/ℎ ∼ 48GHz (see Section 6.8.6) while in the fit in Figure 6.3 to the microwave spec-
troscopy data yields an effective gap Δ∗ smaller than Δ as often seen in microwave spec-
troscopy (van Woerkom et al., 2017; Hays et al., 2018, 2020; Tosi et al., 2019; Hays et al.,
2021; Wesdorp et al., 2023, 2024). This has previously been thought to be caused by a re-
duced induced gap in the semiconductor (van Woerkom et al., 2017; de Moor et al., 2018;
van Loo et al., 2023), a finite dwell time due to confinement (Beenakker and van Houten,
1992; Fatemi et al., 2022; Kurilovich et al., 2021) or finite junction length (Park and Yeyati,
2017; Tosi et al., 2019; Hays et al., 2020). We believe a combination of the latter two is
the most likely explanation for the observed Δ∗, since we measured the data in Figure 6.3
close to pinch-off.

A finite junction length, however, also results in higher Andreev manifolds below Δ
and accompanying intermanifold transitions. During the measurements performed in this
work, we have not seen odd-parity intermanifold transitions at zero field. These tran-
sitions involving exciting a single quasiparticle are ubiquitously present in typical gate
sweeps performed in InAs devices (Tosi et al., 2019; Wesdorp et al., 2024; Hays et al., 2020)
with junctions of comparable length (150-500 nm). Although the cause of this discrep-
ancy is presently unclear, there are multiple potential reasons. Since the elastic scattering
length in InSb (∼ 300nm (Van Weperen et al., 2013)) is expected to be larger than for InAs
(∼ 100nm (Doh, 2005)), the coherence length of the hybrid is also expected to be larger, as-
suming a dirty superconductor limit (Tinkham, 2015). Thus, the effective junction length
relative to the coherence length is expected to be smaller for InSb. A shorter effective
length may result in the InSb junctions acting akin to the short junction limit. Another
possibility is that the quasiparticle lifetimes are not sufficiently long or the trapping and
detrapping rates are too unbalanced to observe the odd-parity states and a detailed study of
the quasiparticle dynamics in InSb junctions could further elucidate this aspect (Wesdorp
et al., 2023; Fatemi et al., 2022). In the scanning electron micrographs of the devices (Fig-
ure 6.1d), it is visible that the junction has a thinner section Al of thickness around 8nm
near the junction due to a slight tilt of the walls causing the two deposition angles to
have a different effective shadow mask. This junction geometry could lead to a larger gap
near the junction, which could act as a barrier to quasiparticle poisoning events in the
junction. Finally, it could be that the inter-manifold excitations are too short lived, with
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corresponding too large linewidths, to be observed in this work.

6.7 Conclusion
We have demonstrated a proof of principle combination of superconducting circuits with
in-situ shadow-wall evaporated InSb/Al Josephson junctions. We have found the addition
of the shadow walls to not limit the resonator internal quality factor, thus opening up
the path towards coherent superconducting qubits using these junctions similar to what
has been shown using InAs/Al etched junctions (de Lange et al., 2015; Larsen et al., 2015).
Furthermore, by investigating the pair transition spectrum of several devices, we found
high transparency Andreev states over extended gate ranges, consistent with high-quality
junctions. The high transparency is also confirmed by the observation ofmultiple Andreev
reflections in a device characterized using DC transport techniques following the same
fabrication flow. Additionally, by applying a magnetic field, we observe a direct spin-
flip transition of the lowest Andreev manifold recently observed (Wesdorp et al., 2024;
Metzger et al., 2021; Bargerbos et al., 2023a) and manipulated (Pita-Vidal et al., 2023a) in
InAs devices. From DC characterization measurements, we find that the supercurrent
remains finite until ∼ 200mT. Combined with the large effective 𝑔-factors, this opens
up the path towards Andreev spin qubit experiments in InSb (Wesdorp et al., 2024; Hays
et al., 2021; Pita-Vidal et al., 2023a), although further work is needed to test the achievable
lifetimes in InSb. Our work also demonstrates important ingredients needed to embed
current efforts towards artificial Kitaev chains (Leijnse and Flensberg, 2012; Dvir et al.,
2023; Bordin et al., 2023), or Andreev molecules (Pillet et al., 2019; Kornich et al., 2019;
Matsuo et al., 2023; Su et al., 2017), into superconducting circuits. Our work thus opens
up for such experiments to benefit from the energy resolution as well as a large body of
well-developed control andmeasurement techniques offered by superconducting circuits.
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6.8 Supplementary information
6.8.1 Methods
Device information
For thisworkwemeasured 8microwave devices and 2DCdevices on 2 identically designed
chips (see Figure 6.6) in separate cooldowns for the data presented in the main text, using
a soft etching mask for the Al etching step as described in the main text. Furthermore, we
initially measured 8 other devices on two chips in two cooldowns with a hard etch mask
as described in the discussion. The device overview is summarized in the Table 6.1.

Circuit parameters
We now explain the procedure used to extract the device parameters (see Figure 6.7 for the
circuit diagram). From COMSOL simulations we estimate the capacitance 𝐶𝑟 ∼ 47fF. The
inductance is set by the length and width of the inductors and the kinetic sheet-inductance
𝐿𝑘 of the chip (Annunziata et al., 2010). We used nominally 300 nm wide and 22 nm thick
NbTiN inductors. The resonator frequency was designed by varying the number of mean-
ders and thus the total inductor length, the capacitance was kept the same for all devices to
facilitate relative frequency targeting. By matching the measured resonance frequency in
pinch-off (see Figure 6.13) to the calculated value from the designed inductor dimensions
and simulated capacitance 𝐶𝑟 we estimate 𝐿𝑘 , which varied between the chips and was
found to be ∼ 9.3pH/□ for chip 1 and ∼ 8.4pH/□ for chip 2. We then used these values of
𝐿𝑘 to estimate the shunt-inductance per arm of the rf-SQUID and resonator series induc-
tance, which was 𝐿𝑠 = 1.5nH,𝐿𝑟 = 28.68nH for device B and 𝐿𝑠 = 0.72nH,𝐿𝑟 = 18.75nH for
device A. These are the values used to determine the resonator shift in Equation (2.36).

Name Chip legend 𝑙JJ FB
device A Chip 2 rf-C 150 nm no
device B Chip 1 rf-B 300 nm no
device C Chip 1 rf-D 150 nm yes
device D Chip 2 DC-A 150 nm -
device E Chip 1 DC-A 150 nm -

Table 6.1: Main measured devices and their properties. We measured additionally 5 microwave devices not listed
here, for which we show SQUID oscillations and pinch-off data in Figures 6.11 and 6.12
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Figure 6.6: Additional device images without false coloring. From top to bottom: stitched scanning electron-
micrographs of chip 2 measured after unbonding. The devices are labeled corresponding to the legend shown
in Table 6.1. The chip contains 6 RF input ports. Two for the readout input and output line and two for the
drive-line that is coupled to all devices capacitively. Additionally there are two input ports for the on-chip flux
bias lines. Bottom panels electron micrographs of device A (C2-RFC) located on this chip indicated with the blue
dashed square.

Measurement setups
Chip 1, containing device B and Cwasmeasured in a Leiden cryogenics dilution refrigerator
with the setup shown in Figure 6.8 and Chip 2, containing device A and D, in an Oxford
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Figure 6.7: Circuit diagram of an microwave device with relevant parameters indicated. The resonator consists
of a capacitance 𝐶r and inductance 𝐿r put in series with an RF squid loop containing the JJ. Also indicated are
the readout line, gate line and drive line.

Triton dilution refrigerator with the setup shown in Figure 6.9 at approximately 20mK
base temperature. Both setups had a 6-1-1 T vector magnet installed, which was anchored
to the 4K stage (not shown). The 𝑥 and 𝑦 axes of the vector magnet were controlled with
a Yokogawa GS610 current source for fine control. The chip was connected to 6 RF lines,
two for the feedline input and output and two for the drive line input and output that
was used to drive all four devices. Two additional RF lines were connected to on-chip flux
bias lines which were controlled using a Yokogawa GS200 current source. Spectroscopy
measurements were performed using a R&S ZNB20 vector network analyser connected to
the input and output lines. One port of the the driveline was connected to a high frequency
microwave source Agilent E8267D or R&S SMA100B.

The device enclosure contained the chip, glued using silver-epoxy on to a gold-plated
copper block and bonded to a custom made printed circuit board, which were embedded
in the copper device enclosure filled with ecosorb foam. The DC lines were additionally
filtered on the PCB with low-pass 𝜋-filters.
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Figure 6.8: Cryogenicwiring diagram of setup 1 used tomeasure chip 1. At every temperature stage custommade
ecosorb filters (E) and copper powder filters (C) were embedded in the feedthroughs of which the attenuation is
specified at 10GHz. The second flux line (not shown) had less strong ecosorb filters with average attenuation of
0.5dB at 10GHz
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Figure 6.9: Cryogenic wiring diagram of setup 2 used to measure chip 2. Ecosorb filters are indicated with
dB/GHz. Low pass filters (LP) are indicated with their cutoff frequency. The output signal is amplified by a
Lincoln Labs traveling wave parametric amplifier (T), a LNF 4-8GHz HEMT anchored to the 4K plate and aMitec
30dB, 0.1 – 8 GHz room temperature amplifier.
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Signal processing
Spectroscopy data. For the two-tone spectroscopy data of this work we measure the
complex signal 𝑆21 with a vector network analyser at a readout frequency 𝑓r that is set
close to the resonator frequency 𝑓0. To obtain 𝛿Re𝑆21 we rotate the complex 𝑆21 in the I-Q
plane by maximizing the variance of each frequency sweep (vertical linecut) in the real
part. We then subtract a background which is equal to the median value of each vertical
linecut to compensate for the variation of readout frequency and only display the change
in readout signal due to driving of transitions. For the higher frequency spectroscopy
sweeps shown in the supplement we additionally subtract a horizontal background, i.e.
the median of the data in the 𝑉𝑔 direction when indicated with 𝛿Re{ ̄𝑆21} to effectively
filter out circuit resonances which appear as horizontal lines in the spectra and increase
the relative visibility of the dispersing ABSs.
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Figure 6.10: Extended data for the spin-flip transition. Here we show additional data for other flux values, other
than that which was shown in Figure 6.4. (a-o) Two-tone spectroscopy with horizontal background subtraction
for the flux values indicated. (b-p) Accompanying single-tone data. The dashed lines indicate the fitted linear
slope of the spin-flip transition extracted from the data of Figure 6.4 at Φ ≈ 0.5Φ0.

Processing for Figure 6.3. Wemeasured for each value of 𝐵𝑧 a spectroscopy versusΦ
around Φ= 0.5Φ0, because sometimes flux jumps occurred during the steps in 𝐵𝑧 . We then
definedΦ= 0.5Φ0 by setting it equal to the flux value at the minimum of the pair transition,
which was extracted by hand after visual inspection of the spectra. These linecuts at
Φ= 0.5Φ0 for each 𝐵𝑧 are shown in Figure 6.3. In Figure 6.10 we show the resulting spectra
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for values other than Φ = 0.5Φ0.

6.8.2 Basic characterization
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Figure 6.11: SQUID oscillations in all microwave devices of chip 1 (a-d) and chip 2 (e-f).

Flux characterization In order to test whether an microwave device is functional we
monitor the resonator frequency as a function of applied flux Φ at fixed 𝑉g in the open
regime. Flux is applied using in-plane field 𝐵𝑦 which is perpendicular to wire axis (Wes-
dorp et al., 2024), to mitigate flux jumps seen when applying perpendicular field 𝐵𝑥 as is
the more usual approach. The loop is thus defined vertically upwards from the chip plane
and the size is approximately defined by the height of the dielectric (∼ 28nm) times twice
the length of the gate (∼ 10µm), resulting in an effective area of 0.56µm and expected flux
periodicity of ∼ 3.7mT. Each microwave devices measured showed SQUID oscillations
as depicted in Figure 6.11 with similar flux periods. All devices in chip 1 (a-d) and chip
2 (e-f) show clear SQUID oscillations demonstrating high junction yield. Measurements
were performed with the junctions open (𝑉g = 0 for chip 1 and 𝑉g = 500mV for chip 2). A
parallel field of 12mT was on to reduce flux jumps resulting from superconducting bond
wires for the measurements of chip 1. For chip 2 the measurements were performed at
𝐵𝑧 = 0 illustrating occasional jumps.

Gate characterization The presence of Andreev states is then detected by inspecting
the gate dependence at Φ = 0.5Φ0. The gate response is shown in Figure 6.12. Devices are
generally open at 𝑉g =0, but show considerable variation in pinch-off Voltages. From the
resonator response with the nanowire in pinch-off we extract the internal and external
quality factor in Figure 6.13 by fitting 𝑆21 to a general assymetric resonance lineshape
defined in Khalil et al. (2012).
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Figure 6.12: Pinch-off curves taken at Φ ∼ 0.5Φ0 for all rf-devices of chip 1 (a-d) and chip 2 (e-f). Data for C1C
was not measured beyond 𝑉g =0.
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Figure 6.13: Summary of resonator properties. (a) extracted internal quality factor 𝑄i and resonance frequency 𝑓0
from the data shown in Figure 6.12 near pinch-off. (b) Extracted coupling quality factor for the same resonators.
For both panels, the markers and errorbars indicate the average extracted value and standard deviation of 𝑄i or
𝑄c for the first 10 gate voltages in the pinch-off curves, respectively.

6.8.3 Theory of flux-dependence and additional data
Description of coupling between the resonator and a single ABS in the short junc-
tion limit
The fit performed in Figure 6.3 to a single channel short junction model (Beenakker, 1991),
although simplistic, was found to match the data well. In Section 2.3.2 we describe the the-
ory used to estimate the shift of the resonator mode using the current and inductance op-
erators derived for a single channel short junction in Refs. (Zazunov et al., 2003; Bretheau,
2013).

This shift, calculated using the extracted circuit parameters from Section 6.8.1 is what
is overlayed over the resonator measurements in for Figure 6.3(b) and Figure 6.15(b).
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Figure 6.14: Theoretical dispersive shifts and coupling strength based on the parameters of device A, B and the
fitted Andreev states in the flux dependence. The inductive shift (purple dashed line) and dispersive shift (blue
dashed line) yield the total resonator response 𝜒 as described in Equation (2.36) (black line). Additionally we
show the expected coupling strenght 𝑔 (brown alternating dashed dotted line). (a) results for device A. (b) results
for device B.



6

168
6 Andreev bound states in InSb-Al nanowire Josephson junctions defined using shadow-wall lithography

in a circuit-QED architecture

10

20

30

40

f d
 (G

H
z)

(a)

δRe{S21}

−0.5 −0.3 −0.1 0.1 0.3 0.5 0.7
Φ/Φ0

5.30

5.31

f r 
(G

H
z) (b)

|S21|

−0.005 0.000 0.005

0.01 0.02

−0.5 0.5Φ/Φ0

25

50

f A
 (G

H
z)

Figure 6.15: Flux dependence of device A, at 𝑉g = −661.5mV. (a) Two-tone spectrum and fit to Equation (6.1).
Extracted parameters are 𝜏 = 0.968,Δ/ℎ = 26.6GHz. (b) Resonator spectroscopy measured interleaved with the
spectrum. Blue dashed line indicates the expected resonator shift due to the ABS transition fit in (a), see Equa-
tion (2.36) and the fitted parameters from (a). The discontinuities most prominently visible at Φ = 0.5Φ0 corre-
spond to small flux jumps that occured during sweeping of the field for this dataset.

Flux dependence of device A at low gate voltage
For device A, we have shown a gate dependence of the spectrum in Figure 6.2 and Fig-
ure 6.23. In Figure 6.15 wemeasure the flux-dependence of the spectrum at 𝑉g =−661.5mV
near a local maximum in the ABS transparency at an isolated resonance in gate voltage
(see Figure 6.2). We again fit to Equation (6.1) the extracted transition frequency, similar
to Figure 6.3. Interestingly, we again find that the total resonator shift from Equation (2.36)
for the fit ABS transition matches the observed shift well. Note that the bare-resonator
frequency here was calculated by subtracting the inductive shift from the value extracted
at Φ = 0 instead of being taken from the pinch-off curves.

6.8.4 Estimates of the linewidth from spectroscopy of the pair tran-
sition

In Figure 6.16 we show linewidths extracted at the lowest possible power for device A. To
extract the linewidth, we fit a Lorentzian function of the form

𝑦(𝑓𝑑 ) = 𝑎
𝜋

(𝜎/2)
(𝑓𝑑 −𝑓0)2+( 𝜎2 )2

+𝑏 (6.2)

to Re{𝑆21} of a frequency sweep to extract the linewidth 𝛾 = 2𝜋𝜎 , where 𝑓0 is the center
frequency of the transition, 𝑎, 𝑏 are a scaling and offset respectively to normalize the data.
Note that for some points, we had to manually pick the lowest possible power after visual
inspection of the fit quality. For too low power, the fitting failed due to low signal to noise
ratio of the data. Thus, this extraction results in an upper bound on 𝛾 .

For device C we measure a power dependence versus applied gate voltage and extract
the linewidth of the lowest frequency pair transition in a small gate range around an
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extracted from various measured power dependencies in spectroscopy. See text for the extraction procedure.
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.

extremum in gate Figure 6.17. Since the linewidth increases with increasing 𝑑𝑓 /𝑑𝑉g, the
linewidth in this device is to a large extend limited by charge noise.
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6.8.5 Partial time-domain characterization
In an attempt to characterize the lifetime of the pair transition of device C, we use a Quan-
tum Machines OPX to IQ-modulate the readout and drive tones with baseband pulses
in Figure 6.18 with a room-temperature setup nearly identical to Pita-Vidal et al. (2023b).
We investigate the pair transition in gate regime shown in Figure 6.18a,b at Φ = 0.5Φ0. We
then fix the pair transition at around 9GHz (see Figure 6.18c). The decay time is measured
by applying an upconverted saturation pulse resonant with the pair transition followed
by a ∼ 1µs readout pulse on the resonator. From the exponential decay of the signal, we
extract a decay time of 𝑇decay ∼ 4.1µs. This decay time is on the similar to lifetimes of the
Andreev pair qubit observed in earlier works on InAs (Hays et al., 2018; Janvier, 2016). On
the other hand, we observe no clear Rabi oscillations when varying the pulse time and am-
plitude at a fixed frequency. Instead, we see a signal that saturates with increasing pulse
lengths and higher amplitudes. A typical example versus pulse length and drive frequency
at fixed amplitude is shown in Figure 6.18e, where the response is strongest on resonance
with the pair transition at 9.05GHz. Without the unambiguous observation of Rabi oscilla-
tions, we cannot rule out that the observed decay time could also correspond to the parity
lifetime if the strong drive causes a change in parity as observed recently inWesdorp et al.
(2023). The absence of quasiparticle poisoning observed without a drive tone at most gate
setpoints in device A, although beneficial for device operation, prohibited the individual
extraction of these lifetimes.

The measured transition linewidth in spectroscopy of around ∼ 150MHz gives an
lower bound on the intrinsic dephasing time of the pair transition and corresponds to
𝑇 ∗2 ≥ 1ns, which could explain the lack of visible Rabi oscillations with ns-long pulses. For
shorter pulses, the required power to see saturation could cause population of the readout
resonator from leakage in the I-Q modulation unit. As such, we were not able to obtain a
signal for the high power settings.

6.8.6 Supplementary DC transport
To complement the microwave characterization, we report on measurements of 150 nm
wide junctions (device D, E) that saw the same fabrication flow in DC transport (see Fig-
ure 6.5 for a device image). As stated in the main text, the bondpad to the gate underneath
the nanowire had a small gap, resulting in a much lower lever arm of the gate for the DC
devices compared to the microwave devices.

Superconducting gap extraction
We extract the superconducting gap Δ by extracting the 2Δ peak in a voltage biased mea-
surement (see Figure 6.19). The peak is extracted by the following procedure: We first
smooth the data using a Gaussian filter, followed by subtracting a mean background. Then
we normalize the data to the maximum signal of the conductance found within a range of
about 0.3meV and specify the gap as the first value coming from positive (negative) bias
that reaches a threshold percentage of the maximum conductance. The threshold was set
such to find the peak at the onset of the peak. The extractedΔ in Figure 6.19 decreases with
gate, consistent with what is observed in previous work (van Loo et al., 2023). To heuris-
tically account for the variation with gate voltage, the value of Δ quoted in the main text
is taken as the average of the 𝑉g dependence shown as a dashed line in Figure 6.19b.
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Figure 6.18: Partial time domain characterization in device A atΦ= 0.5Φ0. (a,b) Gate dependence in spectroscopy
of the pair transition near the setpoint. (c) Power dependence of the transition at ∼ 9GHz. (d) Decay time
measurement in which a long saturation pulse is followed by a measurement after waiting a time 𝜏 (see inset).
(e) Typical Rabi experiment versus carrier frequency, where the length 𝑡pulse of a drive pulse resonant with the
pair transition at fixed amplitude is followed directly by a readout pulse (see inset).

