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Research paper 
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A B S T R A C T   

The seaway trade market has expanded in the last years and container ship dimensions are constantly increasing 
for higher cargo capacity. In the early design stage, main dimensions are usually determined based on an existing 
ship database from which regression formulas are derived. In the present paper, a database of 260 non-sister 
container ships built from 1979 to 2022, representing 20% of the world fleet, has been considered to derive 
and compare different types of regressions. Simple regressions have been developed and compared with 
equivalent formulations available in literature, proving better approximations of the trends. The study has been 
further extended by multivariable regressions and forest tree algorithms, which allow the use of more than one 
independent variable and provide a better fitting compared to simple regressions. Forest tree regressions return 
the highest values of fitting coefficients, but the technique is not of easy application due to the absence of 
mathematical expressions. The main contribution is the updated set of simple and multivariable regression 
formulas which have a higher goodness of fit than previous works and can be easily employed by designers in the 
early design stage and in multi-attribute design procedures.   

1. Introduction 

Within today’s shipping, container ships are the trendsetters which 
have revolutionized the transport of goods. Even though the first 
“container ship” dates back to 1956, the massive “containerization” 
started only in January 1968 with the introduction of ISO 668 (1968), 
which defined terminology, dimensions and ratings for freight con-
tainers. In the last two decades, the shipping market witnessed the trend 
of a continuous increase of goods transported by containers, leading to 
an enlargement of the container ship fleet and the entrance of the 
Very-Large Container Ships, VLCS, and the Ultra-Large Container Ships, 
ULCS, with up to 23000 TEU. In parallel, two aspects related to 
container ships are drawing the attention of experts in the transport and 
logistic chain and of naval architects: ultimate limit ship dimensions and 
the yearly number of containers lost at sea. 

Economics and logistics experts (Malchow (2017), Saxon and Stone 
(2017); Garrido et al. (2020)) analyzed the trends of container ships 
growth based on economies of scale, port infrastructure, demand, and 
environmental tendencies, to predict the ship size limits. According to 
Malchow (2017), a 30000 TEU container ship with approximately 20 m 
draught, should be the ultimate limit because of the depth constraints in 

the Malacca Strait and the Suez Canal. Saxon and Stone (2017) envis-
aged even 50000 TEU container ships in the next 50 years. Garrido et al. 
(2020) analyzed the design restrictions and stability regulations, the 
geographic and port restrictions, the economies of scale of container 
shipping lines, the CO2 emissions of vessels, and the world economy, 
demand, and global trends. The authors concluded that all trends indi-
cate 30000 TEU container ships on the market by 2030 and reported that 
according to the capital cost, the optimal ship size has 418 m length, 69 
m breadth, 35 m moulded depth, and 17 m draught. They calculated the 
metacentric height and stated that its reasonable value should be be-
tween 4% and 5% of the breadth to avoid stability problems. Finally, the 
authors compared the “ideal” dimensions predicted by different authors, 
namely Park and Suh (2019), Kristensen (2012) and Korea Maritime 
Institute (2012). Under the assumption of a 30000 TEU ship, the pre-
dicted ship length, breadth and draught are then equal to 453 m–72 m – 
17.3 m (Park and Suh, 2019); 483 m–71.5 m – 18.7 m (Kristensen, 
2012); and 517 m–65 m – 19.4 m (Korea Maritime Institute, 2012). As 
reported, the differences in draught and breadth are relatively small as 
they have upper limits dictated by water depth in ports and canals and 
by the arm-length of port cranes. The decreased “optimal” length clearly 
indicates the change in design trends of the last decade. 
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Another relevant issue is the number of containers lost at sea each 
year. In 2011 the World Shipping Council (WSC) started a survey among 
its members (covering more than 90% of the global container ship ca-
pacity) to accurately estimate the number of containers lost at sea each 
year. Reviewing the results of the total surveyed period 2008–2022 
(WSC, 2023), the WSC estimated that there was, on average, a total of 
1566 containers lost at sea each year. Average losses for the last three 
years were 2301 containers per year (2020–2022). Up-to-date results 
indicated the parametric roll as one of the main reasons for container 
losses. Actions to preclude further accidents for the existing ships are the 
training of mariners to recognize and prevent the parametric roll 
(Galeazzi et al., 2013) and the application of operational guidance 
(Begovic et al., 2023) which clearly identifies speeds and headings 
where the ship may be vulnerable. For the new vessels, operators should 
consider from the design stage the vulnerability to stability failure 
modes, such as parametric roll (France et al., 2003), excessive acceler-
ation (IMO SLF 54/INF.6, 2011) or pure loss of stability. 

It is evident that, for such a competitive and demanding market, ship 
design must assure maximum performance in all these aspects using up- 
to-date knowledge, software and technology. A reliable preliminary 
design assessing the main ship’s characteristics is essential. As under-
lined by Papanikolaou (2014), the values of these characteristics mainly 
depend on the four main basic demands: cargo capacity, top speed, 
range/autonomy and class, but dominated by constraints such as the 
maximum value of breadth or draught to pass through the canals or 
enter in ports. The “traditional” approach to determe the main ship 
characteristics employs regression formulas obtained from a database of 
similar ships. When following the design spiral, few iterations are 
needed to retrieve the “optimal” main particulars. 

Kristensen (2012) published a set of linear and nonlinear regressions 
to estimate main dimensions, deadweight and various design parameters 
as a function of the number of TEU. For the development of these re-
gressions, container ships built between 1990 and 2010 were classified 
into three groups (Small, Panamax and Post Panamax). 

In the multi-attribute and multi-objective ship design (Zanic et al. 
(1992), Trincas et al. (1994), Grubisic and Begovic (2001, 2011), Mauro 
et al. (2019), Ljulj et al. (2020), regression formulas or “low-fidelity” 
codes are the basis of different modules which calculate ship attributes 
(power, deadweight, structural weight, total cost, etc.) based only on 
ship main parameters. It is evident that the accuracy of the obtained 
results will be strongly affected by the accuracy of the input regression 
formula. 

In the last two decades, the application of artificial intelligence (AI) 
techniques, such as genetic algorithms, neural networks, and machine 
learning, is increasing in all phases of ship design. AI techniques are in 
continuous development, but the main idea is to find the optimal design 
starting from a few macroscopic parameters provided by the owner 
(such as cargo capacity, maximum speed, and range/autonomy). All 
other parameters are then estimated through a regression analysis of an 
existing ships database and/or applying some AI techniques to perform 
the optimization. One example is the automatic hull form generation, as 
shown by Islam et al. (2001). The authors performed a three-steps 
procedure starting from 104 ships’ half-breadths, then used neural 
networks to adjust parameter values and finally used the genetic algo-
rithm to design the body plan. Their work is one of the first examples 
where the advantages of both techniques have been combined: neural 
networks are used to identify the data pattern and to predict the required 
parameters and genetic algorithms are used for search-based optimiza-
tion problems (i.e. maximization or minimization of the objective 
function), which are difficult and time-intensive to solve by other gen-
eral algorithms. Clausen et al. (2001) acquired a database of 87000 ships 
and applied regression analysis, Bayesian and neural networks to encode 
the relations between ship main characteristics and loading capacity for 
different ship types. They concluded that neural networks are easier to 
implement and yield smaller estimate errors than Bayesian networks. 
This work remains, up to now, the one with the most extensive database 

used for the neural network. 
The applications of AI as a predictive tool for seakeeping (Romer-

o-Tello et al., 2022), fuel consumption (Uyanık et al., 2020), and 
corrosion damage detection (Yao et al., 2019) are numerous, showing 
their great potential when the model is developed from a big data 
sample, as for example from the data monitored on board during 
voyages. 

Recent works on the application of AI in preliminary ship design, 
such as Ekinci et al. (2011), Gurgen et al. (2018), Cepowski and Chorab 
(2021), and Majnaric et al. (2022), used artificial neural networks, 
machine learning and multiple regression analysis to develop design 
formulas considering databases of a few hundred ships. Concerning the 
size of the database, the efficiency of AI techniques can be discussed 
because, as the “rule of thumb”, the minimum sample should be at least 
30 times the number of weights (Alwosheel et al., 2018). 

