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Few-Shot Contrail Segmentation in Remote Sensing
Imagery With Loss Function in Hough Space

Junzi Sun and Esther Roosenbrand

Abstract—Condensation trails, or contrails, are line-shaped
clouds that are produced by an aircraft engine exhaust. These
contrails often impact climate significantly due to their potential
warming effect. Identification of contrail formation through satel-
lite images has been an ongoing research challenge. Traditional
computer vision techniques struggle with varying imagery condi-
tions, and supervised machine learning approaches often require
a large amount of hand-labeled images. This study researches
few-shot transfer learning and provides an innovative approach for
contrail segmentation with a few labeled images. The methodology
leverages backbone segmentation models, which are pretrained
on existing image datasets and fine-tuned using an augmented
contrail-specific dataset. We also introduce a new loss function, SR
loss, which enhances contrail line detection by incorporating Hough
transformation in model training. This transformation improves
performance over generic image segmentation loss functions. The
openly shared few-shot learning library, contrail-seg, has demon-
strated that few-shot learning can be effectively applied to contrail
segmentation with the new loss function.

Index Terms—Contrail detection, contrail segmentation, few-
shot learning, remote sensing, SR loss.

I. INTRODUCTION

A IR transport is critical to global connectivity and the econ-
omy, but presents significant environmental challenges.

Flights emit greenhouse gases, such as carbon dioxide and
nitrogen oxide. Furthermore, condensation trails, or contrails,
from aircraft engine exhaust also significantly impact the climate
due to their potential global warming contribution [1]. Therefore,
effectively monitoring and understanding contrails is essential to
managing air transport’s climate impacts. Past research studies
have focused on detecting contrails and contrail cirrus clouds in
satellite remote sensing imagery. However, detecting contrails
in satellite images is a challenging task due to the varying condi-
tions of the images, such as lighting, contrast, and perspective.

Traditionally, the detection of contrails is considered a com-
puter vision task, given that it involves identifying linear fea-
tures. Advancements in computational power have led to early
research by [2] and [3], which introduce detection methods
in satellite images using various image processing techniques,
such as ridge classification, Hough transforms, and contrail line
segmentation with linear filters.
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In later research by [4], these methods have been expanded
with new algorithms to track contrails as they age, drift, and
spread. This algorithm detects contrails in an image, computes
contrail masks by considering the surrounding pixels, and deter-
mines the contrail cluster’s overall shape. In another approach,
Zhang et al. [5] combined artificial visual inspection and algo-
rithmic contrail identification with meteorological data, leading
to a contrail occurrence and persistence index that enables
studying contrail coverage.

With image processing algorithms, Minnis et al. [6] inves-
tigated linear contrails and contrail cirrus clouds’ properties
using a blend of remote sensing imagery processing techniques.
The study utilized a combination of these approaches, includ-
ing brightness temperature differences (BTD) [7], infrared bis-
pectral techniques [8], and visible infrared shortwave-infrared
split-window techniques [9].

Over the past few years, machine learning, especially super-
vised machine learning, has been adopted widely in remote
sensing research. Thus, research has been applying machine
learning for contrail detection tasks. Kulik et al. [10] utilized a
convolutional neural network (CNN) model to identify contrails
in satellite images. However, despite its success in contrail
detection, the model could not exact the location of contrails like
later segmentation models. Another similar research by [11] also
used a CNN, focusing on whether contrails appear in a frame
captured by a ground-based camera.

Later research by [12] has provided a set of human-labeled
Landsat images for the research community. Another recent
study by [13] aimed to construct an open dataset for contrails pri-
marily over the United States, using GOES-16 satellite imagery.
This research employed a convolutional network to take a series
of temporally sequenced images as inputs and subsequently
detect and outline contrail segments. While the results were
promising, the details of the models are not made available in
this article. Follow-up research by Meijer et al. [14] uses this
dataset to study the contrail formations over the United States.

Several recent research studies aim to better identify contrails
from satellite images. A study by Chevallier et al. [15] used the
Google contrail dataset for tracking the movement of contrails
based on the sequence of imagery inputs. In the work of [16],
a CNN similar to U-Net is also developed to locate contrails in
GOES-16 satellite imagery. Additional research work has also
been developed to estimate their altitude-based Lidar data from
other remote sensing products. In a recent paper, Yu et al. [17]
introduced a new data source from the SDGSAT-1 satellite,
which is the world’s first 30-m resolution three-band infrared
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satellite developed by China. The study also presents a new
image-enhancing method to improve the detection of contrails in
satellite images. Another study [18] provides a comparison study
for the performance of contrail segmentation using different
machine learning models.

While recent advancements in machine learning, particularly
CNNs, have shown success in detecting contrails, these models
often require large, labeled datasets. Even the largest known
Google dataset has its limitations when compared to large-scale
natural image datasets.

Labeling contrails in satellite images is a time-consuming and
resource-intensive process. It poses unique challenges compared
to traditional natural image segmentation tasks, which require
special knowledge, such as in cases when contrails are hard to
distinguish from circus clouds. The objects of interest, contrails,
are often elongated and subtle compared to more well-defined
objects in natural images like people, animals, or vehicles.
Geostationary satellite images often cover large geographical
areas, which leads to significant variations in spatial resolution
at different latitudes. Contrails can appear faint and stretched due
to the perspective of the lens, making them more challenging to
detect than objects in typical natural image datasets.

