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Abstract

In this paper the onset of mechanical instability in time-sensitive elasto-viscoplastic
solids is theoretically analyzed at the constitutive level and associated with the
occurrence of “spontaneous accelerations” under stationary external perturbations.
For this purpose, a second-order form of Perzyna’s constitutive equations is first
derived by time differentiation, and a sufficient stability condition is identified
for general mixed loading programs. These loading conditions are in fact the
most general in both laboratory tests and real boundary value problems, where a
combination of certain stress and strain components is known/prescribed.

The theoretical analysis leads to find precise stability limits in terms of material
hardening modulus. In the case of constitutive relationships with isotropic strain-
hardening, no instabilities are possible while the hardening modulus is larger than
the so-called “controllability modulus” defined for (inviscid) elasto-plastic materi-
als. It is also shown that the current stress/strain rate may also directly influence
the occurrence of elasto-viscoplastic instability, which is at variance with elasto-

plastic inviscid media.
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1. Introduction

Modeling and predicting failure phenomena in solid media is of utmost impor-
tance in many applied and engineering sciences. Meaning the concept of “failure”
in its broadest sense, the collapse of both natural and manmade systems can be
induced by a wide variety of failure/instability processes at the material level. This
statement especially applies to geomaterials (Sulem and Vardoulakis, 1995; Darve
and Vardoulakis, 2004; Bazant and Cedolin, 2010; Daouadji et al., 2011): indeed,
these are characterized by complex granular structures with either loose or inter-
connected grains, they interact with interstitial fluids and may suffer degradation
and fracture processes caused by mechanical, hydraulic, thermal and chemical so-
licitations. As a consequence, defining a priori the whole range of situations under
which geomaterials “fail” is not trivial and is still intensively discussed within the
scientific community (Darve et al., 2004; Chambon, 2005).

In the context of continuum-based theories, most approaches for the inelastic
analysis of solids and structures have been developed in the framework of rate-
independent (or inviscid) plasticity (Koiter, 1960; Vermeer and De Borst, 1984;
Lubliner, 1990; Lemaitre and Chaboche, 1990), that is under the assumptions that
(i) unrecoverable deformations take place instantaneously and (ii) no role is played
by the external perturbation rate. Although elasto-plasticity has been proven to
capture most features of the inelastic response of geomaterials, the assumption of
rate-independence prevents some important experimental evidences to be repro-
duced, such as creep and relaxation processes.

To overcome this intrinsic limitation of standard elasto-plasticity, the theory of
elasto-viscoplasticity was purposely introduced. Although different viscoplastic ap-
proaches are available in literature (Perzyna, 1963, 1966; Duvaut and Lions, 1972;
Wang et al., 1997; Heeres et al., 2002), viscoplastic models are all based on the con-
cept of “delayed plastic flow”, implying that a finite amount of time is required for

irreversible (viscoplastic) strains to develop. As a result, the time variable actively
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contributes to the global material response, which is in turn determined by the in-
teraction between the intrinsic material rate-sensitiveness and the external loading
rate. In what follows, the most widespread viscoplastic framework introduced by
Perzyna (1963) will be exclusively considered.

The experimental investigation of rate effects in geomaterials has led to regard
elasto-viscoplasticity as a suitable framework for conceiving constitutive relation-
ships (Adachi and Oka, 1982; Borja and Kavazanjian, 1985; Desai and Zhang,
1987; di Prisco and Imposimato, 1996; Georgin and Reynouard, 2003) and repro-
ducing certain material instabilities (Oka et al., 1994; di Prisco and Imposimato,
1997; Lade et al., 1997). In addition to experimental motivations, viscoplastic-
ity has also gained further popularity as a simple regularization technique in fi-
nite element computations, since it mitigates the mesh-dependence effects arising
from bifurcated responses (e.g. strain localization) (Loret and Prevost, 1990, 1991;
Needleman, 1988; Wang et al., 1997).

In the light of the above premises, the stability analysis of viscoplastic consti-
tutive equations is needed to assess: (i) the suitability of viscoplastic models for
geomaterials; (ii) the reliability /objectivity of numerical analyses accounting for
material rate-sensitiveness.

In the last decades, several authors devoted both theoretical and numerical
studies to investigate instabilities in rate-sensitive materials, such as metals (Anand
et al., 1987; Shawki and Clifton, 1989) and soils (Oka et al., 1994, 1995; di Prisco
et al., 2000). Nevertheless, a general framework establishing when viscoplastic con-
stitutive instabilities can occur under mixed stress-strain loading programs (Nova,
1994; Imposimato and Nova, 1998) is still missing in literature. These are actu-
ally very relevant in practice, since the loading processes in both experimental
tests and real boundary value problems are usually characterized by a prescribed
combination of certain stress and strain components.

