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Abstract
Generative Adversarial Networks (GANs) brought
rapid developments in generating synthetic images
by mimicking structures in the training data. With
the list of application of GANs growing drastically,
it has lately become an exciting technology to ex-
plore for designers to communicate their ideas and
arts through technology and create engaging expe-
riences for humans. Nevertheless, translating hu-
man experiences to artificial intelligence and creat-
ing visually pleasant imagery is a challenging task
due to complex semantics of human perception. To
address this issue, we introduce an iterative train-
ing approach in which the generated images are cu-
rated by humans and the most pleasing ones are fed
back into the network to retrain. Additionally, we
do a factorial analysis to investigate how the aes-
thetic quality and the diversity are affected by the
size of training data and training length. In ex-
periments, we validate that this method can signif-
icantly improve the aesthetic quality of generated
images regardless of the dataset size and training
length, however the use of smaller datasets comes
with a cost of reduction in the image diversity and
novelty in the output images. The aesthetic bias
towards certain contexts can also deteriorate the di-
versity and affect the model evaluations. On the
other hand, no significant relationship has been
found regarding the training length, however this
could possibly be due to instabilities that happen
during the model convergence progress.

1 Introduction
Since the emergence of Generative Adversarial Networks

(GANs), introduced by Ian Goodfellow [8], the focal aim
of generative image models has been synthesizing photo-
realistic images. Although these models excel at learning the
latent distributions in the empirical data to mimic and resem-
ble the underlying structures, they know nothing about the
human experience lying within the complex process of per-
ception [10]. Automated metrics such as Frechet Inception
Distance (FID) [22] or Inception Scores (IS) [11] have been
in use to evaluate the quality of the novel images generated by
these models, however, these metrics are not direct measures
of human experience nor the aesthetic quality of the images.

Most work in the computational aesthetics community is
related to analyzing and designing features to capture ”aes-
thetic properties” through photographic guidelines and prac-
tices such as ”the golden ratio, color harmonies or the rule of
thirds” [9]. Often we can use these generalized calculations
to measure the aesthetic quality of the generated images to
estimate how likely they would create positive experiences.
However, there are visual and semantics representations that
are too complex to explicitly define as a mathematical for-
mula. The most effective solution is to ask humans for their
subjective feedback to evaluate the aesthetic quality of the
images [17].

The AI and experience project Landshapes©by Frederik
Ueberschaer explores how to utilize GAN models to generate
intriguing landscape images as shown in 1, to evoke climate
fascination in public[24]. The novel landscape images gen-
erated by the model were then shown to participants (n=5) to
gather feedback on their emotional experience and how aes-
thetically pleasing they found the images[24]. A question that
remains from this project is, how to inform the AI systems,
namely GANs, about human feedback and improve the hu-
man experience.

Figure 1: Sample of landscape images of various land shapes such as
aquatic, grassland, desert and tundra biomes generated by the Land-
shapes model.

This paper aims to explore how to effectively keep humans
in the loop and directly incorporate human-rated images in
the iterative training process. To achieve that, we will be gath-
ering crowdsourced ratings, evaluating their interactions with
the images generated by the custom Landshapes GAN [24]
and feeding the highly rated images back into the model. Fur-
thermore, we will be creating multiple models trained with
different sized subsets of the ranked images, and evaluating
the human reactions throughout different training iterations
to investigate the effect of the relationship of the dataset size
and training iterations over the quality and variety of the out-
put images. Precisely, the paper aims to answer the following
questions:

1. To what extent can we improve the aesthetic quality of
the model, through selecting the most pleasing outputs
and retraining the GAN?

2. How does the relationship of the dataset size and the
amount of training iterations affect the aesthetic im-
provements during the iterative training?

The structure of the paper is as follows: Initially, prelim-
inary research on the related literature will be explained in
section 2. The proposed method of iterative retraining will
be introduced in section 3. Section 4 will be presenting the
methodology including data preparation of the generated and
rated images, and how the subsets of this dataset are used
to retrain and investigate the Landshapes GAN model. Fur-
thermore, the evaluation methods of the aesthetic quality via
crowdsourced ratings and the resulting diversity of the out-
put images is also explained. Section 5 will be a displaying
the experimental results, while 6 will be a discussion on these



results, further elaborating on the parameters, such as bias
in annotation or ratings, that might have led to our findings.
Section 7 will reflect on the ethics and the reproducibility of
the research. Finally concluding thoughts on the research and
possible future work will be discussed in section 8.

