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Abstract

The aim of this thesis is to analyse Runge-Kutta methods using Butcher tableaus. Runge-Kutta method
are numerical methods used for approximating initial value problems. A Runge-Kutta method can be
classified as either an explicit or an implicit method. A special kind of implicit methods are diagonally
implicit methods. The type of method can be recognised by the Butcher tableau.

Using the entries of the Butcher tableau, one can compute the amplification factor of a Runge-Kutta
method. The amplification factor can then be used to compute the order of the local truncation error and
the stability region. Examples of these computations are given for seven methods. Furthermore, this
thesis provides an algorithm to perform time steps for each of the three types of Runge-Kutta methods.
Finally, in order to analyse the global truncation error of the seven methods, the algorithm to perform
time steps is used with different step sizes.
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Introduction

Many processes that occur in nature can be conceptualised as initial value problems (IVPs). These
problems arise when the behaviour of a system is determined by its initial state, evolving over time
according to specific rules or laws. Braun, 1992 describes how the Italian biologist Umberto D’Ancona
came across data on percentages of sharks caught in the Mediterranean Sea. The biologist was inter-
ested in finding out how the intensity of fishing affected the fish populations. His colleague analysed
the situation and concluded that D’Ancona’s predator-prey problem could be described by IVPs.

The presence of IVPs in everyday life is the reason we are interested in methods to solve these
problems. There are many methods to analytically find to solution to an initial value problem. Some
famous examples include the method of variation of parameters and the method of Laplace transforms,
both described in Braun, 1992. Analytical solutions can provide useful insights in the processes de-
scribed by IVPs. A disadvantage of analytical methods is that they can not be used to solve all IVPs.
In some cases, the complexity of the problem or the lack of known analytical methods makes the IVP
unsolvable analytically.

Numerical methods come into the picture when analytical methods fall short. Numerical methods
are an algorithmic way to approximate the solution of an IVP without knowing the analytic solution.
The general approach of a numerical method is to start at the given initial value and approximate the
solution at each next time step until the end time is reached.

This thesis will specifically discuss Runge-Kutta methods. Runge-Kutta methods famously compute
the value of the next time step using a certain number of stages. The methods will be applied to first
order IVPs, although the analysis could be extended to IVPs of higher order.

As numerical methods only provide an approximation of the solution to an IVP, errors are inevitably
made. In order to guarantee accuracy and reliability of the methods, we want to analyse the order of
the errors. The order of the local truncation error and the global truncation error are treated in this
thesis. Moreover, the stability of Runge-Kutta methods is analysed. Stability analysis is concerned
with reliability of a method in preserving the solution’s behaviour over time.

Chapter 2 introduces Runge-Kutta methods and Butcher tableaus. It presents a classification of
Runge-Kutta methods, categorising into explicit, implicit and diagonally implicit methods. Some exam-
ples of Runge-Kutta methods are presented in the form of Butcher tableaus. These examples will be
used throughout the thesis to perform computations.

Chapter 3 is concerned with the analysis of the local truncation error and the stability of Runge-Kutta
methods. An expression for the amplification factor for a Runge-Kutta method is derived, which is then
used to find the order of the local truncation error and stability region. Furthermore, an algorithm is
given to find the step size for which explicit methods are stable.



2 1. Introduction

Chapter 4 provides algorithms to perform time steps of explicit, implicit and diagonally implicit meth-
ods. Each algorithm is executed for a method introduced in Chapter 2 to find numerical approximations
to an IVP.

Chapter 5 analyses the global truncation error using approximations of the solution to an IVP com-
puted with the algorithms provided in the previous chapter. Finally, a summary and recommendations
for further research are given in Chapter 6.



Runge-Kutta methods and Butcher
tableaus

This chapter will give an introduction to Runge-Kutta methods and Butcher tableaus. We will first
describe Runge-Kutta methods in a general form and convert them into Butcher tableaus. Then we
will make a distinction between explicit, implicit and diagonally implicit Runge-Kutta methods and give
examples of all three. Finally, four other examples of Runge-Kutta methods will be given to provide the
reader with a better understanding of Runge-Kutta methods.

