
A Robust Distributed Reputation Mechanism

for Peer-to-Peer Systems

Rahim Delaviz Aghbolagh





A Robust Distributed Reputation Mechanism

for Peer-to-Peer Systems

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 1 Oktober 2013 om 15:00 uur

door Rahim DELAVIZ AGHBOLAGH

Master of Technology in Programvaruteknik för Distribuerade System,
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Chapter 1

Introduction

In recent years, Information Technology has reshaped our private and social lives, it has
created new business opportunities, and it has transformed many of our well-established
processes into new forms. Using modern communications technology, it is common for
two arbitrary persons in distant locations to encounter and transact with each other for
different purposes, like buying/selling goods. In the offline world, due to its smaller scope
and the existence of mature procedures that have come into existence in the course of
time, interactions and their consequences are easy to manage. As an example, consider
the act of buying, which we experience almost every day, and which is simply the process
of exchanging a good for money. In such an action, the trust that the involving parties hold
in each other facilitates the process. Such a simple interaction becomes complex in the
online world, where it requires specific infrastructures and automated procedures. In the
dispersed and large-scale environment of the online world, online reputation mechanisms
can facilitate such a trust-based processes through scoring the system participants. The
main idea behind reputation mechanisms is to use historical data to score the system
participants and to make informative decisions in the future. In this regard, there are four
standing questions: what type of data to collect, how to collect the required data, how to
process the collected data, and how to score the entities in the system, such as the seller of
a good in the online marketplace or the good itself? Besides, depending on the operational
environment, extra concerns like security, may come into picture as well.

In this thesis, we are interested in distributed reputation mechanisms. In such a mech-
anism, collecting data and calculating reputation scores are done by the participants them-
selves, and there is no central and dedicated authority to perform these tasks. Such mech-
anisms are organic matches for Peer-to-Peer (P2P) file-sharing systems that are used for
publishing and downloading content such as videos in a decentralized fashion. In a P2P
file-sharing system, there is no central server to supply the content requesters with the
content, and the contributions of the system participants are required for the good oper-
ation of the system. In P2P file-sharing systems, if everybody shares content eventually
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everybody will obtain a high quality service, bur for rational peers (participants) provid-
ing resources, such as bandwidth, without getting anything in return is not interesting, and
they need a stronger motivation to cooperate. One class of mechanisms that have been
designed to motivate or even force peers to cooperate consists of reputation mechanisms.

Distributed reputation mechanisms for large-scale applications like P2P file-sharing
come with many challenges. In this thesis, we address these challenges by designing, im-
plementing, and analyzing techniques for making distributed reputation mechanisms more
robust. We incorporate these techniques into the BarterCast reputation mechanism [68],
which is already deployed in the Tribler BitTorrent client [82]. In BarterCast, peers use
a gossiping protocol to inform other peers about their own upload and download activi-
ties. From the data received through this protocol, every peer locally builds a weighted,
directed graph and computes reputation values for other peers in this graph. We make
this mechanism more robust with respect to three important aspects. First, the reputation
values should accurately reflect the true behaviors of the peers, and we study the oppor-
tunities for improving the accuracy of BarterCast. Secondly, as the open and distributed
environment of P2P systems is lucrative for malicious actors, we study security issues in
BarterCast and make it more secure. Thirdly, an acceptable tradeoff between scalability
of the mechanism, in terms of communication, storage, and computation costs, and the
accuracy of the computed reputation values is desired. We study this problem in Barter-
Cast, and without compromising the reputation accuracy, we make it highly scalable.
Moreover, through employing the data collected from the Tribler network, we perform a
thorough and insightful study of the BarterCast mechanism from the perspective of net-
work science, and we gain an understanding that may lead to further improvements.

1.1 Reputation Mechanisms

According to the Oxford dictionary1 the term reputation is defined as “the beliefs or opin-
ions that are generally held about someone or something”. As can be understood from
this definition, the reputation of an entity consists of the collective opinions about it that is
built up in the course of time. The concept of reputation is closely related to the concept of
trust, which is defined as “the firm belief in the reliability, truth, or ability of someone or
something”. In general, trust is built between a pair of people, the one who trusts and the
one who is trusted, but reputation is widespread, and is the accumulation of the opinions
that are held about somebody or something. Notice that these are just general definitions
of these concepts, and depending on the application, the distinction between reputation
and trust may become blurry. Below we briefly discuss where reputation systems come
from and we elaborate on the building blocks of the online versions of these mechanisms.

1http://oxforddictionaries.com
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Figure 1.1: An example of a Hawala transaction (red lines indicate physical money trans-
fers and blue lines indicate communications).

1.1.1 An Anecdotal History of the Concept of Reputation

Before we turn to an in-depth discussion of reputation mechanisms, we briefly present one
of the origins of trust-based trading in old times and how it influenced modern reputation
mechanisms. Before the existence of banks and modern financial transaction facilities,
trust-based trading was the main way of doing long-distance business. A famous example
of a historical and trust-based mechanism is Hawala2, which is still legally used in Middle
East countries like Iran, or illegally by those who are in search of special interests like
money laundering [50]. Hawala is solely based on trust and it originated centuries ago in
the Middle East, when traders started doing business with faraway places and there was
a threat of robbery on the highway when carrying physical money. Figure 1.12 presents
a Hawala transaction that takes place between A and B; here X and M are the Hawala
brokers. The steps of this transaction are as follow. First, A approaches X and gives her
an amount of money to be transfered to B and shares a password with her; here A trusts
X to do a safe payment to B. Second, the broker X contacts M, generally they are located
faraway, and informs him on the agreed fund and password and asks him to pay B if B
gives the right password. In this step, M trusts X for the later settlement and payback
by her. Third, B, who already has been informed by A about the amount and the shared
password, goes to M and completes the transaction. Notice that during this transaction, no
money is transferred between X and M, but later on they accumulate all their transactions
and perform a clearance.

1.1.2 Online Reputation Mechanisms

Even though the spread of modern transactional systems has reduced the need for trust-
based money transfers like Hawala, the emergence of online services, markets, and col-

2http://en.wikipedia.org/wiki/hawala
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laborative applications has created new opportunities for reputation and trust mechanisms.
Nowadays, almost everybody with Internet access performs online transactions, e.g., in
the forms of buying a product, booking an accommodation, getting advice on a product
or service, and hundreds of similar services. In comparison with a physical transaction,
an online interaction differs from the offline version in many ways. Besides the techni-
cal differences, the involving parties do not have a prior interaction experience with each
other, and they may not have any idea of the trustworthiness of the other party. More-
over, due to the ease of initiating such a transaction, and the limited information about
the counter-party’s reliability, misbehaving, fraud, and misuse of the system are highly
plausible in such systems. So, providing the users with an acceptable level of assurance
about the reliability of the product or service is required for the healthy and wealthy (high
number of users) operation of the system. In such a situation, reputation mechanisms can
help users to get through.

The fundamental idea behind (online and offline) reputation mechanisms is twofold.
First, human behavior does not change radically over time, and what we have done in the
past is a good indicator of how we may behave in the future. Secondly, through acquiring
individual experiences about an entity, e.g., the trustworthiness of a seller or the reliability
of a product, we can build a reusable and valuable knowledge-base for making informed
decisions in the future. Figure 1.2 presents this concept in a simple way. The input to
the reputation mechanism may come from many sources; the main source is feedback on
past transactions that is provided by the system participants through rankings, comments,
scores, or other forms as input [35]. The output of the mechanism is a score, a statement,
or a rank that is assigned to the entity of interest, e.g., a person or a product. A user who
wants to use the service but has no idea of whom to trust, consults the reputation scores
to select a proper candidate to interact with. In Section 1.1.3, we will elaborate on the
building blocks of typical online reputation mechanisms.

Reputation mechanisms are used widely in the context of eCommerce and they have
facilitated fraud avoidance and brought trust into these systems. Amazon3 and eBay4 are
two well known examples of successful eCommerce businesses that employ reputation
mechanisms in their business models. Amazon uses different forms of feedbacks, e.g.,
scores, comments, videos, images, to rank products and also reviewers. In Amazon, based
on the received scores, a reviewer can boost his rank and become one of the top-1000
reviewers [49]. In eBay, buyers and sellers can rate each other and when a transaction is
complete, they can write a comment about their experience. Through accumulating the
received scores, eBay assigns each buyer and seller a rank [49], which is very influential in
future transactions. Several studies have shown that a seller’s reputation has a significant
and positive influence on the prices that he can obtain in eBay [45, 63].

3http://www.amazon.com
4http://www.ebay.com
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Figure 1.2: A reputation mechanism presented as a black box with its external interfaces.

Besides facilitating transactions in electronic markets, reputation mechanisms play an
important role in distributed systems as well. For instance, they are used to filter out
inauthentic contents in P2P file-sharing systems [25,51,104], to diminish the influence of
malicious acts, and to push down inauthentic comments in a list of given comments5 [12,
68,69,77]. Section 1.1.4 presents a summary of some distributed reputation mechanisms.

1.1.3 The Building Blocks of Reputation Mechanisms

The breakdown of a reputation mechanism into components can be realized in many ways.
In this section we introduce two ways of structural decomposition of reputation mecha-
nisms and elaborate on them.

The first breakdown is proposed by Marti et al. [66], who identify three main compo-
nents for a reputation mechanism, and who present a breakdown of each component into
smaller pieces, see Table 1.1. The three components are:

• Information gathering: This component is responsible for collecting information
on the behavior of the system participants. Its sub-components deal with the is-
sues of managing user identities, the trustworthiness of the information sources,
aggregating information from different sources, and dealing with newcomers.

• Scoring and ranking: Once the information is collected, whether partially or com-
pletely, the next step is to compute a reputation score for an entity of interest. Such
a computation may be done by an evaluator himself, by a centralized service, or in
a quorum. A reputation score may be a binary value, a real number in a specific
range; alternatively the mechanism designer may define qualitative values to repre-
sent the scores. Once the computation is done the evaluator should decide which
entity, if any, to trust. This decision may be based on a minimum threshold or on
the relative ranks of the entities.

5http://slashdot.org
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• Response: This is the motivation engine of the reputation mechanism that encour-
ages and discourages good and bad behaviors, respectively. The component may
incentivize system participants for their good behavior, or it may punish the misbe-
having participants.

Information gathering Scoring and ranking Response
component component component
Identity scheme Good vs. bad behavior Incentives
Information sources Quantity vs. quality Punishment
Information aggregation Time dependence
Stranger policy Selection threshold

Peer selection

Table 1.1: Components and sub-components of a reputation system [66].

The second structural framework for reputation systems is proposed by Hoffman et
al. [44], who put a lot of effort in the study of the attack and defense mechanisms in repu-
tation systems. To compare different mechanisms, they have built an analysis framework
that encompasses many types of reputation mechanisms. Their framework decomposes
reputation mechanisms into the three components of formulation, calculation, and dis-
semination, where each component comprises smaller components, see Figure 1.3. The
role of each component is:

• Formulation: This component contains the abstract mathematical specification of
how the available information should be transformed into the reputation metric. The
formulation can be realized through an explicit equation, e.g., summation of the
inputs, or through an algorithm that transforms the input values. This component
plays a critical role in the safe operation of the mechanism and any weakness may
allow malicious manipulation of the outcome.

• Calculation: This component calculates the mathematical formulation of the rep-
utation metric given a set of constraints. As an example, if the formulation is the
summation of the inputs, this component should decide whether to use all values or
just a subset of them.

• Dissemination: The dissemination component allows the system participants to ob-
tain the information that they need to calculate reputation scores. This component
can be categorized according to multiple aspects, e.g., centralized vs. distributed,
deterministic vs. non-deterministic.

Figure 1.3 presents this framework in detail; it is more complete than the framework by
Marti et al. [66].
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Figure 1.3: An analysis framework of reputation systems (taken from [44]).
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1.1.4 Reputation Mechanisms in Distributed Systems

In this section, we provide a general overview of some of the main distributed reputations
mechanisms. A more complete list is can be found in [44, 97].

• PGrid: This protocol was proposed by Aberer et al. [5] and it is one of the first
distributed reputations mechanisms [5]. Even though the authors do not call their
protocol PGrid, in this thesis to have a similar structure of writing we call it PGrid,
like in [97]. In PGrid it is assumed that peers mainly are honest and only nega-
tive experiences are stated through complaints. The reputation mechanism collects,
summarizes, and aggregates complaints about a peer; this process is done through
a decentralized storage mechanism called P-Grid which was designed by the same
author [4]. If the number of complaints about a peer is higher than the average in
the system, the peer is not trusted any longer.

• XRep: This protocol was proposed by Damiani et al. [25], to be used in the Gnutella
network. In this protocol each peer keeps track of the reputations of its neighbor
peers and provides binary votes, positive or negative, about them. In this protocol
both peers and files are assigned reputation values, and a combination of them are
used to prevent the download of contaminated contents. Each peer has its own local
repository and vote collecting is realized through broadcasting.

• EigenTrust: This protocol was proposed by Kamvar et al. [51], to prevent the spread
of inauthentic contents in P2P file-sharing networks. In this protocol peers rate
each other by the values of +1, 0 , or -1. The calculation of the global reputation
values is based on these local opinions. To calculate the reputation values, the local
opinions are put in a matrix and the left eigenvector of this matrix contains the
global reputation values. In this protocol, a deterministic distributed framework
(using multiple hosts for higher availability), which is based on Distributed Hash
Tables, is responsible for calculating, storing, and distributing the reputation values.

• TrustGuard: Unlike the previous mechanisms, which are employed as a secondary
mechanism to prevent misbehaving in the underlying applications, the TrustGuard
mechanism [95] is designed to guard the reputation mechanism itself against ma-
licious acts. It is designed to prevent three kinds of malicious acts, oscillatory be-
haviors, fake transactions, and unfair ratings. This mechanism uses a personalized
oscillation guard, based on given opinions to similar partners in the past, to identify
fake ratings. In this mechanism the rates are binary, and it uses a similar approach
to PGrid for dissemination.

• P2PRep: This mechanism is designed by Aringhieri et al. [12], to deal with mali-
cious actions in fully distributed and anonymous systems. The calculation is based
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on fuzzy techniques, and two types of scores are considered for each peer, a local
and a global score. Prior to using a network resource, a peer first queries for the lo-
cations of that resource, then polls for the reputations of the resource providers, and
finally, using fuzzy techniques, calculates the reputations of the resource providers.
In this mechanism only positive ratings are used (it is assumed that the participants
are anonymous and negative values are pointless). The requests are broadcasted
throughout the network but replies are uni-casted to the requester.

• Credence: Proposed by Walsh et al. [104], this protocol was designed to defend
against file pollution in file-sharing networks. It was plugged into a customized
version of the LimeWire BitTorrent client (in 2011 LimeWire was shutdown by
court). This mechanism only ranks the contents, through employing individual
votes by the peers; in order to overcome the problem of vote scarcity it uses a web-
of-trust. Credence expects that honest peers vote for a content in a similar way and
peers with similar voting patterns are trusted more than others. In this mechanism
resources are rated as +1 (authentic) or -1 (inauthentic), it uses local databases to
store the received votes from the neighbors, and it employs gossiping techniques
for spreading information about unpopular contents.

1.2 BitTorent and Tribler

In this section we provide a brief overview of BitTorrent protocol and the Tribler project,
and we present an overview of classes of incentive mechanisms in file-sharing networks.
The Peer-to-peer technology has numerous applications in data storing and computing,
but the most prominent of them is for file-sharing, which has been realized through the
BitTorrent protocol [1]. Since the introduction of the first BitTorrent client in 2001, it
has gained a lot of popularity for sharing video, music, and other bulky contents. In the
BitTorent protocol, instead of publishing content on a server and downloading it directly,
content is broken up into smaller pieces and each piece may be fetched from different
peers. There is a centralized server called the tracker, which is responsible for tracking
the available peers in a swarm, which is the set of online peers who are interested to upload
or download a content. When a peer starts downloading a file, it contacts the tracker and
gets a list of the addresses of peers who have some or all of the pieces of the file, then the
process continues by directly asking and downloading pieces from the peers who already
have them. The address(es) of the tracker(s) and metadata of the content are provided in
a small file called the .torrent file of the content.

Since in BitTorrent there is no central content provider, sharing the available pieces of
a content is crucial for the quality operation of the whole system. Looking from the local
and selfish perspective of peers, if there is no control mechanism, then sharing content is
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not in the interest of rational peers, and there should be a strong motivation for them to act
cooperatively. Such selfish behavior is called freeriding [6], in which a freerider consumes
much more resources than it provides in return. In BitTorrent, incentive mechanisms have
been employed to withstand freeriding. The most widely used incentive mechanism is tit-
for-tat, which was inspired by the outcome of an experiment run by Axelrod to determine
the best strategy for iterative playing of the prisoner dilemma game [92]. Tit-for-tat is a
pairwise mechanism, and a peer uploads to peers who reciprocate his uploads. Tit-for-tat
is one of many forms of the incentive mechanisms that have been designed and proposed
to be used in BitTorent. Table 1.2 gives an overview of different classes of incentive
mechanisms along with their advantages and disadvantages. The content of this table is
summarized from [67].

Tribler is a BitTorrent-based open source file-sharing client that is being developed
at Delft University of Technology at Netherlands6 with the aim of video-streaming and
file-sharing, and it is used as a research vehicle for experimenting with and analyzing P2P
algorithms by researchers at Delft University of Technology [75, 82, 86, 87]. This client
has a number of distinctive features such as creating YouTube like channels, distributed
search, and playback capabilities. The goal of the Tribler project is to build a fully dis-
tributed, anonymous, and user-friendly P2P content distribution framework. Tribler is
an academic project and evolves continuously; Figure 1.4 shows a screenshot of version
6.0.0 of it. By entering relevant keywords in the top-left box one can search for content.
Through the menus on the left side a user can browse the search results, the subscribed
channels, the swarms he is currently participating in, and open the playback window while
downloading the video. The central part of this screenshot shows the search results along
with detailed information about each file.

The Tribler client is composed of a number of components, and two of the main com-
ponents are BuddyCast [83] and BarterCast [68]. BuddyCast is the gossiping engine of
Tribler and it collects and distributes all sorts of information that peers need to operate,
e.g., content’s metadata and the list of discovered peers. BarterCast is the incentive mech-
anism of Tribler. The focus of this thesis is to study and improve the robustness of the
BarterCast mechanism in the aspects of accuracy, security, and scalability. In Section 1.3,
we cover this mechanism in detail.

1.3 The BarterCast Reputation Mechanism

P2P file-sharing systems are characterized by large populations and high turnover. In
such a setting, two interacting participants will often have no previous experience with
each other, and will thus be unable to estimate each other’s behavior in the system. De-

6http://www.tribler.org
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Figure 1.4: A screenshot of the main page of version 6.0.0 of Tribler.

spite such a complexity these systems can benefit from reputation mechanisms through
which peers can evaluate the reputations of the system participants and are therefore able
to identify good service providers. The BarterCast mechanism [68] is used by the Tri-
bler Bittorent client to rank peers according to their upload and download behavior, and
to prevent free-riding. In this mechanism, a peer whose upload is much higher than its
download gets a high reputation, and other peers give a higher priority to it when select-
ing a bartering partner to exchange content with. In BarterCast, when two peers exchange
content, they both log the cumulative amount of transferred data since the first data ex-
change and the identity of the corresponding peer in a BarterCast record. In BarterCast,
to avoid misreporting about other peers data behaviors, each peer is only allowed to report
about its own data exchange with other peers. This constraint decreases the dissemination
rate of BarterCast records, and accordingly decreases the reputation accuracy. More-
over, the initial idea behind the design of BarterCast was to prevent lazy free-riders in the
network [67], and the assumption was that all peers follow the protocol and there is no
malicious peer in the network. Due to this assumption, the initial design of BarterCast
does not contain security related components.

By exchanging BarterCast records, each peer creates its own current local view of the
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upload and download activity in the system, and gradually expands its partial graph. The
partial graph of peer i is Gi = (Vi, E, ω), where Vi is the set of peers that peer i has got
informed about their activity through BarterCast records, and E is the set of weighted
directed edges (u, v, w), with u, v ∈ Vi and w the total amount of data transferred from
u to v. Upon receipt of a BarterCast record (u, v, w), peer i either adds a new edge to its
partial graph if it did not know u and/or v, or updates the weight of the edge u → v if it
already exists in its partial graph.

In order to calculate the reputation of an arbitrary peer j ∈ Vi at some time, peer
i applies the maxflow algorithm [24] to its current partial graph to find the maximal
flow from itself to j and vice versa. Maxflow is a classic algorithm in graph theory
for finding the maximal flow from a source to a destination node in a weighted graph.
When applying Maxflow to the partial graph, we interpret the weights of the edges, which
represent amounts of data transferred, as flows. The original Maxflow algorithm by Ford-
Fulkerson [24] tries all possible paths from the source to the destination, but in BarterCast
only paths of length at most 2 are considered. Using the values Φ2(x, y) as computed with
the 2-hops Maxflow from x to y, the subjective reputation of peer j from peer i’s point of
view is calculated as:

Ri(j) =
arctan(Φ2(j, i)− Φ2(i, j))

π/2
, (1.1)

and so Ri(j) ∈ (−1,+1). If the destination node j is more than two hops away from i,
then its reputation is set to zero. The intuition behind this formula is twofold; first, with
regard to the difference between incoming and outgoing flow it is a monotonic function
that gives reputation values in the range of (−1,+1). Second, the provided scaling by
the arctan function has the effect of giving higher value for the initial contribution of
the starter peers (new comers). This ensures that a modest contribution of a new peer
significantly affects its reputation. In the partial graph of Figure 1.5, peer i as the owner of
the graph evaluates the reputation of peer j. In this graph, Φ2(i, j) = 11 and Φ2(j, i) = 5,
and so Ri(j) = −0.89.

To compare BarterCast with other reputation mechanisms, we recall the general anal-
ysis framework from Figure 1.3 and cast the BarterCast reputation mechanism into this
framework, see Figure 1.6.

