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Abstract

In this paper the onset of mechanical instability in time-sensitive elasto-viscoplastic

solids is theoretically analyzed at the constitutive level and associated with the

occurrence of “spontaneous accelerations” under stationary external perturbations.

For this purpose, a second-order form of Perzyna’s constitutive equations is first

derived by time differentiation, and a sufficient stability condition is identified

for general mixed loading programs. These loading conditions are in fact the

most general in both laboratory tests and real boundary value problems, where a

combination of certain stress and strain components is known/prescribed.

The theoretical analysis leads to find precise stability limits in terms of material

hardening modulus. In the case of constitutive relationships with isotropic strain-

hardening, no instabilities are possible while the hardening modulus is larger than

the so-called “controllability modulus” defined for (inviscid) elasto-plastic materi-

als. It is also shown that the current stress/strain rate may also directly influence

the occurrence of elasto-viscoplastic instability, which is at variance with elasto-

plastic inviscid media.
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∗Corresponding author
Email addresses: f.pisano@tudelft.nl (F. Pisanò), claudio.diprisco@polimi.it (C. di
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1. Introduction1

Modeling and predicting failure phenomena in solid media is of utmost impor-2

tance in many applied and engineering sciences. Meaning the concept of “failure”3

in its broadest sense, the collapse of both natural and manmade systems can be4

induced by a wide variety of failure/instability processes at the material level. This5

statement especially applies to geomaterials (Sulem and Vardoulakis, 1995; Darve6

and Vardoulakis, 2004; Bažant and Cedolin, 2010; Daouadji et al., 2011): indeed,7

these are characterized by complex granular structures with either loose or inter-8

connected grains, they interact with interstitial fluids and may suffer degradation9

and fracture processes caused by mechanical, hydraulic, thermal and chemical so-10

licitations. As a consequence, defining a priori the whole range of situations under11

which geomaterials “fail” is not trivial and is still intensively discussed within the12

scientific community (Darve et al., 2004; Chambon, 2005).13

In the context of continuum-based theories, most approaches for the inelastic14

analysis of solids and structures have been developed in the framework of rate-15

independent (or inviscid) plasticity (Koiter, 1960; Vermeer and De Borst, 1984;16

Lubliner, 1990; Lemaitre and Chaboche, 1990), that is under the assumptions that17

(i) unrecoverable deformations take place instantaneously and (ii) no role is played18

by the external perturbation rate. Although elasto-plasticity has been proven to19

capture most features of the inelastic response of geomaterials, the assumption of20

rate-independence prevents some important experimental evidences to be repro-21

duced, such as creep and relaxation processes.22

To overcome this intrinsic limitation of standard elasto-plasticity, the theory of23

elasto-viscoplasticity was purposely introduced. Although different viscoplastic ap-24

proaches are available in literature (Perzyna, 1963, 1966; Duvaut and Lions, 1972;25

Wang et al., 1997; Heeres et al., 2002), viscoplastic models are all based on the con-26

cept of “delayed plastic flow”, implying that a finite amount of time is required for27

irreversible (viscoplastic) strains to develop. As a result, the time variable actively28
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contributes to the global material response, which is in turn determined by the in-1

teraction between the intrinsic material rate-sensitiveness and the external loading2

rate. In what follows, the most widespread viscoplastic framework introduced by3

Perzyna (1963) will be exclusively considered.4

The experimental investigation of rate effects in geomaterials has led to regard5

elasto-viscoplasticity as a suitable framework for conceiving constitutive relation-6

ships (Adachi and Oka, 1982; Borja and Kavazanjian, 1985; Desai and Zhang,7

1987; di Prisco and Imposimato, 1996; Georgin and Reynouard, 2003) and repro-8

ducing certain material instabilities (Oka et al., 1994; di Prisco and Imposimato,9

1997; Lade et al., 1997). In addition to experimental motivations, viscoplastic-10

ity has also gained further popularity as a simple regularization technique in fi-11

nite element computations, since it mitigates the mesh-dependence effects arising12

from bifurcated responses (e.g. strain localization) (Loret and Prevost, 1990, 1991;13

Needleman, 1988; Wang et al., 1997).14

In the light of the above premises, the stability analysis of viscoplastic consti-15

tutive equations is needed to assess: (i) the suitability of viscoplastic models for16

geomaterials; (ii) the reliability/objectivity of numerical analyses accounting for17

material rate-sensitiveness.18

In the last decades, several authors devoted both theoretical and numerical19

studies to investigate instabilities in rate-sensitive materials, such as metals (Anand20

et al., 1987; Shawki and Clifton, 1989) and soils (Oka et al., 1994, 1995; di Prisco21

et al., 2000). Nevertheless, a general framework establishing when viscoplastic con-22

stitutive instabilities can occur under mixed stress-strain loading programs (Nova,23

1994; Imposimato and Nova, 1998) is still missing in literature. These are actu-24

ally very relevant in practice, since the loading processes in both experimental25

tests and real boundary value problems are usually characterized by a prescribed26

combination of certain stress and strain components.27

This paper provides a sufficient condition for small-strain mechanical stability28
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by explicitly taking into account the time-dependent response of geomaterials. As1

will be further clarified, the proposed theoretical framework exhibits strict connec-2

tions to the elasto-plastic “theory of controllability”, first proposed and developed3

by Nova and coworkers (Nova, 1994; Imposimato and Nova, 1998; Buscarnera et al.,4

2011). It will be shown that, despite the different mathematical structures of con-5

stitutive equations, the results from the rate-dependent and inviscid theories are6

closely connected.7

Notation8

For analytical convenience, a matrix notation is hereafter adopted. Column vec-9

tors and square matrices are used to represent second- and fourth-order tensors,10

respectively. Vectors and matrices are denoted by bold symbols, while the super-11

script T stands for transposition. The partial derivative operator is ∂/∂, whereas12

total derivatives are meant by d/d. Dots and double dots are also employed for13

first and second total time derivatives. Henceforth, t will be standing for physical14

time.15

2. Loss of stability/controllability in inviscid elasto-plastic solids16

Some relevant concepts about the loss of stability and controllability in rate-17

insensitive solids are hereafter summarized. While in this section only essential18

details for following developments are recalled, interested readers can find in the19

wide works by Petryk (2000); Chambon et al. (2004); Bonelli et al. (2011); Bigoni20

