Frequency
Learning

for Structured
NN Filters

so'q"'._ﬂ e »

-~ & A & A & .0 2 0

-reguency

carning

for Structureo
CNN Filters

Nikhil Saldanha

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday July 12, 2021 at 09:00 AM.

Student number; 4998707
Project duration: November 1, 2020 — July 15, 2021

Thesis committee: Prof. Dr. Jan van Gemert, TU Delft, Supervisor and Chair
Prof. Dr. Silvia Laura Pintea, TU Delft, Supervisor and Committee Member
Dr. Nergis Témen, TU Delft, Supervisor and Committee Member
Prof. Dr. Frans Oliehoek, TU Delft, Committee Member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This report presents the work of my master’s thesis project on the topic of Frequency learning for
structured CNN filters with Gaussian fractional derivatives. The text is structured in 3 parts, a scien-
tific article presenting our work as submitted to the British Machine Vision Conference (BMVC) 2021,
the supplementary material to as provided to the conference, and an appendix that introduces some
of the topics of the thesis.

This research was conducted at Computer Vision Lab of Pattern Recognition and Bioinformatics
Group in TU Delft under the supervision of Dr. Silvia Pintea, Dr. Nergis Témen, and Dr. Jan van
Gemert.

| would firstly like to thank my daily supervisors Silvia and Nergis. Their guidance and valuable feed-
back in weekly meetings has helped shape this thesis. They have been a constant source of guid-
ance without whose help | would not have been ambitious enough to submit my work to a confer-
ence. | am grateful to Jan for sharing his knowledge and feedback on my work and for helping sup-
port my thesis as the Head of the CV lab. | would also like to express my appreciation to Dr. Frans
Oliehoek for taking an interest in my work and agreeing to be a part of the evaluation committee.

Nikhil Saldanha
Delft, July 2021

Contents

1 Scientific Article 1
2 Supplementary Material 15
3 Appendix 23
3.1 Images 23
3.2 ImageFiltering L 23
3.2.1 Image Filtering in the Spatial Domain. 25

3.2.2 Image Filtering in the Frequency Domain. 26

3.3 Multi-Scale Image Representation and the Scale-Space. 28
3.3.1 Scale-Space Theory e 28

3.3.2 Gaussian ConvolutionOperator 30

3.4 Machine Learning and Neural Networks 32
3.4.1 Supervised MachineLearning. o 32

3.4.2 Fully-Connected Neural Network, 33

3.4.3 Convolutional Neural Networks 35

3.5 CNNswithFixed FilterBanks 36
3.5.1 Scattering Transform. 36

3.5.2 Structured Receptive Field (SRF) Network 36

1

Scientific Article

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 1

Frequency learning for structured CNN
filters with Gaussian fractional derivatives

Nikhil Saldanha,
Silvia L. Pintea,
Jan C. van Gemert,
Nergis Tomen

Computer Vision Lab,
Delft University of Technology,
Delft, Netherlands

Abstract

A structured CNN filter basis allows incorporating priors about natural image statis-
tics and thus require less training examples to learn, saving valuable annotation time.
Here, we build on the Gaussian derivative CNN filter basis that learn both the orientation
and scale of the filters. However, this Gaussian filter basis definition depends on a pre-
determined derivative order, which typically results in fixed frequency responses for the
basis functions whereas the optimal frequency of the filters should depend on the data
and the downstream learning task. We show that by learning the order of the basis we
can accurately learn the frequency of the filters, and hence adapt to the optimal frequen-
cies for the underlying task. We investigate the well-founded mathematical formulation
of fractional derivatives to adapt the filter frequencies during training. Our formulation
leads to parameter savings and data efficiency when compared to the standard CNNs and
the Gaussian derivative CNN filter networks that we build on.

1 Introduction

Convolutional neural networks (CNNs)
learn filters from the data, where each
per-pixel filter value represents a trainable
weight. As a parameter-efficient alterna-
tive, convolutional filters can be defined
as a combination of continuous functions
containing certain desirable properties: the
ability to learn the orientation selectivity
[20, 39], or the scales of the filters [19, 32].
Such structured filters incorporate image
priors into the CNN definition. This has the
benefit that these priors no longer need to
be learned from the data, leading to data ef-
ficiency. Here, we build on structured filters
for added data efficiency, and specifically
on the Gaussian derivative basis [14].

Order 1.0

Oer .4 rd 1.6 Order 1.8

Figure 1: Filter responses when using fractional
order Gaussian derivative filters (here x-order and
y-order are equal). Defining the filters using frac-
tional derivative orders adds flexibility in terms of
the peak response frequency, and enables the use of
standard gradient backpropagation for training.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

The Gaussian derivative basis defines the CNN filters as a fixed linear combination of
Gaussian derivatives up to a fixed hard-coded order. The choice of the Gaussian derivative
order restricts the model in terms of the frequencies that it can learn from the data. Selecting
a too small order would not allow the model to process high frequency responses. On the
other hand, selecting a too high order may lead to over-parametrization if the data does not
contain high frequencies, and it comes at large computational costs. In this work, we learn
the frequencies present in the data during training.

We make the observation that the order of the Gaussian basis in the structured receptive
fields (SRFs) [14] controls the maximum frequency of the filters, and therefore the max-
imum frequencies they can detect in the data. We, additionally, observe that when using
SRFs [14], typically a few Gaussian basis functions are sufficient to extract useful informa-
tion. However, while it may be adequate to use a single basis function out of the whole basis
to define each kernel, selecting from a large range of derivative orders may be necessary.
Putting together these observations, we aim to learn a single Gaussian derivative per kernel
where the order of the Gaussian derivative is adapted during training to better represent the
frequencies present in the data. Typically, the derivative order is an integer (e.g. first order
derivative or second order derivative) which makes backpropagation difficult. However, the
order of the Gaussian derivatives become differentiable when working within the domain of
fractional calculus. In this work, we make use of the fractional derivatives of the Gaussian
function to learn the derivative order. Fig. 1 shows examples of image responses when us-
ing fractional order Gaussian derivatives. Fractional orders add flexibility in terms of the
frequencies that the model can encode and make the model easily trainable using standard
gradient backpropagation methods.

This article makes the following contributions: (i) We propose a well-founded method for
learning the filter frequencies from data, and demonstrate its effectiveness experimentally;
(i1) To that end, we describe a mathematically solid approach to learning fractional order
Gaussian derivatives; (ii1) We demonstrate improved data efficiency and parameter savings
across 3 datasets when comparing with existing standard CNN's and baselines with structured
CNN filters.

2 Related Work

Structured filters in CNNs. Influential prior work has investigated the usefulness of struc-
tured filters for image analysis. Simoncelli et al. [30] define a steerbale pyramid using a set of
wavelets that encode orientation and scale, while Mallat defines complex wavelet basis filters
in [22]. These complex wavelets have been used in the Scattering transform [1, 23] which
is later extended in [5, 25, 29, 31]. Other works consider PCA basis [6], Gabors [20, 26],
circular harmonics [39], or simply learning the basis from the data [16]. A large amount of
work has been focused on Gaussian derivatives basis [14] used for controlling the scale in
deep networks [19, 27, 32] or for making the networks continuous over space and depth [35].
Here, we also build on the Gaussian derivative basis [14] because it allows us to easily control
the number of learnable parameters by directly learning the order of the Gaussian derivative
basis. The order parameter controls the complexity of the patterns the filters can respond
to, therefore by learning the order we learn how complex these filters need to be. While
wavelets, such as Gabor filters, can directly learn the frequency response of the filters, the
frequency parameter of the wavelet is coupled to its scale which relates to its spatial ex-
tent. Our representation decouples the frequency response and the scale/spatial extent of the

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 3

filters, via two independently trained parameters: derivative order and scale-parameter ©.

Parameter efficiency and data efficiency in CNNs. CNNs come with large computational
costs entailed by the large number of parameters to be learned on the training data. A new
trend is emerging with focus on efficiency. Model compression has been the most intu-
itive manner of reducing computations and memory [9, 11, 41]. Alternatively, the use of
1 x 1 convolutions have significantly reduced the parameters in SqueezeNets [7, 13]. Depth-
wise separable convolutions combined with 1 x 1 convolutions have shown parameter effi-
ciency [3, 12, 21, 43]. More recently EfficientNet [33] shows both accuracy improvement
and parameter reduction by carefully scaling network width, depth and resolution. Simi-
larly, here we also propose a model aimed at reduced parameters by learning how complex
the filters need to be. Moreover, our proposed fractional structured filters can be used in
combination with any efficient convolutional architecture.

Frequency learning in CNNs. Analyzing the deep networks in frequency domain has
brought insights into how they work. Deep networks can fit, barely perceivable, high-
frequency signals, thus leading to vulnerability to adversarial attacks [34, 36, 42]. However
they tend to learn low frequency signals first [28]. Rather than using frequency domain to an-
alyze deep networks, the networks can actually be trained in the frequency domain [8, 37] or
over inputs transformed to the frequency domain [40]. Here, we also analyze which frequen-
cies our model can fit well and where it makes errors. Our proposal learns the appropriate
frequency of the filters by learning the order of the Gaussian basis.

3 Fractional structured filters

3.1 Review of Gaussian basis filters

Rather than representing filters as a discrete set of pixel values, the use of Scale-space the-
ory [18, 38] enables the definition of filters as continuous functions [14, 32, 35]. And instead
of learning the values of the individual pixels, one only needs to learn the parameters of
these functions. The underlying idea is that a filter F(x) can be approximated with a Taylor
expansion around a point a, up to a certain order N:

N i
F'(a :
F(x)%Z i(')(x—a)’. (1)
=0 v
Scale-space theory [18, 38] defines the filter derivatives F' as the convolution (x) of the filter
F with Gaussian derivatives, G':

N (Gi(:6)%F)la _
Py~ 3 GLO D@ o

i!

where o is the standard deviation of the Gaussian representing the scale parameter [18]. The
recursive formulation relying on Hermite polynomials [24] allows to effectively compute the
i"" Gaussian derivative G’ as a point-wise multiplication (o) between the Gaussian G and the
i'" Hermite polynomial, H;:

Gi(x;0) = <%)im (ofﬁ) o G(x;0), 3)

4 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

Order 0 — 1 Order 1 — 2 Order 2 — 3 Order 3 — 4

Caputo-Fabrizio

Interpolated

Figure 2: Top: Gaussian derivatives computed using Caputo-Fabrizio [2] fractional derivative form.
Bottom: Fractional Gaussian derivatives computed via interpolation between integer orders. The error
introduced by using the interpolation is small relative to the Caputo-Fabrizio form.

where the recursive definition of the Hermite polynomials is: Hy(x) = 1; H; (x) = 2x; H;(x) =
2le-_1 (x) — Z(i — I)Hi_g (X)

By simplifying Eq. (2) and incorporating the polynomial coefficients in a set of weights
a, previous work [14, 35] defines the filter approximation F as a linear combination of
Gaussian derivatives up to order N:

N
F(x,0)~ Y. oG (x;0), 4)
i=0

where both the weights o and the scale parameter o are can be learned from data [27, 35].

