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Lay summary

Phylogenetics is the study of how species are related through evolution. These relationships are traditionally
represented using branching diagrams called phylogenetic trees. However, certain evolutionary processes,
such as hybridization or horizontal gene transfer, cannot be represented by trees alone. Therefore, phyloge-
netic networks - which allow additional connections between branches - are used to capture more complex
evolutionary histories

As phylogenetic networks become more complex, it becomes harder to determine whether a particular
network can be uniquely reconstructed from observed DNA sequence data. This leads to the concept of
identifiability. A network is said to be identifiable if, in theory, it can be uniquely determined from the data
it generates. If two different networks produce the same data under a given evolutionary model, they are not
identifiable from that data. Identifiability is essential for developing reconstruction methods that aim to infer
evolutionary relationships from DNA.

This thesis investigates a specific class of phylogenetic networks, known as trinets. A trinet is a small sub-
network that describes the evolutionary relationship between just three species. Trinets are useful building
blocks for understanding and reconstructing larger phylogenetic networks. The main question studied in
this work is whether these trinets are identifiable. We investigate whether specific types of trinets can be dis-
tinguished from simpler tree structures, using a mathematical approach based on phylogenetic invariants.
These are special algebraic expressions that relate to the probabilities of observing certain DNA patterns. By
evaluating such invariants, we may be able to detect whether the data came from a network or from a tree.

This thesis provides new insights into the identifiability of trinets. It shows that a specific type of trinet
can be distinguished from a simple tree using an invariant. This is an important step toward understanding
how more complex evolutionary networks can be identified from biological data from genes.
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1
Introduction

During the past few decades, phylogenetic analysis has become an important tool used in evolutionary biol-
ogy to describe the relationships among genes or species [10]. Until recently, the links in history among a set
of taxa, the species under consideration, are mostly represented in a strictly branching diagram, known as a
rooted phylogenetic tree. However, phylogenetic trees cannot represent reticulate events, which are events
where two evolutionary lineages converge again to create a new species, such as hybridization, horizontal
gene transfer and recombination [9]. Such events cannot be represented by trees since they lead to cycles in
the underlying undirected graphs, which are not allowed in trees. Capturing these special reticulate events
is crucial to understand the evolutionary history of many classes of organisms [19], such as bacteria, viruses,
plants, fish, birds and primates.

Therefore, phylogenetic networks are used to describe a more complicated evolutionary history than por-
trayed by a simple tree diagram [4]. Researchers can estimate these relationships by analyzing the DNA se-
quences of different taxa. By aligning and comparing the DNA sequences, one can attempt to reconstruct
the evolutionary past of taxa [5]. As network structures become more complex, it becomes harder to find out
which network could have produced the observed data [6].

An example of an evolution network, can be found in Figure 1.1. Here, the lines represent evolutionary
relationships among various Xiphophorus species, a group of fishes that includes swordtails and platyfishes.

Figure 1.1: Phylogenetic network on the genus Xiphophorus. The four major lineages are indicated by the different shaded areas. The
reticulation edges are curved, while the edges leading to the outgroup Pseudoxiphophorus jonesii are in grey. Holtgrefe et al. [11]

Recent studies focus on understanding which classes of networks are identifiable from the type of data
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2 1. Introduction

available. Roughly speaking, a network class is said to be identifiable if, in theory, sufficiently large data
sets generated under a given model can distinguish between two different networks in this class. This is an
important characteristic for the development of statistically consistent reconstruction algorithms.

In recent years, an important line of research has focused on reconstructing phylogenetic networks from
smaller substructures. Since networks with many taxa can be complex, subnetworks offer a way to break
down the reconstruction problem into smaller parts. In practice, subnetworks are often used as building
blocks for reconstructing larger networks. Several algorithms and software tools adopt this approach by first
identifying subnetworks from the data and then assembling them into a full network that is consistent with
the inferred local structures [7]. Examples include the methods implemented in Lev1athan [12], TriLoNet
[17], Squirrel [11] and NANUQ [2].

In this thesis, we will focus on the identifiability of semi-directed subnetworks. We will consider semi-
directed networks, which are partially directed networks in which the root is suppressed, since the root lo-
cation is not identifiable under many models [18]. The network is a connected semi-directed acyclic graph,
with directed and undirected edges. The directed edges represent the reticulate events. An example of a semi-
directed network with reticulate events can be found in Figure 2.6. This thesis has a special focus on trinets.
Trinets are subnetworks that focus on the relationship between three different species, represented by the
leaves in a network. In the context of this thesis, we call a trinet level-k if it has at most k reticulate events.

1 2

3

a b

c

(a) Tree with three leaves 1, 2, and 3

1 2

3

a1 a2

a3

b12 b21

b23

b32
b31

b13

c12

c13

c23

δ2

δ3

δ1

(b) Symmetric level-3 trinet with three leaves

Figure 1.2: A simple three-leaf tree and a symmetric level-3 trinet on the same set of leaves.

From a biological perception, we want to know whether we can distinguish tree-like from network-like
evolution. In this thesis, we will show that, in theory, for some cases we can. We investigate the identifia-
bility question using phylogenetic invariants, which are, roughly speaking, polynomials that characterize the
probability distributions of observed patterns of DNA nucleotides. We can determine these patterns from
DNA data and evaluate the invariant which may tell us something about the evolutionary relationships. For
phylogenetic trees, invariants have been used successfully to infer evolutionary relationships [1, 20]. More
recently, phylogenetic invariants have also been applied to network models to distinguish specific classes of
networks, such as cycle networks [9]. In a paper by Englander et al. [6] it is shown that invariants can in theory
be used to distinguish between level-1 or level-2 networks and trees under the Jukes-Cantor model, a simple
Markov model of evolution.

This thesis will extend one of the results given in [6], which shows how to distinguish between a three-leaf
tree and a level-1 or level-2 trinet under the JC model. In this thesis, we will look at a specific symmetric strict
level-3 trinet to determine whether we can use the same invariant to distinguish that trinet from a three-leaf
tree, both trinets are given in Figure 1.2. We will show that the symmetric level-3 trinet is distinguishable
from the three-leaf tree, which is a first result considering the distinguishability of level-3 networks. It can
be a first step for extending results to level-k networks. These type of trinet results can also be used to prove
identifiability of n-leaf networks, by using various trinets that are subnetworks of the bigger network (see [6]).
Moreover, we will look at the more general K2P model and whether we can extend the result in [6] using the
K2P model instead of the JC model. Unfortunately, we show that the approach we used for the JC model does
not directly give a similar result for the K2P model.

The outline of this report is as follows. In the next Chapter, we start with a background on graph theory,
phylogenetic trees and networks, Markov models on trees and networks and the Fourier transform used by,
e.g., Ardiyansyah [3]. Then, Chapter 3 starts with two Lemmas showing that two functions are strictly positive
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on the interval (0,1). These auxiliary results will be used in Chapter 3 to show that the considered invariant
is strictly positive for a symmetric level-3 trinet and therefore this level-3 trinet distinguishable from a three-
leaf tree. In Chapter 4, we adapt the invariant given in [6] in an attempt to use it for the K2P model and show
that this invariant cannot be used to distinguish between a three-leaf tree and a level-1 trinet. We end with a
discussion.





2
Preliminaries and definitions

In this Chapter, we introduce some definitions required for the study of phylogenetic networks. These in-
clude definitions from graph theory and phylogenetic trees and networks, mostly following [3, 6, 8, 13].

We start with some basic terms used in graph theory. A graph is a mathematical way of representing
relationships between objects. A graph is a pair G = (V ,E), where V is a set of elements called vertices, the
objects, and E is a collection of unordered vertex pairs, {v1, v2}, where each pair represents an edge, which
represents a relationship between two vertices. A directed graph is a graph in which all edges have directions.
If the edges do not have any directions, we call it an undirected graph. Lastly, a semi-directed graph has both
directed and undirected edges, see Figure 2.1. In an undirected graph, each edge e ∈ E is a set {v, w} of two
vertices v, w ∈V . The vertices v and w are called the endpoints of the edge, and we say that the edge connects
v and w . Both vertices are said to be incident to the edge. Two edges are called adjacent if they share a
common endpoint, and two vertices are adjacent if they are connected by an edge. The degree of a vertex v is
defined as the number of edges that are incident to it, see Figure 2.2.