(2012) in-depth explanations (and more references) about stability issues in elasto-21

plastic continua.22

In the context of single potential elasto-platicity, incremental non-linearity is23

lumped into the two options of elasto-plastic loading and elastic unloading (only24

two tensorial stress zones exist (Darve, 1978; Darve and Labanieh, 1982)), so that25

stability analyses are meaningful in the inelastic regime exclusively.26
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It is first important to recall the well-known stability criterion proposed by1

Hill (1958), stating that the material response is stable as long as the second-order2

work density d2W is positive under any incremental perturbation (Chambon et al.,3

2004):4

d2W =
1

2
dσTdε > 0 ∀ dε (1)

in which dσ and dε are the incremental stress and strain (column) vectors. The5

Hill’s sufficient stability condition was then applied by Maier and Hueckel (1979)6

to highlight the implications of non-associated plastic flow rules.7

Years later, Buscarnera et al. (2011) further pointed out the meaning of the8

analysis by Maier and Hueckel (1979) in the light of the “theory of controllability”9

introduced by Nova and coworkers (Nova, 1994; Imposimato and Nova, 1998).10

In fact, it is possible to demonstrate that the admissibility of the elastic-plastic11

response depends on the current hardening modulus H and the hardening limits12

H1 and H2 defined by Maier and Hueckel (1979):13

1. if H > H1, then existence and uniqueness are guaranteed for any incremental14

loading path and any loading control (unconditional stability);15

2. if H2 ≤ H ≤ H1, then existence and uniqueness of the incremental response16

are a function of the loading program (conditional stability);17

3. if H < H2, then either the incremental response does not exist or the solution18

is not unique (unconditional instability).19

Buscarnera et al. (2011) drew these conclusions by analyzing the incremental20

elastic plastic-response under mixed loading conditions, i.e. by assuming that21

certain stress and strain components σα and εβ are controlled during the loading22

process. In general, any mixed loading control can be formulated by defining in23

I = {i ∈ N : i = 1, 2, ..., 6} two subsets α and β containing the row indexes of the24
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controlled stress and strain components, respectively:1

α ⊆ I, β ⊆ I

α ∩ β = ∅, α ∪ β = I ⇒ |α|+ |β| = |I| = 6
(2)

where | | denotes the set cardinality (number of elements in the set). Compat-2

ible α and β are, for instance, α = {1, 3, 5} and β = {2, 4, 6}, or α = {2, 3} and3

β = {1, 4, 5, 6}, etc. Mixed loading programs spontaneously induce a rearrange-4

ment of the incremental constitutive relationship, separating known and unknown5

stress/strain components:6

dσαdεβ

 =

Dep
αα −Dep

αβ

(
Dep
ββ

)−1
Dep
βα Dep

αβ

−
(
Dep
ββ

)−1
Dep
βα

(
Dep
ββ

)−1


dεαdσβ

 (3)

where Dep the tangent elasto-plastic stiffness matrix (inverse of the compliance7

matrix Cep).8

The partitioned matrix form (3) is meaningful only on condition that the non-9

negativeness of the plastic multiplier Λ is ensured, whose general expression for10

mixed loading programs is (Buscarnera et al., 2011):11

Λ =
1

H −Hχ

∂f

∂σ

T

dσtr, H = −∂f
∂q

T ∂q

∂εp
∂g

∂σ
(4)

where (i) the yield function f depends on σ and a vector q of hardening variables,12

(ii) the gradient of the plastic potential g identifies the direction of the plastic13

strain increment, (iii) the so-called incremental trial stress dσtr is a function of the14

prescribed stress/strain increments (dσα and dεβ) and of certain sub-blocks of the15

elastic stiffness/compliance matrices Del/Cel (Buscarnera et al., 2011).16

Equation (4) points out that the plastic multiplier tends to infinity as the17
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hardening modulus H approaches the so-called “modulus of controllability“ Hχ:1

Hχ = − ∂f

∂σβ

T [
Del
ββ −Del

βα

(
Del
αα

)−1
Del
αβ

] ∂g

∂σβ
=

= − ∂f

∂σβ

T (
Cel
ββ

)−1 ∂g

∂σβ

(5)

The definition Hχ depends on the actual loading constraints through α and β in2

(2), and suggests the formulation of the following stability/controllability criterion3

(Buscarnera et al., 2011):4

H > Hχ (6)

ensuring the positiveness of the plastic multiplier in (4). Incidentally, it could be5

demonstrated that Hχ is always in the range bounded by H1 and H2 as defined by6

(Maier and Hueckel, 1979).7

Condition (6) can be specialized for the cases of pure stress and strain control8

(Maier and Hueckel, 1979):9

stress control: α = I, β = ∅ =⇒ H > Hχ = 0 (7)

10

strain control: α = ∅, β = I =⇒ H > Hχ = Hc, Hc = − ∂f
∂σ

T

Del ∂g

∂σ
(8)

where Hc is the so-called critical hardening modulus (Maier, 1966).11

The above approach is in essence very simple and flexible, but not employable12

for elasto-viscoplastic solids. Indeed, the incremental form (3) with tangent stiff-13

ness/compliance matrices can never be retrieved for elasto-viscoplastic constitutive14

relationships (Ju, 1990).15

3. Perzyna’s theory for rate-dependent plasticity16

3.1. General concepts17

The theory of elasto-viscoplasticity relies on the assumption that the reversible18

(elastic) and the unrecoverable (viscoplastic) components of the total deformation19
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combine additively. This implies that the total strain rate can be decomposed as:1

dε

dt
=
dεel

dt
+
dεvp

dt
(9)

where the superscripts el and vp stand for elastic and viscoplastic, respectively.2

