

Delft University of Technology

DPD-NeuralEngine

A 22-nm 6.6-TOPS/W/mm² Recurrent Neural Network Accelerator for Wideband Power Amplifier Digital Pre-Distortion

Li, Ang; Wu, Haolin; Wu, Yizhuo; Chen, Qinyu; De Vreede, Leo C.N.; Gao, Chang

DOI

[10.1109/ISCAS56072.2025.11043563](https://doi.org/10.1109/ISCAS56072.2025.11043563)

Publication date

2025

Document Version

Final published version

Published in

Proceedings of the 2025 IEEE International Symposium on Circuits and Systems (ISCAS)

Citation (APA)

Li, A., Wu, H., Wu, Y., Chen, Q., De Vreede, L. C. N., & Gao, C. (2025). DPD-NeuralEngine: A 22-nm 6.6-TOPS/W/mm² Recurrent Neural Network Accelerator for Wideband Power Amplifier Digital Pre-Distortion. In *Proceedings of the 2025 IEEE International Symposium on Circuits and Systems (ISCAS)* (Proceedings - IEEE International Symposium on Circuits and Systems). IEEE.

<https://doi.org/10.1109/ISCAS56072.2025.11043563>

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.

We will remove access to the work immediately and investigate your claim.

**Green Open Access added to [TU Delft Institutional Repository](#)
as part of the Taverne amendment.**

More information about this copyright law amendment
can be found at <https://www.openaccess.nl>.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.

DPD-NeuralEngine: A 22-nm 6.6-TOPS/W/mm² Recurrent Neural Network Accelerator for Wideband Power Amplifier Digital Pre-Distortion

Ang Li*, Haolin Wu*, Yizhuo Wu, Qinyu Chen, Leo C. N. de Vreede, Chang Gao

Abstract—The increasing adoption of Deep Neural Network (DNN)-based Digital Pre-distortion (DPD) in modern communication systems necessitates efficient hardware implementations. This paper presents DPD-NeuralEngine, an ultra-fast, tiny-area, and power-efficient DPD accelerator based on a Gated Recurrent Unit (GRU) neural network (NN). Leveraging a co-designed software and hardware approach, our 22 nm CMOS implementation operates at 2 GHz, capable of processing I/Q signals up to 250 MSps. Experimental results demonstrate a throughput of 256.5 GOPS and power efficiency of 1.32 TOPS/W with DPD linearization performance measured in Adjacent Channel Power Ratio (ACPR) of -45.3 dBc and Error Vector Magnitude (EVM) of -39.8 dB. To our knowledge, this work represents the first AI-based DPD application-specific integrated circuit (ASIC) accelerator, achieving a power-area efficiency (PAE) of 6.6 TOPS/W/mm².

Index Terms—Deep Neural Network, Digital Pre-distortion, Software-Hardware Co-Design, ASIC, FPGA

I. INTRODUCTION

The evolution of wireless communication systems towards higher data rates and broader bandwidths has intensified demands on transmitter digital backends (DBEs), potentially making them primary power consumers. As 5G and future 6G systems employ sophisticated modulation schemes and wider baseband bandwidths (f_{BB}), Digital Pre-Distortion (DPD) algorithms in DBEs must process data at sampling rates up to thousands of mega samples per second (MSps) to effectively linearize power amplifiers (PAs).

Massive Multiple-Input Multiple-Output (mMIMO) systems, enhancing spectral efficiency through numerous antennas, require efficient DBEs to handle increased computational loads [1], [2]. However, power constraints in wireless systems, particularly in base stations and IoT devices, necessitate solutions with high power-area efficiency (PAE) measured in Operations per Second per Watt per square millimeter (OPS/W/mm²).