1.4 Crawling Tribler

In this thesis, to collect the required dataset consisting of the BarterCast records of all
(or at least, many) Tribler peers for analysis, we implemented a crawler and crawled the
Tribler network. Except for some slight differences, the crawler works as an ordinary
Tribler client. Discovery of the new peers is done through the BuddyCast protocol, which
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Figure 1.5: A partial graph in BarterCast.

is the gossiping engine of the Tribler client. When a new peer is discovered with this
protocol, it is added to a list. The crawler hourly contacts all peers in this list and asks
them for their latest BarterCast records by including the timestamp of the latest record it
does have of each peer. Using the BarterCast records received by the crawler from each
peer, we can reconstruct the partial graph of that peer in the same way the peer builds it.

The discovered peers have different ages, some of them having been installed and
running for months and others just for a few days or even hours. So, when the crawler
asks a peer for BarterCast records for the first time, it might receive very old records that
are useless because they correspond to peers that were online in the past but no longer
participate in the system. To mitigate this problem, when the crawler contacts a peer for
the first time, it uses the start time of the crawl, that is, 00:00 hours on June 20, 2009, so
that the discovered peers will only include BarterCast records fresher than the crawl start
time in their replies.

Another problem in doing the crawling is the size of the reply messages. If a peer
is asked for all its records at once, the reply message might be large and sending it may
be problematic. To prevent this intrusive effect in the crawling, in each contact peers are
only asked for 50 records that they have not sent already. Because of a potentially high
churn rate, this limitation causes a side effect and for some of the peers that go offline the
crawler is unable to fetch all their records. To have a reliable analysis, such incomplete
views should be removed. Because in each contact a peer is limited to send at most 50
records, so with a high probability, having a multiple of 50 records from a peer means that
it has not sent all its records. As a consequence, to filter out incomplete views, all views
of the size of a multiple of 50 are removed.

To be able to sort the collected records and to account for the time difference with
remote peers, the crawler asks peers to send for their local time as well. When the crawler
receives such information, it logs the remote peer’s time and its own local time. Using
these two local times and the timestamp of the record (available in the record payload) the
collected records can be sorted. If tp and tc denote the local time of the remote peer and the
crawler, respectively, and tr is the record timestamp, then the relative record occurrence
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Figure 1.6: Casting the BarterCast mechanism into the reputation framework of Hoffman
[44].
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time is:
tc − tp + tr (1.2)

This relative time is used in the experiments to sort the BarterCast records.
In this thesis, the experiments and evaluations are based on the crawled data from

different periods of time and with different volumes. In order to make a unified reference
across the whole thesis, we assign a name tag to each dataset. Later on, we refer to these
name tags when we explain the experiment processes. Here is the list of the datasets:

• Dataset 1: This dataset contains 547,761 BarterCast records from 2,675 different
peers, collected from June 2009 until September 2009.

• Dataset 2: This dataset contains 2,837,422 BarterCast records from 11,176 differ-
ent peers, collected from September 2010 until December 2010.

• Dataset 3: This dataset contains 37,072,073 BarterCast records from 77,289 dif-
ferent peers, collected from September 2010 until September 2012.

Notice that Dataset 1 and Dataset 2 are distinct but Dataset 3 contains Dataset 2.
Depending on the experiment, we provide additional information about each dataset in
the relevant sections.

1.5 Problem Statement

Designing a distributed reputation mechanism comes with many challenges, and such a
mechanism has requirements such as accuracy, security, and scalability. So far, many
proposed mechanisms have never gone beyond a paper design into real operational mode
[44]. Even though BarterCast is a deployed mechanism, its original design does not suffi-
ciently fulfill these requirements mentioned above. In this thesis, we employ the deployed
BarterCast mechanism as the mainline mechanism, and we design, implement, and ana-
lyze additions and modifications of it in order to make it robust with respect to accuracy,
security, and scalability. In addition, through employing the data collected from the Tri-
bler network, we do a thorough analysis of the BarterCast graph from the perspective of
network science and gain insights for further improving this mechanism. In particular, we
address in this thesis the following four research questions.

What is the accuracy and the coverage of BarterCast and how we can improve
them? Two relevant and important questions associated with a reputation mechanism
like BarterCast are what the accuracy of the reputation values is, and to what fraction of
participants the mechanism can assign a meaningful reputation value (the coverage). In
the end, the reputation values should reflect the true behavior of the peers, and without
accurate reputation evaluations, the whole mechanism is useless. In this regard, we need
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to define viable metrics for accuracy and coverage, and if the values for accuracy and
coverage are not satisfactory we need to find ways to improve the rate of accuracy and
coverage.

How can we make BarterCast resilient to different types of attacks? Due to the
possibility of cheap identity creation, openness, and its decentralized nature, BarterCast
is vulnerable to attacks like sybil attacks, whitewashing, and miss-reporting. In a sybil
attack, through creating multiple fake identities an attacker benefits from the system with-
out contributing. In whitewashing, a malicious user with a low reputation can get rid of
its identity by creating a new one. Furthermore, through miss-reporting, an adversary can
subvert the reputation values of others. These attacks hinder the natural operation of the
system and they should be dealt with.

How we can make BarterCast scalable without compromising the accuracy? In
online reputation mechanisms as BarterCast, providing the system participants (peers)
with the appropriate information on previous interactions is crucial for accurate reputation
evaluations. A naive solution is to provide all peers with all information, regardless of
whether they need it or not, which may be very costly and not scalable. In order to have
accurate reputation evaluations and at the same time to be able to scale to large numbers
of peers, an elegant and scalable information dissemination solution is required.

What is the structure of the BarterCast network and what we can learn from
it? In BarterCast, through collecting BarterCast records every peer builds a local graph
which represents its view of the network. Besides, through combining all local graphs
from all peers, we can build a single global graph which represents the whole network.
Studying the global BarterCast graph from the perspective of network science can reveal
many operational and performance aspects of it, and can help us to improve BarterCast in
proper and effective ways.

1.6 Research Contributions and Thesis Outline

The contributions of this thesis are as follows.
Improving reputation accuracy and coverage (Chapter 2) In BarterCast, a peer

calculates the reputations of other peers by applying the Maxflow algorithm to its partial
graph; for efficiency reasons, only paths of at most two hops are considered. We iden-
tify and assess three potential modifications to BarterCast to improve its accuracy and
coverage (fraction of peers for which a meaningful reputation can be computed). First,
a peer executes Maxflow from the perspective of the node with the highest betweenness
centrality instead of itself. Secondly, we assume a gossiping protocol that gives each peer
complete information about upload and download activities in the system, and third, we
lift the path length restriction in the Maxflow algorithm. To assess the impact of these
modifications, we crawl the Tribler network and collect the upload and download actions
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of the peers for three months. We apply BarterCast with and without these modifications
on the collected data and measure the accuracy and coverage. This chapter is largely based
on our work published in the IEEE International Conference on Peer-to-Peer Computing
2010 [27].

Strengthening BarterCast against sybil attacks, whitewashing, and miss-
reporting (Chapter 3) We study the opportunities for sybil attacks in BarterCast and
we devise a method for making BarterCast sybil attack resilient, which we incorporate
into BarterCast to obtain a protocol called SybilRes. In SybilRes, after an upload action,
the uploading peer discounts the weights of the edges on the paths from the downloader
to itself. As a consequence, due to the way reputations are computed, the reputation of
a peer performing a sybil attack decreases fast. To mitigate the negative impact of edge
weight discounting on the reputations of honest peers, after a download action, the down-
loading peer increases the weights of the edges on the paths from the uploader to itself.
We demonstrate that SybilRes is effective in practice by means of trace-driven simula-
tions using data collected from the Tribler network. Besides, due to modifications in the
dissemination and formulation parts of the mechanism, SybilRes is robust against white-
washing and miss-reporting behaviors as well. This chapter is largely based on our work
published in the International Conference on Distributed Computing Systems 2012 [28].

Making BarterCast scalable (Chapter 4) In online reputation mechanisms, provid-
ing the system participants (peers) with the appropriate information on previous interac-
tions is crucial for accurate reputation evaluations. A naive way of doing so is to provide
all peers with all information, regardless of whether they need it or not, which may be very
costly and not scalable. We propose a similarity-based approach, named SimilDis, for tar-
geted dissemination of information in BarterCast. We propose two methods to derive peer
similarity in the partial graph of a peer. The first method is based on incrementally main-
taining a directed acyclic graph, and the second method is based on performing multiple
nonuniform random walks in the partial graph. In both methods, each peer maintains a
list of peers most similar to itself, and gives higher priority to them when disseminating
information. We evaluate the accuracy and the cost of these methods using trace-driven
simulations based on traces from the Tribler P2P file-sharing network. This chapter is
largely based on our work published in the International ACM Workshop on Scalable
Trusted Computing 2012 [29].

Insights into the BarterCast network from the network science perspective
(Chapter 5) In this chapter, we study the BarterCast mechanism from the perspective
of network science and we provide a detailed analysis, which includes such network
topology measures as the degree distribution, the node interconnectivity, the clustering
coefficient, the community structure, and distance measures. Besides, we study the geo-
graphical spread and content sharing behavior of the system participants and correlate the
results with their connectivity in the network. We interpret each evaluated measure in the
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scope of reputation and file-sharing mechanisms and propose relevant implications and
prospective applications for future designs. The global graph of BarterCast we study is
based on data that we have collected during two years of crawling the Tribler file-sharing
network. This chapter is largely based on our work published in the International IFIP
Networking Conference 2013 [30].

Conclusions (Chapter 6) In this chapter, we summarize our important findings in this
thesis and provide suggestions for future study.
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Chapter 2

Improving Reputation Accuracy and
Coverage

The effectiveness of a reputation mechanism can be assessed with its accuracy and cov-
erage. The accuracy measures to what extent the computed reputation values reflect the
real behaviors of the system participants, and the coverage is the fraction of the system
participants for which the mechanism is able to compute meaningful reputation values.
Inaccurate or partial reputation evaluation leads to misjudgment, poor behavior, and fi-
nally, system degradation.

In this chapter we propose three modifications to the BarterCast reputation mecha-
nism, and we evaluate the accuracy and the coverage of the original BarterCast reputa-
tion mechanism and of all combinations of these three modifications. First, rather than
have each peer execute the Maxflow algorithm to compute reputations from its own per-
spective, we make each peer do so from the perspective of the node with the highest
betweenness centrality [37] in its partial graph. The second modification consists in using
a gossiping protocol that fully disseminates the BarterCast records in the whole system
rather than limiting the exchange of these records to one hop. In the third modification
we increase the maximal path length in the Maxflow algorithm to 4 or 6 instead of 2 as
in the original BarterCast. In order to evaluate the original BarterCast reputation mecha-
nism and our three modifications, we use Dataset 1, see Section 1.4. After filtering out
the incomplete views from this dataset, we ended up with 416,061 records collected from
1,442 peers. This means that although 46% of the views are incomplete, they contain only
24% of the collected records. All the subsequent processing and analysis in this chapter
is based only on complete views. From the records obtained from each peer, we emulate
its reputation computations by reconstructing its subjective view, represented by the par-
tial graph of the peer (in this thesis the terms partial graph and subjective view convey
the same meaning). We then used this graph to execute the Maxflow algorithm with and
without modifications.
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The main contributions of this chapter are as follows:

1. We define appropriate metrics to quantitatively measure the accuracy and coverage
of the BarterCast mechanism (Section 2.2).

2. We propose three modifications to the BarterCast mechanism, and using a set of
data collected from the Tribler network for each combination of modifications we
measure the change in the accuracy and coverage (Section 2.3).

3. We perform a statistical analysis to evaluate the significance of the improvements
(Section 2.4).

2.1 Related Work

After the first release of BarterCast Seuken et al. [93] proposed an improvement to make
it more resilient against misreporting attacks. Their solution is based on ignoring some of
the feedback reports. Also, this solution could cut down the severity of the attack, but on
the other hand it increases the feedback sparsity. Xiong et al. [107] show that the feedback
sparsity is an issue in large distributed systems, and that a lack of enough feedback can
lead to lower accuracy and coverage.

Besides BarterCast, several other distributed reputation mechanisms have been pro-
posed for P2P systems, but they use different methods to calculate reputation values.
EigenTrust [51] is based on summation of direct observations and indirect data and uses
centralized matrix operations to compute the left Eigen vector. The CORE system [18]
uses arithmetic weighted averaging on historical data to calculate reputation values.

2.2 Defining the Accuracy and Coverage Metrics

As the term accuracy indicates, it is a measure of how close an estimated reputation value
is to an ”objective” or real value. In a distributed mechanism like BarterCast, depending
on how the feedback records are disseminated, peers may have different opinions about
the reputation of a peer at the same time. Each peer also at each point in time has an
objective reputation value, Oj , that is calculable only if the evaluator peer has a global
view of the activity of all peers. In our case, only the crawler has such a view and using
the collected data we can calculate the objective reputations. If Uj and Dj are the total
upload and download by peer j, then its objective reputation is

Oj =
arctan(Uj −Dj)

π/2
. (2.1)



23

Using the objective and subjective reputations, the estimation error is defined as the abso-
lute value of the difference between the subjective and objective values:

e(i, j) = abs(Sij −Oj). (2.2)

Higher estimation errors mean lower accuracy and vice versa.
Coverage is another important metric that expresses how well a node is located and

can reach other nodes in the graph. Denoting by Fh(., .) the maximum flow computed
with the Maxflow algorithm using all paths of length less than or equal to h, in the partial
graph G the h-hop coverage of node i is defined as

cG(i, h) = |{u|Fh(i, u) > 0 or Fh(u, i) > 0}|. (2.3)

So the coverage of node i in a graph is the number of nodes at a distance at most h from
node i with non-zero maximum flow to or from i. Dividing the coverage by the number of
nodes normalizes it into the interval of [0, 1] and makes it possible to compare this metric
in graphs of different size.

2.3 Problem Statement and Proposed Modifications

An analysis of the collected data set shows that the accuracy and the coverage with the
current BarterCast mechanism are low and need to be improved. The mean of the esti-
mation error is 0.664, which is the same as the average difference between two random
values in the interval of possible reputation values, (−1,+1). This means that a random
guess for the subjective reputation value has the same precision as using the BarterCast
mechanism. Similarly, the coverage of the BarterCast mechanism is very low at 0.032.
In order to remedy this situation, we propose the following three modifications to the
BarterCast mechanism.

2.3.1 Modification 1: Using Betweenness Centrality

Betweenness centrality has been introduced by Freeman [37] as a measure of the number
of shortest paths passing through a node. In a graph G = (V,E), if δst is the num-
ber of shortest paths between two arbitrary nodes s, t of G, and δst(v) is the number
of these paths that pass through node v, then the betweenness centrality of node v is
β(v) =

∑
s ̸=v ̸=t

δst(v)
δst

. A higher betweenness centrality means a higher participation of
the node in connecting other nodes, and also a higher flow that passes through it. Another
feature of this measure is that in contrast to connectivity (the sum of in and out degrees of
a node), which is a local quantity, betweenness centrality is a quantity across the whole
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graph; nodes with many connections may have a low betweenness centrality and vice
versa [13]. Betweenness centrality has been used in the analysis of various topics, like
transportation, social networks, and biological networks, but to the best of our knowledge
it has not been used in reputation systems.

In the original BarterCast mechanism, a peer i as the owner of the partial graph Gi, in
evaluating the reputation of peer j, runs the Maxflow algorithm to compute the maximum
flow from itself to j and from j to itself. In the proposed modification, first node i finds the
node with the highest betweenness centrality in Gi, and then replaces itself with that node
in the Maxflow execution. By this change, the evaluator peer benefits from the centrality
feature of the central node and uses the collected data in a better way.

2.3.2 Modification 2: Using Full Gossip

The second modification is obtained by changing the way BarterCast records are dissem-
inated. In the original version, peers only use 1-hop message passing and they are not
allowed to forward the received records. Peers only report their own download and up-
load activities to the peers that are discovered by the BuddyCast protocol. This method
limits the effect of misreporting but it is not efficient in spreading the BarterCast records.
Specially if a peer goes offline, its upload and download activity are not disseminated, and
when it comes online again, very few peers know about its activities. In this modification,
instead of using 1-hop message passing, we assume that there is a full gossiping proto-
col that spreads records without the hop limitation, so that in principle all online peers
eventually receive all propagated records.

2.3.3 Modification 3: Lifting the Maxflow Hop-Count Restriction

In the third modification we lift the restriction of 2 on the hop count in the Maxflow
algorithm and increase it to 4 or 6 hops. With this change, more nodes are involved in the
Maxflow algorithm and the chance of reaching a node, and so increasing the coverage, is
increased.

2.4 Experimental Setup and Results

In this section we first explain our experimental set-up for assessing the accuracy and
coverage of the original BarterCast mechanism and of the proposed modifications. In
short, we emulate the creation of partial graphs using the BarterCast records received by
the crawler, and we emulate their computation of the reputation values of those peers to
which they appear to have uploaded data. Then we present the experimental results and
compare the effect of the proposed modifications on accuracy and coverage. At the end
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we do some statistical tests and determine whether the improvement level in accuracy is
statistically significant or not.

2.4.1 Emulation of Full Gossiping

The subjective views collected by the crawler are only based on the standard 1-hop dis-
semination of BarterCast records. In order to evaluate the modification obtained with
full-gossiping mode, we create artificial subjective views from the 1-hop subjective views.
The full-gossip view at a certain point in time is the same for all peers, and is built from
all BarterCast records received from all peers with a timestamp lower than that time. So
here we assume perfect full gossip in that all BarterCast records with a certain timestamp
have been received by all peers at the time indicated by the timestamp. It should be noted
that when using full gossiping, the reputation computations may still yield different re-
sults when Maxflow is executed from the perspective of the local peer, but will give the
same results when the local peer is replaced by the node with the highest betweenness
centrality.

2.4.2 Experiment Design

In a large scale system like the one that the BarterCast mechanism is designed for, it is
not required that every peer is able to evaluate the reputation of every other peer; peers
just need to evaluate the reputations of the peers that they encounter. In the file-sharing
system that we are studying, encountering means that a peer d contacts a peer s and asks s
for some content, and peer s before responding to the request of d evaluates its reputation.
When such an event happens, we say that s encounters d. In our experiment we try to
emulate the encountering events and only do a reputation evaluation when processing a
BarterCast record in order to build up a subjective view that indicates such an event.

Another point we consider in the experiment is that in a decentralized reputation
mechanism like BarterCast, we cannot expect that immediately after joining the system,
a peer is able to give a good evaluation of the reputations of the peers it encounters.
The newly joining peers should be allowed to collect information during a training phase
from already existing peers and grow their subjective views before starting the evaluation
of reputations of others during the testing phase.

The starting point of our experiment consists of the time-ordered sequences of Barter-
Cast records the crawler has received from all peers, which we can use to build their
subjective views. We define the availability interval of a peer as the interval between the
timestamps of the first and last record in the sequence of BarterCast records the crawler
has received from it. In our experiment, every peer goes through two phases, a training
phase and a testing phase. In the training phase of a peer, we reconstruct its subjective
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view starting from the empty view by adding in sequence the BarterCast records of the
first 80% of its availability interval. Only in the testing phase, peers evaluate the reputa-
tions of the peers they encounter. The testing phase is like the training phase, except that
before adding an edge to its subjective view, a peer checks to see whether the conditions
for encountering are satisfied. By checking these conditions we can detect the occurrence
of an encountering event between two peers, and if required run the reputation evaluation
process.

In the discussion below, we assume that the format of a BarterCast record is
[s, d,D, U, t], with t a relative timestamp and with D (U ) the amount of data downloaded
(uploaded) by peer s from (to) peer d until time t. When in the testing phase record
[s, d,D, U, t] of the subjective view Gi of peer i is processed, it is determined whether the
reputation of peer d should be evaluated by peer i. This is only done if the following two
conditions are satisfied:

1. i = s : The peer which uploads is also the owner of the partial graph, and it is the
peer that should do the reputation evaluation.

2. U > 0 : The record indicates an actual data upload.

In other words, if a record passes the above conditions, the reputation of the peer that
does the downloading is evaluated by the peer that does the uploading, and the latter
coincides with the peer for which the BarterCast record is processed (s evaluates d, and
i and s coincide). The meaning of the two conditions on the BarterCast records is that
apparently, peer i has done an upload to d, and when the BarterCast reputation mechanism
would have been in use, this would have been the time that peer i should have invoked it.

When processing BarterCast records in the testing phase, the peers whose reputations
should be evaluated by other peers, are categorized as newcomers or existing peers. The
newcomers are those peers that have not done any download or upload activity in the
past (before the relative time of the record that is processed), but the existing peers have
done so and the crawler knows about their activity. To detect newcomers, let [s, d,D, U, t]

be the record that is being processed, and assume it has passed the above encountering
checks, so peer s should evaluate d. To determine whether peer d is a newcomer or
not, we consider all current subjective views, and if in any of these there exists a record
[s′, d′, D′, U ′, t′] with s′ = d or d′ = d, t′ < t, and U ′ > 0 or D′ > 0, then d has been
active in the past and is not a newcomer; otherwise it is.

Reputation evaluation for newcomers is meaningless, as without any previous infor-
mation about a peer, there is no reputation to be calculated. So, in the results of the accu-
racy and the coverage below, only the existing nodes are considered and the newcomers
are excluded. In our experiment, in which the training and testing phases take 80% and
20% of the availability intervals of the peers, respectively, the numbers of newcomers and
existing peers are 140 and 123, respectively.
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Figure 2.1: The coverage of the BarterCast mechanism for different parameter settings.
(Error bars show the standard error of the mean.)

The explained experiment is run for each view one-by-one and in all combinations of
the proposed modifications. For each combination, we assess the values of the accuracy
and the coverage, and when all views are processed, the results are aggregated to compare
the performance of the different combinations.

2.4.3 Coverage

The barchart in Figure 2.1 shows the number of covered peers for all combinations of
the proposed modifications. It is expected that only existing peers can be covered by
the evaluator peers, and so in all of our experiments the maximum possible value for the
coverage is 123 (the number of existing peers). The left half of the graph shows the cases
in which the central node is used in the Maxflow algorithm and the right half the view
owner itself. As the graph shows, full gossiping boosts the coverage dramatically. Using
the central node increases the coverage too, specially in 2-hops Maxflow, but for a larger
number of hops, it is less effective. Increasing the number of hops has more or less the
same influence as using the central node, and in both dissemination methods the biggest
improvement is seen when we go from 2 to 4 hops.
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Figure 2.2: Comparing the accuracy of the central node against the view owner in the
BarterCast mechanism.