The simplest assumption of isotropic linear response is here introduced for the3

elastic deformation:4

dεel

dt
= Celdσ

dt
or

dσ

dt
= Deldε

el

dt
(10)

while the viscoplastic strain rate is here obtained through the well-known Perzyna’s5

approach (Perzyna, 1963, 1966):6

dεvp

dt
= Φ (f)

∂g

∂σ
(11)

According to Equation (11), the scalar Φ function (the so-called “viscous nucleus”)7

has a major influence on the magnitude of the viscoplastic strain rate1, while its8

direction in the strain rate space is given by the stress gradient of the plastic9

potential g. The enforcement of the plastic consistency condition is unnecessary,10

since the time rate of εvp is directly derived from Φ. As a consequence, when11

plastifications take place, the stress state is not constrained to lie on the yield12

locus f = 0 and “overstresses” occur.13

In most cases, the viscous nucleus Φ is a non-negative non-decreasing function14

of the yield function f (Φ ≥ 0 and dΦ/df ≥ 0) (di Prisco and Imposimato, 1996).15

Provided the analytical definitions of the yield locus, the plastic potential and the16

hardening rules, a constitutive model can be easily formulated as either elasto-17

plastic or elasto-viscoplastic depending on the flow rule adopted. In this respect,18

1Strictly speaking, there is also an influence of the plastic potential gradient. This could be
easily eliminated by introducing ∂g

∂σ/
∣∣ ∂g
∂σ

∣∣ in Equation (11)
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the following property holds (di Prisco and Imposimato, 1996):1

{Φ > 0 ∀f > 0; Φ = 0 ∀f < 0} =⇒
∫ +∞

0

dεvp

dt
dt = dεp (12)

where dεp is the plastic strain increment produced by the corresponding inviscid2

flow rule. In other words, statement (12) implies that, as long as no viscoplastic3

strains develop when f < 0, the viscoplastic strain increment induced by a given4

perturbation tends, after an infinite amount of time, to the instantaneous plastic5

response: from this standpoint, standard plasticity can be regarded as the limit of6

viscoplasticity at vanishing rate-sensitiveness (or infinitely slow loading). It could7

be also proven that, as the elasto-plastic limit is approached, Φ → ∞ (infinite8

plastic strain rate) and f → 0 (consistency satisfied).9

3.2. Second-order form of constitutive equations10

As a preliminary step, the following stability analysis requires a second-order11

form of Perzyna constitutive equations to be derived by time differentiation for12

mixed loading programs.13

For this purpose, the authors assumed that (i) dDel/dt = dCel/dt = 0 (constant14

elastic parameters), (ii) the yield function f and the plastic potential g depend on15

time only through the stress vector σ and the vectors of hardening variables q and16

p:17

f (t) = f {σ (t) , q [εvp (t)]} (13)
18

g (t) = g {σ (t) ,p [εvp (t)]} (14)

Relationships (13)-(14) come from the assumption of strain-hardening material,19

whereas no dependence of the hardening variables on the inelastic strain rate is20

considered (Oka et al., 1994; Wang et al., 1997; di Prisco et al., 2000). Accordingly,21

the second time derivative of the viscoplastic strain rate can be easily obtained by22

9



deriving the Perzyna’s flow rule (11):1

d2εvp

dt2
=
dΦ

dt

∂g

∂σ
+ Φ

d

dt

(
∂g

∂σ

)
=

=
dΦ

df

(
∂f

∂σ

T dσ

dt
− ΦH

)
∂g

∂σ
+ Φ

(
∂2g

∂σ ⊗ ∂σ
dσ

dt
+

∂2g

∂σ ⊗ ∂p
∂p

∂εvp
dεvp

dt

) (15)

in which the viscous nucleus Φ and its f -derivative, the hardening modulus H and2

the derivatives of g with respect to σ and p appear.3

For the sake of clarity, the time derivation of constitutive equations is first4

performed for the simpler cases of full stress and strain control; then, the general5

mixed loading case is addressed. The most cumbersome analytical developments6

are skipped here and summarized in AppendixA.7

3.2.1. Stress control (α = I, β = ∅)8

Under full stress control, a stress vector time history Σ (t) is prescribed:9

σ (t) = Σ (t)⇒ dεvp

dt
=
dε

dt
−CelΣ̇ (16)

so that the second time derivative of the (unknown) strain vector can be expressed10

as:11

d2ε

dt2
=
d2εel

dt2
+
d2εvp

dt2
= CelΣ̈ +

d2εvp

dt2
(17)

By combining the strain splitting (17) with the stress control constraint (16)12

and the second-order flow rule (15), the following ODE2 system is retrieved (see13

AppendixA):14

dX

dt
= AσX + Fσ (18)

in which X =
dε

dt
has been set and:15

Aσ = −dΦ

df

(
H +

HΣ̇

Φ

)
II + Φ

∂2g

∂σ ⊗ ∂p
∂p

∂εvp
(19)

2Ordinary Differential Equation

10



Fσ = CelΣ̈ + Φ

(
∂2g

∂σ ⊗ ∂σ
− ∂2g

∂σ ⊗ ∂p
∂p

∂εvp
Cel

)
Σ̇ +

dΦ

df

(
H +

HΣ̇

Φ

)
CelΣ̇ (20)

1

HΣ̇ = − ∂f
∂σ

T

Σ̇ (21)

II stands for a 6 × 6-sized identity matrix (its size coincides with the cardinality2

of the set I).3

The linear system (18) governs the strain acceleration (rate of the total strain4

rate) under a prescribed stress history. It is also worth observing that:5

– since the entries of the matrix Aσ evolve with the stress-strain state, system6

(18) is time-varying (non-stationary);7

– the vector Fσ vanishes for creep loading conditions (i.e. under constant stress8

and Σ̇ = Σ̈ = 0), and so does the scalar HΣ̇ in (21) – which will be henceforth9

referred to as “stress rate modulus”.10

3.2.2. Strain control (α = ∅, β = I)11

In case the loading program is fully strain-controlled, the total strain vector12

time history E (t) is prescribed:13

ε (t) = E (t)⇒ dεvp

dt
= Ė −Celdσ

dt
(22)

and the onset of positive accelerations can be detected by monitoring the second14

time derivative of the (unknown) stress vector:15

d2σ

dt2
= Del

(
d2ε

dt2
− d2εvp

dt2

)
= DelË −Deld

2εvp

dt2
(23)