Traditional DPD techniques, such as the generalized memory polynomial (GMP) model [3], struggle to meet linearization performance requirements for wideband PAs. Additionally, stringent frequency and latency constraints of advanced

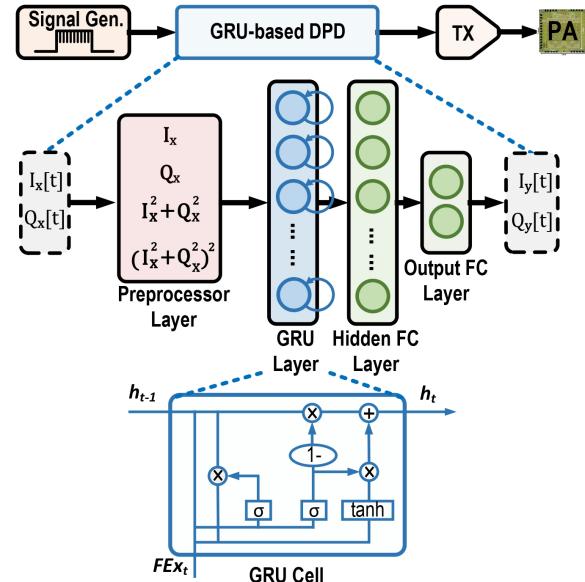


Fig. 1. The GRU-RNN DPD architecture

communication standards create a pressing need for dedicated DPD hardware accelerators that deliver high computational throughput while maintaining low power consumption and minimal silicon area.

Deep Neural Networks (DNNs) have shown promise in modeling complex PA nonlinearities for wideband systems. Early approaches like Time Delay Neural Networks (TDNNs) [4], [5] paved the way for more sophisticated models such as VDLSTM and SVDLSTM [6], which leverage recurrent neural networks (RNNs) to capture PA dynamics. Recent developments include evaluation frameworks like OpenDPD [7] and mixed-precision models such as MP-DPD [8].

However, hardware implementation of DNN-based DPD systems presents significant challenges. The computational and memory demands of DNNs impede real-time processing, particularly under the silicon area and power constraints of wireless SoCs [9]. Current DPD FPGA implementations face challenges balancing power consumption and throughput when handling very high I/Q sample rates [10]–[16]. Similarly, prior FPGA- [17]–[22] and ASIC-based [23]–[29] DNN/RNN

*Ang Li and Haolin Wu contributed equally to this work.

Corresponding Author: Chang Gao (chang.gao@tudelft.nl)

A. Li, H. Wu, Y. Wu, L. C. N. de Vreede and C. Gao are with the Department of Microelectronics, Delft University of Technology, The Netherlands.

Q. Chen is with the Leiden Institute of Advanced Computer Science (LIACS), Leiden University, The Netherlands.

accelerators were designed for relatively low-bit-rate tasks, such as audio (hundreds of kbps) or video (hundreds of Mbps for 480p@30FPS), and are not optimized for DPD to process I/Q data streams with Gbps-level bit rates in wideband transmitters.

In this paper, we propose DPD-NeuralEngine, a 22nm RNN-based DPD Application-Specific Integrated Circuit (ASIC) accelerator achieving 6.6 TOPS/W/mm² in running a Gated Recurrent Unit (GRU)-based DPD algorithm. The accelerator operates at 2.0 GHz and can process signals with sampling rates up to 250 MSps (3 Gbps for 12-bit I/Q). To the best of our knowledge, this is the first AI-based DPD ASIC accelerator.

II. RNN-BASED DPD ALGORITHM

GRU-based RNNs can effectively model long-term dependencies in sequential data, making them ideal for DPD applications. As illustrated in Figure 1, our GRU-RNN DPD model comprises three layers: the preprocessor, GRU, and fully connected (FC) layers.

Initially, the input in-phase (I_x) and quadrature (Q_x) signals are processed to extract four features, forming the input feature vector \mathbf{x}_t at time t :

$$\mathbf{x}_t = \begin{pmatrix} I_{x,t} \\ Q_{x,t} \\ I_{x,t}^2 + Q_{x,t}^2 \\ (I_{x,t}^2 + Q_{x,t}^2)^2 \end{pmatrix} \quad (1)$$