This article tries to address contrail segmentation challenges
by introducing a few-shot learning approach for contrail detec-
tion and segmentation. Few-shot learning [19] could be a proper
approach for this task as it could minimize the reliance on large
labeled datasets, enabling the model to generalize from just a
few examples. Few-shot segmentation addresses the limitations
of conventional deep learning; recent research introduces new
concepts like holistic prototype activation networks [20] and
divide and conquer strategies [21]. Related studies [22], [23]
further enhance segmentation with techniques like base and
meta, as well as retain and recover.

In addition to the few-shot learning approach, we introduce
a novel loss function, SR loss that specifically targets the linear
properties of contrails, improving the model’s ability to detect
these features in satellite imagery. These research components
offer improvements in segmentation by reducing the data re-
quirements and enhancing detection accuracy, specifically for
contrails from the remote sensing contrail imagery. We also
offer open access to the source code, labeled data, and the neural
network model.

In summary, the contribution of this study consists of the
following:

1) studying the few-shot learning potential in contrail seg-
mentation;

2) proposing a new loss function for training that takes ad-
vantage of the linear shape of the contrails;

3) providing open-source code and data that improves the
reproducibility of the research for future applications.

The rest of this article is organized as follows. Section II
explains the image data and data augmentation procedures.
Section III outlines the architecture of the segmentation neural
network model, followed by Section IV with details of the
proposed SR loss function. Then, Section V presents the model’s
experiments and results. Section VI offers the discussion. Fi-
nally, Section VII concludes this article.

TABLE I
GOES-16 ABI CHANNELS, WAVELENGTH, AND PRIMARY USES

Fig. 1. Example images from channel 13 (12.3 µm) and 15 (10.35 µm) for
GOES-16 satellite over the Gulf of Mexico. The BTD of the two channels are
shown in the last image.

II. DATA PROCESSING

In terms of physical properties, contrails and cirrus clouds
share atmospheric similarities in microphysics, allowing for
the utilization of infrared channels commonly employed for
cirrus cloud identification to detect contrails. This research is
conducted with data from the Geostationary Operational En-
vironmental Satellites R Series 16-channel Advanced Baseline
Imager (GOES-16 ABI) [24].

The GOES-16 satellite provides high-resolution imagery and
atmospheric measurements. The ABI features 16 spectral chan-
nels ranging from visible to infrared wavelengths. Table I shows
the details of the primary uses of these channels.

A. Data Preprocessing

To isolate the presence of optically thin cirrus clouds and
eliminate background and ground interference, we adopt the
preprocessing technique involving calculating the BTD.

This technique subtracts one infrared channel from another to
generate BTD images. In our case, the difference between 12.3
μm and 10.35 μm for the GOES-16 satellite is obtained. The
result is demonstrated in Fig. 1, which showcases a result of a
BTD image featuring contrails.

Data from Florida and San Francisco regions over a few days
in March and May 2020 is downloaded. These are selected
because they are southern coastal regions with more flights.
The days are identified with manual visual inspections. The
GOES-16 data are obtained using the goes2go package. These
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Fig. 2. Process of manual contrail labeling. From left to right: base image,
overlay of labeled contrail paths, and final contrail mask image (illustrated with
a gray background).

files are processed, where channel 13 (10.35 μm) is subtracted
from channel 15 (12.3 μm) to produce the final image used for
training and labeling. As a geostationary satellite, GOES-16 data
use its projection format to ensure full-Earth disk coverage. We
then convert the image into a local projection using the pyproj
Python library.

The BTD images are processed with the GNU Image Ma-
nipulation Program. Contrails are first manually traced as lines
based on the authors’ visual inspection of the BTD images. The
procedure is relatively simple, where thin linear cloud features
that the authors can identify are considered contrails.

Based on all identified contrail paths, the mask image is
generated with strokes of approximately two pixels on all paths.
This masking process is a simplification that improves the label-
ing speed. In later discussions, we explain why more accurate
masking may be trivial.

Fig. 2 shows the process of generating the mask from the
original image. Around 40 images from the San Francisco and
Florida regions are selected and manually masked with con-
trails. Within these images, 30% are reserved for evaluating the
model’s performance, which is not used in training the model.

Furthermore, in this article’s experiment section, we also
use a public dataset released by Google [13] to compare the
performance of the different modeling and training approaches.
This dataset is also obtained from the GOES-16 satellite, but
it contains thousands of manually labeled satellites, which pro-
vides a comprehensive foundation for comparison studies in this
article.

B. Image Augmentation

One way of improving contrail detection is to train neural
network models with a sufficiently large quantity of remote
sensing images. However, large, high-quality datasets are not
always available (or necessary), given that manual labeling is
time-consuming.

We apply a set of transformations, also known as image
augmentations [25], to the image dataset. Image augmentation
provides an efficient way to generate training data based on a
small labeled dataset. Essentially, this can generate orders of
magnitude more input for model training, based on a limited
amount of manually labeled data. The augmentation can prevent
the model from over fitting due to the following factors.

