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DPD-NeuralEngine: A 22-nm 6.6-TOPS/W/mm2

Recurrent Neural Network Accelerator for
Wideband Power Amplifier Digital Pre-Distortion

Ang Li*, Haolin Wu*, Yizhuo Wu, Qinyu Chen, Leo C. N. de Vreede, Chang Gao

Abstract—The increasing adoption of Deep Neural Network
(DNN)-based Digital Pre-distortion (DPD) in modern communi-
cation systems necessitates efficient hardware implementations.
This paper presents DPD-NeuralEngine, an ultra-fast, tiny-
area, and power-efficient DPD accelerator based on a Gated
Recurrent Unit (GRU) neural network (NN). Leveraging a co-
designed software and hardware approach, our 22 nm CMOS
implementation operates at 2 GHz, capable of processing I/Q
signals up to 250 MSps. Experimental results demonstrate a
throughput of 256.5 GOPS and power efficiency of 1.32 TOPS/W
with DPD linearization performance measured in Adjacent
Channel Power Ratio (ACPR) of -45.3 dBc and Error Vector
Magnitude (EVM) of -39.8 dB. To our knowledge, this work
represents the first AI-based DPD application-specific integrated
circuit (ASIC) accelerator, achieving a power-area efficiency
(PAE) of 6.6 TOPS/W/mm2.

Index Terms—Deep Neural Network, Digital Pre-distortion,
Software-Hardware Co-Design, ASIC, FPGA

I. INTRODUCTION

The evolution of wireless communication systems towards
higher data rates and broader bandwidths has intensified
demands on transmitter digital backends (DBEs), potentially
making them primary power consumers. As 5G and future 6G
systems employ sophisticated modulation schemes and wider
baseband bandwidths (fBB), Digital Pre-Distortion (DPD)
algorithms in DBEs must process data at sampling rates up to
thousands of mega samples per second (MSps) to effectively
linearize power amplifiers (PAs).

Massive Multiple-Input Multiple-Output (mMIMO) sys-
tems, enhancing spectral efficiency through numerous anten-
nas, require efficient DBEs to handle increased computational
loads [1], [2]. However, power constraints in wireless sys-
tems, particularly in base stations and IoT devices, necessitate
solutions with high power-area efficiency (PAE) measured
in Operations per Second per Watt per square millimeter
(OPS/W/mm2).

Traditional DPD techniques, such as the generalized mem-
ory polynomial (GMP) model [3], struggle to meet lineariza-
tion performance requirements for wideband PAs. Addition-
ally, stringent frequency and latency constraints of advanced
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Fig. 1. The GRU-RNN DPD architecture

communication standards create a pressing need for dedicated
DPD hardware accelerators that deliver high computational
throughput while maintaining low power consumption and
minimal silicon area.

Deep Neural Networks (DNNs) have shown promise
in modeling complex PA nonlinearities for wideband sys-
tems. Early approaches like Time Delay Neural Networks
(TDNNs) [4], [5] paved the way for more sophisticated
models such as VDLSTM and SVDLSTM [6], which lever-
age recurrent neural networks (RNNs) to capture PA dy-
namics. Recent developments include evaluation frameworks
like OpenDPD [7] and mixed-precision models such as MP-
DPD [8].

However, hardware implementation of DNN-based DPD
systems presents significant challenges. The computational
and memory demands of DNNs impede real-time processing,
particularly under the silicon area and power constraints of
wireless SoCs [9]. Current DPD FPGA implementations face
challenges balancing power consumption and throughput when
handling very high I/Q sample rates [10]–[16]. Similarly,
prior FPGA- [17]–[22] and ASIC-based [23]–[29] DNN/RNN
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accelerators were designed for relatively low-bit-rate tasks,
such as audio (hundreds of kbps) or video (hundreds of
Mbps for 480p@30FPS), and are not optimized for DPD to
process I/Q data streams with Gbps-level bit rates in wideband
transmitters.

In this paper, we propose DPD-NeuralEngine, a
22nm RNN-based DPD Application-Specific Integrated Cir-
cuit (ASIC) accelerator achieving 6.6 TOPS/W/mm2 in run-
ning a Gated Recurrent Unit (GRU)-based DPD algorithm.
The accelerator operates at 2.0 GHz and can process signals
with sampling rates up to 250 MSps (3 Gbps for 12-bit I/Q).
To the best of our knowledge, this is the first AI-based DPD
ASIC accelerator.