2.1. Anintroduction to Runge-Kutta methods and Butcher tableaus

Runge-Kutta methods are well-known numerical methods to solve initial value problems of the following
form:

dy _ _
i f(&y), y(to) = yo- (2.1)

We call w,, the approximated value at time t,,. Thatis, w,, = y(t,). Runge-Kutta methods famously
compute the value of the next time step using a certain number of stages, which we call k4, k,, ..., k.
The value w,,, is computed by Equation (2.2). In this equation, h > 0 is the step size between two
consecutive values and stages k; are given as in Equation (2.3). Furthermore, coefficients a;;, b; and
¢; specify the Runge-Kutta method.

Wn1 = Wy + h Y5, bik;. (2.2)
kl = f(tn + Clh: Wy + h2?=1 aliki)r
k2 = f(tn + CZh: Wn + h2f=1 aZiki)l (2 3)
ks = f(tn + csh,wy, + h Y, agik;).

The coefficients of the method can be written in a so-called Butcher tableau, which is displayed in
general form in Table 2.1.

€1 | Q11 Q12+ Qgg

C2 | A1 Az -+ Qg

Cs Qs Asz . Ogs
| b, b, by

Table 2.1: Butcher tableau of a Runge-Kutta method.
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2.2. Classification of Runge-Kutta methods
Each Runge-Kutta method can be defined by the coefficients given in the previous section. Runge-
Kutta methods can be divided into explicit and implicit methods. Furthermore, we establish a distinct

classification for diagonally implicit methods. All methods described in this section can be found in Vuik
et al., 2007.

2.2.1. Explicit methods

A Runge-Kutta method is considered explicit when the expression for w,,,; only depends on w, and
t,. As a consequence, the coefficient matrix [a;;] of explicit methods is a lower triangular matrix with
zeros on the diagonal.

The simplest example of an explicit method is the Forward Euler method, which is given by w,,,{ =
wy, + hf (t,, wy,). The corresponding Butcher tableau is given by Table 2.2.

0|0
1

Table 2.2; Butcher tableau of the Forward Euler method.

2.2.2. Implicit methods
Implicit methods can be recognised by expressions for w,,,, that do not solely depend on w,, and t,,.
Specifically, each k,,, in Equation (2.3) may depend on any k; for1 <i <s.

The Backward Euler method is the simplest example of an implicit method. This method is given
by w11 = w,, + hf (t,4+1, Waye1) @nd its Butcher tableau is shown in Table 2.3.

111
1

Table 2.3: Butcher tableau of the Backward Euler method.

It is not immediately evident that the method corresponds with the Butcher tableau. Substitution of
coefficients of Table 2.3 in Equation (2.2) and (2.3) results in a system of equations that represents the
Backward Euler method:

W1 = Wy + hky, (2.4a)
ki = f(tns1, wn + hkq). (2.4b)

To rewrite the system in the familiar form, one can substitute Equation (2.4a) into Equation (2.4b)
to find ky = f(ty41,Wne1)- This can be used to find that Equation (2.4) is indeed equivalent to the
expression wyy 1 = wy, + hf (tpe1, Wnat)-

Implicit methods require more computations, since for every time step a system of equations needs
to be solved. However, properties of implicit methods described in Rehman et al., 2020 make them
more suitable for solving stiff differential equations.

2.2.3. Diagonally implicit methods
Diagonally implicit methods can be recognised by lower triangular coefficient matrices [a;;]. Unlike for
explicit methods, the entries of the diagonal may be non-zero and one of the entries of the diagonal
must be non-zero. Consequently, the expression for w,,,, does not solely depend on w,,. Diagonally
implicit methods are therefore a subcategory of implicit methods.

The Backward Euler method described in the previous subsection is an example of a diagonally
implicit method. Another well-known example is the Trapezoidal method, which is given by w,,,; =
wy, + %(f(tn, wy) + f(tns1, Wne1)). The Butcher tableau of the method is given in Table 2.4.
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Table 2.4: Butcher tableau of the Trapezoidal method.

