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An acoustic imaging method for layered non-reciprocal media

Kees Wapenaar1 and Christian Reinicke1

1 Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Nether-
lands

PACS 43.60.Pt – Signal processing techniques for acoustic inverse problems
PACS 43.35.Gk – Phonons in crystal lattices, quantum acoustics
PACS 43.60.Tj – Wave front reconstruction, acoustic time-reversal, and phase conjugation

Abstract – Given the increasing interest for non-reciprocal materials, we propose a novel acoustic
imaging method for layered non-reciprocal media. The method we propose is a modification of
the Marchenko imaging method, which handles multiple scattering between the layer interfaces
in a data-driven way. We start by reviewing the basic equations for wave propagation in a non-
reciprocal medium. Next, we discuss Green’s functions, focusing functions, and their mutual
relations, for a non-reciprocal horizontally layered medium. These relations form the basis for
deriving the modified Marchenko method, which retrieves the wave field inside the non-reciprocal
medium from reflection measurements at the boundary of the medium. With a numerical example
we show that the proposed method is capable of imaging the layer interfaces at their correct
positions, without artefacts caused by multiple scattering.

Introduction. – Currently there is an increasing in-
terest for elastic wave propagation in non-reciprocal ma-
terials [1–5]. We propose a novel method that uses the
single-sided reflection response of a layered non-reciprocal
medium to form an image of its interior. Imaging of lay-
ered media is impeded by multiple scattering between the
layer interfaces. Recent work, building on the Marchenko
equation [6], has led to imaging methods that account
for multiple scattering in 2D and 3D inhomogeneous me-
dia [7–10]. Here we modify Marchenko imaging for non-
reciprocal media. We restrict ourselves to horizontally lay-
ered media, but the proposed method can be generalised
to 2D and 3D inhomogeneous media in a similar way as
has been done for reciprocal media in the aforementioned
references.

Wave equation for a non-reciprocal medium. –
For simplicity, in this paper we approximate elastic wave
propagation by an acoustic wave equation. Hence, we
only consider compressional waves and ignore the conver-
sion from compressional waves to shear waves and vice
versa. This approximation is often used in reflection imag-
ing methods and is acceptable as long as the propagation
angles are moderate.

We review the basics of non-reciprocal acoustic wave
propagation. For a more thorough discussion we refer to
the citations given in the introduction. An example of a
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Fig. 1: A modulated 1D phononic crystal (after Nassar et al. [4]).
An observer at a fixed spatial position, indicated by the yellow dots,
experiences a time-dependent medium, whereas an observer moving
along with the modulating wave, indicated by the red dots, experi-
ences a time-independent medium.

non-reciprocal material is a phononic crystal of which the
parameters are modulated in a wave-like fashion [4]. Fig-
ure 1 shows a modulated 1D phononic crystal at a number
of time instances. The different colours represent different
values of a particular medium parameter, for example the
compressibility κ. This parameter varies as a function of
space and time, according to κ(x, t) = κ(x − cmt), where
cm is the modulation speed. The modulation wavelength
is L. We define a moving coordinate x′ = x − cmt. The
parameter κ in the moving coordinate system, κ(x′), is
a function of space only. The same holds for the mass
density ρ(x′). Acoustic wave propagation in a modulated
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material is analysed in a moving coordinate system, hence,
in a time-independent medium. In this paper we assume
the modulation speed is smaller than the lowest acoustic
wave propagation velocity. Moreover, for the acoustic field
we consider low frequencies, so that the wavelength of the
acoustic wave is much larger than the modulation wave-
length L. Using homogenisation theory, the small-scale
parameters of the modulated material can be replaced by
effective medium parameters. The theory for 3D elas-
tic wave propagation in modulated materials, including
the homogenisation procedure, is extensively discussed by
Nassar et al. [4]. Here we present the main equations
(some details are given in the supplementary material).
We consider a coordinate system x = (x1, x2, x3) that
moves along with the modulating wave (for notational con-
venience we dropped the primes). The x3-axis is pointing
downward. In this moving coordinate system the macro-
scopic acoustic deformation equation and equation of mo-
tion for a lossless non-reciprocal material read (leading
order terms only)

κ∂tp+ (∂i + ξi∂t)vi = 0, (1)

(∂j + ξj∂t)p+ ρojk∂tvk = 0. (2)

Operator ∂t stands for temporal differentiation and ∂i for
differentiation in the xi-direction. Latin subscripts (ex-
cept t) take on the values 1 to 3. Einstein’s summation
convention applies to repeated Latin subscripts, except for
subscript t. Field quantities p = p(x, t) and vi = vi(x, t)
are the macroscopic acoustic pressure and particle ve-
locity, respectively. Medium parameters κ = κ(x) and
ρojk = ρojk(x) are the effective compressibility and mass
density, respectively. Note that the effective mass den-
sity may be anisotropic, even when it is isotropic at the
micro scale. It obeys the symmetry relation ρojk = ρokj .
Parameter ξi = ξi(x) is an effective coupling parameter.