(a) Undirected graph with three vertices and three edges (b) Directed graph with three vertices and three edges

(c) Semi-directed graph with two directed edges and one undirected
edge

Figure 2.1: Examples of undirected, semi-directed and directed graphs

In an undirected graph, a pair of two vertices x and y is said to be connected if there exists a path between
them. An undirected graph G = (V ,E) is called connected if every pair of distinct vertices v, w ∈V in the graph
is connected. If there exists at least one pair of vertices that is disconnected, the graph is called disconnected.
A path in a graph is a sequence of vertices and edges

P = (v0,e1, v1,e2, . . . ,ek , vk )

5



6 2. Preliminaries and definitions

such that each edge ei connects the vertices vi−1 and vi , and no edge appears more than once in the path. If
a path exists between two nodes v and w , we say the path connects v and w .

A cycle is a path in which the first and last node are the same, i.e., v0 = vk , and no other node occurs more
than once. See figure 2.2 (b) for an example of a cycle. A directed graph is said to be acyclic if it does not
contain any directed cycles.

An edge e in a network N is said to separate two disjoint subsets of vertices A and B if every path between
any vertex a ∈ A and b ∈ B contains e. In this case, the edge e is called a cut-edge, and the network N is said
to have an A–B split.

a

b

c

d

e

(a) Connected graph, where the degree of vertex b is three

a

b

c

d

e

(b) Disconnected graph with a cycle a, b, c

Figure 2.2: A connected graph and disconnected graph with cycle

Now that we have the basic graph theory, we can use these terms to introduce definitions that are used to
study phylogenetic networks and trees.

We start with the definition of a tree and some related terms and then we will look at phylogenetic net-
works.

Definition 2.1 (Directed phylogenetic tree). A directed phylogenetic tree is a rooted, directed acyclic graph
that contains no underlying undirected cycles.

A directed phylogenetic tree has a root, which is the distinguished vertex of a graph with in-degree zero
and out-degree two. The tree can be interpreted as a directed graph in which all edges are directed away from
the root. This root represents the most recent common ancestor of all taxa (species) represented in the tree.
The direction of the edges thus indicates the flow of evolutionary time.

The vertices of a tree with in-degree one and out-degree zero are called the leaves of the tree. In the context
of phylogenetics, these leaves typically represent the extant species for which data is available in a phyloge-
netic analysis. Consequently, each leaf is often assigned a unique label from a set of labels corresponding to
the species.

In theoretical settings, we often consider the set of leaf labels to be [n] := {1,2, . . . ,n}, and refer to the
resulting tree as an n-leaf phylogenetic tree. Two such trees are considered distinct if their leaf-labeling differ,
even if the unlabeled graph structures are the same. More formally, two n-leaf phylogenetic trees are regarded
the same if and only if there exists a graph isomorphism between them that also preserves the leaf labels
according to Gross et al. [8].

We often focus on a particular class of trees called binary trees. A binary tree is a tree in which every vertex,
except the root, has a degree of either one or three In such trees, internal vertices with degree three represent
speciation events, indicating a point in time where a single species gave rise to two descendant species. The
structure of the tree captures the timing and pattern of these divergence events.

Example 2.1 (Unrooting a tree). We can unroot a tree by suppressing all degree two vertices. There is only
one 3-leaf binary phylogenetic tree, whereas there are three different rooted 3-leaf binary phylogenetic trees.
See Figure 2.3, where the leaves are labeled.
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1 2 3 2 1 3 3 1 2

1

2 3

Figure 2.3: The three different rooted 3-leaved binary phylogenetic trees are shown on the left. The tree on the most right is the unrooted
3-leaved binary phylogenetic tree obtained by unrooting one of the rooted 3-leaved binary phylogenetic trees.

2.1. Phylogenetic networks
Before formally defining what a phylogenetic network is, we begin by introducing the notion of a blob. Ac-
cording to Englander et al. [6] a blob of a (partially) directed graph is a maximally connected subgraph that
does not contain any cut-edges. That is, edges whose removal would disconnect the graph. A blob is referred
to as an m-blob for some positive integer m, if it connects exactly m vertices outside the blob. If a blob con-
sists of only a single vertex, it is said to be trivial.

Example 2.2. Let G = (V ,E) be an undirected graph with vertex set V = {a,b,c,d ,e} and edge set

E = {{a,b}, {b,c}, {c, a}, {c,d}, {d ,e}}.

The subgraph induced by vertices {a,b,c} forms a blob, as it is maximally connected and does not contain
any cut-edges. Removing any edge within this subgraph does not disconnect it. The edge {c,d} is a cut-edge,
since its removal disconnects vertex d (and e) from the rest of the graph. Thus, the blob {a,b,c} connects to
the rest of the graph via a single edge and is therefore a 1-blob.

a b

c
d

e

Figure 2.4: Example of a 1-blob {a,b,c}

Definition 2.2 (Directed rooted binary phylogenetic network). A rooted binary phylogenetic network N on
a set of leaves [n] is a rooted, directed acyclic graph (DAG) without parallel edges, satisfying the following
properties:

• The sum of in-degree and out-degree for any vertex is at most three.

• The network has a single root with in-degree zero and out-degree two.

• Each leaf is a vertex with out-degree zero and in-degree one, and the set of leaves is bijectively labeled
by [n].

• The network contains no 2-blobs and no 1-blobs, except for the leaves.
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1

2 3

4

a

b

Figure 2.5: A rooted binary phylogenetic network with two reticulation vertices a,b in red and four leaves

1

2 3

4
a

b

Figure 2.6: The semi-directed network obtained from Figure 2.5 with two reticulation vertices a,b in red and four leaves

We call a vertex in N with in-degree one and out-degree two a tree vertex, which represents a speciation
event. The vertices with in-degree two and out-degree one are called reticulation vertices since they represent
reticulation events. Additionally, an edge directed into a reticulation vertex is a reticulation edge and the other
edges are called tree edges. All edges in N which are not directed into leaves are called internal. Note that the
class of phylogenetic trees is a subset of a phylogenetic networks.

Definition 2.3. The reticulation number of a phylogenetic network N is the total number of reticulation ver-
tices of the network.

Definition 2.4. A semi-directed network N on a set of leaves [n] is a partially directed graph that can be ob-
tained from a rooted phylogenetic network on [n] by suppressing all vertices of degree two, identifying par-
allel edges and removing edge directions of non-reticulation edges. The only directed edges are the edges
representing the reticulation events.

Definition 2.5. Let N be a semi-directed network and k a positive integer. The network is level-k if there
exists a maximum of k reticulation vertices in each blob of the network. Furthermore, we say that N is a strict
level-k phylogenetic network if it is a level-k but not level-(k −1) network.

Example 2.3 (Unrooting a phylogenetic network). In Figure 2.5, you can find a rooted phylogenetic network
with two reticulation vertices a,b in red. A semi-directed network can be obtained from the rooted network,
the result is shown in Figure 2.6. The only edges with a direction in Figure 2.6 are the reticulation edges. Fur-
thermore, the root has been suppressed because all vertices of degree two have to be removed. This network
is an example of a level-2 network.

When analyzing phylogenetic networks, a useful notion is a subnetwork induced by a subset of the leaves.
Such a subnetwork depicts only the evolutionary relationships between a subset of the species. As mentioned
in the introduction, subnetworks are a useful tool for constructing larger networks.

We can restrict semi-directed networks to a smaller leaf set by taking a subnetwork. Let N be an n-leaf
semi-directed network and S a subset of the leaves. We can obtain a semi-directed network on S by taking
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1

2 3

a

b

Figure 2.7: A level-2 trinet of the network in Figure 2.6 induces by a subset S = {1,2,3}

the union of all up-down paths connecting any two leaves in S. According to Englander et al. [6], an up-down
path between two leaves xi and x j of a semi-directed network is a path of k edges where the first l edges are
directed towards xi and the last k − l edges are directed towards x j . Then, contract all degree two vertices to
one of its neighbors and remove all parallel edges. We will look in this report at three-leaf subnetworks, which
are called trinets.

Example 2.4 (Finding a trinet). We can find a trinet from the network given in Figure 2.6. For example, take
S = {1,2,3} a subset of the leaves. To find the trinet, we only look at the edges making a path from one of the
leaves in S. Therefore, vertex 4 and the connected edge will be removed. We then have a vertex with degree
two, so we can suppress these two edges to one edge. The result can be found in Figure 2.7.