3.2 Fractional structured filters: Learning the basis order

We propose to learn the frequency of the filters by making the order of the Gaussian basis
a learnable parameter. Instead of defining the filter as a linear combination of Gaussian
derivatives up to order N, as previously done [14], we approximate the filter with only one
weighted Gaussian derivative, where the order of the derivative v is a learnable parameter:

F(x;0) ~ aG(x;0).)

When using this filter definition in a deep network, we can obtain the gradients of the loss
function with respect to v through the standard network backpropagation. One caveat of
learning the order of the Gaussian derivative is that a gradient descent step will always re-
sult in real (fractional) order updates. Since the Gaussian derivatives are traditionally only
defined for integer orders, we need to account for orders in between two integers.

One possible way of dealing with fractional derivatives is the Caputo-Fabrizio [2] form,
which in the 1D case is:

v 1 1 1 o 1
Ger(xi0) == V2mad T <_ﬂ <x_7' 1—v))(:d’v()C> ©

where (s v(x) is an integral of the form:

1 52)2
(T+ 1—vG))dT (7)

Covl) = [(u=x)exp (207

However, when using this formulation, we observed exploding gradients due to the non-
linear terms. A more straight-forward approach is to interpolate between the two closest

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 5

. SRF-NiN . Entropy Min. SRF-NIN SRF-NiN Entropy Min. SRF-NiN
s s- - S —
. o . -
c c O g0 1
Do 2o s e el
o o 3" /
: : g
B B i 60
5] g
&~ > O — train
Do Be F ol —— test
© ©
LD o (D o 30
0 5 10 15 20 25 30 35 40 45 5 20 25 30 35 40 45 0 g e s 0 0 do e
Channels Channels Steps Steps
(a) (b) ()

Figure 3: (a) The distribution of a weights (color bar) learned in a layer of the original SRF-NiN
[14] model on CIFAR-10. (b) The distribution of ¢-s when minimizing their entropy. (c) Training/test
accuracies for the original SRF-NiN and the entropy-minimized version. We can safely reduce the
number of Gaussian derivatives defining the filters (i.e. set most basis coefficients & to zero), at no cost
to validation accuracy.

integers of the fractional order:
Gler(x:0) = (V] =V)GM (v 0) + (v = [v))G" (x; 0), ®)

where [-] and | -] are the ceil and floor roundings of v. This formulation permits us to keep
the gradients in check, due to linear nature of interpolation used. Fig. 2 shows a number of
fractional order Gaussian derivatives when going from order O to 1, 1 to 2, 2 to 3, and 3 to 4.
On the top row the Caputo-Fabrizio form (Eq. (6)) is used for computing the 1D derivatives,
while on the bottom row the interpolation method (Eq. (8)) for estimating fractional Gaussian
derivatives. There is on average less than 0.22 root mean squared error between these two
estimations. In all our experiments we use the linearly interpolation method to compute the
fractional Gaussian derivatives.

Because we are working with images, we use 2D Gaussian derivatives. The outer prod-
uct (®) of 1D Gaussian derivatives along the x- and y-direction defines the 2D Gaussian
derivative: G/ (x,y;0) = G'(x;0) @ G/(y; 0).

3.3 Deep networks with fractional structured filters

Each 2D Gaussian derivative requires two order parameters: the order on the x-axis, V,, and
the order on the y-axis, v,. When considering a filter F of size [C,K,W,H] with C input
channels and K output channels, we learn in practice two order parameters (V;,, chk) per
kernel in the filter, and a scalar (¢t;) for each kernel:

F(c,k,x,y;0) = tek(G¥(x;6) ® Gk (y; 0)),)

where the scale parameter o is shared among the kernels in the filter and can either be learned
as in [27, 35], or fixed as in [14, 32]. Our method is more flexible than the structured recep-
tive fields (SRF) [14], allowing for non-integer derivatives. We coin our filters FracSRF.

Is one Gaussian derivative sufficient? Unlike previous work [14, 35], we do not use a
linear combination of Gaussian derivatives up to a fixed order. We use a single Gaussian
derivative, whose order can be learned. To check whether using a single Gaussian derivative
is sufficient, we do a small test on the CIFAR-10 dataset, using SRF filters [14] over a NiN
[17] backbone. In the SRF model the @ weights control how much a certain integer-order
Gaussian derivative contributes to the final filter. Fig. 3.(a) shows the distribution of the o-s
in a layer of the original SRF-NiN model, compared to the same model in Fig. 3.(b) where
we normalize the o values and we minimize their entropy. Minimizing the entropy of o-s

6 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

reduces the actual number of Gaussian derivatives used per filter. At no loss in accuracy
(Fig. 3.(c)) the number of Gaussian derivatives can be reduced from 9 to 2 per channel. This
supports our intuition that using one Gaussian derivative is sufficient, where we make it more
flexible by learning its order from the data.

4 Experiments

4.1 Experimental setup

Datasets. We test our method across 3 datasets: CIFAR-10, CIFAR-100 [15], and STL-10
[4], having low and high resolution images, respectively. Additionally, to test the method’s
ability to learn the correct data frequency, we created a dataset called Sinusoids containing
2D sinusoids of various orientations and 5 spatial frequencies defining the 5 classes. We
also test our method’s accuracy in few-data samples regime by sub-sampling the CIFAR-10
dataset between 40 and 0.04% of the original number of images.

Models. We consider several backbone architectures: Network in Network (NiN) [17],
Resnet-32 [10], EfficientNet-bO [33]. We also compare with a few methods using struc-
tured filters: SRF [14, 27]. To obtain the SRF and our FracSRF variants, we replace all the
non 1x1 convolutional layers either with SRF layers or with FracSRF layers. For the SRF
networks, we always set the Gaussian basis orders to 2. For our models we initialization of
the orders uniformly between [1,6], set the spatial filter extent to 20 around the center and
initialize ¢ = 1, unless stated otherwise. We train using SGD with momentum of 0.9 and
L, regularization of 5e-4. For FracSRF-NiN, FracSRF-Resnet32, FracSRF-Efficientnetb(
we use a learning rate of 0.1, 0.05, 0.001 and batch sizes of 128, 256, and 16. When en-
abling o learning in FracSRF, we use a different learning rate and weight decay for o of
0.001 and 0.01 on FracSRF-Resnet-32, while on FracSRF-EfficientNet-b0 we use 0.001 and
0.05 for o learning. We keep learning rates and batch sizes fixed across datasets except for
FracSRF-Efficientnet-b0 on STL-10 where due to memory limitations, we use a batch size
of 4 and learning rate proportionally increased to 0.05. For the baselines NiN, Resnet-32
and EfficientNet-b0 we use learning rates of 0.1, 0.01, 0.01 and batch sizes of 128, 128 and
16, respectively. Given the relatively small dataset sizes, we use the lightweight version of
Resnet-32 where the first block has 16 channels and the last block 64. For the SRF-NiN,
SRF-Resnet-32 and SRF-EfficientNet-b0 we use learning rates of of 0.1, 0.05, 0.001 and
batch sizes of 128, 256, and 16 respectively.

{(aes

Fr(\,qu(yn(:ios — BN Frac SRF I CNN L SRF‘

Orientations —
Scores

(a) Sinusoids dataset (b) Sinusoids scores
Figure 4: Exp 1: (a) Examples from the toy Sinusoids dataset. We vary the number of frequencies and

the orientations. (b) Accuracy / Precision / Recall results on the Sinusoids dataset. For a baseline CNN,
its SRF equivalent, and FracSRF. Our FracSRF is more suitable for learning varying frequencies.

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 7

CNN SRF Frac-SRF

o 0.67 0.33 0 0 0 o
- 04 0.54 0.062 0 0 —-— 0

~— 0.045 0.097 ﬂ 0.33 0

o 0.91 0.089 0.001 0 0

- 0.041 0.95 0.011 0 0

3
o
o
o
o
@
N
=
o
a
3
|
o

Actual Labels
Actual Labels

Actual Labels

4
o
o
o
o
N}

<+- 013 0.058

’ Precliictezd Laabels4 ' Pre(lzlictezd LaiJeIs ' Preélictezd Lai)e|54
Figure 5: Exp 1: Confusion matrices for the CNN, SRF [14], and FracSRF small networks on the Si-
nusoids dataset. Our FracSRF can learn varying frequencies, and therefore it is better at distinguishing
the 5 classes.

Filter scale initialization

c=272 c=2"" c=279 c=2! c=2°
Top-1 Accuracy (%) 90.59+£0.2 90.65+0.04 90.90+0.05 90.68+0.25 90.264+0.29
Initial Filter Size 3x3 5x5 Tx7 9x9 11x11
Training Time (sec/epoch) 79.2s 79.2s 79.8s 79.2s 81.0s

Table 1: Exp 2.(a): Impact of initializing the filter scale on the performance and training time of the
FracSRF-NiN on CIFAR-10. The network can adapt the scale parameter ¢ even when initialized far
from the optimum. The best initialization seems to be ¢ = 2°.

4.2 Exp 1: Does FracSRF learn the correct data frequency?

We test the hypothesis that our FracSRF is more flexible in learning a large range of frequen-
cies, by learning the Gaussian derivative order. For this we create a synthetic toy dataset
coined the Sinusoids dataset. Fig. 4.(a) shows a few examples from this dataset. The dataset
contains 5 classes, each with 600 training examples and 200 test examples. Each class cor-
responds to a different frequency, where we vary the orientations of the sinusoids across
examples. For this experiment we use a small 2-layer network where the first layer has 32
output channels and the second 5 output channels. We repeated the experiments 5. For the
normal CNN we learn the filters the traditional way, for the SRF we replace the filters with a
linear combination of Gaussian derivatives as in [14] with ¢ = 1, and for FracSRF we use a
single weighted Gaussian derivative with o = 1. All filters are 5 X 5 px.

Fig. 5 shows confusion matrices for the CNN, SRF [14] and FracSRF 2-layer networks
on the Sinusoids dataset. Fig. 4.(b) reports accuracy, precision and recall scores for these
three methods. SRF cannot predict the highest frequency classes, being limited by its fixed
order in the Gaussian basis. The CNN is not able to resolve between similar frequencies and
tends to confuse neighboring classes. Our FracSRF can learn the varying frequencies and
therefore is able to better separate the 5 frequency classes.