We obtain the wave equation for the acoustic pressure p
by eliminating the particle velocity vi from equations (1)
and (2). To this end, define ϑij as the inverse of ρojk, hence,
ϑijρ

o
jk = δik, where δik is the Kronecker delta function.

Note that ϑij = ϑji. Apply ∂t to equation (1) and (∂i +
ξi∂t)ϑij to equation (2) and subtract the results. This
gives

(∂i + ξi∂t)ϑij(∂j + ξj∂t)p− κ∂2t p = 0. (3)

As an illustration, we consider a homogeneous isotropic
effective medium, with ϑij = δijρ

−1. For this situation
the wave equation simplifies to

(∂i + ξi∂t)(∂i + ξi∂t)p−
1

c2
∂2t p = 0, (4)

with c = 1/
√
ρκ. Consider a plane wave p(x, t) =

p(t− sixi), with si being the slowness in the xi-direction.
Substituting this into equation (4) we find the following
relation for the slowness surface

(s1 − ξ1)2 + (s2 − ξ2)2 + (s3 − ξ3)2 =
1

c2
, (5)
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Fig. 2: Parameters of the non-reciprocal layered medium.

which describes a sphere with radius 1/c and its centre at
(ξ1, ξ2, ξ3). The asymmetry of this sphere with respect to
the origin (0, 0, 0) is a manifestation of the non-reciprocal
properties of the medium.

Green’s functions and focusing functions. – The
Marchenko method, which we discuss in the next section,
makes use of specific relations between Green’s functions
and focusing functions. Here we introduce these functions
for a lossless non-reciprocal horizontally layered acoustic
medium at the hand of a numerical example. Figure 2
shows the parameters of the layered medium as a function
of the depth coordinate x3. The half-space above the up-
per boundary x3,0 = 0 is homogeneous. For convenience
we consider wave propagation in the (x1, x3)-plane (where
x1 and x3 are moving coordinates, as discussed in the pre-
vious section). Hence, from here onward subscripts i, j
and k in equations (1) and (2) take on the values 1 and 3
only.

For horizontally layered media it is convenient to decom-
pose wave fields into plane waves and analyse wave prop-
agation per plane-wave component. We define the plane-
wave decomposition of a wave field quantity u(x1, x3, t)
as

u(s1, x3, τ) =

∫ ∞
−∞

u(x1, x3, τ + s1x1)dx1. (6)

Here s1 is the horizontal slowness and τ is a new time
coordinate, usually called intercept time [11]. The rela-
tion with the more common plane-wave decomposition by
Fourier transform becomes clear if we apply the temporal
Fourier transform, u(ω) =

∫∞
−∞ u(τ) exp(iωτ)dτ to both
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Fig. 3: (a) Green’s function G(s1, x3, x3,0, τ), for s1 = 0.22 ms/m.
(b) Decomposed Green’s functions at x3,0 = 0 and x3,A.

sides of equation (6), which gives

ũ(s1, x3, ω) =

∫ ∞
−∞

u(x1, x3, ω) exp(−iωs1x1)dx1. (7)

The tilde denotes the (s1, x3, ω)-domain The right-hand
side of equation (7) represents a spatial Fourier transform,
with wavenumber k1 = ωs1, where each wavenumber k1
corresponds to a specific plane-wave component. Simi-
larly, each horizontal slowness s1 in equation (6) refers to
a plane-wave component.

