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Abstract: This study presents insights into how existing faults in pipe systems, like leaks and air
pockets, modify transient pressure waves in terms of shape, damping, and phase shift, based on
experimental tests conducted at the Hydraulics Laboratory of the Instituto Superior Técnico. Leaks
have a major effect on pressure wave damping and shape that increases with the leak size; however,
they also preserve the wave phase. The air pocket effect strongly depends on the air pocket size and
location, tending to increase wave damping and delay. Also, there is an air pocket volume that leads
to the maximum pressures being higher than Joukowsky’s overpressure.

Keywords: hydraulic transients; pressurized pipe systems; leaks; air pockets

1. Introduction

Water distribution networks inevitably undergo a degradation process, leading to the
occurrence of faults, such as water leaks and pipe blockages [1]. These considerably change
the pressure wave signal upon a transient event and possibly lead to a pipe burst depending
on the severity of the event. The effect of leaks has been analyzed in the framework of
inverse transient analysis to detect leaks in pipe systems by Covas [2]. Leaks in pipes
have been extensively researched over the past decades due to their impact on water
losses as well as on energy losses in water treatment and pumping. Studies have been
developed with field data to detect leaks in systems with signal analysis with promising
results. However, effective methods to reliably detect different types of pipe faults, like
leaks, blockages, and air pockets, based on the analysis of transient pressure wave signals
are still under investigation. Pipe blockages have been more recently studied with a
few contributions, but their consequences are still uncertain given the reflections of the
pressure wave over time due to the physical obstruction of the blockage. Other faults are
air pockets, which can be within the flow (‘in-line’) or can remain in dead-ends and devices
in the network (‘off-line’), causing pressure variations higher than initially expected [3,4].
The existence of air in the pipes is inevitable, but its amount must be controlled using
air-release devices.

Yet, most studies use flow time series to detect anomalous events in water distribution
networks, e.g., Loureiro et al. [5]. The current paper focuses on the analysis and discussion
of the effect of leaks and air pockets in transient pressure wave signals. This study analyses
the transient pressure features in simple pipe setups considering different types, sizes, and
locations of faults.
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2. Experimental Facilities

Two experimental pipe rigs assembled at the Laboratory of Hydraulics, Water Re-
sources and Environment of the Instituto Superior Técnico in Lisbon were used to conduct
this research. Both rigs have similar reservoir–pipe–valve configurations and include cop-
per pipes with an inner diameter of 20 mm and a wall thickness of 1 mm. The difference in
the pipe facilities is that one is a 15 m straight and horizontal pipe, whereas the other is a
rising pipe-coil with 100 m, which can have some ‘breathing effect’ [6]. At the upstream
end of both systems, there is a centrifugal pump and a tank with a capacity of 0.1 m3.
Immediately downstream of the pumps, a hydropneumatic vessel with 60 L is installed
to simulate a reservoir and to stabilize the inlet pressures. At the downstream end of the
system, a pneumatically actuated valve is installed to generate transient events, and the
flow rate is controlled with a manual valve. Both rigs are equipped with electromagnetic
flowmeters with a maximum flow rate of 2000 L.h−1 with a full-scale accuracy of 0.25% and
pressure transducers with a measuring range of 0–25 bar absolute pressures and a full-scale
accuracy of 0.5%. The flowmeters are only used to determine the initial steady-state flow
rate, and pressure measurements are taken with a frequency of 4 kHz, high enough to
describe analyzed transient phenomena [7].

3. Effect of Leaks in the Pressure Signal

Experimental tests with leaks were carried out in the rising coiled facility, with the leak
being installed roughly at the mid-length of the system, at 54 m from the downstream fast
closure valve. Leaks were modelled by having different-sized orifices in the side discharge
valve with diameters d = 0.0 (no leak), 1.0, 2.0, and 3.0 mm. The leak flow rate increases with
the orifice diameter, and, since the upstream pressure is relatively constant, the pressure
variations for the leak can be considered constant throughout the running steady-state flow
rates. Thus, the leak flow rate was measured for each orifice size: QF = 0.015, 0.062, and
0.139 L.s−1. Each of these orifices was tested for a wide range of initial steady-state flow
rates at the upstream end, Q0 = 50, 130, 210, 290, and 370 L.h−1.