2.2. Markov model on trees
To describe the evolution of characters (such as DNA nucleotides) along the edges of a phylogenetic network,
we use Markov models. We will discuss two different models, the Jukes-Cantor (JC) model, and the Kimura
2-parameter (K2P) model [6]. These models are both reversible, meaning that we can move interchangeably
between rooted networks and semi-directed networks when discussing the parametrization of a phylogenetic
network model. The models are statistical models, describing the probability distribution of the characters
that can be observed at the leaves of a n-leaf network. In these models, characters evolve independently
along the edges of the network according to the transition probabilities.

Formally, for each edge e in the network, a transition matrix M e describes the probability of changing
from one nucleotide to another. The resulting probabilities for observed patterns at the leaves can be used to
infer or distinguish between different network topologies. To find these probabilities, we start with defining
the Markov model. Given a rooted phylogenetic network N = (V ,E), each v ∈ V is associated with a random
variable Xv with state space Σ= {A,G ,C ,T }, which are the four DNA bases. We associate for every edge e a 4 x
4 transition matrix M e ∈ S, where we let S4 be the set of 4 x 4 stochastic matrices. Thus, the transition matrix
is equipped for each edge e = u → w ∈ E such that M e

i j = P (Xw = j |Xu = i ). Moreover, the root distribution is

given as π= (πA ,πG ,πC ,πT ) ⊂ [0,1]4.
Now, we can find the probability for a specific situation. Let T be a tree with vertex set V (T ) and edge set E(T )
and φ an assignment of V (T ) to states Σ. The probability that an assignment φ can be observed under our
Markov model is

p(φ) =πφ(ρ)
∏

e∈E(T )
M e
φ(w),φ(u).

In this report, we are interested in the states at the leaves. So, we can marginalize the probabilities p(φ)
to find the probability of a specific situation w ∈ Σn at the leaves of T. We denote φ(X ) as the restriction of
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assignment φ to the leaves X . Then, the probability of observing w in T is given by

pw (T ) = ∑
φ:φ(X )=w

p(φ) = ∑
φ:φ(X )=w

πφ(ρ)
∏

e∈E(T )
M e
φ(w),φ(u)

Until now, we have looked at trees that enforce a strict branching structure. However, more complex
evolutionary processes, including reticulate events where lineages merge, are not represented in trees. These
changes are taken into account in phylogenetic networks with so-called reticulation points.

2.3. Markov model on networks
In phylogenetic networks, reticulation events model evolutionary processes such as horizontal gene transfer,
hybridization, or recombination. These events introduce cycles into the network structure and are repre-
sented by reticulation vertices. To incorporate such events in a probabilistic model of sequence evolution, we
introduce reticulation parameters.

Let N be a rooted binary phylogenetic network with r ≥ 1 reticulation vertices v1, . . . , vr . Each vi has two
incoming edges, denoted by e0

i and e1
i . We assign a probability parameter δi ∈ (0,1) to edge e1

i , and 1−δi to
e0

i . These parameters reflect the probability that a site follows one of the two alternative paths through the
reticulation vertex.

To compute the site pattern probabilities, we consider all 2r possible combinations of choices at retic-
ulation vertices, represented by binary vectors σ ∈ {0,1}r , where σi = 0 means edge e0

i was deleted (and e1
i

kept), and vice versa for σi = 1. In total, there are 2r possible combinations, since for all r vertices, there are
two option (edge e0

i was deleted and e1
i kept, or vice versa). Each such configuration corresponds to a tree Tσ

obtained from the network N by resolving the reticulation choices according to σ.

Example 2.5. In Figure 2.8 a 4-leaf semi-directed network is shown. The network has two reticulation vertices
w1 and w2. There are four possible binary vectors of length two: α= (0,0),β= (0,1),γ= (1,0), and δ= (1,1).
The four different trees from this network are shown in Figure 2.9 [3].

3 4

2 1

e2

3 4

2 3

w1

w2

e1
1

e0
1

e0
2

e1
2

e1 e3

e4 e5

e6

e7 e8

e9e10 e11

Figure 2.8: A 4-leaf semi-directed network with two reticulation vertices w1 and w2. The left figure displays the edge labeling, which will
be used in example 2.3.3. The right figure shows the four reticulation edges [3].

Given a site patternω= (g1, . . . , gn) ∈Σn , whereΣ= {A,C ,G ,T }, the probability of observingω at the leaves
of N is

(pN )ω = ∑
σ∈{0,1}r

(
r∏

i=1
δ

1−σi
i (1−δi )σi

)
(pTσ )ω,

where (pTσ )ω is the site pattern probability under the corresponding tree Tσ, computed using standard
methods for phylogenetic trees as discussed previously.
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3 4

2 1

w1

w2

e0
1

e0
2

3 4

2 1

w1

w2

e0
1

e1
2

3 4

2 1

w1

w2

e1
1

e0
2

3 4

2 1

w1

w2

e1
1

e1
2

Figure 2.9: The trees Tα, Tβ, Tδ and Tγ from left to right obtained from 2.8. For every tree, one of the four binary vectors is used [3].

Example 2.6. Consider a network N with one reticulation vertex v and incoming edges e0,e1. Let δ ∈ (0,1) be
the probability of retaining edge e1. Then the site pattern probability is:

(pN )ω = δ · (pT0 )ω+ (1−δ) · (pT1 )ω,

where T0 and T1 are the two trees resulting from choosing e1 and e0 respectively. This model captures the
evolutionary ambiguity introduced by a single reticulation event.

2.3.1. JC model
We will consider two kind of submodels of the general Markov Model obtained by placing restrictions on
the transition matrices. The simplest model is the Jukes-Cantor (JC) model. This model assumes that the
transition probabilities M e

i j is the same for all i , j ∈Σ, i ̸= j ,e ∈ E , meaning that the probability of a transition

or transversion is the same for all bases. This can be seen in the following matrix:

β α α α

α β α α

α α β α

α α α β


Note that the probability of a mutation is α and β+3 ·α= 1.

2.3.2. K2P model
For the Kimura 2-parameter model (K2P), we add an extra parameter to differentiate between the probabili-
ties of transitions (changes between either states A and G or C and T) and transversions. This can be seen in
the transition matrix: 

β α γ α

α β α γ

γ α β α

α γ α β


Here we have 2α+β+γ= 1, with γ the transition probability. We can obtain the JC model by setting γ=α.

2.3.3. Fourier transform
The Fourier transform is a linear transformation that converts the site pattern probabilities into a new coor-
dinate system, called Fourier coordinates. That leads to a model which is monomial instead of a polynomial
in its parameters, with the advantage of a simplified expression for the site pattern probabilities.

This method applies particularly well to models whose state space can be equipped with the structure of
a finite abelian group. For example, in the JC and K2P models, the DNA bases are identified with the elements
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of the Klein four-group Z2 ×Z2 via the correspondence

A = (0,0),C = (0,1),G = (1,0),T = (1,1).

We associate four Fourier parameters with each edge e ∈ E , denoted by ae
A , ae

G , ae
C and ae

T . These param-
eters describe the evolutionary behavior along the edge e in Fourier coordinates and satisfy model-specific
constraints. Under the JC model, we have ae

C = ae
G = ae

T , and under the K2P model we have that ae
G = ae

T ,
distinguishing transitions and transversions. Furthermore, ae

A = 1 for biological parameters. All other param-
eters are in the interval (0,1). The parameters cannot be one because that would correspond to a zero branch
length, meaning that no evolutionary change or divergence has occurred along that branch.

Then, let ω= (g1, g2, . . . , gn) be a site pattern across the leaves of a tree T . Denote by Σ(T ) the set of splits
induced by the edges of T . For each split A|B ∈ Σ(T ) we associate parameters a A|B

g for each group element

g ∈Z2 ×Z2, where a A|B
g = ae

g for the edge e that induces the split. Then, the Fourier parametrization of pω(T )
is given by

qω(T ) =


∏

e∈E(T )
e induces the split A|B

ae∑
i∈A gi

if
∑n

i=1 gi = 0,

0 otherwise

where addition is in the group Z2 ×Z2. The condition
∑n

i=1 gi = 0 ensures that the overall site pattern is
compatible with a tree-based evolutionary history. Note that for a network with r reticulation vertices, each
Fourier coordinate for the model will consist of 2r distinct terms.