Additional supercurrent data
The maximum switching current observed in DC transport in device D was 𝐼sw ∼ 18nA, as
visible in the gate dependence of Figure 6.20a and the linecut in Figure 6.20b. In a second
DC device (device E) we only measured up to 𝑉𝑔 = 0 and obtained 𝐼sw ∼ 9nA, shown
in Figure 6.20c.

6.8.7 Supplementary gate dependence of the ABS spectrum
In this section we show additional spectroscopy datasets varying the gate voltage under-
neath the nanowire while at Φ ∼ 0.5Φ0. These devices were selected for further investiga-
tion as they showed the highest quality (lowest linewidth) ABS pair transitions. The data
shown in Figure 6.3 and Figure 6.4 was measured on device B. The corresponding gate de-
pendence (see Figure 6.21) measured at vanishing magnetic field and at Φ ∼ 0.5Φ0 shows
a similar trend as in device A. Near pinch-off, isolated resonances and a single low-lying
pair transition (i.e. a single ABS doublet) is visible and at more positive gate voltage mul-
tiple ABSs come into the measurement range consistent with more conduction channels
opening up in the nanowire. Note that in additions to pair transitions that excite a single
ABS manifold, some pair transition could be corresponding to excitations of distinct ABS
manifolds as identified recently in Refs. (Matute-Cañadas et al., 2022; Wesdorp et al., 2024).
Additionally, we show a second dataset measured up to higher frequencies of device A to
complement the data shown in Figure 6.2.
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Strong tunable coupling between
two distant superconducting spin

qubits

Superconducting (or Andreev) spin qubits have recently emerged as an alternative qubit plat-
form with realizations in semiconductor-superconductor hybrid nanowires (Hays et al., 2021;
Pita-Vidal et al., 2023a). In these qubits, the spin degree of freedom is intrinsically coupled to
the supercurrent across a Josephson junction via the spin-orbit interaction, which facilitates
fast, high-fidelity spin readout using circuit quantum electrodynamics techniques (Hays et al.,
2020). Moreover, this spin-supercurrent coupling has been predicted to facilitate inductive
multi-qubit coupling (Chtchelkatchev and Nazarov, 2003; Padurariu and Nazarov, 2010). In
this work, we demonstrate a strong supercurrent-mediated coupling between two distant An-
dreev spin qubits. This qubit-qubit interaction is of the longitudinal type and we show that
it is both gate- and flux-tunable up to a coupling strength of 178MHz. Finally, we find that
the coupling can be switched off in-situ using a magnetic flux. Our results demonstrate that
integrating microscopic spin states into a superconducting qubit architecture can combine
the advantages of both semiconductors and superconducting circuits and pave the way to fast
two-qubit gates between remote spins.

A version of the work in this chapter has been published as: M. Pita-Vidal*, J. J. Wesdorp*, L. J. Splitthoff, A.
Bargerbos, Yu Liu, L.P. Kouwenhoven, and C. K. Andersen, Strong tunable coupling between two distant super-
conducting spin qubits, preprint available on arXiv:2307.15654, accepted for publication Nature Physics (2024)
*These authors contributed equally.

https://doi.org/10.48550/arXiv.2307.15654
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7.1 Introduction
Semiconducting spin qubits (Hanson et al., 2007; Loss and DiVincenzo, 1998) have proven
to be a promising platform for quantum information processing. In such qubits, quan-
tum information is encoded in the spin degree of freedom of electrons or holes local-
ized in quantum dots, which leads to long lifetimes and a naturally large energy sepa-
ration between computational and non-computational states. Moreover, their small size
makes them attractive candidates for large-scale quantum devices (Vandersypen et al.,
2017; Burkard et al., 2023). However, it remains challenging to engineer a direct spin-
spin coupling between remote spin-qubits as their interaction strength decays rapidly
with distance. Ongoing efforts to overcome this challenge focus on engineering a cou-
pling between distant spin-qubits mediated by microwave photons in superconducting
resonators (Mi et al., 2018; Landig et al., 2018; Samkharadze et al., 2018; Borjans et al., 2020;
Harvey-Collard et al., 2022; Yu et al., 2023). For such photon-mediated spin-spin coupling,
the interaction strength is currently limited to the order of 10MHz, whichmakes the imple-
mentation of fast, long-range two-qubit gates an outstanding challenge (Harvey-Collard
et al., 2022; Burkard et al., 2023). Moreover, the transverse character of the coupling puts
a constraint on the available qubit frequencies.

An alternative approach to engineer remote spin-spin coupling is to embed the spin-
qubit into a Josephson junction creating a so-called Andreev spin qubit (ASQ) (Hays et al.,
2021; Pita-Vidal et al., 2023a), where the qubit states carry a spin-dependent supercur-
rent [Tosi et al. (2019); Hays et al. (2020), Chapters 4, 5, Hays et al. (2021); Bargerbos et al.
(2023a); Pita-Vidal et al. (2023a)]. Recent experiments have demonstrated that a single
ASQ can be operated coherently with strong coupling of the spin states to superconduct-
ing circuits (Hays et al., 2021; Pita-Vidal et al., 2023a). Similarly, it has been predicted that
large spin-dependent supercurrents can lead to strong, longitudinal, long-range and tun-
able spin-spin coupling (Chtchelkatchev and Nazarov, 2003; Padurariu and Nazarov, 2010),
thus, overcoming the challenges imposed by the coupling being only a second-order in-
teraction in previous photon-mediated implementations of spin-spin coupling as well as
circumventing any strong constraints on the qubit frequencies.

Here, we investigate the supercurrent-mediated coupling between two ASQs by ana-
lyzing the influence of a shared Josephson inductance on the coupling strength using the
setup in Fig. 7.1. Specifically, we design a device formed by twoAndreev spin qubits, ASQ1
and ASQ2, connected in parallel to a third Josephson junction with gate-tunable Joseph-
son inductance, thus defining two superconducting loops (Fig. 7.1a). Microscopically, the
longitudinal coupling between the qubits directly results from the main characteristic of
Andreev spin qubits: their spin to supercurrent coupling. The state-dependent supercur-
rent of one qubit results in a spin-state-dependent circulating supercurrent through the
loop arm containing the other qubit. We show that the qubit-qubit coupling in this con-
figuration can be in-situ controlled by the flux through the superconducting loops as well
as by changing the Josephson inductance of the shared junction using an electrostatic
gate. In particular, we reach the strong longitudinal coupling regime where the coupling
strength is larger than the qubit linewidths. Moreover, we show that the coupling can be
switched fully off for particular values of the flux, which makes this platform appealing as
an alternative for implementing fast flux-controlled two-qubit gates between spin qubits.
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Figure 7.1: Device and readout. a Circuit diagram of two coupled Andreev spin qubits (ASQ1 and ASQ2)
connected to a coupling junction with a tunable Josephson inductance 𝐿J,C. Φ1 and Φ2 are the magnetic fluxes
through the two loops. b False-colored optical microscope image of the device. The ASQs are placed between
a transmon island (red) and ground (purple). The three Josephson junctions are implemented in two separate
Al/InAs nanowires, with one containing ASQ1 and the other containing ASQ2 and the coupling junction. The
in-plane magnetic field directions are denoted as 𝐵𝑧 and 𝐵𝑦 , approximately parallel and perpendicular to the
nanowires axis, respectively. Additional flux control is achieved through the applied current 𝐼 in the flux line
(amber). Each ASQ is electrostatically controlled by three gates below the nanowire (brown), while the coupling
junction is controlled by one gate line (cyan) at voltage 𝑉C. The drive tones 𝑓d and 𝑓p are applied through the
central gate of ASQ2. See the Supplementary Information( Section 7.7) for further details about the geometry
of the loops area. c Zoomed out false-colored optical microscope image showing the transmon island (red)
capacitively coupled to a lumped-element readout resonator, consisting of a capacitor (yellow) and an inductor
(blue, inset). The resonator is further capacitively coupled to a coplanar waveguide (green center conductor)
with input and output ports labeled as 1 and 2, respectively. A readout tone 𝑓r is applied through the waveguide.
Scale bars in b and c correspond to 10 µm and 100 µm, respectively. d Amplitude of the transmission through
the readout circuit, |𝑆21 |, divided by the background, |𝑆21,b |, as a function of the current through the flux line, 𝐼 .
The measurement is performed at a magnetic field of 𝐵𝑧 = 0 with a fixed Φ2 ∼ −Φ0/4, set by 𝐵𝑦 = −1.04mT.

7.2 Device
In our device, each ASQ is hosted in a quantum dot Josephson junction which is imple-
mented in a separate Al/InAs nanowire and controlled by three electrostatic gates placed
beneath the nanowires (Fig. 7.1b). Throughout this work, the gate voltages are fixed as
specified in the Supplementary Information (Section 7.7). Moreover, we define an addi-
tional regular Josephson junction with gate-tunable Josephson inductance 𝐿J,C in one of
the nanowires. The nanowires are galvanically connected to a NbTiN circuit which defines
the superconducting loops forming a double-loop superconducting quantum interference
device (SQUID). We denote by Φ1 and Φ2 the external magnetic fluxes through each of
the loops. The qubit frequency for ASQ𝑖, 𝑓𝑖, where 𝑖 = 1,2, is set by the energy differ-
ence between the spin-states, |↑𝑖⟩ and |↓𝑖⟩, which is controlled by the magnetic field due to
the Zeeman effect. We denote the in-plane magnetic field directions as 𝐵𝑧 , approximately
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along the nanowires, and 𝐵𝑦 , approximately perpendicular to the nanowires. See also Sup-
plementary Information (Section 7.7) for additional details on the field alignment. The 𝐵𝑦
component of the magnetic field is moreover used to tune Φ1 and Φ2. Note that, while 𝐵𝑦
is applied in the chip plane, it still threads flux through the loops due to the elevation of
the nanowires with respect to the NbTiN circuitry. This reduces flux jumps compared to
using out-of-plane field 𝐵𝑥 for flux tuning, as discussed in Chapter 3. Φ1 and Φ2 set the
phase drops over the junctions, 𝜙1 ∼ 2𝜋

Φ0
Φ1 and 𝜙2 ∼ 2𝜋

Φ0
Φ2 in the limit of small 𝐿J,C, where

Φ0 denotes the magnetic flux quantum. The current through the flux line, 𝐼 , tunes Φ1 and
leaves Φ2 nearly unaffected, as the loop corresponding to Φ2 is placed near the symmetry
axis of the flux line (see Supplementary information (Section 7.7)). The drive pulses, with
frequencies 𝑓d and 𝑓p, are sent through the central gate of ASQ2 and are used to drive both
qubits. We find that it is possible to drive ASQ1 using the gate line of ASQ2 possibly due
to cross-coupling between the gate lines corresponding to both qubits or to cross-coupling
between the gate line and the transmon island. The coupling junction is controlled by a
single electrostatic gate whose voltage, 𝑉C, is varied to tune 𝐿J,C (Doh, 2005).

To enable readout of the ASQ states, the double-loop SQUID in which the ASQs are
hosted is placed between a superconducting island (red) and ground (purple), forming a
transmon circuit (Koch et al., 2007; Larsen et al., 2015; de Lange et al., 2015) (Fig. 7.1b, c).
These circuit elements are implemented in 20 nm-thick NbTiN for magnetic field compati-
bility (Samkharadze et al. (2016); Kroll et al. (2018, 2019); Pita-Vidal et al. (2020); Kringhøj
et al. (2021); Uilhoorn et al. (2021), Chapter 5). The transmon frequency depends on the
energy-phase relation of the double-loop SQUID, which in turn depends on the states of
both ASQs (Bargerbos et al., 2023a). The transmon is subsequently dispersively coupled
to a lumped element readout resonator, which is coupled to a feedline implemented with
a coplanar waveguide and monitored in transmission using a probe tone at frequency 𝑓r.
The readout mechanism is illustrated in Fig. 7.1d, which shows the four possible frequen-
cies of the readout resonator, caused by the different dispersive shifts of the four spin states
of the combinedASQ1-ASQ2 system (Blais et al., 2004): {|↑1↑2⟩ , |↑1↓2⟩ , |↓1, ↑2⟩ , |↓1↓2⟩}. Note
that spin is not a well defined quantum number for these states, see ¹. The measurement
is taken at zero magnetic field where all spin states are thermally occupied on average,
since the energy splitting between them is between 0.5 and 1GHz (see Supplementary In-
formation (Section 7.7)), which is smaller than typical effective temperatures on the order
of 100mK observed in these devices (Pita-Vidal et al., 2023a). Therefore, the lines corre-
sponding to all four states are visible. This result already illustrates the presence of two
separate ASQs in the system. We will now move on to the characterization of these qubits
before we turn our attention to the two-qubit coupling.

7.3 Individual Andreev spin qubit characterization
We first characterize each ASQ separately, while the junction containing the other qubit
is pinched-off electrostatically using the voltages on its gates (Figure 7.2), following the
methods of Pita-Vidal et al. (2023a). To set the qubit frequencies, we apply a magnetic field

¹In an ASQ, the spin is hybridized with spatial degrees of freedom, and thus the eigenstates are rather pseudo-
spin states. Similar to previous works (Hays et al., 2021; Pita-Vidal et al., 2023a), we will refer to the eigenstates
as spins for simplicity.
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𝐵𝑟 = 35mT in the 𝑦-𝑧 plane, 0.1 radians away from the 𝐵𝑧 direction (see Supplementary
Information (Section 7.7)). This field sets 𝑓1 ∈ [6, 9] GHz and 𝑓2 ∈ [2, 4.5] GHz for ASQ1
and ASQ2, respectively. We note that the qubit frequencies are significantly different due
to mesoscopic fluctuations in the gate-dependence of the spin-orbit direction and 𝑔-factor
of each ASQ, see also Fig. 7.2 and Supplementary Information ( Section 7.7). Qubit spec-
troscopy is then performed by monitoring the transmission through the feedline near the
readout-resonator frequency, while applying a drive tone with frequency 𝑓d to the central
gate line of ASQ2, see Fig. 7.2a, b. On resonance with the qubit transition, we observe a
strong change in transmission because spin-orbit coupling and amagnetic field enable elec-
trical driving of the spin [Chapter 5, Metzger (2022); Bargerbos et al. (2023a)]. The qubit
frequencies, 𝑓1 and 𝑓2, can be tuned by flux, as shown in Fig. 7.2a and b. Note that the
phase dispersion is expected to be sinusoidal, see Padurariu and Nazarov (2010); Pavešić
et al. (2023), as is the case for ASQ2. However, for ASQ1 we rather observe a skewed sine.
From the ratio of the inductance of ASQ1 and 𝐿J,C we rule out a non-linear flux-phase
relation. so the skewness is currently of unknown origin and could be related to higher
orbitals in the quantum dot. While flux tuning provides fine-tuning of the qubit frequency
within a frequency band of a few GHz set by the spin-orbit coupling strength, we can also
tune the qubit frequencies over a larger range by varying the magnetic field, due to the
Zeeman effect. From the magnetic field dependence of the frequencies we extract the 𝑔-
factor of each ASQ, see Fig. 7.2c. We find that the different 𝑔-factors are consistent with
earlier work (Vaitiekėėnas et al., 2018; Bargerbos et al., 2023a) and Figure 5.24, see also
Supplementary Information (Section 7.7).

Next, we characterize the coherence properties of each ASQ at the frequencies indi-
cated with markers in Fig. 7.2a and b. At these setpoints, we extract energy decay times
of 𝑇ASQ1

1 = 3.3± 0.1µs and 𝑇ASQ2
1 = 11.8± 0.4µs for ASQ1 and ASQ2, respectively, where

the reported uncertainties are the 1𝜎 confidence intervals from the fit. These decay times
are to a large extent limited by Purcell decay to the transmon qubit (see Supplementary
Information (Section 7.7)). Furthermore, from a Ramsey experiment, we extract dephas-
ing times of 𝑇 ∗ASQ1

2 = 7.6 ± 0.2 ns and 𝑇 ∗ASQ2
2 = 5.6 ± 0.2 ns for ASQ1 and ASQ2, respec-

tively, which are comparable to times found in earlier works (Hays et al., 2021; Pita-Vidal
et al., 2023a). For these measurements, we use Gaussian pulses with a full width at half-
maximum (FWHM) of 4 ns, which is comparable to 𝑇 ∗2 . Therefore, the 𝜋/2 pulses cannot be
considered instantaneous, which is the conventional assumption in a Ramsey experiment.
Rather, a non-zero overlap of the pulses of order 𝑇 ∗2 can result in an overestimation of the
extracted 𝑇 ∗2 , as further discussed in the Supplementary Information (Section 7.7). There-
fore, these numbers should be interpreted as an upper bound to the pure dephasing times.
Furthermore, we extract echo times of 𝑇ASQ1

2E = 17.3 ± 0.4 ns and 𝑇ASQ2
2E = 17.4 ± 0.4 ns,

see Supplementary Information (Section 7.7), three times larger than 𝑇 ∗2 , which points at
low-frequency noise being a strong contributor to dephasing, consistent with previous ob-
servations in InAs-based spin qubits (Nadj-Perge et al., 2010; Hays et al., 2021; Pita-Vidal
et al., 2023a).
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Figure 7.2: Individual Andreev spin qubit properties. a, b Readout signal amplitude with the median back-
ground subtracted, |𝑆21 | − |𝑆21,m |, showing qubit spectroscopy of ASQ1 (versus Φ1) and ASQ2 (versus Φ2), re-
spectively. During spectroscopy of one qubit, the other qubit is turned off by setting its gates to −1V. We set
𝐵𝑟 = 35mT for both panels (indicated in c with a dashed line). c Qubit frequency versus 𝐵𝑧 for both ASQs. 𝑓𝑖
is calculated as the average between its maximum and minimum values versus flux. The grey lines indicate a
linear fit to the data from which we extract the 𝑔-factors indicated in the labels. d Energy decay time (𝑇1) mea-
surements of both ASQs at the frequency setpoints indicated in a, b (𝑓1 = 7.4GHz and 𝑓2 = 3.4GHz, respectively).
The experiment was performed by sending a 𝜋-pulse followed, after a delay 𝜏 , by a readout pulse (see inset). e, f
Measurements of the coherence times (𝑇 ∗2 ) of ASQ1 and ASQ2 at the same setpoints, measured using a Ramsey
experiment. Oscillations with a period of 4 ns (for e) and 3 ns (for f) are realized by adding a phase to the final
𝜋/2 pulse proportional to the delay time 𝜏 . The pulse sequence is shown in the inset for a phase of 𝜋 . 𝑇 ∗2 is
extracted by fitting a sine with a Gaussian decay envelope. The experiments were performed using Gaussian
pulses with a FWHM of 4ns. All datasets are averaged over 3 ⋅ 105 shots, readout time ranges from 1 to 2 µs and
the total measurment time for 𝑇 ∗,ASQ𝑖

2 ranges from around 10 min for ASQ1 to around 30 min for ASQ2. The
normalized population inversion on the y-axis of panels d-f is defined as the measured signal normalized by the
signal difference between having sent no pulse and a 𝜋-pulse before the readout pulse.
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7.4 Longitudinal coupling
Having two Andreev spin qubits, we describe the joint system by the following Hamilto-
nian with the two qubits coupled longitudinally with coupling strength 𝐽 (Padurariu and
Nazarov, 2010):

𝐻 = −ℎ̄𝜔12 𝜎 𝑧1 −
ℎ̄𝜔2
2 𝜎 𝑧2 −

ℎ𝐽
2 𝜎 𝑧1 𝜎 𝑧2 , (7.1)

where 𝜔𝑖 = 2𝜋𝑓𝑖 and 𝜎 𝑧𝑖 = |↓𝑖⟩ ⟨↓𝑖| − |↑𝑖⟩ ⟨↑𝑖| denote the phase-dependent spin-flip frequency
and the 𝑧 Pauli matrix of ASQ𝑖, respectively, ℎ is the Planck constant and ℎ̄ = ℎ/(2𝜋).
In this description, the longitudinal term −ℎ𝐽

2 𝜎 𝑧1 𝜎 𝑧2 originates from the fact that the spin-
dependent supercurrent of ASQ1 induces a spin-dependent phase difference over ASQ2,
thus changing its transition frequency by ±𝐽 , and vice versa. Importantly, the longitu-
dinal coupling does not arise from direct wavefunction overlap (Spethmann et al., 2022)
or magnetic interactions as the spins are separated by a distance of approximately 25µm.
From this physical understanding of the interaction, we can express the coupling strength
𝐽 as a function of the circuit parameters by (Padurariu and Nazarov, 2010)

𝐽 (𝐿J,C,Φ1,Φ2) = 1
2ℎ

𝐿J,C𝐿ASQ(Φ1,Φ2)
𝐿J,C+𝐿ASQ(Φ1,Φ2)

𝐼1(Φ1)𝐼2(Φ2). (7.2)

Here, we define 𝐿ASQ(Φ1,Φ2) as the total spin-independent inductance of the two ASQs
in parallel and the magnitude of the spin-dependent current is captured by 𝐼𝑖(Φ𝑖) which
denotes the difference in supercurrent across ASQ𝑖 for its two possible spin states. In
this expression, one of the main features of the device becomes apparent: the coupling is
tunable with flux and can be switched to zero when either 𝐼1 or 𝐼2 are set to zero.