This paper provides a sufficient condition for small-strain mechanical stability
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by explicitly taking into account the time-dependent response of geomaterials. As
will be further clarified, the proposed theoretical framework exhibits strict connec-
tions to the elasto-plastic “theory of controllability”, first proposed and developed
by Nova and coworkers (Nova, 1994; Imposimato and Nova, 1998; Buscarnera et al.,
2011). It will be shown that, despite the different mathematical structures of con-
stitutive equations, the results from the rate-dependent and inviscid theories are

closely connected.

Notation

For analytical convenience, a matrix notation is hereafter adopted. Column vec-
tors and square matrices are used to represent second- and fourth-order tensors,
respectively. Vectors and matrices are denoted by bold symbols, while the super-
script T stands for transposition. The partial derivative operator is 9/9, whereas
total derivatives are meant by d/d. Dots and double dots are also employed for
first and second total time derivatives. Henceforth, ¢ will be standing for physical

time.

2. Loss of stability /controllability in inviscid elasto-plastic solids

Some relevant concepts about the loss of stability and controllability in rate-
insensitive solids are hereafter summarized. While in this section only essential
details for following developments are recalled, interested readers can find in the
wide works by Petryk (2000); Chambon et al. (2004); Bonelli et al. (2011); Bigoni
(2012) in-depth explanations (and more references) about stability issues in elasto-
plastic continua.

In the context of single potential elasto-platicity, incremental non-linearity is
lumped into the two options of elasto-plastic loading and elastic unloading (only
two tensorial stress zones exist (Darve, 1978; Darve and Labanieh, 1982)), so that

stability analyses are meaningful in the inelastic regime exclusively.
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It is first important to recall the well-known stability criterion proposed by
Hill (1958), stating that the material response is stable as long as the second-order
work density d?WW is positive under any incremental perturbation (Chambon et al.,
2004):

d*W = %daTds >0 VYV de (1)

in which do and de are the incremental stress and strain (column) vectors. The
Hill’s sufficient stability condition was then applied by Maier and Hueckel (1979)
to highlight the implications of non-associated plastic flow rules.

Years later, Buscarnera et al. (2011) further pointed out the meaning of the
analysis by Maier and Hueckel (1979) in the light of the “theory of controllability”
introduced by Nova and coworkers (Nova, 1994; Imposimato and Nova, 1998).
In fact, it is possible to demonstrate that the admissibility of the elastic-plastic
response depends on the current hardening modulus H and the hardening limits

H, and H, defined by Maier and Hueckel (1979):

1. if H > Hy, then existence and uniqueness are guaranteed for any incremental

loading path and any loading control (unconditional stability);

2. if Hy, < H < Hy, then existence and uniqueness of the incremental response

are a function of the loading program (conditional stability);

3. if H < H,, then either the incremental response does not exist or the solution

is not unique (unconditional instability).

Buscarnera et al. (2011) drew these conclusions by analyzing the incremental
elastic plastic-response under mixed loading conditions, i.e. by assuming that
certain stress and strain components o, and €4 are controlled during the loading
process. In general, any mixed loading control can be formulated by defining in

I={ieN:i1=1,2,...,6} two subsets o and 8 containing the row indexes of the
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aCl,pCI
(2)
anNf=g,aUf=I1=|a|+ |8 =|I|=6
where | | denotes the set cardinality (number of elements in the set). Compat-
ible @ and f are, for instance, « = {1,3,5} and § = {2,4,6}, or &« = {2,3} and
B = {1,4,5,6}, etc. Mixed loading programs spontaneously induce a rearrange-

ment of the incremental constitutive relationship, separating known and unknown

stress/strain components:

do, D?, - D (D%) 'DY, D, de,, @)
des -(og)'DE (dF)] |des

where D the tangent elasto-plastic stiffness matrix (inverse of the compliance
matrix C?).

The partitioned matrix form (3) is meaningful only on condition that the non-
negativeness of the plastic multiplier A is ensured, whose general expression for

mixed loading programs is (Buscarnera et al., 2011):

T
L OF joir =9 9499 (4)

Ae -
H - H, 0o 0q OeP o

where (i) the yield function f depends on o and a vector g of hardening variables,
(ii) the gradient of the plastic potential ¢ identifies the direction of the plastic
strain increment, (iii) the so-called incremental trial stress do™ is a function of the
prescribed stress/strain increments (do, and deg) and of certain sub-blocks of the
elastic stiffness/compliance matrices D¢ /C¢ (Buscarnera et al., 2011).