Again it is not immediately clear that the Butcher tableau corresponds with the method. To show
the correspondence, we substitute the coefficients of the tableau in Equation (2.2) and (2.3) to find

1 1
Wnyr = Wp + h(zk1 + EkZ)' (2.5a)
kl = f(tnl Wn): (25b)
1 1
ky = f(tns1, Wn + h(5k1 + Ek1))- (2.5¢)

The substitution of Equation (2.5a) in Equation (2.5c) yields k, = f(t;41,Wne1). Then the sub-
stitution of k; and k, in Equation (2.5a) results in the given method: w,; = w, + %(f(tn, wy) +
f(tn+1rWn+1))-

The next section will discuss four other examples of Runge-Kutta methods. Two explicit methods,
one diagonally implicit method and one implicit method. These methods, along with the methods dis-
cussed in this section, will be used in the rest of this thesis to perform computations.

2.3. Examples of Runge-Kutta methods

This section describes four examples of Runge-Kutta methods: RK4, Van der Houwen and Wray’s
method, Kraaijevanger and Spijker’'s method and a third-order Radau IIA method.

2.3.1. The RK4 method

Perhaps the most familiar Runge-Kutta method is RK4, because it offers a good balance between
computation cost and order of accuracy. It is a fourth order explicit method that only requires four
stages. The Butcher tableau of this method is given in Table 2.5. The method is described in Vuik
et al., 2007.

0lo 0o o0 o

1 1

13 0 0 0

2lo 2 0 o

2 2

110 0 1 0
i1 1 1
6 3 6

Table 2.5: Butcher tableau of the RK4 method.

2.3.2. Van der Houwen and Wray’s method

Van der Houwen and Wray’s method is an explicit method with two stages. The method is described
in van der Houwen, 1972 and the Butcher tableau is given in Table 2.6.
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0 0 0 0
8 | 8
=l o 0 0
2 11 5
3 |4 12
N
4 4

Table 2.6: Butcher tableau of van der Houwen and Wray’s method.

2.3.3. Kraaijevanger and Spijker’s method
Kraaijevanger and Spijker's method is a two-stage diagonally implicit method. The method is described
in Kraaijevanger and Spijker, 1989. The Butcher tableau of the method is given in Table 2.7.

Table 2.7: Butcher tableau of Kraaijevanger and Spijker’s method.

2.3.4. Third-order Radau lIA method

The third-order Radau IIA method, from now on referred to as Radau’s method, is an implicit method.
Because the method is implicit, it is expensive to implement. The method is described in Hairer and
Wanner, 2015 and its Butcher tableau is given in Table 2.8.

Table 2.8: Butcher tableau of the third order Radau IIA method.

The seven Runge-Kutta methods discussed in this chapter will be used in the following chapters as
examples to compute amplification factors, local truncation errors and stability regions.



Local truncation error and stability
analysis

This chapter will deal with the local truncation error that is made in numerical methods, which in our
case applies to Runge-Kutta methods. This will be done by computing the amplification factor of a
Runge-Kutta method, which can then be used to find the local truncation error, stability region and
bounds for the step size for explicit methods. The computations will then be applied to the methods
introduced in Chapter 2. This will result in a table with the ampilification factor and local truncation error
of each of the seven methods. The stability region of the methods will be plotted in the complex plane.
Finally, an example for the computation of the bounds of a step size will be given.

3.1. Computation

Using the test equation y’ = Ay, one can rewrite Equation (2.2) in the form w,,;; = w,Q(1h). Q(1h)
is then referred to as the amplification factor. The amplification factor of a Runge-Kutta method can
be computed using its Butcher tableau. The amplification factor can then be used to find the local
truncation error and stability region of the method.