We now proceed to investigate the spin-spin coupling at the same gate voltages and
magnetic field used for Figure 7.2. To this end, we open both loops simultaneously and set
Φ1 and Φ2 at points where the slopes of the qubit frequencies 𝜕𝑓𝑖/𝜕Φ𝑖 ∝ 𝐼𝑖 are large, close
to Φ1 ∼ 0 and Φ2 ∼ Φ0/2. When the two qubits are longitudinally coupled, the transition
frequency of each of them depends on the state of the other, as schematically depicted
in Figure 7.3a and d. In each panel, the blue arrows indicate the two possible frequencies
of one qubit, separated by twice the coupling strength, 𝐽 , for the two possible states of
the other qubit. To determine the magnitude of the coupling strength, we perform the
following measurements: First, we determine 𝑓2−𝐽 by performing qubit spectroscopy of
ASQ2 starting from the ground state, |↓1↓2⟩, where ASQ1 is in the spin-down state (black
trace in Fig. 7.3b). Then, we repeat the spectroscopy while applying another continu-
ous pump tone at a frequency 𝑓p resonant with the spin-flip transition of ASQ1, driving
|↓1↓2⟩ ↔ |↑1↓2⟩. The presence of this additional tone results in ASQ1 being in a mixture of
|↓1⟩ and |↑1⟩. When performing spectroscopy of ASQ2 under these conditions (red trace
in Fig. 7.3b), we observe the emergence of a second peak corresponding to the shifted fre-
quency of ASQ2 due to ASQ1 having population in its excited state, |↑1⟩. This frequency
splitting arises from the longitudinal coupling term and, thus, we determine the value of
𝐽 = −178±3MHz from a double Gaussian fit as half of the difference between the two fre-
quencies (see the Supplementary Information for details on the fit procedure (Section 7.7)).
Since the coupling term is symmetric with respect to the two qubits, we should observe
the same frequency splitting when we exchange the roles of ASQ1 and ASQ2, see Fig. 7.3e
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Figure 7.3: Strong longitudinal coupling between the two Andreev spin qubits. a Energy level diagram
of the combined ASQ1-ASQ2 system with the levels (horizontal black lines) labeled by the states of both qubits
(ASQ1 in purple, ASQ2 in maroon). The diagonal arrows denote the two different transition frequencies (𝑓2 ±𝐽 )
of ASQ2 depending on the state of ASQ1. Note that 𝐽 is negative in this illustration and for the data presented in
this figure. b Spectroscopy of ASQ2 as a function of the drive frequency 𝑓d. The black and red lines indicate the
readout signal amplitude with the background subtracted, |𝑆21 | − |𝑆21,m |, with and without a pump tone resonant
with ASQ1 at frequency 𝑓p = 𝑓1 − 𝐽 , respectively. The pump tone is indicated with red arrows in a. c Power
dependence of the pump tone. The red line indicates the power used for the red line in c. We indicate the power
at the source output. d-f Similar to panels a-c, but with the roles of ASQ1 and ASQ2 exchanged. In this case, the
pump tone drives ASQ2 at a frequency 𝑓p = 𝑓2 −𝐽 , while performing spectroscopy of ASQ1.

(note that the increase in amplitude around 7.8GHz is unrelated to the ASQs but due to a
resonance of the traveling wave parametric amplifier). From this measurement, we extract
a value of 𝐽 = −165±4 MHz similar to the value we extracted before. We speculate that
the modest difference between the values of 𝐽 extracted from the measurements of both
qubits may be due to temporal instabilities, which we found to be present in the system.
We additionally measure the qubit spectroscopy as a function of the pump tone power,
shown in Fig. 7.3c and f, and we observe a power dependence on the peak amplitude. At
low powers, not enough excited population is generated in the ASQwhile the second peak
gradually appears at higher powers. At too high powers, the readout resonator shifts too
much due to the non-linearity of the resonator mode and it becomes more lossy, which
results in a reduced signal (at even higher power both peaks fully disappear). Additional
data and a numerical analysis of the expected pump power dependence and relative peak
heights, in agreement with the experimental observations, can be found in the Supplemen-
tary Information (Section 7.7).
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Next, we compare the extracted value of 𝐽 to the linewidth of the ASQ transitions
and find 𝐽 = 165MHz > 28MHz = 1/(2𝜋𝑇 ∗ASQ2

2 ), indicating that the system is in the
strong longitudinal coupling regime. This value of 𝐽 puts a speed limit for a controlled-Z
two-qubit gate at a time of 𝑡 = 1/(4𝐽 ) = 1.4ns and a coherence limit on the average gate
fidelity of around 85%, which will be explored in future experiments. Such a two-qubit
gate, combined with single qubit rotations, enables a universal set of gates. On the other
hand, such a fast gate would require distortion-free flux pulses (Rol et al., 2020), with a rise
time much smaller than the gate time of 1.5 ns. This two-qubit gate time is much faster
than typical fast two-qubit gates with superconducting qubits (10 − 45ns (AI, 2019; Rol
et al., 2019)) and comparable to the fastest short distance exchange gates in spin qubits
coupled via directly overlapping wavefunctions (Loss and DiVincenzo, 1998; Hendrickx
et al., 2020, 2021).

7.5 Tunability of the coupling strength
We have so far investigated the coupling strength at fixed gate voltages and flux. We now
investigate the dependence of 𝐽 on different control parameters and demonstrate that it
is tunable as predicted by Eq. (7.2) (Padurariu and Nazarov, 2010). We vary Φ1 using the
flux line, see Fig. 7.4a, and find that the coupling strength is directly proportional to 𝐼1, as
expected. The current difference across ASQ1, 𝐼1, is extracted from a measurement of the
qubit frequency as a function of flux, as shown in Fig. 7.4d. Note that, by varying the flux,
we not only vary the magnitude of 𝐽 , but also switch its sign, crossing zero coupling. Thus,
the two ASQs can be fully uncoupled by setting 𝐽 = 0 at the flux points which maximize or
minimize 𝑓𝑖(Φ𝑖), and where thus 𝐼𝑖 = 0, for either one of the qubits. The coinciding of zero
couplingwith these frequency-extrema is useful as these are the first-order flux-insensitive
points of the qubit transition frequency. Two representative situations in which the ASQs
are coupled and uncoupled at nearby flux points are shown in Fig. 7.4b and c, respectively.
The data was measured and analyzed using the same procedure as described for Figure 7.3.

We overlay the Φ1-dependence of the coupling strength with the expected dependence
from Equation (7.2). The values of 𝐿J,C = 8.4 nH and 𝐼2 ∼ ℎ𝜕𝑓2/𝜕Φ2|Φ2=0.51Φ0 = −2.52 nA
are fixed and independently extracted from measurements of the transmon frequency and
of 𝑓2(Φ2), respectively. 𝐿ASQ(Φ1) is calculated as the parallel combination of the spin-
independent Josephson inductances of both qubits, which are determined from separate
transmon spectroscopy measurements (see Supplementary Information (Section 7.7)) and
𝐼1(Φ1) ∼ ℎ𝜕𝑓1/𝜕Φ1 is estimated from Fig. 7.4d. As shown in Fig. 7.4a, the measured 𝐽 (Φ1)
is in good agreement with Eq. (7.2).

Finally, we investigate the 𝐿J,C tunability of 𝐽 by fixing Φ1 = −0.07Φ0, which sets
𝐼1 = 2.16 nA, and varying the value of 𝑉C (see Supplementary Information for the cor-
responding qubit parameters (Section 7.7)). We observe an increase of the magnitude of
𝐽 as the value of 𝐿J,C is increased, as shown in Fig. 7.4e. The measured data follows to
a large extent the dependence expected from Eq. (7.2), indicated with a continuous line
in Fig. 7.4e. The |𝐽 | increase is limited to a maximum when the coupling junction 𝐿J,C
becomes comparable to the finite spin-independent inductance 𝐿ASQ of the ASQs. For the
solid line in Figure 7.4ewe use the independentlymeasured value 𝐿ASQ(Φ1 =−0.07Φ0,Φ2 =
0.51Φ0) = 102.0 nH. For comparison, the dashed line depicts the limit of 𝐿ASQ ≫ 𝐿J,C.
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Figure 7.4: Tunability of the coupling strength. aQubit-qubit coupling strength, 𝐽 , as a function of flux in the
loop containing ASQ1, Φ1, see also inset, at fixed Φ2 ∼ 0.51Φ0. The purple line shows the expected dependence
from Eq. (7.2). b, c Representative fits at two Φ1 points highlighted with colored (and letter marked) markers in
a. The signal measured in the absence of a pump tone (black markers) is fit with a single Gaussian (black line),
to determine 𝑓𝑖 −𝐽 (vertical black line in the x axis). The signal measured in the presence of a pump tone at the
other ASQ (colored markers) is additionally fitted (colored line) to determine 𝑓𝑖+𝐽 . The grey lines in b show the
two individual Gaussians. d Frequency of ASQ1, 𝑓1, versus Φ1 (markers) and interpolation (line) used to estimate
𝐼1(Φ1) ∼ ℎ𝜕𝑓1/𝜕Φ1. e Qubit-qubit coupling strength 𝐽 at fixed Φ1 = −0.07Φ0 and as a function of 𝐿J,C, which is
varied using the gate-voltage at the coupling junction (see inset). The continuous line shows the dependence
from Eq. (7.2), while the dashed line shows a linear dependence 𝐽ℎ = 𝐿J,C𝐼1𝐼2/2. The yellow marker in a and in
e is a shared point between the two panels. In a and e, the markers and error bars represent the best-fit values
of 𝐽 (see panels b, c) and their estimated standard errors (one-sigma confidence intervals), respectively.

7.6 Conclusions
In conclusion, we have extended earlier results demonstrating single Andreev spin qubits (Hays
et al., 2021; Pita-Vidal et al., 2023a) and integrated two InAs/Al-based ASQs within a single
transmon circuit. The two ASQs are separated by around 25 µm, two orders of magnitude
larger than the size of the individual qubit wavefunctions. Both ASQs showed comparable
coherence properties to those reported in prior work (Hays et al., 2021; Pita-Vidal et al.,
2023a). We have shown strong supercurrent-mediated coupling between the two Andreev
spin qubits and found that the coupling strength, 𝐽 , can be tuned with either a magnetic
flux or an electrical voltage. In particular, we have shown that 𝐽 can be fully suppressed
using a magnetic flux. This switchability of the coupling is essential for the use of lon-
gitudinally coupled Andreev spin qubits to perform quantum computation. Furthermore,
the high sign and magnitude tunability of 𝐽 could have applications for the use of An-
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dreev spin qubits to perform analog quantum simulations. More generally, Andreev spin
qubits could in the future provide an independent platform for quantum computing and
simulation or, alternatively, they may be incorporated into existing spin qubit platforms
and serve as readout modules or long-distance couplers. Independently of the precise
use-case for Andreev spin qubits, we emphasize that strong spin-spin coupling as demon-
strated here will be an essential requirement, although smaller dephasing rates would be
desired.

Previous works suggest that one possible mechanism limiting dephasing is coupling
to the large nuclear spins of InAs (Nadj-Perge et al., 2010; Hays et al., 2021; Pita-Vidal et al.,
2023a). While the origin of dephasing must be further investigated, this suggests that a
possible route to increase the dephasing times is implementing Andreev spin qubits in an
alternative nuclear-spin-free material such as germanium (Hendrickx et al., 2018; Vigneau
et al., 2019; Scappucci et al., 2020; Tosato et al., 2023; Valentini et al., 2023). We expect that
future efforts using alternative materials could both provide a path towards integration
in more established semiconductor-based quantum architectures as well as strongly in-
creased coherence times. If longer coherence times can be achieved, in combination with
the strong qubit-qubit coupling demonstrated here, Andreev spin qubits will emerge as an
encouraging platform for the realization of high-fidelity two-qubit gates between remote
spins.

7.7 Supplementary information
7.7.1 Theoretical description of longitudinal ASQ-ASQ coupling
General description of the estimation of 𝐽 used in the main text
We derive a general expression for the coupling strength 𝐽 in terms of Andreev current
operators. The derived expression facilitates the data analysis presented in the main text,
where we use the experimentally obtained current-phase relationship, which differs from
that expected from the ideal quantum dot junction theory (Padurariu and Nazarov, 2010;
Bargerbos et al., 2023a). The current operator for each individual ASQ can be expressed
as ̂𝐼𝑖 = − 2𝜋

Φ0
𝜕𝐻𝑖
𝜕𝜙𝑖 , where 𝑖 = 1,2. Here, Φ0 = ℎ/2𝑒 denotes the magnetic flux quantum, 𝐻𝑖 =

−ℎ̄𝜔𝑖(𝜙𝑖)
2 𝜎 𝑧𝑖 in the subspace of the two spinful doublet states, 𝜙𝑖 is the phase drop across

ASQ𝑖, 𝜎 𝑧𝑖 is the 𝑧 Pauli matrix for ASQ𝑖 and the 𝑧 axis is chosen along the spin-polarization
direction for each qubit. As a result, the current operator can be related to the qubit
frequency by

̂𝐼𝑖 = 𝜋ℎ
Φ0

𝜕𝑓𝑖(𝜙𝑖)
𝜕𝜙𝑖

𝜎 𝑧𝑖 = 𝐼𝑖
2 𝜎

𝑧𝑖 , (7.3)

wherewe have defined the amplitude of the spin-dependent current 𝐼𝑖 = 2𝜋ℎ
Φ0

𝜕𝑓𝑖(𝜙𝑖)
𝜕𝜙𝑖 ≈ℎ 𝜕𝑓𝑖(Φ𝑖)

𝜕Φ𝑖
as in the main text, where the last approximation holds in the limit of 𝐿J,C ≪𝐿𝐼J,𝑖,𝐿𝜎J,𝑖∀𝑖, such
that the phase drop can be directly related to the external flux applied through the loop:
𝜙𝑖 = 2𝜋

Φ0
Φ𝑖. In the subspace of the doublet states for each ASQ we can expand the two-qubit

Hamiltonian to first order around the phase bias 𝜙1, given by the perturbation of the cur-
rent through ASQ2, 𝛿𝜙1 = 2𝜋

Φ0
𝑀 ̂𝐼2. Here, 𝑀 denotes an effective mutual inductance that
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determines how much phase drops over ASQ1 due to a current in ASQ2. We obtain

𝐻 = 𝐻1(𝜙1+𝛿𝜙1)+𝐻2(𝜙2)
= 𝐻1(𝜙1+ 2𝜋

Φ0
𝑀 ̂𝐼2)+𝐻2(𝜙2)

≈ 𝐻1(𝜙1)+ 2𝜋
Φ0

𝜕𝐻1(𝜙1)
𝜕𝜙1

𝑀 ̂𝐼2+𝐻2(𝜙2)

= 𝐻1(𝜙1)+𝐻2(𝜙2)−𝑀 ̂𝐼1 ̂𝐼2
= −ℎ̄𝜔12 𝜎 𝑧1 −

ℎ̄𝜔2
2 𝜎 𝑧2 − 1

4𝑀𝐼1𝐼2𝜎 𝑧1 𝜎 𝑧2 .

(7.4)

In the limit of 𝐿J,C ≪𝐿𝜎J,𝑖∀𝑖, where 𝐿𝜎J,𝑖 is the spin-dependent Josephson inductance of ASQ𝑖,
𝑀 is given by the parallel combination of the spin-independent inductances of the three

SQUID branches,𝑀 = 𝐿J,C𝐿ASQ

𝐿J,C+𝐿ASQ
. Here, 𝐿ASQ(𝜙1, 𝜙2) is the parallel combination of the spin-

independent Josephson inductances of the ASQs:

1
𝐿ASQ(𝜙1, 𝜙2)

= cos(𝜙1)
𝐿𝐼J,1

+ cos(𝜙2)
𝐿𝐼J,2

.

By comparison to Eq. (1) in the main text, we thus find

𝐽 = 𝑀
2ℎ𝐼1𝐼2 =

1
2ℎ

𝐿J,C𝐿ASQ

𝐿J,C+𝐿ASQ
𝐼1𝐼2. (7.5)

Analytical and numerical calculation of 𝐽 assuming a sinusoidal current-phase
relation
A simple model of the Hamiltonian for each ASQ is given by (Padurariu and Nazarov, 2010;
Bargerbos et al., 2023a)

𝐻𝑖(𝜙𝑖) = −𝐸𝐼J,𝑖 cos𝜙𝑖+𝐸𝜎J,𝑖𝜎 𝑧𝑖 sin𝜙𝑖, (7.6)

where 𝐸𝐼J,𝑖 = Φ20/(4𝜋2𝐿𝐼J,𝑖) and 𝐸𝜎J,𝑖 = Φ20/(4𝜋2𝐿𝜎J,𝑖) denote the spin-independent and spin-
dependent Josephson energies, respectively. The total Hamiltonian of the coupled system
of Fig. 1(a) in the main text is thus

𝐻(𝜙) = 𝐻1(𝜑1−𝜙)+𝐻2(𝜑2−𝜙)+𝐸J,C cos (𝜙) (7.7)

= −𝐸𝐼J,1 cos (𝜑1−𝜙)+𝐸𝜎J,1𝜎 𝑧1 sin (𝜙 −𝜑1)−𝐸𝐼J,2 cos (𝜑2−𝜙)+𝐸𝜎J,2𝜎 𝑧2 sin (𝜑2−𝜙)+−𝐸J,C cos𝜙,
(7.8)

where 𝐸J,C =Φ20/(4𝜋2𝐿J,C) and the reduced flux, 𝜑𝑖 = 2𝜋Φ𝑖/Φ0, is themagnetic flux through
the loop containing ASQ𝑖 expressed in units of phase.

Analytical solution. Following Padurariu and Nazarov (2010), assuming the energy-
phase relation in Eq. (7.6), the lowest order in 𝐸𝜎J,1/𝐸J,C and 𝐸𝜎J,2/𝐸J,C yields the coupling
energy in the form

𝐽 = −2
𝐸𝜎J,1𝐸𝜎J,2
|𝐸̃| cos (𝜑𝐸̃ −𝜑1)cos (𝜑𝐸̃ −𝜑2), (7.9)
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where
𝐸̃ = 𝐸𝐼J,1𝑒𝑖𝜑1 +𝐸𝐼J,2𝑒𝑖𝜑2 +𝐸J,C. (7.10)

Numerical diagonalization. To go beyond the limit of Equation (7.9), i.e. for strong
coupling, where the phase-drop on each ASQ is no longer linearly related to the applied
flux, we solve the eigenenergies of the system numerically. For a given set of parameters,
the energies of the four possible states of the qubit-qubit system (𝐸↑↑, 𝐸↓↑, 𝐸↑↓ and 𝐸↓↓) are
obtained as the minima in 𝜙 of the four eigenvalues of 𝐻(𝜙). From these four energies, we
calculate the coupling strength 𝐽 given the longitudinal (or Ising) type coupling Hamilto-
nian presented in Eq. (1) in the main text. In this situation, the four eigenenergies of the
coupled system are

𝐸↑↑ = ℎ̄𝜔1
2 + ℎ̄𝜔2

2 + ℎ𝐽
2 , (7.11)

𝐸↓↑ = −ℎ̄𝜔12 + ℎ̄𝜔2
2 − ℎ𝐽

2 , (7.12)

𝐸↑↓ = ℎ̄𝜔1
2 − ℎ̄𝜔2

2 − ℎ𝐽
2 , (7.13)

𝐸↓↓ = −ℎ̄𝜔12 − ℎ̄𝜔2
2 + ℎ𝐽

2 . (7.14)

Thus, from the numerically solved eigenenergies, we can find 𝐽 as

𝐽 = 1
2ℎ(𝐸↑↑−𝐸↑↓−𝐸↓↑+𝐸↓↓). (7.15)

Numerics including the transmon degree of freedom. To fit the transmon spec-
troscopy data presented in Sec. 7.7.3 and 7.7.6, we add a charging energy term to Equa-
tion (7.8) corresponding to the transmon island and numerically diagonalize the resulting
Hamiltonian in the phase basis (Bargerbos et al., 2020; Kringhøj et al., 2020)

𝐻Transmon = −4𝐸c𝜕2𝜙 +𝐻(𝜙) (7.16)

where 𝐸c denotes the charging energy of the transmon island and 𝐻(𝜙) is defined in Equa-
tion (7.8).