2 Background
Within a few years after [8] introduced GANs, many ex-

tensions of the GAN architecture serving for different data
synthesis purposes have emerged. NVIDIA’s StyleGAN is
an alternative GAN formulation, which shows state-of-the-
art performance at generating high resolution photo-realistic
images [5]. StyleGAN adapts a style based generator net-
work architecture, which can distill high level features and
smoothly combine them with ”mixing and interpolation oper-
ations” to create new images [13]. This architecture consists
of millions of trainable parameters, thus relies on vast amount
of data and training iterations to prevent overfitting and gen-
erate high quality results, which can take days to weeks of
training.

[12] introduces a novel method to train StyleGAN with
limited amount of data and avert discriminator overfitting.
The proposed method incorporates StyleGAN with an ”adap-
tive discriminator augmentation (ADA)” pipeline, that helps
stabilizing training given only a few thousand images. This
mechanism applies augmentation operations to the images,
such as pixel blitting, color or geometric transformations, be-
fore being evaluated by the discriminator during the training.

Landshapes model was trained using StyleGAN-ADA
through transfer learning for 750 iterations using a pre-trained
model provided by NVIDIA. This method allows using the
weights of the pre-trained model instead of initializing at ran-
dom values, and fine-tuning them to repurpose the model ac-
cording to the a customized dataset [19]. Ueberschaer used a
custom dataset of 4,000 satellite images of 1024×1024 res-
olution gathered through Google’s Earth Engine1 at random
longitude and latitudes. Then the aesthetic quality of the im-
ages were assessed with the feedback of the audience.

There have been previous studies on how to incorporate
the human interactions with GANs via human rating predic-
tors as the loss function of the generator as presented in [17]
and [25]. However no existing literature on how to directly
include human rated pictures in the iterative training pro-
cess has been found. Intuitively, when the model is further
trained with images that are rated as ”more pleasant to the
eye”, it should start mimicking these distributions and start
generating more pleasing imagery. On the other hand, how
this method will affect the diversity of the generated images
should be further analysed.

3 Iterative training with selected generated
images

Human annotation of the generated images as ”pleasing”
or not is a central step in the iterative training process. Even
though the aforementioned augmentation pipelines help sta-
bilize and generalize the models, they do not not increase the

1https://earthengine.google.com/

variability in the training dataset [25]. The manual effort to
construct a labeled dataset remains as the bottleneck process,
thus it is important to explore the minimal amount of data
needed to lead to significant improvements.

Since the context of the empirical data fed back into the
GAN is the same as the initial training data (satellite imagery)
we expect to get significant results in the aesthetic quality of
the images even with a few hundred of images. However, a
small amount of data can lead to mode failures such as mode
collapse, where the generator starts outputting the same or
very similar images for different input vectors [7]. This leads
to low diversity in the generated images.

On another note, as the size of the dataset grows, the com-
plexity of the dataset also increases [4]. The changes in the
data complexity, causes changes in the training length for the
model to converge and stabilize. It is important to further ex-
plore the relationship between the dataset size and the train-
ing length, and understand how it affects the aesthetic quality
and authenticity of the generated images. We would like to
promote diversity and novelty, while also keeping the compu-
tation and annotation cost at minimum.

In this study, we will be investigating how the dataset size
and training length can affect the changes in aesthetic quality,
when a pretrained generative model is further trained with its
generated images that resulted positive human interactions.
Note that, it is assumed that the pretrained model to be im-
proved, has a low enough FID score, thus can generate high
fidelity and realistic looking images. This means, the pure
aim of the experiment is to improve the artistic quality of re-
alistic looking images generated by the pretrained model.

4 Method
To examine what size of dataset and number of iterations

would bring significant improvement in how pleasing the im-
ages are, a methodology of two main parts has been designed.
The first and most crucial part is annotation of the generated
images as ”pleasing” or not and creating subsets of different
sizes to test the effect of the size. In the second part, the Land-
shapes model is retrained with the resulting datasets. The re-
sulting models are then compared on how pleasing the output
images are as well as the model performance on the diversity
of the generated images.

4.1 Dataset setup
In order to investigate the effect of dataset size on the aes-

thetic quality of the images, the size of the training sets to
retrain the Landshapes model should be varied. For this task,
a generic dataset of ”aesthetically pleasing” pictures should
be created which then can be sampled from, to create differ-
ent sized subsets of this dataset.