Equation (4) points out that the plastic multiplier tends to infinity as the



10

11

12

13

14

15

16

17

18

19

hardening modulus H approaches the so-called “modulus of controllability“ H,:

— af ! el el el \~1 el ag _
=%, [Dﬂﬂ —Dj, (D5,) Daﬂ} do 5

__of’ (ce) ™ 99

80’5 BB 80'5

The definition H, depends on the actual loading constraints through a and 3 in
(2), and suggests the formulation of the following stability /controllability criterion
(Buscarnera et al., 2011):

H>H, (6)

ensuring the positiveness of the plastic multiplier in (4). Incidentally, it could be
demonstrated that H, is always in the range bounded by H; and H, as defined by
(Maier and Hueckel, 1979).

Condition (6) can be specialized for the cases of pure stress and strain control

(Maier and Hueckel, 1979):

stress control: a=1,=0 = H >H, =0 (7)
ofrT 0
strain control: a=9,=1=— H > H,=H., H. = __f Del_g (8)
Jdo Jdo

where H, is the so-called critical hardening modulus (Maier, 1966).

The above approach is in essence very simple and flexible, but not employable
for elasto-viscoplastic solids. Indeed, the incremental form (3) with tangent stiff-
ness/compliance matrices can never be retrieved for elasto-viscoplastic constitutive

relationships (Ju, 1990).

3. Perzyna’s theory for rate-dependent plasticity

3.1. General concepts

The theory of elasto-viscoplasticity relies on the assumption that the reversible

(elastic) and the unrecoverable (viscoplastic) components of the total deformation
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combine additively. This implies that the total strain rate can be decomposed as:

de de®  de'P
_ 9
i @ ar (9)

where the superscripts el and wvp stand for elastic and viscoplastic, respectively.
The simplest assumption of isotropic linear response is here introduced for the

elastic deformation:

de® qdo do o de?
T e (10)

while the viscoplastic strain rate is here obtained through the well-known Perzyna’s

approach (Perzyna, 1963, 1966):

de'’? dg
=a ()t (1)

According to Equation (11), the scalar ® function (the so-called “viscous nucleus”)
has a major influence on the magnitude of the viscoplastic strain rate!, while its
direction in the strain rate space is given by the stress gradient of the plastic
potential g. The enforcement of the plastic consistency condition is unnecessary,
since the time rate of €P is directly derived from ®. As a consequence, when
plastifications take place, the stress state is not constrained to lie on the yield
locus f = 0 and “overstresses” occur.

In most cases, the viscous nucleus ® is a non-negative non-decreasing function
of the yield function f (® > 0 and d®/df > 0) (di Prisco and Imposimato, 1996).
Provided the analytical definitions of the yield locus, the plastic potential and the
hardening rules, a constitutive model can be easily formulated as either elasto-

plastic or elasto-viscoplastic depending on the flow rule adopted. In this respect,

IStrictly speaking, there is also an influence of the plastic potential gradient. This could be

easily eliminated by introducing g—g / |8—g‘ in Equation (11)
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the following property holds (di Prisco and Imposimato, 1996):

+oo devp
dt

{®>0 Vf>0;, &=0 Vf<0}:>/ dt = de” (12)
0

where de? is the plastic strain increment produced by the corresponding inviscid
flow rule. In other words, statement (12) implies that, as long as no viscoplastic
strains develop when f < 0, the viscoplastic strain increment induced by a given
perturbation tends, after an infinite amount of time, to the instantaneous plastic
response: from this standpoint, standard plasticity can be regarded as the limit of
viscoplasticity at vanishing rate-sensitiveness (or infinitely slow loading). It could
be also proven that, as the elasto-plastic limit is approached, ® — oo (infinite

plastic strain rate) and f — 0 (consistency satisfied).

3.2. Second-order form of constitutive equations

As a preliminary step, the following stability analysis requires a second-order
form of Perzyna constitutive equations to be derived by time differentiation for
mixed loading programs.

For this purpose, the authors assumed that (i) dD® /dt = dC*/dt = 0 (constant
elastic parameters), (ii) the yield function f and the plastic potential g depend on
time only through the stress vector o and the vectors of hardening variables g and
p:

(&)= f{o @), qle™ ()]} (13)

g(t) =g{o(t),ple™ ()]} (14)

Relationships (13)-(14) come from the assumption of strain-hardening material,
whereas no dependence of the hardening variables on the inelastic strain rate is
considered (Oka et al., 1994; Wang et al., 1997; di Prisco et al., 2000). Accordingly,

the second time derivative of the viscoplastic strain rate can be easily obtained by
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P _dbdg | od (9
dt2  dt do dt \ Oo
(15)

T 2 2 up
- sz_? (g_i Cil_: - qDH) g_i e (ajﬁ% 80’8®g(9p aaezzp d; )
in which the viscous nucleus ® and its f-derivative, the hardening modulus H and
the derivatives of g with respect to o and p appear.