After some derivations similar to those performed for the stress-controlled case (see16

AppendixA), the following ODE system is found:17

dX

dt
= AεX + Fε (24)

11



where X = dσ/dt and:1

Aε =

[
−dΦ

df

(
H −Hc +

HĖ

Φ

)
II − ΦDel

(
∂2g

∂σ ⊗ ∂σ
− ∂2g

∂σ ⊗ ∂p
∂p

∂εvp
Cel

)]
(25)

2

Fε = DelË +
dΦ

df

(
H −Hc +

HĖ

Φ

)
DelĖ − ΦDel ∂2g

∂σ ⊗ ∂β
∂β

∂εvp
Ė =

= DelË + Del

[
dΦ

df

(
H −Hc +

HĖ

Φ

)
II − Φ

∂2g

∂σ ⊗ ∂p
∂p

∂εvp

]
Ė

(26)

HĖ = − ∂f
∂σ

T

DelĖ (27)

Apparently, systems (18) and (24) possess the same mathematical structure. In3

the latter, the assumption of prescribed strain vector leads to retrieve the critical4

softening modulus Hc in Equation (8) (Maier and Hueckel, 1979), along with the5

newly defined “strain rate modulus” HĖ in (27).6

3.2.3. Mixed stress-strain control7

Under general mixed loading, a combination of certain stress (σα) and strain8

(εβ) components is known/controlled. By following the approach recalled in Sec-9

tion 2, the total strain vector and its elastic and viscoplastic components can be10

partitioned as follows3:11

d

dt

εαεβ
 =

Cαα Cαβ

Cβα Cββ

 d

dt

σασβ
+ Φ


∂g

∂σα
∂g

∂σβ

 (28)

Hereafter, the constraints on the prescribed stress and strain components are given12

to define the loading program:13

σα (t) = Σα (t) εβ (t) = Eβ (t) (29)

3In what follows, the superscript el for the elastic stiffness/compliance matrices will be avoided
to simplify the notation

12



whence the following relationships for the viscoplastic strain rates result:1

dεvpα
dt

=
dεα
dt
−Cαα

dσα
dt
−Cαβ

dσβ
dt

=
dεα
dt
−CααΣ̇α −Cαβ

dσβ
dt

dεvpβ
dt

=
dεβ
dt
−Cβα

dσα
dt
−Cββ

dσβ
dt

= Ėβ −CβαΣ̇α −Cββ
dσβ
dt

(30)

The substitution of the loading constraints (29) into the constitutive law (28)2

generalizes the Perzyna’s flow rule (11) in the sense of mixed loading programs.3

Accordingly, the rates of the uncontrolled stresses and strains assume the form:4

d

dt

εασβ
 = Φ

Iαα −CαβC
−1
ββ

0 −C−1
ββ




∂g

∂σα
∂g

∂σβ

+

Ω̇α

Ω̇β

 (31)

where the vector Ω:5 Ω̇α

Ω̇β

 =

CααΣ̇α + CαβC
−1
ββ

(
Ėβ −CβαΣ̇α

)
C−1
ββ

(
Ėβ −CβαΣ̇α

)
 (32)

vanishes at constant Σα and Eβ. Then, both the equations in system (31) are6

further differentiated with respect to time:7

d2εα
dt2

=
d

dt

(
Φ
∂g

∂σα
−CαβC

−1
ββΦ

∂g

∂σβ
+ Ω̇α

)
=

=
dΦ

dt

∂g

∂σα
+ Φ

d

dt

(
∂g

∂σα

)
− dΦ

dt
CαβC

−1
ββ

∂g

∂σβ
− ΦCαβC

−1
ββ

d

dt

(
∂g

∂σβ

)
+ Ω̈α

(33)

d2σβ
dt2

=
d

dt

(
−C−1

ββΦ
∂g

∂σβ
+ Ω̇β

)
= −dΦ

dt
C−1
ββ

∂g

∂σβ
− ΦC−1

ββ

d

dt

(
∂g

∂σβ

)
+ Ω̈β (34)

13



Even in this case, some more demanding manipulations (AppendixA) enable to1

recast equations (33)-(34) as a time-varying ODE system:2

dX

dt
= AX + F⇒ d2

dt2

εασβ
 =

Aαα Aαβ

Aβα Aββ

 d

dt

εασβ
+

Fα

Fβ

 (35)

For the sake of analytical convenience, the sub-blocks in (35) are now specified for3

the special case:4

∂

∂p

(
∂g

∂σ

)
=

∂2g

∂σ ⊗ ∂p
= 0 (36)

meaning no influence of the g-hardening variables on the direction of the viscoplas-5

tic flow (Equation (11)). This assumption implies some loss of generality but still6

allows to address relevant cases, including perfectly-viscoplastic (no hardening) and7

Cam-Clay–type (isotropic strain-hardening) constitutive relationships. In partic-8

ular, the latter are widely used to model the non-linear behavior of soils under9

monotonic loading (see e.g. Wood (2003) for details).10

The simplification (36) leads to the following sub-block expressions:11

Aαα = −dΦ

df

(
H −Hχ +

HΣ̇Ė

Φ

)
Iαα (37)

Aαβ = Φ

(
∂2g

∂σα ⊗ ∂σβ
−CαβC

−1
ββ

∂2g

∂σβ ⊗ ∂σβ

)
(38)

Aβα = 0 (39)

Aββ = −dΦ

df

(
H −Hχ +

HΣ̇Ė

Φ

)
Iββ − ΦC−1

ββ

∂2g

∂σβ ⊗ ∂σβ
(40)