Initially, a set of 6,000 1024×1024 dimension images were
randomly sampled from the images generated by the original
Landshapes model which were renamed. These images con-
sist of biomes such as coastlines, mountain ranges, pure land-
mass of green fields, ice fields, and rocky fields. All images
were shuffled to remove the seed number information from
the images. These images were then curated in collabora-
tion with four students from the Industrial Design Engineer-
ing faculty of TU Delft for a binary annotation (”pleasing”

https://earthengine.google.com/


(a) (b) (c)

Figure 2: Plots of generator and discriminator loss throughout the training progress for models trained with (a) 500 images, (b) 1000 images,
and (c) 2985 images. Note that no records of statistics between iterations 60 and 220 were saved for (c) due to problems with the training
environment.

or ”not pleasing”) process. The image dataset was split per
individual for faster annotation, and then the positively voted
images were merged in one dataset.

To test the reliability of the annotation group, a set of the
same 200 images were distributed and annotated by each stu-
dent and Krippendorff’s α was computed2. Krippendorff’s
α is a coefficient in range [0,1] that measures the agreement
among workers that take part in the labeling process [14], by
finding the proportion of existing disagreements in the labels
D0 and expected disagreements De for the given data accord-
ing to how many labels there are (see Equation 1). It is ac-
cepted to require α≥ 0.8 for a robust labeling, however irres-
olute conclusions can be still be drawn at α ≥ 0.667, which
is the lowest limit for the soundness of the annotations [15].
The group had a score of 0.864, which was deemed reliable
for the labeling process of the images.

α = 1− D0

De
(1)

In the end, a total of 2985 images were picked as ”pleas-
ing”. This is rather a small amount for GANs, due to the lack
of time and resources to annotate more images as mentioned
in Section 3. However, since the original network model was
trained using ∼4000 images, we hypothesize the amount of
images needed to improve the aesthetic quality without lead-
ing to mode failure should be below the number of this num-
ber.

From the dataset of 2985 images, three levels of randomly
sampled subsets were created. To observe the changes in the
aesthetic quality of the images, we started with a small set of
images, and gradually increased it for the experiments. The
sizes of the subset levels that were adopted for the experiment
are shown in Table 1.

4.2 Retraining the Landshapes model
Retraining and fine tuning the Landshapes model is a

straightforward process. After creating the subsets as ex-
plained in Section 4.1, these subsets are used to train and tune
the pretrained Landshapes model with transfer learning. For
this step, the StyleGAN2-ADA repository that was developed
and introduced in [12] has been used.

2Python implementation adapted from [14] https://github.com/
emerging-welfare/kAlpha has been used.

Subset size 500, 1000, 2985
Iterations (kimg) 80, 200, 500

Table 1: Subset levels with amount of images and number of itera-
tions used for evaluation and comparison. As a result the combina-
tion of the subset size and iterations, nine fine-tuned networks were
used in the experiment. Although 1000 kimg is ideal for repurposing
pretrained models via transfer learning [13], we hypothesize that the
significant results can be acquired with small amounts of iterations
since we are training a model within the same empirical domain.

Figure 3: An overview of the retraining pipeline. We first start by
generating images (1), which are then curated and annotated (2). We
use the positively annotated images as the empirical data (3) to fine
tune the pretrained generator and discriminator (4). We then evaluate
samples of the tuned generator with crowdsourced ratings (5).

The retraining process as depicted in Fig. 3 has been ap-
plied using each image dataset, via transfer learning for 500
kimg iterations. Although the model was trained three times,
we saved intermediate .pkl snapshots during the training pro-
cess every 40 iterations to investigate the effect of training du-
ration. Losses during the training were also trained as shown
in 2. In each of the training, it is observed that there is a
steep change in discriminator and generator losses until the
80 kimg. Around 200 kimg, we reach to a convergence. Thus

https://github.com/emerging-welfare/kAlpha
https://github.com/emerging-welfare/kAlpha


checkpoints at 80, 200 and 500th iterations of each training
cycle were picked for evaluation as shown in Table 1.

As a result nine fine tuned models and the Landshapes
model, as the baseline, were used for a comparative analy-
sis. The images generated by each network were curated to
crowdsourced workers to gather ratings and assess their per-
ceived aesthetic quality. Then a set of qualitative and quanti-
tative analysis was done to assess the diversity and authentic-
ity of the generated images.