For the sake of clarity, the time derivation of constitutive equations is first
performed for the simpler cases of full stress and strain control; then, the general
mixed loading case is addressed. The most cumbersome analytical developments

are skipped here and summarized in AppendixA.

3.2.1. Stress control (a =1, = &)

Under full stress control, a stress vector time history X (¢) is prescribed:

devP de .
H=X(t = — —C9y 16
c(t)=%(t)=>——=" (16)

so that the second time derivative of the (unknown) strain vector can be expressed

as:

d’e  d*e?  d*e™ Cels 4 d*e?

Pe _ de”  de™ _ |
a2z ar T ae P (17)

By combining the strain splitting (17) with the stress control constraint (16)

and the second-order flow rule (15), the following ODE? system is retrieved (see

AppendixA):
dX
— =A_X+F, 1
e + (18)
in which X = d—i has been set and:
dd H; 0%¢g Op
A, =—— |H+= |, +>—— 19
df( +c1>) 1 e @ op de (19)

2Ordinary Differential Equation
10



. 2 2 . . .
Fa:celz+q>( o9 79 apcel>2+d—q)(H+§>celz (20)

0o ® 0o do @ Op Devr df o
He=——"2X% 21
P do ( )

> I stands for a 6 x 6-sized identity matrix (its size coincides with the cardinality
3 of the set I).
4 The linear system (18) governs the strain acceleration (rate of the total strain

s rate) under a prescribed stress history. It is also worth observing that:

6 — since the entries of the matrix A, evolve with the stress-strain state, system
7 (18) is time-varying (non-stationary);

8 — the vector F, vanishes for creep loading conditions (i.e. under constant stress
o and 3 = 3 = 0), and so does the scalar Hy, in (21) — which will be henceforth
10 referred to as “stress rate modulus”.

u 3.2.2. Strain control (o =@, =1)
12 In case the loading program is fully strain-controlled, the total strain vector

13 time history FE (t) is prescribed:

de"? _ E o Celd_a-

22
dt dt (22)

11 and the onset of positive accelerations can be detected by monitoring the second

15 time derivative of the (unknown) stress vector:

o d’c  d*e"P . d*evP
_:Del o= :DBZE_Del_ 23
dt? (dt2 at? ) dt? (23)

16 After some derivations similar to those performed for the stress-controlled case (see

7 AppendixA), the following ODE system is found:

-

dX
= — AX+F. 24
o + (24)

11



1 where X = do/dt and:

. 2 2
Agz[—d—@ (H—Hc+ﬂ) II—CIDDel( o9 09 op cel>] (25)

df ) 0o ® 0o do @ Op Der
. dd H; : Pg 08 .
_ el o E el o el —
F.=D E—i——df (H Hc—l——q))D E — oD —80'®8,685va o0
. dd H, g Op -
_ el el | 7% . FE Y Y
=D“E+D {df (H H.+ cI))Lr q)aa®8p8€”P]E
of ' i
H,=—-— D“E 2
E do (27)

3 Apparently, systems (18) and (24) possess the same mathematical structure. In
« the latter, the assumption of prescribed strain vector leads to retrieve the critical
s softening modulus H. in Equation (8) (Maier and Hueckel, 1979), along with the

s newly defined “strain rate modulus” Hy in (27).

7 8.2.3. Mized stress-strain control
8 Under general mixed loading, a combination of certain stress (o) and strain

s (e3) components is known/controlled. By following the approach recalled in Sec-

=

o tion 2, the total strain vector and its elastic and viscoplastic components can be

partitioned as follows®:

fun
jn

g
at = ’ i + 880:6]6“ (28)
€5 Csa Cpp o5 90,

=

> Hereafter, the constraints on the prescribed stress and strain components are given

3 to define the loading program:

[

oo(t)=2a(t)  ep(t)=Es(t) (29)

3In what follows, the superscript el for the elastic stiffness/compliance matrices will be avoided
to simplify the notation

12



whence the following relationships for the viscoplastic strain rates result:

de’?  de, do, dog de, . dog
= — —Con— —Cup— = — — CooXo — Cop——
At dt dt at T dt ot (30)
dey’  deg do, d dog

Ut—Eﬂ CpaXa — Cps— -

=—-C Cos—y

dt dt Pt dt

The substitution of the loading constraints (29) into the constitutive law (28)
generalizes the Perzyna’s flow rule (11) in the sense of mixed loading programs.