II. RNN-BASED DPD ALGORITHM

GRU-based RNNs can effectively model long-term de-
pendencies in sequential data, making them ideal for DPD
applications. As illustrated in Figure 1, our GRU-RNN DPD
model comprises three layers: the preprocessor, GRU, and
fully connected (FC) layers.

Initially, the input in-phase (Ix) and quadrature (Qx) signals
are processed to extract four features, forming the input feature
vector xt at time t:

xt =


Ix,t
Qx,t

I2x,t +Q2
x,t(

I2x,t +Q2
x,t

)2
 (1)

These features are then input into the GRU layer, defined
by the following equations:

rt = σ (Wirxt + bir +Whrht−1 + bhr) (2)
zt = σ (Wizxt + biz +Whzht−1 + bhz) (3)
nt = tanh (Winxt + bin + rt ⊙ (Whnht−1 + bhn)) (4)
ht = (1− zt)⊙ nt + zt ⊙ ht−1 (5)

Here, xt represents the input feature vector at time t, as
defined in Equation (1), and ht−1 is the previous hidden
state. The reset gate rt and update gate zt control the flow
of information, while nt generates the candidate hidden state.

The FC layer then maps the GRU’s hidden state ht to the
output predistorted signals Iy and Qy:(

Iy,t
Qy,t

)
= WFCht + bFC (6)

These outputs are subsequently converted to analog signals
for amplification by the PA.

III. DPD ASIC ACCELERATOR DESIGN

Building upon the GRU-RNN DPD model, we propose a
hardware accelerator designed for real-time inference. The
accelerator’s microarchitecture comprises four primary com-
ponents: a preprocessor, a Processing Element (PE) array,
nonlinear function units, and memory buffers, all orchestrated
by a central Finite State Machine (FSM).

Fig. 2. Microarchitecture of the GRU-RNN DPD hardware accelerator

A. Microarchitecture

The preprocessor uses 2 PEs to extract features from input
I/Q signals, feeding them into the PE array, which consists
of 156 PEs and is subdivided into input, hidden, and FC
arrays, and performs matrix multiplications for the GRU
and fully connected layers. Each PE executes Multiplication
and Accumulation (MAC) operations, with varying levels of
parallelism tailored to respective layer dimensions.

Nonlinear activation functions are implemented using effi-
cient approximation methods, detailed in Section III-B. The
design incorporates two main buffers: a weight buffer storing
fixed-point model parameters and a hidden state buffer for
temporarily storing GRU computations.

B. Nonlinear Function Approximation

To address the computational complexity of sigmoid and
tanh functions in hardware, we implement Piecewise Lin-
ear (PWL) approximations, namely Hardsigmoid and
Hardtanh:

Hardsigmoid(xi) =

 1, xi > 2
xi/4 + 1/2, −2 ⩽ xi ⩽ 2

0, xi < −2
(7)

Hardtanh(xi) =

 1, xi > 1
xi, −1 ⩽ xi ⩽ 1
−1, xi < −1

(8)

where xi is the i-th element of the input vector. This approach
simplifies their hardware implementation to a series of com-
parators and shifters.

C. Fixed-Point Data Representation

To optimize hardware efficiency while maintaining compu-
tational accuracy, we employ a 12-bit Q2.10 fixed-point data
format (2 integer bits and 10 fractional bits) for both NN
weights and activations and also the input and output I/Q data.
The GRU-RNN DPD model is trained using Quantization-
Aware Training (QAT) to minimize accuracy loss compared
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Fig. 3. Comparison of GRU-RNN DPD performance between using LUT-
based and Hardsigmoid/Hardtanh activation functions vs. precisions in
OpenDPD [7] simulations.

to the original floating-point model, which will be further
discussed in Section IV-B1. The subsequent section will detail
our experimental setup and results, demonstrating the efficacy
of its performance in wideband PA linearization.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Software: The GRU-RNN DPD model, with 4 input
features, 10 hidden units, and 1 hidden layer (502 parameters
total), is evaluated using the 200 MHz OpenDPD dataset [7]
and a new 80 MHz, 64-QAM, OFDM signal dataset (8.2dB
PAPR). Both datasets use a 60-20-20 train-validation-test split.
The latter dataset trains the model used in real measurements
with a Keysight M8190A generator, linear pre-amplifier, GaN
Doherty PA, and R&S-FSW43 analyzer. The GaN Doherty’s
average output power is 40 dBm before and after DPD.