4.3 Network and Environment Properties
Models were trained partially on the Google Cloud virtual

machine instances with a Tesla P1000 GPU and on the High
Performance Computer nodes of the TU Delft Industrial De-
sign Engineering faculty, using a single NVIDIA RTX3090
as the training GPU. The Landshapes model was trained
for ∼60-80 hours, depending on the time it took to reach
500kimg iterations.

For the experiments PyTorch implementation of
StyleGAN2-ADA3 from by NVIDIA Research Labs was
adapted. This repository provides a user friendly pipeline
for customizing and training networks and monitoring the
training progress with different configurations. 11gb-gpu
configuration has been utilized to maximize the GPU usage.
To promote diversity within our dataset, we enabled augmen-
tation parameters for vertical and horizontal mirroring as well
as ’bgc’ parameter for pixel blitting, geometrical and color
adjustments for the adaptive discriminator augmentation. As
mentioned in 4.2, intermediate snapshots every 40 kimg were
saved to provide qualitative and quantitative insights into the
training progress. The γ coefficient of the R1 regularization,
which is applied to regulate the gradient penalty during the
training of the discriminator [18], was set to 10. This value
was determined in regard to the proportion of the amount of
pixels (1024×1024) and the mini batch size (4 per GPU) as
suggested in [12]. The remaining parameters were set to the
default values.

4.4 Aesthetic quality evaluation
After the training cycle, 60 images at random were pro-

duced from each of the nine fine tuned models and the base-
line model, Landshapes, to assess and compare the perceived
aesthetic qualities. For this, a behavioral experiment with hu-
man subjects was carried out on the crowdsourcing platform
Prolific4 in collaboration with [20]. 40 images were sampled
from each set, and a survey of 100 multiple choice questions
was created. In each question, the participant was shown four
pictures from four distinct models picked at random, where
they are asked to pick the one they find the ”most pleasant to
the eye”. The reason the multiple choice strategy was opted
for rather than a scaled rating method is due to the fast pace
and simplicity of the four choice method to compare several
model in one questionnaire.

To acquire a ranking, each model was scored according
to the sum of how many images were picked by participants
per individual model, and the amount of times an image per

3https://github.com/NVlabs/stylegan2-ada-pytorch
4https://www.prolific.co

model was displayed. To formalize this, let P denote the set
of participants and Cp the set of images a participant p ∈ P
has chosen with the respective model identifier. Given that 40
images from each model was displayed, the score of a model
g was calculated as shown in equation 2.∑

p∈P

∑
c∈Cp

1{c=g}

|P | ∗ 40
(2)

The margin of error for each score was calculated through
adapted Fleiss’ Kappa [6], κ, calculated per question as a
weight in the margin of error formula. κ is a measure of
inter-rater agreement, that detects the agreement amongst two
or multiple raters, in the categorical scale [23] (e.g. different
models to be compared). This way the variance per a given
question would affect the estimated error less, if there is more
agreement between the raters. Given a set of questions Qg in
which images generated by the model g were displayed, the
error has been calculated as shown in equation 3, where Pe is
the expected probability of agreement, and Po is the observed
agreement for the outcome of a question. Thus the variance
for each image affects the error in proportion with the dis-
agreement level. This gives us a better idea how significant
and representative the final scores are per model.

MAEg = zγ ·

√∑
q∈Qg

(1− κq) · σ2
q

|Qg|
(3)

where
κ =

PO − Pe

1− Pe
(4)

Finally, to test the significance and inter-dependence of the
ratings, Chi-squared (χ2) test was applied. and ANOVA test
were applied to the results, and the p-value has been calcu-
lated.

4.5 Diversity and authenticity evaluation
Evaluation of image quality of the generative models is a

notoriously difficult task, due to the subjective nature of hu-
man perception and the lack of a metric that directly mea-
sures the domain specific authenticity and diversity of models
trained with unlabeled data [1]. For this reason both qualita-
tive and quantitative reviews were carried out to investigate
the diversity and authenticity of the output images.

Quantitative assessment
Quantitative evaluation of the resulting images were deter-

mined using the precision and recall distributions (PRD) [21].
Although FID [22] and IS [11] scores are the most common
metrics to assess GAN performance on how well the fake pic-
tures resemble the training data, they are unable to character-
ize different shortcomings and failure cases since they yield
a combined one-dimensional value [21]. For the experiment
the kNN recall and kNN precision implementations of PRD,
based on the works of [16] were computed.