Accordingly, the rates of the uncontrolled stresses and strains assume the form:

] (99 .
d Ea Iaa _Ca,BCEg oo Qa
- =& o 1
o3 88 80’/3 B
where the vector €2:
Q| | ConSa +CusC; (EB - Cﬁa2a> )
y Cit (B — Cau3a)

vanishes at constant ¥, and Eg. Then, both the equations in system (31) are

further differentiated with respect to time:

d’e, d g dg )

dt2 aCT 80’5 (33)
_d® Oy d ( dg dd dg dg -
= dt 9o, <(90'a) @t oo 50%@ —2CasCi (aaﬁ) 8

oz d dg . d® dg d [ Og
=—[-Clo—L +Qy ) = ——C7} == —pCT L — Qs (34
A2 dt ( 5% 9, T 5) dt %% 9o s ( > 5 (34)

13
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Even in this case, some more demanding manipulations (AppendixA) enable to

recast equations (33)-(34) as a time-varying ODE system:

dX. d2 EO( A'OZOt AO( d 60( FOZ
— —AX+F= — = ’ + (35)

at o Apa App ar E Fs
For the sake of analytical convenience, the sub-blocks in (35) are now specified for
the special case:
2

i (00) = 5 &
meaning no influence of the g-hardening variables on the direction of the viscoplas-
tic flow (Equation (11)). This assumption implies some loss of generality but still
allows to address relevant cases, including perfectly-viscoplastic (no hardening) and
Cam-Clay—type (isotropic strain-hardening) constitutive relationships. In partic-
ular, the latter are widely used to model the non-linear behavior of soils under

monotonic loading (see e.g. Wood (2003) for details).

The simplification (36) leads to the following sub-block expressions:

_ a2 Hypy
Apo = W(H Hy+ =2 )Iaa (37)
0%g 0%g

Asy=0—"=L  —CCt—T2 38
p (80’a ® 0o P88 0op ® 80’6) (38)
Az, =0 (39)

dd Hs. 0?g
Ags=—H-—H 2E ) 1., —®CT —— 2 40
7 df< g ) T 00, @ 0o 40)

14
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F,

where:

:Qa+@(}[_

df

Fs =g —

Hy; . ) L
H, + ;E) [CaoS — CasC3l (CouBia — )| +
A1)
&g Py !
e (80’a 200, C*CH5r g 80a> o
4 He; L
b (H —H,+ %) op (cﬁaza - E5> +
82 (42>
oC; J
BB 80’5 &® ada
L (ofT. o7
HEE__ (aaa2a+aaﬁgﬁ> (43)

has been posed. From the above relationships, it is possible to infer that:

— as in the elasto-plastic case, the response to mixed loading programs is in-

fluenced by the controllability modulus H, introduced by Buscarnera et al.

(2011) (see in (5))

)

— the definition (43) of the so-called “stress/strain rate modulus” Hg; spon-

taneously arises as a generalization of Hy, and Hj. Hy, vanishes when the

prescribed rates 3, and Eﬁ are nil;

— the nullity of the sub-block Ag, is not a consequence of the simplifying

assumption (36), but it stems from the general structure of system (31).

In other words, the properties exhibited by A because of Ag, = 0 would

keep holding also for hardening models with non-isotropic/homothetic strain-

hardening.

4. Analysis of elasto-viscoplastic constitutive stability

Since Perzyna-type relationships cannot be written in the incremental form (3)

(Ju, 1990), the elasto-plastic approach in Section 2 for the analysis of material
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stability is not suitable for viscoplastic continua. Conversely, the above second-
order Perzyna equations can be fruitfully exploited to the same purpose.
The second-order Perzyna relationship (35) is in the form of a linear ODE
system:
dX

— =AX+F
dt i

On condition that F (¢) = 0, stationary motion conditions (dX/dt = 0) are at-
tained when X (t) = 0, which is thus referred to as “equilibrium trajectory”. In
the present context, X is composed of stress/strain rate components and the equi-
librium X = 0 actually denotes a quasi-static evolution of the constitutive response
(i.e. at negligible stress/strain time rates).

According to the well-known Lyapunov’s definition (Lyapunov, 1892; Seydel,
1988; Chambon et al., 2004), the equilibrium trajectory X (¢) = 0 is stable over

the time set T' = [to, +00) if:

VieT, Ye>0 3d(e)>0
(44)
X (o) [| <0 = [IX (1) | <€

Roughly speaking, the stationary trajectory is said to be stable if other “close”
trajectories at a given initial time keep “staying close” to it as time elapses. Posing
F = 0 to analyze the stability of the trajectory X (¢) = 0 has a clear physical
motivation: stability is in fact an intrinsic property of the system under free motion
conditions, whereas instability can be triggered any time by enforcing appropriate
perturbations.