These features are then input into the GRU layer, defined by the following equations:

$$\mathbf{r}_t = \sigma(\mathbf{W}_{ir}\mathbf{x}_t + \mathbf{b}_{ir} + \mathbf{W}_{hr}\mathbf{h}_{t-1} + \mathbf{b}_{hr}) \quad (2)$$

$$\mathbf{z}_t = \sigma(\mathbf{W}_{iz}\mathbf{x}_t + \mathbf{b}_{iz} + \mathbf{W}_{hz}\mathbf{h}_{t-1} + \mathbf{b}_{hz}) \quad (3)$$

$$\mathbf{n}_t = \tanh(\mathbf{W}_{in}\mathbf{x}_t + \mathbf{b}_{in} + \mathbf{r}_t \odot (\mathbf{W}_{hn}\mathbf{h}_{t-1} + \mathbf{b}_{hn})) \quad (4)$$

$$\mathbf{h}_t = (\mathbf{1} - \mathbf{z}_t) \odot \mathbf{n}_t + \mathbf{z}_t \odot \mathbf{h}_{t-1} \quad (5)$$

Here, \mathbf{x}_t represents the input feature vector at time t , as defined in Equation (1), and \mathbf{h}_{t-1} is the previous hidden state. The reset gate \mathbf{r}_t and update gate \mathbf{z}_t control the flow of information, while \mathbf{n}_t generates the candidate hidden state.

The FC layer then maps the GRU's hidden state \mathbf{h}_t to the output predistorted signals I_y and Q_y :

$$\begin{pmatrix} I_{y,t} \\ Q_{y,t} \end{pmatrix} = \mathbf{W}_{FC}\mathbf{h}_t + \mathbf{b}_{FC} \quad (6)$$

These outputs are subsequently converted to analog signals for amplification by the PA.

III. DPD ASIC ACCELERATOR DESIGN

Building upon the GRU-RNN DPD model, we propose a hardware accelerator designed for real-time inference. The accelerator's microarchitecture comprises four primary components: a preprocessor, a Processing Element (PE) array, nonlinear function units, and memory buffers, all orchestrated by a central Finite State Machine (FSM).

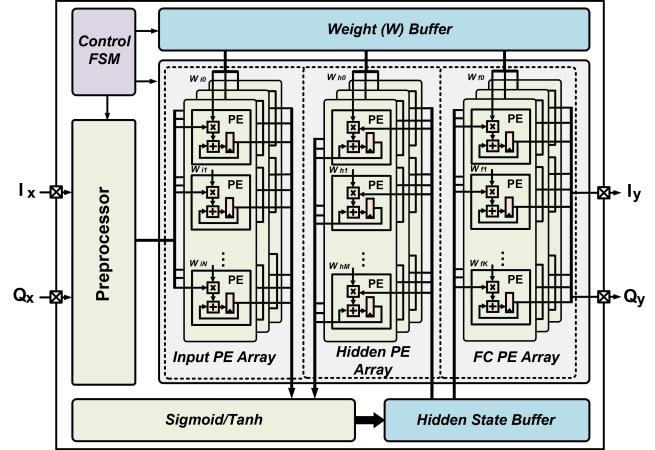


Fig. 2. Microarchitecture of the GRU-RNN DPD hardware accelerator

A. Microarchitecture

The preprocessor uses 2 PEs to extract features from input I/Q signals, feeding them into the PE array, which consists of 156 PEs and is subdivided into input, hidden, and FC arrays, and performs matrix multiplications for the GRU and fully connected layers. Each PE executes Multiplication and Accumulation (MAC) operations, with varying levels of parallelism tailored to respective layer dimensions.

Nonlinear activation functions are implemented using efficient approximation methods, detailed in Section III-B. The design incorporates two main buffers: a weight buffer storing fixed-point model parameters and a hidden state buffer for temporarily storing GRU computations.

B. Nonlinear Function Approximation

To address the computational complexity of sigmoid and tanh functions in hardware, we implement Piecewise Linear (PWL) approximations, namely Hardsigmoid and Hardtanh:

$$\text{Hardsigmoid}(x_i) = \begin{cases} 1, & x_i > 2 \\ x_i/4 + 1/2, & -2 \leq x_i \leq 2 \\ 0, & x_i < -2 \end{cases} \quad (7)$$

$$\text{Hardtanh}(x_i) = \begin{cases} 1, & x_i > 1 \\ x_i, & -1 \leq x_i \leq 1 \\ -1, & x_i < -1 \end{cases} \quad (8)$$

where x_i is the i -th element of the input vector. This approach simplifies their hardware implementation to a series of comparators and shifters.