[21] has introduced a novel definition of precision and re-
call. PRD disentangles the difference between the training
data distribution Q and learned distribution P into two sep-
arate scores. Precision measures to what extent Q can be

https://github.com/NVlabs/stylegan2-ada-pytorch
https://www.prolific.co


generated by a sample of P , and symmetrically recall mea-
sures how much of P can be generated from a portion of Q.
In other words, precision measures how similar the gener-
ated images are to the training data, thus how realistic they
are. In contrast, recall measures how well the generated im-
ages cover the variances ins the empirical data distribution,
which gives the information on how diverse the produced im-
ages are. These values can quantify the degree of GAN fail-
ures such as overfitting, mode dropping and mode invention,
which give a notion of the authenticity of the generated im-
ages [3].

In addition to PRD, The generator and discriminator losses
were monitored every checkpoint during training, in order
to gain an understanding of the training stability and perfor-
mance. From the loss plots, convergence and instances of
mode collapse can be identified, which can be related to is-
sues related to diversity.

Qualitative assessment
A manual assessment of a sampled set of generated images

from each checkpoint, to monitor the categorical distributions
of different biomes (e.g. coastline, grassland, forest, desert,
tundra) amongst the images have been conducted. This is
one of the most intuitive ways of post hoc evaluation for pro-
duced generator models [3]. Although this is a very simple
and straightforward solution, it comes with some limitations
since limited amount of images can be evaluated at a short
amount of time. Given nine models to compare, this becomes
an expensive task, as well as irreproducible.

For this reason, a pixel-wise k-means clustering method
used in was applied to the 500 sampled images from each
model using scikit-learn5, to systematically assess the class
imbalances and diversity within the output images. The im-
ages were separated into 5 clusters. As a metric for diversity
assessment, inertia of the clusters have been recorded. Inertia
is the sum of squared distances of the points within a cluster,
to the closest cluster centroid [2]. This means, if the inertia
is higher, the cluster consists of less similar images, meaning
the inter-biome variation is high. Additionally, to assess the
balances and distributions between different biomes, cluster
sizes have been used as a metric. This gives an idea of which
biomes and land shapes have been heavily represented in a
given sample of images.

5 Results
Table 2 gives an overview of the results acquired for the

evaluation metrics including scores, precision and recall val-
ues, explained in 4.4 and 4.5 for nine of the produced models
and the baseline model. The generation results for each re-
trained model are shown in Appendix A.2. The generated
images show a good variation in color and context, however
there is still some overrepresentation of certain land shapes
that are visible in even small samples. As seen in the gener-
ated images, there has been changes in the saturation, color
variation, land shape interpolations and mixing, and landmass
to water mass ratio over the course of training.

5https://scikit-learn.org/stable/

Images Kimg #Picked Error Precision Recall
Baseline 0 396 ±15.8 - -

500
80 495 ±15.4 0.635 0.346

200 500 ±15.3 0.624 0.229
500 453 ±15.1 0.647 0.138

1000
80 542 ±16.9 0.572 0.365
200 482 ±16.3 0.556 0.250
500 547 ±16.0 0.573 0.131

2985
80 549 ±16.0 0.336 0.327
200 451 ±14.6 0.334 0.201
500 549 ±14.8 0.535 0.188

Table 2: Overview of results of the evaluation metrics for the models
produced and used for comparison. Picked denotes the raw ratings
per each model, gathered from crowdsourced workers. Raw ratings
were acquired by counting how many times in total images belong-
ing to a model were picked. The scores in Fig. 4 were calculated as
the ratio of the times a GAN was picked over amount of times it was
shown. The estimated error in terms of ratings have also been in-
cluded in the table. Furthermore recorded precision and recall met-
rics are given on the rightmost columns.

5.1 Perceived aesthetic quality
49 out of 50 survey participants were included in calcu-

lation of the results and comparison of the ratings. The χ2

value for the survey, treating all different GANs as indepen-
dent categories, has been calculated as 43.620 with 9 degrees
of freedom, with the p value lower than 0.0001 showing a
high statistical significance of the ratings. Fleiss’ κ was cal-
culated as 0.2, meaning the agreement between the raters was
rather low, due to the subjectivity of the aesthetic perception
of each individual.

Fig. 4 pictures the relationship between the aesthetic
scores, number of iterations and the size of dataset. Regard-
less of the dataset size and iteration combination, all produced
models outperformed the baseline model, verifying our initial
hypothesis that the iterative learning with highly rated images
would increase the perceived aesthetic quality as mentioned
in Section 3. The model with the largest dataset and longest
training obtained the highest score.