In the case of linear ODE systems, Lyapunov’s theory of stability (Lyapunov,
1892; Seydel, 1988) establishes a direct link between the spectral properties of the
system matrix A and the stability of the equilibrium solution. In particular, it can

be proven that:

1. X = 0 is a stable equilibrium in the sense of (44) if the real parts of all the

16
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eigenvalues in A (A) (spectrum of A) are non—positive.

However, since matrix A is actually time-varying in the viscoplastic regime, the
above stability criterion is sufficient for stability, not necessary: in fact, if positive
eigenvalues arise at some time ¢, the subsequent evolution of the system can be
either stable or unstable depending on the actual A entries at elapsing time. It is
only ensured that instability cannot occur while A (A) is all formed by non—positive
eigenvalues at each time t.

As is discussed in AppendixB, all the eigenvalues in A (A) for >, = 0 and
Eg = 0 (nil external loading rates in (35)) are real and semisimple under very
reasonable assumptions. As a consequence, the fulfillment of the sufficient stability

condition (i.e. non—positive eigenvalues) also implies that A is negative semi-

definite:
AN<0 YN e A(A)

— XTAX <0 VX #0 (45)

dX
:XTESO VX£0AF=0

whose mechanical interpretation is given here below.

4.1. Mechanical interpretation

Corollary (45) enables an enlightening mechanical/geometrical interpretation,
which can be easily illustrated in the case of stress—controlled conditions (creep
tests). Figure 1 qualitatively depicts in the strain rate space a situation in which
the stability of the constitutive response is no longer ensured. At time ¢, an instan-
taneous increase in the strain rate norm is produced by a positive strain acceleration
and a necessary step towards instability is taken. Apparently, this can never hap-
pen while € and & are orthogonal (constant € norm) or the angle in between them

is acute (decreasing € norm). This is in essence what corollary (45) states and
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clarifies the effect of acceleration terms on the onset of constitutive instabilities

(Oka et al., 1994, 1995; di Prisco and Imposimato, 1997; di Prisco et al., 2000).

£ty

o -~
\

EW

Figure 1: Representation of strain acceleration in the strain rate space

For the sake of clarity, corollary (45) is rewritten with explicit reference to

mixed loading variables:

T
d | €a d? | €a

dt dt?
os op

<0 (46)

where o5 and €, are still the uncontrolled stress/strain components. As Imposi-
mato and Nova (1998) proved for elasto-plastic problems, a condition similar to
(46) can be also derived for loading programs in which work-conjugate variables
are defined as a linear combination of certain stress and strain components (for
instance, volumetric and deviatoric stress/strain invariants under triaxial loading

conditions).

4.2. Determination of viscoplastic stability limits

In the light of the above criterion, the viscoplastic stability analysis requires
the whole spectrum A (A) to be determined. For this purpose, Figure 2 illustrates

the general structure of matrix A in terms of nil and non-nil entries (Equations
18



1

2

10

12

(37)—(40)), implying that A (A) can be obtained by combining the spectra A (A,q)

and A (Agg):
A(A) =A(Ana) UA(App) (47)
e 0 | . _
0O o | e o

—_ — + —_ — —_ i

A= {20‘0‘ iaﬁ] =10 0 | o o o o

Po BB 0 0 | e o o o

0 0 | e o o o

0 0O | o e o @

Figure 2: General structure of the partitioned matrix A

In particular, since A, is proportional to the identity matrix, each i** eigen-

value X/, in A (A,,) assumes the following form for 3, = 0 and Ez = 0:

_ Iy H) €A(Au) (48)

3,=0,E3=0 daf

Neo
Similarly, as Agg is the sum of a diagonal matrix and a full matrix, it results:

= —— (H—H) —®u" € A(Ag) (49)

)\i
AB 3,=0,E3=0 df

where (see Equation (40)):

2
e AM), M=cilo 99

55805@)805 <50>

As is discussed in AppendixB, the eigenvalues 1 in M are all positive on condition
that the plastic potential g is convex in the stress space. If fi,,q, is the maximum

', then only the following options are given (Figure 3):

1. H > H,: all the eigenvalues in A (A) are non-positive and so does the
quadratic form in (45) for any non-nil X (rate of the uncontrolled stress/strain
components);

19



10

11

12

13

14

15

16

17

18

)

2. H, — Wﬂmaz < H < HX4: A (A) is composed of both positive and
negative eigenvalues and the current sign of the quadratic form depends on
the actual X value;

o . . .
3. H<H,— W fmaz: all the eigenvalues in A (A) are non-negative and the
quadratic form is positive semi-definite.
max min
H- & n H- ¢ n H,
d/df do/df .
max | 1
Bp + + S
7bmin i ] i
Bp + -