14



and:1

Fα = Ω̈α +
dΦ

df

(
H −Hχ +

HΣ̇Ė

Φ

)[
CααΣ̇α −CαβC

−1
ββ

(
CβαΣ̇α − Ėβ

)]
+

+Φ

(
∂2g

∂σα ⊗ ∂σα
−CαβC

−1
ββ

∂2g

∂σβ ⊗ ∂σα

)
Σ̇α

(41)

Fβ = Ω̈β −
dΦ

df

(
H −Hχ +

HΣ̇Ė

Φ

)
C−1
ββ

(
CβαΣ̇α − Ėβ

)
+

−ΦC−1
ββ

∂2g

∂σβ ⊗ ∂σα
Σ̇α

(42)

where:2

HΣ̇Ė = −
(
∂fT

∂σα
Σ̇α +

∂fT

∂σβ
Ω̇β

)
(43)

has been posed. From the above relationships, it is possible to infer that:3

– as in the elasto-plastic case, the response to mixed loading programs is in-4

fluenced by the controllability modulus Hχ introduced by Buscarnera et al.5

(2011) (see in (5));6

– the definition (43) of the so-called “stress/strain rate modulus” HΣ̇Ė spon-7

taneously arises as a generalization of HΣ̇ and HĖ. HΣ̇Ė vanishes when the8

prescribed rates Σ̇α and Ėβ are nil;9

– the nullity of the sub-block Aβα is not a consequence of the simplifying10

assumption (36), but it stems from the general structure of system (31).11

In other words, the properties exhibited by A because of Aβα = 0 would12

keep holding also for hardening models with non-isotropic/homothetic strain-13

hardening.14

4. Analysis of elasto-viscoplastic constitutive stability15

Since Perzyna-type relationships cannot be written in the incremental form (3)16

(Ju, 1990), the elasto-plastic approach in Section 2 for the analysis of material17

15



stability is not suitable for viscoplastic continua. Conversely, the above second-1

order Perzyna equations can be fruitfully exploited to the same purpose.2

The second-order Perzyna relationship (35) is in the form of a linear ODE3

system:4

dX

dt
= AX + F

On condition that F (t) = 0, stationary motion conditions (dX/dt = 0) are at-5

tained when X (t) = 0, which is thus referred to as “equilibrium trajectory”. In6

the present context, X is composed of stress/strain rate components and the equi-7

librium X = 0 actually denotes a quasi–static evolution of the constitutive response8

(i.e. at negligible stress/strain time rates).9

According to the well–known Lyapunov’s definition (Lyapunov, 1892; Seydel,10

1988; Chambon et al., 2004), the equilibrium trajectory X (t) = 0 is stable over11

the time set T = [t0,+∞) if:12

∀t ∈ T, ∀ε > 0 ∃δ (ε) > 0

‖X (t0) ‖ < δ =⇒ ‖X (t) ‖ < ε

(44)

Roughly speaking, the stationary trajectory is said to be stable if other “close”13

trajectories at a given initial time keep “staying close” to it as time elapses. Posing14

F = 0 to analyze the stability of the trajectory X (t) = 0 has a clear physical15

motivation: stability is in fact an intrinsic property of the system under free motion16

conditions, whereas instability can be triggered any time by enforcing appropriate17

perturbations.18

In the case of linear ODE systems, Lyapunov’s theory of stability (Lyapunov,19

1892; Seydel, 1988) establishes a direct link between the spectral properties of the20

system matrix A and the stability of the equilibrium solution. In particular, it can21

be proven that:22

1. X = 0 is a stable equilibrium in the sense of (44) if the real parts of all the23

16



eigenvalues in Λ (A) (spectrum of A) are non–positive.1

However, since matrix A is actually time-varying in the viscoplastic regime, the2

above stability criterion is sufficient for stability, not necessary: in fact, if positive3

eigenvalues arise at some time t, the subsequent evolution of the system can be4

either stable or unstable depending on the actual A entries at elapsing time. It is5

only ensured that instability cannot occur while Λ (A) is all formed by non–positive6

eigenvalues at each time t.7

As is discussed in AppendixB, all the eigenvalues in Λ (A) for Σ̇α = 0 and8

Ėβ = 0 (nil external loading rates in (35)) are real and semisimple under very9

reasonable assumptions. As a consequence, the fulfillment of the sufficient stability10

condition (i.e. non–positive eigenvalues) also implies that A is negative semi-11

definite:12

λi ≤ 0 ∀λi ∈ Λ (A)

=⇒ XTAX ≤ 0 ∀X 6= 0

=⇒ XT dX

dt
≤ 0 ∀X 6= 0 ∧ F = 0

(45)

whose mechanical interpretation is given here below.13

4.1. Mechanical interpretation14

Corollary (45) enables an enlightening mechanical/geometrical interpretation,15

which can be easily illustrated in the case of stress–controlled conditions (creep16

tests). Figure 1 qualitatively depicts in the strain rate space a situation in which17

the stability of the constitutive response is no longer ensured. At time t, an instan-18

taneous increase in the strain rate norm is produced by a positive strain acceleration19

and a necessary step towards instability is taken. Apparently, this can never hap-20

pen while ε̇ and ε̈ are orthogonal (constant ε̇ norm) or the angle in between them21

is acute (decreasing ε̇ norm). This is in essence what corollary (45) states and22

17



clarifies the effect of acceleration terms on the onset of constitutive instabilities1

(Oka et al., 1994, 1995; di Prisco and Imposimato, 1997; di Prisco et al., 2000).2

ε.

ε(t)

(t+dt)ε.

(t
0
)

(t)dt
.

.

ε.

ε
i

.

ε
j

.