Method comparison
Given the different approaches to calculate 𝐽 , we now compare the different methods
assuming the sinusoidal energy-phase of Equation (7.6), see Figs. 7.5 and 7.6. The ana-
lytical expression of Equation (7.9) is indicated with dashed lines. The continuous lines
are obtained numerically from exact diagonalization of the total Hamiltonian in Equa-
tion (7.8) using Equation (7.15). The numerical diagonalization and the analytical expres-
sion of Equation (7.9) show near perfect agreement. Only when 𝐸𝜎J,𝑖 ∼ 𝐸J,C ( Figure 7.5c) a
slight deviation is visible since Equation (7.9) is only valid in the limit 𝐸𝜎J,𝑖 ≪𝐸J,C. We then
test the estimate of 𝐽 on the sinusoidal energy-phase relation of Equation (7.6) using Equa-
tion (7.5), which is also used in themain text for the experimentally obtained energy-phase
relation. This is shown with dotted lines, for different sets of parameters. In Fig. 7.5 we
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use parameters corresponding to the limit 𝐿J,C ≪ 𝐿𝜎J,𝑖,𝐿𝐼J,𝑖∀𝑖 and, given the agreement be-
tween the different methods, we note that the approximations made in Sec. 7.7.1 are valid.
Thus, the general estimate from Eq. (7.5) (dotted line) agrees well with the exact value of
𝐽 found by numerical diagonalization of the full Hamiltonian, as expected. To illustrate
the estimates obtained from the different methods outside of this limit, we use values of
𝐸𝐼J,𝑖 in Fig. 7.6 that instead deviate from the limit 𝐿J,C ≪ 𝐿𝐼J,𝑖∀𝑖. In this case, we see that the
estimate from Eq. (7.5) deviates strongly from the exact numerical calculation due to the
non-linear flux-phase relation.
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Figure 7.5: Qubit-qubit coupling strength J as a function of model parameters. a, b Φ1 dependence of
the coupling strength 𝐽 at fixed Φ2 = Φ0/2 and Φ2 = 0, respectively. c 𝐸𝜎J,𝑖 dependence of 𝐽 at fixed Φ1 = 0
and Φ1 = Φ0/2, for various 𝐿J,C values. d 𝐿J,C dependence of 𝐽 at fixed Φ1 = 0 and Φ1 = Φ0/2. For all panels
𝐸𝜎J,1/ℎ = 0.82GHz, 𝐸𝜎J,2/ℎ = 0.63GHz, 𝐸𝐼J,1/ℎ = 0.2GHz and 𝐸𝐼J,2/ℎ = 0.3GHz, excepting for panel c where the
values of 𝐸𝜎J,1 and 𝐸𝜎J,2 are varied. The continuous lines indicate the results obtained from direct diagonalization
of Hamiltonian (7.8) using Eq. (7.15), the dashed lines, which mostly fall on top of the solid lines, indicate the
analytic limit of Eq. (7.9) (Padurariu and Nazarov, 2010) and the dotted lines indicate the limit of Eq. (7.5) used in
the main text. Note that, for panel d, the values of 𝐼𝑖 ∼ ℎ 𝜕𝑓𝑖(Φ𝑖)

𝜕Φ𝑖 are calculated for each value of 𝐿J,C. This differs
from what is done in Fig. 4e in the main text, where the values of 𝐼𝑖 are estimated at a fixed 𝐿J,C point and used
for the complete 𝐿J,C range.
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Figure 7.6: Same as Fig. 7.5 but for 𝐸𝐼J,1/ℎ = 2.30GHz and 𝐸𝐼J,2/ℎ = 0.45GHz.

Master equation approach to longitudinal coupling experiment
We now present a simple master equation simulation to investigate the effect of the drives
on the coupled two-qubit system in presence of decay. We solve the Lindblad master
equation for the time evolution of the system density matrix, 𝜌, of the following form

̇𝜌 = [𝜌,𝐻 ′]−∑
𝑛

1
2 [2𝐶𝑛𝜌𝐶

†𝑛 −𝜌𝐶†𝑛 𝐶𝑛 −𝐶†𝑛 𝐶𝑛𝜌] , (7.17)

where 𝐻 ′ describes the two-qubit system in the rotating frame of the two drives, which
have certain detuning Δ𝑖 from qubit 𝑖. This results in the following Hamiltonian

𝐻 ′/ℎ̄ = Δ1
2 𝜎 𝑧2 +

Δ2
2 𝜎 𝑧2 +

Ω𝑝1
2 𝜎𝑥1 +

Ω𝑝2
2 𝜎𝑥2 +2𝜋 𝐽2 𝜎

𝑧1 𝜎 𝑧2 , (7.18)

where Ω𝑝𝑖 denotes the drive amplitude of the tone near qubit 𝑖 and Δ𝑖 = 𝜔𝑖 −𝜔𝑝𝑖 is the
detuning of that drive frequency with the qubit frequency. Additionally, we apply the
collapse operators 𝐶𝑛 on the individual qubits to simulate the effect of finite 𝑇1 and 𝑇2:
𝐶𝑛 ∈ { √𝛾1,1𝜎−1 , √𝛾𝜙1/2𝜎

𝑧1 √𝛾1,2𝜎−2 , √𝛾𝜙2/2𝜎
𝑧2 }, where 𝛾1,𝑖 = 1/𝑇ASQ𝑖

1 , 𝛾𝜙𝑖 = 1/𝑇ASQ𝑖
2 , 𝜎+𝑖 =

|↑𝑖⟩ ⟨↓𝑖| and 𝜎−𝑖 = |↓𝑖⟩ ⟨↑𝑖|. We then solve Equation (7.17) for the steady state solution using
Qutip (Johansson et al., 2013). From the above evolution of themaster equation under a cer-
tain drive amplitude, we obtain the populations of the states {|↑1↑2⟩ , |↑1↓2⟩ , |↓1, ↑2⟩ , |↓1↓2⟩}.
Then, assuming a dispersive shift for each state and a linewidth of the resonator mode, we



7

192 7 Strong tunable coupling between two distant superconducting spin qubits

calculate the signal as the sum of populations times the displaced Lorentzians correspond-
ing to each state and subtract the median for each linecut as is done with the experimental
data. We compare the data measured in Fig. 3 of the main text to the master equation sim-
ulation with realistic parameters, as shown in Figure 7.7. The simulations reproduce the
main features seen in the data.
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Figure 7.7: Comparison between experiment andmaster-equation simulation. a-b, e-f Experimental data
of longitudinal coupling measurement repeated from Fig. 3 of the main text. c-d, g-h Results of master equation
simulations of the corresponding experimental data. c-d ASQ1 is driven with a pump tone at 𝑓p = 𝑓1 −𝐽 , while
doing spectroscopy on ASQ2. g-h ASQ2 is driven with a pump tone at 𝑓p = 𝑓2 −𝐽 , while doing spectroscopy on
ASQ1. We use the following parameters: the spectroscopy drive amplitude for ASQ𝑖 is set to Ω𝑝𝑖/2𝜋 = 2MHz
which power broadens the observed linewidths similar to the experiment. The drive frequency of the third tone
is set such that Δ𝑖 =−𝐽 , and the power is shown on the y-axis of the 2D maps in dB, similar to the experiment. 𝑇1
and 𝑇 ∗2 are set to their values shown in Fig. 2 of the main text using the collapse operators and 𝜔𝑖/(2𝜋) of ASQ𝑖
are set to 𝑓𝑖 −𝐽 . The dispersive shifts are assumed larger than the linewidth of the resonator here such that the
signal is only sensitive to the change in |↓1↓2⟩ population. In all simulations, we fix 𝐽 = 178MHz.

The peak height difference between the drive being on and off (black and red linecuts
in Figure 7.7) depends on the difference between the initial and final populations 𝑃↓↓ of
|↓1↓2⟩ in the limit of large dispersive shift, which we consider here for simplicity. Consider
the case where we apply a spectroscopy tone at 𝑓2−𝐽 on ASQ2, in the absence of a pump
tone. In steady state, we get 𝑃↓↓ = 𝑃↓↑ = 0.5 and 𝑃↑↑ = 𝑃↑↓ = 0 due to the spectroscopy
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saturating ASQ2. Now, if we set a separate pump tone driving ASQ1 at 𝑓p = 𝑓1 − 𝐽 to
a sufficiently high amplitude Ω𝑝1, we obtain 𝑃↓↓ = 𝑃↓↑ = 𝑃↑↓ = 0.33. Thus the height of
the driven peak at 𝑓2 + 𝐽 (red right peak) should be the height of the undriven (black)
peak divided by a factor of 0.5/(0.5− 0.33) ∼ 2.94 (as opposed to a factor of 2 which one
might naively expect). The residual lowering of the peak observed in the experiment, we
attribute to additional losses in the resonator mode under a strong drive. The height of
the peak at 𝑓2 −𝐽 , on the other hand, is expected to have a similar height if no 𝑇1 decay
is present. In presence of finite and similar 𝑇1 for ASQ1 and ASQ2, however, the final
populations end up becoming 𝑃↓↓ = 𝑃↓↑ = 𝑃↑↓ = 𝑃↑↑ = 0.25, thus increasing the signal at
𝑓2−𝐽 and leading to a higher peak reaching half the height of the undriven peak at 𝑓2+𝐽
(as also seen in in Figure 7.7(d)). However, beyond these limiting cases, depending on the
exact ratio of the 𝑇1 lifetimes of ASQ1 and ASQ2 the steady-state populations will vary.

7.7.2 Methods
Device overview
The physical implementation of the device investigated is shown in Fig. 7.8. The chip,
6 mm long and 6 mm wide, consists of two devices coupled to a single transmission line
with an input capacitor to increase the directionality of the outgoing signal (Fig. 7.8h). For
the experiments performed here, only the device discussed in the main text, highlighted in
Fig. 7.8g, was measured. The resonator of the second device (uncolored device in Fig. 7.8g)
was not functional and thus was not investigated.

For each device, a lumped element readout resonator is capacitively coupled to the
feedline (Fig. 7.8e). The resonator is additionally capacitively coupled to the transmon
island, which is connected to ground via three Josephson junctions in parallel (the cou-
pling junction, ASQ1 and ASQ2) defining two loops (Fig. 7.8b). The loops implementation
is sketched in Fig. 7.9. The three junctions are implemented on two separate Al/InAs
nanowires. The junctions are defined by etching the aluminum shell of the nanowire in
a 95 nm-long section for the coupling junction and 215 nm-long sections for each of the
ASQ junctions. The coupling junction is controlled by a single 200 nm-wide electrostatic
gate centered at the middle of the junction, controlled with a DC voltage 𝑉C. Each of
the quantum dot junctions is defined by three gates consisting of two 50 nm wide tun-
nel gates (L, R) surrounding a 60 nm wide plunger gate (P), separated from each other by
45 nm (Fig. 7.8c, d). We define the DC voltages used for the left and right tunnel gates as
𝑉LP1 and 𝑉R1 for ASQ1 or 𝑉L2 and 𝑉R2 for ASQ2. The plunger gate of ASQ1 is also set to
𝑉LP1because it was shorted to the left tunnel gate due to a fabrication imperfection. All
gate lines except for the plunger lines incorporate a fourth-order Chebyshev LC-LC filter
with a cut-off frequency at 2GHz (see Fig. 3.4). The first and second inductive elements, of
5.2 nH and 6.1 nH respectively, are implemented using thin strips of NbTiN with widths of
3.5 µm and 300 nm, respectively. The first and second capacitive elements, of 2.45 pF and
2.08 pF respectively, are implemented with parallel plate capacitors. The plunger gate of
ASQ2 is connected to a bias-tee on the printed circuit board formed by a 100 kΩ resistor
and a 100 pF capacitor. This permits the simultaneous application of a DC signal, 𝑉P2, to
control the level of the quantum dot junction, and microwave tones, 𝑓d and 𝑓p, to drive
either of the spin-flip transitions or the transmon. We also drive ASQ1 using the same
gate line, because the bias-tee at the plunger gate of ASQ1 was not functional. The flux
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Figure 7.8: Device overview. a Diagram of the full microwave circuit. A coplanar waveguide (green center
conductor) transmission line with an input capacitor is capacitively coupled to a grounded LC resonator. The
resonator consists of an island (yellow) capacitively and inductively (blue) shunted to ground (purple). The
resonator is in turn capacitively coupled to a transmon island (red), which is shunted to ground capacitively
as well as via three parallel Josephson junctions. The coupling junction is controlled by a single electrostatic
gate (cyan) and each of the two Andreev spin qubits is controlled by three electrostatic gates (brown). The RF
drive tones 𝑓d and 𝑓p are sent through the plunger gate of ASQ2. The current through the flux line (amber),
𝐼 , controls the flux thread through the loop containing ASQ1, Φ1, and leaves Φ2 nearly unaffected. b False-
colored optical microscope image of the loops area. The three Josepshon junctions are implemented in two
separate Al/InAs nanowires, one of them containing the coupling junction and ASQ2 and the other containing
ASQ1. The 𝐵𝑦 component of the magnetic field is used to tune Φ1 and Φ2, see Figure 7.9 for detailed sketch
of the loops geometry. 𝐵𝑧 is the magnetic field component approximately parallel to the nanowires axis. c, d
False colored scanning electron microscope (SEM) images of the gates areas taken before the deposition of the
gate dielectric and nanowire. e False-colored optical microscope image of the device showing the qubit island
(red), the resonator island (yellow), the 200 nm-wide resonator inductor (blue, enlarged in f), the transmission
line (green), the electrostatic gates (brown and cyan) the flux line (amber) and ground (purple). g False-colored
optical microscope image of the whole 6×6 mm chip containing two nearly identical devices coupled to the same
transmission line, which has an input capacitor, enlarged in h. The measured device is false-colored, while the
second device was not investigated. i Chip mounted on a printed circuit board (PCB).
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through the loop containing ASQ1 is controlled using a flux line (shown in amber). Its
design in the area of the loops was inspired by Chapter 6. We furthermore incorporate a
25 pF parallel plate capacitor near the end of the flux line which, together with the 1 nH
inductance of the rest of the flux line, implements an LC low-pass filter with a cut-off at
1GHz.

Bx By

Bz

Loop 1
Loop 2

Loop 1 Loop 2

NbTiN

NbTiN

SiNx

Figure 7.9: Loops geometry. Diagram of the loops area shown in Fig. 7.8b. Red and purple NbTiN segments
denote segments connected to the transmon island and ground, respectively. The loop containing the coupling
junction and ASQ2 (loop 2) is a planar loop with the same geometry as those in Bargerbos et al. (2022, 2023a);
Pita-Vidal et al. (2023a). The loop containing the coupling junction and ASQ1 (loop 1) is a twisted gradiometric
loop formed by two subloops. Equal of out-of-plane magnetic fields 𝐵𝑥 through each of the two subloops result
in nearly opposite contributions to the flux Φ1, rendering loop 1 nearly insensitive to out-of-plane magnetic
field noise. The nanowires are elevated with respect to the NbTiN plane due to the gate dielectric (light grey).
This defines, for each loop, a loop area perpendicular to 𝐵𝑦 . 𝐵𝑦 can thus be used to control the flux through
the loops while keeping the out-of-plane field component (𝐵𝑥 ) fixed, reducing the occurrence of external flux
jumps (de Lange and Wesdorp, 2023).
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Summary of device parameters

Bare resonator frequency, 𝑓r,0 4.229GHz Resonator 𝑄c 1.3k
Resonator 𝑄i ∼ 35k Transmon decay time, 𝑇 t1 53.6 ns
Resonator-tmon coupling, 𝑔/ℎ ∼ 287MHz Transmon Ramsey time, 𝑇 t

2R 80.0 ns
Transmon charging energy, 𝐸c/ℎ 200MHz

Table 7.1: Values of relevant device parameters. The resonator bare frequency and quality factors are mea-
sured when all electrostatic gates are at −1000mV and thus all three junctions are pinched off (see Fig. 7.11).
The transmon charging energy is extracted from the transmon anharmonicity in two-tone spectroscopy. The
resonator-transmon coupling is extracted from a single-tone spectroscopy measurement at their anti-crossing
(see Fig. 7.13). The transmon coherence values were measured with both ASQs in pinch off and at 𝑉C = 1500mV,
which sets the transmon frequency to 𝑓t = 5.45GHz.

Nanofabrication details
The device fabrication occurs in several steps identical to that described in (Bargerbos
et al., 2022), and repeated here for the sake of completeness. The substrate consists of
525 μm-thick high-resistivity silicon, covered in 100 nm of low-pressure chemical vapor
deposited Si3N4. In the first step, a 4-inch wafer of such substrate is cleaned by submerg-
ing it for 5min in HNO3 while ultasonicating, followed by two short H2O immersions to
rinse the HNO3 residues. Afterwards, a 20 nm-thick NbTiN film is sputtered on top of the
substrate using an AJA International ATC 1800 sputtering system. Subsequently, Ti/Pd e-
beam alignment markers are patterned on the wafer, which is thereafter diced into smaller
individual dies of approximately 12mm×12mm. In the next step, the gate electrodes and
the rest of the NbTiN circuit elements are patterned on one die covered by 110 nm-thick
AR-P 6200 (positive) e-beam resist using electron-beam lithography. The structures are
then etched using SF6/O2 reactive ion etching for 47 s. Subsequently, 28 nm of Si3N4 di-
electric are deposited on top of the gate electrodes using plasma-enhanced chemical vapor
deposition and etched in patterns with a buffered oxide etchant (for 3min). This dielectric
is used as a gate dielectric, as well as as the dielectric for the crossovers at the DC gate
lines and flux line and for the crossover that generates the twist in the loop containing
ASQ1.

The nanowires are deterministically placed on top of the dielectric using a nanomanip-
ulator and an optical microscope. These nanowires are ∼10 µm-long epitaxial supercon-
ductor - semiconductor nanowires with a 110 nm-wide hexagonal InAs core and a 6 nm-
thick Al shell covering two of their facets, in turn covered by a thin layer of aluminium
oxide. The growth conditions were almost identical to those detailed in Krogstrup et al.
(2015), with the only two differences being that this time the As/In ratio was 12, smaller
than in Krogstrup et al. (2015), and that the oxidation of the Al shell was now performed
in-situ, for better control, reproducibility and homogeneity of the oxide layer covering the
shell. Inspection of the nanowire batch, performed under a scanning electron microscope
directly after growth, indicated an average wire length of 9.93± 0.92 µm and an average
wire diameter of 111±5 nm.

After nanowire placement, three sections of the aluminium shells are selectively re-
moved by wet etching for 55 s with MF-321 developer. These sections form the two quan-
tum dot junctions and the coupling junction, with lengths 215 nm and 95 nm, respectively.
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After the junctions etch, the nanowires are contacted to the transmon island and to ground
by a 110 s argon milling step followed by the deposition of 150 nm-thick sputtered NbTiN.
Finally, the chip is diced into 6 by 6millimeters, glued onto a solid gold-plated copper block
with silver epoxy, and connected to a custom-made printed circuit board using aluminium
wire-bonds (Fig. 7.8g).