The training utilizes an NVIDIA RTX 2050 Laptop GPU.
QAT runs for 300 epochs using ReduceLROnPlateau sched-
uler (initial lr=1×10-3), with batch size 64, frame length 50,
and stride 1.

2) Hardware: The design is first simulated on a Digilent
PYNQ Board (Zynq-7020 FPGA-SoC) for verification and
resource estimation. It is then implemented as an ASIC using
GlobalFoundries 22FDX-PLUS FD-SOI technology. Cadence
tools are used: Genus for synthesis, Innovus for placement
and routing, and Xcelium for simulations. Performance and
power results are derived from switching-activity-annotated
post-layout simulations.

TABLE I
UTILIZATION OF DPD-NEURALENGINE FPGA EMULATION

LUT FF DSP BRAM
Available 53200 106400 220 140

Used
(LUT-Sig./Tanh)

20522
(38.7%)

3969
(3.7%)

85
(38.6%)

0
(0%)

Used
(Hard-Sig./Tanh)

5439
(10.2%)

3156
(3.0%)

95
(43.2%)

0
(0%)

Fig. 4. Breakdown of LUT Usage on ZYNQ-7020: Baseline (LUT-
Sigmoid/Tanh) vs. Hard (Hard-Sigmoid/Tanh).

B. Results and Evaluation

1) Model Accuracy: Figure 3 shows a comparison of
model accuracy between using Look-Up Table (LUT)-based
activation functions and using Hardsigmoid/Hardtanh
functions at different precision levels, with the 32-bit floating-
point model as the reference baseline. The figure indicates that,
at the same weight and activation precision, the GRU-DPD
model with Hardsigmoid/Hardtanh functions trained by
QAT can achieve higher linearization performance than the
LUT method, with an ACPR/EVM improvement of 1-2 dB. A
precision sweep for quantized models reveals that quantizing
weights and activations to 12 bits provides an optimal balance
between accuracy and hardware overhead.

C. FPGA Emulation

Table I shows the resource utilization of FPGA-emulated
DPD-NeuralEngine using a baseline LUT-based and
Hardsigmoid/Hardtanh activation functions. Figure 4
shows that LUT-based activation function implementations
consume even more FPGA-LUTs (over 20,000) than PEs
for MAC operations. In contrast, Hardsigmoid/Hardtanh
functions significantly reduce FPGA-LUT usage for both
sigmoid and tanh by 18.9× and 35.3×, respectively, reduc-
ing the total FPGA-LUT usage to around 5,500, demonstrating
a significant reduction of their area cost.

D. ASIC Implementation

Figure 5 summarizes the post-layout area (0.2 mm2) and
performance of DPD-NeuralEngine operating at a clock
frequency (fclk) of 2 GHz with a supply voltage of 0.9 V. With
a total power consumption of 195 mW, the design achieves
a latency of 7.5 ns and 256.5 GOPS throughput, capable of
handling real-time DPD with an I/Q sample rate of 250 MSps;
thus achieving a PAE of 6.6 TOPS/W/mm2.
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART DPD HARDWARE ACCELERATORS AND MEASURED SIGNAL QUALITY.

DPD Hardware Specification and Performance Signal Config. and Quality1

Architecture Tech.

(nm)

Model Precision2

(bits)

#Param OP/S2 fclk

(MHz)

fs,I/Q

(MSps)

Latency

(ns)

Throughput3

(GOPS)

Power4

(W)

Efficiency3

(GOPS/W)

fBB

(MHz)

ACPR

(dBc)

EVM

(dB)

This Work ASIC 22 RNN W12A12 502 1,026 2,000 250 7.5 256.5 0.20 1,315.4 60 -45.3 -39.8

[13] FPGA (UltraScale+) 16 GMP W?A16 36 17 300 2,400 - ∼40.8 0.96 ∼42.5 400 -44.7 -39.2