3.1.1. The amplification factor
The amplification factor Q (Ah) of a numerical method is the ratio of the approximated value at the next

time step w,,,; to the current approximation w,,. That is, Q(1h) = % The amplification factor is

computed using the test equation y’ = Ay. The substitution f(t,y) = Ayncan be used to find
ki = Ah(w, +hXi_; aiky),
S
k, : Ah(wy, + h2i=1 azik;), (3.1)
ks = Ah(w, +hY;_, ask)).
= [1,..,1]", k = [kq, .,ks]" and b = [by, ..., bs].
can be written as k = Aw, & + AhAk. Solving this

Define the following s-dimensional vectors:
agq ... Qig
Define the s x s matrix A = ( e ) Then

sy - Ass

equation for k yields:
k = Aw, (I — AhA)~1é. (3.2)

Substituting Equation (3.2) in Equation (2.2) gives wy4, = wy,(1 + Ahb(I — 2hA)~18). Therefore the
amplification factor of a general Runge-Kutta method is given by:

Q(Ah) = 1+ Ahb(I — AhA)"é. (3.3)

Theorem 1. The amplification factor Q(1h) = 1 + Ahl;(l — AhA)~1é of an explicit Runge-Kutta method
can be written as a polynomial of at most order s in the indeterminate Ah.

7
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Proof. Assume A and b are the matrix and vector corresponding to the Butcher tableau of an explicit
Runge-Kutta method with s stages. Then A is an s x s lower triangular matrix with zeros on the diagonal.
Consider any square matrix M. We claim that

Vs EN\{0}: I—=MS=(—M)T+M+M?+ ..+ M), (3.4)

We prove this claim using induction. For the base case, we notice that both the left hand side and the
right hand side are equalto I — M for s = 1. Assume [ — M¥ = (I — M)(I + M + M? + ... + M*~Y) for
some k > 1. Then

[—MMY=]—M+ (I-MYM
=I-M+U-MY(T+M+M?+..+MHYM
=U-MI+U—-MM+M?+ M3 ...+ MK
=(U-M)I+M+M?>+ ..+ M5,

which proves the induction step.

Next we consider the characteristic polynomial p(u) of matrix AhA. Since matrix AhA is a lower
triangular matrix with zeros on the diagonal, the eigenvalues all equal zero.

p(u) = det(AhA — ul) = us = 0.

The Cayley-Hamilton theorem (Straubing, 1983) states that the analogous polynomial p(1hA) is equal
to the zero matrix. That is,
p(AhA) = (AhA)* = Ogxs.

Then by Equation (3.4) we find
[ =1—(AhA)S = (I — AhA)(I + AhA + (AhA)? + ... + (ARA)S7Y).
This is then used to find the inverse matrix (I — AhA)~1. As matrix (I — 2hA) is a lower triangular matrix
with 1 on each entry of the diagonal, the matrix is non-singular and therefore invertible.
(I —AhA)™Y =1+ AhA + (AhA)? + ... + (ARA)S™L = Zi;t(lh)"Ak.
Finally we notice that bA*¢é is a scalar vk and therefore

Q(Ah) = 1+ Ahb(I — ARA)™18
= 1+ Ah Th_o(AR)*bAKE (3.5)
=1+ Yp_o(AR)*bak—18
is a polynomial of at most order s in the indeterminate 1h. |

It is plausible that the amplification factor of any implicit Runge-Kutta method can be written as a
rational function. However, a proof currently eludes the author. A proof possibly includes similar steps
to the proof of Theorem 1, except that the eigenvalues of matrix A4hA4 do not all equal zero by the nature
of implicit methods. Therefore it may not be concluded that (1hA4)S = 0.

Section 3.2 provides several examples of amplification factors computed for explicit and implicit
methods. For each explicit method, the amplification factor is a polynomial in the indeterminate Ah,
as states in Theorem 1. For each implicit method in Section 3.2, the amplification factor is a rational
function.