Cryogenic and room temperature measurement setup
The device was measured in an Oxford instruments Triton dilution refrigerator with a base
temperature of approximately 20mK. Details of the wiring at room and cryogenic temper-
atures are shown in Fig. 7.10. The setup contains an input radio-frequency (RF) line, an
output RF line, an extra RF line for the drive tones, a flux-bias line and multiple direct cur-
rent (DC) lines used to tune the electrostatic gate voltages. The DC gate lines are filtered
at base temperature with multiple low-pass filters connected in series. The input, flux and
drive RF lines contain attenuators and low-pass filters at different temperature stages, as
indicated. In turn, the output RF line contains amplifiers at different temperature stages:
a traveling wave parametric amplifier (TWPA) at the mixing chamber plate (≈ 20mK), a
high-electron-mobility transistor (HEMT) amplifier at the 4 K stage, and an additional am-
plifier at room temperature. A three-axis vector magnet, for which the 𝑦 and 𝑧 coils are
illustrated by yellow rectangles in Fig. 7.10 (𝑥-axis not shown), is thermally anchored to
the 4 K temperature stage, with the device under study mounted at its center. The three
magnet coils are controlled with Yokogawa GS610 current sources. The current through
the flux line, 𝐼 , is controlled with a Yokogawa GS200 current source. At room tempera-
ture, a vector network analyzer (VNA) is connected to the input and output RF lines for
spectroscopy at frequency 𝑓r. On the input line, this signal is combined with a separate IQ-
modulated tone also at 𝑓r, only used for time-domain measurements. The IQ-modulated
drive tone at frequency 𝑓d and the pump tone at frequency 𝑓p are both sent through the
drive line. For time-domain measurements, the output signal is additionally split off into
a separate branch and down-converted to be measured with a Quantum Machines OPX.

Data processing
Background subtraction for single-tone and two-tone spectroscopymeasurements.
For all single-tone spectroscopymeasurements shown in themain text and Supplementary
Information, we plot the amplitude of the transmitted signal, |𝑆21|, with the frequency-
dependent background, |𝑆21,b(𝑓r)|, divided out, in dB: 10 log10(|𝑆21|/|𝑆21,b|). The background
is extracted from an independent measurement of the transmission through the feedline
as a function of 𝑉C. To determine the background for each 𝑓r we do not consider transmis-
sion data for which the resonator frequency is more than 20MHz close to 𝑓r, so that the
presence of the resonator does not impact the extracted background.

For two-tone spectroscopy measurements, we instead plot the transmitted signal, |𝑆21|,
with the frequency-independent background, |𝑆21,m|, subtracted: |𝑆21|− |𝑆21,m|. In this case,
the background is defined as the median of |𝑆21| of each frequency trace.

Gaussian fits to extract 𝐽 from spectroscopymeasurements. To extract the value
of the coupling strength from the peak splitting observed in spectroscopy measurements,
we follow the following procedure:



7

198 7 Strong tunable coupling between two distant superconducting spin qubits

60 K

4 K

20 mK

0.1 K

RT

0.7 K

Fridge output

TW
PA pum

p

r

R&S VNA 
INOUT

r

Fridge input

LO
LO

RF

r

P

IQ
IQ

RF

Readout tone

-.75

-1
0

-6
-6

-1
0

-2
0

-1
0

10G 10G

H

-.2

-1
0

-6
-6

T

-6

OPX
OUT

IN21

-1
0

-6
-3

-3
0

DACs

π
RC

Cu 

π

Flux line

-1
0

-6
-3

-10

-2
0

p

Drive line

6G

d

IQ

LO

Figure 7.10: Measurement setup.
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1. We first fit the two-tone spectroscopy signal in the absence of a pump tone with a
single Gaussian function of the form

𝐴
√2𝜋𝜎2

exp(−(𝑓d−𝑓𝑎)2
2𝜎2 )+𝐵𝑓d+𝐶, (7.19)

from which we extract the position of the first peak, 𝑓𝑎 , and its width, 𝜎 .
2. Next, we fit the two-tone spectroscopy signal in the presence of a pump tone with

a double Gaussian function of the form

𝐴𝑎
√2𝜋𝜎2

exp(−(𝑓d−𝑓𝑎)2
2𝜎2 )+ 𝐴𝑏

√2𝜋𝜎2
exp(−(𝑓d−𝑓𝑏)2

2𝜎2 )+𝐵𝑓d+𝐶, (7.20)

for which the peak widths 𝜎 , as well as the position of the first peak, 𝑓𝑎 , are fixed to
their values extracted from the previous fit. From this fit, we extract the position of
the second peak, 𝑓𝑏 , as well as the chi-square of the fit, 𝜒2

double.

3. Next, we repeat a fit to the two-tone spectroscopy signal in the presence of a pump
tone with a single Gaussian function (Eq. (7.19)) and extract the chi-square of the
fit, 𝜒2

single.

4. To determine whether a double Gaussian fits better than a single Gaussian, we com-
pare the goodness of fit of a double and single Gaussian fit. If (𝜒2

single−𝜒2
double)/𝜒2

double ≥
0.1, we conclude that the data shows two peaks and extract 𝐽 as 𝐽 = (𝑓𝑎 −𝑓𝑏)/2 and
the error of 𝐽 as the error of 𝑓𝑏 extracted from the double Gaussian fit (its one-sigma
confidence interval).

5. If, else, (𝜒2
single − 𝜒2

double)/𝜒2
double < 0.1, we conclude that the data shows a single

peak and thus 𝐽 = 0. For these data points, we do not observe a peak splitting at
any third tone powers comparable to those used for setpoints where we do observe
splitting.

Determination of the flux axis. To determine the flux axis for data that we display
in the main text as a function of Φ𝑖, we map the corresponding flux control parameter (𝐼
for the loop containing ASQ1 and 𝐵𝑦 for the loop containing ASQ2) to the fluxes Φ1 and
Φ2. To do so, we need to determine the value of the control parameter corresponding to
Φ𝑖 = 0 (denoted as 𝐼Φ1=0 and 𝐵𝑦,Φ2=0, respectively) as well as the one flux quanta (denoted
as 𝐼Φ0 and 𝐵𝑦,Φ0 , respectively). The former is independently determined for each separate
measurement, from fits of the data to the expected transitions.

The values of the flux quanta (𝐼Φ0 = 9.62mA forΦ1 and 𝐵𝑦,Φ0 = 3.16mT forΦ2) are fixed
throughout all main text and supplementary figures and is extracted from fits to the data
in Fig. 2a and b in the main text. The data in Fig. 2b is fitted with a sinusoidal dependence
of the form

2𝐸𝜎J,2 sin(2𝜋
𝐵𝑦 −𝐵𝑦,Φ2=0

𝐵𝑦,Φ0
)+𝐶, (7.21)
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as expected for a quantum dot Josephson junction (Padurariu and Nazarov, 2010; Barger-
bos et al., 2023a). The data in Fig. 2a is instead fitted with a phenomenological skewed
sinusoidal dependence of the form

2𝐸𝜎J,1 sin(2𝜋
𝐼 − 𝐼Φ1=0

𝐼Φ0
+𝑆 sin(2𝜋 𝐼 − 𝐼Φ1=0

𝐼Φ0
))+𝐶, (7.22)

where −1 < 𝑆 < 1 is the skewness parameter. For the data in Fig. 1a, we extract 𝑆 = −0.39.
The observed skewness of the spin-flip is, to our knowledge, not predicted by existing
models (Padurariu and Nazarov, 2010; Bargerbos et al., 2023a), so further investigation is
needed to explain its origin.

7.7.3 Basic characterization and tuneup
Readout resonator characterization
In this section, we perform a fit to a bare resonator spectroscopy trace and extract the
resonator parameters shown in Tab. 7.1. The result of a single-tone resonator trace, per-
formed with all Josephson junctions pinched off, is shown with black markers in Fig. 7.11.
The grey lines show the best fit of the complex transmission to the expected dependence
(Khalil et al., 2012; Flanigan)

𝑆21(𝑓r) = 1− 1+ 𝑖𝛼
1+ 𝑄c

𝑄i
+2𝑄c𝑖 𝑓r−𝑓r,0𝑓r,0

, (7.23)

where 𝑓r,0 is the bare resonator resonance frequency, 𝑄c and 𝑄i are the coupling and in-
ternal quality factors, respectively, and 𝛼 is a real number to account for the resonator
asymmetry.
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Figure 7.11: Single-tone spectroscopy of the resonator and quality factor extraction. All panels show
the measured data (black markers) and a fit to Eq. (7.23) (grey line). a and b show, respectively, the amplitude
and phase of the 𝑆21 signal as a function of frequency. c shows the imaginary and real parts of the complex 𝑆21
signal. From the fit, we extract a resonator bare frequency of 𝑓r,0 = 4.22850GHz ± 91 kHz and the quality factors
indicated in c.

Gate and flux characterization
Throughout this manuscript, we use 𝐵𝑦 , which affects both Φ1 and Φ2, to tune Φ2 and
the current through the flux line, 𝐼 , to tune Φ1. Fig. 7.12a shows the 𝐵𝑦 tunability of Φ2,
for which the period corresponds to 3.25mT. Note that this value is slightly larger than
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the actual flux quantum due to the small flux jumps present in the signal. Fig. 7.12c and
b show how the current through the flux line, 𝐼 , controls Φ1, for which a flux quantum
corresponds to 9.61mA, while leaving Φ2 unaffected.
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Figure 7.12: Flux control. Amplitude of the transmission through the readout circuit, |𝑆21 |, with background,
|𝑆21,b |, divided out. a, b With ASQ1 closed (𝑉LP1 = 𝑉R1 = −1000mV) and ASQ2 open to a singlet state with
large Josephson energy. a shows the dependence on 𝐵𝑦 , which tunes Φ2, while b shows the dependence on the
current through the flux line, 𝐼 , which leaves Φ2 unaffected. c With ASQ1 open to a singlet state with large
Josephson energy and ASQ2 closed (𝑉L2 = 𝑉P2 = 𝑉R2 = −1000mV), plotted versus 𝐼 , which controls Φ1. For all
panels, 𝐵𝑥 = 𝐵𝑧 = 0 and 𝑉C = 1995mV.

We now investigate the performance of all electrostatic gates. Fig. 7.13 shows the
resonator frequency, measured by single-tone spectroscopy, while various combinations
of gates are varied. In all cases, only at most one of the three junctions is open, thus not
defining any loops. All junctions can be fully pinched off using any of the gates that control
them while leaving the rest of the gates open, which confirms the proper functionality of
all gates.

Panels a-c show the effect of varying the gates of ASQ1 either simultaneously (a) or
separately (b, c). Note that the left and plunger gates of ASQ1 are connected to each other
on-chip and thus are always set at the same voltage, 𝑉LP1, while the right gate of ASQ1
is set at voltage 𝑉R1. The effect of the left, plunger and right gates of ASQ2, respectively
set at voltages 𝑉L2, 𝑉P2 and 𝑉R2, is shown in panels e-h. Although the pinch-off voltages
for ASQ2 are slightly lower, this junction displays a behavior similar to that of ASQ1.
Panel d shows the effect of 𝑉C, the voltage of the coupling Josephson junction gate, which
tunes 𝐸J,C. By varying 𝑉C, the transmon frequency can be tuned to values above the
bare resonator frequency, thus resulting in an avoided crossing between the resonator
and transmon frequencies at around 𝑉C = 500mV. We find a transmon-resonator coupling
strength 𝑔/ℎ ∼ 287MHz as half of the distance between the two resonances observed at
the avoided crossing.

Next, we measure the 𝑉C-dependence of the transmon frequency 𝑓t with both ASQs
pinched off, from which we calibrate the 𝑉C to 𝐸J,C map which is used for the data pro-
cessing behind Fig. 4 in the main text.

The black markers in Fig. 7.14a show the transmon frequency as a function of 𝑉C, mea-
sured directly after the data shown in Fig. 4 of the main text and at the same magnetic field
conditions (𝐵𝑟 = 35mT applied in the chip plane and six degrees away from the 𝑧 direc-
tion). For comparison, we also show the transmon frequencies measured while taking the
data in Fig. 4e (teal markers), with both ASQs open. In this case, the measured frequencies
deviate from the black markers, since they instead result from a parallel combination of
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Figure 7.13: Individual characterization of electrostatic gates. All panels show single-tone spectroscopy of
the resonator versus different gate voltages. The gate voltages that are being varied in each case are highlighted
with colors in the insets. Dark grey shaded gates indicate open gates set to 1800mV. Light grey shaded gates
indicate closed gates set to −1000mV. The panel to the left of d shows a line cut of the data in d taken at the
𝑉C value indicated with a grey line in the x-axis. From this line cut we extract the transmon-resonator coupling
energy 𝑔.

𝐸J,C and the Josephson energies of both qubits. The black markers in Fig. 7.14a are used
to determine the 𝑉C-dependence of 𝐸J,C shown in Fig. 7.14b, given the value of 𝐸c inde-
pendently determined from a measurement of the transmon anharmonicity (see Tab. 7.1).
These data are used to determine the x-axis of Fig. 4e in the main text.

ASQ gate setpoints
In this section, we discuss the tune-up of each individual ASQs, which results in the chosen
gate setpoints specified in Tab. 7.2.

The tune-up of ASQ1 is presented in Fig. 7.15. We first set the junction containing
ASQ2 to pinch-off by setting its three gates to −1000mV and set the ASQ1 gates to a
region where we detect a sizable spin-splitting energy in a low-resolution measurement.
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Figure 7.14: Coupling junction characterization a Transmon frequency, 𝑓t, versus the coupling junction
gate voltage, 𝑉C, extracted by peak-finding in two-tone spectroscopy data. The black markers are taken at the
magnetic field conditions at which we measured main text Fig. 4 but with both ASQ junctions fully closed (all
quantum dot gates set to −1000mV). The continuous line is a cubic interpolation to the measured data. The
teal markers indicate the 𝑉C, 𝑓t points at which we measured longitudinal coupling in Fig. 4e. Note that, the teal
markers deviate from the black markers, because there 𝑓t is determined by the combination of 𝐸J,C, 𝐸𝐼J,1, 𝐸𝐼J,1, 𝐸𝜎J,1,
𝐸𝜎J,1, Φ1 and Φ2, and not solely by 𝐸J,C as for the black markers. b Coupling junction Josephson energy 𝐸J,C versus
𝑉C obtained directly from the corresponding data in a, given the measured 𝐸c value specified in Tab. 7.1. The
mapping between 𝑉C and 𝐸J,C indicated with a continuous black line is used to obtain the x-axis of Fig. 4e in the
main text.

From the transmon frequency atΦ1 = 0,Φ0/2we estimate the spin-independent Josephson
energy 𝐸𝐼J,1 and map it out over a region in gate space using the two gate voltages of ASQ1
(Fig. 7.15a). Then, we proceed to investigating the value of the spin-dependent Josephson
energy, 𝐸𝜎J,1. One way of doing so would be directly mapping out the spin-flip frequency 𝑓1
in gate space. However, the visibility of the transition is significantly reduced at 𝐵 = 0 due
to the thermal population of the ASQ as well as to the smaller matrix element from driving
the spin transition. We instead perform Φ1-dependent transmon spectroscopy at a few se-
lected gate points indicated with markers in Fig. 7.15a (Fig. 7.15b-g). For each gate setpoint
we estimate the values of 𝐸𝜎J,1/ℎ bymatching the distance between transmon frequencies at
Φ1 = Φ0/4 to its theoretically expected value extracted from numerical diagonalization of
Eq. (7.16) in the phase basis. Similarly, 𝐸𝐼J,1 is estimated by fitting the measured transmon
frequencies at Φ1 = 0,Φ0/2 to their theoretically expected values. The resulting quanti-
ties are indicated as labels on each panel. We choose the gate setpoint used for ASQ1 in
the main text by maximizing 𝐸𝜎J,1 while keeping the value of 𝐸𝐼J,1 low, since a high value
negatively impacts the maximal coupling strength 𝐽 . The chosen ASQ1 gate setpoint (see
Tab. 7.2) is indicated in Fig. 7.15a with a purple marker.

Next, we pinch off the junction containing ASQ1 to tune-up the gate configuration
of ASQ2. We perform an investigation analogous to the one detailed above, as shown in
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Figure 7.15: ASQ1 gate dependence around its gate setpoint. a Estimate of spin-independent Josephson
energy of ASQ1, 𝐸𝐼J,1, versus the two gate voltages of ASQ1, derived from the transmon transition frequency
measured with two-tone spectroscopy at 𝐵r = 0 and at two different flux values: Φ1 = 0 and Φ1 = Φ0/2. The
purple marker indicates the gate setpoint of ASQ1 in the main text. b - g Transmon spectroscopy at various
gate configurations, indicated with markers in a. The values of 𝐸𝐼J,1/ℎ indicated in the labels are extracted by
fitting the measured transmon frequencies at Φ1 = 0 and Φ1 = Φ0/2 to their theoretical values. The value of
𝐸𝜎J,1/ℎ is extracted from the distance between transmon frequencies at Φ1 = Φ0/4. The continuous lines are the
corresponding transmon frequencies obtained by numerical diagonalization of an adapted Eq. (7.16) in which
the spin-dependent potential of ASQ1 is replaced by a skewed sinusoidal shape 𝐸𝜎J,1𝜎 𝑧1 sin (𝜑1 +𝑆 sin𝜑1), where
𝜑1 = 2𝜋

Φ0 Φ1. Panels b - g share the color map.

Fig. 7.16. Fig. 7.16a is measured in the same way as Fig. 7.15a and displays the evolution
of 𝐸𝐼J,2 with the tunnel gates, 𝑉L2 and 𝑉R2, while 𝑉P2 is kept at 0mV. Fig. 7.16b shows the
tunnel gate dependence of 𝐸𝜎J,2, determined from direct spin-flip spectroscopy of ASQ2 at
𝐵 = 0: 𝐸𝜎J,2/ℎ = 𝑓2(𝐵 = 0,Φ2 = Φ0/4)/2. Similarly to the strategy for ASQ1, we choose a
gate setpoint for ASQ2 by maximizing 𝐸𝜎J,2 while keeping 𝐸𝐼J,2 as low as possible. However,
for some gate points in this region of gate space, a singlet state is also slightly visible in
transmon spectroscopy (as can be seen in Fig. 7.16c, around Φ2 = 0). The presence of the
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Figure 7.16: ASQ2 gate dependence around its gate setpoint. a Estimate of spin-independent Josephson en-
ergy of ASQ2, 𝐸𝐼J,2/ℎ, versus the two tunnel gates of ASQ2, for fixed 𝑉P2 = 0, obtained from two-tone spectroscopy
measurements of the transmon transitions at 𝐵r = 0 and at two different flux values: Φ2 = 0 and Φ2 = Φ0/2. The
open and filled grey markers indicate the boundaries of the singlet-doublet transition at Φ2 = 0 and Φ2 = Φ0/2,
respectively. b Estimate of spin-dependent Josephson energy of ASQ2, 𝐸𝜎J,2/ℎ, versus the two tunnel gates of
ASQ2, for fixed 𝑉P2 = 0, obtained from two-tone spectroscopy measurements of the spin-flip transition, 𝑓2, at
𝐵r = 0 and Φ2 = Φ0/4. The maroon marker in a and b indicates the gate setpoint of ASQ2 in the main text. c - f
Transmon spectroscopy at various gate configurations indicated with markers in a and b. The values of 𝐸𝐼J,2/ℎ
indicated in the labels are extracted by fitting the measured transmon frequencies at Φ2 = 0 and Φ2 = Φ0/2 to
their theoretical values. The value of 𝐸𝜎J,2/ℎ is extracted from the distance between transmon frequencies at
Φ2 = Φ0/4. The continuous lines are the corresponding transmon frequencies obtained by numerical diagonal-
ization of Eq. (7.16). Panels c - f share the color map.

singlet state indicates that the singlet phase of the system is only separated by an energy
gap comparable to the thermal energy of the system. Consequently, while choosing the
ASQ2 setpoint we also minimize the visibility of the singlet state. The chosen setpoint
(see Tab. 7.2 is indicated in Fig. 7.16a and b with a maroon marker).

Finally, we perform in-field spin-flip spectroscopy of both ASQs, as well as transmon
spectroscopy at zero field, to more accurately determine their Josephson energies detailed
in Tab. 7.2.