4.3 Exp 2: Model choices analysis

Exp 2.(a): Impact of scale initialization. We test the effect of the initialization of the
scale parameter (o) of the Gaussian derivatives, in our FracSRF filters. Following [35] we
learn the o and initialize it as a power of 2, which avoids dealing with negative o gradients
during training. And we initialize the order uniformly in [1,6]. Table 1 shows results across
3 repetitions when varying ¢ for the FracSRF-NiN on CIFAR-10. The initialization of the
scale parameter shows minors variations, with ¢ = 2° being the best. The network can

8 NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

Filter order initialization

order € U3} order €Upg order € U o)

Top-1 Accuracy (%) 90.62£0.20 90.34+£0.12 89.52+0.13
Training Time (sec/epoch) 74.4s 74.5s 79.2s

Table 2: Exp 2.(b): Impact of order initialization on CIFAR-10 using FracSRF-NiN. There is not a
large difference in performance between different order ranges used for initialization. The model can
learn to adapt the order to the best one. Higher orders require more computations.

100+

@® Frac SRF
® SRF

NiN

(0]
o
1

Relative Accuracy
A O
o o

N
o
1

102 10! 100 1071
Percentage of the Training samples used(log scale)
Figure 6: Exp 3.(a): Data efficiency in the FracSRF model. Relative accuracy of NiN, SRE-NiN
[14, 27], and FracSRF-NiN on subsets of CIFAR-10. The dot size of each method indicates the relative
number of parameters. The performance of each model are normalized as a percentage of their own
accuracy at 100% training data. The scores of our FracSRF-NiN degrade less rapidly especially when
compared to NiN and SRF-NiN.

correct for the scale well even when initialized far away from the optimum. Additionally,
using larger scales impacts the training time.

Exp 2.(b): Impact of order initialization. We test the effect of initializing the Gaussian
derivative order on the CIFAR-10 dataset using FracSRF-NiN. We vary the initialization of
the order by uniformly sampling in the ranges: [1,3], [3,6], and [6,10]. We repeated the
experiments 3 x. Table 2 shows the optimal order initialization is found in the interval [1, 3].
There is not a large difference between the different initialization ranges, suggesting that
the model can learn the correct orders for task. Starting from larger order range is sub-
optimal as the training time increases: the Hermite polynomial computations requires more
time at higher orders. CIFAR-10 does not contain many high frequencies and therefore it is
reasonable that orders up to 3 are able to capture the information.

4.4 Exp 3: FracSRF performance analysis

Exp 3.(a): Accuracy in few-samples regime. We test our method in the few-training sam-
ples regime. We train on different sub-sets of the CIFAR-10 dataset and evaluate on the full
test set. We compare our FracSRF-NiN with the baseline NiN and other models using struc-
tured filters such as the SRF-NiN [14], which also have been shown to generalize well with
few training examples. Fig. 6 shows the relative accuracy of each model as a percentage
of its own top-1 accuracy when trained with 100% of the data: therefore all models start at
100% and scores decrease with the decrease in training samples. We also indicate through
the dot size in the plot the relative number of parameters of each model. Our FracSRF has
the smallest number of parameters. This plot shows the expected degradation of the perfor-
mance of the networks as training data decreases. The scores of our FracSRF-NiN degrade

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 9

NiN [17] SRF FracSRF (ours)
Fixed scale [14] Learned scale [27] Fixed scale Learned scale
Params 0.98M 0.5M 0.52M 0.33M 0.35M
CIFAR-10 90.90% 85.30% 91.48% 86.60% 91.30%
CIFAR-100 67.80% 61.50% 68.30% 61.90% 67.80%
STL-10 80.13% 59.40% 70.00% 71.00% 77.75%
SRF-ResNet-32 FracSRF-ResNet-32 (ours)
ResNet-32 [10] Fixed scale [14] Learned scale [27] Fixed scale Learned scale
Params 0.47M 0.30M 0.31M 0.15M 0.16M
CIFAR-10 92.28% 88.33% 92.20% 87.99% 91.60%
CIFAR-100 67.90% 65.82% 67.61% 63.00% 67.50%
STL-10 72.30% 68.40% 70.30% 67.40% 72.00%
. SRF-EfficientNet-b0 FracSRF-EfficientNet-b0 (ours)
EfficientNet-b0 [33] Fixed scale [14] Learned scale [27] Fixed scale Learned scale
Params 3.6M 3.47M 3.48M 3.43M 3.45M
CIFAR-10 92.31% 89.37% 93.50% 84.50% 90.23%
CIFAR-100 76.20% 67.50% 75.81% 66.89% 72.50%
STL-10 73.20% 67.50% 71.78% 65.83% 71.81%

Table 3: Exp 3.(b): Classification accuracies versus number of parameters on CIFAR-10, CIFAR-100
and STL-10 datasets when comparing the baseline NiN, Resnet-32 and EfficientNet-b0 with their SRF
variants [14, 27] and our FracSRF variants. Our method has comparable accuracy with the baselines
while largely reducing the number of parameters. On the high resolution, encoding more frequencies,
STL-10 dataset our method consistently outperforms the other models.

less rapidly, especially when compared to the SRF-NiN and the original NiN model.

Exp 3.(b): Accuracy versus parameter reduction. We test the accuracy versus parameter
efficiency for our FracSRF models when compared to a set of baseline CNNs and their SRF
versions with fixed scale [14] and learned scale [27], on CIFAR-10, CIFAR-100 and STL-
10. Table 3 reports accuracies and number of parameters. Our FracSRF layer achieves
comparable performance to standard convolutional networks, while reducing the number
of parameters 2 to 3 times on NiN and Resnet-32. On the EfficientNet-b0 we do not see
large parameter reductions because the model heavily relies on 1x 1 convolutions which are
not replaced with our FracSRF layers. On S7TL-10 our model with learned o and learned
Gaussian derivative order consistently outperforms the other models. The STL-10 dataset
contains high resolution images (96 x 96 px) allowing for higher frequencies to be present
in the data. While the other methods cannot adapt to varying data frequencies, our models
learn this information through the order parameter of the Gaussian derivatives.

5 Conclusion

We propose structured basis filters based on Gaussian derivatives, where we learn the fre-
quencies present in the data by learning the orders of the Gaussian derivatives. We show
experimentally that our model can learn the correct frequencies from the data. Moreover,
our model degrades gracefully with fewer training samples, and it can achieve good accu-
racy at large parameter reductions.

One of the limitations of our model is that computations drastically increase with order:
because we rely on the recursive Hermite polynomials to define the Gaussian derivatives.
Another limitation is that the scale learning is fairly unstable and it needs proper regular-
ization and careful learning rate selection. Additionally, we notice that the orders have the

10NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

tendency to go towards negative values, requiring clipping during training. However, our
model greatly reduces the number of parameters when compared to standard 3x3 convo-
lutional layers where instead of learning 9 parameters per kernel, it only needs to learn 2
parameters per kernel: the scale and the order.

References

[1] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. TPAMI,
35(8):1872-1886, 2013.

[2] Michele Caputo and Mauro Fabrizio. A new definition of fractional derivative without
singular kernel. Progr. Fract. Differ. Appl, 1(2):1-13, 2015.

[3] Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251-1258, 2017.

[4] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks
in unsupervised feature learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pages 215-223. JMLR Workshop and
Conference Proceedings, 2011.

[5] Fergal Cotter and Nick Kingsbury. Visualizing and improving scattering networks. In
MLSP, 2017.

[6] Golnaz Ghiasi and Charless C Fowlkes. Laplacian pyramid reconstruction and refine-
ment for semantic segmentation. In ECCV, 2016.

[7] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter Jin,
Sicheng Zhao, and Kurt Keutzer. Squeezenext: Hardware-aware neural network design.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 1638—1647, 2018.

[8] Kfir Goldberg, Stav Shapiro, Elad Richardson, and Shai Avidan. Rethinking fun:
Frequency-domain utilization networks. arXiv preprint arXiv:2012.03357, 2020.

[9] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. /ICLR, 2016.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770-778, 2016.

[11] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl
for model compression and acceleration on mobile devices. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 784-800, 2018.

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR, 2017.

NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS11

[13] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<
0.5 mb model size. CoRR, 2016.

[14] Jorn-Henrik Jacobsen, Jan van Gemert, Zhongyu Lou, and Arnold W. M. Smeulders.
Structured receptive fields in cnns. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016.

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Citeseer, 2009.

[16] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for
convolutional neural network compression. In ICCV, pages 5623-5632, 2019.

[17] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, 2013.

[18] Tony Lindeberg. Scale-space theory in computer vision, volume 256. Springer Science
& Business Media, 2013.

[19] Tony Lindeberg. Scale-covariant and scale-invariant gaussian derivative networks,
2020.

[20] Shangzhen Luan, Chen Chen, Baochang Zhang, Jungong Han, and Jianzhuang Liu.
Gabor convolutional networks. IEEE Transactions on Image Processing, 27(9):4357-
4366, 2018.

[21] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practi-
cal guidelines for efficient cnn architecture design. In Proceedings of the European
conference on computer vision (ECCV), pages 116—131, 2018.

[22] Stéphane Mallat. A wavelet tour of signal processing. Academic press, 1999.

[23] Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied
Mathematics, 65(10):1331-1398, 2012.

[24] J-B Martens. The hermite transform-theory. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 38(9):1595-1606, 1990.

[25] Edouard Oyallon, Eugene Belilovsky, and Sergey Zagoruyko. Scaling the scattering
transform: Deep hybrid networks. In ICCV, 2017.

[26] Juan C Pérez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Thabet, Bernard
Ghanem, and Pablo Arbeldez. Gabor layers enhance network robustness. In European
Conference on Computer Vision, pages 450-466. Springer, 2020.

[27] Silvia L Pintea, Nergis Tomen, Stanley F Goes, Marco Loog, and Jan C van

Gemert. Resolution learning in deep convolutional networks using scale-space theory.
arXiv:2106.03412, 2021.

[28] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Ham-
precht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks.
In International Conference on Machine Learning, pages 5301-5310. PMLR, 2019.

12NIKHIL SALDANHA ET AL.: FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

[29] Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scat-
tering for texture discrimination. In CVPR, 2013.

[30] Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J Heeger.
Shiftable multiscale transforms. IEEE transactions on Information Theory, 38(2):587—
607, 1992.

[31] Amarjot Singh and Nick Kingsbury. Efficient convolutional network learning using
parametric log based dual-tree wavelet scatternet. In CVPR workshop, 2017.

[32] Ivan Sosnovik, Michat Szmaja, and Arnold Smeulders. Scale-equivariant steerable
networks. ICLR, 2020.

[33] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional

neural networks. In International Conference on Machine Learning, pages 6105-6114.
PMLR, 2019.

[34] Nergis Tomen and Jan van Gemert. Spectral leakage and rethinking the kernel size in
cnns. arXiv preprint arXiv:2101.10143, 2021.

[35] Nergis Tomen, Silvia Laura Pintea, and Jan van Gemert. Deep continuous networks.
In International Conference on Machine Learning (ICML), 2021.