The present work reports the statistical and regression analyses of the 
database obtained by the Hyundai catalogue (HHI shipbuilding group 
performance record, 2022) of container ships built from 1979 to 2022. 
The objective of this work is to present an overview of the possible 
methodologies implementable for the determination of main design 
parameters for container ships. The application of AI technique (forest 
tree) has been explored to obtain the estimations with the highest co-
efficient of determination R2. Even though it is a black-box method and 
does not return any mathematical expressions, it provides better results 
than simple and multivariable regression methodologies. Therefore, the 
order of multivariable regressions models has been further varied to 
improve R2 values. 

The different regression methodologies are described in Section 2. In 
Section 3, a complete database of about 1000 ships is presented, but for 
all regression analyses a reduced database of 260 vessels without sis-
terships has been considered. In Section 4, simple regression formulas, of 
the same form as published in Papanikolaou (2014), have been devel-
oped to investigate the trend of new container ships. In Section 5, the 
simple regression formulas obtained from the present database have 
been compared with the ones developed by Cepowski and Chorab 
(2021) and the ones presented in Papanikolaou (2014). In Section 6, a 
new nonlinear multiple variable regression is performed, and the ac-
curacy of the predictive models is discussed according to their mathe-
matical formulation and different fit coefficients. In Section 7, a forest 
tree algorithm has been used to identify non-correlated parameters for 
the multiple regression analysis. In Section 8, an example of the design 
parameters prediction with all the regressions methodologies is pro-
vided for a container ship of 20000 TEU at a speed of 23 knots. Dis-
cussions and Conclusion are presented in Section 9. 

2. Regression analysis methodologies 

The regression formulas can be used to predict the value of one 
parameter based on the value of one or more variables and in this section 
the applied methodologies are described. 

At first, simple regressions, have been developed in the forms of 
Equation (1) (polynomial, power or logarithmic) where one parameter y 
is function of only one variable x with the coefficients a and b: 

y= ax+ b or y = axb or y = a ln (x) + b (1) 

To increase the accuracy of the predicted values, multivariable re-
gressions have been developed, where one parameter can be estimated 
based on two or more variables. The general model for multiple linear 
regression is given by the following matrix formulation: 

Y = cX + d (2)  

where Y is the matrix of measured values, X is the matrix of independent 
variables, c is the matrix of coefficient and d is the matrix of errors. 

Using the matrix formulation, the unknown of the problem is the 
matrix c, obtained as follows: 
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c=(X′X)
− 1

∗ X′Y (3)  

where X′ is the transpose of matrix X and (X′X)
− 1 is the inverse of (X′X). 

Finally, forest tree algorithms have been developed with different set 
of input variables to explore another technique and compare the various 
regression methods. 

Forest tree is one of the most popular and commonly used algorithms 
by data scientists. Forest tree is a Supervised Machine Learning Algo-
rithm widely used in Classification and Regression problems. It builds 
decision trees on different samples and takes their majority vote for 
classification and average in case of regression. Random forest is a 
versatile machine learning algorithm that leverages an ensemble of 
multiple decision trees to generate predictions or classifications. The 
random forest algorithm delivers a consolidated and more accurate 
result by combining the outputs of these trees. Its widespread popularity 
stems from its user-friendly nature and adaptability, which enables the 
effective tackling of classification and regression problems. The algo-
rithm’s strength lies in its ability to handle complex datasets and miti-
gate overfitting, making it a valuable tool for various predictive tasks in 
machine learning. One of the most relevant features of the Random 
Forest Algorithm is that it can handle the data set containing continuous 
variables, as in the case of regression, and categorical variables, as in the 
case of classification. It performs better for classification and regression 
tasks. 

For all the different regression methodologies the following fit co-
efficients have been determined and compared to assess the accuracy of 
the regressions: coefficient of determination (R2), Pearson coefficient, 
MAPE (Mean Absolute Percentage Error), RMSR (Relative Root Mean 
Square Error), and RRMSE (Relative Root Mean Square Error). In 
particular, for multivariable regressions the additional values of Radj

2 , SE 
(Standard Error), t-stud, and p-value have been evaluated. 

The formulations of the fit coefficients are defined as follows: 

R2= 1−
SSE

SStot
= 1−

∑n

i=1

(
yi − y∗i

)2

∑n

i=1
(yi − y)2

(4)  

R2
adj= 1−

(
1 − R2) n− 1

n − np− 1
(5)  

MAPE=

∑n

i=1

⃒
⃒yi − y∗i

⃒
⃒

n
(6)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y∗i )

2

n

√
√
√
√
√

(7)  

RRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n

i=1
(yi − y∗i )

2

∑n

i=1
(y∗i )

2

√
√
√
√
√
√
√

(8)  

Pearson=

∑n

i=1
(yi − y)(yi − y∗)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(y∗i − y∗)2

√ (9)  

where yi are the n observations, yi* the predicted values, y is the mean 
value of the observations, y∗ is the mean value of the predicted variable 
and np is the number of parameters used in the regression model. 

The use of one or the other regression, depends on the available input 
parameters: in case only the number of TEU is available as an input, 
simple regression or forest tree have to be used; if also speed is known, 
multiple regressions or forest tree function of speed and TEU have to be 

adopted. Moreover, if the main dimensions are also available the cor-
responding multiple regressions or forest tree can be employed. In any 
case, being the forest tree algorithm a black-box methodology without 
giving the equation coefficients, the reproducibility of the results may be 
achieved only through trials of simple and multiple regressions. 

3. Ship database and statistics 

The database used for this study has been generated from the 
“Hyundai Heavy Industries Shipbuilding Group” catalogue (HHI ship-
building group performance record, 2022), which includes 971 ships, 
260 of which are not sisterships, and represents about 20% of container 
ships of the world fleet. The ships, built from 1979 to 2022, have been 
classified by main characteristics: length, breadth, moulded depth, 
draught, maximum speed, TEU, engine power, and delivery date, as 
summarized in Table 1. Only 13 ships are twin screws, all the others are 
single screw. 

This database has been chosen since Hyundai can be considered the 
world’s largest builder of container ships and no other trustful data has 
been available for this study. The range of data is very wide ensuring a 
considerable variability as shown in Table 1. Furthermore, the database 
ensures the use of the same definitions for all dimensions and variables 
among all the vessels. 

The ships of both complete and non-sistership database have been 
divided into classes as shown in Fig. 1: Small Feeder (up to 1000 TEU); 
Feeder (1001–2000 TEU); Feedermax (2001–3000 TEU); Panamax 
(3001–5100 TEU); Post-Panamax (5101–10000 TEU); New Panamax 
(10000-14500 TEU); Ultra Large Container Vessel (14501 TEU and 
higher). This range division follows Kristensen (2012) but each grouped 
database would have been too small to perform the regression analysis. 
Most of the ships fall in the classes of Panamax and Post-Panamax and 
only about 10% of ships (102 out of the complete database) have less 
than 2000 TEU. Fig. 1 also presents the number of ships delivered each 
year, and, although the first ship was built in 1978, only 33 
non-sisterships (and 111 out of the complete database) were built before 
2000, 227 non-sisterships were built from 2000 to 2022 and 55 ships of 
them are from 2015 to 2022. 

The ships have been grouped based on the main dimensions. Based 
on ship length the samples have been sorted in intervals of 10 m, for both 
the total number of ships and for the non-sisterships, as shown in Fig. 2. 
It can be noticed that almost one-third of the complete database is 
composed of ships having length between 275 and 295 m (223 ships) 
and 345–355 m (95 ships). 

From now on, the statistics and all data analysis will consider only 
the 260 non-sisterships. The container ships’ main dimensions are not 
continuous variables due to the container dimensions, therefore the 
interval for the ship breadth and depth has been chosen as 2.6 m (2.54 m 
for container breadth/height and 0.06 m for the spacing). As shown in 
Fig. 3, most of the ships have breadth between 29.7 and 32.3 m, and 

Table 1 
Container ship database characteristics.  