The spin-flip spectroscopy shown in Fig. 7.17a and b is performed under the samemag-
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Figure 7.17: Parameter estimation for both ASQs. a Spin-flip spectroscopy of ASQ1 versus Φ1, at 𝐵𝑟 = 35mT.
The line shows a fit to a skewed sinusoidal dependence (Eq. (7.22)) from which we extract the value of
𝐸𝜎J,1/ℎ = 0.82GHz. b Spin-flip spectroscopy of ASQ2 versus Φ2, at 𝐵𝑟 ∼ 35mT. The line shows a fit to a sinusoidal
dependence (Eq. (7.21)) from which we extract the value of 𝐸𝜎J,2/ℎ = 0.63GHz. c Transmon spectroscopy versus
Φ1, at 𝐵𝑟 = 0mT with ASQ1 open to its setpoint (see Tab. 7.2) and ASQ2 closed. The two transmon frequencies
correspond to the two possible states of ASQ1. d Transmon spectroscopy versus Φ2, at 𝐵𝑟 = 0mT with ASQ2
open to its setpoint (see Tab. 7.2) and ASQ1 closed. The two transmon frequencies correspond to the two possible
states of ASQ2. For a and b, 𝑉C = 1500mV, while for c and d, 𝑉C = 1995mV. The continuous lines in c and d
show the transmon transition spectrum given the spin-dependent part of the ASQ potentials found in a, b and
the measured value of 𝐸c (see Tab. 7.1). In both cases, the frequencies are obtained by numerical diagonalization
of the Hamiltonian in Eq. (7.16) and are best fits of the measured data at Φ𝑖 being integer multiples of Φ0/2. From
these transmon spectra, we extract the values of the spin-independent Josephson energies 𝐸𝐼J,1/ℎ = 2.29GHz and
𝐸𝐼J,2/ℎ = 0.45GHz.

𝑉L𝑖 (mV) 𝑉P𝑖 (mV) 𝑉R𝑖 (mV) 𝐸𝐼J,𝑖/ℎ (GHz) 𝐸𝜎J,𝑖/ℎ (GHz)

ASQ1 62.0 62.0 350.0 2.29 0.82
ASQ2 206.50 0.0 -624.0 0.45 0.63

Table 7.2: ASQ1 and ASQ2 gate voltage set points and extracted model parameters from the measurements in
Fig. 7.17.

netic field conditions as the ones where wemeasured coupling in themain text. We extract
𝐸𝜎J,1/ℎ = 0.82GHz and 𝐸𝜎J,2/ℎ = 0.63GHz from fits of a skewed and non-skewed sine, re-
spectively, to the measured data (see Sec. 7.7.2). The 𝐸𝜎J,𝑖/ℎ = values are determined as one
fourth of the flux dispersion of the fit result. 𝐸𝐼J,1/ℎ = 2.29GHz and 𝐸𝐼J,2/ℎ = 0.45GHz are
determined similarly to how it was done for Figs. 7.15 and 7.16, by fitting the Φ𝑖-dependent
data to the expected transmon frequencies obtained by numerical diagonalization of the
Hamiltonian in Eq. (7.16) at Φ𝑖 being integer multiples of Φ0/2. In both cases, we fix the
spin-dependent part of the transmon potential to that extracted from the fits in Fig. 7.17a
and b.
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Andreev spin qubit readout
In themain text (Fig. 1d) we discussed how, when both loops are open, we observe four pos-
sible resonator frequencies, depending on the four possible spin states of the ASQ1-ASQ2
system, {|↑1↑2⟩ , |↑1↓2⟩ , |↓1, ↑2⟩ , |↓1↓2⟩}. This allows us to perform two-tone spectroscopy
of either one of the two qubit transitions, 𝑓1 and 𝑓2, which are present when both ASQ
junctions are open. Here, we show the analogous situation when only one out of the two
ASQs is open, while the junction containing the other one is fully pinched off (Fig. 7.18).

Fig. 7.18a shows the Φ1-dependence of resonator spectroscopy, at zero magnetic field
and when only ASQ1 is open. In this case, we observe two branches of the resonator
frequency, corresponding to the two possible states of ASQ1: |↑1⟩ or |↓1⟩). The different
visibility of each of the branches is a consequence of the different thermal populations of
the two states at 𝐵𝑟 = 0. This is expected, since the spin-splitting of ASQ1 varies with
flux reaching up to 2𝐸𝜎J,1/ℎ = 1.64GHz, comparable, when transformed into an effective
temperature, to typical electron temperatures found in other experiments (Jin et al., 2015;
Pita-Vidal et al., 2023a; Uilhoorn et al., 2021). Fig. 7.18b shows the analogous situation but
now for ASQ2. In this case, the resonator also displays two separate frequencies. After
fixing 𝐵𝑦 so that Φ2 ∼−Φ0/4 and so that the separation between the resonator frequencies
corresponding to |↑2⟩ and |↓2⟩ is sizable, we open ASQ1 to its setpoint. In such situation,
when performing resonator spectroscopy versus Φ1, we observe four different transitions,
labeled with their corresponding states in Fig. 7.18c. Note that, in this case, the difference
in visibility becomes more perceptible due to the larger energy separation between the
different states {|↑1↑2⟩ , |↑1↓2⟩ , |↓1, ↑2⟩ , |↓1↓2⟩}.
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Figure 7.18: Readout. Amplitude of the transmission through the readout circuit, |𝑆21 |, with background, |𝑆21,b |,
divided out. a With ASQ1 open at its setpoint (see Tab. 7.2) and ASQ2 closed (𝑉L2 = 𝑉P2 = 𝑉R2 = −1000mV). b
With ASQ1 closed (𝑉LP1 = 𝑉R1 = −1000mV) and ASQ2 open at its setpoint (see Tab. 7.2). c With both ASQ1 and
ASQ2 open, as also displayed in Fig. 1d of the main text. a, c are plotted vs. the current through the flux line 𝐼 ,
which controls Φ1. b is plotted vs. 𝐵𝑦 , which controls Φ2. For all panels, 𝐵𝑥 = 𝐵𝑧 = 0 and 𝑉C = 180mV.

Magnetic field angle dependence and determination of the spin-orbit direction
In this section, we specify the measurements performed to determine the zero-field spin-
polarization direction for each Andreev spin qubit. For each qubit, we perform spin-flip
spectroscopy measurements, like those shown in Fig. 7.17a and b, for different magnetic
field directions. As reported previously in Bargerbos et al. (2023a), we observe that both
the flux dispersion of the spin-flip transition, 𝑑𝑓 , as well as the 𝑔-factor, depend strongly
on the direction of the applied magnetic field. To determine these quantities, the maxima,
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𝑓max𝑖 , and minima, 𝑓min𝑖 , of the spin-flip frequencies are first extracted by hand from two-
tone spectroscopy measurements of the spin-flip transition, analogous to those in Fig.2a-c
of the main text. The 𝑔-factors are calculated from the average of these maximum and
minimum frequencies, as 𝑔 = (𝑓max𝑖 +𝑓min𝑖 )/(2𝜇B𝐵𝑟 ), where 𝜇B is the Bohr magnetron and
𝐵𝑟 is the magnitude of the applied magnetic field. The frequency dispersion is determined
as 𝑑𝑓 = (𝑓max𝑖 −𝑓min𝑖 )/2. The dependence of 𝑔 and 𝑑𝑓 on the magnetic field direction is
shown in Fig. 7.19 with purple and maroon markers for ASQ1 and ASQ2, respectively.

First, we investigate the angle dependence on the angle within the chip plane and away
from the nanowire axis, 𝜃𝜙=90. 𝜃𝜙=90 = 0 indicates that the field is applied approximately
along the nanowires axis, while 𝜃𝜙=90 = 90 degrees indicates that the field is applied in-
plane but approximately perpendicular to the nanowire axis. We find that the 𝑔-factor of
ASQ1 depends strongly on 𝜃𝜙=90, while that of ASQ2 stays almost constant, fluctuating
only between 5.5 and 6.5 (Fig. 7.19a). Within this plane, the 𝑔-factor of ASQ1 is found
to be maximal when the magnetic field 𝐵𝑟 is applied approximately along the nanowires
axis, while for ASQ2 it is maximized for 𝜃𝜙=90 ∼ 31 degrees away from the nanowire axis.
Performing the same experiment while varying the field direction in the 𝑥-𝑧 plane, the
plane perpendicular to the chip and containing the nanowires axis, we observe a sim-
ilar dependence (Fig. 7.19c). This time, the ASQ1 𝑔-factor is again maximized along the
nanowires axis, while that of ASQ2 becomes maximal when 𝐵𝑟 is applied 𝜃𝜙=0 ∼ 60 degrees
away from the nanowires axis. This variability of the 𝑔-factor dependence for different
configurations is consistent with previous observations of quantum dots implemented in
InAs nanowires and is thought to be due to mesoscopic fluctuations of the electrostatic
environment at the quantum dot (Han et al., 2023; Bargerbos et al., 2023a).

To learn about the zero-field spin-polarization direction of each qubit, we now focus on
the field-direction dependence of the flux dispersion of the spin-flip transition. We denote
by 𝑑𝑓 the difference in frequency between the maximum and minimum of the spin-flip
frequency versus flux. When the field is applied along the zero-field spin-polarization
direction, we expect that 𝑑𝑓 = 4𝐸𝜎J,𝑖 (see Sec. 7.7.1). However, when a component of the
applied magnetic field is perpendicular to the zero-field spin-polarization direction, 𝑑𝑓 is
reduced due to the hybridization of the two spin states (Bargerbos et al., 2023a). Fig. 7.19b
shows the 𝜃𝜙=90 dependence of 𝑑𝑓 for both ASQs. We find that, in both cases, 𝑑𝑓 becomes
minimal at a direction approximately perpendicular to the nanowire axis. We also perform
a similar experiment in the 𝑥-𝑧 plane (see Fig. 7.19d). The extracted angles constitute two
of the directions perpendicular to the spin-polarization axis. Their cross-product thus
returns the zero-field spin polarization directions for each qubit, which are indicated in
Tab. 7.3 in spherical coordinates, where 𝜃|| denotes the polar angle away from the nanowire
axis and 𝜙|| denotes the azimuthal angle measured away from the 𝑥-axis (see Fig. 7.19). The
angle between this direction and the direction of the applied magnetic field in Figs. 3 and
4 of the main text (𝜃 = 185,𝜙 = 90) is indicated in the last column of Tab. 7.3.

The angle used for all measurements in the main text, except for Fig. 2c,d, is indicated
with vertical dotted lines in Fig. 7.19a and b. We chose this angle following various con-
siderations. First, we wanted to minimize the field component perpendicular to the spin
directions of each of the ASQs. The reason for this is that we expect transverse qubit-qubit
coupling terms to emerge under the presence of a large perpendicular Zeeman energy com-
pared to 𝐸𝜎J,i, at the cost of the longitudinal component. Second, we wanted to maximize
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Figure 7.19: Magnetic field angle dependence. a 𝑔-factor for both ASQs for varying magnetic field direction
in the chip plane, 𝑦 − 𝑧, plotted as a function of the angle between the applied field and the nanowire axis,
𝜃𝜙=90. The 𝑔-factor is calculated as the average between its maximum and minimum values versus flux. Data
points corresponding to ASQ1 and ASQ2 are colored purple and maroon, respectively. The continuous lines
are cosinusoidal fits to the data. b Flux-dispersion of the spin-flip, 𝑑𝑓𝑦𝑧 , for both ASQs versus 𝜃𝜙=90. 𝑑𝑓𝑦𝑧 is
calculated as the difference between the maximum and minimum of the spin-flip frequency 𝑓𝑖 versus flux. The
continuous lines are fits to the data around their minima and the colored vertical lines on the x-axis indicate
the positions of the minima extracted from the fits, which are interpreted as the directions perpendicular to the
zero-field spin-polarization direction for each qubit. Note that these lines do not coincide with the minima of
the 𝑔-factors found in a. The vertical dotted lines in a, b indicate the field angle along which all measurements
in the main text, except for Fig. 2c,d, were taken. c, d Same as a, b but in the 𝑥 −𝑧 plane, the plane perpendicular
to the chip which contains the nanowires axis.

the difference in 𝑔-factors to avoid crossings between the qubit frequencies versus flux.
This enables the possibility of spectroscopically measuring the coupling strength at every
flux point. Finally, we chose the total field magnitude 𝐵𝑟 = 35mT to set the ASQ fre-
quencies at setpoints that did not cross neither the resonator nor any transmon transition
frequency for any value of flux.

𝜃|| 𝜙|| 𝛼
ASQ1 8.54 54.76 5.1
ASQ2 22.73 157.15 21.5

Table 7.3: Zero-field spin-polarization directions for ASQ1 and ASQ2 in degrees. The zero-field spin-
polarization direction (𝜃||, 𝜙||) is calculated as the vector product of the two perpendicular directions indicated
with colored lines in the x-axis of Fig. 7.19b,d. 𝛼 denotes the angle between the field applied in the main text
measurements and the spin-polarization direction for each qubit.
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7.7.4 Supplementary coherence data
We now describe the functions used for extracting the coherence times quoted in the main
text. To determine 𝑇1 we fit an exponential decay

𝑦(𝑡) = 𝑎 ⋅ exp[𝑡/𝑇1]+ 𝑐 (7.24)

where 𝑎, 𝑇1 and 𝑐 are free fit parameters. For Ramsey and Hahn echo (see Figure 7.20)
experiments we fit a sinusoide with a exponential decay envelope and sloped background

𝑦(𝑡) = 𝑎 ⋅ cos(2𝜋𝑝 𝑡 −𝜙) ⋅ exp[(−𝑡/𝑇2)𝑑+1]+ 𝑐 + 𝑒𝑡 (7.25)

where 𝑎, 𝑇2, 𝜙, 𝑐, 𝑒 and 𝑝 are free fit parameters and 𝑑 was fixed to 1, resulting in a Gaussian
decay envelope. We found that 𝑑 = 1 gave the least 𝜒 -squared in the fit compared to 𝑑 = 0,2.
The tilted background was included to compensate for a slightly non-linear Rabi response.

Hahn echo decay time measurements of ASQ1 and ASQ2
To verify the slow nature of the noise causing dephasing, we performed Hahn-echo ex-
periments with artificial detuning, shown in Figure 7.20. The resulting data was fit us-
ing Equation (7.25). Note that for these measurement we found that the data was not
always within the range of the identity and 𝜋-pulse calibration points. We suspect this is
due to the additional echo pulse inducing leakage to other states outside the spin-subspace.
We therefore normalized the data setting 0 and 1 to the minimum and maximum of the fit
envelope at 𝜏 = 0 instead of using the calibration points as was done in the main text.
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Figure 7.20: Hahn echo experiment on ASQ1 and ASQ2. a, b Measurement of 𝑇2-echo for ASQ1 and ASQ2,
respectively, with artificial detuning at the setpoints indicated in Fig. 2 of the main text. The pulse sequence is
shown in the inset of a. This is the same sequence as used in the Ramsey experiment, but with a 𝜋-pulse added
between the two 𝜋/2 pulses. In a, an artificial detuning corresponding to a period of 20 ns was set and in b it
was set to 6 ns. This data was taken using Gaussian pulses with FWHM of 4 ns and averaged over 3 ⋅105 shots for
each data point. The y-axis is normalized using the fit (for details, see the accompanying text in Section 7.7.4).

Coherence properties of the transmon
Although the transmon was used in this work to facilitate spin readout, we now demon-
strate its coherence properties. Figure 7.21 shows measurements of the transmon’s Rabi
oscillations, Ramsey coherence time and energy decay time.

The transmon 𝑇1 was found to be lower than that of previous implementations of a
transmon using gate-tunable nanowires (Larsen et al., 2015; Casparis et al., 2016; Luthi
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et al., 2018; Kringhøj et al., 2021; Pita-Vidal et al., 2023a; Bargerbos et al., 2023b), which
we suspect may be due to it being too strongly coupled to the flux-bias line or drive lines.
This in turn limits the ASQs 𝑇1 due to Purcell decay via the transmon. Given a trans-
mon 𝑇1 of 53.6 ns, we can estimate the limit set by Purcell decay for each ASQ. At their
setpoints in Fig. 2 in the main text, the detunings from the transmon were Δ1 = 1.7GHz
and Δ2 = 2.2GHz for ASQ1 and ASQ2, respectively. From measurements of the avoided
crossing between the ASQ spin-flip and transmon transitions under similar conditions,
we extract that the coupling strengths between transmon and ASQ, 𝑔𝑖 ∈, are in the range
50MHz to 100MHz for both qubits. These quantities allow us to estimate the Purcell limit
of 𝑇1 for both qubits. to be 14-56 µs for ASQ2 and 23-92 µs for ASQ1. The higher har-
monics of the transmon can reduce these lifetimes even more, especially for ASQ1 which
resides close to the first higher harmonic. However, we did not measure the lifetime of
that transition.
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Figure 7.21: Transmon coherence properties. a Rabi oscillations versus the full-width at half maximum
(FWHM) and amplitude of the Gaussian pulse. b Standard 𝑇 ∗2 measurement using a Ramsey sequence with
Gaussian pulses of FWHM = 5.5ns. The fit to Equation (7.25) (grey line) was performed here with 𝑑 = 0. c 𝑇1
measurement. For panels b and c the data was normalized using the fitted scaling constants of Equations (7.24)
and (7.25).

Scaling of extracted T2* with pulse length
Due to the short dephasing time of ASQs with respect to the pulse length, the pulse length
influences the observed life time of the ASQs when the pulses are (partly) overlapping (see
Figure 7.22). This is the case because, during the part of the decay time 𝜏 , the ASQ is being
driven. Therefore, care should be taken when pulses of length comparable to 𝑇 ∗2 are used.
In the main text we report values obtained using short 4 ns FWHM pulses.
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Figure 7.22: Effect of overlapping pulses on the extracted 𝑇 ∗ASQ2
2 for ASQ2. a Extracted 𝑇 ∗ASQ2

2 by per-
forming Ramsey experiments on ASQ2 as a function of the 𝜋/2-pulse FWHM. For each data point we reduced
the amplitude of the 𝜋/2-pulse by the same factor as we increased the pulse length to keep an approximate 𝜋/2-
pulse, using the calibration for the shortest pulse length. b-d Examples of the data with 𝑇 ∗ASQ2

2 fits indicated
with maroon markers in a. The artificial detuning period was varied with pulse length to make sure there were
enough points in each period and enough oscillations in the length of the traces.

Single-shot readout contrast of individual ASQs
In Figure 7.23 we show examples of single-shot readout outcomes. These are measured
at the setpoints used in the main text and at magnetic field settings of the main text for
ASQ1 and for ASQ2 we go to a higher magnetic field in order to reduce thermal popula-
tion of the excited spin state. We obtain an average signal-to-noise ratio for distinguishing
spin-up and spin-down, based on double Gaussian fits to the up and down initializations
SNR = |𝜇↑−𝜇↓|/(2𝜎)where 𝜇𝑖, 𝜎 are the mean and width of the fitted Gaussian correspond-
ing to state 𝑖, of 1.5 and 1.3 in a integration time of 1µs, 1.5µs for ASQ1 and ASQ2 respec-
tively. Note that we use the fit parameters of the initialization without a 𝜋-pulse here
as the pulse can cause excitations of other states, which we suspect to be the transmon
excited states, visible as an extra tail in the Gaussian corresponding to the excited spin
state in Figure 7.23b, c. Additionally, these values are strongly flux and magnetic field
dependent and thus could be optimized further in future works, as we did not perform an
exhaustive study here.