2.4.4 Accuracy

In Figure 2.2 we show the fractions of nodes for which either the central node in the partial
graph or the peer itself provides a better estimation of the reputation value for different
numbers of hops in Maxflow and in both 1-hop and full-gossip dissemination. In practice,
equal reputation estimation means that both reputation values are equal to 0. As the left
hand of the figure (1-hop dissemination) shows, in more than 80% of the cases the central
node and the view owner give the same estimation. When we move to full gossiping,
the situation changes considerably, and using the central node gives better estimations.
Especially with 4 and 6 hops, the number of cases that the central node is better is twice
the number of cases that the view owner is better.

Figure 2.2 only shows which combination of the methods is better, but it does not tell
how much they are better. To have a grasp of the improvement rate we compare the mean
and the median of estimation errors. Figure 2.3 shows the mean and its standard error
for all combinations of the modifications. As the graph shows, only changing the number
of hops or using the central node does not improve much, and using the full gossiping
is needed. Then, using both the central node and a higher number of hops decrease the
estimation error, and when all modifications are applied, the mean of the errors becomes
0.404.

As the mean value may be biased by a small number of very high or very low values,
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Figure 2.3: The mean of the estimation error in the BarterCast mechanism. (Error bars
show the standard error of mean.)

we compare also the median of estimation errors in different scenarios. Figure 2.4 shows
the median of the error in various situations. As it is seen, in 1-hop dissemination using
the central node or higher Maxflow hops only have a little influence on the decrease of the
median and using the full gossiping is required. In full gossiping mode using the central
node is very effective and when it is combined with higher Maxflow hops the median is
decreased by a factor of 10 and in the ultimate case it is pushed to below 0.09.

2.4.5 Statistical Analysis

The graphs with mean and median give an indication of the difference of these statistics
in various scenarios, but they do not assess the significance of the differences. Figure 2.5
shows the density plots of the estimation errors in full gossiping and 6 hops Maxflow for
both central node and view owner. As it is seen from these plots the estimation error
values do not follow a Gaussian distribution. Because of the non-Gaussian property of
the distributions, using a non-parametric test is preferred and in our analysis we use the
Wilcoxon signed-rank test to compare the change of estimation errors. In this test, the
null hypothesis is the equality of the medians and we test whether it is rejected or not. In
each test we change one system parameter related to the three modifications of BarterCast
discussed in this chapter, and test whether the change in error values is significant. Tables
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Figure 2.4: The median of the estimation error in the BarterCast mechanism. (Error bars
show the standard error of median.)

2.1 to 2.4 contain the p-value and the test results. In the first table we change the dissemi-
nation method and compare error values in various combinations of the other parameters
(first and second column). The third column shows the p-value, and the fourth column
says whether with significant level of 95% the equality of the medians is rejected or not.

Table 2.2 is the same as Table 2.1 except that in this table the central node is compared
with the view owner and as the last column shows, using the central node is only effective
in full gossiping. Tables 2.3 and 2.4 contain the test results of changing the number of
hops in 1-hop and full gossiping dissemination, respectively. In Table 2.3 we do not
see any rejection, and increasing the number of hops in Maxflow does not help in 1-hop
dissemination. In Table 2.4, which tests the effect of increasing the Maxflow hop number
in full gossiping mode, we just see a single rejection in the last row, meaning that using
more hops is useful only if the central node and full gossiping are applied.
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Figure 2.5: Density plot of the error values with full gossiping and 6-hop Maxflow

Table 2.1: Wilcoxon test for the difference in estimation errors for 1-hop dissemination
and full gossiping.

number of hops Maxflow p-value rejected?
in Maxflow start point (95% sig. level)

2 view owner 0.0898 No
4 view owner 0.0585 No
6 view owner 0.0126 Yes
2 central node 0.0015 Yes
4 central node 1.617e-05 Yes
6 central node 2.031e-07 Yes
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Table 2.2: Wilcoxon test for the difference in estimation errors for using central node and
view owner.

number of hops dissemination p-value rejected?
in Maxflow (95% sig. level)

2 1-hop 0.3032 No
4 1-hop 0.3309 No
6 1-hop 0.2863 No
2 full gossip 0.0160 Yes
4 full gossip 0.0008 Yes
6 full gossip 0.0003 Yes

Table 2.3: Wilcoxon test for the difference in estimation errors using 1-hop dissemination
and changing number of hops in Maxflow algorithm.

change in number Maxflow p-value rejected?
of hops in Maxflow start point (95% sig. level)

2 to 4 view owner 0.9686 No
4 to 6 view owner 0.8719 No
2 to 6 view owner 0.8318 No
2 to 4 central node 0.9721 No
4 to 6 central node 0.8297 No
2 to 6 central node 0.7936 No

Table 2.4: Wilcoxon test for the difference in estimation errors using full gossip dissemi-
nation and changing number of hops in Maxflow algorithm.

change in number Maxflow p-value rejected?
of hops in Maxflow start point (95% sig. level)

2 to 4 view owner 0.7633 No
4 to 6 view owner 0.4640 No
2 to 6 view owner 0.2862 No
2 to 4 central node 0.1700 No
4 to 6 central node 0.2440 No
2 to 6 central node 0.0117 Yes

2.4.6 Maxflow Runtime

In the BarterCast mechanism one of the reasons for limiting the Maxflow hops to 2 is to
decrease the computation overhead. To analyze the overhead of increasing hop numbers,
we run the Maxflow algorithm in 2 and 6 hops and compare the runtimes. Like the
experiment for accuracy and coverage, also in this experiment the destination node in the
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Maxflow algorithm is an existing node which is evaluated by the source node (a view
owner). In the complete graph (a graph combined of partial graphs of all peers) for each
pair of source and destination peers, we run the Maxflow algorithm 100 times and average
the runtime. Figure 2.6 shows the experiment result, sorted by the runtime in 2 hops and
compares it with the runtime in 6 hops. As it is seen, the runtimes are bounded between
200 and 450 ms and from the performance point of view their difference is negligible.
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Figure 2.6: Runtime of the Maxflow algorithm with 2 and 6 hops.

2.5 Conclusion

In this chapter we have performed an empirical analysis of the accuracy and the coverage
of the BarterCast reputation mechanism and proposed three applicable modifications to
improve these values: using betweenness centrality, using full gossip instead of 1-hop
dissemination of BarterCast records, and increasing the path length in the Maxflow algo-
rithm. Our results show that using full gossip leads to the large improvement according
to our metrics. Moreover, the other two modifications provide significant improvements,
but only if combined with full gossip.

After understanding the improvements leveraged by changes in the design of Barter-
Cast, some open questions related to the proposed improvements need now to be ad-



34

dressed. Full gossiping increases the dissemination performance, but it is more vulner-
able to misreporting attacks, and indirect reports should be treated carefully. A possible
solution for this problem could be to put the indirect reports received in a secondary view
and to add them to the primary view, used for reputation evaluation, if they are received
from more than a certain number of peers or by highly reputed peers. Another method to
address the misreporting attack is the use of double signatures. In this solution, before dis-
seminating a record, the content sender and receiver sign the associated BarterCast record
using their private keys. Using this technique no other peer can eavesdrop and change the
record. We address this problem in Chapter 3.

The second problem related to the proposed solutions is the performance of finding
the node with the highest betweenness centrality in the partial graphs. The complexity for
this calculation is considerable, of order O(nm) for unweighted and O(mn + n2 log n)

for weighted graphs [15], where n and m are the number of nodes and edges, respectively.
Our results are based on the unweighted version, and even with O(nm) complexity the
usage patterns observed so far hint at its practical feasibility. We deal with this problem
in Chapters 4 and 5.



Chapter 3

Making BarterCast Resilient to Sybil
Attacks

A crucial property of reputation mechanisms for P2P systems is their robustness against
malicious actions, e.g., sybil attacks, which in open distributed environments are likely
to happen. In a sybil attack the attacker creates many identities to subvert the systems
in which he is attacking. In this chapter, we present a new version of BarterCast called
SybilRes that we show to be resilient against sybil attacks.

In BarterCast, peers are identified by a permanent cryptographic id that is generated
during Tribler installation, as explained in Section 1.3. As generating such an identity is
cheap, it is possible for a modified client to generate many identities on behalf of a single
user, and to perform a sybil attack in the following way. First, the attacker obtains a pos-
itive reputation from a potential victim peer’s point of view, for instance, by uploading a
large amount of data to that peer. Then she creates a number of sybils, and, by distribut-
ing false information about large uploads of those sybils to herself, she manages to have
the sybils be connected to herself in the subjective graphs of other peers, and to have the
sybils obtain high reputations at those peers as well. Finally, instead of her own identity,
she uses her sybils to download, without losing her own reputation and without uploading
to other peers, thus exploiting the system.

Like in BarterCast, in SybilRes an uploading peer first evaluates the reputation of a
content requester before deciding on an upload. As a part of this evaluation, the uploader
calculates the size of the flow on each edge in the maxflow from the requester to itself.
After a successful upload, the uploader modifies its subjective graph by decreasing the
weights of the edges with non-zero flows, which leads to a decrease in the subjective
reputation of the downloader at the uploader. Before they have been used in attacks,
the sybils of an attacker are only connected to her, and the flow from them to any other
peer passes through a limited number of edges which connect the attacker to the rest of
the network, the so-called attack edges. Because in the reputation evaluation of a sybil at
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least one attack edge will carry a positive flow, by using a sybil the weight(s) of (an) attack
edge(s), and accordingly, the reputations of the sybils, are discounted. Discounting edge
weights may cause an honest peer to get a lower reputation than its real reputation. To
mitigate this problem, another operation, which is run by the downloading peer, increases
the weights of the edges that in the maxflow from the uploader to the downloader carry a
positive flow.

For protocol evaluation, we use Dataset 1 and Dataset 2 (see Chapter 1.4), respec-
tively. From the records obtained, we rebuild the subjective graphs of the peer. We then
use these graphs to emulate sybil attacks with SybilRes and BarterCast, and assess the ef-
fectiveness of SybilRes in giving low reputations to sybils while keeping the reputations
of the honest peers minimally affected.

The main contributions of this chapter are as follows:

1. We explain the problem of sybil attacks in the BarterCast mechanism and show how
they can happen (Section 3.2).

2. We introduce an attack resistant version of BarterCast, which we call SybilRes, and
we explain it in detail (Section 3.3).

3. We design appropriate experiments to measure the effectiveness of SybilRes in
withstanding sybil attacks and we present the results (Section 3.6).

3.1 Related Work

Sybil attacks are a common issue in open distributed environments, and according to
a survey by Hoffman et al. [44], most of the 24 reputation systems studied by them are
susceptible to this type of attack. Cheng and Friedman [19] have formalized different con-
ditions of sybil-proofness in a graph-based reputation mechanism, and they have proved
that no symmetric reputation function (a function which is invariant under a renaming of
the nodes) can be sybilproof.

Recently, the popularity growth of online social networks has spurred ideas to mitigate
sybil attacks in decentralized environments. In effect, all of these solutions are based on
the attacker’s limitation on creating connections to the real entities in the network. Based
on this idea, Yu et al. [109] have proposed SybilGuard for detecting sybils. SybilGuard
uses random walks on a graph that describes past interactions in the system. Later, they
proposed a modified version of it, called SybilLimit [108], where peers do multiple but
shorter random walks than in SybilGuard. SybilInfer [26], by Danezies and Mittal, is
another similar work which is based on the same assumptions as SybilGuard and Sybil-
Limit. In SybilInfer, after doing multiple random walks, a peer uses a Bayesian inference
method to determine whether other peers are legitimate or not. Another comparable work
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is SumUp [100], that is designed to limit the capability of an attacker in bogus voting
for a specific object. SumUp leverages social relations among the accounts and applies a
specific method to assign edge weights. By studying SybilGuard, SybilLimit, SybilInfer,
and SumUp, Viswanath et al. [102] have found that despite the differences in the algo-
rithms, all of them are trying to find local communities around a trusted node. Besides,
these methods have a serious usability limitation in multi-component real-world graphs,
and they are highly vulnerable to targeted sybil attacks, if the attacker stays close to the
trusted node(s) [102].

The concept of reputation is closely linked to that of trust, and similar to reputation
systems, trust mechanisms are also prime targets for malicious acts. The first attack resis-
tant mechanism metric was introduced by Reiter et al. [89]. In their proposal, in a network
of trust relations, paths in which every node trusts its successors are used to evaluate the
trustworthiness of a target node. The number of disjoint bounded-length paths from a
trusted source node to a target node has to exceed some threshold for trusting that target
node.

Leveraging social relations, Spear et al. [94] have introduced KarmaNet to build
trusted social paths between peers and to create judicious forwarders. A distinctive prop-
erty of KarmaNet is that it defines three types of evaluative actions, initiate, forward, and
route, based on which a peer evaluates the trustworthiness of its direct neighbors. An
action or a combination of actions is used to prevent different kinds of attacks. Regarding
sybil attacks, by decreasing the initiation capability of sybils, KarmaNet introduces an
upper bound for the number of spams that a sybil can generate and send to others. In
order to recover from a bad karma, the attacker should do positive acts for other honest
peers in the network. In comparison to SybilRes, the increase and decrease of karma in
KarmaNet resembles edge weight increase and decrease in SybilRes. Ostra [73], is an-
other social network-based unwanted-message preventing mechanism, and it is based on
the number of trusted communications a node has built. In terms of reducing link credits,
Ostra is similar to SybilRes, but unlike SybilRes it needs a trusted entity to observe users
actions and associate them to their identities.

Another trust mechanism which in the sense of building a graph and using maxflow
has some similarities with SybilRes is Advogato [59]. In Advogato, members refer to
each other based on the perceived skills, and each node is assigned an integer capacity.
By adding some edges and nodes to this referral graph, a corresponding weighted graph
is created. A run of maxflow from the source node to a special node, called “supersink”,
in the modified graph identifies the trusted nodes. Despite some similarities, opposed
to Advogato, SybilRes is distributed rather than centralized and there is no need for the
trusted source node. Besides, the reputation metric in SybilRes takes values in the interval
[0, 1], while the trust metric in Advogato is binary (accepted or rejected).

BarterCast was introduced by Meulpolder et al. [68] to prevent lazy free-riding in the
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context of P2P file-sharing. The initial assumption in BarterCast was that every body
follows the protocol and there are no malicious peers in the system. The validity of
this assumption is debatable and it depends on the popularity of the application that uses
the protocol; the more popular the application, the greater the chance of being attacked.
Seuken et al. [93] have studied the vulnerability of BarterCast to another kind of attack
called misreporting, and proposed a new method, called DropEdge, to remedy it. Our
SybilRes protocol is based on the idea of limited conductance of the flow from sybils
to non-sybil peers, similar to the mentioned social network based defense mechanisms.
However, in our approach there is no need for trusted source node(s), or knowledge about
the whole network, which are hard to attain in the real world. Also, despite SybilLimit-
like mechanisms, in SybilRes, we are not trying to detect and ban sybils, but by discour-
aging sybil-like behavior we make the system robust, like SumUp.

3.2 The Vulnerability of BarterCast to Sybil Attacks

In this section, we first introduce the BarterCast mechanism, and then we explain how by
using a number of sybils an attacker can download from other peers while circumventing
the rightful reputation loss this implies.

BarterCast is vulnerable to sybil attacks, because by first doing an upload and then us-
ing sybils, a malicious user can keep up her reputation and still download from benevolent
peers. In such an attack, the attacker first acts as a benevolent peer and gains a positive
reputation at other peers by means of uploads. The selection of whom to upload depends
on the strategy followed by the attacker, but for a successful attack the reputation of the
attacker at a prospective victim should be high. After obtaining a positive reputation, the
attacker creates a number of sybils and, by disseminating a number of (fake) BarterCast
records, reports to the other peers that those sybils have performed substantial uploads to
her. By adding the corresponding edges to its subjective graph by a prospective victim,
a path is created from the sybils to the victim, and the sybils get a high reputation at the
victim and become ready to be used by the attacker.

In BarterCast, after a data transfer action, the reputation of the downloader at the
uploader decreases because either a new edge (with a positive weight) is created from the
uploader to the downloader, or, if such an edge already existed, its weight is increased.
In a sybil attack, instead of using her own identity, the attacker uses the identity of one
of her sybils to download. By this strategy, even though the reputation of the sybil used
is decreased, the attacker’s reputation is not affected, and she can replace the sybil used
with a new one. Since allocation of the available bandwidth is based on reputation values,
subverting the reputation values by an attacker is a threat and it may degrade the service
quality of the system.

Figure 3.1 shows an example of a sybil attack in BarterCast, where a and v1, v2, and
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v3 are the attacker and the victims, respectively, and s1, . . . , s4 are the sybils of a. By
uploading to v1, peer a connects herself to the rest of the network, and through the fake
edges s1 → a,. . . , s4 → a she connects her sybils to the network. If peers use 2-hop
maxflow, v1 finds a path from every sybil of a to itself, and gives a high reputation of
0.936 to them, according to Eq. (1.1). The situation would be worse when maxflow
is applied with a higher number of hops, because then using the same attack edge the
attacker may attack multiple peers. For example, with 3-hop maxflow, the peers v2 and v3
will find incoming paths from the sybils of a, and a is able to attack them as well. Figure
3.1 shows a case of a single attacker, but in general, a group of attackers can try to collude
by setting up any fake network among themselves and their sybils and by connecting
themselves to other peers.

Figure 3.1: An example of a sybil attack in BarterCast (peer a is the attacker, peers
s1, ..., s4 are her sybils, and the other peers are prospective victims).

3.3 The SybilRes Protocol

In this section, first we describe the main idea behind SybilRes, and then we explain its
elements in detail.

3.3.1 The Main Idea of SybilRes

In the subjective graph of a peer, an attacker, her sybils, and the edges between them
constitute a subgraph that we call the sybil region; the rest of the graph is called the non-
sybil region. The edges that connect the sybil region to the non-sybil region are called the
attack edges. Attack edges are created by an attacker by uploading data to honest peers
and all the flow between the sybil and non-sybil regions has to pass through these edges.
For example, in Figure 3.1 the area inside the dashed line is the sybil region of the attacker
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a, and the edge a→ v1 is an attack edge. Creating an attack edge is not free, because it
requires the attacker to do real uploading to a non-sybil peer in the network. The non-free
creation of such edges is the Achilles’ heel of the attacker.

In SybilRes, after a peer p has uploaded to peer q, it decreases the weights of the edges
on the paths from q to p in its subjective graph. These are the edges that are involved in
carrying flow from q to p, and they cause q to get a positive reputation at p that was
high enough for p to decide to upload to q. The rate of decrease of an edge’s weight
depends on the amount of flow carried by it and the amount of data transferred after
the reputation evaluation. The consequence of the weight decreasing is that in the next
reputation evaluation, the maxflow from q to p, and so the reputation of q at p, will be
lower. On the downloading side, peer q applies a similar strategy as p, but instead of
decreasing, it increases the weights of those edges that in a content request by p will be
used by q to evaluate the reputation of p.

As the attack edges are on the paths from the sybils to a victim peer, using the weight-
decreasing strategy, their weights, and accordingly, the reputations of the attacker and
her sybils, will likely decrease fast. As a result, in order to keep up her and her sybils’
reputations, the attacker needs to keep uploading to non-sybil peers in the network, which
is the desired behavior.

When an attacker from a set of colluding peers performs a sybil attack, it can do so
through one of its ”own” attack edges, or though an attack edge of another colluder to
which it has a path. In the former case, its own reputation will definitely suffer because
of the discounting of the weight of the attack edge, but in the latter case, the reputation of
the other colluder will suffer. No matter what fake network a group of colluding attackers
create, the joint set of attack edges remains a bottleneck and restricts their reputations.
As a consequence, collusion does not pay in SybilRes, and the optimum strategy for an
attacker is to have exclusivity on the attack edges she uses.

3.3.2 Edge Accounting

We define the contribution of an edge in the maximum flow from one node to another in
a weighted graph as the amount of flow that passes through that edge (which may not be
uniquely defined, see Section 3.4). An edge participates in the maxflow if its contribution
is non-zero. For example, in Figure 1.5, in the maxflow from i to j the contributions
of the edges i→ k and k → j are 3, and for the edge i→ j it is 8. Dividing an edge’s
contribution by the total maxflow gives the normalized contribution of the edge, which is
a value in the range [0, 1].

Recall that every data upload action is preceded by a reputation evaluation. In Sybil-
Res, after a peer p performs an upload to peer q, p charges the edges that contributed to
calculating the maxflow from q to p in its subjective graph. The amount by which an edge
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is charged depends on its contribution and on the amount uploaded after the reputation
evaluation. Edges that contribute more are charged more, and a higher upload leads to a
higher charge for all participants.

In order to account for data transfers and charge the participating edges, besides the
real edge weight, which represents the amount of data transferred, each edge of a sub-
jective graph is assigned an effective weight too. When an edge is added to a subjective
graph, its effective weight is initialized to its real weight, and later, if it participates in a
calculation of the maxflow from a downloading peer, its effective weight is decreased. In
contrast to BarterCast, in which the real weight of an edge is used in reputation evalua-
tions, in SybilRes the effective weight of an edge replaces its real weight in the maxflow
algorithm.

Because of the dynamic nature of the network, the real weight of an edge may increase
over time due to data transfers. To have precise reputation evaluations, the corresponding
updates should be reflected in the effective weights of the edges too. More precisely, if
wij and eij are the real and effective weights of edge i→ j in the subjective graph of
some peer, respectively, then if that peer receives a BarterCast record about a new transfer
of size ∆ from i to j, then both the real and effective weights of the edge are increased by
∆.

In SybilRes, assigning and updating the effective weights of edges are done locally by
each peer within its own subjective graph, and the effective weights are not sent to other
peers (but see also Section 3.3.5). It is therefore possible for an edge to have different
effective weights in different subjective graphs even though it has the same real weights.
In the following sections we explain how the effective weights of the edges are decreased
or increased over time.