3.1.2. The local truncation error

The local truncation error of a numerical method is the error caused by one iteration. The order of the
local truncation error, as defined in Vuik et al., 2007 can be computed using Taylor polynomials. The
local truncation error t,,,, is given by

_ Yn+1 — Wni1

Tn+1 = - n (3.6)
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The analytical solution y does not need to be known in order to compute the order of the local truncation
error. The value y,,, can be written as a Taylor polynomial around y,,:

1 1
Ynt1 = Yo+ hyp + SRV + ot Ehpy,(f’) +O(hP*Y). (3.7)

Using the test equation y’ = 1y we find the expression y;, = Ay,.. Furthermore, y/! = 1y;, = A%y, and

inductively yr(lp) = APy,. These expressions can be substituted in Equation (3.7) to rewrite y,,,, as

1 1
Y41 = Y + Ay, + E(Ah)zyn + .t E(Ah)”yn +0(hP*)

1 L (3.8)
= (1 +Ah + z(lh)z + ..+ E(/”U”))’n + O(hP*Y).

The term w,,,, in Equation (3.6) can be rewritten using the amplification factor Q (Ah). The resulting
equation w,,,; = Q(1h)y, and Equation (3.8) can be substituted in Equation (3.6) to find

— 1 1 2 1 4 p+1
Tne1 = 3 1+ Ah+ E(Ah) + ..+ E(M) Yn + O(RP™Y) — Q(AR)y,
(3.9)

1 1 1
=5 [(1 +Ah + E(/lh)z + ..+ E(Ah)l’ — Q(Ah)) Yo + O(hP“)].
For explicit methods, the amplification factor is a polynomial and the term Q (1h) may directly be used.
For implicit methods, one can rewrite Q(1h) using its Taylor expansion.

Equation (3.9) is used in Section 3.2 to find the local truncation error of several Runge-Kutta meth-
ods. Along with the local truncation error, the global truncation error of numerical methods is often
analysed. The global truncation error is the cumulative error caused by many iterations. Chapter 5 will
discuss global truncation errors.

3.1.3. The stability region

The values of 1h that satisfy the condition |Q(4h)| < 1 form the stability region. Since the eigenvalue
A can have non-zero imaginary part, the stability region can be shown in the complex plane. Some
examples of stability regions in the complex plane are given in Subsection 3.2.2.

From the stability region and a given value for A, one can determine the range for step size h for
which the numerical method is stable. In Vuik et al., 2007 it is stated that implicit methods are uncondi-
tionally stable when all eigenvalues have non-positive real part. This means that implicit methods are
stable for any choice of step size h. We are therefore only interested in finding the range of h for which
explicit methods are stable.

To perform the algorithm that will be described in this subsection, we must make an assumption
about the form of the stability region of explicit methods. We will assume that the values of the stability
region with non-positive real part form a star-shaped subset S of the complex plane about the origin.
That is, for all z € S we have tz € S for all t € [0, 1]. With this assumption we notice that it suffices to
solve the equation |Q(1h)| = 1 for h, as any value hy with 0 < hy < h will then satisfy |Q(Ahy)| < 1.

A proof to justify the assumption for all explicit methods currently eludes the author. Algorithm 1
may therefore give inaccurate results if the values of the stability region with non-positive real part do
not form a star-shaped subset. To solve the equality, we use the Bisection method described in Section
4.3 in Vuik et al., 2007 to find the root of |Q(Ah)| — 1 = 0. The pseudocode of the method is given in
Algorithm 1.
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Algorithm 1 Algorithm root |Q(1h)| — 1

1. Define A

2: Define f(h) = |Q(Ah)| — 1 See Equation (3.3)
3: Initialise p =1

4. if f(p) =0 then

5 Pu=p=DP

6: else if f(p) < 0 then

7 while f(p) < 0do

8: p=2p

9: end while

10: Pu="P

1. p=p/2

12: else if f(p) > 0 then

13: while f(p) > 0 do

14: p=p/2

15: end while

16: Pu =2p

17 =0

18: end if

19: if f(py) = 0 then
20: T =Dy
21: else if f(p;) = 0 then
22: r=Dp
23: else
24:  while |72t > 1076 do
25: m ;:@
26: if f(p;,) = 0 then
27: Break while loop
28: else if f(p,,) - f(p;) > 0 then
29: D1 = Pm