[14] FPGA (Zynq-7000) 28 MP W?A16 9 30 250 250 40 ∼7.5 0.23 ∼32.6 20 -49.0 -

[15] FPGA (Virtex-7) 28 GMP W?A16 38 149 - 400 - ∼59.6 0.89 ∼67.0 100 -46.45 -

[16] GPU (RTX 4080) 5 TDNN FP32 909 ∼1,818 ∼2,300 1,000 - ∼1,818 ≤320 ≥5.7 200 -45.2 -35.34

1 Signal quality of PA outputs after applying DPD. Note absolute values here are incomparable due to different signal configurations and PA hardware.
2 Precision of Weights (W) and Activation (A). “?” indicates values are not reported.
3 OP/S denotes Operations Per I/Q Sample (floating-point or fixed-point). OPS (Giga Operations Per Second) is calculated as GOPS = OP/S × fs,I/Q.
4 Reported total on-chip power (dynamic + static). For [16], Thermal Design Power (TDP) [30] is used here as measured power is not reported.

TABLE III
COMPARISON WITH PRIOR RNN/DNN ASICS

[23] [24] [25] [26] [27] [28] [29] This
work

Technology
(nm) 65 65 65 65 45 22 7 22

fclk
(MHz) 80 200 0.25 200 800 300 880 2,000

Weight Prec.
(bits) 32 32 32 16 4 8 8 12

Area
(mm2) 7.7 16.0 0.4 16 40.8 3.0 3.0 0.2

Supply
(V) 1.1 1.1 0.75 1.1 - 0.5 0.575 0.9

Power
(mW) 67 21 0.02 297 590 31 174 195

Throughput
(GOPS) 165 25 0.004 346 102 77 3,604 257

Power Efficiency
(TOPS/W) 2.45 1.19 0.17 3.08 0.17 2.47 6.83 1.32

Area Efficiency
(GOPS/mm²) 21.3 1.6 0.01 21.6 2.5 25.8 1,185.7 1,282.5

PAE
(TOPS/W/mm²) 0.32 0.07 0.40 0.07 0.004 0.83 2.25 6.58

Fig. 5. Post-layout specification of DPD-NeuralEngine.

E. Comparison With Previous Work

Table II shows a comparison between the proposed ac-
celerator and other state-of-the-art DPD hardware designs.
Most previous works utilized FPGAs and memory polyno-
mial (MP)-based DPD models, with only one neural net-
work DPD implementation on a GPU [16]. Our proposed
DPD-NeuralEngine ASIC achieves the lowest on-chip

power consumption while achieving the fastest latency and
the highest power efficiency. Although the GPU-based ap-
proach [16] offers superior throughput at 1,818 GOPS, it costs
significantly higher power consumption due to the unnecessary
redundancy of a desktop RTX 4080 GPU (≤320 W). Further-
more, this work exhibits competitive signal quality metrics,
with an ACPR of -45.3 dBc and EVM of -39.8 dB at a
baseband frequency of 60 MHz.

We also compare DPD-NeuralEngine to classic prior
RNN/DNN ASICs as shown in Table III. Our design achieves
the highest PAE over others, which is important since DPD
has stringent area and power consumption requirements simul-
taneously. This is aided by the compact model, which allows
unnecessary flexibility to be sacrificed to co-design specialized
hardware, thereby boosting PAE. The closest design is a
7 nm DNN accelerator [29]; though achieving higher power
efficiency thanks to more advanced technology, lower bit
precision, and larger chip scale, they have worse PAE due
to the unnecessary programmability for ultra-high-speed DPD
application with tight area budget.

The reported results demonstrate the potential of NN-
based DPD ASIC accelerators to balance performance, power
efficiency, and signal quality, making them ideal for next-
generation wireless communication systems.

V. CONCLUSION

This paper presents an efficient ASIC implementation of
a GRU-RNN DPD accelerator for wideband power amplifier
linearization. The reported efficiency numbers significantly
outperform existing FPGA- and GPU-based DPD implemen-
tations. As we approach 6G, integrating advanced AI algo-
rithms with efficient hardware is crucial. Our ASIC-based
approach demonstrates the potential of neural network-based
DPD accelerators to optimize performance, power efficiency,
and signal quality for future wireless communication systems.
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