3.3.3 Edge Charging

Suppose that when evaluating the reputation of peer q, peer p finds in its subjective graph a
set Kh = {k1, k2, ..., km} of m distinct paths of length at most equal to h from q to itself.
Two paths are distinct if they do not consist of exactly the same sets of edges. Each path
k ∈ Kh causes some flow from q to p, denoted by ϕk, and the total maxflow from q to
p using paths of lengths at most h is equal to Φh(q, p) =

∑
k∈Kh

ϕk. If an edge i→ j

belongs to at least one of these paths, its maxflow contribution is equal to:

cij =
∑

k∈Kh,i→j∈k

ϕk. (3.1)

The normalized contribution of the edge i→ j is defined as:

nij =
cij

Φh(q, p)
. (3.2)
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Calculating the contributions is done just before the start of an upload session, and it
is independent of how much data is going to be transfered during the session. If eij is the
effective weight of the edge i→ j just before the session, then its effective weight after
the session is:

e
′

ij = (1− f(nu, nij))× eij, (3.3)

where f is the charging function that is used to adjust the effective weights and nu ∈ [0, 1]

is the normalized value of the data transfer during the session (in Section 3.3.7 we explain
how the data transfer normalization is done). The function f should have the properties:
1) f has values in [0, 1], 2) f is increasing in nu and nij , and 3) if nu or nij is equal to
zero, then f(nu, nij) is equal to zero. Besides, in the design of f some implicit restrictions
should be considered as well:

• As both the attack edges and the legitimate edges are charged, a steep charging
could lead to many high reputation evaluation errors for honest peers.

• A very mild charging may not be effective enough, and the attacker can still subvert
the system and get benefit.

Considering these constraints we design the charging function as:

f(nu, nij) =
(nu × nij)

γ

θ
, (3.4)

where γ > 0 and θ ≥ 1 are the parameters that define how strict or forgiving SybilRes is.

3.3.4 Edge Recovery

A side effect of the charging strategy is that the honest peers whose outgoing edges be-
come weaker, unfairly get lower reputations. Conversely, it is possible that due to the
decrease in the effective weights of its incoming edges, a peer may get a higher reputation
than it has without charging. To solve this problem, we rely on a behavioral difference
between sybils and non-sybils, namely, that in contrast to sybils, which only download,
benevolent peers perform uploads as well. If sybils would behave normally and also
perform upload, the whole problem would be solved. Based on this fact, in addition to
charging edges, SybilRes also recovers the effective weights of the edges.

To allow for recovery, at the end of a data transfer session from peer p to peer q, the
downloading peer q increases the effective weights of those edges in its subjective graph
that in the future could be used by q to evaluate the reputation of p. Indeed, these are the
same edges that are charged by q if it uploads to p. To find these edges, before download-
ing, peer q runs the maxflow algorithm from p to itself and determines the participating
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edges. After the download, the effective weight is recovered through the relation:

e′ij = min(wij, (1 + g(nd, nij))× eij), (3.5)

where g is the recovery function, nd is the normalized download, and nij , wij , and eij are
the normalized contribution, the real weight, and the effective weight of the participating
edge i→ j just before the recovery.

Using the recovery strategy, not only the uploading peer but all the peers in the paths
to it are rewarded, and the goodness of the uploading is echoed in the network. Like the
charging process, the recovery of the effective weights is only done locally and peers do
not send this information to others. The recovery function g has the same properties as
the charging function f , and we let it have the same form as in Eq. (3.4), except that the
values of the parameters γ and θ may differ. In order to incentivize peers to upload in
time, the effective weights should be recovered less than what they are charged, that is,
for any x, y ∈ [0, 1], g(x, y) < f(x, y).

3.3.5 The Global Reputations of Peers

Since the charge and recovery processes are done locally by each peer in its own sub-
jective graph, an attack edge with a low effective weight at some peers may still have an
effective weight equal to its real weight in some other subjective graphs. Hence, using
the same attack edge, the attacker can still attack multiple peers. For example, in Figure
3.1, through the attack edge a→ v1 and with 3-hop maxflow, the attacker a can attack
peers v1, v2, and v3. In SybilRes, the possibility of using the same attack edge to attack
multiple peers depends on the number of hops used in the maxflow algorithm. With two
hops, each attack edge can only be used to attack the peer who is directly connected to the
attacker, but in general, each attack edge can be used to attack all peers that are reachable
from the sybils within the number of hops used in maxflow.

To prevent the use of a single attack edge to attack multiple peers, we extend the charge
and recovery processes to the whole network by having the receivers of a BarterCast
record perform the same charge and recovery operations in their own subjective graphs
that were performed by the uploader and the downloader peers recorded in the BarterCast
record, respectively. With this strategy, peers can keep up with the updates of the effective
weights and have an accurate view about the reputations of other peers without sending
additional messages. To be more precise, suppose peer p uploads some amount to peer
q. According to the SybilRes protocol, a new record is disseminated that reports this
transfer. When a peer receives such a record, before updating its subjective graph with
the edge p→ q, it performs the charging that p did and the recovery that q did in their own
subjective graphs, charging the edges on the paths from p to q and recovering the edges
in the reverse direction. Since peers may receive the disseminated records in different
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orders, the effective weight of an edge in different subjective graphs may not converge
exactly to the same value, but the general trend will be similar.

The reason for not disseminating the effective weights is to avoid the misreporting
of these values by malicious peers. For the case of real edge weights, misreporting is
prevented by double signing the BarterCast records by the uploader and downloader. The
signing and authenticity checking of a record is done using the peers’ public and private
keys that are already available when Tribler is installed. For the effective weight, using
double signatures does not help, because the effective weight of an edge can be updated
later as the result of data transfers actions by other peers, over which the uploading or
downloading peers do not have any control.

3.3.6 The Reputation Function in SybilRes

In an open environment, where obtaining a new identity is cheap, keeping negative rep-
utations about others is meaningless, because they can easily be whitewashed, and peers
can reset their negative background. Considering this generic problem and without losing
the bartering property of BarterCast, we reformulate the reputation function of Eq. (1.1).
In the new formulation, not only the effectiveness of SybilRes is increased, but the whole
system becomes more robust against whitewashing.

In the new calculation, when peer i evaluates the reputation of peer j, like the
previous formulation in Eq. (1.1), peer i calculates the h-hop maxflow from itself
to j and from j to itself, denoted by Φh(i, j) and Φh(j, i), respectively. Letting
Wh(i, j) = arctan(Φh(i, j))/(π/2), we define the non-negative subjective reputation of
j at i as:

R+
i (j) = Wh(j, i)× (1−Wh(i, j)). (3.6)

The reputation metric R+
i (j) ∈ [0, 1) has the properties that:

• If peer j whitewashes, then Wh(j, i) = 0 for all i, so its reputation is reset to zero.

• The best for an attacker j to do is to keep her received contributions Wh(i, j) at
zero, but SybilRes will decrease Wh(j, i), and so the reputation of j will decrease.

• Like in BarterCast, if two peers contribute equally, the peer with the smaller re-
ceived contribution has a higher reputation than the other one. A similar statement
holds for equal received but larger given contributions.

3.3.7 Normalizing Data Transfers

The charging and recovery functions f and g from Eqs (3.3) and (3.5) are functions of the
normalized data transfer and the edge contribution. The edge contribution is normalized
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by Eq. (3.2), but the amount of data transferred is unbounded. To do a meaningful charge
or recovery, peers should account for the rank of their transfer amount among all transfers
that have already happened in the network. In this way, peers can calibrate their upload or
download against the norm, and they can base their charge and recovery on this measure.

To find the normalized data transfer values we use the idea of fractional rank, which
is often used to determine the ranking position of an individual in a population. We define
the amounts of data transfers in the network as the population and use the fractional rank
of a transfer amount as its normalized value. To calculate the fractional ranks, during the
creation of its subjective graph, each peer maintains a sorted list of data transfers that it
has heard about. Using this list, when peer p wants to determine the fractional rank of an
upload or download of size x, it first adds x to this list and then computes the rank nx of
x by:

nx = (B + 0.5E)/N, (3.7)

where B is the number of items smaller than x, E is the number of items equal to x, and
N is the total number of items in the list.

3.4 Finding Fair Contributions

The maximum flow from one node to another in a weighted directed graph may be real-
ized in multiple ways, and an edge may have different flows in different realizations. As
a consequence, the concept of contribution in Section 3.3 becomes vague and the contri-
bution values are not uniquely defined. An example of this ambiguity is shown in Figure
3.2. In this graph, the maximum flow from s to d is 4.0, but there is an infinite number
of possible realizations of this total flow. Among all solutions, except for the edge s→ x

whose contribution is fixed at 4.0, the contributions of the other edges vary. In SybilRes,
in order to do unbiased edge charging and recovery, we need to find some notion of fair
contributions of the participating edges. Fair contribution in the example of Figure 3.2
would be values of 2.0 for all edges except s → x. We call a maxflow realization from
node p to node q fair if the flow on an edge that is on at least one path from p to q is
proportional to the sum of the capacities of the paths that it belongs to. The flow on the
edge with a fair realization of the maxflow is taken as its contribution.

For SybilRes, we have devised a heuristic algorithm to approximate a fair maxflow re-
alization. Let G be the directed graph in which we want to approximate the fair maxflow
realization from a source to a destination node. In our algorithm, instead of calculating
(a realization of) the maxflow with one execution of the Ford-Fulkerson (FF) algorithm
in G, we repeatedly execute FF in a graph with the same nodes and edges as G but with
randomized edge weights. The partial sum of an edge’s weight in different executions ap-
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proximates its original weight. We take as the approximate fair realization of the maxflow
the sum of the maxflow realizations of the separate executions of FF. More precisely, each
edge is assigned a residual capacity s, which is initialized to its original weight. Then the
weight of the edge used in FF is a uniform random value in the range [0, s]. When the
next execution of FF assigns a flow c to the edge, the residual capacity of the edge is set
to s− c and the process is repeated. As soon as the sum of the maxflows as computed by
the repetitions of FF exceeds a certain fraction fr of the real total maxflow in the original
graph, the algorithm stops.

In maxflow executions, we run a modified version of the Ford-Fulkerson algorithm
that uses depth-first search to find the paths from the source to the destination node. With
this modification, edges that are only part of longer paths are not starved by the edges in
the shorter paths. Although, during the path finding process the next outgoing edge from
a node is chosen randomly with an equal chance for all edges, so all edges get a chance
to participate.

For the example in Figure 3.2, with a value of fr of 0.95, we get in 10 FF executions
the approximate fair allocation with csx = 3.97, cxy = 1.85, cyd = 1.85, cxz = 2.12, czd =

2.12.
A similar problem called maximum balanced flow was introduced by Minoux [71].

There, besides the edges’ capacities, there is a rating function that specifies the upper
bound of the flow on each edge. The difference between Minoux’s and our problem is
that in our case, the rating function and the upper bound of an edge is not known in
advance.

Figure 3.2: A sample subjective graph

3.5 Analysis of SybilRes

In this section, first present the result of applying SybilRes to the example of Figure 3.1
of Section 3.2, then we elaborate on the issues of false positive and false negative errors
incurred by SybilRes. Finally, we discuss on the problems of churn, heterogeneity, and
policy.
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3.5.1 A Sybil Attack Example

In the example of Figure 3.1, first the attacker a uploads 10 units of data to peer v1, and
then she tries to download from v1 using her sybils. Without loss of generality suppose
that the sybils are created and used in chronological order. Also, for simplicity assume
that irrespective of the upload amount from v1 to a sybil, the charging function halves the
effective weights of the participating edges. Table 3.1 contains the effective weight of
the attack edge a→ v1, maxflow from the sybils to v1, and the reputations of the sybils
(indeed the reputation of the attacker) at v1. As calculated by SybilRes, at the time of
using sybil s4 the effective weight of the attack edge and the reputation of the attacker
have already been decreased to 1.25 and 0.570, respectively.

Table 3.1: Applying BarterCast and SybilRes to the example of Figure 3.1

BarterCast SybilRes
sx eav1 ϕ2(sx, v1) Rv1(sx) eav1 ϕ2(sx, v1) R+

v1
(sx)

s1 10.0 10.0 0.936 10.0 10.0 0.936
s2 10.0 10.0 0.936 5.0 5.0 0.874
s3 10.0 10.0 0.936 2.5 2.5 0.757
s4 10.0 10.0 0.936 1.25 1.25 0.570

3.5.2 False Positives

In the sybil attack literature, most proposed defense mechanisms suffer from false positive
(FP) and false negative (FN) errors [26, 108, 109]. In sybil-detection mechanisms, FP
means that a peer is detected as a sybil but it is not, and FN means that a peer is a sybil
but the mechanism is unable to detect it. In SybilRes, FN is interpreted as the forgiveness
of the protocol when giving low reputations to sybils. So a smaller decrease in a sybil’s
reputation value means a higher FN and vice versa. Due to the charge and recovery
strategies, a legitimate peer may get a higher or a lower reputation than its real reputation,
and this difference is interpreted as an FP error.

We argue that because of the growing pattern of a subjective graph in the non-sybil
region, the situations which lead to FP occur less, and if they happen, the change in the
reputation is made up by the converse operation (charge or recovery):

• Due to peers’ normal data transfer behavior in the non-sybil region, they are able
to find diverse paths to other peers in the region. Having diverse paths means that
the maxflow between two peers is split among multiple edges from different paths,
and a group of specific edges (like attack edges) do not carry the whole flow. As a
result, edges contribute less and are charged less.
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• If because of other peers’ download actions a peer’s uploading edges are charged,
then it is highly likely that its edges are recovered by other peers’ upload actions
as well. In total, for non-attack edges, the lost weight during charging is partially
reimbursed during the recovery.

3.5.3 Churn, Heterogeneity, and Policy

In P2P systems, peers continuously move in and out of the system, and churn is a known
phenomenon in such systems. In SybilRes, during a period of absence a peer may miss
some disseminated records, but it keeps its local subjective graph, and so SybilRes will
function properly when the peer becomes online again. By staying online, eventually the
gossiping protocol will recover the missed information.

It is possible that some peers use the BarterCast protocol and some are updated to
SybilRes. Since all computations are done locally and SybilRes does not change the
way that peers interact with each other, both groups of peers can co-exist and interact
transparently. The main difference is that peers running SybilRes will be sybil resilient.

Like in BarterCast, in SybilRes we do not deal with the policy of how to use the repu-
tation values; this topic has been studied by Seuken et al. [93]. As a short comment, peers
can either use the absolute reputation values or they can rank peers according to their rep-
utations. Ranking peers is better than using the absolute values as it does not need extra
settings of threshold values. With ranking, when there is a resource (bandwidth) short-
age, highly ranked peers are preferred over lowly ranked peers, but if there are enough
resources, newcomers can get bandwidth allocated and bootstrap easily.

3.6 Experimental Setup

We evaluate SybilRes from two aspects, which are its effectiveness against malicious
behaviors and its accuracy in the evaluation of benevolent peers. The experimental setup
is based on data collected from the Tribler network and on simulating the situations in
which a peer evaluates another peer’s reputation. For the simulation of sybil attacks, we
artificially add an attacker and a number of sybils and compare the behavior of the system
when using SybilRes and BarterCast.

3.6.1 Protocol Simulation

In the simulation of SybilRes, we gradually build up the subjective graphs of the peers
and determine the situations in which peers evaluate each other’s reputations. Building
the subjective graphs is done using the time-ordered list of BarterCast records from the
crawler starting from empty graphs. For reputation evaluations we use both BarterCast
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and SybilRes. Moreover, in SybilRes in the subjective graphs of the uploading and down-
loading peers the effective weights of the participating edges are updated (according to
the charge and recovery strategies). Suppose (i, j, U,D, t) is the next record from the
trace that is going to be processed. If U > 0, before uploading, peer i has to evaluate
peer j’s reputation, and depending on the reputation value and the applied policy, peer i
decides whether to upload to j or not. For simulation purposes we assume that uploading
always happens. By applying BarterCast and SybilRes, peer i computes two subjective
reputations, one for each protocol. If D > 0 then the above process is repeated by j and
this time j evaluates i.

After the reputation evaluation, the edge i → j (with real and effective weight of U )
is added to the subjective graphs of all peers that have already appeared in the trace, or, if
it already exists, then its real and effective weights are updated. If i and/or j appears for
the first time, then a new subjective graph for i and/or j is created and i→ j becomes its
(their) first edge. When adding a new edge to the subjective graphs, we assume there is
an efficient mechanism that can provide peers with the latest disseminated records, e.g.,
using full gossiping [27]. After updating the subjective graphs, the process continues with
the next record from the trace until all records have been processed.

3.6.2 Sybil Attack Emulation

To evaluate the effectiveness of SybilRes, we perform artificial sybil attacks. To select
an attacker and a victim, after processing a certain fraction Tpa of the records so that the
peers have meaningful subjective graphs, we randomly choose a pair (a, v) of attacker
and victim, respectively, with the attacker having a positive reputation at the victim. Hav-
ing only one pair of attacker and victim in each simulation run is representative for the
operation of SybilRes, as we argued in 3.3.1 that collusion is not beneficial.

After choosing the attacker and victim, the next step is to create a number of sybils
for the chosen attacker. To simulate an attack, after processing each record from the part
remaining in the trace after the selection of the attacker and victim, with some probability,
we create a sybil record and process it like a normal record. A sybil record is a BarterCast
record of the form (ska, a, Us, 0, t), where ska is the k’th sybil of the attacker a and Us is the
pretended amount of data transferred from ska to a. To have an effective attack, Us should
be larger than the sum of the weights of the outgoing edges of a so that the maxflow from
the sybil to the victim is not limited by the attacker herself. Adding a sybil record to the
subjective graph of the victim gives a positive reputation to the sybil at the victim and
makes it ready to be exploited.

After creating a sybil with a positive reputation, we simulate an attack where the sybil
downloads data on behalf of the attacker. In order to do so, immediately after processing
the sybil record we create and process an exploit record. Such a record is of the form
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Table 3.2: Simulation parameter setting

Parameter Value Section
θ for functions f and g 1.0 3.3.3
γ for function f 1.8 3.3.3
γ for function g 2.0 3.3.3
Tpa (fraction of pre-attack records) 0.5 3.6.2
Us (transfered amount in a sybil record) 100 GB 3.6.2
Ds (transfered amount in an exploit record) 30 MB 3.6.2
h maxflow hops number (data of 2009) 4 3.3.6
h maxflow hops number (data of 2010) 3 3.3.6
fr (pass rate in the fair contribution algorithm) 0.95 3.4

(ska, v, 0, Ds, t), where Ds is the amount of data the sybil ska downloads from the victim
v. Processing this record is equivalent to exploiting a sybil by the attacker, and this is the
point at which SybilRes should give lower reputations to sybils.

To assess the effectiveness of SybilRes, we also run the simulation with the same pair
of attacker and victim, but with the attacker using her own identity to download the same
amount of content from the victim. The difference between the attacker’s reputation in
this case and in the case of using sybils is a measure of SybilRes’s effectiveness.

Due to the charge and recovery strategies, with SybilRes benevolent peers may get
higher or lower reputations, whereas BarterCast, which does not change edge weights,
gives correct reputation values for these peers. To assess the resulting error in the reputa-
tion values, during simulation we record the reputations of the benevolent peers evaluated
by other peers when using BarterCast and SybilRes. The difference between these values
is the error incurred by SybilRes.

3.7 Results

In this section, we present an experimental evaluation of SybilRes. First, we run an ex-
periment to find appropriate values for the parameters γ and θ in the charge and recovery
functions f and g (see Eqs (3.3) and (3.5)). Then, we assess the protocol’s robustness
against sybil attacks, and the incurred errors in the reputations of benevolent peers by
SybilRes. Finally, we evaluate the global reputation of attackers and the sensitivity of the
protocol to the size of the exploit record. The values of the parameters that we use in the
simulations are presented in Table 3.2.
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3.7.1 Parameterizing the Charge and Recovery Functions

In SybilRes, we have to select appropriate values for the parameters γ and θ of the charge
and recovery functions that simultaneously maximize the effectiveness and minimize the
incurred error. We define the effectiveness as the minimum number of attacks after which
the attacker loses M percent of her initial reputation, a higher number of attacks means
a lower effectiveness and vice versa. The incurred error is defined as the fraction of
benevolent peers whose reputations decrease by more than some threshold value V when
SybilRes is used. To find appropriate values for γ and θ, we simulate SybilRes in sce-
narios with different values for γ and θ and measure the effectiveness and the incurred
error in each scenario. For the charge function f , we experimented with values of γ in
the range [0.2,1.8] and of θ in the range [1,4]; for the recovery function g, γ is 0.2 higher
than in f (in order to give peers an incentive to upload, see Section 3.3.4) and θ has the
same value as in f .
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Figure 3.3: The effectiveness versus the error with SybilRes for different combinations of
the parameters γ and θ of the charge and recovery functions.

For a reputation loss of M = 90% and an error threshold value of V = 0.05, Figure
3.3 plots the effectiveness against the incurred error for various combinations of values of
γ (in f ) and θ. As can be seen, with increasing values of θ the effectiveness drops, and for
θ ≥ 3, the attacker is able to do at least 15 attacks before loosing 90% of her reputation.
Similarly, there is a decreasing trend in the effectiveness against γ. On the other hand, a
lower γ leads to a higher error, and there is a trade-off between effectiveness and error.
To have a high effectiveness without an error that is too high, we select the point θ = 1

and γ = 1.8 at the knee of the curve. This combination of parameter values gives an error
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of around 0.12 and an effectiveness of at most 6 sybil attacks.
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Figure 3.4: The effectiveness (a) and the error in the reputation values (b) with SybilRes
(The results for SR-No Attack and BC-No Attack coincide almost completely.)

3.7.2 The Reputations of Peers in SybilRes

In this section we present the simulation results that show the effectiveness of SybilRes
in combating sybil attacks in comparison with BarterCast when the attacker uses multiple
sybils to attack the same victim. We will perform simulations for two scenarios, one in
which the attacker actually employs sybils to download content, and one in which the
attacker uses her own identity to do so (and, in fact, does not really “attack”). For each
combination of protocol and scenario and for both of our traces, we run 100 simulations
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with different attacker-victim pairs in each run, using the values of the parameters listed
in Table 3.2. During the simulations, we record the reputations of the attackers at the
victims after each attack, and we record the reputations of benevolent peers when they
download as computed by the uploaders.