1) Locations of contrails: This results in different locations,
orientations, and perspectives of the contrails in the image
frame.

Fig. 3. Image augmentations applied to the same example image.

2) Lighting variations: This results in different brightness
and contrast.

3) Viewing angle: This results in different perspectives of
the contrails due to different viewing angles of the optical
sensors on the satellites.

During the model’s training, we apply a sequence of random
augmentations to the BTD image generated from the previous
preprocessing step. The augmentation pipeline creates a new
image for the training each time an image is loaded. This process
aims to train a generalized contrail detection and segmentation
model that is robust to varying conditions of the input data.
The following transformations are applied in the augmentation
pipeline from the training dataset.

1) Shift, scale, and rotate: This transformation shifts the
image up to 30% of its dimensions, scales it by up to 20%,
and rotates it randomly within a 180◦ range. This set of
processes ensures that the contrails can appear in different
sections of the input image and with different orientations,
providing the model with varying perspectives of contrail
positions. The border of the image is filled with a constant
value of 0, meaning data will be repeated to fill the entire
image.

2) Padding: This ensures that images maintain a minimum
size of 320 × 320 pixels by padding when needed. This
transformation guarantees consistency in image dimen-
sions, even after the random shifts and rotations. A con-
stant value of 0 is also used for filling.

3) Resize: After applying the shifts and padding, the image is
resized to 320 × 320 pixels to maintain uniformity across
the dataset.

4) Random brightness and contrast: This randomly adjusts
the brightness by up to 20% and the contrast by up to
30% of the image, with a probability of 0.5. It tries to
simulate different atmospheric conditions and lighting
environments.

The results for the transformation, brightness, and contrast
adjustments from a single image can be seen in Fig. 3. The
random rotation, scale, and position are applied to each batch
(with a probability of 1). The random brightness and contrast
adjustments are performed with a probability of 0.5 for each
batch in the training.

During the training validation, the process is similar to the
training augmentation but without any adjustments to brightness
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Fig. 4. Illustration of the U-Net neural network.

or contrast. The validation images are shifted, scaled, rotated,
padded, and resized to maintain consistency. This ensures that
the validation process evaluates the model’s performance on ge-
ometrically transformed images, without introducing additional
variability from lighting conditions. For the testing, only padding
and resizing are applied. This ensures that the test data maintains
its original form without introducing randomness, allowing the
model to be evaluated on images that closely resemble the
original dataset while maintaining consistent dimensions.

III. NEURAL NETWORK-BASED SEGMENTATION MODEL

This section presents the neural network model used for con-
trail segmentation. The model is based on the U-Net architecture
with a residual network (ResNet) backbone. We also introduce
the few-shot transfer learning technique and the standard loss
function used for image segmentation.

A. ResUNet Model Structure

The U-Net model [26], initially developed for biomedical
image segmentation in 2015, has gained significant attention
in segmentation research studies due to its high accuracy and
efficiency compared to traditional conventional neural networks.
It is selected in this article as the underlying model for the
contrail segmentation task. The U-Net is a fully CNN and
consists of two main components: the contracting and expansive
paths, sometimes called encoder and decoder paths.

The encoder or contracting path follows the traditional struc-
ture of a CNN, which consists of multiple convolutional and
pooling layers. This path is designed to capture the context and
features of the input image. The encoder gradually reduces the
spatial dimensions of the feature maps while increasing their
depth. The encoder captures the abstracted semantics in the
input data. The decoder path of a U-Net generates a pixel-wise
segmentation map that corresponds to the input image. It up-
samples the layers using transposed convolutions (or deconvo-
lutions). This path helps to reconstruct spatial resolutions and,
thus, leads to the generation of contrail masks corresponding to
the input image. A skip connection is established for each cor-
responding encoder and decoder layer pair. The skip connection
concatenates features from both layers. It allows the network
to combine high-level and lower level features for classification
tasks, such as the segmentation application in this study.

The overall network is illustrated in Fig. 4, where the input
is the satellite image, and the output is the manually created
contrail mask.

U-Net is often combined with ResNet [27], a type of
network designed to address the challenge of training deep
neural networks, especially the diminishing gradients in back-
propagation. This study uses the ResNet50 architecture [28].
Instead of directly learning outputs based on inputs, ResNet
learns the difference between the input and desired output.

For image segmentation tasks, it is common to combine
the UNet and ResNet as the ResUNet model [29]. The UNet
architecture captures the context and features of the input image,
while the ResBlock from ResNet improves learning the residual
between different neural network layers. Overall, the ResUNet
model is designed to capture the context and features of the input
image while also maintaining the ability to train deep neural
networks effectively.

As suggested in [18], several other model architectures could
potentially produce better accuracy. However, as our main fo-
cus in this article is few-short learning potential for contrail
segmentation, the ResUNet architecture is chosen due to its
simplicity and wilder implementation in previous studies [14],
[16], [29]. According to the performance comparison by [18],
ResUNet is still among the top-performing models for contrail
segmentation.

B. Few-Shot Transfer Learning Using Pretrained Models

Few-shot transfer learning allows pertained models to be
adapted quickly for specific tasks, and it has become a widely
adopted strategy for machine learning. By employing transfer
learning, we start with a neural network model with weights
already trained with a large, generic public dataset.