Example 2.7 (Fourier parametrization). Suppose that we label the edges of N as displayed on the left in Figure
2.8. We want to compute the Fourier coordinate of observing nucleotides T, G, C, and A at the leaves 1, 2, 3
and 4, respectively. We will denote by ai

g the parameter aei
g to simplify the notation. Then

qTGC A = δ1δ2(a1
C a2

A a3
A a4

C a6
C a7

C a9
T a10

G a11
T )+δ1δ

′
2(a1

C a2
A a3

A a4
C a6

C a7
G a8

T a10
G a11

T )

+δ′1δ2(a1
C a3

A a4
C a5

A a6
C a7

C a9
T a10

G a11
T )+δ′1δ′2(a1

C a3
A a4

C a5
A a6

C a7
G a8

T a10
G a11

T )

In the above parameterization, the first, second, third and fourth terms correspond to the trees Tα, Tβ, Tδ
and Tγ in Figure 2.9, respectively [3].



3
Distinguishing symmetric level-3 trinets

from three-leaf trees

In this Chapter, we will give a proof of the following Theorem, which is an extension of the Theorem given
in Englander et al. [6]. We focus on a specific type of level-3 trinet depicted in Figure 3.2, which we refer
to as a symmetric level-3 trinet, due to its rotational symmetry. We will show that we can distinguish the
symmetric level-3 trinet from a three-leaf tree (depicted in Figure 3.1). Before we give the proof of Theorem
3.1 in Section 3.2, we will state and prove two Lemmas in Section 3.1. The Lemmas are used to show that an
invariant applied to the symmetric level-3 trinet is strictly positive.

Theorem 3.1. Let N1 and N2 be two binary semi-directed level-3 phylogenetic networks on the same three
leaves. Let N1 be the symmetric level-3 trinet with leaves X = {1,2,3} from Figure 3.2 and N2 the three-leaf tree
with leaves X = {1,2,3} from Figure 3.1. Then, under the JC model and for all parameter values in (0,1), the
polynomial invariant

q011q101q110 −q2
111

evaluates to zero for N2 and is strictly positive for N1. Hence, N1 and N2 are distinguishable under the JC model.

Note that we used a simplified notation for the Fourier coordinates under the JC model. For instance,
we write q110 to denote any of the equivalent values qCC A = qGG A = qT T A , since they are all the same under
the Jukes-Cantor. In the same way, we define q101 and q011. The coordinate q111 refers to any of the values
qCGT , qC T G , qGC T , qGT C , qT GC , qTCG , which are again equal in this model. This compact notation makes it
easier to visually distinguish between the different q-coordinates.

1 2

3

a b

c

Figure 3.1: Tree with three leaves 1,2,3

13
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a2a1

b12 b21

b23

b32
b31

b13

c12

c13

c23

a3

δ2

δ3

δ1

a2

2

a1

1

a3

3

Figure 3.2: Symmetric level-3 trinet
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3.1. Auxiliary Lemmas
In this section, we will look at two functions and show that these functions are strictly positive on the interval
(0,1). The first and second order partial derivatives will be calculated, to derive the Jacobian and Hessian
matrix and the critical points. In the next section, we will use these Lemmas to show that the invariant of a
symmetric level-3 trinet is strictly positive.

Lemma 3.1. Let x, y ∈ (0,1). Then, the following function is strictly positive in the interval (0,1)2:

f (x, y) = 1

2
+ (2y2 −2y +1)x2

2
−x y. (3.1)

Proof. To show strict positivity on the interval (0,1), we have to evaluate the function. First, we have to find
the critical points of the function f (given in 3.1) using the Jacobian matrix with the first-order partial deriva-
tives. Then, we find the second-order partial derivatives to obtain the Hessian matrix, which we can use to
determine what type of critical points the function has. In particular, we want to determine where local min-
ima and saddle points occur and what the values of the critical points are. Lastly, we have to find the values
of the boundary points, so that we can show that the function never gets below zero. This will then allow us
to prove that this function is strictly positive in the open interval (0,1)2.

We first start to compute the first-order partial derivatives:

∂ f

∂x
= (2y2 −2y +1)x − y (3.2)

∂ f

∂y
= (2y −1)x2 −x. (3.3)

So the Jacobian matrix is

J f (x, y) =
(
(2y2 −2y +1)x − y (2y −1)x2 −x

)
.

To find the critical points, we solve:
∂ f

∂x
= 0 (3.4)

∂ f

∂y
= 0. (3.5)

That is,

(2y2 −2y +1)x − y = 0 (3.6)

(2y −1)x2 −x = 0. (3.7)

Solving equation 3.7 gives us:
x = 0 or (2y −1)x = 1.

If x = 0, equation 3.6 becomes y = 0. So the first critical point is (0,0).
If (2y −1)x = 1,we get x = 1

2y−1 . Substitute this into equation 3.6:

(2y2 −2y +1) · 1

2y −1
− y = 0,

(2y2 −2y +1)− y(2y −1) = 0,

−y +1 = 0,

y = 1.

(3.8)

Substituting y = 1 into x = 1
2y−1 gives x = 1. So the other critical point is (1,1).

Now that we have the critical points, we have to find out what kind of points these are. Therefore, we compute
the second-order partial derivatives:

∂2 f

∂x2 = 2y2 −2y +1, (3.9)
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∂2 f

∂y2 = 2x2, (3.10)

∂2 f

∂x∂y
= ∂2 f

∂y∂x
= 2(2y −1)x −1. (3.11)

Thus, the Hessian matrix is:

H f (x, y) =

 2y2 −2y +1 2(2y −1)x −1

2(2y −1)x −1 2x2

 .

Now we can evaluate the critical points with the Hessian matrix.
At (x, y) = (0,0):

H f (0,0) =

 1 −1

−1 0

 , det(H f (0,0)) = 1 ·0− (−1)2 =−1 < 0.

This Hessian is indefinite, so (0,0) is a saddle point.
At (x, y) = (1,1):

H f (1,1) =

1 1

1 2

 , det(H f (1,1)) = 1 ·2− (1)2 = 1 > 0, and
∂2 f

∂x2 = 1 > 0.

The Hessian is positive definite, so (1,1) is a local minimum.
We fill in the critical points to get the function values.

f (0,0) = 1

2
, f (1,1) = 0.

Then, we have to find and evaluate the boundary points. Since we have x, y ∈ (0,1), the boundary points
are the following points:

1. x = 0, y ∈ (0,1)

2. x = 1, y ∈ (0,1)

3. y = 0, x ∈ (0,1)

4. y = 1, x ∈ (0,1)

The first boundary points give the value f (0, y) = 1
2 , which is positive.

The second boundary points give the value f (1, y) = 1
2 + y2 − y + 1

2 − y = y2 −2y +1 = (y −1)2. This is strictly
positive for y ∈ (0,1), since (y −1)2 is only zero for y = 1.

The third boundary points give the value f (x,0) = 1+x2

2 , which is clearly positive.

The last boundary points give the value f (x,1) = 1
2 + x2

2 − x = 1
2 (x −1)2. We can use the same argument as for

the second boundary points that this is positive for x ∈ (0,1).
So, the function 3.1 has a local minimum at (1,1), where it attains the value f (1,1) = 0, and a saddle point

at (0,0) where it attains a value of 1
2 . Moreover, all other boundary points are positive. Since the function is

continuous and the only saddle point has a positive value, the function is strictly positive on the open interval
(0,1)2.

Lemma 3.2. Let x, y, z ∈ (0,1). Then, the following function is strictly positive in the interval (0,1)3:

f (x, y, z) =
((

z2 + 1

2

)
y2 − y z + 1

2
z2

)
x2 − y z(y + z)x + 1

2
y2z2 + 1

2
. (3.12)
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Proof. We use a similar strategy as in the previous Lemma. We first start to compute the first-order partial
derivatives:

∂ f

∂x
= 2

((
z2 + 1

2

)
y2 − y z + 1

2
z2

)
x − y z(y + z), (3.13)

∂ f

∂y
= x2(2y z2 + y − z)−xz(2y + z)+ y z2, (3.14)

∂ f

∂z
= x2(2y2z − y + z)−x y(y +2z)+ y2z. (3.15)

So the Jacobian matrix is:

∇ f (x, y, z) =


∂ f
∂x

∂ f
∂y

∂ f
∂z

 .