Consider an impulsive downgoing plane wave, with hor-
izontal slowness s1 = 0.22 ms/m, which is incident to the
layered medium at x3,0 = 0. We model its response, em-
ploying a (s1, x3, ω)-domain modelling method [12], ad-
justed for non-reciprocal media (based on equations (1)
and (2), transformed to the (s1, x3, ω)-domain). The re-
sult, transformed back to the (s1, x3, τ)-domain, is shown

x3,A
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Fig. 4: (a) Focusing function f1(s1, x3, x3,A, τ), for s1 = 0.22 ms/m.
(b) Decomposed focusing functions at x3,0 = 0 and x3,A.

in Figure 3(a) (for fixed s1). Since it is the response to an
impulsive source, we denote this field as a Green’s func-
tion G(s1, x3, x3,0, τ) (actually Figure 3(a) shows a band-
limited version of the Green’s function, in accordance with
physical measurements, which are always band-limited).
Note the different angles of the downgoing and upgoing
waves directly left and right of the dotted vertical line
in the first layer. This is a manifestation of the non-
reciprocity of the medium. Figure 3(b) shows the de-
composed fields at x3,0 = 0 and x3,A, where x3,A de-
notes an arbitrary depth level inside the medium (taken
in this example as x3,A = 13.5 cm). The superscripts
+ and − stand for downgoing and upgoing, respectively.
For the downgoing field at the upper boundary we have
G+(s1, x3,0, x3,0, τ) = δ(τ), where δ(τ) is the Dirac delta
function. For the upgoing response at the upper bound-
ary we write G−(s1, x3,0, x3,0, τ) = R(s1, x3,0, τ), where
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R(s1, x3,0, τ) is the reflection response. This is the re-
sponse one would obtain from a physical reflection exper-
iment carried out at the upper boundary of the layered
medium, translating it to the moving coordinate system
and transforming it to the plane-wave domain, using equa-
tion (6). The decomposed responses inside the medium,
G±(s1, x3,A, x3,0, τ), which were obtained here by numer-
ical modelling, are not available in a physical experiment.
In the next section we discuss how these responses can be
obtained from R(s1, x3,0, τ) using the Marchenko method.
For this purpose, we introduce an auxiliary wave field,
the so-called focusing function f1(s1, x3, x3,A, τ), which is
illustrated in Figure 4(a). Here x3,A denotes the focal
depth. The focusing function is defined in a truncated
version of the medium, which is identical to the actual
medium above x3,A and homogeneous below x3,A. The
four arrows at the top of Figure 4(a) indicate the four
events of the focusing function leaving the surface x3,0 = 0
as downgoing waves; the arrow just below the dashed line
indicates the focus. Figure 4(b) shows the decomposed
focusing functions at x3,0 = 0 and x3,A. The downgoing
focusing function f+1 (s1, x3,0, x3,A, τ) at the upper bound-
ary is designed such that, after propagation through the
truncated medium, it focuses at x3,A. The focusing con-
dition at x3,A is f+1 (s1, x3,A, x3,A, τ) = δ(τ). The upgo-
ing response at the upper boundary is f−1 (s1, x3,0, x3,A, τ).
Because the half-space below the truncated medium is by
definition homogeneous, there is no upgoing response at
x3,A, hence f−1 (s1, x3,A, x3,A, τ) = 0. Note that the down-
going and upgoing parts of the focusing function at x3,0
each contain 2n−1 pulses, where n is the number of inter-
faces in the truncated medium.

In a similar way as for reciprocal media [8,13], we derive
relations between the decomposed Green’s functions and
focusing functions. For this we use general reciprocity
theorems for decomposed wave fields ũ±(s1, x3, ω) in two
independent states A and B. These theorems read(
ũ
+(c)
A ũ−B − ũ

−(c)
A ũ+B

)
x3,0

=
(
ũ
+(c)
A ũ−B − ũ

−(c)
A ũ+B

)
x3,A

(8)

and(
ũ+∗A ũ+B − ũ−∗A ũ−B

)
x3,0

=
(
ũ+∗A ũ+B − ũ−∗A ũ−B

)
x3,A

, (9)

respectively, where superscript ∗ denotes complex conju-
gation. These theorems, but without the superscripts (c)
in equation (8), were previously derived for reciprocal me-
dia [14]. Whereas equation (8) holds for propagating and
evanescent waves, equation (9) only holds for propagating
waves. The extension to non-reciprocal media is derived
in the supplementary material. For non-reciprocal me-
dia, the superscript (c) at a wave field indicates that this
field is defined in the complementary medium, in which
the coupling parameter ξi, appearing in equations (1) and
(2), is replaced by −ξi. The terminology “complementary
medium” is adopted from the literature on non-reciprocal
electromagnetic wave theoy [15,16]. Note that, when wave

fields with a tilde are written without their arguments (as
in equations 8 and 9), it is tacitly assumed that fields indi-
cated by the superscript (c) are evaluated at (−s1, x3, ω).