C. Fixed-Point Data Representation

To optimize hardware efficiency while maintaining computational accuracy, we employ a 12-bit Q2.10 fixed-point data format (2 integer bits and 10 fractional bits) for both NN weights and activations and also the input and output I/Q data. The GRU-RNN DPD model is trained using Quantization-Aware Training (QAT) to minimize accuracy loss compared

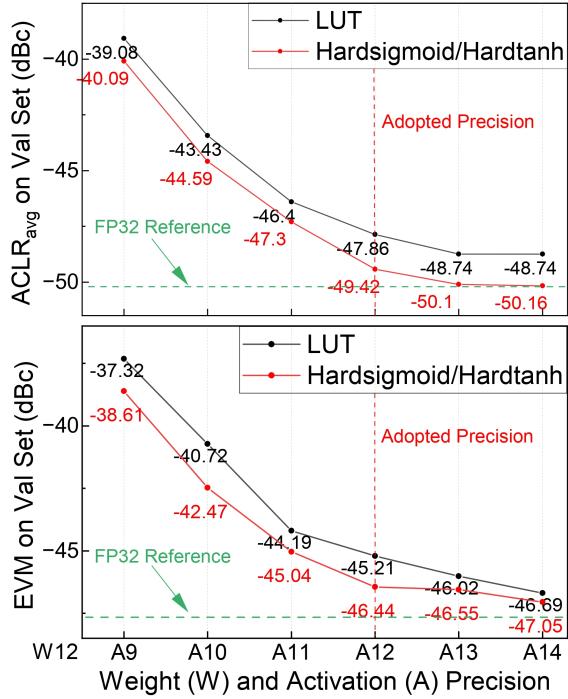


Fig. 3. Comparison of GRU-RNN DPD performance between using LUT-based and Hardsigmoid/Hardtanh activation functions vs. precisions in OpenDPD [7] simulations.

to the original floating-point model, which will be further discussed in Section IV-B1. The subsequent section will detail our experimental setup and results, demonstrating the efficacy of its performance in wideband PA linearization.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) *Software*: The GRU-RNN DPD model, with 4 input features, 10 hidden units, and 1 hidden layer (502 parameters total), is evaluated using the 200 MHz OpenDPD dataset [7] and a new 80 MHz, 64-QAM, OFDM signal dataset (8.2dB PAPR). Both datasets use a 60-20-20 train-validation-test split. The latter dataset trains the model used in real measurements with a Keysight M8190A generator, linear pre-amplifier, GaN Doherty PA, and R&S-FSW43 analyzer. The GaN Doherty's average output power is 40 dBm before and after DPD.

The training utilizes an NVIDIA RTX 2050 Laptop GPU. QAT runs for 300 epochs using *ReduceLROnPlateau* scheduler (initial $lr=1\times 10^{-3}$), with batch size 64, frame length 50, and stride 1.

2) *Hardware*: The design is first simulated on a Digilent PYNQ Board (Zynq-7020 FPGA-SoC) for verification and resource estimation. It is then implemented as an ASIC using GlobalFoundries 22FDX-PLUS FD-SOI technology. Cadence tools are used: Genus for synthesis, Innovus for placement and routing, and Xcelium for simulations. Performance and power results are derived from switching-activity-annotated post-layout simulations.

TABLE I
UTILIZATION OF DPD-NEURALENGINE FPGA EMULATION

	LUT	FF	DSP	BRAM
Available	53200	106400	220	140
Used (LUT-Sig./Tanh)	20522 (38.7%)	3969 (3.7%)	85 (38.6%)	0 (0%)
Used (Hard-Sig./Tanh)	5439 (10.2%)	3156 (3.0%)	95 (43.2%)	0 (0%)

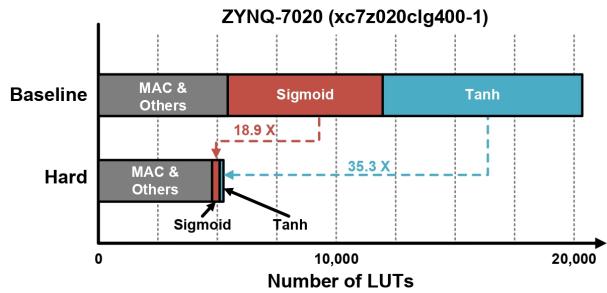


Fig. 4. Breakdown of LUT Usage on ZYNQ-7020: Baseline (LUT-Sigmoid/Tanh) vs. Hard (Hardsigmoid/Hardtanh).