Main characteristics  SI Unit Minimum Maximum 

Length L m 135 400.0 
Breadth B m 22.0 61.5 
Moulded depth D m 11.2 33.5 
Draught T m 7.4 17.0 
Maximum speed V kn 16.0 27.3 
Froude number Fn – 0.172 0.269 
Length over breadth L/B – 5.48 9.13 
Breadth over draught B/T – 2.39 4.04 
Breadth over depth B/D – 1.38 2.40 
Draught over depth T/D – 0.42 0.73 
LBD LBD m3 34322 821215 
Twenty-foot Equivalent Unit TEU – 1000 23992 
Engine power PENG kW 6770 83991 
Delivery date Year  1979 2022  
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draught between 11 and 13 m, which are the maximum allowable di-
mensions to cross the Panama Canal. The statistics on nondimensional 
values reported in Figs. 4 and 5 highlight that: a considerable part of 
ships (138 out of 260) has L/B in a range of 6.5–7.5; 73 ships have B/T 
between 3.2 and 3.4; and 183 have T/D between 0.48 and 0.58. The 
most frequent depth values go from 21 to 25 m as shown in Fig. 5. 

The ship length and number of TEU have been reported as a function 
of the delivery date and are shown in Fig. 6, while the relation between 
ship maximum speed, number of TEU and years is shown in Fig. 7. The 
upper limit of the length and the number of TEU can be easily described 
by linear and exponential trendlines, respectively. On the other hand, 
the speed is not correlated with the number of TEU, and it is not relat-
able to a known simple distribution. Before the 21st century, ships 
reached a maximum length value of 300 m and a capacity of 7500 TEU. 

Ships of 350 m and 10000 TEU started to be built around 2008 and ships 
of 400 m and 20000 TEU appeared in 2015. The fluctuating tendency of 
ship speed and its decrease during the last years, despite the increase in 
the number of TEU and dimensions, are probably related to the limit of 
marine engines of 80 MW and the optimization of the route for the 
greenhouse gas emissions and for scheduled travelling days. Nonetheless 
the number of TEU, the speed is in a range between 21 and 26 kn. 

4. Simple regression analysis 

In this section, simple regressions have been developed to estimate 
the different parameters. In the early design stage of a container vessel, 
the main requested parameters are the number of TEU and/or DWT and 
the speed. Therefore, these were chosen as independent variables for the 
regression analysis. Different types of simple regressions (power, loga-
rithmic and polynomial), as reported in Appendix A, have been per-
formed and their coefficient of determination (R2) have been compared 
in Appendix C, Table C1. Moreover, for each ship dimension as a func-
tion of TEU the fit coefficients MAPE, RMSE, RRMSE and Pearson have 
been determined to identify the best type of regression and reported in 
Table C2. 

The whole set of best regressions for ship main characteristics and 
the related formulas are reported in Equations (10)–(31) and have been 
presented in Figs. 8–18. Particular attention should be given to the re-
gressions of the engine power, PENG, when 40 MW are exceeded: as can 
be seen in Fig. 16, there is a huge scattering of data after this value and 
Equations (20) and (21) are valid only up to this power limit (a more 
detailed explanation is given in the following). 

B= 0.334 • L0.845 R2= 0.803 (10)  

B
T
= − 0.19495 •

L
B
+4.565 R2= 0.202 (11)  

D= 0.1653 • L0.8747 R2= 0.8762 (12)  

B
D
= − 0.138 •

L
B
+2.71 R2= 0.4457 (13)  

LBT= 111.16 • TEU0.8139 R2= 0.9826 (14)  

LBD= 90.303 • TEU0.9074 R2= 0.9699 (15)  

L= 84.5 • ln(TEU)− 450 R2= 0.948 (16)  

B= 2.81 • TEU0.301 R2= 0.939 (17)  

D= 1.82 • TEU0.2897 R2= 0.8893 (18) 

Fig. 1. Database statistics by class dimensions and delivery date.  

Fig. 2. Length of container ships in database.  
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T= 2.2404 • TEU0.1961 R2= 0.8477 (19)  

LBT= 1.6354 •DWT+10387 R2= 0.981 (20)  

LBD= 3.355 •DWT − 1703 R2= 0.972 (21)  

L= 92.7 • ln(DWT)− 754 R2= 0.9460 (22)  

D= 0.6353 • DWT0.319 R2= 0.8941 (23)  

B= 0.9732 • DWT0.3288 R2= 0.9276 (24)  

T= 1.1025 • DWT0.2157 R2= 0.8460 (25)  

PENG= 0.0006 • L1.9793 R2= 0.8139 (26)  

Fig. 3. Breadth and draught of container ships in database.  

Fig. 4. Nondimensional ratios of container ships in database.  

Fig. 5. Depth and T/D ratio of container ships in database.  
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PENG= 0.001 • V3.2961 R2= 0.7456 (27)  
PENG= 0.3084 • TEU0.5636 R2= 0.5448 (28) 

Fig. 6. Container ships statistics of length and TEU.  

Fig. 7. Container ships statistics of ship speed as a function of number of TEU over years.  

Fig. 8. Regression analysis of main ship dimensions.  
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PENG= 0.0356 • DWT0.6306 R2= 0.5683 (29)  

V= 13.887 • TEU0.0582 R2= 0.1592 (30)  

V= 10.761 • DWT0.068 R2= 0.181 (31) 

The relations between main dimensions are well approximated by a 
power function and the data points are close to the regression curve, as 
shown in Fig. 8. It can be noted that in many cases the B value is constant 

for an increasing length and the increase in B has a discrete step strictly 
due to the container dimensions. For the nondimensional ratios B/T and 
B/D as function of L/B shown in Fig. 9, the spreading of data indicates no 
correlation between the variables, and it is confirmed also by the low R2 

of the obtained linear trendline. 
Figs. 10–12 show the variation of each dimension as a function of the 

number of TEU. All dimensions are approximated with a power function 
except the length, which is better estimated by a logarithmic function. 
All data are well gathered around the tendency line, with values of R2 

Fig. 9. Regression analysis of ship nondimensional ratios.  

Fig. 10. Regression analysis of ship dimensions on TEU.  

Fig. 11. Regression analysis of ship dimensions on TEU.  
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around 0.95–0.98, except for the draught and depth which are more 
scattered and the R2 value is about 0.85 and 0.89, respectively. 

In the present database, the value of the deadweight (DWT) was not 
available, therefore the correlation between TEU and DWT, reported in 
Equation (32), from Abramowski et al. (2018), has been adopted to 
generate the necessary data to obtain the regressions as a function of 
DWT, as presented in Figs. 13–15. 

DWT = 1317.745 + 2.24 • 10− 3 • (ln(TEU))
8 (32) 

DWT regressions were best fitted by linear equations for the product 
of the main dimensions, as in Fig. 13, and by power formulas for the 
single dimensions (Figs. 14 and 15), except for the length, fitted by a 
logarithmic function. In all cases, the data samples are close to the 
regression curves; few points are more scattered when analyzing the 
depth values, especially for D = f(DWT) where the R2 value decreases to 
0.846. This may be due to the change of D value when keeping constant 
the B and T values. 

It can be noted that the increasing step of B and T variables is discrete 

Fig. 12. Regression analysis of ship dimensions on TEU.  

Fig. 13. Regression analysis of ship dimensions on DWT.  

Fig. 14. Regression analysis of ship dimensions on DWT.  
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for both TEU and DWT regressions, due to container sizes and limiting 
channels dimensions. 

In the analysis of the installed power as a function of ship length or 
speed, two regions have been identified in Fig. 16: a regression curve 
and a rectangular area. When ships have an engine power lower than 40 
MW (data represented by black dots) the regression curve has been 
approximated with a power function, reporting the formula in the 
graphs. For ships with higher engine power, the dependency of engine 
power from ship length or speed can no longer be represented by a 

regression curve. The data are very scattered and a rectangular region 
can be identified. It is clearly visible that for the VLC and ULCS the ship 
speed varies from 21 to 26 knots, probably set as the design requirement 
to serve some specific route in a certain number of days. 