To find the critical points, we solve:
∂ f

∂x
= ∂ f

∂y
= ∂ f

∂z
= 0. (3.16)

We get the following critical points inside [0,1]3 using Wolfram Alpha [14],

(0,0, z), (1,0,0), (0, y,0) where y ̸= 0 and (1,1,1).

We compute the Hessian matrix by taking the second-order partial derivatives of f (x, y, z):

H f (x, y, z) =


fxx fx y fxz

fy x fy y fy z

fzx fz y fzz

 ,

where:

∂2 f

∂x2 = 2

(
y2

(
z2 + 1

2

)
− y z + z2

2

)
∂2 f

∂x∂y
= ∂2 f

∂y∂x
= 2x

(
2y

(
z2 + 1

2

)
− z

)
− y z − z(y + z)

∂2 f

∂x∂z
= ∂2 f

∂z∂x
= 2x

(
2y2z − y + z

)− y z − y(y + z)

∂2 f

∂y2 = 2x2
(

z2 + 1

2

)
−2xz + z2

∂2 f

∂y∂z
= ∂2 f

∂z∂y
= x2(4y z −1)−x(y + z)−x(y + z)+2y z

∂2 f

∂z2 = x2(2y2 +1)−2x y + y2.

Now, we can evaluate the critical points inside the interval [0,1]3 to see where the saddle points and local
minima and maxima are. First, we fill in the critical points to find the function values.

For (1,1,1) we get f (1,1,1) = 0 and the Hessian is

H f (x, y, z) =


2 1 1

1 2 1

1 1 2

 .
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Table 3.1: For every critical point of the function f , the value of the function, the Hessian matrix, its eigenvalues, and the type of the
critical point are listed.

Critical Point f (x , y, z) Hessian Matrix Eigenvalues Type

(1,1,1) 0


2 1 1

1 2 1

1 1 2

 {4,1,1} local minimum

(0,0, z) 1
2


0 0 0

0 z2 0

0 0 0

 {0,0, z2} inconclusive

(0, y,0) 1
2


y2 0 0

0 0 0

0 0 y2

 {0, y2, y2} inconclusive

(1,0,0) 1
2


0 0 0

0 1
2 −1

0 −1 1

 {0, 1
4 (3±p

17)} saddle point

This is a symmetric matrix with eigenvalues λ = {4,1,1}, all of which are positive. Therefore, the Hessian
is positive definite at this point. The function has a local minimum at (1,1,1).
We do the same for the other critical points. See table 3.1 for an overview of the critical points.

We have to look at the boundary points to check whether all boundary points are non-negative. The
boundary of the open interval (0,1)3 consist of the six faces of an open cube. The six faces are:

1. x = 0, y, z ∈ (0,1)

2. x = 1, y, z ∈ (0,1)

3. y = 0, x, z ∈ (0,1)

4. y = 1, x, z ∈ (0,1)

5. z = 0, x, y ∈ (0,1)

6. z = 1, x, y ∈ (0,1)

f (x, y, z) =
((

z2 + 1

2

)
y2 − y z + 1

2
z2

)
x2 − y z(y + z)x + 1

2
y2z2 + 1

2
. (3.17)

For the first face, we get the function value f (0, y, z) = 1
2 y2z2 + 1

2 . This is always positive for y, z ∈ (0,1).
For the second face, we get f (1, y, z) = 3

2 y2z2+ 1
2 y2−y z+ 1

2 z2−y2z−y z2+ 1
2 = g (y, z). We can find with Wolfram

Alpha that the global minimum of g (y, z) is at (y, z) = (1,1), where g (1,1) = 0. But, (y, z) = (1,1) is not in our
interval, so the boundary points in this face are strictly positive.
For the third boundary points, we get f (x,0, z) = 1

2 x2z2 + 1
2 . This is positive for the third face.

For the fourth face, we get f (x,1, z) = 3
2 x2z2 − x2z − xz2 − xz + 1

2 x2 + 1
2 z2 + 1

2 . This has the same structure as
the second boundary points, so we conclude that the boundary points are strictly positive.
For the fifth face, we get f (x, y,0) = 1

2 x2 y2 + 1
2 , which is positive as well.

For the sixth face, we get f (x, y,1) = 3
2 x2 y2 − x2 y − y z2 − x y + 1

2 x2 + 1
2 y2 + 1

2 . Again, this is the same structure
as the second and fourth boundary points.

Therefore, all boundary points are strictly positive.
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From the analysis of the critical points, we observe that the function attains in the domain (0,1)3 its min-
imum value f (x, y, z) = 0 only at the point (1,1,1), where the Hessian is positive definite, confirming a local
minimum. All other critical points yield a strictly positive function value ( f = 1

2 ), with Hessians that are sin-
gular or indefinite. In particular, no other point inside the domain (0,1)3 results in a function value of zero
or a negative value, because the saddle point is at a positive value and all the boundary points are strictly
negative. Therefore, we conclude that the function f cannot attain a negative value, so f (x, y, z) > 0 for all
(x, y, z) ∈ (0,1)3.
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3.2. Proof of main theorem
We will now give the proof of Theorem 3.1. We have to show that the invariant is strictly positive for the
symmetric level-3 trinet, which we will do by splitting the invariant up in coefficients. Then, we will show
that all coefficients are strictly positive, where we will use Lemma 3.1 and 3.2 for some of the coefficients.

Theorem (3.1). Let N1 and N2 be two binary semi-directed level-3 phylogenetic networks on the same three
leaves. Let N1 be the symmetric level-3 trinet with leaves X = {a,b,c} from Figure 3.2 and N2 the three-leaf tree
with leaves X = {a,b,c} from Figure 3.1. Then, under the JC model and for all parameter values in (0,1), the
polynomial invariant

q011q101q110 −q2
111 (3.18)

evaluates to zero for N2 and is strictly positive for N1. Hence, N1 and N2 are distinguishable under the JC
model.

Proof. We first recall the proof from [6], which shows that q011q101q110 −q2
111 equals 0 for the three-leaf tree

N2. Let a,b and c be the nontrivial Fourier parameters associated to the three edges of N2 (see also Figure 3.1).
Then, under the JC model, the considered Fourier parametrizations of N2 are q111 = abc, q110 = ab, q101 = ac
and q011 = bc. Clearly, we then get that q011q101q110 −q2

111 = 0 for N2.
Then, consider the symmetric level-3 trinet. See Figure 3.2. Let ai , bi j and ci j , with i , j ∈ {1,2,3}, be the

Fourier parameters associated to the edges of N (see Figure 3.2). Moreover, letδ1, δ2 andδ3 be the reticulation
parameters. The Fourier parametrization for N under the JC model is as follows:

q011 := a2a3
(
b21b31c12c13δ2δ̄3 +b21b32c12c23δ2δ3 +b23b31c13c23δ̄2δ̄3 +b23b32δ3δ̄2

)
q101 := a1a3

(
b12b31c12c13δ̄1δ̄3 +b12b32c12c23δ3δ̄1 +b13b32c13c23δ1δ3 +b13b31δ1δ̄3

)
q110 := a1a2

(
b12b23c12c23δ̄1δ̄2 +b13b21c12c13δ1δ2 +b13b23c13c23δ1δ̄2 +b12b21δ2δ̄1

)
q111 := a1a2a3

(
δ1b13δ̄3b31c13(b21c12δ2 +b23c23δ̄2)+δ3b32δ1b13c13c23(b21c12δ2 +b23δ̄2)

+ δ̄1b12c12b21δ2(b31c13δ̄3 +b32c23δ3)+ δ̄1b12c12c23δ̄2b23(b31c13δ̄3 +b32δ3)
)
.

Here we use the shorthand notation δ̄i = (1−δi ) for i ∈ {1,2,3}.
We compute q011q101q110 − q2

111 and we assume that the parameter values are nontrivial (i.e. they are in
(0,1)). To show that this invariant is strictly positive, we start by looking at the coefficients of the invariant for

δ2
1, δ1δ̄1 and δ̄1

2
. The coefficients are found with the collect function in Maple [15].