Figure 1: Representation of strain acceleration in the strain rate space

For the sake of clarity, corollary (45) is rewritten with explicit reference to3

mixed loading variables:4

d

dt

εασβ

T

· d
2

dt2

εασβ
 < 0 (46)

where σβ and εα are still the uncontrolled stress/strain components. As Imposi-5

mato and Nova (1998) proved for elasto-plastic problems, a condition similar to6

(46) can be also derived for loading programs in which work-conjugate variables7

are defined as a linear combination of certain stress and strain components (for8

instance, volumetric and deviatoric stress/strain invariants under triaxial loading9

conditions).10

4.2. Determination of viscoplastic stability limits11

In the light of the above criterion, the viscoplastic stability analysis requires12

the whole spectrum Λ (A) to be determined. For this purpose, Figure 2 illustrates13

the general structure of matrix A in terms of nil and non-nil entries (Equations14

18



(37)–(40)), implying that Λ (A) can be obtained by combining the spectra Λ (Aαα)1

and Λ (Aββ):2

Λ (A) = Λ (Aαα) ∪ Λ (Aββ) (47)

A =

[
Aαα Aαβ

Aβα Aββ

]
=



• 0 | • • • •
0 • | • • • •
− − + − − − −
0 0 | • • • •
0 0 | • • • •
0 0 | • • • •
0 0 | • • • •


Figure 2: General structure of the partitioned matrix A

In particular, since Aαα is proportional to the identity matrix, each ith eigen-3

value λiαα in Λ (Aαα) assumes the following form for Σ̇α = 0 and Ėβ = 0:4

λiαα

∣∣∣∣
Σ̇α=0,Ėβ=0

= −dΦ

df
(H −Hχ) ∈ Λ (Aαα) (48)

Similarly, as Aββ is the sum of a diagonal matrix and a full matrix, it results:5

λiββ

∣∣∣∣
Σ̇α=0,Ėβ=0

= −dΦ

df
(H −Hχ)− Φµi ∈ Λ (Aββ) (49)

where (see Equation (40)):6

µi ∈ Λ (M) , M = C−1
ββ

∂2g

∂σβ ⊗ ∂σβ
(50)

As is discussed in AppendixB, the eigenvalues µi in M are all positive on condition7

that the plastic potential g is convex in the stress space. If µmax is the maximum8

µi, then only the following options are given (Figure 3):9

1. H ≥ Hχ: all the eigenvalues in Λ (A) are non–positive and so does the10

quadratic form in (45) for any non-nil X (rate of the uncontrolled stress/strain11

components);12

19



2. Hχ −
Φ

dΦ/df
µmax < H < Hχ

4: Λ (A) is composed of both positive and1

negative eigenvalues and the current sign of the quadratic form depends on2

the actual X value;3

3. H ≤ Hχ−
Φ

dΦ/df
µmax: all the eigenvalues in Λ (A) are non-negative and the4

quadratic form is positive semi-definite.5

Figure 3: Sign of the eigenvalues in Λ (Aαα) and Λ (Aββ) as a function of the hardening modulus

As Figure 3 puts in evidence, the sufficient condition for viscoplastic stability6

is fulfilled as long as:7

H > Hχ (51)

This means that no viscoplastic constitutive instabilities can occur under mixed8

creep/relaxation programs while the hardening modulus H is larger than the con-9

trollability modulus Hχ: the connection to the elasto-plastic condition given by10

Buscarnera et al. (2011) is self-evident. Importantly, option 2 testifies the existence11

of a H-range in which Λ (A) includes both positive and negative eigenvalues and12

stability can no longer be ensured (either beneficial or detrimental accelerations will13

arise depending on the current X). This also means that, in rate-sensitive solids,14

the state of the material is not only determined by “static” variables (stresses,15

strains and hardening variables), but by their time rate as well.16

To further highlight the link between the viscoplastic and the elasto-plastic17

theories, it is worth showing what the viscous approach predicts at decreasing18

4The properties of Φ recalled in Section 3.1 imply the positiveness of the ratio
Φ

dΦ/df
20



viscosity. For this purpose, a common analytical expression for Φ5 is taken as a1

reference:2

Φ (f) = η〈f〉m =

ηf
m f > 0

0 f < 0
(52)

in which η (“fluidity parameter”) and m are two constitutive parameters governing3

the material rate-sensitivity. Although other options are available (di Prisco and4

Imposimato (1996); Freitas et al. (2012)), function (52) fulfills property (12) and5

the elasto-viscoplastic response tends to the elasto-plastic limit at vanishing rate-6

sensitiveness (i.e. at increasing η and/or m). If e.g. m = 1 is set in (52), then:7

λiββ

∣∣∣∣
Σ̇α=0,Ėβ=0

= −η
[
(H −Hχ) + fµi

]
(53)

and the inviscid limit reads:8

η →∞ =⇒ f → 0

λiββ

∣∣∣∣η→∞
Σ̇α=0,Ėβ=0

→ −η (H −Hχ) = λiαα

∣∣∣∣
Σ̇α=0,Ėβ=0

(54)

Limit (54) shows that the eigenvalues in Λ (Aββ) and Λ (Aαα) tend to coincide9

as the fluidity parameter η approaches infinity. This stems from the fact that, at10

vanishing rate-sensitiveness, the constitutive equations produce lower and lower11

overstresses and the fulfillment of plastic consistency (f = 0) is progressively re-12

gained. As a consequence, the intermediate range Hχ −
Φ

dΦ/df
µmax < H < Hχ13

in Figure 3 tends to disappear and the sign of the quadratic form in (45) is no14

longer affected by the rate vector X. This mathematically translates that, in invis-15

cid solids, the stress/strain rate has no influence on defining the current material16

state, nor on the triggering of constitutive instabilities.17

5the yield function f must be dimensionless
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5. Concluding remarks1

In this paper a theoretical approach for the analysis of constitutive instabilities2

in elasto-viscoplastic solids has been proposed. At variance with previous works on3

the subject, general mixed loading conditions have been considered, accounting for4

the fact that in real laboratory tests and boundary value problems not all the stress5

or strain components are known/prescribed, but rather a combination of some of6

them. While the same problem was previously tackled by other authors for rate-7

insensitive elasto-plastic materials, a different approach has been followed here to8

overcome the lack of the tangent stiffness operator in Perzyna-type constitutive9

equations.10

Under the assumption of isotropic/homothetic strain-hardening, it has been11

shown that instabilities are not possible while the hardening modulus is larger12

than the so-called controllability modulus Hχ – which is consistent with the rate-13

independent theory developed by Buscarnera et al. (2011). While the scalar14

modulus Hχ contains information about the static state of the material (stresses15

and hardening variables) and the specific loading constraints, it has been also16

found that, below the Hχ limit, instabilities may occur depending on the current17

stress/strain rate. As a consequence, the latter actively contribute to define the18

global state of the material. It is worth remarking that, as the theory provides19

an “instantaneous” condition, the actual development of macroscopic instability20

requires positive local accelerations to last over a sufficient amount of time.21