Figure 3: Sign of the eigenvalues in A (A,,) and A (Agg) as a function of the hardening modulus

As Figure 3 puts in evidence, the sufficient condition for viscoplastic stability
is fulfilled as long as:
H>H, (51)

This means that no viscoplastic constitutive instabilities can occur under mixed
creep/relaxation programs while the hardening modulus H is larger than the con-
trollability modulus H,: the connection to the elasto-plastic condition given by
Buscarnera et al. (2011) is self-evident. Importantly, option 2 testifies the existence
of a H-range in which A (A) includes both positive and negative eigenvalues and
stability can no longer be ensured (either beneficial or detrimental accelerations will
arise depending on the current X). This also means that, in rate-sensitive solids,
the state of the material is not only determined by “static” variables (stresses,
strains and hardening variables), but by their time rate as well.

To further highlight the link between the viscoplastic and the elasto-plastic

theories, it is worth showing what the viscous approach predicts at decreasing

4The properties of ® recalled in Section 3.1 imply the positiveness of the ratio

_®
d®/d
90 /df



10

11

12

13

14

15

16

17

viscosity. For this purpose, a common analytical expression for ®° is taken as a

reference:

o) —nipym 4" 7 (52
0 <0

in which n (“fluidity parameter”) and m are two constitutive parameters governing
the material rate-sensitivity. Although other options are available (di Prisco and
Imposimato (1996); Freitas et al. (2012)), function (52) fulfills property (12) and
the elasto-viscoplastic response tends to the elasto-plastic limit at vanishing rate-
sensitiveness (i.e. at increasing n and/or m). If e.g. m =1 is set in (52), then:

b = —n [(H — Hy) + f1'] (53)

32.=0,E3=0

and the inviscid limit reads:

n—-o0=—=f—0
=00 (54)
. — —n(H —Hy) = Ao

i
BB . . .
$0=0,E53=0 $,=0,E3=0

Limit (54) shows that the eigenvalues in A (Agg) and A (A,,) tend to coincide
as the fluidity parameter 7 approaches infinity. This stems from the fact that, at
vanishing rate-sensitiveness, the constitutive equations produce lower and lower
overstresses and the fulfillment of plastic consistency (f = 0) is progressively re-
gained. As a consequence, the intermediate range H, — Wﬂmax < H<H,
in Figure 3 tends to disappear and the sign of the quadratic form in (45) is no
longer affected by the rate vector X. This mathematically translates that, in invis-

cid solids, the stress/strain rate has no influence on defining the current material

state, nor on the triggering of constitutive instabilities.

Sthe yield function f must be dimensionless
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5. Concluding remarks

In this paper a theoretical approach for the analysis of constitutive instabilities
in elasto-viscoplastic solids has been proposed. At variance with previous works on
the subject, general mixed loading conditions have been considered, accounting for
the fact that in real laboratory tests and boundary value problems not all the stress
or strain components are known /prescribed, but rather a combination of some of
them. While the same problem was previously tackled by other authors for rate-
insensitive elasto-plastic materials, a different approach has been followed here to
overcome the lack of the tangent stiffness operator in Perzyna-type constitutive
equations.

Under the assumption of isotropic/homothetic strain-hardening, it has been
shown that instabilities are not possible while the hardening modulus is larger
than the so-called controllability modulus H, — which is consistent with the rate-
independent theory developed by Buscarnera et al. (2011). While the scalar
modulus H, contains information about the static state of the material (stresses
and hardening variables) and the specific loading constraints, it has been also
found that, below the H, limit, instabilities may occur depending on the current
stress/strain rate. As a consequence, the latter actively contribute to define the
global state of the material. It is worth remarking that, as the theory provides
an “instantaneous” condition, the actual development of macroscopic instability
requires positive local accelerations to last over a sufficient amount of time.