The simulation results are shown in Figure 3.4. Figure 3.4(a) shows how the average
reputation of the attackers changes as the number of attacks increases, for different com-
binations of protocol and attack scenario. Each point in this figure represents the average
for 100 simulations, and the quantity on the horizontal axis is the sybil (attack) number.
As can be observed, even with the new reputation metric, with only non-negative values
in Eq. (3.6), BarterCast is defeated by the attacker. In contrast, with SybilRes, after a few
downloads (using the fifth sybil), the reputation of the attacker approaches her real repu-
tation if she uses her own identity. Figure 3.4(b) presents the CDF of the errors incurred
by SybilRes for the traces from 2009 and 2010. As can be seen, in 90% of the cases the
error is almost equal to 0, and for 95% it is less than 0.3. To assess the protocol with
different hops, for the trace of 2010, we use maxflow with 3 instead of 4 hops. With this
trace, the SybilRes protocol is almost as effective as for the crawl of 2009, and the errors
are even smaller.

3.7.3 Attacking Multiple Peers

As mentioned in Section 3.3.5, an attacker may attack multiple peers using the same attack
edge when the number of hops used in maxflow is larger than 2. In this section we report
an experiment to assess how SybilRes performs in the face of attacking multiple peers.
For this assessment, after choosing the pair of attacker and victim, we identify those
peers that can be attacked using the same attack edge that is used to attack the victim.
During the simulation, after using each sybil by the attacker and the dissemination of the
corresponding records, we have the potential victims (i.e., the peers reachable from the
attacker along the attack edge within the number of hops as used by maxflow) evaluate
the reputation of the attacker. Figure 3.5 presents the results for the data crawled in 2009.
As can be seen, similarly as the reputation of the attacker at the actual victim, the average
reputation of the attacker at the potential victims decreases to zero.

3.7.4 Varying the Attack Size

The results in Figure 3.4 are based on a data transfer of 30 MB for each exploit record,
which is equal to 70th percentile of the edge weights in the collected data. Using this
value makes sense, as with small values the attacker may not gain much benefit from her
attack, and very large values may be suspicious. In order to assess the stability of SybilRes
against this parameter, we do an experiment with different values for exploit record size,
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Figure 3.5: The average local reputation of the attacker at the actual victim and its average
global reputation at the potential victims in BarterCast (BC) and SybilRes (SR) using the
trace of 2009.

using trace from 2009 (the other parameters are same as in Table 3.2). For each value
we do 100 runs. Figure 3.6(a) shows the average number of sybils before loosing 90% of
the initial reputation, which varies from 22 for 5 MB to 2 sybils for 80 MB. This means
that if the attacker does large exploits, she looses her reputation very fast. Figure 3.6(b)
depicts the percentage of the cases that the reputation evaluation error for honest peers
is larger than 0.1. As can be seen, there is no correlation between the record size and
reputation error. In conclusion, playing with the data size the attacker can not manipulate
the reputations of honest peers.
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3.8 Conclusion

In this chapter, we have introduced SybilRes, a redesign of the BarterCast reputation
mechanism, which by updating edge weights in the subjective graphs of peers combats
sybil attacks. The experimental results using the Tribler data set show that SybilRes is
highly resilient against sybil behavior, and accurate in the evaluation of the reputations
of honest peers. We believe that the edge accounting method of SybilRes (charge and
recovery) can be adapted and used in any similar system which is based on, or can be
transformed to a weighted graph, e.g., Ripple1.

As future work, we are designing a scalable record dissemination method tailored for
SybilRes. In this method, using its subjective graph a peer derives a similarity measure
between itself and other peers that it knows, and when selecting a record receiver, it gives
priority to peers with a higher similarity. By targeted dissemination, the load due to the
dissemination of records will decrease without affecting the accuracy of reputations very
much. Chapter 4 addresses this problem.

1http://ripple-project.org
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Chapter 4

Targeted Information Dissemination

Providing efficient reputation management mechanisms at scale is an important step to
provide trust in many distributed systems, like file sharing systems. A typical online rep-
utation mechanism is composed of three main components: Formulation, Calculation,
and Dissemination [44]. The dissemination component provides the other components
with the required information to operate. More specifically, in reputation mechanisms
in which the calculation component uses information from other participants (peers) on
interactions in the system as input, peers will not be able to evaluate accurate reputations
without an effective spread of this information. From the point of view of reputation ac-
curacy, providing peers with more information is preferred, but from the point of view
of scalability, uncontrolled and blind dissemination can be problematic in terms of com-
munication, computation, and storage costs. This chapter deals with this trade-off in
large-scale distributed reputation systems by providing a scalable dissemination method
in the BarterCast reputation mechanism.

Figure 4.1: The information dissemination spectrum and the accuracy and scalability
curves.

In online reputation mechanisms, information dissemination spans the spectrum from
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zero to full dissemination, see Figure 4.1. With zero dissemination, participants only use
their own direct experiences for evaluating reputations, and no information on interactions
is spread. Such a mechanism works if the participants interact frequently with each other,
and if having only the direct interactions is enough to have an accurate prediction about a
counter party’s future behavior. At the other extreme of the spectrum is full dissemination,
where all participants receive information of all previous interactions. Although from the
accuracy point of view this is desirable, full dissemination does not scale, and may even
be unnecessary.

In large-scale online systems such as P2P file-sharing systems, peers will only interact
with a subset of all peers, for instance, those peers who have similar tastes with respect
to the content available in the system. Providing peers with information on all peers and
interactions is then very inefficient. Rather, information dissemination targeted at similar
peers may then be sufficient and much more efficient, which especially is important for
power, memory, and computation constrained mobile devices. In BarterCast, peers build
a partial graph with peers as nodes and interactions they have learnt about as edges.
In Chapter 2 we have shown that performing full dissemination about all interactions
between peers improves BarterCast’s accuracy. However, this full dissemination approach
incurs high operational costs. In this chapter, we propose a new low-cost dissemination
mechanism for BarterCast called SimilDis, which without providing a full view to all
peers leads to highly accurate reputation evaluations.

In SimilDis, we use either of two methods to compute peer similarity values, one of
which is deterministic and of which is non-deterministic. In the first, each peer builds a
labeled similarity graph, which is a directed acyclic graph (DAG), from its partial graph
in which the labels indicate the similarities with the local peer. The second method is
based on doing multiple non-uniform random walks (RW) in a peer’s partial graph; then,
the number of times a node is visited is a measure of its similarity to the local peer. This
method was already used in [98, 99]. Both methods are solely based on a peer’s local
information. In order to evaluate SimilDis, we simulate it using traces from the Tribler
network, and we assess its accuracy in evaluating reputations and the incurred communi-
cation, computation, and storage costs. The results show that SimilDis, compared with
full dissemination, yields very low reputation evaluation errors, and causes the commu-
nication costs and the average size of the partial graphs to be reduced by two orders of
magnitude.

The main contributions of this chapter are as follows:

1. We design and present a new similarity-based protocol for targeted disseminating
of BarterCast records (Section 4.3).

2. We present in detail the DAG-based method for incrementally updating similarity
values (Section 4.4).
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3. Employing data collected from the Tribler network, we measure the accuracy and
the overhead of two similarity-based dissemination methods and make a compari-
son it with the case of complete dissemination (Section 4.6).

4.1 Related Work

Three areas of research are very relevant to the topic of this chapter, which are gossip
protocols, information dissemination in reputation and trust systems, and node similarity
in graphs. In this section we give a review for each area.

Since their introduction for database synchronization [31], gossiping protocols have
found various applications such as membership management [9], aggregation [48], mul-
ticasting [41], and information dissemination [33]. Gossiping protocols consist of three
elements: select-partner (whom to send a message to), select-to-send (what to send), and
select-to-keep (what to keep from the information received) [91]. The select-partner ele-
ment plays a key role in the formation of the topology, induced by the protocol, and its
effectiveness. Regarding information dissemination, gossiping protocols have a number
of desirable properties like resilience to failures, fast convergence, load balancing, and
high scalability, which make them suitable for distributed systems.

4.2 A General Overview of SimilDis

To have a scalable and accurate reputation mechanism and to provide the right information
to the right peers, the selection of peers for sending records should be done carefully. One
way to realize this goal is to use a similar technique to semantic clustering in distributed
search mechanisms [23, 62]. In such a technique, based on a kind of semantic similarity,
peers are clustered in a number of groups, and when a peer initiates a query, first it sends
it to its group members, and only if the reply is not satisfying it asks outsiders. A similar
technique to semantic searching can be used in the spread of interactions in reputation
mechanisms as well.

The BarterCast mechanism can be decomposed into the three components of dissem-
ination, formulation, and calculation. The role of the dissemination component is to
gather and provide the other components with the new BarterCast records that have been
spread in the network. In the new mechanism, the dissemination component is replaced
by SimilDis and it differs from the previous dissemination component in two significant
ways.

First, instead of 1-hop dissemination, peers are allowed to send the received records
to other peers in the network. In current BarterCast, to avoid misreporting, peers only are
allowed to spread records about their own direct interactions with other peers. In other
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words, if p uploads to q then only p and q can inform other peers about this action, but the
other peers are not allowed to disseminate it. This restriction limits the record reachability
and decreases the reputation accuracy calculated by peers [27]. In SimilDis, to solve this
problem, we allow peers to send the received records to other peers in their partial graphs.
To prevent misreporting, instead of initiating plain records, the peers who are involved
in a data transfer action sign the record with their private keys. With signed records, no
one can tamper with and change the record content. Allowing peers to send the received
records can increase the dissemination level, but it will also increase the communication,
storage, and computation costs. These issues are addressed by targeted dissemination.

Secondly, in gossiping protocols choosing a right set of rumor receivers is crucial in
building a desired overlay [47], and on the overall efficiency of the protocol [33]. Based on
this idea, in SimilDis, using the partial graph Gp of peer p, we derive a similarity measure
between p and the other peers in Gp. Using this similarity metric, peers who are similar
to p get a higher priority to be chosen as the record receivers during the dissemination
of BarterCast records. With this modification, the partial views of peers are concentrated
around similar peers and only records that are of value are disseminated and kept by each
peer.

In summary, SimilDis operates as follows. Besides its partial graph, each peer builds
and maintains a limited-length, ordered similarity list. When sending a record, it selects
a set of random peers from its similarity list as the record receivers. The details of the
similarity computation and update processes are explained in Section 4.3.

4.2.1 Information Dissemination in Reputation and Trust Systems

As mentioned in the introduction, providing reputation evaluators with the right set of
information is crucial for accurate evaluation. Hoffman et al. [44] have studied reputation
systems from various dimensions and have defined four aspects for their dissemination
component: dissemination structure, dissemination approach, dissemination durability,
and level of redundancy. The dissemination structure specifies whether the information
is collected and disseminated in a centralized fashion, like in eBay, or in a decentralized
way, like in Credence [104] and EigenTrust [51]. The dissemination approach categorizes
systems as deterministic or probabilistic. Deterministic approaches usually are based on
a hierarchical structure [32] or they use DHT, as EigenTrust. Dissemination durability
is mostly a matter of implementation, but in general there are two types of them, per-
manent storage systems which keep information for a long period, like EigenTrust and
Credence, and volatile or short-term storage mechanisms, like ARA [42]. Finally, the re-
dundancy aspect relates to the degree of information redundancy, and involves a tradeoff
between scalability and reliability. Considering these aspects, we categorize BarterCast
as distributed, probabilistic, long-term storage, and redundant, Figure1.6 in Chapter 1.
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In computer science literature, the terms reputation and trust are closely related to
each other, and sometimes they are used equivalently. Briefly, trust refers to a subjective
opinion about an entity which is less general than reputation [39]. Trust mechanisms have
been widely studied in various domains as multi-agent systems, P2P networks, ad-hoc net-
works, wireless sensors networks, and dozens of trust protocols have been proposed [39].
Despite their diversity, like in reputation systems, effective dissemination of behavioral
information is a vital requirement for doing a meaningful trust inference [66]. Specially,
in mobile and sensor networks, due to power and computation limitations, proper built of
web of trust (the trust network) is critical for the scalable operation of the system [84].
The proposed method in this chapter, for targeted dissemination, is easily applicable in
this area as well.

4.2.2 Node Similarity

Due to the high volume of generated information and the need to filter and categorize
them, similarity measures have gained a lot of interest in the online world, and they are
widely used in recommender and collaborative filtering systems [7,16,90]. Various types
of similarity measures have been introduced. If entities and their relations are transformed
into a graph, then we can define a new kind of similarity, called structural similarity [56],
which is simply based on the connections between nodes in the graph. The basic premise
of structural similarity is that the structure of a network reflects real information about the
nodes.

In the network literature, researchers have proposed various approaches to quantify
structural similarity. One of the earliest approaches is called structural equivalence [64].
Here, the more neighbors two nodes have in common, the more similar they are. Later, Jeh
et al. [46] proposed SimRank, which is predicated on the idea that two nodes are similar
if their neighbors are similar. Despite its elegance, SimRank has a number of drawbacks:
nodes that are at an odd distance from each other have a similarity of zero, the edge
weights are omitted from the similarity measure, and with any change in the graph all
similarities have to be recalculated. Besides, SimRank calculates the similarity between
every pair of nodes, which in some applications is unnecessary. These drawbacks limit
the applicability of SimRank in our problem.

Antonellis et al. [11] proposed an extended version of SimRank, called SimRank++,
which for similarity calculation takes into account the edge weights and an external sim-
ilarity measure called evidence. Except for using the edge weights, SimRank++ still suf-
fers from the other mentioned drawbacks of SimRank. Considering the static and iterative
nature of SimRank, Li et al. [60] proposed an incremental version of SimRank.

Based on the idea of regular equivalence (nodes are similar if they are connected to
similar nodes), Leicht et al. [56] proposed a linear algebric method for calculating node
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similarity. Their fundamental assumption is that an edge between two nodes indicates a
similarity between them (similar as in BarterCast). Unlike SimRank, this method consid-
ers both odd and even length paths, but it is still static, computes all pairwise similarities
(which is unnecessary in our case), and does not consider edge weights. In view of the
limitations of the mentioned similarity methods and our specific requirements for targeted
dissemination, we devise and apply our similarity methods, see Section 4.3.

4.3 Design Details

In SimilDis, the partial graph of a peer is used for two purposes: reputation calculation
and similarity computation. Using its partial graph a peer builds a list of similar peers to
itself, and when disseminating information the target nodes are chosen from this list. In
this section, we explain the process of similarity computation.

4.3.1 Peer Similarity Requirements

Usually in distributed search techniques similarity is derived from a predefined user-item
matrix, from which one can infer a similarity measure between users or between items
[62]. Even though we do not have such fine-grained data in the partial graphs, still an edge
between two peers does show their common interest in the same content, which can be
used in the similarity computation process. Considering the operational requirements and
the properties of partial graphs, we list the following desirable features for the similarity
metric in SimilDis:

• An edge between two nodes is a sign of similarity between them and should be
accounted for in the similarity calculation.

• The edge weights should be considered in the similarity calculation.

• The similarity between two nodes decreases when the distance between them in-
creases.

• As the partial graph is growing (new nodes or edges are added and the weights of
existing edges change), the similarity values should be updated dynamically.

• A peer only needs to maintain the similarities between itself and other peers in its
partial graph.

• Only the relative similarity (ranks) of peers is important.

Based on these requirements we devise two algorithms to compute similarity, one is based
on using a Directed Acyclic Graph (DAG) derived from the partial graph, and other is
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based on multiple random walks in the partial graph of a peer. We use these methods
since both conform to the mentioned relaxed similarity requirements, and, in our context,
they are more efficient in computing similarity values than the existing solutions cited in
Section 5.1.

4.3.2 DAG-based Similarity

From the point of view of similarity, the direction of a data transfer is not important.
Therefore, when in the partial graph Gp there are two directed edges u → v and v → u

between nodes u and v, with weights wuv and wvu, respectively, we replace these two
edges by a single undirected edge uv with weight wuv + wvu. The new undirected graph
created in this way is denoted by Up. This graph is not used for reputation calculation;
for this we still use the partial graph itself, so free-riders will not benefit from the higher
edge weights in Up.

Starting from the node p in Up, a new labeled wieghted DAG Sp is generated, where
the label of each node shows its similarity to p. Initially, the graph Sp only contains node
p with label sp = 1.0 and level lp = 0. The label 1.0 shows the maximum similarity of
p to itself, and the level of a node is the distance of the node to the source node p. For
each neighbor q of p in Up, a new edge p → q is added to Sp and the level of q is set to
one higher than the level of p, so lq = lp + 1. An edge like p → q induces a parent-child
relation between p and q. The weight Wpq of the edge p→ q in Sp is obtained by relative
splitting of the similarity of p among all its children:

Wpq =
wpq∑

i∈N+
p
wpi

× sp, (4.1)

where sp is the label of p, N+
p is the set of children of p, and wpq is the weight of the edge

pq in Up. This process of adding nodes and edges to Sp continues with the grand children
of p until all the nodes in the connected component of Up that p belongs to have been
added to Sp.

Starting with the source node p in Sp, using the similarity value of a parent node and
its outgoing edge weights, we are able to calculate the similarity values of its children.
The similarity of a node q to the source node p is equal to the sum of the weights of its
incoming edges in Sp multiplied by a decay factor:

sq = θlq ×
∑
i∈N−

q

Wiq, (4.2)

where lq is the level of q, θ is a predefined decay factor in (0, 1], and N−
q is the set of

parents of q in Sp. Due to the factor θlq , by going further away from the source node, the
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similarities of the nodes to the source node decrease.

Using the above procedure, the graph Sp is built up level by level, but an ambiguity
arises when two nodes u and v with the same level have a common edge in Up. In such a
situation it is not clear whether v is a child of u or the other way around, and which of the
edges u→ v or v → u should be added to Sp. If both are added, the graph Sp will not be
acyclic, but if no edge is added, we lose valuable similarity-related information. We deal
with this issue by having the nodes u and v exchange a fraction of their similarities and by
further ignoring the edge uv in the calculation of the similarities of the lower level nodes.
By this strategy, the acyclic property of Sp is preserved, and still the edge uv influences
on the similarities of u, v and their children.

To calculate the amount of similarity exchange, first the edge uv is temporarily re-
placed by a dummy node duv and two edges from u and v to duv in Sp. This replacement
is done for all the edges between nodes at the same level as u and v. Then the nodes u

and v compute amounts ηu(uv) and ηv(uv) from their similarity and transfer them to duv,
which then has similarity ηu(uv) + ηv(uv). Finally, this value is equally split between the
nodes u and v, and so the change in the similarity of u will be:

∆u(uv) =
ηv(uv)− ηu(uv)

2
, (4.3)

and for the node v it is ∆v(uv) = −∆v(uv). After processing all the edges ux with
lu = lx, the new similarity value of u will be su +

∑
∆u(ux).

In the calculation of ηu(uv) and ηv(uv), the nodes u and v only are allowed to play
with a portion of their similarity but not with the whole—we call this limitation parental
allowance. Parental allowance depends on the strength of the connections to the parents,
the stronger the connection, the smaller the fraction of its similarity a node is allowed
to give to a dummy node and vice versa. Without the parental allowance, a node highly
similar to its parents may lose much of its similarity and may become very little similar to
its parents. To calculate the parental allowance, if Πu and Πv are the sum of the weights
of the edges connecting u and v to their parents, respectively, then the parental allowances
of u and v will be πu = 1− Πu/(Πu + Πv) and πv = 1− Πv/(Πu + Πv). The similarity
transferred to the dummy node by peer u is now:

ηu(uv) = θlu+1 × πu × ρu , (4.4)

where ρu is the ratio of wuv/2 to the sum of all the edges connecting u to its children
(including the dummy nodes).

The metaphor for this way of exchanging similarity is that because of the parental
allowance, children that are strongly connected to their parents have less freedom in giv-
ing their similarity to others, and loosely connected children have more freedom, which
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is natural. At the child level, the dummy node is treated like a lost child with its asset
(similarity) equally divided between the parents.

As an example, now we will go through the process of similarity computation for a
simple partial graph. Figure 4.2(a) shows the partial graph of p and Figure 4.2(b) shows
the undirected graph Up generated from it. In Up, the nodes r and q are located at the
same distance from the node p and they are connected, so in the graph Sp the edge rq

will be replaced by a dummy node and two edges. Figure 4.3 shows the generated DAG

(a) Partial graph Gp (b) Undirected graph Up

Figure 4.2: A sample partial graph and the associated undirected graph.

Sp along with the similarity of each node shown as a label beside it. For this example,
θ = 0.8, and the nodes r and s have the highest and lowest similarity to p, with sr = 0.54

and ss = 0.07.

Figure 4.3: The similarity graph Sp for the example of Figure 4.2(a).
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4.3.3 Random Walk Based Similarity

As a second method for computing similarity values we consider random walks, which
have been used to compute similarity previously [98, 99]. In this method, starting from
the node p we perform multiple biased random walks of length L in the partial graph Gp.
These walks are non-uniform, and the choice of the next node from an arbitrary peer u is
proportional to the weights of the outgoing edges of u. Besides, there is a transport factor
α < 1.0, which helps the walker to come back to the start point. When choosing the next
node, with probability α the walker jumps to the start point p and continues the walk from
there. After having performed a walk K times, the ratio of the number of times a node is
visited to the total number of visits to all nodes (K × L) is taken as the similarity of that
node to p. As already mentioned in Section 4.3, an edge between two nodes is a sign of
their interest in the same content, and the higher the edge weight, the higher the similarity
between them. In a biased random walk, high-weight edges get a higher chance to be
walked, and so the attaching nodes are visited more often than those connected weakly;
accordingly, the hitting times of a node correlate with its similarity to the node who does
the random walk. A good property of this method is that it its complexity only depends
on K and L and is independent of the size of the partial graph.