The framework proposed in this paper extends the previous rate-independent22

theory and will enable to cope with relevant problems where time effects can play23

a major role.24
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AppendixA. Analytical derivations1

The main analytical derivations skipped in Section 3.2 are hereafter reported.2

Stress control (α = I, β = ∅)3

Under the stress control σ (t) = Σ (t), the terms in Equation (15) can be4

specified as it follows:5

dΦ

dt
=
dΦ

df

(
∂f

∂σ

T dσ

dt
+
∂f

∂q

T ∂q

∂εvp
dεvp

dt

)
=

=
dΦ

df

∂f

∂σ

T

Σ̇ + Φ
dΦ

df

∂f

∂q

T ∂q

∂εvp
∂g

∂σ
= −Φ

dΦ

df
H +

dΦ

df

∂f

∂σ

T

Σ̇

(A.1)

and, exploiting the equality
dg

dσ
=

1

Φ

dεvp

dt
(from the Perzyna’s flow rule) along6

with Equation (16):7

dΦ

dt

∂g

∂σ
= −Φ

dΦ

df
H
∂g

∂σ
+
dΦ

df

(
∂f

∂σ

T

Σ̇

)
1

Φ

dεvp

dt
=

= −dΦ

df
HI

dεvp

dt
+
dΦ

df

1

Φ

(
∂f

∂σ

T

Σ̇

)
I
dεvp

dt
=

= −dΦ

df

(
H +

HΣ̇

Φ

)
I
dε

dt
+
dΦ

df

(
H +

HΣ̇

Φ

)
CΣ̇

(A.2)

Φ
d

dt

(
∂g

∂σ

)
= Φ

∂2g

∂σ ⊗ ∂σ
dσ

dt
+ Φ

∂2g

∂σ ⊗ ∂p
∂p

∂εvp
∂εvp

∂t
=

= Φ
∂2g

∂σ ⊗ ∂σ
Σ̇ + Φ

∂2g

∂σ ⊗ ∂p
∂p

∂εvp
dε

dt
− Φ

∂2g

∂σ ⊗ ∂p
∂p

∂εvp
CΣ̇

(A.3)

The above relationships are then substituted into Equation (17):8

d2ε

dt2
= CΣ̈− dΦ

df

(
H +

HΣ̇

Φ

)
I
dε

dt
+ Φ

∂2g

∂σ ⊗ ∂p
∂p

∂εvp
dε

dt
+

+
dΦ

df

(
H +

HΣ̇

Φ

)
CΣ̇ + Φ

∂2g

∂σ ⊗ ∂σ
Σ̇− Φ

∂2g

∂σ ⊗ ∂p
∂p

∂εvp
CΣ̇

(A.4)

and the final form (18) is readily obtained.9
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Strain control (α = ∅, β = I)1

Under the strain control ε (t) = E (t), the combination of Equations (15) and2

(23) gives rise to the following terms:3

dΦ

dt
=
dΦ

df

(
∂f

∂σ

T dσ

dt
+
∂f

∂q

T ∂q

∂εvp
dεvp

dt

)
=
dΦ

df

(
∂f

∂σ

T dσ

dt
− ΦH

)
=⇒ (A.5)

=⇒ −D
dΦ

dt

∂g

∂σ
= −dΦ

df

[
D
∂f

∂σ

T dσ

dt

∂g

∂σ
−HD

(
Ė −C

dσ

dt

)]
=

= −dΦ

df

[
D
∂f

∂σ

T (
DĖ −DΦ

∂g

∂σ

)
1

Φ

(
Ė −C

dσ

dt

)
−HDĖ +HI

dσ

dt

]
=

= −dΦ

df

[
−HĖ

Φ
DĖ +HcDĖ +

HĖ

Φ
I
dσ

dt
−HcI

dσ

dt
−HDĖ +HI

dσ

dt

]
=

= −dΦ

df

(
HĖ

Φ
+H −Hc

)
I
dσ

dt
+
dΦ

df

(
HĖ

Φ
+H −Hc

)
DĖ

(A.6)

and4

=⇒ −DΦ
d

dt

(
∂g

∂σ

)
= −ΦD

[
∂2g

∂σ ⊗ ∂σ
dσ

dt
+

∂2g

∂σ ⊗ ∂p
∂p

∂εvp

(
Ė −C

dσ

dt

)]
=

−ΦD

(
∂2g

∂σ ⊗ ∂σ
− ∂2g

∂σ ⊗ ∂p
∂p

∂εvp
C

)
dσ

dt
− ΦD

∂2g

∂σ ⊗ ∂p
∂p

∂εvp
Ė

(A.7)

which can easily be recast in the compact form (24).5

Mixed stress-strain control6

Since mixed control conditions involve both stress and strain controls, the ODE7

system (35) can be derived by wisely combining the analytical techniques employed8

above for both the pure stress and pure strain control cases. Reporting here all9

the details does not seem to be particularly instructive, the partitioned struc-10

ture of the generalized Perzyna’s relationship (31) is just to be carefully handled.11

24



The analytical derivations can be significantly simplified if the assumption (36)1

(isotropic-homothetic strain-hardening) is retained from the beginning.2

AppendixB. Spectral properties of the matrix A3

– All the eigenvalues of A are real and semisimple4

According to standard matrix algebra, the eigenvalues of a n × n matrix are5

defined as semisimple if their algebraic (malg) and geometrical (mgeo) multiplicities6

coincide (mgeo is the dimension of the associated eigenspace). As was stated in7

section 4.2, the peculiar structure of A (Figure 2) implies:8

Λ (A) = Λ (Aαα) ∪ Λ (Aββ) (B.1)