The SNR is a measurement of the pure readout contrast, rather than the more standard
readout fidelity 𝐹 = 1 − 𝑃(↑ | ↓)/2 − 𝑃(↓ | ↑)/2, where 𝑃(𝑎|𝑏) denotes the probability of
obtaining state 𝑎 when preparing state 𝑏. This is because 𝐹 includes the effects of thermal
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population and imperfect 𝜋-pulse, due to dephasing during the 𝜋-pulse and imperfect
calibrations. At the main text gate setpoint, and the magnetic field settings mentioned
above using the indicated threshold (black dashed line in Figure 7.23) we obtain 𝐹 = 0.75
and 𝐹 = 0.67 for ASQ1 and ASQ2 respectively.
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Figure 7.23: Individual qubit readout shots. a-cHistograms of single shot readout of ASQ1 near themaximum
of the transition (𝐼 = −2mA) at 𝐵𝑧 = 35mT (same setpoint as for the coherence measurements in the main text).
a, b Histogram of single shot measurements in the 𝐼 − 𝑄 plane after initializing in |↓1⟩ and |↑1⟩, respectively.
c Projection of the data in a and b along the 𝐼 -axis fitted with a double Gaussian function (grey line) for each
initialization. A 1000 ns readout pulse and a∼2 ns FWHM 𝜋-pulse were used. The black dashed line in c indicates
the optimal threshold to distinguish spin-up from spin-down states and is used to calculate the fidelity 𝐹 . d-f
Histograms of single-shot readout of ASQ2 at 𝐵𝑧 = 80mT for a 1500 ns-long readout pulse and a ∼ 4.7ns FWHM
𝜋-pulse, at 𝐵𝑦 = 5.96mT.
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7.7.5 Supporting data for the longitudinal coupling measurements
Fig. 7.24 shows data taken in the same way as in Fig. 3 of the main text and under the same
field, gate and flux conditions, but for varying frequency of the pump tone 𝑓p. We find
that, when 𝑓p matches the transition frequency of one of the qubits, and thus continuously
drives it to its excited state, the frequency of the other qubit splits in two, as discussed in
the main text (red lines in Fig. 7.24c and d). When the pump tone frequency instead does
notmatch the transition frequency of the first qubit, the frequency of the second qubit does
not split, as expected (black lines in Fig. 7.24c and d). This confirms that the frequency
splitting observed in the main text is indeed the result of both states of the other ASQ
being populated.

In Fig. 7.25 we perform a similar experiment for two fixed pump frequencies away from
the spin-flip transitions and as a function of the pump tone power. For Fig. 7.25a and b, the
pump tone drives the transmon transition and for Fig. 7.25c and d its frequency is set to a
value 𝑓p = 5.8GHz where no transition is driven. In neither of the two cases do we observe
a splitting of any of the two ASQ transitions at any power, as expected (the disappearance
of the signal at high drive powers was generally seen throughout the work independent
of drive frequency and corresponds to disappearance of the readout resonator resonance).
Note that the instability that can be observed in the measured transition frequencies was
also observed versus time and is thus unrelated to the presence of the pump tone.
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Figure 7.24: Third tone frequency dependence of the longitudinal coupling signal. a Spectroscopy of
ASQ2 as a function of the drive frequency 𝑓d while continuously applying a pump tone at varying frequency
𝑓p. The red line indicates the pump tone frequency used in Fig. 3b,d of the main text, 𝑓p = 𝑓1 −𝐽 . b Same as in
a but with the roles of ASQ1 and ASQ2 exchanged. In this case, the pump tone has a frequency close to that
of ASQ2, while performing spectroscopy of ASQ1. c and d show line-cuts of a and b, respectively, at two fixed
pump frequencies indicated in a and b with color matching lines.

7.7.6 Longitudinal coupling at different gate sepoint
In this section, we present longitudinal coupling measurements similar to those in the
main text, but now taken at a different gate configuration for both Andreev spin qubits.
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Figure 7.25: Qubit spectroscopy while driving at different frequencies with the third pump tone. a
Two-tone spectroscopy of ASQ1 while driving with the third pump tone at the transmon frequency 𝑓p = 𝑓t with
varying power. c Same as a but for 𝑓p = 5.8 GHz, not in resonance with any visible transition. b and d Same as
a and c but for ASQ2.

The new gate setpoints, at which the two qubits are set for all results discussed in this
section, are indicated in Tab. 7.4.

𝑉L𝑖 (mV) 𝑉P𝑖 (mV) 𝑉R𝑖 (mV) 𝐸𝐼J,𝑖/ℎ (GHz) 𝐸𝜎J,𝑖/ℎ (GHz)

ASQ1 61.0 61.0 376.0 1.79 0.66
ASQ2 53.0 0.0 -700.0 0.53 1.3

Table 7.4: ASQ1 and ASQ2 gate voltage set points and extracted model parameters from the measurements in
Fig. 7.26 .

We start by performing basic characterization measurements. The values of the spin-
independent, 𝐸𝐼J,𝑖, and spin-dependent, 𝐸𝜎J,𝑖, Josephson energies for both qubits are ex-
tracted from spin-flip and transmon spectroscopy measurements (see Fig. 7.26). Fig. 7.26a
and b show in-field spectroscopy of the ASQ1 and ASQ2 spin-flip transitions, respectively.
The values of 𝐸𝜎J,1 and 𝐸𝜎J,2 are extracted from fits to a skewed (Eq. 7.22) and a non-skewed
(Eq. 7.21) sinusoidal relation, respectively. Fig. 7.26c and d show transmon spectroscopy
measurements performed at zero magnetic field, each with only one of the two ASQs open
(ASQ1 in panel c and ASQ2 in panel d). The values of 𝐸𝐼J,𝑖 are estimated by fitting the mea-
sured transmon transitions with Eq. 7.16 at Φ𝑖 being integer multiples of Φ0/2.

Before investigating the longitudinal coupling strength at the new gate setpoints, we
characterize their magnetic field dependence. The characterization is done analogously
to that for the previous gate setpoint (discussed around Fig. 7.19) and can be found in
the data repository. The relevant extracted parameters are summarized in Tab. 7.5. By
performing spin-flip spectroscopy of each of the two qubits at different field directions,
we extract their 𝑔-factors on the chip plane, which range between 6 and 15 for ASQ1 and
between 9 and 15 for ASQ2. The values along the 𝐵𝑧 and 𝐵𝑦 directions are reported in
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Figure 7.26: Parameter estimation for both ASQs at the gate setpoints specified in Tab. 7.4. a Spin-
flip spectroscopy of ASQ1 versus Φ1, at 𝐵𝑧 = 20mT. The line shows a fit to a skewed sinusoidal dependence
(Eq. 7.22) from which we extract the value of 𝐸𝜎J,1/ℎ = 0.66GHz. b Spin-flip spectroscopy of ASQ2 versus Φ2,
at 𝐵𝑧 ∼ 25mT. The line shows a fit to a sinusoidal dependence (Eq. 7.21) from which we extract the value of
𝐸𝜎J,2/ℎ = 1.3GHz. c Transmon spectroscopy versus Φ1, at 𝐵𝑟 = 0mT with ASQ1 open to its setpoint (see Tab. 7.4)
and ASQ2 closed. The two transmon frequencies correspond to the two possible states of ASQ1. d Transmon
spectroscopy versus Φ2, at 𝐵𝑟 = 0mT with ASQ2 open to its setpoint (see Tab. 7.4) and ASQ1 closed. The two
transmon frequencies correspond to the two possible states of ASQ2. For all panels, 𝑉C = 1500mV. The lines
in c and d show the transmon transition spectrum given the spin-dependent part of the ASQ potentials found
in a, b and the measured value of 𝐸c (see Tab. 7.1). The lines in c and d are best fits to the measured data at Φ𝑖
being integer multiples of Φ0/2. From these transmon spectra, we estimate the values of the spin-independent
Josephson energies 𝐸𝐼J,1/ℎ = 1.79GHz and 𝐸𝐼J,2/ℎ = 0.53GHz.

Tab. 7.5. As before, we determine the spin-flip polarization direction for ASQ1 by finding
two perpendicular directions in the 𝑦 −𝑧 and 𝑥 −𝑧 planes. The resulting spin-polarization
direction is reported in Tab. 7.5 and is this time found to be approximately 1.85 degrees
away from the nanowire axis. For ASQ2 we did not determine the full spin-orbit direction
as we only data measured in the 𝑦 −𝑧 plane.

𝑔ASQ𝑖𝑧 𝑔ASQ𝑖𝑦 𝜃|| 𝜙|| 𝛼
ASQ1 14.9 6.7 1.85 64.4 1.36
ASQ2 14.1 - - - -

Table 7.5: Summary of 𝑔-factors and relevant angles for ASQ1 and ASQ2 at their alternative setpoint.
The zero-field spin-polarization direction (𝜃||, 𝜙|| in spherical coordinates) is calculated as the vector product of the
two perpendicular directions 𝜃𝑦𝑧,⟂ and 𝜃𝑥𝑧,⟂. 𝛼 denotes the angle between the field applied for the longitudinal
coupling measurements of Fig. 7.27 and the spin-polarization direction for each qubit.

Next, wemeasure the longitudinal coupling energy at the selected gate setpoints in the
same way as for Fig. 3 in the main text. Fig. 7.27a-d show a longitudinal coupling measure-
ment for fixed control parameters 𝐵𝑧 = 25mT, Φ1 = 0.1Φ0, Φ2 = 0.48Φ0 and 𝑉C = 180mV.
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Figure 7.27: Longitudinal coupling between the twoAndreev spin qubits at different gate setpoint. Data
measured and processed in the same way as for Figs. 3 and 4 in the main text, but now for alternative ASQ1 and
ASQ2 gate setpoints, reported in Tab. 7.4. a Spectroscopy of ASQ2 as a function of the drive frequency, 𝑓d and the
power of a pump tone resonant with ASQ1 at frequency 𝑓p = 𝑓1−𝐽 . b Linecuts of a at the powers indicated with
color-matching lines. The grey line shows the result of a double-Gaussian fit to the signal in red (see Sec. 7.7.2)
and the vertical lines indicate the best-fit values of the two Gaussian centers. c, d Similar to the situation of a,
b, but with the roles of ASQ1 and ASQ2 exchanged. In this case, the pump tone drives ASQ2 at a frequency
𝑓p = 𝑓2 −𝐽 , while performing spectroscopy of ASQ1. The longitudinal coupling strength, 𝐽 , extracted from the
fits is −110.0 ± 3.2 MHz and −107.0 ± 3.1 MHz, respectively for b and d. For a - d, Φ1 = 0.1Φ0. e Qubit-qubit
coupling strength, 𝐽 , as a function of flux in the loop for ASQ1, Φ1, see also inset. The values of 𝐽 are determined
from a double Gaussian fit to a spectroscopy trace of one ASQ taken while driving the other ASQ. The markers
and error bars represent the best-fit values and their estimated standard errors (one-sigma confidence intervals),
respectively. The purple line shows the expected dependence ℎ𝐽 (Φ1) = 𝐴 𝐿J,C𝐿ASQ

𝐿J,C+𝐿ASQ
𝐼1(Φ1)𝐼2/2 for the value of 𝐴

extracted from panel f. f Qubit-qubit coupling strength 𝐽 at fixed Φ1 = 1.1Φ0 and as a function of 𝐿J,C, which
is varied using the gate-voltage at the coupling junction (see inset). The continuous line shows a fit to the
dependence ℎ𝐽 (𝐿J,C) = 𝐴 𝐿J,C𝐿ASQ

𝐿J,C+𝐿ASQ
𝐼1𝐼2/2. We extract a value 𝐴 = 0.79±0.02 from this fit. The dashed line shows

the linear dependence ℎ𝐽 (𝐿J,C) = 𝐴𝐿J,C𝐼1𝐼2/2. The yellow marker in e and in f is a shared point between the two
panels. For all panels, 𝐵𝑧 = 25mT, 𝐵𝑦 = 0.25mT, 𝐵𝑥 = 0.0mT and Φ2 = 0.48Φ0.
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These parameters set 𝑓1 = 4.7GHz, 𝑓2 = 5.3GHz and 𝐿J,C = 22.3 nH. Similarly to Fig. 3 in
the main text, we find that the frequency of each of the qubits splits by 2𝐽 when the other
qubit is driven with a pump tone 𝑓p. From spectroscopy of ASQ2 while ASQ1 is driven
(Fig. 7.27a, b), we find 𝐽 = −110.0±3.2MHz, while from spectroscopy of ASQ1 while ASQ2
is driven (Fig. 7.27c, d), we find −107.0±3.1MHz. These two values are equal within their
one-sigma confidence intervals, consistent with the theory prediction.

Finally, we investigate the flux and 𝐿J,C dependence of the coupling strength, similarly
to how it is done in Fig. 4 of the main text. Fig. 7.27e, f show the tunability of 𝐽 at the
setpoint of Tab. 7.4. These measurements are taken at the same 𝐵𝑧 and Φ2 conditions as in
Fig. 7.27a-d, which result on a fixed supercurrent difference through ASQ2, 𝐼2 = −5.6 nA.
Panel e shows theΦ1 dependence of 𝐽 at 𝑉C = 180mV, which fixes 𝐿J,C = 22.3 nH. Similarly
to what was found in the main text, we observe that 𝐽 can take both positive and negative
values and that it follows a similar shape as that predicted by Eq. 7.5. We however note
that, especially around Φ1 = Φ0, the data deviates from the behavior predicted by Eq. 7.5.
This is due to the fact that this data is not taken for parameters consistent with the limit
𝐿J,C ≪ 𝐿𝜎J,𝑖,𝐿𝐼J,𝑖∀𝑖. As shown in Fig. 7.6, when this limit is not met Eq. 7.5 overestimates the
value of 𝐽 in the region of Φ1 ∼ Φ0.

Finally, Fig. 7.27f shows the evolution of 𝐽 with 𝐿J,C at a fixed Φ1 = 1.1Φ0 setpoint,
indicated with a yellow marker in Fig. 7.27e, which sets 𝐼1 = 1.7 nA. As expected, we
find an increase of the magnitude of 𝐽 with 𝐿J,C, which is proportional, with a scaling

factor 𝐴 = 0.79 ± 0.02, to Eq. 2 from the main text given 𝐿ASQ = Φ20
4𝜋2 /(𝐸𝐼J,1 cos(

2𝜋
Φ0
Φ1) +

𝐸𝐼J,2 cos( 2𝜋Φ0
Φ2)) = 176.9 nH.
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8
Conclusions and outlook

Forecasts may tell you a great deal about the forecaster; they tell you nothing about the
future.

Warren Buffet
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8.1 Flux control in a magnetic field
Key to the results was the development of flux control in field-compatible thin-film su-
perconducting circuits in the early stages of this thesis, on which we build from previous
works and experience in the group in Delft with thin-film sputtered NbTiN (Kroll et al.,
2018, 2019; Samkharadze et al., 2016; Pita-Vidal et al., 2020) and flux qubits (Plantenberg,
2007). As explained in Chapters 3 and 5, to mitigate flux noise in presence of large external
fields we use gradiometric loops that have effective sizes on the order of one µm2, hence
the flux period is on the order of mT.

The simple discovery of being able to apply an in-plane field for flux biasing, due to the
height difference between the nanowire and the rest of the loop circuit (see Figure 3.18),
was a large contributor to the ability of taking any of the flux-dependent data of all chap-
ters in this thesis (see Figure 5.9 for a one to one comparison). A big challenge in this
thesis, and potentially other experimental works that focus on flux-biased devices in sub-
stantial magnetic fields, has been to avoid flux jumps. Several iterations of test resonator
devices have struggled with these jumps. Althoughmore and denser flux trapping pinning
sites (small hole layers) mitigate most the jumps, applying an out-of-plane magnetic field
for flux biasing, as we originally envisioned, will likely always be accompanied with flux
jumps, due to the naturally large perpendicular area of superconducting material exposed
to the field. As described in Chapter 3, even with in-plane flux-biasing, superconducting
bond wires can create superconducting loops that cause flux jumps due to circulating su-
percurrent. One solution used was to apply a magnetic field of ∼ 10mT to turn the bond
wires normal and thus avoid these jumps. Another option is to align the bond wires with
the preferred field direction. However, sometimes it is not desirable to work in finite fields
alone, or other field directions are required. The use of dedicated flux-bias lines (described
in Chapters 6 and 7) is an alternative solution, as the field generated by the flux-line current
is local enough to cause much less jumps. However, this requires introducing additional
control lines and when changing global magnetic fields, even when aligned in plane, flux
jumps can still occur.

A potential alternative solution, that we did not explore, could be to make normal
metal airbridges, similar to conventional superconducting airbridges (Stavenga et al., 2023)
in an additional fabrication step. Airbridges normally consist of superconducting material,
which would allow for circulating supercurrents, and thus flux jumps. Replacing them by
normalmetal could prevent this. For coplanar waveguide resonators typically used in zero-
field circuit-QED experiments, this could reduce the internal quality factor. But, since we
in general use lumped element resonators, the normal-metal airbridges would only go over
transmission lines and gate-lines, for which the added losses should not matter too much¹.
If the bridges are stable enough to allow subsequent processing, they preferably should
be placed before the nanowire placement to avoid temperature restrictions of sensitive
material interfaces like in Chapter 6.

¹It might cost SNR for the signal traveling to the amplification chain, but generally the RF-lines on printed circuit
boards are also made of normal metal.
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8.2 Physical mechanisms responsible for dynamical par-
ity polarization

In Chapter 4 we found that it was possible to change the fermion parity of a Josephson
junction by driving transitions between ABS. Although this is expected at frequencies on
the order of the gap (Olivares et al., 2014; Bretheau et al., 2013b), we found this could also
occur at driving frequencies much lower than the gap. Furthermore, we found the result-
ing polarization after driving a transition from an initial state in a certain parity sector, to
end up being opposite to the initial state parity. In Chapter 4 we modeled the work with
a phenomenological rate model, that could help with determining what process is respon-
sible for the polarization, but has no assumption on what microscopic process is taking
place. After (pre-)publication of Chapter 4, two interesting theoretical works (Ackermann
et al., 2023; Kurilovich et al., 2023) were published that point to the need for interactions to
be present for the polarization to occur. These works elucidated the possible microscopic
process that could take place in the experiment, which we will summarize below.

Both of these works focus on the case of having at least two Andreev bound state
manifolds in the junction, as was the case in Chapter 4. In Ackermann et al. (2023), the
even to odd polarization is shown to occur if, after a microwave drive excites a mixed pair
transition from the ground state, one of the excited Andreev levels is close to the supercon-
ducting gap edge on the order of the resonator frequency (or another circuit mode), such
that there is a finite escape rate to the continuum when that state is excited. Similarly,
odd to even polarization can occur if from one of the odd parity states of the lower energy
Andreev manifold, a microwave pulse excites that quasiparticle to the second manifold
and subsequently it escapes via the same mechanism as for even to odd polarization.

Although Ackermann et al. (2023) did not model the effect of electron-electron inter-
actions, they did make a key observation that the parity polarization effects are mitigated
if there are no electron-electron interactions. Kurilovich et al. (2023) worked this out in
detail. Focusing on the case of even to odd polarization, if there is no interaction present
in the junction, the microwave driven process of breaking a Cooper pair and exciting
one quasiparticle to a each of the manifolds can be repeated once one of the two quasi-
particles has left one of the manifolds. This results in three quasiparticles present in the
junction, one in the higher manifold, which can be excited out, and two in the lowest man-
ifold, which can relax quickly to the ground state as there is no change of parity required.
Electron-electron interaction breaks this degeneracy, and thus is a requirement for this
process to occur. From the spin-splitting of the interband transitions of Chapter 4, it is
clear that spin-orbit coupling is present, which could also break this degeneracy. How-
ever, as the authors of Kurilovich et al. (2023) point out, this is not true for 𝜑 = 0,𝜋 , where
the data still shows parity polarization.

Thus, the above discussion serves as an independent argument for the requirement
of electron-electron interactions in the modeling of the proximitized InAs/Al Josephson
junction, as pointed out in Chapter 5 for other reasons. In future work it would be inter-
esting to measure the rates of polarization together with coherence decay rates and Rabi
rates, in order to allow for a more quantitative comparison of the various polarization
mechanisms.
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8.3 Spectroscopy of Andreev states in nanowire Joseph-
son junctions

In this thesis, we investigated the properties of Andreev bound states in a magnetic field
using circuit-QED techniques. Adding to a growing body of works utilzing circuit-QED
techniques to probe Andreev states (Janvier et al., 2015; Hays et al., 2018, 2020; Tosi et al.,
2019; Hays et al., 2021; Metzger et al., 2021; Matute-Cañadas et al., 2022; Chidambaram
et al., 2022; Fatemi et al., 2022; Bargerbos et al., 2023a; Pita-Vidal et al., 2023a; Hinderling
et al., 2023) we were able to probe Andreev bound states and their spin with sub-µeV
resolution. This allowed for high-resolution investigation into the physics that arises in
the combination of superconductivity, spin-orbit coupling, magnetic fields and electron-
electron interactions. Additionally, the experiments opened up the path to a field of “su-
perconducting spin qubits” (Hays et al. (2021); Pita-Vidal et al. (2023a), Chapter 7), where
the properties of superconducting circuits and spin qubits are combined, and could opti-
mistically yield the best of both worlds.