The choice of standard UNet architecture allows us to lever-
age the transfer learning technique, which uses a pretrained
ResNet-50 backbone model pretrained on a large existing image
dataset, such as ImageNet [30]. Subsequently, the pretrained
model undergoes further training with a domain-specific dataset,
in our case, a manually labeled contrail dataset. The advantage of
this approach lies in its capacity to reduce the time and resources
needed for model training.

C. Standard Loss Functions

The choice of loss function is a critical part of training neural
network models, as it determines what to optimize during the
training. The segmentation of contrail is essential to a binary
classification problem. Two conventional loss functions are
tested in the neural network training: Focal loss [31] and Dice
loss [32]. We also present a new loss function, especially for the
contrail detection problem discussed in Section IV.

Here, both focal and Dice loss functions are relevant choices,
as the classes (contrail and noncontrail) are highly imbalanced,
and these loss functions should not heavily penalize the predic-
tion of the majority class (noncontrail pixels).

Focal loss is designed to focus the learning process on mis-
classified data (wrong labels) and data that is hard to classify.
It applies a specific modulating factor to the commonly used
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cross-entropy loss

LFocal(pt) = −(1− pt)
γ log(pt)

pt =

{
p, if y = 1

1− p, otherwise
(1)

where γ(γ > 0) is the scaling factor introduced by focal loss and
p represents the probability. (1− pt)

γ is the modulating factor.
When γ = 1, the loss is equivalent to binary cross-entropy loss,
while increasing γ will give more focus on less well-classified
examples. In this article, γ is set to 2.

Dice loss is a loss function that is commonly used in seg-
mentation tasks. It is a metric that measures the dis-similarity of
predicted classes and true classes

LDice(p, g) = 1− 2gp

g + p
(2)

where p represents the probability of prediction for a pixel
belonging to the binary target classes (contrail or noncontrail),
g is the ground truth class for that pixel. The Dice loss is also
often represented in the logarithmic form, as follows:

LlogDice(p, g) = log

(
2gp

g + p

)
. (3)

The second term of the Dice loss is the Dice coefficient (or Dice
score), which measures the similarity between two data sets

CDice(p, g) =
2gp

g + p
(4)

where higher coefficient values indicate better similarity be-
tween the predicted and ground truth classes. Throughout this
article, we use the Dice score based on the validation dataset to
evaluate the performance of contrail segmentation tasks.

IV. DESIGNING THE SR LOSS FOR SEGMENTATION MODEL

The previous generic loss functions primarily help the neural
network determine whether a pixel should be classified as a
contrail, based on differences with adjacent pixel areas. More-
over, they do not explicitly consider the potential shapes of the
contrail. In this section, we explain in detail how we design a
new loss function, SR loss, to improve the detection of contrails.

In designing our new loss function, we aim to consider this
inherent linear shape of contrails. To achieve this, we want to
consider the properties of lines in the Hough space using the
Hough transformation. The Hough transformation is a tech-
nique that converts the standard representation of lines in the
Cartesian coordinate system into the polar coordinate format.
This transformation allows us to represent lines in the image as
points in the Hough space. By comparing the Hough space of the
labeled contrail masks and the predicted contrail masks, we can
minimize the differences in the linear features of the contrails.

A. Hough Space and Transformation

Hough transformation is a technique proposed by [33] in the
1960s, which has been widely adopted in image processing and
computer vision. It is often employed to detect and extract linear

Fig. 5. Example of Hough transform.

features in images. First, the Hough transformation converts the
common representation of lines. Let us consider a line in the
Cartesian coordinate system

y = ax+ b. (5)

The same line can be described in a polar coordinate format

ρ = x cos θ + y sin θ (6)

where ρ is the distance between the origin and the closest point
on the line and θ is the angle formed by the new line and the
horizontal axis.

Essentially, the Hough transform uses a point in the polar
coordinate system to represent a line in the Cartesian coordinate
system. In this article, we refer to this polar coordinate system
as Hough space for convenience. We illustrate the Hough trans-
formation in Fig. 5.

In reality, due to the thickness of the line feature in the image,
we can have many points clustered closed in the Hough space,
representing a potential contrail mask. The closer the points in
Hough space are to each other, the more likely they represent a
similar line in angle and location in the image.

To detect multiple contrails in an image, we first discretize
the Hough space, where each point, represented by ρ and θ,
corresponds to a possible line in an image pixel space. We keep
the points in the Hough space with the corresponding line in
the image space covering more than 50pixels of contrail masks.
It is about 20% of the pixel width of the image. The threshold
is determined imperially based on the contrails we observed in
the images. It can be reduced to include more short contrails or
increased to focus on long contrails.

When training the neural network model, the predicted masks
at each iteration are also transformed into the Hough space. The
points in the Hough space are then compared with the labeled
contrail masks. The difference between the labeled and predicted
contrail masks in the Hough space is used to construct the
new loss function, SR loss, which is explained in the following
section.

B. SR Loss—Combining Dice Loss at Original and Hough
Spaces

Fig. 6 shows how we constructed the new loss function, SR
loss, to improve the detection of contrails. The detailed process
is as follows.