To obtain relations between the decomposed
Green’s functions and focusing functions, we now
take ũ±A = f̃±1 and ũ±B = G̃±. The conditions at
x3,0 and x3,A discussed above are, in the (s1, x3, ω)-

domain, G̃+(s1, x3,0, x3,0, ω) = 1, G̃−(s1, x3,0, x3,0, ω) =

R̃(s1, x3,0, ω), f̃+1 (s1, x3,A, x3,A, ω) = 1 and

f̃−1 (s1, x3,A, x3,A, ω) = 0. Making the appropriate
substitutions in equations (8) and (9) we thus obtain

G̃−(s1, x3,A, x3,0, ω) + f̃
−(c)
1 (−s1, x3,0, x3,A, ω)

= R̃(s1, x3,0, ω)f̃
+(c)
1 (−s1, x3,0, x3,A, ω) (10)

and

G̃+(s1, x3,A, x3,0, ω)− {f̃+1 (s1, x3,0, x3,A, ω)}∗

= −R̃(s1, x3,0, ω){f̃−1 (s1, x3,0, x3,A, ω)}∗, (11)

respectively. These representations express the wave field
at x3,A inside the non-reciprocal medium in terms of re-
flection measurements at the surface x3,0 of the medium.
These expressions are similar to those in reference [13],
except that the focusing functions in equation (10) are de-
fined in the complementary medium. Therefore we cannot
follow the same procedure as in [13] to retrieve the focus-
ing functions from equations (10) and (11). To resolve
this issue, we derive a symmetry property of the reflection
response R̃(s1, x3,0, ω) and use this to obtain a second set
of representations. For the fields at x3,0 in states A and

B we choose ũ+A = ũ+B = 1 and ũ−A = ũ−B = R̃. Substi-
tuting this into the left-hand side of equation (8) yields
R̃(s1, x3,0, ω)− R̃(c)(−s1, x3,0, ω). We replace x3,A at the
right-hand side of equation (8) by x3,M , which is chosen
below all inhomogeneities of the medium, so that there are
no upgoing waves at x3,M . Hence, the right-hand side of
equation (8) is equal to 0. We thus find

R̃(c)(−s1, x3,0, ω) = R̃(s1, x3,0, ω). (12)

We obtain a second set of representations by replacing all
quantities in equations (10) and (11) by the corresponding
quantities in the complementary medium. Using equation
(12), this yields

G̃−(c)(−s1, x3,A, x3,0, ω) + f̃−1 (s1, x3,0, x3,A, ω)

= R̃(s1, x3,0, ω)f̃+1 (s1, x3,0, x3,A, ω) (13)

and

G̃+(c)(−s1, x3,A, x3,0, ω)− {f̃+(c)
1 (−s1, x3,0, x3,A, ω)}∗

= −R̃(s1, x3,0, ω){f̃−(c)1 (−s1, x3,0, x3,A, ω)}∗, (14)

respectively.
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Marchenko method for non-reciprocal media. –
In the previous section we obtained four representations,
which we regroup into two sets. Equations (11) and (13)
form the first set, containing only focusing functions in
the truncated version of the actual medium. The second
set is formed by equations (10) and (14), which contain
only focusing functions in the truncated version of the
complementary medium. All equations contain the reflec-
tion response R̃(s1, x3,0, ω) of the actual medium (i.e., the
measured data, transformed to the (s1, x3,0, ω)-domain).

We now outline the procedure to retrieve the focusing
functions and Green’s functions from the reflection
response, using the Marchenko method. The procedure
is similar to that described in reference [13]. For de-
tails we refer to this reference; here we emphasize the
differences. The first set of equations, (11) and (13), is
transformed from the (s1, x3, ω)-domain to the (s1, x3, τ)-
domain. Using time windows, the Green’s functions are
suppressed from these equations. Because one of the
Green’s functions is defined in the actual medium and the
other in the complementary medium, two different time
windows are needed, unlike in the Marchenko method for
reciprocal media, which requires only one time window.
Having suppressed the Green’s functions, we are left with
two equations for the two unknown focusing functions
f+1 (s1, x3,0, x3,A, τ) and f−1 (s1, x3,0, x3,A, τ). These can
be resolved from the reflection response R(s1, x3,0, τ)
using the Marchenko method. This requires an initial
estimate of the focusing function f+1 (s1, x3,0, x3,A, τ),
which is defined as the inverse of the direct arrival of
the transmission response of the truncated medium.
In practice we define the initial estimate simply as
δ(τ + τd), where τd = τd(s1, x3,0, x3,A, τ) is the travel
time of the direct arrival, which can be derived from
a background model of the medium. Since we only
need a travel time, a smooth background model suffices;
no information about the position and strength of the
interfaces is needed. Once the focusing functions
have been found, they can be substituted in the time
domain versions of equations (11) and (13), which
yields the Green’s functions G+(s1, x3,A, x3,0, τ) and
G−(c)(−s1, x3,A, x3,0, τ). Note that only the retrieved
downgoing part of the Green’s function, G+, is de-
fined in the actual medium. Therefore the procedure
continues by applying the Marchenko method to the
time domain versions of equations (10) and (14). This