The engine power and the ship speed as function of TEU or DWT are 
presented in Figs. 17 and 18, respectively. The data is scattered and 
uniformly spread around the graph. Although the best regression is 
represented by a power function, the R2 values are lower than 0.6 for 
engine power and lower than 0.2 for speed, highlighting a low direct 

Fig. 15. Regression analysis of ship dimensions on DWT.  

Fig. 16. Regression analysis of engine power on ship length and speed.  

Fig. 17. Regression analysis of engine power on TEU and DWT.  
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dependency of these two parameters from cargo capacity. 

5. Comparison with previous studies 

The present regression equations have been compared with the ones 
reported by Cepowski and Chorab (2021) and in Papanikolaou (2014) 
who recalled formulations and regressions developed by Kolakarinos 
et al. (2000–2005). 

Since in Papanikolaou (2014) all ship dimensions are estimated only 
as a function of the DWT, the correlation between DWT and TEU, ob-
tained by the regression analysis in Papanikolaou (2014), is reported in 
Equation (33) and has been used for the comparison in terms of TEU. 

Payload = 0.75 DWT = 10 • TEU
→DWT = 13.33 TEU

(33) 

As already mentioned in Section 2, the value of DWT for the present 
database has been obtained using Equation (32) (Abramowski et al., 
2018). 

Table 2 and Figs. 19–23, illustrate the comparison between the for-
mulas of the regression analysis for the present database and the ones 
reported in Papanikolaou (2014) and Cepowski and Chorab (2021). 

Fig. 19 compares the results of the present analysis and the ones from 
Papanikolaou (2014) in terms of ship dimensions, velocity, and number 
of TEU. While the dependency of breadth on length has a similar ten-
dency for both regressions in all the dimensions range, the estimations of 
the product of LBD follow two different tendencies for values greater 
than 5000 TEU. The database used in Papanikolaou (2014) included 
ships built up to 300 m and 80000 DTW (about 6000 TEU), and the 
estimation of bigger ships with the extension of the original regression 
formula is overpredicted. The present regression gives a better overall 
approximation of the database for velocity dependency on TEU, even 
though the higher speed values are not caught with a power regression. 

Figs. 20 and 21 show the comparison between the three regressions 
for the estimation of ship dimensions as functions of TEU. While breadth 

and draught approximations are in good agreement in all three cases, for 
length and depth it is clear that: when extrapolating the formulas of 
regression in Papanikolaou outside the limits of the referenced database 
(about 1000 TEU), the values are overestimated and do not follow the 
tendencies of new built ships; and that the formulas in Cepowski and 
Chorab (2021) have been reported with some typo-errors. 

The obtained regression formulas for the main ship dimensions have 
been used for an hypothetical 30000 TEU ship and compared with 
Garrido et al. (2020). The estimated length for 30000 TEU results equal 
to 421 m for the present database regression, 433 m calculated with 
Ceposwki’s formulation, and 531 m following Papanikolaou regression 
formula. Since the length evaluated by Garrido et al. (2020) is about 
420 m, the best fitting curve that estimates the closest value is the one 
obtained by the present database. 

Ship dimensions as functions of the DWT are reported in Figs. 22 and 
23; in this case, the estimations of Papanikolaou are in good agreement 
with the other two analyses. This difference with the tendency found for 
TEU dependencies may be attributed to the different correlation for-
mulas adopted for DWT and TEU. 

In the works of Papanikolaou (2014) and Cepowski and Chorab 
(2021), R2 values were not available for all formulas, therefore, to 
evaluate the goodness of the formulas with the present database, the R2 

value have been calculated using Equation (4) considering the present 
database as the observed value and the estimated values have been 
predicted using the formulas as reported in Table 2. The calculated R2 

values for the ship dimensions as function the number of TEU are pre-
sented in Table 3. For Cepowski and Chorab (2021) the R2 values have 
been calculated only considering the DWT formulation due to the typos 
in the formulas as function of TEU. It can be seen that except for the B 
value, all others are better predicted by the formulas of Cepowski and 
Chorab (2021). The comparison for ships speed has not been reported 
since the correlation with TEU is very low. 

Fig. 18. Regression analysis of ship speed on TEU and DWT.  

Fig. 19. Ship dimensions and TEU regressions compared to Papanikolaou (2014).  
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6. Multivariable regressions 

In this section, different multivariable regressions (MR) are pre-
sented in the following forms.  

• MR1 for ship dimension and engine power function of V and TEU;  
• MR2 for ship speed and engine power function of L, D and TEU;  
• MR3 for ship speed and engine power function of L, T and TEU;  
• MR4 for ship speed and engine power function of L, B, D and TEU. 

For each regression the values of estimates, SE, t-stud, and p-value 
have been evaluated and reported in Appendix B. The whole set of fit 
coefficients, R2, Radj

2 MAPE, RMSE, RRMSE and Pearson, has been re-
ported in Table C3. 

An extended analysis of the multiple linear regression has been 
conducted. The multicollinearity has been checked according to the VIF 
(Variance Inflation Factor), highlighting no collinearities for all the re-
gressions function of V and TEU, as shown in Table C5 in Appendix C. 
There is multicollinearity in the case of the regressions provided as a 

Fig. 20. Ship dimensions and TEU regressions compared to Papanikolaou (2014) and Cepowski and Chorab (2021).  

Fig. 21. Ship dimensions and TEU regressions compared to Papanikolaou (2014) and Cepowski and Chorab (2021).  

Fig. 22. Ship dimensions and DWT regressions compared to Papanikolaou (2014) and Cepowski and Chorab (2021).  
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function of L, B, D and TEU. Power and speed regressions function of L, 
D, TEU and L, T, TEU, highlight a moderate collinearity compared to the 
previous regressions. For all the regressions the normality of the re-
siduals has been checked with the Kolmogorov-Smirnov test, giving 
positive results for all tested cases. Furthermore, heteroscedasticity has 
been evaluated according to the Breush-Pagan test, as shown in Table C6 
in Appendix C, detecting homoscedasticity only for the regression of B as 
a function of V and TEU and for V as a function of L, T, TEU. All other 
cases are affected by heteroscedasticity of data, decreasing the reliability 
of the final regression. In the MR4 regressions, with 4 dependent vari-
ables, heteroscedasticity is associated with the presence of multi-
collinearity, in other cases deals only with the nature of data. In any 
case, being the objective of the regressions the estimation of the inde-
pendent variable and not the influence of each parameter on the final 
regression, the detection of non-constant variance does not require the 
manipulation of input data to eliminate the problem. The normality of 

multiple linear regression residuals can be found in Appendix D. 
Each ship characteristic estimated by the different multivariable 

regressions is compared with original corresponding value of the data-
base, as shown in Figs. 24–29. In each figure the spreading of data 
around the bisector indicates the goodness of fit of each regression; the 
points are gathered around the bisector line and the closer they are to 
the bisector line the better they are estimated by the regression 
formulas. 

In Figs. 24 and 25, the estimated ship dimensions (L, B, D and T) are 
functions of V and TEU, and while for length and breadth the values are 
well gathered around the bisector line, highlighting the goodness of the 
regression formulas, for the depth and the draught the values are more 
spread. The fit coefficients in Table C3 confirm these tendencies, with 
R2, R2

adj, RMSE and Pearson coefficients higher and MAPE and RRMSE 
coefficients lower for L and B dimensions. In the graph reporting the 
breadth, the discrete step linked to container ship sizes is recurring. 

Figs. 26–29 present the comparison of different regression methods 
for engine power and ship speed. As confirmed also by the fit coefficients 
in Table C3 the MR4 regressions are better estimated, even though the 
small improvement may not be worth the increment of input variables. 
In particular R2, R2

adj and Pearson coefficients are higher for MR4 and 
MAPE, RMSE and RRMSE coefficients are lower. It is worth noting the 
high scattering data around the ship speed of 21 and 22 knots where for 
a constant value of the present database the estimated values vary in a 
range of about 2 knots. A similar tendency can be seen for the engine 
power around 68000 kW. This may be due to the limitations in actual 
engine performances and fixed ship speed in trip voyages for different 
ships. 