To prove that the three coefficients of δ2
1, δ1δ̄1 and δ̄1

2
are positive, we again split the three corresponding

expressions up by considering their coefficients for δ2
2, δ2δ̄2 and δ̄2

2
. We repeat this a third time for the

last reticulation parameter δ3. Then, we have to consider 27 coefficients. This process of splitting up the
coefficients is visualized by a tree diagram in Figure 3.3. In this Figure, the end points are coloured, where the
same colour means that the coefficients are the same, up to labelling the parameters. We will now show that
the coefficients corresponding to each of the endpoints are strictly positive. If all the coefficients are positive,
we can conclude that the invariant q011q101q110 −q2

111 is strictly positive.
We will explain how to find a specific coefficient, by giving an example. Specifically, we will consider the

path in the middle of Figure 3.3 and then look at the coefficients corresponding to nodes 13, 14, and 15.
First, we split up the invariant over δ1 and we have to find the coefficient of δ1δ̄1.

The coefficient for δ1δ̄1 is

a2
2 a2

3

(
b21b31c12c13δ2δ̄3 +b21b32c12c23δ2δ3 +b23b31c13c23δ̄2δ̄3 +b23b32δ3δ̄2

)
a2

1

(
b12b31c12c13δ̄3 +b12b32c12c23δ3

)
·(b13b21c12c13δ2 +b13b23c13c23δ̄2

)+a2
2 a2

3

(
b21b31c12c13δ2δ̄3 +b21b32c12c23δ2δ3 +b23b31c13c23δ̄2δ̄3 +b23b32δ3δ̄2

)
·a2

1

(
b13b32c13c23δ3 +b13b31δ̄3

)(
b12b23c12c23δ̄2 +b12b21δ2

)
−2a2

1 a2
2 a2

3

(
b12c12b21δ2(b31c13δ̄3 +b32c23δ3)+b12c12c23δ̄2b23(b31c13δ̄3 +b32δ3)

)
· (b13δ̄3b31c13(b21c12δ2 +b23c23δ̄2)+δ3b32b13c13c23(b21c12δ2 +b23δ̄2)

)
Then we split this up over δ2 and look only at the coefficient of δ2δ̄2.
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Figure 3.3: Tree of all coefficients of the invariant for the symmetric level-3 trinet
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The coefficient of δ2δ̄2 is

(b23b31c13c23δ̄3 +b23b32δ3)(b12b31c12c13δ̄3 +b12b32c12c23δ3)b13b21c12c13

+ (b21b31c12c13δ̄3 +b21b32c12c23δ3)(b12b31c12c13δ̄3 +b12b32c12c23δ3)b13b23c13c23

+ (b23b31c13c23δ̄3 +b23b32δ3)(b13b32c13c23δ3 +b13b31δ̄3)b12b21

+ (b21b31c12c13δ̄3 +b21b32c12c23δ3)(b13b32c13c23δ3 +b13b31δ̄3)b12b23c12c23

−2
(
b12c12c23b23(b31c13δ̄3 +b32δ3)(b13b21b32c12c13c23δ3 +b13b21b31c12c13δ̄3)

+b12c12b21(b31c13δ̄3 +b32c23δ3)(b13b23b31c13c23δ̄3 +b13b23b32c13c23δ3)
)

Splitting up with respect to the last reticulation parameter δ3, gives us:

The coefficient of δ2
3 is (node 13)

2b12b13b21b23b2
32c2

12c13c3
23 −2b12b13b21b23b2

32c2
12c13c2

23 +b12b13b21b23b2
32c2

12c13c23

−2b12b13b21b23b2
32c12c13c2

23 +b12b13b21b23b2
32c13c23

= 2b2
32c13

(
1

2
+ (c2

23 − c23 + 1

2
)c2

12 − c12c23

)
b13b21c23b12b23 (3.19)

The coefficient of δ3δ̄3 is (node 14)

(b12b23b31b32c12c13c2
23 +b12b23b31b32c12c13)b13b21c12c13 + (b13b23b31b32c2

13c2
23 +b13b23b31b32)b12b21

+ (b13b21b31b32c12c2
13c23 +b13b21b31b32c12c23)b12b23c12c23

−2b21b31c2
12c13b12b32c23b13b23 −2b12c12b21b31c2

13b13b23b32c23 −2b12c12b21b32c2
23b13b23b31c13

= 2b31b32

(((
c2

23 +
1

2

)
c2

13 − c13c23 + 1

2
c2

23

)
c2

12 − c13c23(c13 + c23)c12 + 1

2
c2

13c2
23 +

1

2

)
b13b21b12b23 (3.20)

The coefficient of δ̄2
3 is (node 15)

2b12b13b21b23b2
31c2

12c3
13c23 −2b12b13b21b23b2

31c2
12c2

13c23 +b12b13b21b23b2
31c2

12c13c23

−2b12b13b21b23b2
31c12c2

13c23 +b12b13b21b23b2
31c13c23

= 2b2
31c13

(
1

2
+

(
c2

13 − c13 + 1

2

)
c2

12 − c12c13

)
b13b21c23b12b23 (3.21)

Using our auxiliary results from Section 3.1, we can prove that the coefficient of δ2
3 (3.19) and δ̄2

3 (3.21)
is positive. In particular, we can use Lemma 3.1 with y = c23, x = c12 for the part between the brackets in
coefficient 3.19, similarly we have y = c13, x = c12 for coefficient 3.21. We can conclude that the coefficients
3.19 and 3.21 are strictly positive, as the part in the brackets is strictly positive and the other parameters are all
strictly positive. We can use Lemma 3.2 for the part in the brackets in coefficient 3.20 with x = c12, y = c13, z =
c23, and again the other parameters in the coefficient are in (0,1). So, coefficient 3.20 is strictly positive as well.
We can conclude that these three coefficients are strictly positive in the interval (0,1) for the symmetric level-3
network.

We can find the other coefficients, which correspond to the coloured leaves shown in Figure 3.1, the same
way as written above. As shown in Appendix A, all these coefficients are strictly positive or do not exist (grey
nodes).

So, all coefficients of the symmetric level-3 trinet are strictly positive. Thus, we can write the invariant as a
sum of positive parts and therefore we conclude that the symmetric level-3 network shown in Figure 3.2 and
the three-leaf tree are distinguishable under the JC model.



4
Negative result for the K2P model

According to Englander et al. [6] we can distinguish a three-leaf tree N1 from a strict level-1 trinet under the
JC model by looking at the polynomial invariant

q011q101q110 −q2
111. (4.1)

In this Chapter, we will consider less restrictive assumptions and look at the K2P model. Surprisingly, we will
show that extending invariant 4.1 to a seemingly equivalent polynomial that can be used for a K2P model will
not distinguish between a three-leaf tree and a level-1 trinet.

4.1. Polynomial
Under the JC model, we could use a shorthand notation for the Fourier coordinates since we have ae

C = ae
G =

ae
T for every edge e. However, under the K2P model we cannot use the shorthand notation as we did for the JC

model, because we only have ae
T = ae

G (and for example ae
C ̸= ae

G ). So, we must work with the full base-specific
q-coordinates qi j k , where i , j ,k ∈ {A,C ,G ,T }.

If we want to use the original invariant 4.1, we have to replace the notation for the q-coordinates. We
can, for example, replace q011 with qACC , and similarly for q101 and q110. We can change invariant 4.1 to, for
example, qACC qC AC qCC A −q2

CGT . However, we cannot use this invariant to distinguish between a three-leaf
tree and level-1 trinet. The invariant does not evaluate to zero for the three-leaf tree, because we do not have
ae

G = ae
T . The problem here, is that we do not consider all the bases in the first part of the invariant. For

example, we only have the C base in the first part of the invariant and did not take the other bases (G or T )
into account. This issue does not arise under the JC model, since the parameters corresponding to C ,G and
T are identical due to the model’s symmetry assumptions. Thus, we have to extend the invariant 4.1 to a new
form that evaluates to zero for the three-leaf tree under the K2P model.