[36] Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing. High-frequency component
helps explain the generalization of convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8684—
8694, 2020.

[37] Thomio Watanabe and Denis F Wolf. Image classification in frequency domain with
2srelu: a second harmonics superposition activation function. CoRR, 2020.

[38] Andrew P Witkin. Scale-space filtering. In Readings in Computer Vision, pages 329—
332. Elsevier, 1987.

[39] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Bros-
tow. Harmonic networks: Deep translation and rotation equivariance. In CVPR, July
2017.

[40] Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren.
Learning in the frequency domain. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1740-1749, 2020.

[41] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivi-
enne Sze, and Hartwig Adam. Netadapt: Platform-aware neural network adaptation for

mobile applications. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 285-300, 2018.

[42] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D Cubuk, and Justin Gilmer.
A fourier perspective on model robustness in computer vision. NeurIPS, 2019.

[43] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6848—6856, 2018.

/

Supplementary Material

15

AUTHOR(S): FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 1

Frequency learning for structured CNN
filters with Gaussian fractional derivatives
(Supplementary)

BMVC 2021 Submission # 1415

1 Fractional-order derivatives

This section provides a narrow introduction to fractional calculus as required for under-
standing our approach. Let us take a function f(x) which we would like to differentiate with
respect to the variable x. This can be written as follows:

£ 70 = DIf(x)] =D m
X

% is the derivative operator with respect to the variable x. This formulation is known as
a first-order derivative of f with respect to x. D, f is a short-hand for the same. We can
successively differentiate the function f(x) n times to get an n’" order derivative. Here we
are only concerned with positive integer orders, i.e. n € Z™":

n

Gl @) =Dif. @

The simplest definition of the fractional derivative operator would be one that can operate
on integers as well as fractions. Let us use V to represent real numbers that can take on integer
or fractional values. Hence, in order for the fractional derivative operator DV (-), v € R to
be properly defined, it should be accurate for integer values as well. One of the best and
simplest tests for this is that the composition of derivatives of two fractional orders v and
v, should be equivalent to the derivative of the sum of the orders v; + v, of the composing
derivatives:

DV1 (szf) — DV1—|—V2f. (3)

In principle, fractional derivatives should be able to define normal derivatives D fand also
integrals [f:

DZ(sz) 4

/) 5)

Note that there is no single form of a fractional derivative and much like integrals or even
regular differentials, there are different ways of defining fractional derivatives for different
types of functions. In the next section, we review fractional derivatives of some common
functions.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 AUTHOR(S): FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

1.1 Fractional derivatives of polynomial functions

We can first break up polynomials as terms that look like ax* and then each term can be
differentiated separately using the chain rule of differentiation:

Dax* = akx*~! (6)
D?axk = ak(k —1)x*2 (7)
Diad — a—X_gn g > 8

a —a(k_n)!x k> n. (8)

When considering non-integer values of the order v, the factorial function does not have
solutions for all real numbers. To get around this issue, we can use the Gamma function I'(+)
which accepts as input all positive real numbers:

F(k) k—v'

V)" ®

DYaxk = a

1.2 Fractional derivatives of exponential functions

We can expand exponentials as an infinite series of polynomials and apply the same tech-
nique as in the previous section:

=D 10
e Z il IZO l — V)') ()
where again for non-integer values of v, we use the Gamma function I'(-):
0 xi—v
DVe* = : 11
“= X iy (1

We can combine the definitions of fractional order derivatives of polynomials and exponen-
tials to define the fractional order derivative for the Gaussian family of functions.

1.3 Fractional-order derivative of Gaussians
1.3.1 Using polynomial expansion

We first express the Gaussian as a Taylor Series (about x = 0) to get the polynomial terms:

1 x—u)?
Gx;o=1,u=0)= mcexp (—%) (12)
B 1 B x2 L x* B X0 n
V2 227 8V2m 48V2«¢

AUTHOR(S): FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 3

Order 0 — 1 Order 1 — 2 Order 2 — 3 Order 3 — 4

Figure 1: Fractional Order Derivatives of Gaussians, implemented using the Caputo-Fabrizio
closed-form. Results are the same as those obtained by authors in [1]

Each term is now a polynomial term whose fractional order derivative can be described in
terms of equation 9:

= -8 T2k+1) K
D'G(x;0 = 1,1 =0) = : T
(H=0) ,;)21%! TRk—v+1) oz

(13)

The drawback of this approach is that it yields complex values for x < 0. This works
perfectly fine at integer orders but does not give correct values for negative x for fractional
orders, since there we cannot deal with the imaginary component. One possible solution is
to shift the Gaussian in the positive direction so we do not encounter negative values. The
resulting Gaussian derivative should be identical in shape to the one at x = 0 since the mean
of a Gaussian only determines its shape. By expanding the series about some point x = a,
we get the following expression:

ae="/? (x—a) (a®— 1)6_“2/2(x— a)?
V2r 2V2r

(@@ =3)e) x—a)’

621

Unfortunately, there is no closed-form expression for this expansion which is com-
pounded by the fact that each of the terms of the expansion contains an exponential in the
form of the Gaussian which if expanded again will generate more exponential terms. Hence
we abandon this approach entirely and consider next the Caputo-Fabrizio form of the frac-
tional derivative.

Gx;o=1,u=0)=

(14)

1.3.2 Using Caputo-Fabrizio closed-form

One of the more popular forms of the fractional derivative is called Caputo-Fabrizio (CF)
fractional derivative [3, 4, 6]. We are interested in this form since prior work has shown to
be able to capture multiple types of functions. One of the advantages of this form is that it
allows us to separate the fractional part of the derivative from the integer order derivative
and compose them as required. It has also been shown in previous work that a closed-form
expression for the Gaussian derivative is possible [1]. The final closed-form expression looks
as follows:

n+v _ 1 ¥ v \""
FpVG(x) = :kg’l [<) %G (x)

+(v)CFD;G(x) (15)

1—v T 1—v

where ¢ D"V G(x) denotes the n+ v order Caputo-Fabrozio derivative of G(x) with respect
to x. n is the integer part of the order and Vv is the fractional part. The first term on the right

4 AUTHOR(S): FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

hand side is the integer-order part, which is a straightforward integer-order derivative and
can be computed using the Hermite polynomials. The second term is the fractional-order
part of the derivative which can be expressed using the Caputo-Fabrizio derivative form [6].
The CF derivative of an arbitrary function f(x) can be expressed as:

CFD)‘C’f(x):%/Oxexp<1fv(x—’c)>8xf(x) dt (16)

X=T

Therefore, the CF derivative of a Gaussian can be expressed as:

1 X _
TGl 0) = 1 [e (- 0) [E G| ar a7

:(1_v)h27%3/()X(u—r)exlg(_;7 (“(%o%u))z
e [““‘%%%)])dr

To make the equation simpler to read, we can separate out the integral into a new term that
we call §y 5v(x)

1 1 1 c? 1
CFDV . — . - — _— 1
X G(X,[.L, G) 1—v \/ﬁ63 exp 1—v X—HU 2 1—v CIJ«;G,V(X) (8)

X _ 1 2 2
Cu.o.v(¥) :/0 (U —x)exp < (T N;rclz_vﬁ))dr

To implement the fractional derivative in closed-form, we need to approximate the integral
Cu,o.v(x) using cumulative trapezoid or adaptive quadrature integral approximation meth-
ods [2]. The fractional derivatives of Gaussians computed using the CF form can be seen in
figure Fig. 1 which are the same as results obtained by the authors. We can observe that the
fractional-order smoothly transition between the integer orders which is a crucial require-
ment.

(19)

2 Additional experiments

2.1 Approximation of 1D functions

Experimental Setup. Before we embed our method into a CNN, we would like to test our
proposed scaled fractional Gaussian derivative in a simpler 1D setting. To do this, we create
a test scenario where we have 1D target functions which we would like to approximate with a
fractional Gaussian basis of a single learned order (our approach) and compare this with the
standard Taylor approximation of a function and previously proposed linear combination of
integer order Gaussian derivatives as used in [5]. While the ‘integer order’ method learns the
optimal coefficients for the fixed basis set required to fit the function, the ‘fractional order’
method learns a single order. Both methods learn via gradient descent to optimize a squared
error loss. The Taylor and the ‘integer order’ method approximate the function with 3 terms.

We hypothesize that our approach is better at approximating the functions than other
approaches because the other methods rely on a large number of terms (in the case of Taylor

AUTHOR(S): FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 5

—— integer order approx.

frac order approx. (caputo-fabrizio) frac order approx. (interpolated) taylor approx. -== target

1.01

0.5+

0.0

T T —05 T T T T
-04 -0.2 0.0 0.2 0.4 -03 -0.2 -0.1 00 0.1 0.2 0.3

(a) 1D Function approximation

1.01

0.5

0.0+

04 -02 00 02 04 203 62 61 00 01 02 03
(b) Caputo-Fabrizio vs. Interpolated Fractional Derivative

Figure 2: 1D function approximation. (a) Approximating two target functions (dashed lines) when
using: a Taylor approximation, a linear combination of integral Gaussian derivatives, and a scaled frac-
tional Gaussian derivative (computed by interpolating between integer orders). Our fractional Gaussian
derivatives can accurately approximate the function. (b) Comparison between the approximations by
scaled fractional Gaussian derivative computed via the Caputo-Fabrizio formulation and the interpo-
lated method shown in (a).

approximation) or orders (in the case of the linear combination of Gaussian derivatives),
while our method is can learn the correct order via gradient descent. This is more true for
functions with a higher frequency which can still be approximated with a single learned
order rather than relying on a large number of fixed terms. We experiment with two different
variations of our approach. The first by making the fractional-order derivatives using the
Caputo-Fabrizio form and the next by the interpolating between integer orders.

Accuracy of Approximation In Fig. 2. (a) can be seen how the interpolated variant of our
method performs against the integer-order and Taylor approximation. We show the results
here for the sinusoid and the sinc function where our method can better approximate the
functions than the other methods. While the other methods are accurate only towards the
centre (which is expected), our method also performs relatively well a few standard devia-
tions away. This result is promising as we expect this to translate into better results than SRF
networks in 2D where the filters made of our Fractional Gaussian basis will try to approxi-
mate local image functions.