yields the focusing functions f
+(c)
1 (−s1, x3,0, x3,A, τ)

and f
−(c)
1 (−s1, x3,0, x3,A, τ) and, subsequently,

the Green’s functions G+(c)(−s1, x3,A, x3,0, τ) and
G−(s1, x3,A, x3,0, τ). Here the retrieved upgoing part
of the Green’s function, G−, is defined in the actual
medium. This completes the procedure for the retrieval of
the downgoing and upgoing parts of the Green’s functions
in the actual medium at depth level x3,A for horizontal
slowness s1. This procedure can be repeated for any
slowness corresponding to propagating waves and for any

focal depth x3,A.
Finally, we discuss how the retrieved Green’s func-

tions can be used for imaging. Similar as in a reciprocal
medium, the relation between these Green’s functions in
the (s1, x3, ω)-domain is

G̃−(s1, x3,A, x3,0, ω) = R̃(s1, x3,A, ω)G̃+(s1, x3,A, x3,0, ω),
(15)

where R̃(s1, x3,A, ω) is the plane-wave reflection response
at depth level x3,A of the medium below x3,A. Inverting
this equation yields an estimate of the reflection response,
according to

〈R̃(s1, x3,A, ω)〉 =
G̃−(s1, x3,A, x3,0, ω)

G̃+(s1, x3,A, x3,0, ω)
. (16)

Imaging the reflectivity at x3,A involves selecting the
τ = 0 component of the inverse Fourier transform of
〈R̃(s1, x3,A, ω)〉, hence

〈R(s1, x3,A, τ = 0)〉 =
1

2π

∫ ∞
−∞
〈R̃(s1, x3,A, ω)〉dω. (17)

Substituting equation (16), stabilising the division (and
suppressing the arguments of the Green’s functions), we
obtain

〈R(s1, x3,A, 0)〉 =
1

2π

∫ ∞
−∞

G̃−{G̃+}∗
G̃+{G̃+}∗ + ε

dω. (18)

Numerical example. – We consider again the lay-
ered medium of Figure 2. Using the same modelling ap-
proach as before, we model the reflection responses to
tilted downgoing plane waves at x3,0 = 0, this time for
a range of horizontal slownesses s1. The result, trans-
formed to the (s1, x3,0, τ)-domain and convolved with a
wavelet with a central frequency of 600 kHz, is shown in
Figure 5(a). To emphasize the multiples (only for the dis-
play), a time-dependent amplitude gain, using the func-
tion exp{3τ/375µs}, has been applied. Note the asymme-
try with respect to s1 = 0 as a result of the non-reciprocity
of the medium. The last trace (for s1 = 0.22 ms/m) cor-
responds with the second trace in Figure 3(b).

We define the focal depth in the fourth layer, at
x3,A = 13.5 cm. Using the Marchenko method,
we retrieve the focusing functions f±1 (s1, x3,0, x3,A, τ)

and f
±(c)
1 (−s1, x3,0, x3,A, τ) from the reflection response

R(s1, x3,0, τ) and the travel times τd between x3,0 and
x3,A. One of these focusing functions, f+1 (s1, x3,0, x3,A, τ),
is shown in Figure 5(b). The last trace (for s1 = 0.22
ms/m) corresponds with the first trace in Figure 4(b).

Using the reflection response and the retrieved fo-
cusing functions, we obtain the Green’s functions
G+(s1, x3,A, x3,0, τ) and G−(s1, x3,A, x3,0, τ) from the
time domain versions of equations (11) and (10), see Fig-
ure 6 (same amplitude gain as in Figure 5(a)). From the
Fourier transform of these Green’s functions, an image is
obtained at x3,A as a function of s1, using equation (18).
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Fig. 5: (a) Modelled reflection response R(s1, x3,0, τ). (b) Retrieved

focusing function f+1 (s1, x3,0, x3,A, τ).