To investigate the individual effect of the independent vari-
ables dataset size and number of iterations on the depen-
dent variable, perceived aesthetic quality, the average on both
variables was plotted in Fig.4b and Fig.4c and a two-way
ANOVA test was carried out. The test revealed that, there
was a statistically significant difference in the obtained aes-
thetic scores between the groups. Simple main effect analysis
showed that dataset size has a statistically significant effect on
the aesthetic quality of the images ( P=0.0289).

Taking a closer look at the factors at an individual level,
Fig. 4b shows the reported perceived aesthetic quality first
increases at the 80th iteration, and then has a slight decrease
at 200 iterations and increases again at the 500th iteration.
On the other hand, Fig. 4c displays a inverted U-shaped trend
with the increasing dataset size, in which the model trained
with 1000 images obtains the highest score on average.

As for the interaction plot on Fig. 4a, models trained with
subset level 1000 and 2985 follow the same trend seen in Fig.
4b, with a sharp increase in iteration 80 and sharp decrease at



(a) Overall aesthetics scores calculated
per model over different iterations.

(b) Average scores of models through
different iterations (80,200,500 kimg).

(c) Average scores of models over different
dataset sizes (500,1000,2985 images).

Figure 4: Plots showing the effect of dataset size and number of training iterations on the aesthetic scores calculated via crowdsourced ratings.
Human scores were calculated with the ratio of how many times images belonging to a GAN was picked over how many images belonging
to that GAN were shown in total. With 40 images represented each GAN in the survey and 49 participants in total, each GAN was displayed
in the study 1960 times. All produced models have outperformed the baseline Landshapes model after training.

iteration 200 which then increases at iteration 500. The scores
for the model trained with 500 images increase until thr 200th
iteration and then follows a slower decrease compared. Ob-
servation of further training iterations might be needed to ob-
serve the same trend seen in 1000 and 2985 image datasets.

Figure 5: Top row shows the top 5 most selected images. Bottom
row shows the 5 least selected (0 times picked) images. All images
with the highest ratings are coastal images with light blue tones,
while the least picked images are land mass images with low satura-
tion and color variation.

When the image ratings are examined individually, there
is a consistent pattern of high ratings for the coastal images
with high color variation regardless of the dataset and train-
ing length. On the other hand, images with pure land mass
and unsaturated brown tones were picked the least. Fig. 5
suggests there was a clear bias towards certain biomes in the
way the raters aesthetic perception.

5.2 Diversity and fidelity results
Precision and recall results

As shown in Appendix A.1 and Table 2 there was a sig-
nificant drop in recall over time, while precision had a slight
increase for all training cycles. This resulted in high preci-
sion and low recall for all the models produced, which means
a possible mode dropping might have occurred during train-
ing leading to less diversity and more contextual imbalances
amongst output images.

A common trend in 2 is that as dataset grows, the preci-
sion values at the identical iterations get smaller. This is an

expected behavior as [4] has shown that as dataset complex-
ity grows, which is directly proportional to dataset size, the
perceptual quality starts off lower during the training since
training data replication is lower. This is due to the higher in-
trinsic dimensionality and larger diversity of latent structures
represented within a more complex dataset.

When we take a closer look at the recall to reason about the
diversity, no significant differences can be observed between
the models that were trained with different number of images,
except for a slightly higher recall result for the model trained
with the largest dataset.

Clustering results
Output images were clustered into 5 different biome cate-

gories represented in Fig. 7. The most common land shapes
regardless of the models were forests, coastal images and
mountain ranges. The variance and inertia of the clusters that
were recorded are plotted in Fig. 6.

Fig.6a shows the variance between the size of the clusters
for each produced model, which tells how equally each land
shape is represented in the output data. The baseline outputs
the most balanced land shape representation in the generated
samples since it shows the lowest variance within clusters.
Initially, all models show little change in the variance com-
pared to the baseline, however the we observe a large jump
in the variance in the model trained with the smallest dataset.
Looking at the averaged variances, Fig. 6b clearly shows that
there is an logarithmic relationship between the dataset size
and variance.

The inertia, which can be related with mode collapse, fol-
lows a similar pattern with the variance. Interestingly, the
inertia first increases at 80 kimg for all models, implying the
inner cluster variability is large, and there’s a lot of dissimilar
images of the same land shape category as depicted in Fig.
6d. As training progresses, there is a dramatic drop in the
cluster inertia below the baseline, suggesting possible mode
collapse or overfitting issues. Fig. 6e displays that the model
trained with 500 image dataset shows the highest rate of over-
fitting while the other two models have a similar amount of
overfitting, yet still way below the baseline.