7. Forest trees 

Besides multiple linear regressions, forest tree regressions are a 
suitable advanced technique to investigate the dependencies of the main 
dimensions of the container ships from one or more parameters. The 
forest tree algorithm allows the classification of the output through the 
averaged prediction of more individual trees (Ho, 1998), thus reducing 
the overfitting problem of individual trees. Here, the MATLAB applica-
tion for the determination of forest tree is applied to the database, 
providing regression for the quantities of interest. The forest trees for 
simple regressions (parameters as a function of TEU) and multivariable 
regressions (MR1, MR2, MR3 and MR4) have been performed to esti-
mate ship main dimensions, ship speed and engine power. The values 
estimated by the forest tree algorithm have been compared with the 
original ones of the present database, as described for the multivariable 
regression and are reported in Figs. 30–38 with the corresponding co-
efficient of determination. In the graphs the subscript SR defines the 
simple regression and MRi the multivariable regression approximations. 

Fig. 23. Ship dimensions and DWT regressions compared to Papanikolaou (2014) and Cepowski and Chorab (2021).  

Table 2 
Comparison of the obtained regression formulas from the literature.  

Present Database Papanikolaou 
(2014) 

Cepowski and Chorab 
(2021) 

TEU DWT TEU DWT 

B = 0.3339 
L0.845  

B = 0.3899 LOA
0.8096   

L = 84.5 ln 
(TEU) - 450 

L = 92.7 ln 
(DWT) - 754 

LBP = 3.54132 
DWT0.388442 

LBP =

3.16 
TEU0.34 

LBP =

3.656 
DWT0.38 

B = 2.81 
TEU0.301 

B = 0.9732 
DWT0.3288 

B = 1.55219 
DWT0.284381 

B = 3.27 
TEU0.29 

B = 1.15 
DWT0.32 

T = 2.3834 ln 
(TEU)- 
8.2372 

T = 1.1025 
DWT0.2157 

T = − 17.1581 +
2.72338 ln(DWT) 

T = 1.571 
TEU0.24 

T = 0.624 
DWT0.27 

D ¼ 1.82 
TEU0.2897 

D = 0.6353 
DWT0.319 

D ¼ 0.299394 
DWT0.38902 

D = 0.349 
TEU0.33 

D = 0.349 
DWT0.37 

LBD ¼
90.303 
TEU0.9074 

LBD =
3.4256 
DWT0.9971 

LBD ¼ 1.64898 
DWT1.06169   

V = 13.887 
TEU0.0582 

V = 10.761 
DWT0.068 

V = 3.7087 
DWT0.1566    

Table 3 
Comparison of coefficients of determination with Papanikolaou (2014) and 
Cepowski and Chorab (2021).  

R2 L ¼ f(TEU) B ¼ f(TEU) D ¼ f(TEU) T ¼ f(TEU) 

Present database 0.948 0.939 0.889 0.848 
Papanikolaou 0.779 0.925 0.500 0.436 
Cepowski (DWT) 0.854 0.851 0.863 0.743  
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Fig. 24. Multivariable regression of ship dimensions function of V and TEU.  

Fig. 25. Multivariable regression of ship dimensions function of V and TEU.  

Fig. 26. Multivariable regression of engine power function of V and TEU.  
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As expected, for all parameters, except for the depth, data is less 
scattered for multivariable regressions than for simple ones and it is 
confirmed by the high value of R2. In particular, Figs. 30 and 31, pre-
senting L and B values, have well-gathered data around the bisector, 
while T and D values, shown in Figs. 32 and 33, are more scattered, as 
already observed for multivariable regressions in Section 6. Figs. 34 and 
35 present the different regressions for the ship speed and Figs. 36–38 
the regressions for engine power. The best fitting, with higher R2, is 
estimated by MR2, differently than in the case of multivariable 

regressions of Section 6, where the best fitting was found for MR4. 
Overall, the forest tree algorithm better fits the database compared to 
the linear multivariable regression in Section 6, as can be seen from the 
graphs and the values of all fitting coefficients in Table C4 of Appendix 
C. 

The disadvantage of a forest tree is the absence of a simple regression 
formula for determining the desired variables. However, having at 
disposal a database to determine the forest tree allows for applying this 
method also in the early design stage. In particular knowing the 

Fig. 27. Multivariable regression of ship speed and engine power function of L, D and TEU.  

Fig. 28. Multivariable regression of ship speed and engine power function of L, T and TEU.  

Fig. 29. Multivariable regression of ship speed and engine power function of L, B, D and TEU.  
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maximum coefficient of determination R2 from forest tree, it is possible 
to investigate which of simple or multiple, linear or nonlinear regression 
formulas reaches this value. 

8. Application example 

To have an insight into the possible results when estimating ship 
parameters in the early design stage, a container ship of 20000 TEU 
designed to sail at a speed of 23 kn has been considered as a test case. 

The different regression methods have been used to estimate ship 
dimensions, velocity, and engine power and the results are shown in 
Table 4. For the single regressions the parameters are function only of 
the TEU variable and Equations (16)–(19) and (28) and (30) have been 
applied. For the multivariable regressions ship dimensions and engine 
power have been estimated from the equations in Appendix B in the 
form of Y = f (TEU, V). 

The generic equation for a specific parameter can be written as: 

Fig. 30. Length estimation by forest tree simple (left) and multivariable MR1 (right) regressions.  

Fig. 31. Breadth estimation by forest tree simple (left) and multivariable MR1 (right) regressions.  

Fig. 32. Moulded depth estimation by forest tree simple (left) and multivariable MR1 (right) regressions.  
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Y=
∑

i

∑

k

∑

t
ciVkTEUt + d (34)  

where ci are the estimates of the variables Vk and TEUt and d is the 
intercept. 

Forest tree regressions have been also applied. 
Table 5 presents the percentage difference between the values esti-

mated using forest trees and multivariable regressions and the values 
obtained by the single regressions. It can be noticed that a great differ-
ence appears for the estimation of engine power, highlighting the better 

regressions obtained by multivariable formulations and forest tree 
algorithms. 

9. Discussion and conclusions 

In the present work, a database of container ships representing the 
20% of the world fleet, with vessels built up to 2022, has been analyzed. 
The database includes about 1000 ships, 260 of which are non- 
sisterships. A complete regression analysis, using methods of different 

Fig. 33. Draught estimation by forest tree simple (left) and multivariable MR1 (right) regressions.  

Fig. 34. Ships speed estimation by forest tree simple (left) and multivariable MR2 (right) regressions.  

Fig. 35. Ships speed estimation by multivariable MR3 and MR4 forest tree regressions.  
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Fig. 36. Engine power estimation by forest tree simple (left) and multivariable MR1 (right) regressions.  

Fig. 37. Engine power estimation by forest tree multivariable MR2 and MR3 regressions.  

Fig. 38. Engine power estimation by forest tree multivariable MR4 regression and all regressions together.  
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complexity, has been performed to estimate ship main dimensions, 
speed, and engine power in a preliminary stage of ship design. Simple 
regression formulas obtained from the present database have been 
compared with the results reported in Papanikolaou (2014) and 
Cepowski and Chorab (2021). The most evident difference in the design 
trends is shown when comparing the present results to the ones in 
Papanikolaou (2014), since the ship length and DWT from the database 
mentioned in his work had lower limits and the extrapolation of the 
regression formulas outside the limits overestimated the values of new 
built ships. Overall, the present regression is in line with the results in 
Cepowski and Chorab (2021) which used a similar database, except for 
two cases where probably some typo errors occurred in their paper. 

To increase the goodness of the developed models, the regression 
analysis is further studied by multivariable regressions and forest trees 
algorithms, providing regression solutions as a function of more than 
one design variable. The results of the more complex regression tech-
niques show an improvement compared to simple regression models, 
especially by employing forest trees. It can be appreciated that, for the 
engine power PENG prediction, the R2 has been significantly improved 
from 0.545 when using simple regression up to 0.88 for the multiple 
regression PENG = f (L, B, D, TEU). The ANN approach in Majnaric et al. 