Even though the RW-based method is not dynamic, in the face of changes in the partial
graph we can use several heuristics to avoid recalculating the similarities for every such
change and still have accurate similarity values. From the similarity point of view, the
closer to the source node p, the more important are the edges. Until 2 hops the similarity
update probability is the inverse of the distance from the local node p. So, if p does an
upload or a download action, then the similarity values are recalculated, but if a neighbor
of p does such an action then only with a probability of 0.5 the similarity calculation
process is re-run. For the actions of other nodes, the similarities are only updated if the
number of non-processed actions passes a threshold value updatec. It is possible that a
peer may receive less than updatec updates for a long period of time, so that the update
trigger does not activate during this period. To mitigate this problem, we define a time-
based similarity update trigger that after updatet time of updating the partial graph (with
at least one record) the similarity calculation process is re-run too.

4.3.4 Similarity Maintenance & Security

In both the DAG-based and the Random-Walk based methods, a peer p builds and main-
tains a similarity list of maximum size m with the top m most similar peers to itself, and
in the selection of a target node for disseminating a record the peer p refers to this list.

When a peer p joins the network, its partial graph and similarity list are empty, but
by doing its first upload or download it creates its first connections in its partial graph,
and accordingly it gets new items in its similarity list. Later on, by receiving new records
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it can update its similarity graph and similarity list. If the similarity list is full then the
least similar peer is replaced by a fresher and higher similar peer. When a peer p receives
a record, it first updates its partial graph Gp, then its similarity graph Sp, and finally its
similarity list.

Regarding the security concerns, SimilDis carries security mechanisms against ma-
licious acts like misreporting, sybil-attack, and white-washing. First of all, since the
records are double-signed, there is no opportunity for misreporting. Second, the repu-
tation calculation is done as in the sybil-resilient version of BarterCast [28], which is
independent of how the records are disseminated. The only remaining concern is biasing
the partial graph of a peer by a group of malicious peers, where they try to boost their
own reputations at that peer. But this attack strategy is like the sybil-attack and the same
sybil defense mechanism is effective here too.

4.4 Dynamic Similarity Update Algorithm for the DAG-
based Method

In the dynamic network in which SimilDis is supposed to be executed, new peers may
join the network or existing peers may perform data transfers, causing partial graphs to
change. In turn, a change in the partial graph of a node may cause the similarity graph
to change as well, and as a consequence, it may affect the similarity list. Creating the
similarity graph from scratch for every change of the partial graph is not very efficient. In
this section we will present a dynamic update algorithm for the similarity graph when the
partial graph changes. In this algorithm, we use the natural partial ordering (≤ ) property
of a directed acyclic graph on its nodes, where u ≤ v if there is a path from u to v. Due
to this property, a change in the similarity of a node u only affects the similarities of the
nodes reachable from u. This property enables us to devise an incremental method for
updating the similarity values.

Consider a node p, and its similarity graph Sp = (Vs, Es), where Vs and Es are the
node and edge sets, respectively. In SimilDis, we do not store the undirected graph Up (see
Section 4.3.2); it was only introduced to aid the explanation, In the real implementation
we have used two adjacency lists to keep the graph structures, one for in-neighbors and
one for out-neighbors, and the undirected weights are computed on the fly using the partial
graph itself. Initially, the graph Gp is empty and Sp only contains the node p itself, which
is called the root of DAG. Suppose that peer p wants to update its similarity graph Sp after
it has updated its partial graph Gp with the newly received record (u, v,W ), indicating
that peer u has uploaded an amount W of data to v. Then there are four possible scenarios:

1. u /∈ Vs and v /∈ Vs.
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2. u ∈ Vs, v ∈ Vs, and u→ v ∈ Es or v → u ∈ Es (both edges can not coexist).

3. u ∈ Vs or v ∈ Vs, but not both.

4. u ∈ Vs, v ∈ Vs, but u→ v /∈ Es and v → u /∈ Es.

Note that the graph Sp is connected and that a node q belongs to it if and only if there is a
path from p to q in Gp.

We now explain how the similarity graph is updated in each case.
Scenario 1): There is no path from p to u or to v in Gp, and u and v are not able to

join Sp, so Sp does not change.
Scenario 2): Without loss of generality assume that the existing edge is u → v. Due

to the new data transfer between u and v, the weight of this edge is changed in Es, and so
the similarity of all the nodes reachable from u should be adapted as well. In this scenario,
the graph structure Sp and nodes levels do not change. To update the similarity values,
we start from the node u in Sp and using Eqs. (4.1) and (4.2), we recalculate the edge
weights and the similarities of the children of u. This process continues throughout the
complete subtree Sp of which u is the root.

Scenario 3): Without loss of generality assume that u ∈ Vs and v /∈ Vs (the direction
of the edges in Gp are irrelevant in the construction of Sp). This means that there exists
a path from the root node p to u in Gp but not to v, Figure 4.4(a). In this scenario, the
new edge u → v in Sp will act as a bridge that connects v and all nodes reachable from
v in Gp to the similarity graph Sp. To modify Sp, before adding the edge u → v to Sp,
our update algorithm treats the component of Gp that v belongs to as a standalone graph,
and by starting from v it creates a sub-DAG for this component. In Figure 4.4(b), this
sub-DAG is composed of the nodes v, t, and z. This new sub-DAG is then joined to the
main similarity graph by the edge u → v, and lv = lu + 1. After this join operation, the
situation becomes like scenario 2, and starting from the node u the similarity values are
updated accordingly.

(a) Gp and Sp before adding the edge
u→ v.

(b) Gp and Sp after adding the edge u→ v.

Figure 4.4: An example for scenario 3, the edge u → v connects the node p to the new
part of the graph.

Scenario 4): This is the most complex scenario and unlike the previous scenarios,
the levels of nodes that are already present in Sp may change. As in scenario 3, first the
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structure of the graph is adapted, then the similarity values for the changing nodes are
recalculated. In this scenario, the current levels of the nodes u and v dictate how the
graph is going to be restructured. There are three possibilities:

• lu− lv = 0. In this case the levels of u and v do not change, but to reflect the impact
of the new edge on the similarity graph, using a dummy node duv, u and v amend
their similarity according to Eq. (4.4). Then like in the scenario 2, starting from
the nodes u and v, the similarity values of the nodes reachable from these nodes are
updated, Figure 4.5 presents an example.

• lu − lv = −1. The node u is one hop closer to p than the node v, and the new edge
does not change the graph structure nor the node levels. In this case only an edge is
added from u to v in Sp, then like in scenario 2 starting from node u the similarity
values are updated.

• lu− lv < −1. Like a domino effect, the new edge u→ v causes level changes in the
children and parents of v, and the changes ripple until the point that the levels of the
nodes do not change any more. Unlike the previous cases, here the direction of an
existing edge in Sp may change. The pseudocode of the graph rewiring algorithm
for this scenario is presented as Algorithm 1. Here, the queue Q contains the nodes
of which the levels are changed, and the node v with the new level lv = lu + 1 is its
first item. The algorithm continues by removing an item from Q and processing it,
until it becomes empty.
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Algorithm 1 Scenario 4 & lu − lv < −1

1: Q← {v}
2: while Q ̸= ∅ do
3: x← remove(Q)

4: for m ∈ children(x) do
5: if with the new edge the level of m changes then
6: update lm
7: if it is required remove an existing dummy node
8: if it is required add a new dummy node
9: update the connecting edges to m

10: add m to Q

11: end if
12: end for
13: for n ∈ parents(x) do
14: if with the new edge the level of n changes then
15: update ln
16: if it is required change the direction from x to n

17: if it is required add a dummy node, dxn
18: add n to Q

19: end if
20: end for
21: end while

The conditions for adding/removing a dummy node, or changing the direction of an
existing edge depends on the changes in the node levels. Similar to other scenarios, after
rewiring Sp, by traversing it from node u, the edge weights and similarity values are
updated.

Figure 4.6 shows an example, where due to the new edge u→ v, the similarity graph
needs to be rewired. In this example, by applying Algorithm 1 the following changes
happen:

• The levels of the parent and child of u (t and m) change.

• The parent-child relation between t and v is reversed.

• The nodes s and t get a dummy child.

For this example, only the similarities of the nodes r, v,m, t, s, n need to be recalculated.
The complexity of the dynamic update algorithm depends on the scenario. For sce-

nario 1, since no graph traverse is done, the complexity is O(1). For the other scenarios,
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(a) Gp and Sp before adding the edge u→ v. (b) Gp and Sp after adding the edge u→ v.

Figure 4.5: An example for scenario 4 when the levels of u and v are equal.

Figure 4.6: An example for scenario 4 when lu − lv < −1; similarity graph before (left),
and after (right) adding the edge u→ v.
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to update the similarity values, starting with the higher level node (see the scenarios), we
traverse the sub-graph in breadth-first-search (BFS) manner, so if |V ′| and |E ′| are the
numbers of nodes and edges in the traversed subgraph, then the complexity of the update
process is O(|V ′| + |E ′|). The size of a traversed subgraph depends on the structure and
the growing pattern of the partial graph, and in the worst case it is equal to the DAG graph
Sp.

4.5 Experimental Setup

We perform trace-driven simulations to evaluate our protocol. This section covers the
simulation steps in detail.

4.5.1 SimilDis Simulation

Our experiments for evaluating SimilDis are based on a trace obtained from the Tribler
network. Using a timed-ordered list of data transfer actions, we simulate the creation and
dissemination of data transfer actions through SimilDis. In order to evaluate its accuracy,
we compare the reputation values calculated using SimilDis with the case of having full
knowledge (all records are given to all peers). The simulation is run in two phases: the
training phase and the testing phase, and accordingly, the trace is split into two parts, one
part for each phase. After processing 50% of the trace in the training phase, in which only
dissemination is performed and the partial graphs are built up, in the testing phase peers
are asked to evaluate the reputations of the peers they upload to.

In the Tribler network, a data transfer action is represented as a tuple (p, q, U,D, t),
which indicates that until time t, peer p has uploaded an amount of data U to and down-
loaded an amount of data D from q. We sort the data transfer actions based on their
dissemination time t in the network (the real data transfer time is unknown). Since the
crawler may receive the same record from multiple peers, for our experiment we only keep
the first occurrence of a record in the network. We filter out duplicate records, singleton
nodes (nodes that are not connected to any other node), and the records in which U and
D are less than 256 KB. In the final data trace that is fed to the simulator, each BarterCast
record (p, q, U,D, t) is replaced by two separate records (p, q, U) and (q, p,D). Since it
is not clear which of these actions has happened first, we just randomly put one before the
other. Since multiple experiments with different ordering showed no meaningful effect on
the outcome, we proceeded with a single random ordering of the records. Also, since the
BarterCast records are processed by time and the simulator reads the trace sequentially,
in the final trace the time t is irrelevant. After applying the mentioned filters we end up
with a network of 11.7 K nodes and 28.1 K edges.
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To simulate the record dissemination, we modify the PeerSim simulator [76], and
implement SimilDis as a set of new modules over PeerSim. The simulation starts with
an empty network, and by processing the trace, new nodes and edges are added to the
network. Each peer keeps its own local partial graph, its similarity graph, and its similarity
list, and when receiving a new record, it updates these structures accordingly. Here are
the main steps that are done in each simulation cycle:

1. Reading Trace: In each simulation cycle, the simulator reads nrec new records from
the trace and injects them into the network. In our experiments nrec is set to 20.
To imitate reality, the peers who are involved in a data transfer action are the only
receivers of a newly read record from the trace. In other words, if the simulator
reads the record (p, q, U), then this record is only given to p and q. Later on, in the
record sending step, they inform other peers about this record. The trace reading
step is performed by the simulator, but the following steps are run by every peer in
each cycle.

2. Evaluating Reputation: This step is done only during the testing phase, where for
each record (p, q, U), the uploading peer p evaluates the reputation of q. The repu-
tation evaluation is done before the update of the partial graph of p with (p, q, U).

3. Updating Similarity List: For each received record (r, s, U), the peer p first updates
its partial graph Gp, then its similarity graph Sp (in the DAG-based method), and
finally its similarity list.

4. Sending and Receiving Records: The real dissemination happens in this step, and
peers actively involve in the spreading of the received records. Each peer has a
buffer of size of lbuf which contains the candidate outgoing records. If the buffer
is full then a newly received record replaces the oldest one. Also, each peer sends
a record at most trec times, which is called the maximum send-age of a record. In
each cycle, a peer forwards a maximum number of nmsg messages to a set of peers
of size fout (the fan-out) that consists of the top |fout| most similar peers to p as
derived from p’s similarity list.

4.5.2 Full-Dissemination Simulation

Because the views of the peers in SimilDis are only partial, the subjective reputation of
a peer may differ from one evaluating peer to another. The ground truth for reputation
values is obtained when peers have immediate access to all the past interactions in the
network. The full graph is the ideal situation, and in effect it is like having a central
server which collects all the records. The important point in informing peers about a new
record is that when a record like p→ q is generated, it is not clear whether in the future it
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will be useful for an arbitrary peer r or not. If we would know, then the problem is already
solved. In the ideal case a new record is given it everybody, and this action leads to the
concept of full graph. In our previous work [27], we did experiments in using such a full
graph and compared it with two other ways of improving the reputation accuracy (using
a higher number of maxflow hops and computing reputation values from the perspective
of the node with the highest betweenness centrality), and we observed that using the full
graph is the most influential one.

To build such full knowledge, we create a special graph called Gglob, and after reading
each record from the trace, this graph is updated with that record. The graph Gglob is
used as the reference graph during reputation evaluations, and from a peer p’s point of
view, a peer q has two reputations, one obtained using Gp and the other using Gglob. The
difference between these values shows the accuracy of SimilDis. In the real environment,
the global graph is not kept by any peer, it is just used for our experiments to measure
how far the nodes are from the ideal situation. Regarding the overhead of SimilDis,
we compare the communication, the storage, and the computation cost against the cost
of building and maintaining such a full graph by each peer. The comparison with the
hypothetical scenario of Full-Dissemination measures the overheads at their extreme.

4.5.3 Parameter Setting

The SimilDis protocol has a number of parameters the values of which influence the
protocol performance (see Table 4.1). In order to find an appropriate set of values for
these parameters, we use Dataset 1 (see Chapter 1.4). The filtered trace from this dataset
that is fed into simulator contains 4.8 K edges and 2.7 K nodes. Using this trace, we
have performed a sensitivity analysis, measuring the reputation error and costs for the
combinations of parameters considered.

Since the total parameter space is too large and evaluating all combinations is impos-
sible, we simplify the sensitivity analysis in two ways. First, we discretize continuous
parameters and analyze only a subset of the feasible values. For example, for the trans-
port factor α introduced in Section 4.3.3, we only evaluate the values 0.1, 0.2, . . . , 0.8.
Secondly, for each parameter we perform a separate one-dimensional parameter analysis.
In order to do so, we initialize each parameter to a value that gives the lowest cost (e.g., all
gossiping-related parameters are set to 1), which may imply a very high error. After ini-
tializing the single changing parameter, we fix the others and do simulations with different
values for the changing parameter and measure the reputation error. When the change in
error between two consecutive experiments is less than the threshold value of 0.02, we fix
the changing parameter and repeat this process for the next parameter. Table 4.1 contains
the parameter values thus obtained that we use in the experiments in Section 4.6.
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Table 4.1: Simulation parameter setting
Parameter Value
similarity list length 5
lbuf (size of message buffer) 10
trec (number of times to send a record) 2
fout (fan-out of dissemination) 2
nmsg (maximum number of messages per cycle) 2
L (single random walk length) 5
K (random walk tries) 10
α (random walk transport factor) 0.4
updatec (threshold for non-processed records) 20
updatet (consecutive non-processed cycles) 20
θ (decay factor in the DAG-based method) 0.8

4.6 Evaluation

We evaluate our protocol from four angles, which are its accuracy in evaluating repu-
tations, its communication, storage, and computation costs, the benefit of the dynamic
similarity update for the DAG-based method, and its resilience in the face of churn. For
these evaluations we use the crawled data from Dataset 2, see Chapter sec:crawler.1.
Each result presented in this section is the average of 20 simulation runs.

4.6.1 Accuracy

Using the partial graph Gp and the global graph Gglob introduced in Section 4.5, when a
record (p, q, U) is read from the trace, we compute the subjective and global reputations
given to peer q by peer p, respectively, before updating the graphs Gp and Gglob with this
new record. The difference between these two values shows how the restricted dissem-
ination in SimilDis affects the reputations of peers. Figure 4.7 shows the histogram and
the empirical cumulative distribution function (ECDF) of the reputation evaluation errors
(subjective reputation minus global reputation) when using the DAG and Random Walk
(RW) based similarity computation methods. This figure contains only the reputation
evaluations for which the global reputation is non-zero, in other words, for which there is
a meaningful reputation if we have full knowledge. In our previous work [27], we have
shown that in terms of accuracy and computation overhead maxflow with 4 hops gives
the best result, with a coverage of around 70% . As can be observed, for both methods
the error values are concentrated around zero, and the standard deviation of the DAG and
RW-based methods are 0.18 and 0.14, respectively. In comparison, as the ECDF plot
shows, especially at the high ends, the RW-based method performs better than the DAG-



76

reputation evaluation error

0

500

1000

1500

2000

2500

DAG Based

−0.5 0.0 0.5 1.0

RW Based

−0.5 0.0 0.5 1.0

(a) Histogram(binwidth=0.065 and the intervals are left-open).

DAG Based RW Based

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0
reputation evaluation error

E
C

D
F

(b) ECDF (for the RW-based method the 10th and 90th percentiles are
at -0.039 and 0.087, and for the DAG-based method at -0.007 and 0.201,
respectively)

Figure 4.7: Histogram and Empirical CDF of the reputation evaluation errors in the DAG
and RW-based methods.

based method. In general, the error values are biased toward the positive values and this
positive bias may give opportunity for free-riders, but on the other hand, honest peers may
also benefit from this positive bias, and they may not be rejected to get content from other
peers.

4.6.2 Costs

To simulate having Full-Dissemination, we assume that there is an efficient peer discovery
service that informs all peers when a peer joins the network. To mimic such a service in
the simulator, when a record (p, q, U) is read from the trace, peer p is the peer who is
responsible for informing all other peers and sends this record to all existing peers in the
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network. When a node joins the network, all peers send their previous upload records
to this peer as well. Due to the small record size, instead of sending one record in each
TCP packet, peers can send multiple records in a single packet. In Tribler, the length of a
BarterCast record is 48 bytes, and each TCP packet can carry around 30 records.

We evaluate the communication cost of SimilDis by counting the number of TCP
packets and compare it with the case of providing peers with all records. Figure 4.8
shows the total number of messages sent in each simulation cycle. As can be seen, with
both the DAG-based and the RW-based method, SimilDis sends two orders of magnitude
fewer messages than in Full-Dissemination. The number of messages with RW is a bit
higher than with DAG.

The two major computational costs incurred by SimilDis are the costs for maxflow and
similarity update. In the case of Full-Dissemination, the maxflow computation is the only
computational overhead. To compare these costs, we measure the CPU time for each of
these algorithms, which are shown in Figures 4.9 and 4.10 as a function of the simulation
cycle. Since the reputation evaluation happens only in the testing phase, the horizontal
axis of Figure 4.9 does not start at zero. As can be observed, due to smaller partial graphs
in SimilDis, the maxflow computation time in SimilDis is nearly 10 times shorter than in
Full-Dissemination.

The graph in Figure 4.10 compares the similarity update time in the DAG-based versus
the RW-based method. The RW-based method is around 10 times faster. Also, since the
update algorithm in the DAG-based method depends on how the partial graphs grow, we
observe more fluctuations in the DAG versus the RW-based method.

Finally, we consider the storage cost of SimilDis versus Full-Dissemination. We take
the sizes of the partial graphs and the Full-Dissemination graph (in terms of the numbers
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Figure 4.9: The computation cost of maxflow in SimilDis versus Full-Dissemination (the
continuous lines show the averages).

of nodes and edges) as the protocol’s storage cost. Similar to communication cost, in
each simulation cycle we measure the sizes of the partial graphs in SimilDis and compare
them with their size in Full-Dissemination, in which each peer has a full copy of the
whole network. Figure 4.11 presents the average number of nodes and edges in the partial
graphs of the peers. In comparison, in SimilDis the graphs are no less than approximately
100 times smaller than in Full-Dissemination.

4.6.3 Efficiency of Dynamic Similarity Update

To evaluate the efficiency of the dynamic similarity update algorithm, we rerun the ex-
periments, but this time the similarity graph is updated in a static way. Here, by static
we mean that for each change in the partial graph, the similarity graph is created from
scratch. Even in this method, in order to speed up the similarity computation, we ap-
ply similar heuristics for when to do the similarity re-computation as we use with the
RW-based method, see Section 4.3.3. Figure 4.12 shows the average dynamic and static
update times. As the graph shows, even with using the same heuristics used for random
walking, the static method is much slower than the dynamic one.

4.6.4 Accuracy Under Churn

To study the under churn behavior of SimilDis, we perform a set of experiments which
covers different churn rates. In our experiments peers alternate between the on and off
states. When a peer is on, it receives records and contributes to their dissemination, and in
the off state, it is inactive and does not receive any records. In our simulation, when a peer
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becomes on, it is assigned an on period of a certain duration, and vice versa. However,
if during an off period of a peer a record appears in the trace that contains the peer, then
immediately it switches to the on state.

To study different churn intensities, we define the online ratio or as µon/(µon+µoff ),
where µon and µoff are the average on and off time, respectively. We do experiments with
or = 0.1, 0.2, 0.4, 0.8 and with µon = 1, 3, 5, 10, 20. The values µon and µoff are used
as the means of normal distributions from which we generate the peer on and off times;
the variance of these distribution is set to one-third of the mean. For each combination of
or and µon, Figure 4.13 presents the average absolute reputation evaluation error (Section
4.6.1). As can be observed, even with the low online ratio of 0.1 the average reputation
evaluation error is very low. The low error means that due to the targeted disseminated,
even with a short online time, peers are still able to build partial graphs that lead to accu-
rate reputation evaluations.