(a) Normalized variance of clus-
ter sizes over different iterations
(80,200,500 kimg) per model.

(b) Average variance of clusters
over different dataset sizes (500,
1000, 2985 images).

(c) Average variance of clus-
ters over different iterations
(80,200,500 kimg).

(d) Normalized inertias of clus-
ters through different iterations
(80,200,500 kimg).

(e) Average normalized inertias
of clusters over different dataset
sizes (500, 1000, 2985 images).

(f) Average inertia of clus-
ters over different iterations
(80,200,500 kimg).

Figure 6: An overview of the metrics that were calculated over the clustering results. Inertia plotted 6d shows how similar the images are,
belonging in the same cluster. Higher the inertia means higher the dissimilarity, showing that there are various representations of the same
biome in the sampled images. 6a shows the variance between the cluster sizes, so how balanced the biome representations are. An increasing
variance means there is overrepresentation of one or more biomes compared to the rest. 6b plots the averaged variances of models trained
with different dataset sizes and suggests that as training dataset gets smaller, the class imbalances increase significantly. All metrics were
normalized between the ranges [0,1].

Figure 7: Examples of images from 5 different clusters representing
different biome shapes. From left to right: forest, desert, coastal,
mountain range and glaciers.

6 Discussion
The results show that, human curation method can dras-

tically improve the aesthetic quality of the GAN generated
images even with rather small datasets, but this can introduce
significant aesthetic biases leading to reduction in the diver-
sity and variety of the generated samples. StyleGAN archi-
tecture is incredibly sensitive to the distributions in the train-
ing data, thus the properties of the training data can quickly
affect the aesthetic quality and the diversity of the images,
and this effect gets even larger for models trained with smaller
datasets due to fewer intrinsic dimensionality.

However a smaller choice of dataset size introduces issues
relating to diversity, as overfitting behavior has been observed
(Fig. 6e and Fig. 6b). Our findings regarding the diversity and
novelty of the images back up the works of [4] on the effect of
dataset size over GAN replication. The observed overfitting
and replication of the training data has decreased the dataset
size increased, leading to more balanced data and novel land
shapes representations.

It is important to note that simply relying on human evalua-
tions comes with fundamental limitations. Curation and eval-
uation of images on their aesthetic quality is a highly chal-
lenging task, due to the subjectivity in human perspective.
Aesthetic bias in the training data and the evaluation methods
can highly affect the model ratings. Looking at the training
dataset a large proportion of the images were aquatic and for-
est land shapes, which lead to more water masses becoming
apparent in the output images over training iterations.

Looking at Fig. 5 there was a clear bias towards coastal
images with large color and salient structure variation. When
we manually inspect the models that had less imbalances be-
tween the class distributions, we see that there has been a lot
of style and features mixing of different land shapes, intro-
ducing variation within the categories. This could possibly
be the reason that the model trained with 2500 images for
500kimg obtained the highest human ratings, while also hav-
ing a fairly good diversity compared to the other models.

An unexpected finding during evaluation was the effect of
training length on the human scores. Both the human aes-
thetic scores and diversity had fluctuations over the interme-
diate checkpoints, whereas the expected behavior would be
a direct correlation. One assumption to explain this surpris-
ing behavior is the instability of the training. During training,
the generator and discriminator compete against each other
to find an equilibrium. Looking at the loss plots in Fig. 2,
although there is a convergence we can still observe some
fluctuations in the losses during the mini-max interplay of the



Figure 8: Images of same seed number over the 80, 200 and 500
iterations from left to right. Over the course of the training, we
can see the increase in the salient structures and the color variation.
However before the image converges to the final state, there are un-
realistic looking structures morphing in to each other while mixing
the aquatic and forest land shapes.

models.
Additionally, during the manual inspection, we have come

across with generated images that were with structures mor-
phing into each other at the intermediate checkpoints as
shown in Fig. 8. During the training, intermediate iterations
are still learning how to mix features to create realistic look-
ing images and converge to the final state, thus this might
have caused the middle iterations with morphing images to
obtain lower ratings.

7 Responsible research
It is a crucial task to carry a scientific research with the

highest standards of quality and ethics. The methodologies,
evaluation steps and discoveries in this paper aim at having a
great level of transparency to ensure the objectivity as well as
accuracy of this study. It is necessary to address the research
reproducibility and integrity, which are two hallmarks of a
reliable science.