B. Results and Evaluation

1) *Model Accuracy*: Figure 3 shows a comparison of model accuracy between using Look-Up Table (LUT)-based activation functions and using Hardsigmoid/Hardtanh functions at different precision levels, with the 32-bit floating-point model as the reference baseline. The figure indicates that, at the same weight and activation precision, the GRU-DPD model with Hardsigmoid/Hardtanh functions trained by QAT can achieve higher linearization performance than the LUT method, with an ACPR/EVM improvement of 1-2 dB. A precision sweep for quantized models reveals that quantizing weights and activations to 12 bits provides an optimal balance between accuracy and hardware overhead.

C. FPGA Emulation

Table I shows the resource utilization of FPGA-emulated DPD-NeuralEngine using a baseline LUT-based and Hardsigmoid/Hardtanh activation functions. Figure 4 shows that LUT-based activation function implementations consume even more FPGA-LUTs (over 20,000) than PEs for MAC operations. In contrast, Hardsigmoid/Hardtanh functions significantly reduce FPGA-LUT usage for both sigmoid and tanh by 18.9 \times and 35.3 \times , respectively, reducing the total FPGA-LUT usage to around 5,500, demonstrating a significant reduction of their area cost.

D. ASIC Implementation

Figure 5 summarizes the post-layout area (0.2 mm^2) and performance of DPD-NeuralEngine operating at a clock frequency (f_{clk}) of 2 GHz with a supply voltage of 0.9 V. With a total power consumption of 195 mW, the design achieves a latency of 7.5 ns and 256.5 GOPS throughput, capable of handling real-time DPD with an I/Q sample rate of 250 MSps; thus achieving a PAE of 6.6 TOPS/W/mm 2 .

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART DPD HARDWARE ACCELERATORS AND MEASURED SIGNAL QUALITY.

	DPD Hardware Specification and Performance											Signal Config. and Quality ¹			
	Architecture	Tech.	Model	Precision ²	#Param	OP/S ²	f _{clk}	f _{s,I/Q}	Latency	Throughput ³	Power ⁴	Efficiency ³	f _{BB}	ACPR	EVM
		(nm)		(bits)		(MHz)	(MSps)	(ns)	(GOPS)	(W)	(GOPS/W)	(MHz)	(dBc)	(dB)	
This Work	ASIC	22	RNN	W12A12	502	1,026	2,000	250	7.5	256.5	0.20	1,315.4	60	-45.3	-39.8
[13]	FPGA (UltraScale+)	16	GMP	W?A16	36	17	300	2,400	-	~40.8	0.96	~42.5	400	-44.7	-39.2
[14]	FPGA (Zynq-7000)	28	MP	W?A16	9	30	250	250	40	~7.5	0.23	~32.6	20	-49.0	-
[15]	FPGA (Virtex-7)	28	GMP	W?A16	38	149	-	400	-	~59.6	0.89	~67.0	100	-46.45	-
[16]	GPU (RTX 4080)	5	TDNN	FP32	909	~1,818	~2,300	1,000	-	~1,818	≤320	≥5.7	200	-45.2	-35.34

¹ Signal quality of PA outputs after applying DPD. Note absolute values here are incomparable due to different signal configurations and PA hardware.

² Precision of Weights (W) and Activation (A). “?” indicates values are not reported.

³ OP/S denotes Operations Per I/Q Sample (floating-point or fixed-point). OPS (Giga Operations Per Second) is calculated as GOPS = OP/S × f_{s,I/Q}.