1) Step 1: The labeled contrail masks are first transformed
into the Hough space using the Hough transformation.
The labeled contrail masks are represented as points in the
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Fig. 6. Design of the SR loss combining similarities in both image space and Hough space. 1) Labeled contrail masks. 2) Lines in the Hough space from labeled
contrail masks. 3) Points in the Hough space corresponding to the lines in 2. 4) predicted contrail masks. 5) Lines in the Hough space from predicted contrail
masks. 6) Points in the Hough space corresponding to the lines in 5.

Hough space. In subplot 1, the contrail masks are shown.
Subplot 2 shows all the lines that contain at least 50pixels
of contrail masks. Subplot 3 shows the points associated
with these dense lines in the Hough space.

2) Step 2: The predicted contrail masks during the training
of the neural network model are also transformed into
the Hough space. The predicted contrail masks are repre-
sented as points in the Hough space. In subplot 4, we can
see the predicted contrail masks. Subplot 5 shows all the
lines that contain at least 50pixels in the predicted masks.
Subplot 6 shows the points associated with these dense
lines in the Hough space.

3) Step 3: The new loss function, SR loss, is constructed by
comparing the Dice loss of labeled and predicted contrail
masks in the Hough space.

4) Step 4: Finally, we combine the loss in the Hough space
with the Dice loss in the pixel space to produce the final
SR loss. A weight is introduced to adjust the importance
of the two loss functions. In this article, we use the default
value of 0.5 for the weight.

Through Fig. 6, we can observe the difference between labels
and predictions (subplot 3 versus subplot 6). The new loss
function aims to minimize both the difference between subplots
1 and 4, as well as between subplots 3 and 6. The new loss
function is defined in (7), as follows:

LSR(p, g) = (1− α)LDice(p, g) + αLDice(ph, gh) (7)

where p represents the prediction for a pixel belonging to a
contrail and g is the ground truth from the labeled contrail mask.

ph and gh are predictions and ground truth in the Hough space.
α is an adjustable parameter that can be declared to increase or
decrease the weight of the loss at two different spaces, which
is set to 0.5 for the experiments of this article. This new loss
function has two terms. The first incorporates the Dice loss in the
pixel space, which minimizes differences between the labeled
and predicted contrail masks. However, the linear feature of
the contrails is not explicitly considered in the first term, but
is addressed in the second term. The second term of the SR
loss function deals with the similarity in the Hough space. We
minimize the difference between linear features in labeled and
training image masks.

V. EXPERIMENTS AND RESULTS

To evaluate the proposed neural network models and the new
loss functions, we design the following experiments.

1) Visually examining the performance of the proposed seg-
mentation model.

2) Visually comparing the prediction performance of differ-
ence loss functions.

3) Qualitatively analyzing model performances and loss
functions using Google open contrail dataset.

4) Qualitatively analyzing the few-shot capabilities using a
small subset of training data.

The results from the first two experiments provide illustrative
examples of the proposed model. In comparison, the last two
experiments are validations on the Google open contrail dataset,
which contains around 2000 images for validations.
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TABLE II
MODEL AND PARAMETER CONFIGURATIONS

A. Data, Models, and Parameters

In these experiments, models are trained with either our data
or the Google dataset. To examine the applicability of models on
new image sources, we use validation images from the Google
contrail dataset [13], which are not used in any training.

Like our own labeled data, the contrail images from the
Google dataset are also from GOES-16 satellite but differ in
image size, time, and location. The labeling process for the
Google dataset is also different. Multiple labels from different
labelers are first created. Then, these different versions of labeled
contrail masks are combined to create the most common mask
for each satellite image. The quality of labels is higher than our
labeling method since our contrail masks are the same width in
pixels, but in the Google data, they are more accurate and are
voted among different labelers.

For the experiment, we use the ResUNet model with the
ResNet-50 backbone. The foundational mode is pretrained by
the segmentatio_model.pytorch libaray [34]. To sim-
plify the model structure for discovering the few-shot capabil-
ities, our ResUNet model only has one input channel and one
output channel, which are the input grayscale BTD image and
the binary contrail mask. The detailed parameters of the model
are in the following Table II.

During the experiment, we used two different GPUs to train
the model, including a standard desktop NVIDIA T1000 and a
higher performance NVIDIA A10 G for cases requiring more
VRAM.

Once trained, the inference time for our models is approxi-
mately 0.1 s per image on a CPU (i9-10980XE) or 0.02 s per
image on a GPU (NVIDIA T1000).

B. Evaluating the Model With Example Validation Images

The first experiment is to validate the model on unseen satellite
images used for training and validation. A model is trained
with a standard Dice loss function based on the 27 images in
our training dataset. It is then used to predict a few examples
(with different amounts of contrails) from the Google validation
dataset.

Fig. 7 shows four examples containing different amounts
of contrails and complexities of contrails. The BTD image
and labeled contrails are shown in the first two columns, and

Fig. 7. Application of the contrail detection model with unseen GOES images
for Google dataset. The model trained for 1000 epochs with Dice loss. The
model is trained on 27 images labeled by the authors with image augmentations.

predicted contrails using our neural network model trained are
shown in the last column.