Repeating this for all x3,A we obtain what we call the
Marchenko image, shown in Figure 7(c). For comparison,
Figure 7(a) shows an image obtained by a primary imag-
ing method, ignoring the non-reciprocal aspects of the
medium, and Figure 7(b) shows the improvement when
non-reciprocity is taken into account (but multiples are
still ignored). For comparison, Figure 7(d) shows the true
reflectivity with the same filters applied as for the imaging
results. Note that the match of the Marchenko imaging
result with the true reflectivity is very accurate. The rel-
ative errors, except for the leftmost traces, are less than
2%.

Note that we assumed that the medium is lossless.
In case of a medium with losses, modifications are re-
quired. For moderate losses that are approximately con-
stant throughout the medium, one can apply a time-
dependent loss compensation factor to the reflection
response R(s1, x3,0, τ) before applying the Marchenko
method (assuming an estimate of the loss parameter is
available). Alternatively, when the medium is accessible
from two sides, the Marchenko imaging method of Slob
[17], modified for non-reciprocal media, can be applied di-
rectly to the data. This removes the need to apply a loss
compensation factor.

Conclusions. – We have introduced a new imaging
method for layered non-reciprocal materials. The pro-
posed method is a modification of the Marchenko imaging
method, which is capable of handling multiple scattering
in a data-driven way (i.e., no information is required about
the layer interfaces that cause the multiple scattering). To
account for the non-reciprocal properties of the medium,
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Fig. 6: (a) Retrieved Green’s function G+(s1, x3,A, x3,0, τ). (b)
Idem, G−(s1, x3,A, x3,0, τ).

we derived two sets of representations for the Marchenko
method, one set for the actual medium and one set for
the complementary medium. Using a symmetry relation
between the reflection responses of both media, we ar-
rived at a method which retrieves all quantities needed
for imaging (focusing functions and Green’s functions in
the actual and the complementary medium) from the re-
flection response of the actual medium. We illustrated the
method with a numerical example, demonstrating the im-
provement over standard primary imaging methods. The
proposed method can be extended for 2D and 3D inhomo-
geneous media, in a similar way as has been done for the
Marchenko method in reciprocal media.
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Abstract –We derive equations (1), (2), (8) and (9) in the main paper.

Acoustic wave equation for a non-reciprocal
medium. – The theory for 3D elastic wave propaga-
tion in modulated materials, including the homogenisa-
tion procedure, is extensively discussed by Nassar et al.
[1]. Here we discuss the main equations, simplified for
the acoustic approximation. Consider a coordinate sys-
tem x = (x1, x2, x3) that moves along with the modulat-
ing wave. We start with the following two equations in
the space-time (x, t) domain

∂tmj = −∂jp, (1)

∂tΘ = ∂ivi. (2)

Operator ∂t stands for temporal differentiation and ∂i for
differentiation in the xi-direction. Latin subscripts (ex-
cept t) taken the values 1 to 3. Einstein’s summation con-
vention applies to repeated Latin subscripts, except for
subscript t. Equation (1) formulates equilibrium of mo-
mentum in the moving coordinate system (leading order
terms only), where mj = mj(x, t) is the momentum den-
sity and p = p(x, t) the acoustic pressure. Equation (2)
relates the cubic dilatation Θ = Θ(x, t) (leading order)
to the particle velocity vi = vi(x, t). All field quantities
in equations (1) and (2) are macroscopic quantities. The
macroscopic constitutive equations are defined as

−p = KΘ + S
(1)
i vi, (3)

mj = S
(2)
j Θ + ρjkvk. (4)

Here K = K(x) is the compression modulus, ρjk = ρjk(x)

the mass density, and S
(1)
i = S

(1)
i (x) and S

(2)
j = S

(2)
j (x)

are coupling parameters. All these coefficients are effec-
tive parameters. Note that the effective mass density is
anisotropic, even when it is isotropic at the micro scale.

For a lossless non-reciprocal material, the medium param-
eters are real-valued and obey the following symmetry re-
lations

ρjk = ρkj and S
(2)
j = −S(1)

j . (5)

We rewrite the constitutive equations (3) and (4) into ex-
plicit expressions for Θ and mj , as follows

Θ = −κp− ξivi, (6)

mj = ξjp+ ρojkvk, (7)

where

ξi = κS
(1)
i (8)

ρojk = ρjk + κS
(1)
j S

(1)
k , (9)

κ = 1/K, (10)

with ρojk = ρokj . Substitution of the modified constitutive
equations (6) and (7) into equations (2) and (1) gives, after
some reorganisation of terms,

κ∂tp+ (∂i + ξi∂t)vi = 0, (11)

(∂j + ξj∂t)p+ ρojk∂tvk = 0. (12)

These are equations (1) and (2) in the main paper.