For the following, note that since q011q101q110 − q2
111 was an invariant for JC, q3

011q3
101q3

110 − q6
111 is also

an invariant for JC. For the JC model, we can write q3
011 = qACC · qAT T · qAGG , and similarly for the other q-

coordinates. If we fill this in for the second invariant, we consider all the bases for every leaf (and not only C ).
Therefore, we can extend invariant 4.1 to the following polynomial:

qCC A ·qACC ·qC AC ·q2
T T A ·q2

AT T ·q2
T AT −q2

C T T ·q2
T T C ·q2

TC T (4.2)

Note that qT T A , qAT T and qT AT each occur squared, because they are the same as qGG A , qAGG and qG AG ,
respectively. So, we have replaced q110 in the original invariant by qCC A · q2

T T A and we can do the same for
q101 and q011. Thus, polynomial 4.2 is an extended version of invariant 4.1 under the K2P model.

4.2. Fourier paramatrization
To define the Fourier parametrization, we use the notation introduced in Section 2.3.3. The tree with three
leaves can be found in Figure 3.1 and the only level-1 trinet is shown in Figure 4.1. For the tree we have the
general Fourier transformation given in formula 4.3, where gi is one of the four DNA bases (A, C, G, T).

qg1g2g3 = aa
g1

ab
g2

ac
g3

(4.3)
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c

f

δ̄1

Figure 4.1: The only level-1 trinet on the left and its displayed trees with reticulation parameters δ1 and δ̄1 on the right

We can find the q-coordinates for the tree. We have the following Fourier parameterizations. We will use
ae

A = 1 :

qCC A = aa
C ab

C

qC AC = aa
C ac

C

qACC = ab
C ac

C

qT T A = aa
T ab

T

qT AT = aa
T ac

T

qAT T = ab
T ac

T

qCGT = aa
C ab

G ac
T = aa

C ab
T ac

T

qGT C = aa
G ab

T ac
C = aa

T ab
C ac

T

qT CG = aa
T ab

C ac
G = aa

T ab
C ac

T

Now, we can look at the level-1 trinet. For the level-1 network we have the following general Fourier
transform:

qg1g2g3 = δ1(aa
g1

ab
g2

ac
g3

ad
g3

a f
g2

)+ δ̄1(aa
g1

ab
g2

ac
g3

ae
g3

a f
g1

) (4.4)

We can find all the q-coordinates using the Fourier transformation based on the trinet given in Figure 4.1.
That gives us the following:
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qCC A = δ1(aa
C ab

C ac
A ad

A a f
C )+ δ̄1(aa

C ab
C ac

A ae
A a f

C )

= δ1(aa
C ab

C a f
C )+ δ̄1(aa

C ab
C a f

C ) = aa
C ab

C a f
C

qC AC = δ1(aa
C ac

C ad
C )+ δ̄1(aa

C ac
C ae

C a f
C )

= aa
C ac

C (δ1(ad
C )+ δ̄1(ae

C a f
C ))

qACC = δ1(ab
C ac

C ad
C a f

C )+ δ̄1(ab
C ac

C ae
C )

= ab
C ac

C (δ1(ad
C a f

C )+ δ̄1(ae
C ))

qT T A = δ1(aa
T ab

T ac
A ad

A a f
T )+ δ̄1(aa

T ab
T ac

A ae
A a f

T )

= δ1(aa
T ab

T a f
T )+ δ̄1(aa

T ab
T a f

T ) = aa
T ab

T a f
T

qT AT = δ1(aa
T ac

T ad
T )+ δ̄1(aa

T ac
T ae

T a f
T )

= aa
T ac

T (δ1(ad
T )+ δ̄1(ae

T a f
T ))

qAT T = δ1(ab
T ac

T ad
T a f

T )+ δ̄1(ab
T ac

T ae
T )

= ab
T ac

T (δ1(ad
T a f

T )+ δ̄1(ae
T ))

qCGT = δ1(aa
C ab

G ac
T ad

T a f
G )+ δ̄1(aa

C ab
G ac

T ae
T a f

C )

= aa
C ab

G ac
T (δ1(ad

T a f
G )+ δ̄1(ae

T a f
C ))

qGT C = δ1(aa
G ab

T ac
C ad

C a f
T )+ δ̄1(aa

G ab
T ac

C ae
C a f

G )

= aa
T ab

T ac
C a f

T (δ1(ad
C )+ δ̄1(ae

C ))

qTCG = δ1(aa
T ab

C ac
T ad

T a f
C )+ δ̄1(aa

T ab
C ac

T ae
T a f

T )

= aa
T ab

C ac
T (δ1(ad

T a f
C )+ δ̄1(ae

T a f
T ))

We will use these Fourier transformations to calculate the polynomial.

4.3. Negative result
Now that we have the Fourier transformations, we can have a look at the polynomial. Unfortunately, as stated
in Theorem 4.1 the polynomial 4.2 cannot be used to distinguish between a level-1 trinet and level-0 trinet.

Theorem 4.1. Under the K2P model, a three leaf tree N1 and a level-1 trinet N2 are not distinguishable with
the polynomial

qCC A ·qACC ·qC AC ·q2
T T A ·q2

AT T ·q2
T AT −q2

CGT ·q2
GT C ·q2

TCG . (4.5)

The polynomial can be both negative, positive or zero for N2, and evaluates to zero for N1.

Proof. We will show that the polynomial is zero for the level-0 trinet, a tree. We get the following if we fill in
the q-coordinates, obtained in Section 4.2, in the polynomial 4.5:

aa
C ab

C aa
C ac

C ab
C ac

C (aa
T ab

T aa
T ac

T ab
T ac

T )2 − (aa
C ab

T ac
T aa

T ab
C ac

T aa
T ab

C ac
T )2

= (aa
C ab

C ac
C )2(aa

T ab
T ac

T )4 − (aa
C ab

C ac
T (aa

T ab
T ac

T )2)2 = 0

We see that the polynomial becomes zero, as we expected.
Now, we have a look at the polynomial for the level-1 trinet.

(ab
C )2(ac

C )2(ab
T )4(aa

C )2(ac
T )4a f

C (aa
T )4(a f

T )2
(
δ1ad

C a f
C + δ̄1ae

C

)(
δ1ad

T a f
T + δ̄1ae

T

)2 (
δ̄1ae

C a f
C +δ1ad

C

)(
δ̄1ae

T a f
T +δ1ad

T

)2

− (aa
C )2(ab

T )4(ac
T )4(aa

T )4(ac
C )2(a f

T )2(ab
C )2

(
δ1ad

T a f
T + δ̄1ae

T a f
C

)2 (
δ1ad

C + δ̄1ae
C

)2 (
δ1ad

T a f
C + δ̄1ae

T a f
T

)2
(4.6)

We can find examples in which the polynomial can be positive, negative or zero, for all parameters in (0,1).
For example, taking all parameters 1

2 gives us an polynomial with value 3.947207004 ·10−10, which is positive.
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And changing a f
T = 0.9 and keeping all the other variables 1

2 , gives a value of −5.3204863 · 10−10, which is
negative. This means that the polynomial can become zero, because the polynomial is a continuous function
(Intermediate Value Theorem). In Appendix B we further explore specific parameter values that evaluate at
zero for this polynomial.

We conclude that the polynomial 4.5 cannot be used to distinguish between a level-1 and level-0 zero
trinet under the K2P model, as the polynomial can attain the value zero for both trinets.



5
Discussion

We have shown in Chapter 3 that a symmetric level-3 trinet is distinguishable from a three-leaf tree under
the Jukes-Cantor model of evolution. This is a first distinguishability result on phylogenetic networks con-
sidering level-3 trinets. Since we have considered only one specific level-3 trinet, it remains open to prove
a more general statement. We conjecture that all level-3 trinets are distinguishable from level-0 trinets. The
particular case demonstrated in Chapter 3 is, intuitively, the hardest to distinguish as it seems most similar
to the 3-leaf tree. In particular, the other level-3 cases tend to be less symmetric and therefore appear easier
to distinguish. Since the invariant works for this case, we believe it is likely to work for all level-3 trinets. We
expect that we can prove this by considering all level-3 trinet cases and showing that every case can be dis-
tinguished from a three-leaf tree, where we use the polynomial invariant (4.1). The same approach has been
done in [6] for level-2 trinets. However, the number of level-3 trinets is still unclear and we do not know how
they look like. A first step would be to find all level-3 trinets. A way to do this is to look at their generators. All
semi-directed binary level-3 generators are presented by Nipius [16].
Furthermore, we can look at the analog of this result for arbitrary level-k trinets, where k ∈N. We conjecture
that our result also hold for level-k trinets and it would be interesting to identify this.