7.1 Integrity
Research integrity denotes honest and valid methods in

performing and evaluating a scientific study. It is the respon-
sibility of the researcher to clearly communicate the method-
ology and results without any data falsification nor a conflict
of interest. Due to the great data reliance of GANs, ensur-
ing total transparency during the data collection process is
vital. To make sure of the integrity of the dataset annotation,
dataset setup has been thoroughly explained step by step and
a high enough Krippendorff’s alpha was obtained to achieve
high reliability of the annotators.

With the randomness of generative models, multiple evalu-
ation metrics were included in this study to draw conclusions,
with clear explanations on why these metrics were chosen.
Qualitative and manual evaluations were done on large sam-
ples of generated images to remove randomness, and get inte-
gral and holistic understandings of the model performances.

Another aspect that was carefully considered was collect-
ing crowdsourced results for the created surveys. All survey
participants that have contributed their time and data for the
research have signed an informed consent, which clearly in-
dicated the aim of the research and the way their data is pro-
cessed. No personal and identifiable data was collected, as
each rating was associated with a randomized unique ID per
participant. To test the reliability and integrity of the partici-
pants’ responses, 5 reliability checking questions were added
and participants (n=1) who failed to answer these questions

correctly were not included in the evaluation process. The
way the survey results have been processed were clearly com-
municated in the study, and it was ensured that there was no
data falsification in the outcomes.

7.2 Reproducibility
Due to the black box nature of artificial intelligence and

neural networks, there is a lot of underlying randomness. This
randomness makes reproducibility very complex and intri-
cate especially in the realm of generative models. An im-
portant step to make sure of reproducibility, is to communi-
cate clearly what data has been used for the study. In this
study, a custom dataset was created through annotation of de-
sign student from Industrial Design Engineering faculty of
TU Delft. Although annotation of images on whether they
are ”pleasant” or not is a highly subjective matter, it was made
sure to state the Krippendorff’s alpha for the curators to test
and communicate the reliability of the annotators. The data
and the subsets of datasets that were created through this pro-
cess were clearly documented. Furthermore, every step of the
experimental setup and methodology, including the environ-
ment and network properties, and how the evaluations have
been carried out were provided in this study step by step.
Open source resources, repositories and their related papers
such as StyleGAN2-ADA were referenced. This way, the ex-
perimental steps and the results are able to be reproduced in
further experiments.

8 Conclusions and future work
The aim of this study was to explore ways of incorporating

human feedback in GAN models though the iterative training
method to increase the aesthetic quality of the generated im-
ages. Additionally, the effects of the dataset size and training
length were investigated. We have shown that the perceived
aesthetic quality of GAN models can be improved signifi-
cantly using this method, as all models produced have out-
performed the baseline. Although this improvement can be
achieved with relatively small datasets, problems regarding
the diversity and novelty in the generated images emerge. The
aesthetic bias in the training image curation can be reflected
to the output images, represented in the reduction of diversity.
We have not seen a direct correlation between training length
and the aesthetic quality of the images, but we have come to
the conclusion that it might have been due to instability dur-
ing the training of StyleGAN.

Aesthetic improvement and evaluation comes with a lot of
challenges due to the lack of ground truth. Since there is no
universal standard of beauty, the feedback provider’s defini-
tion and experience can affect the quality of the generated
images. This also results in an aesthetic bias in the feedback,
which leads to a decrease in the variety of images generated.
However it becomes an interesting task to explore if human
biases define the definition of aesthetic. In future works it
would be advantageous to further explore ways of promoting
diversity within images. Methods of correcting the bias, by
categorizing and balancing biome representations could be a
step to increase the land shape variations. Furthermore cura-
tion and evaluation can be done with comparison of images



of the same land shapes so more balanced datasets can be ob-
tained to be used in training.
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A Appendix
A.1 PRD results over the training

(a) 500 images

(b) 1000 images

(c) 2985 images

Figure 9: Precision and recall throughout training for different
datasets.

A.2 Generated fake pictures

(a) 80 kimg

(b) 200 kimg

(c) 500 kimg

Figure 10: Fake images generated over training for model trained
with 500 images.



(a) 80 kimg

(b) 200 kimg

(c) 500 kimg

Figure 11: Fake images generated over training for model trained
with 1000 images.

(a) 80 kimg

(b) 200 kimg

(c) 500 kimg

Figure 12: Fake images generated over training for model trained
with 2985 images.
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