⁴ Reported total on-chip power (dynamic + static). For [16], Thermal Design Power (TDP) [30] is used here as measured power is not reported.

TABLE III
COMPARISON WITH PRIOR RNN/DNN ASICs

	[23]	[24]	[25]	[26]	[27]	[28]	[29]	This work
Technology (nm)	65	65	65	65	45	22	7	22
f _{clk} (MHz)	80	200	0.25	200	800	300	880	2,000
Weight Prec. (bits)	32	32	32	16	4	8	8	12
Area (mm ²)	7.7	16.0	0.4	16	40.8	3.0	3.0	0.2
Supply (V)	1.1	1.1	0.75	1.1	-	0.5	0.575	0.9
Power (mW)	67	21	0.02	297	590	31	174	195
Throughput (GOPS)	165	25	0.004	346	102	77	3,604	257
Power Efficiency (TOPS/W)	2.45	1.19	0.17	3.08	0.17	2.47	6.83	1.32
Area Efficiency (GOPS/mm ²)	21.3	1.6	0.01	21.6	2.5	25.8	1,185.7	1,282.5
PAE (TOPS/W/mm ²)	0.32	0.07	0.40	0.07	0.004	0.83	2.25	6.58

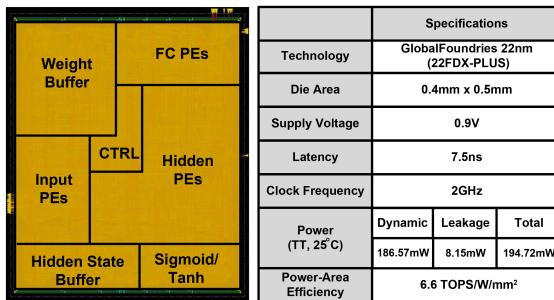


Fig. 5. Post-layout specification of DPD-NeuralEngine.

E. Comparison With Previous Work

Table II shows a comparison between the proposed accelerator and other state-of-the-art DPD hardware designs. Most previous works utilized FPGAs and memory polynomial (MP)-based DPD models, with only one neural network DPD implementation on a GPU [16]. Our proposed DPD-NeuralEngine ASIC achieves the lowest on-chip

power consumption while achieving the fastest latency and the highest power efficiency. Although the GPU-based approach [16] offers superior throughput at 1,818 GOPS, it costs significantly higher power consumption due to the unnecessary redundancy of a desktop RTX 4080 GPU (≤320 W). Furthermore, this work exhibits competitive signal quality metrics, with an ACPR of -45.3 dBc and EVM of -39.8 dB at a baseband frequency of 60 MHz.

We also compare DPD-NeuralEngine to classic prior RNN/DNN ASICs as shown in Table III. Our design achieves the highest PAE over others, which is important since DPD has stringent area and power consumption requirements simultaneously. This is aided by the compact model, which allows unnecessary flexibility to be sacrificed to co-design specialized hardware, thereby boosting PAE. The closest design is a 7 nm DNN accelerator [29]; though achieving higher power efficiency thanks to more advanced technology, lower bit precision, and larger chip scale, they have worse PAE due to the unnecessary programmability for ultra-high-speed DPD application with tight area budget.

The reported results demonstrate the potential of NN-based DPD ASIC accelerators to balance performance, power efficiency, and signal quality, making them ideal for next-generation wireless communication systems.

V. CONCLUSION

This paper presents an efficient ASIC implementation of a GRU-RNN DPD accelerator for wideband power amplifier linearization. The reported efficiency numbers significantly outperform existing FPGA- and GPU-based DPD implementations. As we approach 6G, integrating advanced AI algorithms with efficient hardware is crucial. Our ASIC-based approach demonstrates the potential of neural network-based DPD accelerators to optimize performance, power efficiency, and signal quality for future wireless communication systems.

ACKNOWLEDGEMENT

We thank GlobalFoundries for providing the 22FDX PDK and Ampleon Netherlands B.V. for providing the GaN PA.