The Dice coefficient (or Dice score), measuring the similarity
of the labels and predictions, is calculated for each image, which
varies around 0.5 to 0.6 among these four examples. Based on
visual inspection of these images, the observations are made as
follows.

1) The first image shows a relatively simple case where the
contrails are relatively easy to distinguish. We can see that
the model can detect most labeled contrails, except the part
that overlaps with the dark background (marked with red
boxes).

2) The second image shows a more complex situation where
contrails are not presented. Our model can identify some
(but not all) contrails that are labeled by humans. It also
identified some segments of contrails that are missing in
the labels. These missing labels and mismatches cause the
lower Dice score. The mismatches are marked with red
and teal boxes.

3) The third image also shows a more complex situation,
where many short contrails are presented densely in two
regions in the image. The model can identify contrails with
a high level of agreement with human labels from Google
contrail data. However, identified contrails are generally
thicker than the labels (in orange boxes). Hence, even if
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Fig. 8. Difference in output between Dice, focal, and SR losses using samples from the testing dataset. Models are trained on 27 manually labeled images with
these loss functions and evaluated on the Google dataset images.

there is a higher level of agreement on the number of
contrails, the dice score is lower due to these mismatches.

4) The fourth image shows the most complicated case in this
set of examples, where contrails and contrail cirrus clouds
exist. The model fails to identify some labeled contrails
on the top left region (marked with blue boxes), where the
distinction between contrails and contrail cirrus is unclear.

Judging from these images, we can see that the Dice scores can
reflect the quality of the models, but the absolute values do not
always directly tell the model’s performance. A lower Dice score
can be caused by predicted contrails missing from the labels, or
vice versa, or a difference in the widths between prediction and
labels. Across different images, it can be seen that the Dice score
can reflect the relative performance among different prediction
results. In general, a higher score indicates better agreement with
the label. In the following parts, we will use the Dice score to
measure the performance differences among different models.

C. Prediction Performance Under Different Loss Functions

This experiment tests three loss functions: Dice loss, focal
loss, and the SR loss function. To evaluate the performance and
influence of these loss functions, we train three models with
the same inputs and assess the model against the same images

from previously. Fig. 8 shows the predicted contrails from these
models alongside the labels.

We can observe that the detection performance varies for
different loss functions across the images. The performances
between Dice and SR losses are comparable, where SR loss
shows a slightly higher, but not significant, Dice score. The
model trained with the focal loss function has a lower score.
However, it provides more probabilistic predictions. The score
is comparable to the other two if a threshold is used.

Overall, the model trained with SR loss tends to generate
fewer short contrail segments. This is due to the threshold used
for line detection in the Hough transform, and the model can
focus on predicting contrails with longer linear shapes.

D. Qualitative Analysis of the Model and Loss Functions
Performance

In this analysis, we evaluate the previously obtained few
shot learning models trained with different loss functions on
our own labeled images. The validation images are from the
Google validation dataset. There are less than 2000 images in
the validation dataset, and around 70% of these images contain
no contrails, and the analysis focuses on these images with
contrails.
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Fig. 9. Validation scores from models trained with Dice, focal, and SR losses.
Models are trained on 27 manually labeled images with these loss functions and
evaluated on the Google dataset validation images.

Fig. 10. Difference in performance between models trained with SR loss and
Dice or focal losses. Models are trained on 27 manually labeled images with
these loss functions and evaluated on the Google dataset validation images.

Fig. 9 shows the performance of Dice scores from three
models trained with Dice, focal, and SR losses. In the main
section of the figure, the scores are grouped by contrail pixels
(in hundreds) based on the labels. In the bottom part of the figure,
the distribution of the number of contrail mask pixels from all
validation images is shown. For reference, in this validation
dataset, the 25th, and 75th percentiles of the contrail pixel
numbers are around 200 and 700 pixels, respectively.

This figure shows that the overall accuracy is lower for images
with small contrails (smaller than 400 pixels). The Dice score
is higher for images with larger contrail masks (larger than
400 pixels), around 0.4 to 0.5. The model trained with SR loss
also tends to have a slightly higher Dice score. To better visualize
the difference between SR loss and the other two standard loss
functions, Fig. 10 shows the performance difference between
the model trained with these three loss functions.

In Fig. 10, the distributions are also grouped by the number
of pixels. The blue distributions show the differences between

Fig. 11. Contrail segmentation performance from few-shot models trained
with the amount of random samples from the Google dataset. All models are
trained with SR loss within 30 min on an NVIDIA A10 G GPU and evaluated
on the Google dataset validation images.

models trained with SR loss and Dice loss, and the orange
distributions show the differences between models trained with
SR loss and focal loss. These differences are also shown using
box plots to provide more information on the quantiles of the
differences.

We can see that the performance of SR loss is similar to Dice
and focal for images with short contrails (less than 300 pix-
els). For images with more (often also longer) contrails, SR
loss generally performs better, reflected by the positive median
difference in most distribution groups.

E. Evaluating the Few-Short Performances With Different
Sample Sizes

In this experiment, we examine the performance of few-shot
models against the full model trained on the Google dataset.
Unlike previous models trained with our dataset, this test is
conducted using only the Google dataset to provide a consistent
comparison for models trained with different samples of images.