In Chapter 5 we performed microwave spectroscopy of Andreev bound states in an
InAs/Al nanowire Josephson junction in a magnetic field. This Chapter starts with repro-
ducing signatures of pair transitions and of spin-orbit splitting in Andreev states as seen
in earlier works using similar setups (Janvier et al., 2015; Hays et al., 2018; Tosi et al., 2019;
Hays et al., 2020). We then moved on to apply a magnetic field and observed several new
features related to the spin of Andreev states.

8.3.1 Detecting the doublet transition
A useful observation in this chapter for the following chapters was the direct spin-flip
transition in the lowest Andreev manifold (doublet) 𝐷𝑎 ∶ |↑⟩ ↔ |↓⟩. Although in Hays et al.
(2021); Metzger et al. (2021) the ability to manipulate the Andreev spin with microwave
control signals was by then already demonstrated, for us the observation of 𝐷𝑎 together
with the parallel development of transmons as a sensor for quantum dot based junctions
by my colleagues (Bargerbos et al., 2022, 2023a), kicked off the process of working towards
a directly driven spin qubit (Pita-Vidal et al., 2023a) and two of them in Chapter 7.

8.3.2 Detecting singlet and triplet transitions
The gist of the work focuses on the observation of pair transitions into final states of
the lowest two manifolds that have a large parallel spin-component i.e. 𝑇± ∶ |𝑔⟩ ↔ |𝑇±⟩.
These transitions are enabled by the spin-orbit coupling and the Zeeman effect, and their
spinful nature is confirmed by the linear dispersion with magnetic field. While we were
attempting to explain the data using non-interacting tight-binding simulations, twoworks
came out by Matute-Cañadas et al. (2022) and Fatemi et al. (2022) that detailed the need for
including interactions to explain the spectra, so we collaborated with some of the authors
of Matute-Cañadas et al. (2022), which had seen similar transitions at zero magnetic field,
and they obtained the theoretical results with interactions shown in Chapter 6. Finally we
could understand most of the important transitions that we observed and their ordering!

An interesting avenue for future research would be to measure the coherence time
and energy lifetime of the singlet and triplet Andreev pair excitations. As suggested
by Padurariu and Nazarov (2012) spin blockade could prevent relaxation between singlet
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and triplet states. This effect is mitigated by spin-orbit coupling, as it hybridizes the singlet
and triplet states and breaks spin rotation symmetry. This coupling was also seen directly
in the data of Figure 5.3. Nevertheless, this opens up the way to a superconducting equiv-
alent of singlet-triplet proposals for spins in semiconducting quantum dots (Burkard et al.,
2023).

The observed hybridization of triplet and singlet Andreev transitions at finitemagnetic
field is consistent with the superconducting pairing having a triplet component (Lutchyn
et al., 2010; Oreg et al., 2010). However, we want to emphasize that we could only prove
that this pairing is locally present in the junction, due to the local nature of the An-
dreev bound states that we probe. Additionally, the high density of states and lack of
gap reopening (see Figure 5.18) demonstrate that in the device measured in this thesis,
there was no use for an attempt at detecting signatures of the associated bulk topologi-
cal phases with Majorana zero modes (Kitaev, 2001; Ivanov, 2001; Read and Green, 2000).
This is consistent with current understanding of the requirements on disorder in these
nanowires (Das Sarma and Pan, 2021).

8.3.3 Combining DC and RF access
In essence Chapter 5 contains an extensive set of microwave spectroscopy measurements
of a ∼ 150nm InAs/Al nanowire Josephson junction versus flux, gate voltage and magnetic
field. In the modeling of the data, there are many parameters to be estimated that vary
per device and per magnetic field or gate setpoint. In Figure 8.1 we propose a setup for
having an in-situ DC access (Kringhøj et al., 2020) to the nanowire Josephson junction by
introducing additional junctions as field-effect transistors (FET). These FETs can serve as
a switch between RF spectroscopy or time domain access and DC access. Kringhøj et al.
(2020) showed a similar setup for a nanowire-based gatemon and demonstrated coherence
times of 6µs. The DC access could provide valuable additional information about the
device under test using transport measurements and aid complex device tune-up. This
could prove useful in the future when replacing the single junction with more complex
systems such as those discussed in Section 8.4.
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Figure 8.1: Schematic for adding DC access to ABS spectroscopy experiments based on Kringhøj et al.
(2020). This yields an equivalent circuit as shown in Figure 5.1 from an RF perspective. The shunt inductors
are replaced by nanowire Josephson junctions field effect transistors (FETs) (blue boxes) and can be switched off
to force all current from the DC bias to go through the nanowire. An additional FET is introduced before the
nanowire SQUID to allow turning off connection to the DC access. Symbols indicate the various components.

8.4 Shadow-wall lithography with circuit-QED
In Chapter 6 we demonstrated shadow-wall lithography techniques on a superconducting
NbTiN circuit to study Andreev bound states in gate-tunable InSb-Al hybrid Josephson
junctions. Qualitatively, compared to InAs/Al devices of similar junction length shown in
this thesis and theses from other groups (Hays, 2021; Metzger, 2022), the density of states
was lower, consistent with a lower effective mass and longer elastic scattering length in
the InSb. However, the linewidth of observed transitions was consistently higher over sev-
eral devices, reaching a minimum of ∼ 150MHz for the pair transition, appearing limited
by charge noise. Thus for this material combination to become used in coherent applica-
tions, more work is needed to study the origin of charge noise in these devices. On the
other hand, 150MHz corresponds to an energy resolution less than 1 µeV. This is an or-
der of magnitude lower than achievable with tunneling spectroscopy at 50mK (∼ 15µeV).
Thus, as a spectroscopic tool, the results of Chapter 6 could prove beneficial for studying
condensed matter physics with high resolution, and serve as a first step to combine super-
conducting circuits with more advanced materials and geometries. We now provide some
suggestions for those combinations.

A first example, that should be within reach with the demonstrated fabrication tech-
niques, is a device with two Josephson junctions separated by a section of grounded super-
conductor on the order of the coherence length 𝜉 (Figure 8.2a). This geometry has been
proposed as a way to create Andreev molecules, where the wavefunctions of two Andreev
bound states overlap to form superconducting molecular states (Su et al., 2017; Pillet et al.,
2019; Kornich et al., 2020; Matsuo et al., 2023). As typically 𝜉 ∼ 100nm for the Al shell (see
Table 2.1), shadow wall lithography is especially suited for this purpose, as it allows for
grounding small sections of the wire (Wang et al., 2022). A schematic on how to embed
such a molecule in the rf-SQUID loop of the circuit of Chapter 6 to be measured using mi-
crowave spectroscopy in practise, is shown in Figure 8.2c. An extension of this geometry
would be to make quantum dot Josephson junctions tuned to the odd-parity ground state
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(see Figure 8.2b) similar to Chapter 7 and attempt to couple two Andreev spins directly
via wavefunction overlap (Spethmann et al., 2022).

A second example is the embedding of artificial Kitaev chains in such a circuit. This
has recently has been experimentally demonstrated in our group as a promising route
to create well-controlled Majorana zero modes with less stringent requirements on the
disorder (Leijnse and Flensberg, 2012; Dvir et al., 2023; Bordin et al., 2023). It would be
interesting to investigate the possibility of detecting signatures of the fractional Joseph-
son effect (Kitaev, 2001; Lutchyn et al., 2010; Väyrynen et al., 2015; van Heck et al., 2017;
Peng et al., 2016; Cayao et al., 2018) in future versions of such devices in a circuit-QED
architecture. For example, a recent proposal by Pino et al. (2023) suggests it is possible
to measure the Majorana polarization by embedding a four site kitaev chain in a trans-
mon SQUID-loop, which, would require combining the developments of using a transmon
as a sensor (Chapter 7, Bargerbos et al. (2022, 2023a); Pita-Vidal et al. (2023a)) and the
fabrication methods of Chapter 6.

x x

NbTiN circuit layer
NbTiN-Al contact

InSb nanowire
Shadowed Al 
Shadow wall

(a) (b)

(c)
To RF circuit

Figure 8.2: Example of an advanced geometry using shadow wall lithography: Andreev molecule. (a)
SQUID loop schematic for coupling two even parity Andreev many body states via wavefunction overlap. The
bound states reside in different Josephson junctions and are separated by a grounded section of superconductor
on the order of the coherence length 𝜉 . (b) Equivalent schematic for coupling two Andreev spin qubits via
wavefunction overlap. (c) Schematic for a device implementation of (a), compatible with fabrication techniques
demonstrated in Chapter 6. The phase difference over the left and right junction can be controlled with Φ1,Φ2
respectively, and the density tuned using electrostatic gates voltage biased with 𝑉𝐿, 𝑉𝑅 . The inductance shown
in (a,b) can be made by the kinetic inductance of the NbTiN base layer, similar to Chapter 6. For (b), if a larger
inductance is needed, the inductor could be replaced with a nanowire junction similar to Chapter 7.
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8.5 Coupled Andreev spin qubits
In Chapter 7, building on the demonstration of a single Andreev spin qubit (ASQ) in Hays
(2021); Pita-Vidal et al. (2023a), we demonstrated the first two-qubit device with Andreev
spin-qubits. This device was designed following a theoretical proposal by Padurariu and
Nazarov (2010) and showed strong longitudinal spin-spin coupling over a distance of a few
tens of micrometers. The demonstration of spin-spin coupling (178MHz) over a distance
much larger than the size of their individual wavefunctions, has been a long standing goal
in the spin-qubit community and could pave theway to larger connected qubit arrays (Van-
dersypen and Eriksson, 2019).

An immediate further step using the device of Chapter 7 would be to demonstrate the
effect of longitudinal coupling coherently. For example, a controlled 𝑍 gate can be done
by starting with one ASQ biased with 𝜙 = 0,𝜋 , i.e. the “OFF” state, and one qubit with
𝜙 = ±𝜋/2, i.e. the “ON” state (see also Figure 8.3a). To then perform the gate, a flux
pulse should be sent to the “OFF” qubit, turning on the coupling for a time 𝜏flux followed
by single qubit phase rotations. Given the measured coherence times in Chapter 7, we
estimated the limit on average gate fidelity to be 85% for 𝜏flux = 1.4ns. However, this
would in practise require applying very short flux pulses and could suffer from flux tails
and distortions² Rol et al. (2019, 2020). An alternative way to demonstrate two-qubit logic
without flux pulses making use of the longitudinal coupling, is to drive frequency selective
Rabi oscillations (Hendrickx et al., 2020; Plantenberg et al., 2007). This would require both
qubits to be set to the “ON” point during the procedure, i.e. 𝜙𝑖 = 𝜋/2 for ASQi. A drive
at frequency 𝑓1 − 𝐽 causes a controlled Rabi oscillation to occur from |↓1, ↓2⟩ → |↑1, ↓2⟩.
Observing a lack of oscillations when starting in |↓1, ↑2⟩ versus starting in |↓1, ↓2⟩ then
demonstrates the possibility of performing conditional qubit rotations. This also serves as
a calibration for a CNOT gate if the pulse amplitude is taken to be so that the oscillation
reaches its peak, however during the “ON”-“ON” state, both qubits will continuously have
strong ZZ interaction. Note that in the device of Chapter 7, readout contrast is maximal at
𝜙 = 0,𝜋 and zero at 𝜙 = 𝜋/2. Thus, if flux pulsing is not available, the experiment should
be performed as far away from 𝜙 = 𝜋/2 as possible while still retaining selectivity, or use
an alternative readout design (Pita-Vidal et al., 2024).

Other types of operations might be possible if the coupling is not purely longitudi-
nal. From the minimal model of the quantum dot (Equation (2.29), Padurariu and Nazarov
(2010)), one can see that if the two quantum dots have a different effective spin-orbit di-
rection, a magnetic field yields a transverse component to the coupling. Experimentally
this should be observable as an avoided crossing between the two spin-qubits when their
resonance frequency approaches each other, and could be explored in future work.

For future parallel operation of multiple ASQs, described in Section 8.5.1, it would be
good to experimentally characterize the residual coupling strength in the “OFF” setting.
Residual ZZ interaction acts as an always on entangling rate and can limit simultaneous
qubit control fidelity. For superconducting qubits these interactions have reached values
below 10kHz (Ding et al., 2023; Marxer et al., 2022; Yan et al., 2018; AI, 2019). Measuring
this residual coupling accurately, for example by comparing Ramsey experiments on one
qubit conditioned on the state of the other to extract the qubit frequency, could yield

²Note that pulses this short would additionally be limited by the bandwidth of our arbitrary waveform generators



8.5 Coupled Andreev spin qubits

8

229

information on the limits that can be achieved.

8.5.1 Scaling up Andreev spin qubit systems
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Figure 8.3: Schematic for creating all-to-all connected Andreev spin qubits with tunable coupling. (a)
Coupling strength between ASQi and ASQj as a function of phase drop over ASQi with the setpoints of coupling
𝐽𝑖𝑗 being positive (ON+), negative (ON-) and 0 (OFF) indicated using the circuit of (b). Parameters are the same as
in Figure 7.5 for 𝐿𝐽 = 24nH. (b) Circuit and flux-bias settings for a six-ASQ array that turn on coupling between
two out six ASQs. (c) flux-bias setting that turns off coupling between all ASQs. (d) Flux settings that turn on
coupling between all ASQs. (e) Schematic indicating the all to all ASQ coupling created by (d) for 𝑛 = 6.

For creating larger arrays of Andreev spin qubits, one option we envision is a direct
galvanically connected grid of ASQ squid loops, soon to be proposed in (Pita-Vidal et al.,
2024), which we summarize here. The main concept is displayed in Figure 8.3. This ar-
chitecture is a direct extension of the two spin-qubit coupling proposed in Padurariu and
Nazarov (2010) and demonstrated in Chapter 7. By adding𝑁 −2 additional loop arms with
an ASQ to the two-qubit circuit of Figure 7.1, the coupled two-qubit Hamiltonian of Equa-
tion (7.1) can be extended to an n-qubit version 𝐻 = ∑𝑁

𝑖 ℎ̄𝜔𝑖𝜎 𝑧𝑖 /2+∑𝑁
𝑗<𝑖 ℎ𝐽𝑖𝑗𝜎 𝑧𝑖 𝜎 𝑧𝑗 /2. The

individual phase drop over each ASQ 𝜙𝑖 = ∑𝑖
𝑗=0 2𝜋Φ𝑗/Φ0 can be tuned by setting the ap-

propriate fluxes, relying on the fact that the phase drop over the coupling junction 𝐸𝐽 can
be fixed to 0, if we keep 𝐸𝐽 larger than the spin-dependent Josephson energies of the ASQs.
In Figure 7.3, Equation (7.2) we demonstrated that the coupling between two spin-qubits
𝑖 and 𝑗, 𝐽𝑖𝑗 can be turned to a maximally positive value, negative value or off by turning
the phase drop over ASQ1 to 𝜙1 = −𝜋/2, {0,𝜋},𝜋/2 respectively. At these points the super-
current is either maximally spin-dependent (on), or independent (off). The setpoints are
indicated in Figure 8.3a. By a judicious choice of the fluxes in the loops (Figure 8.3b,c), the
phase drops over each ASQ can thus be tuned either to set the qubit to couple with others,
i.e. “ON”, or remain uncoupled, i.e. “OFF”. A transmon based readout architecture similar
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to that used in Chapter 7 can be utilized to readout the individual qubits sequentially in
the “OFF” state, which is maximally (in)sensitive to the qubit states in the “OFF” (“ON”)
state. This allows for tunable all-to-all connectivity (Figure 8.3d,e), with 𝑛 − 1 coupling
parameters that can be set positive, zero or negative. The larger connectivity has recently
gained popularity as a way to reduce the overhead, i.e. the required number of qubits
per logical qubit, and fault-tolerant threshold for quantum error correcting codes based
on low-density parity-checks (Bravyi et al., 2024) as opposed to codes based on a square
topology (Bravyi and Kitaev, 1998; Fowler et al., 2012). A second natural application is
that of quantum simulation, as the coupled ASQ Hamiltonian represents an Ising spin
glass model with a magnetic field (Barahona, 1982; Lechner et al., 2015; Kim et al., 2023).

Photon-mediated spin-spin coupling
As the distance of this coupling could be limited by maximum loop-sizes and the accompa-
nying flux noise it could be worthwile to pursue photon mediated superconducting spin-
spin interaction.

A worthy mention is a recent effort from a neighbouring pure semiconducting spin-
qubit group in Delft using spin-qubits defined in double quantum dots in a 28Si/SiGe het-
erostructure (Harvey-Collard et al., 2022; Dijkema et al., 2023). Here the double quantum
dot in combination with a magnetic field gradient introduced by a cobalt micromagnet
allows coupling spin to charge (the location of the trapped electron). Hence, via a high-
impedance resonator, which has large voltage zero-point fluctuations, a large coupling
strength can be achieved between the electron charge and resonator photons, which sub-
sequently mediate virtual charge coupling between the two charge qubits and finally via
spin-to charge conversion their distant spin-spin coupling of ∼ 17MHz.

Due to their spin-to-current coupling, Andreev spin qubits naturally couple well in-
ductively (much stronger than pure spins), so a similar resonator mediated coupling as
shown in Harvey-Collard et al. (2022), but inductive, can be imagined to couple spins
over larger distances on chip than a direct galvanic connection would allow. In fact, a
recent experiment managed to couple two Andreev qubits using a resonator galvanically
shunted with nanowire SQUIDs to mediate the coupling over a distance of 6mm (Cheung
et al., 2023). Here they achieved a qubit-photon coupling of ∼ 100MHz. For Andreev spin
qubits, the photon-mediated coupling could serve as long-distance couplers between unit
cells discussed in Figure 8.3.

8.6 Exploring Andreev states in alternative hybrid mate-
rial platforms

In this thesis, we have investigated hybrid InAs/Al and InSb/Al nanowires. The spin-
coherence in these systems is arguably low and is suspected to be limited by dephasing
due to hyperfine interactions with nuclear spins of indium or arsenic in the semiconduc-
tor (Nadj-Perge et al. (2010); van den Berg et al. (2013); Hays (2021); Pita-Vidal et al. (2023a)).
I refer the interested reader to an excellent overview of the possible causes of noise pre-
sented by my colleague in her thesis Pita-Vidal (2023).

Trying out semiconducting materials with weak or purifiable nuclear spin baths could
potentially improve the spin-coherence of ABS. Two candidates jump out: proximitized
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Ge/SiGe (Hendrickx et al., 2018; Tosato et al., 2023; Valentini et al., 2023) and stacks of
2-dimensional materials with graphene, where sizable Rashba spin-orbit coupling has
been demonstrated (Zihlmann et al., 2018; Wakamura et al., 2022), few-electron quantum
dots have been created with ∼ 50ms spin relaxation time (Eich et al., 2018; Gächter et al.,
2022; Banszerus et al., 2023) and high-transparancy superconducting contacts have been
made (Bretheau et al., 2017; Calado et al., 2015; Ben Shalom et al., 2016; Portolés et al.,
2022). New materials could also aid the investigation of the effect of other types of spin-
orbit coupling than linear Rashba spin-orbit coupling seen in (Tosi et al. (2019); Hays et al.
(2020), Chapters 4 and 6) on the spin-splitting of ABS, such as the intrinsic Kane-Mele
type present in graphene or qubic terms in Ge hole gases (Luethi et al., 2023b,a). A first
challenge for these new platforms would be to demonstrate the observation of isolated
Andreev bound states as has been done in InAs and InSb based nanowire systems.
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A
2-Dimensional tight-binding

simulation code and notes

The tight-binding simulations performed in Chapters 2 and 5 can be reproduced using the
code from https://www.doi.org/10.4121/20311137. There, under the folder kwant_simulations
you can find the simulated datasets for Chapter 5¹ as well as a general template to perform
the simulations. This simulation code is based on Laeven et al. (2020) and slightly adapted.
Some notable adaptions are:

• We added matrix element calculation using the native kwant (Groth et al., 2014)
current operator.

• We added the calculation of microwave absorption spectra following van Heck et al.
(2017), via the function add_spectrum_to_dataset, in the notebook that is runnable
after the simulation is done and uses the current matrix elements.

• In the file simulation_template.ipynb you can find a basic template of code to gener-
ate a kwant system, and classes to perform 1-dimensional sweeps versus a parameter
and also perform 2-dimensional sweeps versus two parameters. The sweep classes
are written following the methods presented in Section 3.3.4, such that after a sweep,
the used simulation parameters and data is saved in an xarray (“.nc”) file, to allow
easy inspection and separate plotting and analysis from the simulations.

¹The datasets from Chapter 2 are available on request.

https://www.doi.org/10.4121/20311137
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