REFERENCES

[1] F. Richter, A. J. Fehske, and G. P. Fettweis, "Energy efficiency aspects of base station deployment strategies for cellular networks," in *Proceedings of the 70th IEEE Vehicular Technology Conference Fall (VTC 2009-Fall)*, 2009, pp. 1–5.

[2] F. Richter and G. Fettweis, "Cellular mobile network densification utilizing micro base stations," in *Proceedings of the 2010 IEEE International Conference on Communications (ICC 2010)*, 2010, pp. 1–6.

[3] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of rf power amplifiers," *IEEE Transactions on Signal Processing*, vol. 54, no. 10, pp. 3852–3860, Oct 2006.

[4] M. Rawat, K. Rawat, and F. M. Ghannouchi, "Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks," *IEEE Transactions on Microwave Theory and Techniques*, vol. 58, no. 1, pp. 95–104, Jan 2010.

[5] Y. Zhang, Y. Li, F. Liu, and A. Zhu, "Vector decomposition based time-delay neural network behavioral model for digital predistortion of rf power amplifiers," *IEEE Access*, vol. 7, pp. 91 559–91 568, 2019.

[6] H. Li, Y. Zhang, G. Li, and F. Liu, "Vector decomposed long short-term memory model for behavioral modeling and digital predistortion for wideband rf power amplifiers," *IEEE Access*, vol. 8, pp. 63 780–63 789, 2020.

[7] Y. Wu, G. D. Singh, M. Beikmirza, L. C. De Vreede, M. Alavi, and C. Gao, "Opendpd: An open-source end-to-end learning & benchmarking framework for wideband power amplifier modeling and digital predistortion," in *2024 IEEE International Symposium on Circuits and Systems (ISCAS)*. IEEE, 2024, pp. 1–5.

[8] Y. Wu, A. Li, M. Beikmirza, G. D. Singh, Q. Chen, L. C. de Vreede, M. Alavi, and C. Gao, "Mp-dpd: Low-complexity mixed-precision neural networks for energy-efficient digital predistortion of wideband power amplifiers," *IEEE Microwave and Wireless Technology Letters*, 2024.

[9] K. Chuang, "Role of AI/ML in PA linearization for next G wireless," Keynote abstract, IEEE International Microwave Symposium (IMS), 2024, accessed: Oct. 8, 2024. [Online]. Available: https://ims-ieee.org/sites/ims2019/files/content_images/ims2024-keynote_abstract_kevinchuang_adi_v4.pdf

[10] H. H. Chen, C. H. Lin, P. C. Huang, and J. T. Chen, "Joint polynomial and look-up-table predistortion power amplifier linearization," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 53, no. 8, pp. 612–616, Aug 2006.

[11] H. Lin, X. Guo, Z. Zhang, J. Cao, F. Lin, D. Wei, and Y. Fang, "Optimization design of fpga-based look-up-tables for linearizing rf power amplifiers," in *2011 International Conference on Electronics, Communications and Control (ICECC)*, Ningbo, China, 2011, pp. 2731–2734.

[12] H. Huang, J. Xia, and S. Boumaiza, "Parallel-processing-based digital predistortion architecture and fpga implementation for wide-band 5g transmitters," in *2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G)*, Atlanta, GA, USA, 2019, pp. 1–3.

[13] —, "Novel parallel-processing-based hardware implementation of baseband digital predistorters for linearizing wideband 5g transmitters," *IEEE Transactions on Microwave Theory and Techniques*, vol. 68, no. 9, pp. 4066–4076, 2020.

[14] T. Cappello, G. Jindal, J. Nunez-Yanez, and K. Morris, "Power consumption and linearization performance of a bit- and frequency-scalable am/am am/pm pre-distortion on fpga," in *2022 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (IN-MMIC)*, Cardiff, United Kingdom, 2022, pp. 1–3.

[15] Y. Li, X. Wang, and A. Zhu, "Reducing power consumption of digital predistortion for rf power amplifiers using real-time model switching," *IEEE Transactions on Microwave Theory and Techniques*, vol. 70, no. 3, pp. 1500–1508, 2022.