Six few-shot models are trained with 100, 200, 400, 800, 1000,
2000, and 3000 images, respectively. All models are trained for
the same time (30 min) on an NVIDIA A10 G GPU, with the
SR loss. The best checkpoint during the training was selected to
compare the prediction accuracy.

In all sampled datasets, 30% of randomly selected images
contain contrail masks between 0 and 1000 pixels, while the
remaining 70% of random samples contain contrail masks larger
than 1000 pixels. This choice aims at a more balanced dataset
since most of the images in the dataset contain no contrails.

We also train an additional model with the full dataset using
the same GPU and training time to compare the performance.
The dataset is also balanced, where all images containing con-
trail masks greater than 200 pixels are considered for training.
In addition, 2000 random samples of images with less than
200 pixels of contrail masks are used to balance the dataset.
The downsampling on noncontrail images is due to the limited
VRAM available on the GPU.

In Fig. 11, the Dices scores of few-shot models are shown in
blue, while the scores from the fully trained model are shown
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Fig. 12. Contrails detected on different types of image sources. The segmen-
tation model was trained with three losses, including the customized SR loss
function.

in orange. Note that the validation is applied to the Google
validation images that contain contrail labels.

We can observe that the model trained with 400 random
samples performs similarly to the model trained with the entire
dataset. Even if the model is trained only with 100 samples,
it performs relatively well. Based on these results, one may
further hypothesize that a small set of images containing a broad
representation of contrail conditions may provide a significantly
accurate model without the need for a large number of hand-
labeling image data.

F. Evaluating the Model With Other Image Sources

Since we apply augmentation techniques in training the neu-
ral network model, the resulting contrail detection model has
demonstrated an ability to work with an extensive range of
images. The contrail detection model can be directly applied
to different image sources without additional training.

Fig. 12 presents examples of our model applied to four image
sources. The first image originates from MeteoSat, which shares
similar image properties with the GOES satellite imagery used
during our training phase. The second image is a color pho-
tograph from the NASA Terra satellite, where the model has
proven capable of managing a broad dynamic range of color
inputs.

The third image in Fig. 12 illustrates contrails from ships, as
observed by the NOAA Suomi-NPP satellite. Our model still
identifies these ship contrails despite their curved shapes, influ-
enced by wind patterns. In the final image, we experiment with
an extreme example - a random Google Street View photograph
taken near Amsterdam’s Schiphol Airport. It can be seen that
the models maintain a good level of performance, even when
applied to nonsatellite images.

VI. DISCUSSIONS

A. Few-Shot Learning and Generalization Capabilities

The challenge of generating abundant training data is a well-
recognized bottleneck in supervised machine learning, espe-
cially for image labeling tasks. This study addresses this issue
through a two-pronged approach: leveraging few-shot learning
and utilizing image augmentation. Unlike traditional end-to-end
training that requires large datasets, the few-shot learning tech-
nique employed in this study allows for model generalization
with a significantly smaller number of samples. This approach
begins with a generalized segmentation model pretrained on
a large dataset and fine-tunes it specifically for contrail seg-
mentation. Augmenting these few-shot images further amplifies
the training set by several orders of magnitude, enhancing the
model’s robustness and adaptability.

The few-shot learning capabilities demonstrated in this study
show that a large dataset may not always be required for effective
contrail segmentation. Even with as few as hundreds of training
samples, the models showed reasonable performance, with only
marginal improvements when the dataset was increased to 400
or more samples. This finding suggests that a carefully selected
subset of diverse images may be sufficient for training robust
contrail detection models.

However, this also raises important questions about the
model’s true generalization capabilities. The experiments were
limited to satellite imagery with specific properties (i.e., from
GOES-16 and similar sources). While we demonstrated that
our model works on other image types, such as NASA Terra
images or even nonsatellite images like Google Street View, the
consistency of these results across a broader spectrum of imagery
and atmospheric conditions remains unclear.

To further create models capable of coping with different re-
mote sensing images, we recommend compiling a small dataset
of annotated images from multiple satellites to refine the models.
This expanded dataset could then be subjected to our proposed
image augmentation and few-shot learning strategies, likely
resulting in a more robust and generalized contrail segmentation
model.

B. Contrail Masks

Our labeling process follows a very simplistic approach, in
which line segments of the same width are drawn over different
contrails. However, the resulting contrail predictions based on
visual inspection in Fig. 8 still match well with the carefully
hand-labeled contrail masks in the Google dataset.

This observation can be counter-intuitive. We hypothesize that
the network can detect the boundaries without being specifically
trained. The uncertainty in the boundaries can be better observed
in the results from the models trained with focal loss functions
due to the probabilistic nature of the predictions during the
training under this loss function.

Furthermore, in many aviation applications, very accurate
determination of contrail boundaries in the imagery may be
optional. The uncertainty in the image can be caused by the
resolutions of the geostationary satellites, where the quality of
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the imageries degrades at the higher latitude region. Another
challenge the literature raises is the difficulty of correlating con-
trails to specific flights, where large uncertainties are expected
in relating the segmented contrails to flights.