4.7 Conclusion

In this chapter we have introduced two methods for targeted dissemination of information
in a distributed reputation mechanism, one based on building a Directed Acyclic Graph
(DAG) and the other based on Random Walks (RW). The evaluation results show that both
methods calculate reputations with low errors, with the RW method being slightly more
accurate than the DAG-based method. In terms of communication, computation, and
storage costs, both methods are dramatically more efficient than the Full-Dissemination
method, in which the peers receive complete information—both the communication and
the storage costs are reduced by a factor of 100. This is very important for power-
constrained mobile devices. In general, the methods proposed in this chapter, which
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aim at targeted information dissemination, are applicable in any application in which a
graph among the system participants can be built. Moreover, the growth of online social
networks has opened a new research area in leveraging social relations to improve secu-
rity and performance of network applications [74, 106]. In such networks, for effective
routing and improved security, the targeted dissemination of this chapter can be adapted
and used as well.

In comparison to the DAG-based method, the RW-based method is non-deterministic
but it is easier to implement. The DAG-method has the advantage that it assigns a sim-
ilarity value to all nodes in the graph, and it can be used in any similar application in
which SimRank or other structural similarity methods are used, such as targeted query
forwarding.
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Chapter 5

Analysis of the BarterCast Network

Despite much interest in reputation systems over the last few years, there are hardly any
studies of the real behavior of Internet-deployed decentralized reputation systems. In this
chapter, we study the BarterCast reputation mechanism, which builds a graph structure
for its operation, from a network science perspective, and employ many network mea-
sures to understand its behavior. In this study, using a number of datasets from a real
operational environment, we build the BarterCast network of content-sharing activities.
From this network, we calculate a number of appropriate measures to comprehend its
structure and the operational behavior of the underlying reputation mechanism. We inter-
pret each calculated measure in the scope of the reputation mechanism and we provide an
explanation of its implication. For some of the measures we elaborate on their prospective
applications for further improving the reputation mechanism.

To rebuild the network and perform our analysis, we use Dataset 3, see Chapter
1.4. Using the permanent identifiers of the peers we are able to correctly group the col-
lected records from different peers and to generate a global network, which we call the
work-graph. Moreover, in the Tribler network, there are four so-called super peer nodes
which are used for bootstrapping. We employ the data recorded by these super-peer nodes
to generate two sets of valuable information about peers. The first of these sets contains
the IP addresses of the peers, which enable us to do a geospatial analysis of the network.
The second contains the content swarms peers have participated in, which allows us to
perform a content-based similarity analysis of neighbor peers in the network.

We perform an analysis of the topological characteristics of the work-graph, which
include the degree distribution, the nodes interconnectivity, the clustering coefficient, the
community structure, and centrality and distance measures. The degree analysis of the
work-graph shows that, like social network graphs, it has a long-tail power law distribu-
tion. We test the hypothesis of it being obeying a power law and check it against similar
distributions. The interconnectivity analysis shows that the graph has star-shape structures
and is far from a scale-free graph; this result is confirmed by the low clustering coefficient
of the graph. Complementary to the clustering coefficient, it is observed that the graph
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has strong communities. Moreover, we observe that there is a strong correlation between
the node degree and the betweenness and closeness centrality measures. This observation
suggests that node degree is a good approximation for these complex measures. Finally,
using the temporal graphs that we build over time, we can observe how the diameter, the
average path length, and the density of the graph change over time. Complementary to
the general topological analysis, we also present results on the geographical spread of
nodes at the granularity of ISPs, and we evaluate the correlation of ISP co-location and
having an edge (content sharing) in the graph. We present our findings about user upload
and download behavior and measure the content-based similarity of neighbor nodes in
the graph. These similarities are based on the complementary data that we have about the
content that peers have shared with others.

The contributions of this chapter are as follows:

1. Employing the crawled data from the Tribler network, we compute various net-
work measures such as the degree distribution, the node interconnectivity, and the
community structures (Section 5.2).

2. Merging the locality and the content data from the super-peer logs, we explore the
colocation of the interacting peers in BarterCast, and we measure their similarities
based on their content interested (Sections 5.3 and 5.4).

3. We interpret each metric in the context of file-sharing and reputation mechanism
and elaborate on its prospective application. The interpretations are presented at
the end of each section.

5.1 Related Work

For years, social scientists have studied human relations and have made interesting dis-
coveries, e.g., the small-world phenomenon by Milgram [70] and the partitioning social
relations into strong and weak ties by Granovetter [40]. Recently, due to the fast growth
of online social networks, researchers have put a lot of effort in studying the static and dy-
namic properties of these networks. Kumar et al. [54] have studied friendship relations in
Flickr and Yahoo360, and they have shown that these networks have a large Strongly Con-
nected Component (SCC). An analysis and comparison of the social networks of Flicker,
YouTube, LiveJournal, and Orkut by Mislove et al. [72] confirms the power law, small-
world, and scale-free properties of these networks. Recently, the Facebook network, due
to its high popularity and size, has attracted many researchers. Orthogonal to other stud-
ies, which are more focused on general network properties, Viswanath et al. [106] and
Wilson et al. [101] have studied this network from the user-activity and link-reliability
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perspectives. They have clarified that despite the high number of links (friendship rela-
tions), only a small portion of the links of a node are reliable, meaningful, and useful for
real-life applications.

Besides social networks, analyzing the structure of the Web and Internet links has led
to many interesting findings as well. Analysis of the Autonomous System (AS) level of the
Internet by Mahadevan et al. [65] has revealed that the joint degree distribution can char-
acterize Internet connections. Falatous et al. [34] have shown that the Internet topology
follows a power law degree distribution; a claim that has raised criticism as well [105].
Besides the study of general network structures, there are some studies on the geographi-
cal properties of the Internet infrastructure [52, 96], which study the geographical spread
and node distances. Regarding the Web network, a study of the Web links by Broder et
al. [17] shows that links have a “bow-tie” shape, with a large SCC and many small groups
of nodes connected in one-way to SCC.

Researchers have proposed wide applications of social networks in other systems, e.g.,
defense mechanisms [102], recommendation systems [53], reputation systems [51], and
many others. Despite many proposals only a few of them have gone beyond design into
a real application, and even for those who reached that level, there is no real large-scale
study of their behavior. Our study is distinguishable from similar works in twofold; First,
we perform a thorough analysis of a large-scale, deployed mechanism from a network
perspective. Second, despite pure social network studies, which only present a number
of general measures, we look at the calculated measures from the reputation mechanism
perspective and provide valuable hints for future designs.

5.2 Topological Characteristics

In this section, we study the work-graph of BarterCast from the network topology per-
spective, and we present a number of relevant measures that help us to understand the
connectivity pattern of the nodes. For ease of reading, the terms graph and network are
used interchangeably.

5.2.1 The Undirected Work-graph

In the BarterCast work-graph, an edge indicates the amount of data transferred from one
peer to another, but from the interaction perspective, its direction is not important. So,
for the following analysis we remove the edge directions, and we add the weights if there
are edges in both directions between two nodes. The original directed graph contains
of 73,201 nodes and 352,042 edges; after removing directions, the number of edges is
283,973. In Section 5.2.3, we present some measures on the edge and weight symmetry,
but unless stated otherwise, our analysis is based on the undirected work-graph.
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Furthermore, since most of the graph measures, like the clustering coefficient, only
make sense when the underlying graph is connected, we consider the Largest Connected
Component (LCC) of the work-graph. In total there are 939 connected components, out
of which 780 contain only two nodes. Figure 5.1 plots the cumulative percentage of the
nodes covered by the largest 20 connected components ranked according to decreasing
size. As the plot shows, 93.55% of the nodes belong to the LCC. The number of nodes
and edges in the LCC are 68,315 and 265,033, respectively. In conclusion, since the LCC
is a good representative of the whole graph, we base our analysis on the LCC unless stated
otherwise.
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Figure 5.1: The cumulative coverage of the connected components ranked according to
decreasing size.

5.2.2 Degree Distribution

The original work-graph is directed, and in such a graph a node has three types of degrees:
the in-degree, the out-degree, and the total degree, which is the sum of in-degree and
out-degree. Figure 5.2 shows the degree-frequency plot for these three types of degrees.
Visually, after a threshold degree of about 30, the plot looks like a straight line. Based
on this observation some researchers conclude that such a distribution follows a power
law, and interpret the graph as a preferential attachment graph. But for two reasons this
method is not a reliable way to conclude that a distribution follows a power law. First, due
to high data (node degree) diversity, many values appear once and the frequency values
are not informative. Secondly, using the frequency plot, non-power law driven data, e.g.
exponential, can be misleadingly interpreted as power law [61]. Due to these limitations,
using the CDF or the Complementary Cumulative Distribution Function (CCDF) is more
common [8, 61, 65, 72].

Figure 5.3 shows the CCDF of the node degree in the LCC of the work-graph. In this
plot, it looks as if the tail of the plot follows a power law distribution. A distribution is
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power law if it is driven from p(x) ∝ x−α, where α is a fixed value called the scaling
parameter. Using the method proposed by [21], we estimate the parameters α and xmin,
where only for values larger than xmin the power law holds. To estimate the parameter
α, first xmin is fixed at some value, and then using maximum likelihood estimation and
assuming that the data are driven by a power law distribution, the value of α is estimated.
To find xmin, starting from the lowest possible value, the Kolmogorov-Smirnov distance
between the data and the estimated distribution (for the selected xmin) is calculated. The
xmin that gives the lowest distance is chosen as the best value. Applying these methods
we estimate α = 2.88 and xmin = 42.

So far, we were able to fit a power law distribution to the degree values and to estimate
its parameters, but whether it is a good fit or not is still a question. To evaluate the
quality of the fit, using the estimated values for α and xmin, we calculate the p-value
of the goodness-of-fit test for power law, and compare it with a threshold value. For
the degree values the obtained p-value is 0.067. In the conservative approach [21], the
p-value threshold for rejecting the power law hypothesis is set to 0.1, but generally in a
more lenient approach it is set to 0.05. In conclusion, in the conservative approach the
hypothesis that the work-graph has a power law degree distribution is rejected, but with
the lenient approach this hypothesis is not rejected.

We now further analyze whether with the lenient appraoch, other types of distribu-
tions, e.g., the exponential distribution, give a better fit than the power law or not. The
likelihood ratio test is a simple test for comparing the likelihoods of a dataset of belonging
to a number of distributions. The sign of the logarithm of the ratio of two likelihoods,R,
can determine which distribution is a better representative for the given data. In practice,
relying just on the sign of R is subject to random fluctuations around zero. To make a
solid decision we use the method of Voung [103] that gives a p-value on the significant
of the sign of R, for small p-values the hypothesis that the sign of R is due to random
fluctuations is rejected, and vice-versa. Table 5.1 presents the results of comparing the
power law with four other distributions; a positive R indicates that the power law should
be favored over the other distribution. As the table shows, the power law is reliably fa-
vored over the Poisson and Exponential distributions. For Yule, it seems that it is better
than power law, but like the Powerlaw+cut off the sign ofR is not reliable.

Table 5.1: Vuong log likelihood ratio test results
Poisson Log-normal Exp. Powerlaw+cut off Yule

R +2.78 +0.008 +3.30 +9.03e-6 -0.97
p 0.005 0.993 0.001 1 0.330

Summary & Implication: Our analysis of the degree distribution of the work-graph
shows that it has a long-tail distribution. Depending on the application behind the net-
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work, having a high degree can have different reasons. For example, in a Web network,
the popularity of a site can be the main reason for having many links to it. In our work-
graph, having only a few very high-degree nodes means that a few peers are responsible
for most of the content sharing in the network. Indeed, these are peers who stay online for
a long time and are discovered by other peers more often. On the other hand, many low-
degree nodes indicate the presence of many short-time users or even free-riders. A study
of why there are so many short-time users will help to increase the quality of service in
the whole network. Finally, a non-random structure means that the network is vulnerable
to targeted strategic attacks on highly connected nodes. If an attacker provides the highly
connected nodes with a contaminated content, then the content is spread very fast in the
network. This is a concern that should be taken into account in future designs.

5.2.3 Node Interconnectivity

The degree distribution provides information on the individual connectivity of the nodes
but it does not provide information on the relation between the degrees of neighboring
nodes. In this section we provide some results on one-hop connectivity of the nodes
as captured by the Average Neighborhood Degree, the Assortativity, and the Rich Club
Community (RCC) metrics.

Consider the k × k Joint-Degree Distribiution (JDD) matrix M = (mij), where k is
the largest node degree and mij is the number of edges that connect nodes with degree i

to nodes with degree j. Dividing M by the total number of edges gives the probabilities
that a randomly selected edge connects nodes with degrees i and j. For large and sparse
graphs, the JDD matrix is highly sparse and not very informative. Instead, the average
neighbor degree of the nodes of degree x, knnk(x), is a more informative statistic for
sparse graphs. An increasing knnk(x) is an indication of the tendency of higher degree
nodes to connect to other higher degree nodes and vice versa. We plot knnk(x) in Figure
5.4, where due to its decreasing trend it seems that higher degree nodes tend to connect
to lower degree nodes. A similar but more summarized metric than knnk(x) is the degree
assortativity of the graph, which takes values between -1 and +1, values close to +1
indicating the tendency of similar degree nodes to connect to each other and vice versa.
For our graph, the degree assortativity is −0.062.

The last metric for evaluating the connectivity pattern of the nodes is densely con-
nected core or rich club community [65]. A core is defined as a small group of well
connected nodes that connect the remaining nodes. In order to understand the importance
of the core nodes, we do a similar experiment as Mislove et al. [72]. In this experiment,
we remove a number of the highest-degree nodes (a rich club) from the LCC and count the
resulting number of disconnected components; the higher this number, the higher the im-
portance of the removed nodes. Figure 5.5 presents the fragmentation results of removing
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Figure 5.4: The average neighbor degree of the graph (both axes are in log-scale).

different fractions of the high-degree nodes; it shows the cumulative percentage of nodes
included in the components ranked according to decreasing size, with components of the
same size having the same rank (and counted multiple times in the coverage). Especially
for small sizes, there may be multiple components. In this figure the right-most point of
each curve represents the single-node components. As can be observed, for every removal
ratio, almost all nodes either are part of the LCC or they become single-node components.
Such a phenomenon occurs when there is a high number of star-shape structures with the
removal of the central, high-degree node leaving many single-node components.
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Summary & Implication: The knnk measure has a decreasing trend, which means
that lower degree nodes and new comers tend to connect to nodes that have many links.
This trend is similar to user connectivity in YouTube [72], which according to the authors
is due to the “celebrity” effect, where popular users have many followers. A similar
interpretation holds for the Tribler network as well, since users with many links have
more content to share with others and they are more often discovered by those who look
for content. Also, a decreasing knnk means a low likelihood of having a scale-free graph
[61]. This finding is confirmed by the degree assortativity which similarly to the degree
assortativity of the Internet and Web networks is negative [78]. Notice that every scale-
free graph is power law but not vice versa.

Finally, the RCC analysis shows a connectivity of the network that is very resilient
against the removal of high-degree nodes. For example, in the extreme case of removing
10% of the highest-degree nodes, still more than half of the nodes remain in the LCC,
which is in contrast to hub-like graphs where highly connected nodes play a critical role in
connecting nodes. In conclusion, it seems that there are some strong community structures
in the network, and many nodes are gathered around a few nodes.

5.2.4 Clustering and Communities

The degree distribution of a graph indicates the local connectivity of nodes, and the aver-
age neighbor degree knnk gives information on the connectivity of similar degree nodes,
but neither gives information on how the neighbors of a node are connected among them-
selves. In this section we provide results on the local clustering coefficients and the global
clustering coefficient, which indicate whether the neighbors of nodes are tightly connected
or not. Figure 5.6 shows the average clustering coefficients of nodes with the same de-
grees in the whole graph. The global clustering coefficient of the graph, which is the
average of all clustering coefficients, is 0.0066.

Besides the clustering coefficient, we can look for communities in the graph. A com-
munity is simply a group of nodes with high internal and low external connectivities [80].
Depending on the application behind the network, there can be different reasons for the
formation of communities, for example, geographical locality, similar taste, and etc. Since
the number and the structure of communities are not known in advance, we need a way to
evaluate the quality of a group of communities. Newman et al. [79] have introduced the
concept of modularity, which quantifies the quality of partitioning a graph into commu-
nities. This measure is defined as:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj), (5.1)

where m is the number of edges, A is the adjacency matrix, ki is the degree of node i, ci is
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the community id of i, and δ is the Kronecker delta function. For modularity values close
to zero, the partitioning is meaningless, and values between 0.3 and 0.7 are reasonable for
quality partitioning [20].

●

●●●●●
●

●

●

●

●

●

●

●

●
●●

●
●
●

●
●●

●

●

●
●

●●●●
●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●
●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●●●

●

● ●

●
●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●●

●

●●

●

●

●

●●●
●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●●

●

●

●

●

●

●

●●
●
●

●

●
●

●●
●

●

●

●●●●●
●

●

●

●

●

●

●

●

●
●●

●
●
●

●
●●

●

●

●
●

●●●●
●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●
●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●●●

●

● ●

●
●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●●

●

●●

●

●

●

●●●
●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●●

●

●

●

●

●

●

●●
●
●

●

●
●

●●
●

●

0.0

0.1

0.2

10 100 1000 7000
Node Degree

A
vg

. c
lu

st
er

in
g 

co
ef

fic
ie

nt

Figure 5.6: The average clustering coefficient vs. the node degree (horizontal axis is in
log-scale).

Finding community structures is closely related to the notion of graph partitioning
and hierarchal clustering, and there are numerous algorithms for detecting communities
[36, 58]. The proposed algorithms mainly vary in their computational complexities, and
only a few of them are appropriate for graphs of the size of our work-graph. Here we use
four algorithms for detecting communities:

• Fast Gready (FG) [20], which is an efficient implementation of the hierarchal edge-
betweenness community algorithm of Newman et al. [80].

• Multi Level (ML), which is based on local optimization of the modularity measure
around a node [14].

• Spin Glass (SG), which is a simulated annealing heuristic method to optimize the
modularity measure [88].

• Label Propagation (LP), which is a near-linear algorithm. First, it uniquely labels
the nodes, then updates them by majority voting among the neighbors of a node
[85].

Figure 7, presents the induced community graphs along with the number of commu-
nities and modularity values, obtained by applying the above algorithms. In these graphs,
each node represents a community and an edge exists between two nodes if there is at
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least one inter-community edge, i.e., an edge between nodes in the work-graph from ei-
ther community. The size of the nodes and the width of the edges correlate with number
of nodes in each community and the number of inter-community edges, respectively. As
can be observed, the FG algorithm gives the highest modularity measure but the number
of communities is too high. Considering both modularity and the number of communities,
the ML method gives the best partitioning.

Summary & Implication: The decreasing trend of the clustering coefficient in Fig-
ure 5.6 confirms the previous finding of decreasing knnk, Section 5.2.3, that high-degree
nodes play a crucial role in connecting many of their neighbors. Due to this phenomenon,
the data exchange and presence of the high degree nodes is important for the operation of
the system.

Regarding the community structures, the main reason for the formation of communi-
ties is that the work-graph grows in time, and the nodes that belong to a community are
those nodes that were active in a specific period of time. When the time passes, most of
the peers leave the network, but a few of them continue on sharing content with the new
peers. In network terminology, these peers act as a bridge between one community to the
next one(s), and since the number of such long term active peers is not high they are not
strong enough to merge communities.

5.2.5 Distance Properties

We will now investigate the distance characteristics of average path length and diameter
of the work-graph. Figure 5.8 presents the probability density of the lengths of shortest
paths. It has a mean of 4.83 and 5.52 for the undirected and directed graphs, respectively.
In order to understand how these measures change over time, we build temporal graphs
based on edges appearing in the network and calculate these measures for them. A tem-
poral study help us to understand how these measures change over time and whether the
concept of densification [57] holds or not.

To measure the temporal features, starting from the first day of crawling we build
temporal graphs in different periods, where the nodes and edges discovered in period n

are added to the graph of period n − 1. In our experiment, for the total crawling period
of two years we divide the records in 52 sets of biweekly periods, and for each period
we build a graph. Figure 5.9 presents the diameter, the average path length, and the
density of the directed and undirected versions of the temporal work-graphs, which are
plotted against the number of nodes. The density of a graph is the ratio of the number of
edges to the number of possible edges. As can be observed, despite minor fluctuations,
all these measures show a decreasing trend over the long term. Besides, the undirected
version of each temporal graph has a lower diameter and average path length than the
directed version, but such a difference is not visible for the density. The reason for this
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(a) Fast Greedy (modularity= 0.84, #communities=
600)

(b) Multi Level (modularity= 0.68, #communi-
ties= 58)

(c) Spin Glass (modularity= 0.59, #communi-
ties= 100)

(d) Label Propagation (modularity= 0.23,
#communities= 335)

Figure 5.7: The community-induced graphs obtained through applying different com-
munity detection algorithms (nodes represent communities and edges indicate inter-
community edges in the work-graph).
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Figure 5.8: The density of the length of the shortest paths.

phenomenon is that there are relatively few double edges between a pair of nodes than
the total number of edges, and when the direction is removed, the density is not much
affected.

Summary & Implication: The average shortest path of the work-graph is very close
to those of online social networks [8,72] and the AS-level Internet network [65]. Knowing
the average path length is useful, since in the reputation evaluation process of BarterCast,
the number of hops number in the Maxflow algorithm can be based on it. In this case,
since in the final graph the directed average path length is 5.52, in the Maxflow algorithm
the number of hops can be set to 5 or 6.

Like the graphs studies by Lescovec et al. [57], where they have discovered a densifi-
cation effect in the studied graphs, we also observe a similar pattern in our graph. Figure
5.9(c), plots the number of nodes versus the number of edges in the temporal graphs in
log-log scale. As can be observed, there is linear correlation and a linear regression fit
shows a slope of 1.26. Since the slope is greater than 1, it means that the average degree
of the graph increases over time. Moreover, like the graphs by Lescovec et al. [57], we
observe that the diameter and the average path length have decreasing trends. In Figure
5.9(c), since the difference between the number of edges is not high we observer similar
shapes

5.2.6 Betweenness

The last general topological measures that we evaluate are the betweenness and closeness
centralities. The betweenness centrality of a node is the number of shortest paths between
every pair of nodes that passes through the node, and it measures how important the node
is in connecting other nodes. The closeness centrality is a measure of how a node is
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Figure 5.9: The diameter (a), the average path length (b), and the number of edges vs. the
number of nodes (c) in the temporal BarterCast graphs.
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located closely to other nodes. Figure 5.10 plots the average normalized betweenness and
closeness centrality measures against the node degree. As can be seen, there is a strong
linear logarithmic correlation between the node degree and these centrality measures,
which makes the node degree a viable approximation for the betweenness and closeness
indices.