The pressure signal for Q0 = 210 L.h−1 is presented in Figure 1, where ∆H is the pres-
sure difference between the measured and the steady state pressure and ∆HJ is the pressure
variation estimated by the Joukowsky formulation, ∆HJ = aU0/g, being a the pressure
wave celerity, U0 is the steady state mean velocity in the pipe, and g is the gravitational
acceleration. The observed pressure drop due to the leak considerably increases as the leak
flow rate increases, to the point where large pressure variations are only observed during
the first three periods of time. After that time, the pressure variations are relatively small
(+/− 15% ∆HJ), being the remaining variations due to the fluid–structure interaction of the
pipe coil.
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4. Effect of Air Pockets in the Pressure Signal

The straight pipe is used to assess the influence of the entrapped air pocket in the
pressure signal. An acrylic device has been installed ‘off-line’ in the pipe to simulate an
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entrapped air pocket. The tested flow rates vary between 50 and 450 L.h−1, being the tested
air pocket sizes presented in Table 1. Two experimental sets of tests were carried out, the
first focusing on how the air pocket evolves regarding pressure drop, pressure amplitude,
wave damping, and wave phase shift, and the second focusing on the influence of the
air pocket position in the previously identified features. The air pocket is positioned, X,
at a length of 7.855 m (X/L = 52.4%) from the downstream valve for Set I, whereas it is
installed at 2.04 m (LOC1, X/L = 13.6%), 7.855 (LOC2, X/L = 52.4%), and 10.265 m (LOC3,
X/L = 68.4%) from the downstream valve for Set II. Increasing air pocket volumes in the
same location generates higher pressure drops, increases the wave damping, promotes
energy dissipation in the air pocket depending on whether the air-water interface remains
intact or not, and further increases the wave shift, reducing the pressure wave frequency.
The pressure amplitude is shown to increase from no air volume to a volume Vair/Vwater
(%) ratio of 0.003%, decreasing from that point on for the tested system [8].

Table 1. Initial air pocket volumes for the experimental tests (x = conducted test).

Test Type Air Cavity Height
(mm)

Air Volume
(mm3) Vair/Vwater (%) Set I Set II

AP0 0 0 0.0000 x x
AP1 1 20 0.0005 x
AP3 3 59 0.0014 x x
AP6 6 118 0.0028 x x
AP9 9 177 0.0042 x x
AP12 12 236 0.0056 x x
AP15 15 295 0.0070 x x
AP21 21 412 0.0098 x x

Tests with the different air pocket locations and sizes show the closer the entrapped air
pocket is to the closing valve, the less accentuated the pressure drop in the first period (cf.
Figure 2). The pressure wave reaches the air pocket sooner, allowing the air to accumulate
some of the energy travelling in the system, that will not travel in the form of momentum
in the pipe. The flow rate has some influence on the pressure, drop since the air-water
interface remains stable when the pressure variation is smaller. The pressure variations
were previously observed to increase up to 25% of the Joukowsky estimate. When the air
pocket moves towards the upstream tank, the pressure variations increase from 25% to
up to 45% for the largest air pockets and lower air pockets. This occurs because the pipe
length between the air pocket and the downstream valve is pressurizing as the pressure
wave has not reached the tank yet. The pressure wave shift also occurs as the air volume
in the pipe increases, but the shift is more accentuated when the air pocket is closer to the
closing valve than to the upstream tank.
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Figure 2. Non-dimensional values for different volume ratios, flow rates and air pocket locations:
(a) initial pressure drop and (b) maximum overpressures.
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5. Conclusions

Several transient tests were carried out for different combinations of air pocket and
leak locations, sizes, and initial flow rates. Collected transient pressure-head data were
analyzed and the effect of these anomalies on the transient pressure signal was discussed
and correlated with their location and size. These analyses are useful to understand
the effect of the initial flow rates and the initial anomaly sizes and locations in transient
pressure features, such as the maximum and minimum pressure variations, the wave
damping, and the wave phase shift. This study is a step forward in understanding the
underlying phenomena and an essential step toward the identification and characterization
of anomalies in water pipes.
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