Caputo-Fabrizio (CF) vs interpolated fractional derivatives In Fig. 2. (b), we show some
comparisons between the approximation of the CF and the Interpolated Fractional Deriva-
tive. We consistently noticed that the performance of the CF variant is lower than the inter-
polated one. Additionally, we noticed that the CF Derivative is highly sensitive to the initial
conditions and would sometimes never update the order. Sometimes, we observe a numerical
underflow of the gradients, and so we needed to clip the gradients. We investigate why such

6 AUTHOR(S): FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS

Loss/Gradients vs Imtlal Order when Ground Truth order =1 Loss/Gradient vs. Initial Order when Ground Truth order = 1

1.0

N] \ﬂﬁﬁ N

0.0 0.0

-0.5 -0.5

-1.0 -1.0

0 1 2 3 4 5 6 7 8 9 10 0 2 3 4 5 6 7 8 9 10
Initial Order Initial Order

—— loss gradient l

(a) CF Fractional Derivative (b) Interpolated Fractional Derivative

—0.254

—0.504

—0.757

—1.004

-1.00 -0.75 ~0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-—- order=1 order=3 order=5 —— order=7 —— order=9]

(c) Aligning of peaks of odd-ordered Gaussian Basis to the Ground-Truth order (dashed line)
Figure 3: Gradients analysis. Loss and gradient landscape of CF fractional derivative: (a) and
‘interpolated fractional derivative’ method; (b) methods for different initialization of order when ap-
proximating a Gaussian basis of order = 1 (ground truth order). The reason for the local minima in
odd orders in the loss landscape is that they are aligned with the peaks and troughs of the odd order
Gaussian derivative as shown in (¢).

errors happen in the next section.

2.2 Gradients of fractional derivative methods

Experimental Setup. In this section, we analyse the gradients and loss landscape of the
CF-Derivative and ‘interpolated derivative’ methods. This is in an effort to understand why
the CF Derivative method is so sensitive to the initial order and the final approximation is
far below the ‘interpolated derivative” method. This is even more surprising considering that
both derivatives smoothly transition between orders of Gaussian basis functions.

We initialize both methods at different fractional orders ranging from 0 to 10. At each
of these initial conditions for both methods, we record the value of the loss function and the
gradient of the loss with respect to the order. Importantly, we do not perform any gradient
descent steps. The function that we task each method with approximating is simply a Gaus-
sian derivative of arbitrary order which we call the Ground Truth order. In doing this, we
would like to eliminate all external factors that could influence the difference in performance
between the two methods. We also do not learn the coefficients of the basis for the ‘integer
order’ model and make sure that the target Gaussian is scaled appropriately. We plot the gra-
dient and loss values for each initial order condition. We expect that when the initial order

AUTHOR(S): FREQUENCY LEARNING FOR STRUCTURED CNN FILTERS 7

matches the ground-truth order, the loss goes to zero. Additionally, to the left and right of
the optimal order, the loss should be convex. We would hope to see smooth gradients that do
not grow suddenly to infinity or diminish to zero.

Analysis of Gradient and Loss Landscape. In figure Fig. 3, (a) and (b) we see the plots of
the loss and gradients with respect to different initial orders. The gradients and loss landscape
of the ‘interpolated order’ method are as described and expected for a well-behaved method,
while the gradients and loss functions of the CF fractional derivative method are not so well
behaved. We notice exploding gradients while the initial order increases and approaches
an integer order. This lends an explanation for the numerical underflow explained in the
previous section. The loss function is not exactly smooth but has several peaks and sharp
drops which could explain why the method was so sensitive to initial conditions. Another
interesting phenomenon is the presence of the sharp drops close to odd integer locations
which can be explained by the fact that the peaks of odd-ordered Gaussian derivatives align
to reduce the loss. This can be seen illustrated in Fig. 3.(c).

References

[1] Jorge M. Cruz—Duarte, Juan Rosales—Garcia, C. Rodrigo Correa—Cely, Arturo Gar-
cia—Perez, and Juan Gabriel Avina—Cervantes. A closed form expression for the
gaussian—based caputo—fabrizio fractional derivative for signal processing applications.

Communications in Nonlinear Science and Numerical Simulation, 61:138-148, 2018.
ISSN 1007-5704. doi: https://doi.org/10.1016/j.cnsns.2018.01.020.

[2] Walter Gander and Walter Gautschi. Adaptive quadrature—revisited. 40(1):84-101.
ISSN 1572-9125. doi: 10.1023/A:1022318402393. URL https://doi.org/10.
1023/A:1022318402393.

[3] J.LE. GOomez-Aguilar, Teodoro Cordova, Jesus Escalante-Martinez, C.M. Calderon-
Ramon, and R. Escobar Jiménez. Electrical circuits described by a fractional derivative
with regular kernel. Revista Mexicana de Fisica, 62:144-154, 03 2016.

[4] Jordan Hristov. Transient heat diffusion with a non-singular fading memory: From the
cattaneo constitutive equation with jeffrey’s kernel to the caputo-fabrizio time-fractional
derivative. Thermal Science, 20:19-19, 07 2016. doi: 10.2298/TSCI160112019H.

[5] Jorn-Henrik Jacobsen, Jan van Gemert, Zhongyu Lou, and Arnold W. M. Smeulders.
Structured receptive fields in cnns. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[6] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. A new definition of fractional
derivative. 264:65-70. ISSN 0377-0427. doi: https://doi.org/10.1016/j.cam.2014.01.
002. URL https://www.sciencedirect.com/science/article/pii/
S0377042714000065.

Appendix

3.1. Images

From a layman’s perspective, an image is an artificial representation of something perceived through
the visual senses, most commonly as a photograph, painting, or sculpture. In this text, we define an

image from the perspective of image processing. In image processing, specifically digital image pro-
cessing, we are concerned with using computers to performing operations on digital representations
of images without interpreting them in a semantic way. In the context of image processing, an image
is also a representation of visual perception but modelled as a mathematical function over a continu-
ous spatial domain. The mapping onto a spatial domain is important to take full advantage of special
properties of signals which we can use to manipulate images in information systems.

We mathematically define an image I as a function that maps a spatial domain S to a range of inten-
sity values V, I : S — V. In theory, the spatial domain S does not have to be restricted to just 2D
images as we commonly know them. The mathematical formulation allows us to represent higher di-
mensional images such as CT scans that capture 3D space. But in this text, we will consider the 2D
continuous Euclidean space R? as our domain. Depending on type of sensor that captured the image
or the image processing task to be performed, there are multiple ways to define the range of inten-
sity values. In some cases you could consider multiple ranges for the same image in order to apply
different algorithms. The two most common ranges are:

Grayscale: As discussed above, the range depends on the type of sensor that captures the image.
For grayscale values, the sensors directly map their measurements at each point to a continuous real
scale R. The lowest and highest sensor reading value is mapped to the lowest and highest number
on the intensity scale. For representational purposes, the highest intensity is mapped to white and
lowest to black with different shades of gray in between. This is shown in figure 3.1. (a)

Color: For color images, each point on the spatial domain typically corresponds to 3 intensity mea-
surements, red, green, and blue. The three measurements can be combined by displays to try and
match the colors of the scene that was originally captured by the sensor. This is illustrated in figure
3.1. (b).

3.2. Image Filtering

We can broadly categorize the operations that can be performed on images as filtering and warping
based on what part of the image the operation is performed on.

23

24 3. Appendix

Green Red

(b)

Figure 3.1: grayscale images (a) have a single range of values while RGB Color Images have 3 measurements — red, green
and blue — which are combined to create the color image.

(@) (b)

Figure 3.2: Filtering (a) operates on the range of intensities while warping (b) modifies the image domain. Image adapted from
Szeliski [23].

Filtering: Let us recall the mathematical definition of animage: I : S — V. Filtering operations
change the range (or intensity values) V of the image. This can be defined mathematically as a map-
ping, h from the range of values V of the original image I to a new range of values V' to obtain the
filtered image I'. An example of this can be seen illustrated in figure 3.2 (a). Filtering operations are
usually done to modify image properties such as contrast, sharpness, brightness, and so on. Addi-
tionally, filtering also allows the extraction of information from images such as key points, edges, and
corners.

Warping: Operations that change the domain S (or pixel positions) of the image. An example of a
warping operation is shown in figure 3.2 (b) where the values of the image do not change but the do-
main is shifted.

In this section, we will only focus on image filtering. We can further classify filtering operations based
on the domain in which it is performed. Filtering can be performed in either the spatial or the fre-
quency domain.

3.2. Image Filtering 25

451 60 | 98 | 127] 1321 133] 137 133

46 | 65| 98 | 123|126 128] 131 133 69| 95 | 116]125] 129 132
471 65] 96 [115]119]123] 135137 01101101 68 | 92 | 110120 126 132
471 63| 91 | 107]113]122) 138|134 * 01]102]01 = 66| 86 | 104 1141241132
501 59| 80 97 | 110 123 | 133] 134 01f01]0l1 62| 78 | 94 1108120 129
491 53| 68| 83| 97 [113]128]133 57169 | 8398 |112]124
50 50| 58] 70 | 84 | 102|116] 126 53160 711 85100114
50 50| 52 58] 69| 86 |101]120

f(x,y) h(x,y) g(x,y)

Figure 3.3: Convolution: image on the left f(x,y) is the input image which is convolved with the filter h(x,y) in the center that
results in the image on the right g(x, y). The filter operates on a neighbourhood of the image as shown in blue to produce an
output value shown in green.

3.2.1. Image Filtering in the Spatial Domain

When filtering images in the spatial domain, we are essentially modifying the values of the image at
each position as a function of a local neighborhood of values surrounding the position. Filtering op-
erations that involve fixed weighted combinations of pixels in the local neighborhood are called linear
filtering operations. The linear filtering operation can be formulated as follows:

g@i.)) = Zf(i +k,j + Dh(k, D) (3.1)
k,l

where the input image is f, the filter is h whose values are known as the filter coefficients. The fil-
tered result is given by g. This can be seen illustrated at 3.3.

A popular variant of this filter operation, known as convolution can be described as follows:
9@ = Y fl—kj=Dh(kD) =Y flDhG~kj-1) (3.2)
k,l k,l

here we have just offset all of the coefficients by k and (. This is the standard convolution operator
which can be simply written as g = f * h, where h is the impulse response function.

Convolution has additional properties that it is commutative and associative. Another useful prop-
erty is that the Fourier transform of the result of convolution is equivalent to the product of the Fourier
transform of the original images. Convolution is also linear shift-invariant(LSI) due to which it obeys
the superposition principle allowing the commutation of convolution across a weighted sum of im-
ages:

hx(fi+f)=h*fi+hxf, (3.3)

Linear filters are quite easy to compose due to this property and are suitable for frequency response
analysis as we will discuss in the next subsection. Additionally, convolution follows the shift-invariance
principle due to it being an LSI operator. This allows the shifting of the signal to commute with convo-
lution:

g =fli+kj+) & (hxg)ij)) = (*fH+kj+1D (3.4)

The shift-invariance property of convolution means that convolution behaves the same at every point
in the image. We can imagine that this is useful when, for example, we apply a filter on images to
detect a particular object, and the response is similar anywhere in the image.