Matrix-vector wave equation. – From here on-
ward we consider a horizontally layered medium, hence, we
assume that the medium parameters are functions of the
vertical coordinate x3 only, i.e., κ = κ(x3), ρojk = ρojk(x3)
and ξi = ξi(x3). For horizontally layered media it is con-
venient to decompose wave fields into plane waves and
analyse wave propagation per plane-wave component. We
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define the Fourier transform from the space-time (x, t) do-
main to the slowness-space-frequency (sα, x3, ω) domain
as

ũ(sα, x3, ω) =

∫ ∫
u(x, t) exp{iω(t− sαxα)}dtdxα, (13)

where sα denotes the horizontal slowness, ω the angular
frequency and i the imaginary unit. Greek subscripts take
on the values 1 and 2 and Einstein’s summation convention
applies to repeated Greek subscripts. Note that equation
(13) accomplishes a decomposition into monochromatic
plane waves.

We derive a matrix-vector wave equation of the follow-
ing form

∂3q̃ = Ãq̃, (14)

with wave vector q̃ = q̃(sα, x3, ω) defined as

q̃ =

(
p̃
ṽ3

)
. (15)

Equation (14) is well-known for wave propagation in re-
ciprocal media [2, 3]. For non-reciprocal media, matrix Ã
is obtained as follows. From equation (11) we extract an
expression for ∂3v3. We define ϑij as the inverse of ρojk,
hence, ϑijρ

o
jk = δik, where δik is the Kronecker delta func-

tion. Applying ϑ−133 ϑ3j to equation (12) yields an expres-
sion for ∂3p. By applying ϑαj to equation (12) we obtain
an expression for ∂tvα. We use equation (13) to transform
these three expressions to the slowness-frequency domain.
In the transformed expressions, ∂t is replaced by −iω and
∂α by iωsα for α = 1, 2. After elimination of ṽα we thus
obtain equation (14), with matrix Ã = Ã(sα, x3, ω) de-
fined as

Ã =

(
iω{ξ3 − dα(sα − ξα)} iωϑ−133

iωϑ33s
2
3 iω{ξ3 − dα(sα − ξα)}

)
, (16)

where

s23 = ϑ−133

(
κ− (sα − ξα)bαβ(sβ − ξβ)

)
, (17)

dα = ϑ−133 ϑ3α, (18)

bαβ = ϑαβ − ϑα3ϑ−133 ϑ3β . (19)

Decomposition. – We introduce a decomposed wave
vector p̃ = p̃(sα, x3, ω) via

q̃ = L̃p̃, (20)

where

p̃ =

(
ũ+

ũ−

)
, (21)

with ũ+ and ũ− to be discussed later. We derive a wave
equation for p̃, following the same process as for recipro-
cal media [4, 5], modified for non-reciprocal media. The
eigenvalue decomposition of matrix Ã reads

Ã = L̃H̃L̃−1, (22)

λ+

λ−

s1

(a) ρ11 6= ρ33

λ+

λ−

s1

(b) ρ31 6= 0

λ+

λ−

s1

(c) ξ1 6= 0, ξ3 6= 0

Fig. 1: Vertical slowness λ± as a function of horizontal slowness s1
(and s2 = 0). (a) Anisotropic reciprocal medium. (b) Idem, with
tilted symmetry axis. (c) Idem, but for a non-reciprocal medium.

where

H̃ =

(
iωλ+ 0

0 −iωλ−
)
, (23)

L̃ =
1√
2

(
1/
√
ϑ33s3 1/

√
ϑ33s3√

ϑ33s3 −
√
ϑ33s3

)
, (24)

L̃−1 =
1√
2

(√
ϑ33s3 1/

√
ϑ33s3√

ϑ33s3 −1/
√
ϑ33s3

)
, (25)

with

λ± = s3 ± {ξ3 − dα(sα − ξα)}, (26)

s3 =
√
ϑ−133

(
κ− (sα − ξα)bαβ(sβ − ξβ)

)
. (27)

Substituting equations (20) and (22) into equation (14),
we obtain

∂3p̃ = B̃p̃, (28)

with

B̃ = H̃− L̃−1∂3L̃, (29)

or, using equations (23) − (25),

B̃ =

(
iωλ+ −r
−r −iωλ−

)
, (30)

with λ± defined in equations (26) and (27), and

r = −∂3(ϑ33s3)

2ϑ33s3
. (31)