The framework proposed in this paper extends the previous rate-independent
theory and will enable to cope with relevant problems where time effects can play

a major role.
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1 AppendixA. Analytical derivations

2 The main analytical derivations skipped in Section 3.2 are hereafter reported.

3 Stress control (a =1, =)

4 Under the stress control o (t) = X (t), the terms in Equation (15) can be

s specified as it follows:

de afw+gﬂm%w
dt f Oo dt  0q Oevr dt

A ofT. d®of" 0g 99 _d® de of T
= dfoo = Yifoq vewoe - Carl T g oe

d 1 dev?
s and, exploiting the equality d_g =3 ;t (from the Perzyna’s flow rule) along
o

7 with Equation (16):

dd ag d® _Jg ofT 1 de’
ey 3) =
oo df %+f( D di
dd _de  dd1 (9fT.\ . de
— s )1
i dt+ﬁ®( ) ar

dd H de do H
- df<H >I_ W(H )Cz

_ (A.2)

2 2 vp
(I)i dg _ & 0%y d—a—i—CID g Op 0e” _
dt \ Oo Jdo ® do dt Jo ® Op JevP Ot
_ Py 5 P9 Opde , &g Op
do ® do Jo ® Op OevP dt do @ Op OevP

s The above relationships are then substituted into Equation (17):

—Cy _ I— - J
dt? =C df do @ Op OevP dt
g do*g Op

d(I) g o o g
df do ® do Jo ® Op JevP

d*e dCI><H H) de o 0%g  Op de
(A4)

<H+£JCE+@
o and the final form (18) is readily obtained.
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1 Strain control (o = &, 5 = 1)

2 Under the strain control € (t) = E (t), the combination of Equations (15) and

3 (23) gives rise to the following terms:

v _ <af da+8_fT dgq ds”p> B (af do
df df

e A5
dt do dt ' Oq Oew dt do dt q)H) = (A)

d® dg of ' do dg do\|
—Dm—a—‘ﬁ [Da—a wae  HP\E-Cyr )| =
Da—f DE - Do E-c) _wpE+ 12| -
f oo <I> dt dt | (A.6)
dd HE : . H do do do ] '
=——— |-_EDE+ HDE + =-£1— - HI— — HDE + HI—| =
af [ o T W i My
_ado® do d(I> .
= H-H |)l1—+—|—=+H—-H.|DE
K ( ! ) i ( ! )
4+ and
o2 2
g do 0°g Op (. do
-Dd— —®D —_— —-C— || =
— ( ) [80’@80’ dt +60’®8p8s”p ( dt
B 0%g  Op do oD 0?9 Op .
80’ ® 80 ~ do ® Op OevP dt 0o ® Op OevP
(A.7)
s which can easily be recast in the compact form (24).
s Mixed stress-strain control
7 Since mixed control conditions involve both stress and strain controls, the ODE

s system (35) can be derived by wisely combining the analytical techniques employed
o above for both the pure stress and pure strain control cases. Reporting here all
10 the details does not seem to be particularly instructive, the partitioned struc-

u  ture of the generalized Perzyna’s relationship (31) is just to be carefully handled.
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The analytical derivations can be significantly simplified if the assumption (36)

(isotropic-homothetic strain-hardening) is retained from the beginning.

AppendixB. Spectral properties of the matrix A

— All the eigenvalues of A are real and semisimple

According to standard matrix algebra, the eigenvalues of a n x n matrix are
defined as semisimple if their algebraic (mg,) and geometrical (mg.,) multiplicities
coincide (mye, is the dimension of the associated eigenspace). As was stated in

section 4.2, the peculiar structure of A (Figure 2) implies:
A(A) = A (Aua) UA (Aps) (B.1)

dd
As for A (A.a), the eigenvalue T (H — H,) in (48) is such that mgy = mge, =

|| because A, is proportional to I,,.
Conversely, the properties of A (Agg) depend on the adopted ¢ function, but
there is no general reason to infer the existence of eigenvalues with mg, > 1.

Unless for very particular cases, A has || 4+ 1 semisimple real eigenvalues.

— Bigenvalues of Agg

It is possible to determine the sign of the eigenvalues )\%ﬁ on the basis of ex-
pression (49).

While the elastic compliance matrix C (and its inverse too) is positive definite
82

to guarantee positive elastic strain energy, the Hessian matrix generated

0o ® 0o
by the plastic potential ¢ is also positive definite on condition that g is strictly

convex in the stress space — which is the case of most constitutive relationships.

0%g

dos ® dog
_ Py
Jo ® do

transformation needed to reorder the controlled/uncontrolled variables). There-

Then, it can be proven that Cgﬂl and are sub-matrices from two

matrices which are similar to C~! and , respectively (through the linear

fore, since (i) similarity transformations do not alter the spectrum and (ii) all the
25
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principal minors of symmetric positive definite matrices are positive (Sylvester’s
2

criterion), it turns out that Cgé and are positive definite as well.

dog® dog
Provided that the product of symmetric positive definite matrices produces a
-1 g

P800 @ Oo g
is positive definite. The latter observation and the positiveness of ® (in the vis-

positive definite matrix, it can be stated that the matrix M = C

coplastic regime) prove that all the eigenvalues of ®M are strictly positive, so that

dd
all the eigenvalues in A (Agg) are lower than 7 (H— H,).
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