26 3. Appendix

1 1 1l4]6]4]1
1 1 211 41624164 —110]1 1 |-2]1
7 : 5214 562436 (24 (6| §|-2(0|2| |-2|4 |-2
1 211 401624164 —1/0]1 1 |-2]1
1)1 1 114]6]4]1
o) g[ef2f1] G[afafefefr] g[-1]0]1]
o N o N o N
e s b
(3 o > I >J‘(,
(a) box, K=5 (b) bilinear (c) Gaussian (d) Sobel (e) Corner

Figure 3.4: The 2D filter kernel (top), the corresponding 1D kernel (middle) and the filtered image (bottom) for 5 different sepa-
rable linear filters. Adapted from Szeliski [23]

In the figure 3.4, we see some examples of the simplest linear filters. The box filter, also known as
the average filter, computes the mean of the pixel values in every K x K window to get a smoother im-
age than the original. We can achieve a smoother result if we convolve with a tent function (Bartlett
filter) [18]. The bilinear filter is a 3x3 version of the tent function. For an even smoother result, we
can use the Gaussian Kernel which is the result of convolving the linear tent function with itself or
iterated convolution of the box filters [7, 5]. These are all examples of smoothing filters, also called
low-pass filters because they pass the low frequencies to the output but remove high frequencies up
to a certain extent. We visualize this idea in the next section.

As mentioned earlier, linear filtering can be used for feature extraction. These perform a kind of im-
age derivative to find where the image value changes sharply. One of the simplest edge extracting
filters is the Sobel Filter [22], which is composed of a separable combination of a horizontal central
difference filter (to compute the horizontal derivative) and the vertical linear tent filter (to smooth the
derivative). It makes sense that vertical edges are extracted with the Sobel filter. The corner detec-
tor computes both a horizontal and vertical derivative to extract corners and also diagonal edges.

As a note, we can also have non-linear filtering operators, which perform a non-linear combination
of the neighborhood of pixels. This often leads to superior performance for specific tasks such as
edge-preserving filters. The downside of these filters is that they are not easy to compose and com-
putationally expensive. We will not be going into the details of non-linear filters in this text. This is
explained in detail in other works [23].

3.2.2. Image Filtering in the Frequency Domain

In this section, we show how Fourier transforms can be used to analyze the characteristics of filters
by looking at the frequencies present in an image. This is not by any means an in-depth introduction
to Fourier transforms. Refer to other works that cover this topic more comprehensively [9, 23].

To analyse how a filter affects the spatial frequencies present in an image, we use a sinusoid of known
frequency is affected by the filter. The reason we use sinusoids is because according to Fourier,

"Any univariate function can be written as a sum of sines and cosines of different frequencies”. Let
s(x) be the input sinusoid of frequency f, angular frequency w and phase ¢;:

s(x) =sin(2nfx + ¢;) = sin(wx + ¢;) (3.5)

If we convolve the input sinusoid with a filter, we get as an output a sinusoid with a different phase

3.2. Image Filtering 27

and magnitude:
0(x) = h(x) * s(x) = Asin(wx + ¢,) (3.6)

where 4 is the magnitude or gain of the filter and ¢; — ¢, is the phase shift of the filter.

This relationship can be explain due to the fact that convolution is defined as a linear combination

of shifted inputs. The linear combination of shifted sinusoids of equal frequencies is equivalent to a
single sinusoid of the same frequency. Complex number theory is used to more compacitly represent
this same relationship:

s(x) = e/"* = cos(wx) + jsin(wx)
o(x) = h(x) *s(x) = Ae/wx+d

The Fourier transform F{-} is simply a way to measure the phase and magnitude response for differ-
ent spatial frequencies of the input:

H(w) = F{h(x)} = Ae/® (3.7)

where H(w is the response of the filter h(x) to a complex sinsuoid of frequency w.

A closed-form solution for the Fourier transform is given for both discrete

inf

H(w) =f h(x)e /®*dx (3.8)
—inf
and continuous setting.
1 N-1 ok
HOO) = Z h(x)e™ W (3.9)
x=0

Apart from the mathematical formulation, we would like to get an intuition for the Fourier Domain and
the Fourier Transform. In an attempt to do this, we first show a comparison between filtering opera-
tions done in the spatial domain and the Fourier Domain. Filtering in both domains is equivalent as

it is possible to transform the result from one domain to the other. Filtering in the frequency domain
can be performed by a point-wise multiplication between the Fourier transformed input image and the
Fourier transformed kernel. This is a well-established result in image processing [23].

Spatial vs. Frequency Domain Filtering In the figure 3.5 (a) we can see how the Sobel kernel fil-
ters the image in the spatial domain. It extracts the vertical edges in the image which are denoted by
high intensity (white) along the electricity poles and doorposts. In figure 3.5 (b) we see how the same
filtering is performed in the frequency domain. We first take the Fourier transform of the input image
and the filter. The highest intensities in the frequency domain images are represented in red, while
the lowest are in blue. The lowest frequencies are present towards the center of the frequency do-
main image, while the highest frequencies are present toward the edges. As we move outwards from
the center in a horizontal direction in a Fourier transformed image, we encounter increasing frequen-
cies in the horizontal direction. Correspondingly, we encounter an increase in vertical frequencies as
we move vertically out from the center. We can see that the output image in the frequency domain
has its vertical frequencies modified. Additionally, many high-frequency details, corresponding to the
outer edges of the frequency domain, are suppressed. This tracks well with our observations of the
result of filtering in the spatial domain.

High, Low and Band-pass filtering in the Frequency Domain As a final exercise, let us see how
high-pass, low-pass, and band-pass filters look in the Fourier domain so we can get an intuition for

28 3. Appendix

F() F(h) F(I')

(b) Frequency Domain Filtering with a Sobel Filter

Figure 3.5: Shows the comparison between filtering in the spatial domain and filtering in the frequency domain (both using the
sobel filter). Adapted from [15]

why they operate the way that they do. Figure 3.6 shows this comparison. Low-pass filters let low-
frequency details pass through to the result and remove the high-frequency noise. This corresponds
to high-intensity values towards the center of the Fourier Transform of the low-pass filter while the
edges are low intensity (black) as shown in the center image of figure 3.6 (a). A high-pass filter be-
haves in the opposite way. It removes details corresponding to low frequencies from the image while
high frequencies are let through. This corresponds to low intensity in the center of the Fourier trans-
formed filter, as can be seen in the center image of figure 3.6 (b). Figure 3.6 (c) shows the results of
a band-pass filter. Here a small section of frequencies is let through, corresponding to a ring of hori-
zontal and vertical frequencies around the center.

3.3. Multi-Scale Image Representation and the Scale-Space

Images are usually described by local features and texture details: points, lines, edges, etci.e. the
elemental features that make up all kinds of things that can be present in images. But due to the na-
ture of the 3D world we live in and the way that cameras work, these local features are of different
scales. Features further away from the camera appear smaller than closer ones. In figure 3.7, we
see details of the sunflowers which are the same size in real life and have the same general features
but are of different sizes in the image. To be able to find these objects, we would need to represent
their features agnostic of their size.

There is not always prior knowledge about the scale of these features and therefore we need to be
able to process them irrespective of scale. A system that takes visual input of the physical 3D world
should be able to be size/scale-invariant. Additionally, the local details of an object which are promi-
nent at nearby distances appear smaller and smaller as distance increases until they disappear.

3.3.1. Scale-Space Theory

Koenderink [11] mathematically defined scale and structure of images showing how image structure
can be seen at different scales simultaneously. It describes one of the most basic way to represent

3.3. Multi-Scale Image Representation and the Scale-Space 29

Original Image Filter(freq. domain) Filtered Result

A%t (3o |

(c) Band-pass filtering: retains only certain spatial frequencies.

Figure 3.6: Shows the comparison between results of low, high and band-pass filtering and the corresponding filters in the
frequency domain. Adapted from [15]

image at different scales or resolutions simultaneously which is to embed the image into a one pa-
rameter family of images f (x, o) as follows:

fy,0)=(fo*xG(50))(xy) (3.10)

where f; is the original image at ‘zero scale”, G(:; o) is the Gaussian of a particular standard devia-
tion o:

x2+y2> (3.11)

1
G(x,y;0) = Eexp <—?

The function f is a single parameter family of images that encodes the scale, i.e. for all positive scales
o > 0, it gives an image that is smoother than the original. At = 0, (fy * G(:;0))(x,y) = f, and at

s = oo, (fy * G(;;0))(x,¥) = constant which tends to the average value of the original image. This
function f is known as the scale-space. An example of a scale-space representation for an image

is shown in figure 3.8. In the original image, we can see the details of the building and the trees but

30 3. Appendix

Figure 3.7: Image of a field of sunflowers illustrating varying scale of objects and their features in images. The flowers
closer to the camera appear larger with more prominent features like the separation between petals, carpels(brown) and sta-
men(green) while the ones further away, less so.

when increasing o and hence scale, these become hard to see. Correspondingly, the shape of the
objects is more apparent.

3.3.2. Gaussian Convolution Operator

At first, it may seem as if there are other better ways to build the scale-space with a different ker-

nel other than the Gaussian, but setting some simple basic requirements means that there is only

1 scale-space construction possible, i.e. with the Gaussian scale-space operator. Koenderink [11]
constructed the scale-space by adding certain constraints and defined the scale-space operator as
follows. A family of image operators L° where s refers to the scale such that given the ‘image at zero
scale’ f, we can construct the family of images L? * f; such that:

L? is a linear operator

L? is translation invariant, which means that the operator behaves in the same way at every
point of the image

L? is rotation invariant, which means that all orientations or directions are treated equally
» L7 is separable by dimension

+ L? is scale-invariant, which means that we should be able to create an equivalent scale-space
with a scaled version of the image by possibly re-parameterizing the scale.

In addition to this, causality in scale space must be satisfied. This prevents the use of linear opera-
tors that can introduce spurious detail at coarse scales that are due to structures at finer scales. It
can be shown that the scale-space operator satisfying these requirements can only be a convolution
with a Gaussian. But we do not prove it in this text. Refer to Koenderink [11] for more details. Next,
we discuss some important properties of Gaussian convolution, which are important in the context of
scale-space.

Scale Space Diffusion Equation

The scale space function is the solution to the diffusion equation:

3.3. Multi-Scale Image Representation and the Scale-Space 31

Figure 3.8: Scale-Space representation of an image from the original at =0 (bottom-most) to o = 8(topmost).

fo = 0V f = 0fex + 0fyy (3.12)

with the initial condition f(-,0) = f°. This was the starting point of the derivation of linear scale
space. It gives the relationship between spatial derivatives and convolution with Gaussian in scale-
space. It states that the rate of change of f with respect to an infinitesimal change in scale is propor-
tional to the differential structure of f at scale o.