Using equations (21) and (30), equation (28) can be writ-
ten as

∂3ũ
+ = iωλ+ũ+ − rũ−, (32)

∂3ũ
− = −iωλ−ũ− − rũ+. (33)

Analogous to the reciprocal situation, this is a system of
coupled one-way wave equations for downgoing waves ũ+

and upgoing waves ũ−, with λ+ and λ− representing the
vertical slownesses for these waves, and r being the reflec-
tion function, which couples the downgoing waves to the
upgoing waves and vice versa. Figure 1 is an illustration
of the vertical slownesses.
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Propagation invariants. – We consider two inde-
pendent solutions p̃A and p̃B of wave equation (28) and
show that specific combinations of these wave vectors
(or “states”) are invariant for propagation through the
medium. Propagation invariants have been extensively
used for wave fields in reciprocal media [6–9]. To derive
propagation invariants for non-reciprocal media, we in-
troduce a complementary medium, in which the coupling
parameter ξi is replaced by −ξi for i = 1, 2, 3. The wave
vectors and matrices in a complementary medium are de-

noted by p̃(c) and B̃(c)
, respectively. Using the definition

of matrix B̃ in equation (30), with λ± defined in equa-
tions (26) and (27) and r in equation (31), it follows that
B̃ obeys the following symmetry relations

{B̃(c)
(−sα, x3, ω)}tN = −NB̃(sα, x3, ω), (34)

{B̃(sα, x3, ω)}†J = −JB̃(sα, x3, ω), (35)

where

N =

(
0 1
−1 0

)
, J =

(
1 0
0 −1

)
. (36)

Superscript t denotes transposition and † denotes trans-
position and complex conjugation. Equation (34) holds
for all sα, whereas equation (35) only holds for those sα
for which s3 defined in equation (27) is real-valued, i.e.,
for (sα− ξα)bαβ(sβ − ξβ) ≤ κ. Real-valued s3 corresponds
to propagating waves, whereas imaginary-valued s3 corre-
sponds to evanescent waves. We consider the quantities

∂3({p̃(c)
A }tNp̃B) and ∂3(p̃†AJp̃B). When the arguments of

functions are dropped, it is tacitly assumed that functions
in the complementary medium, indicated by superscript
(c), are evaluated at (−sα, x3, ω). Applying the product
rule for differentiation, using equation (28) and symmetry
relations (34) and (35), we find

∂3({p̃(c)
A }tNp̃B) = 0 (37)

and

∂3(p̃†AJp̃B) = 0. (38)

From these equations it follows that {p̃(c)
A }tNp̃B and

p̃†AJp̃B are independent of x3 (the latter only for propa-
gating waves). These quantities are therefore called prop-
agation invariants.

Reciprocity theorems. – Using the definitions of p̃,
N and J in equations (21) and (36), equations (37) and
(38) imply(
ũ
+(c)
A ũ−B− ũ

−(c)
A ũ+B

)
x3,0

=
(
ũ
+(c)
A ũ−B− ũ

−(c)
A ũ+B

)
x3,A

(39)

and(
ũ+∗A ũ+B − ũ−∗A ũ−B

)
x3,0

=
(
ũ+∗A ũ+B − ũ−∗A ũ−B

)
x3,A

, (40)

respectively, where superscript ∗ denotes complex conju-
gation and x3,0 and x3,A denote two depth levels. These
are the reciprocity theorems of equations (8) and (9) in
the main paper.

REFERENCES

[1] Nassar H., Xu X. C., Norris A. N. and Huang G. L.,
Journal of the Mechanics and Physics of Solids, 101 (2017)
10.

[2] Gilbert F. and Backus G. E., Geophysics, 31 (1966)
326.

[3] Frasier C. W., Geophysics, 35 (1970) 197.
[4] Kennett B. L. N. and Kerry N. J., Geophysical Journal

of the Royal Astronomical Society, 57 (1979) 557.
[5] Kennett B. L. N. and Illingworth M. R., Geophysical

Journal of the Royal Astronomical Society, 66 (1981) 633.
[6] Haines A. J., Geophysical Journal International, 95

(1988) 237.
[7] Kennett B. L. N., Koketsu K. and Haines A. J., Geo-

physical Journal International, 103 (1990) 95.
[8] Koketsu K., Kennett B. L. N. and Takenaka H., Geo-

physical Journal International, 105 (1991) 119.
[9] Takenaka H., Kennett B. L. N. and Koketsu K.,

Wave Motion, 17 (1993) 299.

p-3