(2022) proposes the form with the final R2 0.66. 
A comparison of the different fitting coefficients, R2, MAPE, RMSE, 

RRMSE and Pearson, as indicators of prediction goodness, are provided 
for each of the regression methods, all indicating the improvement ob-
tained by using more sophisticated models. In accordance with the 
literature (Padhma, 2023) estimations can be classified into four cate-
gories based on the RRMSE criterion: excellent (less than 10%), good 
(between 10% and 20%), acceptable (between 20% and 30%), and un-
acceptable (greater than 30%). The values of Relative Root Mean Square 
Error (RRMSE) reported in Appendix C are all between 0 and 2% and 
therefore the estimations can all be classified as excellent. 

For all the regression formulas provided in this paper, the coefficient 
of determination has been increased maintaining still very simple for-
mulations that are function of a few input values. As such, they are easily 
applicable to assess the main dimensions and parameters of a container 
vessel in the early design stage. The provided models are a valid support 
to designers in finding initial solutions for the design of a modern 
container vessel. 

Based on the obtained results, the forest tree algorithm is the most 
accurate regression but, being a black-box method, it has the drawback 
that does not provide any regression formula. Therefore, the multivar-
iable regressions, with higher R2 values and depending on available 
input parameters, are considered the most recommended. Future works 
could include other hull parameters and the development of advanced 
regression models for hydrodynamic performances. 
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Appendix A 

Simple regressions 

L-TEU. 
Power regression: L = 17.48756101 TEU0.3168693342 

Logarithmic regression: L = 84.50646382 ln(TEU)- 450.2988469. 
Polynomial regression: L = 102.9043417 + 0.04282532441TEU+ 2.463170177E-006 TEU2-1.704594192E-009TEU3 

B-TEU. 
Power regression: B = 2.821629922 TEU0.3008998037 

Logarithmic regression: B = 12.03526291 ln(TEU)- 64.94743548. 
Polynomial regression: B = 13.16232382 + 0.01679801069TEU − 6.668772272E-006TEU2+ 1.425392983E-009TEU3 

D-TEU. 
Power regression: D = 1.820019294TEU0.2896828926 

Logarithmic regression: D = 6.442566143 ln(TEU) – 32.84293138. 
Polynomial regression: D = 10.39593358 + 0.002777397645TEU +3.841705464E-007TEU2 -2.125296432E-010TEU3 

T-TEU. 

Table 4 
Estimated values of ship parameters for a container ship of 20000 TEU at 23 kn.  

Application case for container ship of 20000 TEU at 23 kn 

Multiple linear 
regressions 

Simple 
regressions 

Trees simple Trees multiple 

L 388.13m L 386.84m L 398.37m L 397.98m 
B 57.85m B 55.38m B 58.60m B 58.88m 
T 15.92m T 15.62m T 16.13m T 15.91m 
D 30.29m D 32.07m D 30.63m D 30.70m   

V 24.71kn V 23.21kn   
P 63681.1625 

kW 
P 81879.44 

kW 
P 63526.44 

kW 
P 61757.17 

kW  

Table 5 
Percentage difference of forest tree and multivariable regressions compared to 
single regressions.  

Percentage difference compared to simple regressions 

Trees simple Trees multiple Multivariable regressions 

B 5.8% B 6.3% B 4.5% 
T 3.2% T 1.9% T 1.9% 
D 4.5% D 4.3% D 5.5% 
V 6.1% P 24.6% P 22.2% 
P 22.4%      
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Power regression: T = 2.240354683TEU0.1961444783 

Logarithmic regression: T = 2.383434526 ln(TEU)- 8.237213727. 
Polynomial regression: T = 5.261912689 + 0.003533447633TEU − 7.092875169E-007TEU2 + 6.726374147E-011TEU3 

V-TEU. 
Power regression: V = 13.88703861TEU0.05818503954 

Logarithmic regression: V = 1.221004058 ln(TEU)+ 12.526487. 
Polynomial regression: V = 15.31103547 + 0.001681375982TEU +7.342533865E-007TEU2 -2.619085271E-010TEU3 

TEU,P-TEU. 
Power regression: P = 308.359455TEU0.5636479558 

Logarithmic regression: P = 19800.78429 ln(TEU)- 126083.3925. 
Polynomial regression: P = 18500.70682–13.07205522TEU + 0.009094797463TEU2 -1.663366635E-006TEU3 

Appendix B 

Multivariable regressions 

Four types of multivariable regressions have been determined with the following general formulation. 

•MR1: Y = f (V, TEU) for L, B, D, T, PENG; 
•MR2: Y = f (L, D, TEU) for V and PENG; 
•MR3: Y = f (L, T, TEU) for V and PENG; 
•MR4: Y = f (L, B, D, TEU) for V and PENG. 

An example of application is given in Section 8.  

Multivariable regressions  

MR1 – L = f (V, TEU) 

Variables Estimate SE t-stud p-value 

intercept − 7020.6859 3253.714 − 2.15775 0.0319 
V 1476.2432 604.2363 2.443155 0.015252 
TEU 0.1056 0.030347 3.48038 0.000591 
V2 − 113.4121 41.80004 − 2.7132 0.007127 
TEU V − 0.0072 0.002646 − 2.71232 0.007145 
TEU2 − 3.26E-07 2.68E-08 − 12.1813 4.16E-27 
V3 3.8307 1.2771 2.999526 0.002977 
V2 TEU 0.0001 5.73E-05 2.511556 0.012651 
V4 − 0.0477 0.014546 − 3.28268 0.001175 
MR1 – B ¼ f (V, TEU) 
Variables Estimate SE t-stud p-value 
intercept − 380.6165 82.09207 − 4.63646 5.69E-06 
V 56.2597 11.28242 4.986494 1.15E-06 
TEU 0.0020 0.000357 5.478681 1.04E-07 
V2 − 2.5729 0.511914 − 5.02604 9.50E-07 
TEU V 2.86E-05 1.59E-05 1.798981 0.073218 
TEU2 − 4.40E-08 4.31E-09 − 10.2081 1.06E-20 
V3 0.0387 0.007675 5.043116 8.76E-07 
MR1 – D ¼ f (V, TEU) 
Variables Estimate SE t-stud p-value 
intercept − 316.7987 95.69022 − 3.31067 0.001068 
V 42.6892 13.22484 3.227956 0.001414 
TEU 0.1637 0.032708 5.00569 1.05E-06 
V2 − 1.8414 0.606432 − 3.03646 0.002647 
TEU V − 0.0206 0.004221 − 4.87796 1.91E-06 
TEU2 − 3.86E-08 3.20E-09 − 12.0874 8.56E-27 
V3 0.0265 0.009224 2.877346 0.004357 
V2 TEU 0.0009 0.000181 4.791969 2.83E-06 
V3 TEU − 1.22E-05 2.59E-06 − 4.69684 4.36E-06 
MR1 – T = f (V, TEU) 
Variables coefficients SE t-stud p-value 
intercept − 9.0068 4.122446 − 2.18482 0.029817 
V 1.5253 0.371184 4.107214 5.40E-05 
TEU 0.0004 3.72E-05 10.52903 9.50E-22 
V2 − 0.0303 0.008222 − 3.68667 0.000278 
TEU2 − 4.8235E-09 1.59E-09 − 3.04312 0.002587 
MR1 – PENG ¼ f (V, TEU) 
Variables Estimate SE t-stud p-value 
intercept − 3826801.116 1765367 − 2.16771 0.031117 
V 754690.6349 327195.8 2.306541 0.021892 
TEU 4.8726 0.3386 14.39042 1.12E-34 
V2 − 55037.79937 22588.41 − 2.43655 0.015521 
TEU2 − 0.0001 1.44E-05 − 8.80295 2.18E-16 
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(continued ) 

MR1 – L = f (V, TEU) 