Scale Space Derivatives

Since the spatial derivative is translation invariant which commutes with Gaussian Convolution oper-
ation, we can observe the following property:

0f°(x) xG(x;0) = 0(f°(x) * G(x;0)) = fO(x) * 3G (x; 0) (3.13)

we can either construct the scale-space from the differentiated image or take the derivative at each
level of the scale-space. Additionally, we can also compute the Gaussian derivative at all scales. The
derivative of a Gaussian is available in closed-form, and is much easier to formulate when compared
to the derivative of an image. Therefore, this property allows mathematical convenience.

Scale-Normalized Gaussian Derivatives From figure 3.9, it is evident that the derivatives decrease
in amplitude with increasing orders. When comparing derivatives across scale this is problematic. To
solve this problem, we will use scale normalized derivatives. If G™(x; o) denotes the nt"* order spatial
derivative of a Gaussian with standard deviation of g, the scale-normalized Gaussian derivative is
given as:

Glhorm = 0"G" (3.14)

32 3. Appendix

Gaussian Derivatives (order 0 to 4) Scale-Normalized Gaussian Derivatives (order 0 to 4)

0.4 1.25

//\\\ 1.00

/ \\\ 0:50 AN\
02 A Q‘~\\\
/ \ R VAV e
0.1 oo \ A . NS
o - /Z _ ///;_\\ - ~0.50 \/
—— order=0.0 —— order=1.0 order=2.0 —— order=3.0 order=4.0
(a) (b)

Figure 3.9: Gaussian derivatives decrease in amplitude with increasing orders (a) and Scale-Normalized Gaussian Derivatives
(b) prevents this reduction in amplitude.

Convolution with Gaussian Derivative at different scales As discussed earlier, changing the scale
parameter causes a scale-space image to become smoother and allows the representation of coarser
features. This can be directly represented by the gradient vector at different points in the scale-space
images. We illustrate this in figure 3.10 which shows image derivatives with Gaussians of different
scales. Figure 3.10 (a) shows the original, while 3.10 (b) and (c) shows the image derivatives at scale
1 and 4 respectively. 3.10 (d), (e) and (f) shows the direction of the gradient at same point in space
for scales 0, 1 and 4 respectively. The direction of the gradient vector corresponds to the level of de-
tail at that scale.

3.4. Machine Learning and Neural Networks

This text assumes that the reader has some basic understanding of neural networks. In this section,
we give a brief recap and introduce the notions that are needed to later introduce the math behind
the convolutional neural networks.

3.4.1. Supervised Machine Learning

The typical formulation of a machine learning system is the transformation of inputs x into desired
outputs y with a fixed function called the hypothesis h,, which is parameterized by some parameters
p. The system must optimize/learn these parameters:

9 = hy(x) (3.15)

Let us consider a system for the classification of images of handwritten digits as available in the MNIST
dataset. Here, we consider the input x is a vector containing the pixel values of the images. The
dataset can be represented as a set of tuples (x, y®), where the vector x(® is an instance of the
input and y® is the label or the ground-truth value of the corresponding input. The goal of the clas-
sification task is to classify each of the input images, x(correctly into one of 10 classes 0,1, 2, -+, 9.
This classification is the index of the element with the largest value in the output vector §. The sys-

tem aims at finding the correct values for the parameter vector p that will minimize the total loss (er-
ror) made for all examples in the data set. This paradigm of machine learning is called supervised
learning.

L= 1y (x®,y®) (3.16)

i=1

3.4. Machine Learning and Neural Networks 33

(d)

Figure 3.10: Image of a flower (a) convolved with a first-order Gaussian of scale = 1.0 (b) and scale = 4.0 (c). Images in the
second row (d, e, and f) show a zoomed-in image of the corresponding image above along with a super-imposed gradient
vector. Note the change in direction of the gradient vector for a larger sigma in the direction of the coarser feature of the flower.
Adapted from [1]

where [is the loss contribution for a single example-target pair. There are multiple formulations of
loss functions as desired for the task to be performed. We can state the objective of machine learn-
ing in this context as:

p* = argmin L(p)
P

m
= argmin Z l(hy (x®),y D)
P33

Most machine learning systems employ numerical optimization techniques to find the optimal param-
eters p* because the loss functions are quite complex and difficult to solve in a closed form. One of
the most common techniques used now is the iterative gradient descent which updates the values of
the parameters in the direction of the gradient of the loss function with respect to the parameters:

dL(p)
dp

pi=p—a (3.17)
3.4.2. Fully-Connected Neural Network

A fully connected neural network is a sequence of processing modules that take an input vector a;,
and produces an output vector a,,; as a linear combination of the inputs:

Aout = a(Way, +b) (3.18)

34 3. Appendix

Qiy 3 iaout Qiy 3 u v iaout
i i —
dot + n dot + Ui
‘ ‘ PR
| o o o Lor
' ! Jdaiy ou v 10aont
Ly : Pw e o !
w b{ ! | 4 { lzm b{ l:m !
input:layer output layer inputilayer output layer
(a) Forward Propagation (b) Backward Propagation

Figure 3.11: Fully-Connected Neural Network Module during forward propagation (a) and the same network with the backward
propagation depicted in purple. Taken from [1].

5 RelU] sigmoid 1 tanh
0 0.5 0
5 0 -1
5 0 5 -8 0 8 8 0 8
(a) (b) (c)

Figure 3.12: Common activation functions used in Neural Networks. ReLu (a), Sigmoid (b) and Tanh (c). Adapted from [8].

The weights matrix W and bias vector b are the parameters of each module and «a is known as the
activation function. Sigmoid and the ReLU functions are well known activation functions. Some com-
mon activation functions are illustrated in figure 3.12. A Fully Connected Neural Network is a se-
quence of these modules. A single module is illustrated in figure 3.11 (a). The derivatives of the loss
function with respect to each of the parameters in the chain of modules is computed using the chain-
rule of differentiation. The chain-rule is computed from the end of the last layer known as backprop-
agation or backprop [20, 19]. This is shown for one layer in figure 3.11 (b) in purple. This is shown in
more detail below:

ol ol

a_v - (V) @ a&out

al ol

u ov

al al , al
6ain - Ta =w <a (V) © adout:)

ol ol ol

b~ "%,

ol ol

ow 0ayyt

al
axT = (a(v) O])xT

We have discussed what a neural network does, at least for 1 block. If we connect multiple blocks to-
gether with the loss function, we can use the chain rule of differentiation to compute the gradients of
loss functions. Once we have the gradients of the loss function, we do the same steps as discussed
in the previous section to optimize parameters using iterative gradient descent.

3.4. Machine Learning and Neural Networks 35

@~

@

Figure 3.13: 2D convolution with multiple input and output channels. Each convolutional kernel takes the C; input channels as
input to produce one of the values — after convolution and non-linear activation — into one of the C, output channels. This is
performed in a windowed fashion, keeping each pixel of the input at the center of the window. Here, we have C; = 6, C, = 4

and convolution window S = 3 (same as size of the kernel).

3.4.3. Convolutional Neural Networks

The basic principle behind the working of a CNN [14] is extracting local image structure at different
scales, which is the same as what we discussed in section 3.3 on Scale-Space and 3.2.1 on Spatial
Domain Filtering. This is not surprising as CNNs are made up of layers of convolutions in a range of
receptive field sizes. Since we need only a local structure, a fully connected block would have su-
perfluous parameters which would lead to overfitting and generalize poorly to new data. Hence, the
inputs and layers are organized such that each processing module of a CNN considers only a small
neighborhood as input.

Instead of connecting every module of a layer to every module of another layer, CNN layers are or-
ganized into multiple channels which is also known as the depth of the image. In the Convolutional
layer, a linear sum is performed in a local window, similar to shift-invariant convolution from equation
3.2. Though, there is a key difference between the convolution from image processing and convolu-
tion in CNNs. In image convolution, the filter applied to each of the color channels of the images is
the same. But in CNNs, a different kernel is used for each of the channels and the activated output
from convolution is linearly combined to determine the output for the next layer, the weights for which
are learned via backpropagation as seen earlier. This is illustrated in figure 3.13. This is ideal as it
allows the creation of local features which can be combined to learn meaningful features as required
for the downstream task.

We can mathematically formulate the operation performed on each pixel of the input in a convolu-
tional layer as:

s(i,j,cy) = Z Z w(k, L, ¢y, e)x(i — k, j— L cy) + b(cy) (3.19)
C1EC, KIEN

where i and j are the current pixel, x(i, j, c;) is the input, V" is the local neighbourhood of pixels, ¢, is
the input channel and c, is the output channel. Since the weights in a filter kernel are shared across
the pixels within a layer and channel, they learn a representation that connects these pixels. Addi-
tionally, they learn fewer weights than fully connected layers. There are some additional terms we
must define to fully determine the convolutional layer. We briefly go over them.

Padding: We cannot perform convolution at the outermost pixels of input since the kernel would then
be placed outside the image. Hence, the size of the output keeps shrinking as we do more convolu-
tions. Modern networks extend the image on all sides (padding) to prevent this.

36 3. Appendix

Stride: Until now, we have assumed that the convolution is evaluated at every pixel of the input. It
is also possible to evaluate it at every nt" row and n*" column. The number of pixels skipped in be-
tween is known as the stride of the convolutional layer.

Grouping: In the example we have seen, all input channels are used to create each of the output
channels. It is also possible to group the channels into independent groups where the input channels
in a group are convolved separately from channels in other groups. This is known as depthwise con-
volution.

Dilation: This is the concept of non-zero stride applied in the output. Rows and columns are skipped
in the output channels which allows effective pooling with fewer parameters and over a larger region
of the input.

This section only provides a brief outline of CNNs and convolutional arithmetic. Other better articles
exist that explain these concepts in greater depth [6]

3.5. CNNs with Fixed Filter Banks

The power of CNNs comes from the ability to learn rich local feature representations and combining
them optimally as required for the downstream learning task. When this is satisfied, they can solve
problems that are extremely complex for humans [13, 24]. When data is limited, this is quite difficult
due to a large number of parameters. One solution is to design priors that are carefully tuned so that
learning is much easier. In this section, we look at 2 related ideas, the Scattering Transform [4, 17,
21]: a fully engineered representation which uses a wavelet filter bank with fixed filter parameters,
and Structured Receptive Fields(SRF) [10]: representation composed of filters structured as a com-
bination of fixed orders of Gaussians whose weights are learned. The SRF is the work on which we
build our method.