Summary & Implication: In our previous work [27], we have shown that using
the node with the highest betweenness centrality as the start or end point in the Maxflow
algorithm can improve the reputation accuracy. A problem associated with using this most
central node is the high complexity (O(|V ||E|)) for computing betweenness centrality in
unweighted graphs [15]. Although there are approximation algorithms for this measure,
but due to the high correlation between the node degree and betweenness centrality, during
reputation evaluation process in BarterCast, we can easily use the highest-degree node
instead of the most central node.
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(a) Average betweenness centrality (both axes
are in log-scale).
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(b) Average closeness centrality (horizontal
axis is in log-scale).

Figure 5.10: Average betweenness and closeness centrality vs. node degree.

5.3 Geographical Characteristics

In this section we consider the nodes in the work-graph from the perspectives of Au-
tonomous Region (AR) and Internet Service Provider (ISP), and investigate the correla-
tion of the AR and the ISP of neighbor nodes. An autonomous region is a country or a
geographical region that according to the IP-to-location mapping is considered as an in-
dependent body, e.g., ”Virgin Islands of British”. To obtain the required locality data we
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use the information collected by super-peer nodes in Tribler. When a Tribler client starts,
it contacts one of the super-peer machines and gets a set of nodes to contact; the contacted
super-peer logs the peer information. Using the super-peer logged data we are able to find
the IP addresses of the peers and locate them at the granularity of ISP. For mapping IPs
to locations, we use the IP-to-location service provided by MaxMind1. In total, we were
able to detect nearly 75% of the peer locations. Using the location information of the
peers, we compute the ratio of the data exchanges that happen inside the ARs or ISPs to
the total traffic in the network, which are presented in Table 5.2. Besides, we determine
the AR and ISP assortativity measures in the work-graph, which show a tendency of the
peers to connect to peers in the same AR or ISP. For the work-graph, the AR and ISP
assortativity values are 0.0085 and 0.039, respectively.

Table 5.2: Country and ISP level traffic information.

# AR intra-AR traffic ratio # ISPs intra-ISP traffic ratio
184 0.30 459 0.20

Summary & Implication: Considering the traffic ratios presented in Table 5.2, it
seems that there is a tendency toward having intra-AR and intra-ISP traffic. By further
investigation we observed that in a few countries like the USA, the UK, and the Nether-
lands, the population of Tribler users is so high that statistically encountering a peer in
these countries high enough to bias the ratio values. This argument applies to ISP ratio
as well, and some huge ISPs cover many peers. Therefore, using the available traffic data
we cannot confirm that there is a strong correlation between being in the same AR or ISP
and doing a content exchange. Nevertheless, the positive AR and ISP assortativity values
indicate a tendency of peers to connect to peers in the same AR or ISP, even though it is
not strong.

5.4 Peer Behavior and Similarity

In this section, we complement our previous findings about the work-graph by analyzing it
from the perspective of the activity of peers. Moreover, using our complementary dataset
from the super-peers, we investigate the content-based similarity of neighbor peers in the
graph.

In the work-graph the directions and the weights of the edges show the direction and
the amount of the content sent and received by a peer. Consequently, the sum of the

1http://www.maxmind.com
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weights of the outgoing edges of a node shows its contribution to the network, and divid-
ing this value by the total amount of content sent and received gives the sharing ratio of
the node. Figure 5.11 shows the CDF of the sharing-ratio values, which vary between the
extreme situations of no uploading and only uploading.
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Figure 5.11: The CDF of the sharing ratio in the work-graph.

By using a complementary dataset about the activity of peers, which contains the Bit-
Torrent swarms peers have participated in, we can derive the similarity between nodes in
the work-graph. These data are logged by the super-peers. Like the locality information,
we do not have the whole activity of every peer, but we are able to extract this information
for nearly 80% of the nodes.

Based on the set of swarms of each peer and using the Cosine similarity method [16],
we study the correlation between having an edge in the graph and participating in a com-
mon swarm. To investigate the relation between similarity and having a common edge,
we do a number of experiments where we compare the similarity of neighbor nodes in
the work-graph with the similarity of neighbor nodes in random isomorphs of this graph.
Random isomorphs leave the structure of the work-graph untouched, and nodes have dif-
ferent, but the same number of, neighbors in each isomorph. Like for the original graph,
for each isomorph we calculate the similarity of each node to its neighbors and average
over each edge. Figure 5.12 presents the comparison of the CDFs of the similarity values
in the original work-graph and the average similarity values obtained through 100 random
isomorphs.

Summary & Implication: From Figure 5.11 we see that nearly 12% of the nodes
are purely passive (sharing-ratio = 0) and do not perform any work for the system, and
that nearly 4% are purely active (sharing-ratio = 1). The remaining nodes are divided
nearly equally among passive (sharing-ratio < 0.5) and active peers (sharing-ratio > 0.5).
Concerning the content-based similarity values, for nearly 80% of the edges the Cosine
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Figure 5.12: The empirical CDF of the similarity of neighbor nodes in the work-graph vs.
the average similarities in the random isomorphs of the work-graph.

similarity is roughly equal in the original and the random graphs. For the remaining pairs
of neighbors, it is observed that the neighbor similarity in the original graph is higher than
the average similarity in the random isomorph graphs. This means that in Tribler, peers
have a tendency to connect to similar peers.

5.5 Conclusion

In this chapter, through studying the BarterCast reputation mechanism from the network
science perspective, we presented a number of useful insights. In relation to the reputation
calculation process in BarterCast, we conclude that if peers apply the Maxflow algorithm
with 5 or 6 hops, they can reach a significant portion of the nodes in the network. Besides,
instead of using the node with the highest betweenness centrality value [27], which is
expensive to compute, peers can use the highest-degree node as a replacement, as these
metrics tend to be closely related.

Concerning the structure of the network, our measures show that it has a power law
degree distribution, a relatively low diameter, and a strong community structure. Besides,
the temporal study of the BarterCast graphs shows that the diameter and the average path
length are decreasing, but we see some kind of densification effect, where the relative
growth of edges is higher than nodes. Moreover, we observe that in the network there is a
positive tendency toward interaction among peers with similar tastes.



Chapter 6

Conclusion and Future Work

In this thesis we have investigated various operational aspects of distributed reputation
mechanisms for P2P file-sharing systems. Through employing the BarterCast reputation
mechanism [68], as a deployed mechanism in this field, we built a robust mechanism
for such applications. We have done do by improving BarterCast in the three important
aspects of reputation accuracy, security, and scalability. Moreover, by using a dataset
collected by crawling the Tribler BitTorrent network for two years, we have performed a
thorough network-based analysis of this mechanism and we have obtained a number of
insights for further improving. In this chapter, we present our conclusions that answer the
research questions that was have raised in the introduction of this thesis, and we propose
suggestions for future work for interested researchers in this field.

6.1 Conclusion

Based on the research conducted in this thesis we can state the following conclusions:

1. Considering the network-based structure of the BarterCast mechanism, we iden-
tify three improvements to boost the accuracy and coverage of this mechanism.
The proposed modifications are increasing the number of hops in the Maxflow al-
gorithm [24], employing the node with the highest betweenness centrality in the
Maxflow algorithm, and increasing the volume of information at each peer through
full gossiping. Our analysis shows that the reputation improvement gained through
the first two improvements are significant if they are combined with full gossiping
(Chapter 2). Applying the proposed improvements leads to the problems of low
scalability of full gossiping and the high complexity of calculating the betweenness
centrality. We address these issues in Chapters 4 and 5, respectively.

2. The BarterCast mechanism was designed with the assumption that everybody fol-
lows the protocol and there is no adversary to subvert it. In a distributed and open
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environment these assumptions are unrealistic and countermeasures are inevitable.
We identified three possible types of attacks in BarterCast: sybil attacks, white-
washing, and miss-reporting. To withstand the sybil attack, we introduced a new
accounting mechanism, where each upload and download action the weights of
the edges involved are adjusted and the attacker loses her reputation fast. For
whitewashing, we modified the reputation so that it leaves no point for perform-
ing whitewashing. Finally, instead of sending plain BarterCast records, the peers
who are involved in the data transfer disseminate double-signed records, so no one
can disseminate false records. We use the crawled data from the Tribler network
to evaluate the proposed solutions, especially the sybil attack, and the obtained re-
sults show that by employing the new protocol, the reputations of the sybil attackers
diminish quickly (Chapter 3).

3. In Chapter 2, we showed the importance about providing peers with complete in-
formation of uploads and downloads in the network. In practice, such a provision
is costly and maybe unnecessary. A solution for this problem is to provide peers
only with the information that they need. To realize this, we devised a similarity-
based mechanism in which during gossiping, similar peers are prioritized to receive
the BarterCast records. The similarity measure is based only on the structure of
the partial graphs of the peers. We employ two methods to calculate the similarity,
one is based on building and employing a directed-acyclic-graph (DAG), and the
other one is based on nonuniform random-walk. We use crawled data from the Tri-
bler network to assess both methods. Our results show that they both perform very
well, with the random-walk based method being slightly better than the DAG-based
method (Chapter 4).

4. In Chapters 2, 3, and 4 we focused on improving the BarterCast mechanism from
the accuracy, the security, and the scalability angles. To complete our study, we do
a thorough study of this mechanism from the perspective of network science and
investigate the crawled network from various aspects. Our study reveals that the
BarterCast graph has a long-tail degree distribution that resembles that of power
law graphs. We found that this graph contains many star-shape structures where
some of the nodes play a critical role in connecting others. Besides, we find out that
the BarterCast graph has strong community structures. Further more, by employing
the locality and content information we measured the correlation between having
an edge in the BarterCast graph and being in the same ISP or geographical region.
The results show only a weak correlation. We did a similar study on the correlation
between sharing the same content and being connected by an edge in the graph. The
results indicate a positive tendency of peers to interact with similar peers (Chapter
5).
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6.2 Suggestions For Future Work

In this thesis we focused on the design of a robust reputation mechanism for P2P file-
sharing applications. The findings in this thesis can be extended and applied in similar
applications as well. Below we highlight some of the prospective directions for future
research.

1. In Chapter 2, we introduced the use of betweenness centrality for the reputation
evaluation, but regarding this proposition there are some open questions. First, for
what type of graphs does this modification give better results, and why? Secondly,
what happens if an attacker tries to control the node(s) with the highest betweenness
centrality values, and how many nodes does he need to control in order to achieve
this goal? This is a broad concern for every mechanism that relies on this centrality
measure.

2. In Chapter 3, we introduced a sybil-resistant version of the BarterCast mechanism.
In fact, our proposed method can be generalized and applied in similar applications
which are based on the Maxflow algorithm. Especially the edge level accounting
part of the method can be easily modified for other applications as well.

3. To make the BarterCast mechanism scalable, we introduced similarity-based infor-
mation dissemination, which is indeed a way of doing personalized gossiping. The
proposed method can be applied in any similar protocol which is based on gossiping
and in which the only information about the participants selects to their interactions
with each other. In particular, we introduced the DAG-based similarity method.
Comparing this method with other structural similarity methods like SimRank [46]
is a direction that can be taken by interested researchers.
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Summary
A Robust Distributed Reputation Mechanism for Peer-to-Peer Systems

In P2P content distribution networks, incentive mechanisms are required for sustain-
able operation of the network. In general, there are two classes of incentive mechanisms,
direct and indirect. In direct mechanisms, a content consumer compensates the work of
a supplier by providing him some content in return. In indirect mechanisms, the work of
a supplier can be rewarded by any peer in the future. A sub-class of indirect incentive
mechanisms is based on the concept of reputation. In such a mechanism, based on its
past behavior, a peer is assigned a reputation value and based on this value the other peers
decide whether to collaborate with him or not. Designing an effective reputation mech-
anism comes with many challenges such as the accuracy of the reputation values, the
security, and the scalability of the mechanism. In this thesis, we investigate these aspects
of distributed reputation mechanisms and we incorporate our techniques and algorithms
into the BarterCast reputation mechanism, which is an Internet-deployed mechanism in
the field of content sharing. In BarterCast, peers collect information about the upload
and download activities in the network through a gossiping protocol and compute reputa-
tions of other peers using the Maxflow algorithm in the BarterCast graph built upon the
BarterCast records they have received.

In Chapter 2, we focus on the accuracy and the coverage aspects of the BarterCast
reputation mechanism and propose three modifications to improve these metrics. First,
instead of using themselves as the start or end point in the Maxflow algorithm, peers
use the node with the highest betweenness centrality. Secondly, instead of applying the
limited-hop gossiping protocol, peers run a full gossiping protocol for BarterCast record
dissemination. Thirdly, the number of hops in the Maxflow algorithm is lifted to 4 and 6
hops. For evaluation, employing data collected from the Tribler network that uses Barter-
Cast, we emulate these modifications and measure the accuracy and coverage metrics.
Our findings show that the full gossiping modification is the most influential and that the
other two are effective if they are combined with full gossiping.

In Chapter 3, we study the security aspects of the BarterCast mechanism and make
it resilient against sybil attacks, white-washing and mis-reporting. In a sybil attack, a
malicious peer creates fake identities and uses them to subvert the mechanism. In white-
washing and mis-reporting attacks, a malicious peer clears its bad reputation and sends
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false records about other peers, respectively. To withstand sybil attacks, we introduce an
accounting schema on the edges in the BarterCast graph, where based on the upload or
download actions, the weights of the edges are increased or decreased. By this schema,
the reputations of the sybil peers degrades very fast. To resist white-washing, we modify
the formulation part of the mechanism, so a white-washer receives the lowest reputation
value. Finally, to stop mis-reporting, instead of plain records, prior sending a record,
the involved peers doubly sign it. To evaluate the proposed accounting schema for sybil
attacks, we again employ the crawled data from the Tribler network and compare the rep-
utations of the malicious and honest peers in the sybil-resistant and the original versions
of the mechanism. Our findings show that with minimal effect on the reputations of the
honest peers, the new mechanism degrades the reputations of the sybils.

In Chapter 4, through modifying the record dissemination component of the mecha-
nism we improve its scalability. The problem is that if all the generated BarterCast records
are sent and stored by all the peers, the communication and storage overhead grows very
fast. On the other hand, not all the records are needed by all the peers, and a peer just
needs a small fraction of all the records for reputation evaluation. To incorporate scalabil-
ity, when sending a record, peers give higher priority to the peers similar to themselves.
As a consequence, without compromising the accuracy, records are sent to the peers who
may need them in the future. To find the similar peers we use two methods, one is based
on creating a directed acyclic graph, and the other method is based non-uniform ran-
dom walks. To measure the communication, storage, and computation costs, we use the
crawled data from the Tribler network. In the obtained results, compared to full gossiping,
the communication and storage costs are decreased by a factor of 100, while we observe
minimal a effect on the reputation values.

In Chapter 5, accumulating the crawled data from the Tribler network and employ-
ing complementary data from other sources, we perform a comprehensive analysis of the
BarterCast graph from the network science perspective. First, we investigate the degree
distribution of the network and fit various distributions. Our finding shows that the distri-
bution is very close to a power-law distribution. Furthermore, we study the network from
the node interconnectivity, the clustering, and the community aspects. The results indicate
that low degree nodes tend to connect to high degree nodes, and we observe community
structures around peers that stay online for a long time. Moreover, our study shows that
the shortest path distribution is similar to the one from online social networks and we
observe a densification effect as the graph grows. Finally, we consider the graph from
the geographical aspect, and investigate the correlation, for pairs of nodes, between being
located in the same ISP or country and having an edge in the graph. The results show that
even if there a positive correlation, it is weak.
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Samenvatting
Een Robuust Gedistribueerd Reputatie-mechanisme voor Peer-to-Peer Systemen

n P2P-netwerken voor het verspreiden van content zijn incentive-mechanismen nodig
voor de goede werking van het netwerk. In het algemeen bestaan er twee klassen van in-
centive-mechanismen, namelijk direct en indirecte. In directe mechanismen compenseert
een peer die content verkrijgt de peer die die content verschaft door iets terug te geven.
In indirecte mechanismen kan het werk van een verschaffer op een later tijdstip worden
beloond door een willekeurige andere peer. Een deelklasse van de indirecte mechanis-
men is gebaseerd op het concept van reputaties. In zo’n mechanisme krijgt een peer
een reputatie-waarde gebaseerd op zijn gedrag in het verleden, en op grond van deze
waarde beslissen de andere peers of ze al dan niet met hem samenwerken. Het ontwerp
van een effectief reputatiemechanisme brengt vele uitdagingen met zich mee zoals de
nauwkeurigheid, de veiligheid, en de schaalbaarheid van het mechanisme. In dit proef-
schrift onderzoeken we deze aspecten van gedistribueerde reputatiemechanismen en in-
tegreren we onze technieken en algorithmen in het BarterCast reputatiemechanisme, een
mechanisme voor content-distributie dat in het Internet in gebruik is. In BarterCast verza-
melen peers informatie over de upload- en download-acties in het netwerk via een epi-
demisch protocol, en berekenen ze de reputaties van andere peers met behulp van het
Maxflow-algorithme in het BarterCast-netwerk dat ze creëren op basis van de BarterCast-
records die ze ontvangen hebben.

In Hoofdstuk 2 concentreren we ons op de aspecten van de nauwkeurigheid en de
dekking van het BarterCast reputatiemechanisme en stellen we drie wijzigingen voor om
deze metrieken te verbeteren. Ten eerste gebruiken peers in het Maxflow-algorithme niet
zichzelf maar de peer met de grootste betweenness centrality als start- en eindpunt. Ten
tweede gebruiken peers volledige verspreiding van BarterCast records in plaats van die
verspreiding tot één stap te beperken. En ten derde vergroten we de lengte van de paden
die Maxflow gebruikt tot 4 of 6 stappen. Voor de evaluatie van de nauwkeurigheid en de
dekking van deze drie wijzigingen emuleren we ze met behulp van gegevens verzameld
in het Tribler-netwerk dat BarterCast gebruikt. Het blijkt dat de volledige verspreiding de
belangrijkste wijziging is en dat de andere twee effectief zijn in combinatie daarmee.

In Hoofdstuk 3 bestuderen we de veiligheidsaspecten van het BarterCast-mechanisme
en maken we het bestand tegen sybil attacks, white-washing, en onjuist rapporteren. In
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een sybil attack creëren kwaadaardige peers namaak-identiteiten en gebruiken die om het
mechanisme te ondermijnen. In white-washing en onjuist rapporteren komen peers van
hun slechte reputatie af respectievelijk verspreiden ze onjuiste informatie over de acties
van andere peers. Om sybil attacks te weerstaan introduceren we een accounting-schema
op de connecties in het BarterCast-netwerk waarin als gevolg van upload- en download-
acties de gewichten van de connecties verhoogd of verlaagd worden. Met dit schema
worden de reputaties van de sybils snel gereduceerd. Om white washing te weerstaan wij-
zigen we het formuleringsdeel van het mechanisme zodat white washers de laagste repu-
tatiewaarde krijgen. Tenslotte voorkomen peers onjuist rapporteren door de te verspreiden
records tweevoudig te ondertekenen. Voor de evaluatie van het accounting-schema voor
sybil attacks gebruiken we wederom de gegevens verkregen van het Tribler-netwerk en
vergelijken we de reputaties van eerlijke en kwaadaardige peers in het gewijzigde en het
originele mechanisme. Het blijkt dat in het gewijzigde mechanisme de reputaties van de
sybils veel lager zijn met een minimaal effect op de reputaties van de eerlijke peers.

In Hoofdstuk 4 verbeteren we de schaalbaarheid van het BarterCast-mechanisme door
de manier van verspreiden van records aan te passen. Het probleem is dat als alle
BarterCast-records worden verstuurd en opgeslagen door alle peers, de kosten voor de
communicatie en opslag superexponentieel groeien. Aan de andere kant zijn ook niet alle
records nodig voor alle peers, een peer heeft slechts een klein deel ervan nodig voor de
berekening van reputaties. Om schaalbaarheid te bereiken geven peers bij het versturen
van records prioriteit aan peers die lijken op zichzelf. Daardoor worden records verstuurd
naar peers die ze in de toekomst nodig kunnen hebben zonder aan nauwkeurigheid in te
boeten. Om gelijkelijke peers te bepalen gebruiken we twee methoden, één gebaseerd
op gerichte acyclische grafen en één gebaseerd op niet-uniforme random walks. Om de
kosten van communicatie, opslag en berekening te bepalen gebruiken we gegevens uit het
Tribler-netwerk. Onze resultaten geven aan dat in vergelijking met volledige verspreiding
de commnicatie- en opslagkosten met een factor 100 worden teruggebracht, terwijl we
een minimaal effect op de reputatiewaardes waarnemen.

In Hoofdstuk 5 voeren we een uitgebreide analyse uit op het BarterCast-netwerk
gecreëerd met behulp van gegevens verkregen uit het Tribler-netwerk en aanvullende
bronnen. Eerst onderzoeken we de verdeling van de graad in het netwerk en gaan we
voor verscheidene distributies na of die passen. We laten zien dat de verdeling dicht bij
een power law ligt. Bovendien onderzoeken we het netwerk op zijn interconnectiviteit,
clustering, en community-aspecten. De resultaten laten zien dat knopen van lage graad
vaak verbonden zijn met knopen met hoge graad, en we vinden community-structuren die
gevormd zijn rondom knopen die lang in het systeem aanwezig zijn. Bovenzien laat onze
studie zien dat de distributie van kortste paden lijkt op die in online social networks, en
dat er een verdichtingseffect optreedt als het netwerk groeit. Tenslotte beschouwen we
het netwerk vanuit geografisch perspectief en onderzoeken we de correlatie voor paren
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knopen tussen het gelocaliseerd zijn in dezelfde ISP of hetzelfde land en het onderling
met elkaar verbonden zijn. De resultaten laten zien dat er een positieve correlatie is, zij
het dat deze zwak is.
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