Variables Estimate SE t-stud p-value 

V3 1758.773976 688.6039 2.554116 0.011235 
V4 − 20.7193 7.823848 − 2.64823 0.008602 
MR2 – V ¼ f (L, D, TEU) 
Variables Estimate SE t-stud p-value 
Intercept 24.56265605 13.71708 1.790662 0.074603 
L − 0.540577487 0.242591 − 2.22835 0.02678 
D 4.111193311 2.598558 1.582106 0.114937 
TEU 0.010813276 0.006204 1.743074 0.082596 
L^2 0.003648354 0.001006 3.626227 0.000351 
LD − 0.005247444 0.010848 − 0.48372 0.629023 
D^2 − 0.312480065 0.134968 − 2.31521 0.021442 
LTEU − 0.000275754 5.90E-05 − 4.67148 4.97E-06 
DTEU 0.002420124 0.00073 3.316304 0.001053 
TEU^2 − 2.97E-07 1.05E-07 − 2.81271 0.005317 
L^2D − 0.000194496 5.22E-05 − 3.72391 0.000244 
LD^2 0.002162734 0.0006 3.603479 0.000381 
L^2TEU 5.72E-07 1.28E-07 4.473356 1.19E-05 
LDTEU 4.50E-06 1.71E-06 2.627049 0.009165 
D^2TEU − 0.000109895 2.63E-05 − 4.18328 4.03E-05 
DTEU^2 9.85E-09 3.53E-09 2.793309 0.005636 
L^2DTEU − 2.05E-08 5.12E-09 − 3.99291 8.67E-05 
LD^2TEU 2.19E-07 5.95E-08 3.679987 0.000288 
MR2 – PENG = f (L, D, TEU) 
Variables Estimate SE t-stud p-value 
Intercept − 51214.97917 82331.06 − 0.62206 0.534485 
L − 174.4098865 1345.627 − 0.12961 0.89698 
D 18961.94925 11059.41 1.714553 0.087702 
TEU − 53.94155239 16.32385 − 3.30446 0.001095 
L^2 15.30319721 7.224104 2.118352 0.035161 
LD − 384.3496449 1.35E+02 − 2.85021 4.74E-03 
D^2 1008.661712 880.2562 1.145873 0.252975 
LTEU 2.61E-01 9.26E-02 2.817848 0.005232 
DTEU 3.498457681 1.25E+00 2.807537 0.005397 
TEU^2 − 0.003742477 0.000645 − 5.80406 2.01E-08 
L^2D − 9.83E-01 3.96E-01 − 2.48016 1.38E-02 
LD^2 2.43E+01 7.46E+00 3.264731 0.001253 
D^3 − 114.4079426 3.86E+01 − 2.96259 3.35E-03 
L^2TEU 5.46E-04 2.15E-04 2.536243 0.011832 
LDTEU − 2.11E-02 4.61E-03 − 4.57167 7.71E-06 
DTEU^2 1.34E-04 2.13E-05 6.308056 1.33E-09 
MR3 – V ¼ f (L, T, TEU) 
Variables Estimate SE t-stud p-value 
Intercept − 58.8249432 31.52244 − 1.86613 0.063238 
L − 0.959180192 0.260014 − 3.68896 0.000278 
T 41.75581086 11.32448 3.687216 0.00028 
TEU 0.00166132 0.012486 0.133056 0.89426 
L^2 0.004048978 0.00085 4.765167 3.26E-06 
LT 0.071119467 0.023257 3.057944 0.00248 
T^2 − 5.38304808 1.291151 − 4.16918 4.27E-05 
LTEU − 0.000354577 7.94E-05 − 4.46427 1.23E-05 
TTEU 0.007613745 0.003447 2.208876 0.028125 
TEU^2 − 6.67E-07 1.34E-07 − 4.98963 1.16E-06 
L^2T − 0.000315294 7.03E-05 − 4.48815 1.11E-05 
T^3 0.208585136 0.04628 4.507024 1.03E-05 
L^2TEU 3.05E-07 8.37E-08 3.644103 0.000329 
LT TEU 3.02E-05 6.86E-06 4.408142 1.57E-05 
T^2TEU − 0.000757271 0.000281 − 2.69655 0.0075 
T TEU^2 3.82E-08 8.11E-09 4.709469 4.20E-06 
L^2TTEU − 2.67E-08 6.87E-09 − 3.88313 0.000133 
T^3TEU 9.94E-06 5.35E-06 1.857482 0.064462 
MR3 – PENG = f (L, T, TEU) 
Variables Estimate SE t-stud p-value 
Intercept − 300595.5842 355187.2 − 0.8463 0.398235 
L 3818.39297 3310.125 1.15355 0.249842 
T 11491.62815 120369 0.09547 0.924022 
TEU − 150.2089654 56.79532 − 2.64474 0.008719 
L^2 − 67.06777786 29.72797 − 2.25605 0.024976 
LT 1476.089831 1197.314 1.232834 0.218854 
T^2 − 7451.858834 10789.45 − 0.69066 0.490451 
LTEU − 0.262639218 0.240779 − 1.09079 0.276468 
TTEU 34.66496327 9.786817 3.542006 0.000478 
TEU^2 − 0.006746098 0.000995 − 6.77854 9.48E-11 
L^3 − 0.098690935 0.088331 − 1.11728 0.265 
L^2T 17.96549814 5.849477 3.0713 0.002379 
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(continued ) 

MR1 – L = f (V, TEU) 

Variables Estimate SE t-stud p-value 

LT^2 − 464.1148458 163.5258 − 2.83817 0.004929 
T^3 2490.556459 681.3501 3.655326 0.000316 
L^2TEU − 0.000935618 0.000567 − 1.65142 0.099972 
LTTEU 0.074302192 0.037586 1.976834 0.049215 
T^2TEU − 2.402734551 0.655566 − 3.66513 0.000305 
T TEU^2 0.000411303 6.74E-05 6.102632 4.20E-09 
L^4 0.00059148 0.000249 2.379707 0.018115 
L^3T^4 − 0.044457043 0.016557 − 2.68511 0.007761 
L^2T^2 0.725949793 0.29578 2.454357 0.014831 
MR4 – V ¼ f (L, B, D, TEU) 
Variables Estimate SE t-stud p-value 
intercept − 123.6176 70.49079 − 1.75367 0.080837 
L 0.4986 0.490953 1.015516 0.310941 
B 17.2011 7.704167 2.232698 0.026545 
D 3.8256 3.907033 0.97916 0.328543 
TEU 0.0383 0.009429 4.056885 6.84E-05 
L2 0.0066 0.001874 3.533402 0.000497 
L B − 0.1919 0.052607 − 3.64778 0.000328 
B2 − 0.6788 0.212604 − 3.19288 0.001608 
L D 0.0226 0.034194 0.660233 0.509774 
B D 0.9622 0.300336 3.203726 0.001551 
D2 − 1.1840 0.341681 − 3.46517 0.000633 
L TEU − 9.84E-05 7.61E-05 − 1.29271 0.197425 
B TEU − 0.0008 0.000626 − 1.32782 0.185572 
D TEU 0.0001 0.00113 0.099364 0.920937 
TEU2 2.42E-06 4.38E-07 5.526168 8.95E-08 
L3 − 1.01E-05 2.87E-06 − 3.53184 0.0005 
L B2 0.0057 0.001347 4.265583 2.93E-05 
B3 0.0039 0.001887 2.077272 0.038901 
L D2 − 0.0003 0.000872 − 0.31882 0.750156 
B D2 − 0.0168 0.006593 − 2.5482 0.011489 
D3 0.0253 0.009126 2.770462 0.006061 
L2 TEU 3.82E-07 8.94E-08 4.273276 2.84E-05 
B2 TEU 2.82E-05 1.52E-05 1.860976 0.06404 
L D TEU − 1.15E-05 5.99E-06 − 1.92552 0.055413 
B D TEU − 0.0001 3.89E-05 − 3.72129 0.00025 
D2 TEU 0.0002 6.74E-05 3.003014 0.002973 
B TEU2 − 5.04E-08 8.75E-09 − 5.75894 2.73E-08 
L B3 − 5.28E-05 1.14E-05 − 4.6365 5.98E-06 
B3 TEU 2.15E-07 1.20E-07 1.795408 0.073919 
L D2 TEU 2.00E-07 9.53E-08 2.101558 0.036695 
B D2 TEU 2.56E-06 6.64E-07 3.852357 0.000152 
D3 TEU − 4.80E-06 1.19E-06 − 4.03768 7.38E-05 
MR4 – PENG = f (L, B, D, TEU) 
Variables Estimate SE t-stud p-value 
intercept − 1128750.7849 533838.7 − 2.1144 0.035572 
L 9643.1847 3709.667 2.599474 0.009949 
B 116584.3452 57579.52 2.024754 0.044064 
D − 19552.1683 27011.72 − 0.72384 0.469909 
TEU 66.9804 72.46794 0.924276 0.356324 
L2 29.1442 17.34413 1.680347 0.094265 
L B − 1309.8360 383.5003 − 3.41548 0.000754 
B2 − 3268.4354 1830.299 − 1.78574 0.075476 
L D − 195.6562 201.0299 − 0.97327 0.331455 
B D 3652.5626 1797.192 2.032372 0.04328 
D2 − 867.6640 2068.029 − 0.41956 0.675203 
L TEU 0.8854 0.420075 2.107792 0.036146 
B TEU − 4.7628 4.488496 − 1.06112 0.289763 
D TEU − 0.6786 7.904148 − 0.08586 0.931656 
TEU2 0.0136 0.003545 3.827717 0.000167 
L3 − 0.0520 0.030077 − 1.72831 0.085293 
L B2 33.4326 10.44596 3.200535 0.001568 
B3 20.3311 23.09544 0.880307 0.379624 
L B D 12.8520 7.248143 1.77314 0.077546 
B D2 − 147.0299 61.44205 − 2.39299 0.017526 
D3 60.3298 42.25664 1.4277 0.154753 
L2 TEU 0.0026 0.001273 2.033401 0.043176 
L B TEU − 0.0357 0.0178 − 2.00513 0.046136 
B2 TEU 0.1593 0.107118 1.486729 0.138474 
L D TEU − 0.0967 0.026393 − 3.66399 0.000309 
B D TEU − 0.4317 0.130252 − 3.31411 0.00107 
D2 TEU 0.9906 0.450182 2.200445 0.028783 
B TEU2 − 0.0003 7.30E-05 − 3.76158 0.000215 
L B3 − 0.3174 0.095704 − 3.31681 0.00106 
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(continued ) 