As for Λ (Aαα), the eigenvalue −dΦ

df
(H −Hχ) in (48) is such that malg = mgeo =9

|α| because Aαα is proportional to Iαα.10

Conversely, the properties of Λ (Aββ) depend on the adopted g function, but11

there is no general reason to infer the existence of eigenvalues with malg > 1.12

Unless for very particular cases, A has |β|+ 1 semisimple real eigenvalues.13

– Eigenvalues of Aββ14

It is possible to determine the sign of the eigenvalues λiββ on the basis of ex-15

pression (49).16

While the elastic compliance matrix C (and its inverse too) is positive definite17

to guarantee positive elastic strain energy, the Hessian matrix
∂2g

∂σ ⊗ ∂σ
generated18

by the plastic potential g is also positive definite on condition that g is strictly19

convex in the stress space – which is the case of most constitutive relationships.20

Then, it can be proven that C−1
ββ and

∂2g

∂σβ ⊗ ∂σβ
are sub-matrices from two21

matrices which are similar to C−1 and
∂2g

∂σ ⊗ ∂σ
, respectively (through the linear22

transformation needed to reorder the controlled/uncontrolled variables). There-23

fore, since (i) similarity transformations do not alter the spectrum and (ii) all the24

25



principal minors of symmetric positive definite matrices are positive (Sylvester’s1

criterion), it turns out that C−1
ββ and

∂2g

∂σβ ⊗ ∂σβ
are positive definite as well.2

Provided that the product of symmetric positive definite matrices produces a3

positive definite matrix, it can be stated that the matrix M = C−1
ββ

∂2g

∂σβ ⊗ ∂σβ
4

is positive definite. The latter observation and the positiveness of Φ (in the vis-5

coplastic regime) prove that all the eigenvalues of ΦM are strictly positive, so that6

all the eigenvalues in Λ (Aββ) are lower than −dΦ

df
(H −Hχ).7
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Georgin, J. and Reynouard, J. (2003). Modeling of structures subjected to impact: concrete27

behaviour under high strain rate. Cement & concrete composites, 25 (1):131–143.28

Heeres, O. M., Suiker, A. S., and de Borst, R. (2002). A comparison between the perzyna29

viscoplastic model and the consistency viscoplastic model. European Journal of Mechanics-30

A/Solids, 21(1):1–12.31

Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. Journal of32

the Mechanics and Physics of Solids, 6(3):236–249.33

Imposimato, S. and Nova, R. (1998). An investigation on the uniqueness of the incremental34

27



response of elastoplastic models for virgin sand. Mechanics of Cohesive-frictional Materials,1

3(1):65–87.2

Ju, J. (1990). Consistent tangent moduli for a class of viscoplasticity. Journal of Engineering3

Mechanics, 116(8):1764–1779.4

Koiter, W. T. (1960). General theorems for elastic-plastic solids. North-Holland Amsterdam.5

Lade, P., Yamamuro, J., and Bopp, P. (1997). Influence of time effects on instability of granular6

materials. Computers and Geotechnics, 20(3/4):179–193.7

Lemaitre, J. and Chaboche, J. (1990). Mechanics of solid materials. Cambridge University Press,8

Cambridge.9

Loret, B. and Prevost, J. (1990). Dynamic strain localization in elasto-(visco-)plastic solids.10

Computer Methods in Applied Mechanics and Engineering, 83 (3):247–273.11

Loret, B. and Prevost, J. (1991). On the existence of solutions in layered elasto-(visco-)plastic12

solids with negative hardening. European Journal of Mechanics. A/Solids, 10:575–586.13

Lubliner, J. (1990). Plasticity theory. Mac Millan.14

Lyapunov, A. M. (1892). The general problem of motion stability. Kharkovskoye Matematicheskoe15

Obshchestvo, 11.16

Maier, G. (1966). Sui legami associati tra sforzi e deformazioni incrementali in elastoplasticita.17

Istituto Lombardo, Rendiconti, Classe di Scienze.18

Maier, G. and Hueckel, T. (1979). Nonassociated and coupled flow rules of elastoplasticity for19

rock-like materials. International Journal of Rock Mechanics and Mining Sciences, 16(2):77–20

92.21

Needleman, A. (1988). Material rate dependence and mesh sensitivity in localization problems.22

Computer Methods in Applied Mechanics and Engineering archive, 67 (1):69–85.23

Nova, R. (1994). Controllability of the incremental response of soil specimens subjected to24

arbitrary loading programmes. Journal of the Mechanical behavior of Materials, 5(2):193–202.25

Oka, F., Adachi, T., and Yashima, A. (1994). Instability of an elasto-viscoplastic constitutive26

model for clay and strain localization. Mechanics of materials, 18:119–129.27

Oka, F., Adachi, T., and Yashima, A. (1995). A strain localization analysis using a viscoplastic28

softening model for clay. International journal of plasticity, 11:523–545.29

Perzyna, P. (1963). The constitutive equations for rate sensitive plastic materials. Quarterly of30

Applied Mathematics, 20:321–332.31

Perzyna, P. (1966). Fundamental problems in viscoplasticity. Advances in Applied Mechanics,32

9:243–377.33

Petryk, H. (2000). Theory of material instability in incrementally nonlinear plasticity. Springer.34

28



Seydel, R. (1988). From equilibrium to chaos. Elsevier.1

Shawki, T. and Clifton, R. (1989). Shear band formation in thermal viscoplastic materials.2

Mechanics of Materials, 8(1):13–43.3

Sulem, J. and Vardoulakis, I. (1995). Bifurcation analysis in geomechanics. Taylor & Francis.4

Vermeer, P. A. and De Borst, R. (1984). Non-associated plasticity for soils, concrete and rock.5

Wang, W. M., Sluys, L. J., and de Borst, R. (1997). Viscoplasticity for instabilities due to6

strain softening and strain-rate softening. International Journal for Numerical Methods in7

Engineering, 40(20):3839–3864.8

Wood, D. M. (2003). Geotechnical modelling, volume 1. Taylor & Francis.9

29