C. Implications of Loss Function Selection

In this article, we evaluated three loss functions to examine
the performance of the model: Dice loss, focal loss, and SR
loss. The first two classical loss functions are commonly used in
image segmentation tasks. The SR loss is a new customized loss
function designed in this study to take advantage of the shapes
of contrails. It considers the information in the Hough space and
uses the similarity in the Hough space between the target and
prediction to improve the model training.

Our experiments with these different loss functions high-
lighted subtle but considerable tradeoffs. The SR loss performed
better in more complex cases, particularly where contrails were
longer or more complex, because of its focus on line structures
in the Hough space. However, its computational complexity
and higher training time may present challenges in practical
applications where computational resources or time are limited.

We provide an implementation of SR loss in PyTorch, which
allows it to be computed on GPU during training. However,
compared to the other two loss functions, SR loss requires
additional transformation to the Hough space, which is more
computationally expensive and thus can lead to a slower training
process.

Part of the calculation can not be fully vectorized in PyTorch,
as the matrix representing the points in the Hough space has
different sizes. Thus, in the batch operation, we still have to
process each image separately, which significantly reduces the
training speed. Future efforts should focus on developing a
more efficient version of SR loss code to improve computational
efficiency.

D. Failure Cases

In the experiments, we can also observe failure cases where
the model failed to identify contrails. These cases are often
related to images with few contrails or a strong presence of other
clouds. We also notice that large contrast in the background
features can also cause the model to fail to identify contrails.
This may be caused by the normalization of each input image,
which is based on brightness and darkest pixels.

Fig. 13 shows three examples where the model failed to iden-
tify contrails. In the first example, the model failed to identify
the contrail due to the presence of large clouds that obscured
the contrail. In the second example, we can see the contrails are
quite faint compared to the contrast of other features. In the third
example, the model detected many smaller segments of contrails
that were not considered contrails in the labeled data.

E. Accuracy of Contrail Detection and Labeling Challenges

This study uses the Dice coefficient (or Dice score) to measure
the similarity between the labels and predictions. The results

Fig. 13. Examples where our segmentation model failed to identify labeled
contrails. The model is trained with SR loss on 400 Google images from the
training dataset. These images are from the validation dataset.

from using the Dice coefficient to evaluate segmentation perfor-
mance show some inherent limitations in the labeling process,
both in our dataset and the Google Contrail dataset.

These datasets rely on human-labeled contrails, which are
prone to inconsistencies. For instance, human labelers often
miss shorter or fainter contrails, leading to an incomplete ground
truth. As a result, the Dice score might not entirely reflect the
model’s ability to detect contrails, especially when the model
predicts contrails that are missing from the labels.

Given the variability in contrail labels, an important direction
for research would be the development of more objective and
automated labeling techniques, possibly incorporating semisu-
pervised learning. In addition, using flight data and meteorologi-
cal data, in conjunction with satellite imagery, could help create
more accurate contrail labels and allow for better evaluation
metrics that account for both the presence of contrails and
their potential environmental impacts. This requires more future
research, especially on how to more accurately relate contrails
to flights.

F. Limitations of This Study

Several limitations should be acknowledged. First, the size
and diversity of the training dataset are constrained to GOES-16
satellites. This can potentially limit the generalizability of the
model to other geographical regions or different atmospheric
conditions. While we employed various augmentation tech-
niques, the model’s performance could still be biased toward
the specific image characteristics of the GOES-16 satellite.
Expanding the training dataset to include images from other
satellite platforms (like Landsat, Sentinel, and MTG satellites)
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would likely improve the robustness of the model across a wider
range of conditions.

The contrail masks in our labeled dataset are relatively sim-
plistic, with uniform widths applied across all contrails. This
approximation might limit the model’s ability to accurately
segment contrails with variable widths, such as those affected
by wind shear or different atmospheric conditions. Developing
a more sophisticated labeling approach that reflects the actual
variability in contrail structures could lead to better contrail
segmentation performance.

VII. CONCLUSION

This study presents the few-shot machine learning approach
for detecting flight contrails in remote sensing imagery data. We
adopt a U-Net segmentation model and a customized SR loss
function. By applying the few-shot models on a larger dataset
from Google, we have proved its effectiveness in handling a vari-
ety of image quality in terms of location, time, and composition
of clouds.

The few-shot contrail segmentation models in this article are
trained on a small set of hand-label labeled images in com-
bination with image augmentation techniques. This generates
diverse transformations and qualities of satellite images. De-
spite the limited training data, the model demonstrates strong
performance with unseen new image sources, and it would
be capable of further improvement with a richer dataset from
different satellites.

Moreover, the creation of the SR loss function, specifically
designed to leverage the linear nature of contrails in the Hough
space, represents another contribution of this study. This new
loss function has performed better than traditional Dice loss and
focal loss functions, particularly in complex situations involving
a mix of many long and short contrail segments.

The software implementation for this model, including the
contrail model, training procedures, contrail detection examples,
and the actual model weights trained with different parameters,
has been open-sourced under the GNU General Public License,
allowing future researchers to use or contribute to the model
freely.

VIII. CODE AND DATA AVAILABILITY

The model is implemented in PyTorch [35] with the pretrained
Segmentation Models [34]. The repository includes the contrail
model, training procedures, contrail detection examples, and
model weights trained with different parameters.
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