MR1 – L = f (V, TEU) 

Variables Estimate SE t-stud p-value 

B3 TEU 0.0014 0.000722 1.881053 0.061245 
L B D TEU 0.0012 0.000322 3.721751 0.00025 
D3 TEU − 0.0087 0.004327 − 2.00619 0.046023  

Appendix C 

In this Appendix the coefficients of determination for simple and multivariable regressions are compared.  

Table C1 
Coefficients of determination R2 for simple regressions  

Simple regressions  

Dependent variable L = f(TEU) B = f(TEU) D = f(TEU) T = f(TEU) V = f(TEU) P = f(TEU) 

Type of regression forest tree 0.97940 0.99180 0.95520 0.92520 0.87330 0.89210 
power 0.90740 0.93850 0.88930 0.84770 0.15920 0.54480 
logarithm 0.94826 0.89373 0.89285 0.84289 0.17299 0.66658 
polynomial 1st order 0.81945 0.92987 0.78482 0.78220 0.02250 0.43856 
polynomial 2nd order 0.91662 0.95113 0.89805 0.81818 0.27027 0.65632 
polynomial 3rd order 0.94203 0.95250 0.89901 0.83870 0.61717 0.77400   

Table C2 
Comparison of goodness of fit coefficients for the simple regressions  

Simple L B D T V P 

R2 0.948 0.939 0.889 0.848 0.159 0.545 
MAPE 4.49% 5.12% 5.63% 4.89% 7.66% 24.51% 
RMSE 14.75 2.42 1.70 0.76 2.02 13338.88 
RRMSE 3.13E-03 3.71E-03 4.46E-03 3.73E-03 5.43E-03 1.69E-02 
Pearson 0.974 0.969 0.943 0.921 0.399 0.738   

Table C3 
Comparison of goodness of fit coefficients for multivariable regressions  

Multivariable L MR1 B MR1 D MR1 T MR1 V P 

MR2 MR3 MR4 MR1 MR2 MR3 MR4 

R2 0.964 0.956 0.919 0.850 0.758 0.768 0.828 0.859 0.855 0.858 0.881 
R adj 0.963 0.955 0.92 0.85 0.74 0.75 0.80 0.86 0.85 0.85 0.86 
MAPE 3.78% 4.40% 5.00% 4.77% 3.78% 3.73% 3.17% 13.14% 12.62% 12.61% 11.73% 
RMSE 12.23 2.00 1.45 0.75 1.08 1.06 0.91 6803.67 6912.56 6840.10 6260.56 
RRMSE 2.60E-03 3.04E-03 3.80E-03 3.70E-03 2.89E-03 2.83E-03 2.43E-03 8.59E-03 8.73E-03 8.63E-03 7.89E-03 
Pearson 0.982 0.978 0.958 0.922 0.871 0.876 0.910 0.927 0.924 0.926 0.938   

Table C4 
Comparison of goodness of fit coefficients for forest tree  

Forest Tree L B D T 

SR MR1 SR MR1 SR MR1 SR MR1 

R2 0.979 0.986 0.992 0.998 0.955 0.942 0.925 0.944 
MAPE 2.41% 2.23% 1.42% 0.74% 3.02% 3.81% 3.06% 2.70% 
RMSE 9.32 7.67 0.86 0.44 1.08 1.22 0.53 0.46 
RRMSE 1.98E-03 1.63E-03 1.31E-03 6.70E-04 2.83E-03 3.21E-03 2.61E-03 2.26E-03 
Pearson 0.990 0.993 0.996 0.999 0.977 0.971 0.962 0.973   
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Forest Tree V P 

SR MR2 MR3 MR2 SR MR1 MR2 MR3 MR4 

R2 0.873 0.956 0.940 0.928 0.892 0.950 0.938 0.936 0.928 
MAPE 2.68% 1.28% 1.74% 1.97% 10.60% 7.17% 7.47% 7.59% 5.31% 
RMSE 0.78 0.46 0.54 0.59 5954.69 4049.19 4498.59 4586.14 3611.75 
RRMSE 2.09E-03 1.24E-03 1.44E-03 1.57E-03 7.63E-03 5.10E-03 5.67E-03 5.77E-03 4.53E-03 
Pearson 0.935 0.978 0.970 0.964 0.946 0.975 0.969 0.968 0.980   

Table C5 
VIF values for multiple regressions  

MR1 MR2 MR3 MR4  

VIF  VIF  VIF  VIF 

V 1.023 L 10.4526 L 7.5409 L 10.5015 
TEU 1.023 D 8.7705 T 6.2513 B 17.6318   

TEU 5.9191 TEU 6.4042 D 10.1556       
TEU 16.2022 

No multicollinearity Moderate multicollinearity for L Almost no collinearity Presence of strong multicollinearity for B and TEU   

Table C6 
Breush-Pagan test results for multiple regressions  

Regression T df p-value Heteroscedasticity 

Length MR1 14.432 2 0.00073474 YES 
Breadth MR1 3.4136 2 0.1814463 NO 
Depth MR1 29.2087 2 4.54E-07 YES 
Draught MR1 25.6924 2 2.63E-06 YES 
Power MR1 26.9584 2 1.40E-06 YES 
Velocity MR2 14.1158 4 6.90E-03 YES 
Power MR2 36.0808 4 2.79E-07 YES 
Velocity MR3 13.1311 3 4.36E-03 YES 
Power MR3 31.6397 3 6.23E-07 YES 
Velocity MR4 3.7615 3 0.28839939 NO 
Power MR4 23.8087 3 2.74E-05 YES  

Appendix D 

B. Rinauro et al.                                                                                                                                                                                                                                



Ocean Engineering 292 (2024) 116499

24

Fig. D1. Normality of multiple linear regression residuals.  
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