Conjecture 5.1. Let N1 be a strict, semi-directed level-k trinet with leaves X = {a,b,c} and N2 the three-leaf
tree with leaves X = {a,b,c}. Then, under the JC model and for all parameter values in (0,1), the polynomial
invariant

q011q101q110 −q2
111

evaluates to zero for N2 and is strictly positive for N1. Hence, N1 and N2 are distinguishable under the JC model.

To prove Conjecture 5.1, analyzing each network on a case by case basis, as it done for level-1 and level-2
trinets, is impossible. Even for small k, the case by case method is not convenient as the number of generators
for level-k networks grows very rapidly, making a similar case analysis impossible in general. Therefore, it
would be interesting to consider an inductive proof. We already know that we can distinguish a level-1 or
level-2 trinet from a level-0 trinet as stated in Englander et al. [6], and our result for a symmetric level-3 trinet
suggests that it is possible that this can be extended to level-3 trinets. In an inductive proof, we would use the
result for level-1 trinets as the base case. Then, we assume that we can distinguish all level-k trinets from a
three-leaf tree, and want to show that this also holds for a level-(k+1) trinet. We can try to split the level-(k+1)
trinet up into level-k ′ trinets, where k ′ < k.

We have not been able to prove distinguishablity of trinets under the K2P model. It is surprising that an
extended invariant for the K2P model compared to the invariant used in the proof for JC model does not
work. The invariant evaluates to zero for the three-leaf tree, but for the level-1 trinet it attains negative and
positive values, and can become zero. It remains an open problem to find another polynomial invariant
that distinguishes trees and networks, or another approach. It is also possible that the two trinets are not
distinguishable at all. This is significantly more difficult to prove. This remains an interesting problem, as
K2P is a more realistic model for phylogenetic analysis.
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A
Coefficients for symmetric level-3 trinet

In Theorem 3.1 we showed that the invariant q011q101q110 −q2
111 evaluates to zero under the JC model for the

three-leaf tree and is positive for the symmetric level-3 trinet. In this appendix we provide all the coefficients
of the invariant and show that they are positive, which is part of the proof of Theorem 3.1. Recall that we
numbered all the coefficients in Figure 3.1.

We can find all coefficients displayed by a node in Figure 3.1, in the same way as we did for nodes 13,14,15
in the proof of Theorem 3.1. The coefficients are given in table A.1, where the coefficients identical to ea-
chother, up to relabelling the parameters, are given the same colour in the third column.

The coefficients corresponding to a pink node (2,4,10,18,24,26) are strictly positive, since all parameters
are strictly positive and the square (ci j −1)2 is always positive. The same holds for the orange nodes (8,12,22).
The green nodes (5,11,13,15,17,23) are also strictly positive, because we can use Lemma 3.1 for the part in the
brackets. Lastly, the blue node (14) is strictly positive as the part inside the brackets is strictly positive using
Lemma 3.2 and the other parameters are strictly positive. The gray coefficients (1,3,6,7,9,16,19,20,21,25,27)
are zero and thus non-existent.

So, all coefficients are not existing or strictly positive.
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Table A.1: Coefficients for each coulored node in the tree diagram (Figure 3.1) representing the coefficients of the invariant (equation
3.18). Nodes with the same color share structurally equivalent coefficients.

Node Coefficient Color

1 - •
2 b2

13b2
21b31b32c2

12c13c23(c13 −1)2 •
3 - •
4 b23b2

32b2
13c2

13c23b21c12(c23 −1)2 •
5 2c12b2

13b23b31( 1
2 + (c2

13 − c13 + 1
2 )c2

23 − c13c23)c13b21b32 •
6 - •
7 - •
8 b2

13b2
23b31b32c13c23(c13c23 −1)2 •

9 - •
10 b2

21b2
32c12c2

23b13c13b12(c12 −1)2 •
11 2b32c12b13b2

21( 1
2 + (c2

12 − c12 + 1
2 )c2

13 − c12c13)c23b12b31 •
12 b12b13b2

21b2
31c12c13(c12c13 −1)2 •

13 2b2
32c13( 1

2 + (c2
23 − c23 + 1

2 )c2
12 − c12c23)b13b21c23b12b23 •

14 2b31b32b13b21b12b23(((c2
23 + 1

2 )c2
13 − c13c23 + 1

2 c2
23)c2

12 − c13c23(c13 +
c23)c12 + 1

2 c2
13c2

23 + 1
2 )

•
15 2b2

31c13( 1
2 + (c2

13 − c13 + 1
2 )c2

12 − c12c13)b13b21c23b12b23 •
16 - •
17 2b32( 1

2 + (c2
23 − c23 + 1

2 )c2
13 − c13c23)c12b13b2

23c23b12b31 •
18 b12b13b2

23b2
31c12c13c2

23(c13 −1)2 •
19 - •
20 - •
21 - •
22 b23b2

32b2
12c12c23b21(c12c23 −1)2 •

23 b32c13c12( 1
2 + (c2

12 − c12 + 1
2 )c2

23 − c12c23)b21b23b2
12b31 •

24 b2
12b21b23b2

31c12c2
13c23(c12 −1)2 •

25 - •
26 b2

12b2
23b31b32c2

12c13c23(c23 −1)2 •
27 - •



B
Maple code

In Section 4.3 we show in Theorem 4.1 that we cannot use invariant 4.5 to distinguish between a three-leaf
trinet and a level-1 trinet. The invariant evaluates to zero for both trinets. Here we will give an example for
which parameters the invariant for the level-1 trinet is zero.

Let all parameters be 1
2 , except for a f

T . We will find the value of a f
T for a zero polynomial with the maple

code below. We use the solve function in Maple [15], see Listing B.1. The only reasonable value, which is

in our interval (0,1), is a f
T = 0.8398428397. This leads to an polynomial that is zero for the level-1 network.

Therefore, we cannot distinguish the network from the tree.
We can use Maple to find general algebraic solutions. One of the solutions is a polynomial of ad

C , expressed

in the parameters δ1, ad
T , ae

T , a f
C , a f

T , ae
C . The other parameters are free to choose. This expression is too long

to write down here, but the maple code can be found in the Listing B.2.

# Define variables
CCA := aC*bC*fC;
CAC := aC*cC*( ddelta*eC*fC + d1*dC);
ACC := bC*cC*(d1*dC*fC + ddelta*eC);

TTA := aT*bT*fT;
TAT := aT*cT*( ddelta*eT*fT + d1*dT);
ATT := bT*cT*(d1*dT*fT + ddelta*eT);

CGT := aC*bT*cT*(d1*dT*fT + ddelta*eT*fC);
GTC := aT*bT*cC*(d1*dC*fT + ddelta*eC*fT);
TCG := aT*bC*cT*(d1*dT*fC + ddelta*eT*fT);

fC := 0.5;
eC := 0.5;
eT := 0.5;
dT := 0.5;
dC := 0.5;
bC := 0.5;
bT := 0.5;
cC := 0.5;
cT := 0.5;
aC := 0.5;
aT := 0.5;
ddelta := 0.5;
d1 := 0.5;

invariant := ACC*ATT^2* CAC*CCA*TAT^2*TTA^2 - CGT^2*GTC^2*TCG ^2;

expanded_invariant := expand(invariant);

33



34 B. Maple code

solve(invariant = 0);

Listing B.1: Maple code to find the values of fT for an invariant equal to zero under the K2P model for the level-1 trinet

# Define variables
CCA := aC*bC*fC;
CAC := aC*cC*( ddelta*eC*fC + d1*dC);
ACC := bC*cC*(d1*dC*fC + ddelta*eC);

TTA := aT*bT*fT;
TAT := aT*cT*( ddelta*eT*fT + d1*dT);
ATT := bT*cT*(d1*dT*fT + ddelta*eT);

CGT := aC*bT*cT*(d1*dT*fT + ddelta*eT*fC);
GTC := aT*bT*cC*(d1*dC*fT + ddelta*eC*fT);
TCG := aT*bC*cT*(d1*dT*fC + ddelta*eT*fT);

invariant := ACC*ATT^2* CAC*CCA*TAT^2*TTA^2 - CGT^2*GTC^2*TCG ^2;

solve(invariant = 0);

Listing B.2: Maple code to find the zero points for the invariant under the K2P model for the level-1 trinet jajajjaa
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