3.5.1. Scattering Transform

The Scattering Transform is a CNN variant that uses filters composed of a fixed set of wavelets. It
does not have any learnable filter parameters, and the choice of filters must be tailored to the kinds
of images present in the dataset for the task. The scattering transform computes a local translation-
invariant representation of the input which can recover wavelet coefficients in succeeding layers to
avoid loss of information. Since the wavelet filters are fixed, the extracted features are fed into a Sup-
port Vector Machine classifier [2] to perform the downstream learning task. This method works es-
pecially well in the small data regime since there is no feature learning, and the effectiveness of the
filters does not depend on the number of data points

To design the scattering transform, one must have a good idea of the translational, rotational, and
scale-related variability present in the target domain. Scattering Transforms designed with the knowl-
edge of this variability results in highly effective filters. This kind of hard-coding of the invariances
and subsequently the filters can be effective when the domain is known precisely, which is rare for a
maijority of applications. In the case of an unknown domain, it may be required to exhaustively com-
pute scattering paths. This leads to a high-dimensional parameter space which is difficult to learn.

As we will see in the next section, the Structured Receptive Field Network, unlike the Scattering Trans-
form, directly learns effective filter combinations allowing a compact representation. This avoids the
issues of hard-coding discussed.

3.5.2. Structured Receptive Field (SRF) Network

SRF Networks are a class of CNNs where the Receptive Field is formulated as a weighted sum of
a fixed basis, similar to the Convolutional Scattering Network [3]. The key motivation of the authors

3.5. CNNs with Fixed Filter Banks 37

was to create a model which can generalize well in the case of limited training data. Solutions such
as pre-training and transfer learning provide an understanding of the characteristics or features of
images. If these properties were to be built into the network then it should allow for better generalize-
ability.

SRF Networks formulate the convolutional layer as a linear combination of Gaussian derivatives
known as a Structured Receptive Field. The Gaussian family of basis functions is chosen for their
ability to represent local image features [12]. Additionally, Scale-Space theory guarantees that an im-
age function can be expanded as a Taylor function with a Gaussian kernel. These two together mean
that the SRF is capable of forming any filter that is needed for learning effective image representa-
tions.

In SRF Networks, images are represented as functions in scale-space unlike in CNNs which treat im-
ages as pixel values. Representing the image in scale-space gives us two advantages. First, that we
can change the resolution to operate on a continuous linear scale. Secondly, we can use differential
operators on image functions.

To approximate an arbitrary CNN filter F as a sum of N Gaussian derivatives, we first approximate it
as a Taylor Expansion centered at a.

N

Ft .
F(x) = Z i(!a) (x — @) (3.20)

=0

We can compute the derivative of an image I by convolving with a Gaussian kernel G (o)

N

G(o)*F(x) = Z

i=0

w(x—a)i (3.21)

This sum of weighted Gaussian kernels of different orders convolved with the image function is a
good functional approximation, to the standard convolutional filtering. In theory, a CNN filter is ex-
actly equal to this formulation when you use a basis set of orders up to infinity, but it has been shown
that lower orders are sufficient to capture details needed for most tasks, depending on the resolution
of the images [11, 16].

As an aside, a 1D Gaussian can be created using the Hermite formulation. It allows for the computa-
tion of Gaussian basis function of arbitrary order m:

1
(0= D" s

T Hm(%) °G(x;0) (3.22)

where H,, is the mth Hermite polynomial.

A single SRF block is illustrated in figure 3.14. Each filter F is a linear combination of gaussian deriva-
tives ¢,,, each weighted by «;; where i and j index the input and output feature maps:

F(x,y) = a191(x,y) + @202 (%, y) + -+ + anPn(x,y) (3.23)

The a;; model the coefficients of the Taylor terms and the ¢; represent the Gaussian kernel. The fil-
ters formed from the SRF block are then convolved with the input image to give a feature map.

An SRF-CNN optimizes the filters as required for the downstream learning tasks via gradient descent
backpropagation, not unlike traditional CNN. It is this similarity that makes the SRF block easy to in-

38 3. Appendix

F do. ---- e N - &y
OLij J==y
-
¢'m =; - " s "
ol-1)

Figure 3.14: lllustration of the Structured Receptive Field block taken from Jacobsen et al. [10]. The kernels of filter F are cre-
ated as a linear combination of basis ¢, weighted by learned weights ;.

tegrate into any standard Convolutional Network. As mentioned earlier, the orders of the Gaussian
set are fixed, and the network only optimizes the weights «; of the Gaussian basis functions.

(1]

(2]

[3]

[4]

[5]
[6]
[7]
(8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

Bibliography

7.1. Linear Scale Space — Image Processing and Computer Vision 2.0 documentation. URL:
https://staff.fnwi.uva.nl/r.vandenboomgaard/ComputerVision/LectureNotes/
IP/ScaleSpace/linear scale space.html (visited on 06/27/2021).

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training Algorithm for Opti-
mal Margin Classifiers”. In: Proceedings of the Fifth Annual Workshop on Computational Learn-
ing Theory. COLT ’92. Pittsburgh, Pennsylvania, USA: Association for Computing Machinery,
1992, pp. 144-152. ISBN: 089791497X. DOI: 10.1145/130385.130401. URL: https :
//doi.org/10.1145/130385.130401.

Joan Bruna and S. Mallat. “Invariant Scattering Convolution Networks”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 35.8 (Aug. 2013), pp. 1872-1886. ISSN: 0162-
8828, 2160-9292. DOI: 10.1109/TPAMI .2012.230. URL: http://ieeexplore.ieee.
org/document/6522407/ (visited on 10/31/2020).

Joan Bruna and Stephane Mallat. “Invariant Scattering Convolution Networks”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 35.8 (2013), pp. 1872—-1886. DOI: 10 .
1109/TPAMI.2012.230.

Peter J. Burt and Edward H. Adelson. “The Laplacian Pyramid as a Compact Image Code”. In:
IEEE TRANSACTIONS ON COMMUNICATIONS 31 (1983), pp. 532-540.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.
2018. arXiv: 1603.07285 [stat.ML].

Pascal Getreuer. “A Survey of Gaussian Convolution Algorithms”. In: Image Processing On
Line 3 (2013). https://doi.org/10.5201/ipol.2013.87, pp. 286-310.

Andrew Glassner. Deep Learning, Vol. 2: From Basics to Practice. Kindle Edition. www.glassner.com,
2018. URL: http://gen.lib.rus.ec/book/index.php?md5=19ffded62d24612451194b8564186c64.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd Edition). USA: Prentice-
Hall, Inc., 2006. ISBN: 013168728X.

Jorn-Henrik Jacobsen et al. “Structured Receptive Fields in CNNs”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

Jan J Koenderink. “The structure of images”. In: Biological cybernetics 50.5 (1984), pp. 363—
370.

JJ Koenderink and AJ van Doorn. “Representation of local geometry in the visual system”. In:
Biological cybernetics 55.6 (1987), pp. 367—375. ISSN: 0340-1200. DOI: 10.1007/b£f00318371.
URL: https://doi.org/10.1007/bf00318371.

Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Proceedings of the 25th International Conference on Neu-
ral Information Processing Systems - Volume 1. NIPS’12. Lake Tahoe, Nevada: Curran Asso-
ciates Inc., 2012, pp. 1097-1105.

Y. Le Cun et al. “Handwritten Digit Recognition with a Back-Propagation Network”. In: Proceed-
ings of the 2nd International Conference on Neural Information Processing Systems. NIPS’89.
Cambridge, MA, USA: MIT Press, 1989, pp. 396—404.

Steven Lehar. Frequency Domain Filtering. URL: http://www.cs.cmu.edu/~16385/s15/
lectures/Lecture3.pdf.

39

https://staff.fnwi.uva.nl/r.vandenboomgaard/ComputerVision/LectureNotes/IP/ScaleSpace/linear_scale_space.html
https://staff.fnwi.uva.nl/r.vandenboomgaard/ComputerVision/LectureNotes/IP/ScaleSpace/linear_scale_space.html
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1109/TPAMI.2012.230
http://ieeexplore.ieee.org/document/6522407/
http://ieeexplore.ieee.org/document/6522407/
https://doi.org/10.1109/TPAMI.2012.230
https://doi.org/10.1109/TPAMI.2012.230
https://arxiv.org/abs/1603.07285
https://doi.org/10.5201/ipol.2013.87
http://gen.lib.rus.ec/book/index.php?md5=19ffded62d24612451194b8564186c64
https://doi.org/10.1007/bf00318371
https://doi.org/10.1007/bf00318371
http://www.cs.cmu.edu/~16385/s15/lectures/Lecture3.pdf
http://www.cs.cmu.edu/~16385/s15/lectures/Lecture3.pdf

40

Bibliography

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

Tony Lindeberg. Scale-Space Theory in Computer Vision. Boston, MA: Springer US, 1994.
ISBN: 978-1-4419-5139-7 978-1-4757-6465-9. DOI: 10 . 1007 /978 -1-4757 - 6465 - 0.
URL: http://1link. springer .com/10.1007/978-1-4757-6465- 9 (visited on
11/06/2020).

Stéphane Mallat. “Group Invariant Scattering”. In: Communications on Pure and Applied Math-
ematics 65.10 (2012), pp. 1331-1398. DOI: https://doi.org/10.1002/cpa.21413.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.21413. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21413.

Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing
(2nd Ed.) USA: Prentice-Hall, Inc., 1999. ISBN: 0137549202.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning Internal Representations by Error
Propagation”. In: Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion, Vol. 1: Foundations. Cambridge, MA, USA: MIT Press, 1986, pp. 318-362. ISBN: 026268053X.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations by
back-propagating errors”. In: Nature 323.6088 (Oct. 1, 1986), pp. 533-536. ISSN: 1476-4687.
DOI: 10.1038/323533a0. URL: https://doi.org/10.1038/323533a0.

Laurent Sifre and Stephane Mallat. “Rotation, Scaling and Deformation Invariant Scattering
for Texture Discrimination”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2013.

Irwin Sobel. “An Isotropic 3x3 Image Gradient Operator”. In: Presentation at Stanford A.l. Project
1968 (Feb. 2014).

Richard Szeliski. Computer Vision: Algorithms and Applications. 1st. Berlin, Heidelberg: Springer-
Verlag, 2010. ISBN: 1848829345.

Yaniv Taigman et al. “DeepFace: Closing the Gap to Human-Level Performance in Face Verifi-
cation”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014, pp. 1701-
1708.DOI: 10.1109/CVPR.2014.220.

https://doi.org/10.1007/978-1-4757-6465-9
http://link.springer.com/10.1007/978-1-4757-6465-9
https://doi.org/https://doi.org/10.1002/cpa.21413
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.21413
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21413
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/CVPR.2014.220

	Scientific Article
	Supplementary Material
	Appendix
	Images
	Image Filtering
	Image Filtering in the Spatial Domain
	Image Filtering in the Frequency Domain

	Multi-Scale Image Representation and the Scale-Space
	Scale-Space Theory
	Gaussian Convolution Operator

	Machine Learning and Neural Networks
	Supervised Machine Learning
	Fully-Connected Neural Network
	Convolutional Neural Networks

	CNNs with Fixed Filter Banks
	Scattering Transform
	Structured Receptive Field (SRF) Network