[16] W. Li, R. Criado, W. Thompson, K. Chuang, G. Montoro, and P. L. Gilabert, "Gpu-based implementation of pruned artificial neural networks for digital predistortion linearization of wideband power amplifiers," Jul. 2024. [Online]. Available: <http://dx.doi.org/10.36227/techrxiv.172227112.20453024/v1>

[17] A. X. M. Chang and E. Culurciello, "Hardware accelerators for recurrent neural networks on fpga," in *2017 IEEE International Symposium on Circuits and Systems (ISCAS)*, 2017, pp. 1–4.

[18] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang *et al.*, "Ese: Efficient speech recognition engine with sparse lstm on fpga," in *Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays*, 2017, pp. 75–84.

[19] C. Gao *et al.*, "Deltarnn: A power-efficient recurrent neural network accelerator," in *Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays*, 2018, pp. 21–30.

[20] Z. Li, C. Ding, S. Wang, W. Wen, Y. Zhuo, C. Liu, Q. Qiu, W. Xu, X. Lin, X. Qian, and Y. Wang, "E-rnn: Design optimization for efficient recurrent neural networks in fpgas," in *2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)*, 2019, pp. 69–80.

[21] C. Gao, A. Rios-Navarro, X. Chen, S.-C. Liu, and T. Delbruck, "Edgedrnn: Recurrent neural network accelerator for edge inference," *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 10, no. 4, pp. 419–432, 2020.

[22] C. Gao, T. Delbruck, and S.-C. Liu, "Spartus: A 9.4 top/s fpga-based lstm accelerator exploiting spatio-temporal sparsity," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 35, no. 1, pp. 1098–1112, 2024.

[23] D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti, and J.-s. Seo, "An 8.93 tops/w lstm recurrent neural network accelerator featuring hierarchical coarse-grain sparsity for on-device speech recognition," *IEEE Journal of Solid-State Circuits*, vol. 55, no. 7, pp. 1877–1887, 2020.

[24] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, "14.2 dnpu: An 8.1 tops/w reconfigurable cnn-rnn processor for general-purpose deep neural networks," in *2017 IEEE International Solid-State Circuits Conference (ISSCC)*. IEEE, 2017, pp. 240–241.

[25] K. Kim, C. Gao, R. Graça, I. Kiselev, H.-J. Yoo, T. Delbruck, and S.-C. Liu, "A 23μW Solar-Powered Keyword-Spotting ASIC with Ring-Oscillator-Based Time-Domain Feature Extraction," in *IEEE International Solid-State Circuits Conference (ISSCC)*, Feb. 2022, pp. 370–371.

[26] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, "Unpu: An energy-efficient deep neural network accelerator with fully variable weight bit precision," *IEEE Journal of Solid-State Circuits*, vol. 54, no. 1, pp. 173–185, 2019.

[27] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, "Eie: efficient inference engine on compressed deep neural network," in *Proceedings of the 43rd International Symposium on Computer Architecture*, ser. ISCA '16. IEEE Press, 2016, p. 243–254.

[28] M. J. Molendijk, F. A. M. de Putter, M. D. Gomony, P. Jääskeläinen, and H. Corporaal, "Brainitt: A 28.6 tops/w compiler programmable transport-triggered nn soc," in *2023 IEEE 41st International Conference on Computer Design (ICCD)*, 2023, pp. 78–85.

[29] C.-H. Lin, C.-C. Cheng, Y.-M. Tsai, S.-J. Hung, Y.-T. Kuo, P. H. Wang, P.-K. Tsung, J.-Y. Hsu, W.-C. Lai, C.-H. Liu, S.-Y. Wang, C.-H. Kuo, C.-Y. Chang, M.-H. Lee, T.-Y. Lin, and C.-C. Chen, "7.1 a 3.4-to-13.3tops/w 3.6tops dual-core deep-learning accelerator for versatile ai applications in 7nm 5g smartphone soc," in *2020 IEEE International Solid-State Circuits Conference - (ISSCC)*, 2020, pp. 134–136.

[30] Nvidia, "Nvidia geforce rtx 4080 super en rtx 4080 grafische kaarten." [Online]. Available: <https://www.nvidia.com/nl-nl/geforce/graphics-cards/40-series/rtx-4080-family/>