30: else

3t Pu = Pm

32: end if

33: end while

34, =

35: end if

36: Return r

The Bisection method assumes continuity of a function f on an interval [a, b] where f(a) and
f(b) have opposite sign. In Algorithm 1 the value of 1 is known and the function f is defined as
f(h) =|Q(1h)] — 1. From Theorem 1 we know that Q(Ah) is a polynomial in the indeterminate 1h. The
continuity of function f follows from the continuity of polynomials, absolute functions and their compo-
sitions. The values of a and b are given by p; and p,, respectively and they are computed in Line 3-18.
The values are chosen such that p, is a lower bound with f(p;) < 0 and p,, is an upper bound with
f(p,) > 0. Therefore the algorithm meets the assumptions of the Bisection method.

From Equation (3.5) one can deduce that h = 0 implies |Q(Ah)| = 1. This value for h corresponds
with the origin in the complex plane that shows the stability region. We are therefore only interested
in the equality |Q(1h)| = 1 with h > 0. If the initial guess p = 1 on Line 3 satisfies the equality, the
algorithm will eventually return r = 1. If the initial guess is a lower bound, the algorithm enters the loop
that starts on Line 7. The value p is multiplied by 2 until f(p) = 0. That is, until p is an upper bound.
This ensures that both the upper and lower bound are strictly larger than 0. By continuously updating
the guess for the lower bound, the algorithm provides bounds that are closer to the root, so that the
Bisection method will be completed in less iterations.



3.2. Examples of computations 11

Alternatively, if the initial guess p = 1 is an upper bound, the algorithm enters the loop that starts on
Line 13. The value p is divided by 2 until the value is a lower bound. Similar to the situation before, this
approach ensures that both the upper an lower bound are strictly larger than 0. Moreover, updating the
guess for the upper bound again allows the Bisection method to be performed with less iterations.

3.2. Examples of computations

In this section, the computations described in the previous section will be applied to seven Runge-Kutta
methods. This will be done using the Butcher tableaus given in Chapter 2.

3.2.1. The amplification factor and local truncation error
The amplification factor of the seven methods described in Chapter 2 can be found using vector b and
matrix A from the Butcher tableaus of the methods. In the case of the Forward Euler method, b = [1]
and A = [0]. Using Equation (3.3), this yields the equation

Q(Ah) =1+ Ah-[1]- (I —Ah-[0D ¢,

which can be reduced to Q(Ah) = 1+ Ah. The amplification factors of the seven methods are tabulated
in Table 3.1.

The order of the local truncation error of Van der Houwen and Wray’s method can be computed
using the amplification factor from Table 3.1 and Equation (3.9). This results in the equation

— 1 1 2 1 3 1 2 1 3 4
Tusr = 3 (14 20+ 5@ + 20 — 1+ 2k + S (W) + =()* ) |y + O(hY)

1
— 4
= hO(h )
= 0(h3).
To find the order of the local truncation error of Kraaijevanger and Spijker’s method, the amplification
factor should be rewritten as its Taylor expansion. This yields

T = 1—2h
Q(Ah) = 1—2Ah

= 1+ Ah + 2(Ah)% + O(h3).

The local truncation error of Kraaijevanger and Spijker's method is then given by

1 1
Tar1 = 5 [1 + M+ 2 (@)% — (1+ A+ 2(Ah)2 + O(h*)) y + O (h)

= L2 any, + o3
= = -3y, + 0(h)

3
= —Eazhyn + 0(h?)
= 0(h).
The order of the local truncation errors of five other methods are displayed in Table 3.1.

In Table 3.1 ERK is an abbreviation of explicit Runge-Kutta, IRK is an abbreviation of implicit Runge-
Kutta and DIRK is an abbreviation of diagonally implicit Runge-Kutta. We notice that the amplification
factors of the explicit methods are indeed polynomials in the indeterminate Ah, as stated in Theorem
1. Amplification factors of the implicit methods are rational functions, as we suspected in Subsection
3.1.1.

We notice that methods that have more stages often also have a higher order local truncation error.
It is in general not that case that the number of stages corresponds with the order of the local trun-
cation error, see for example Radau’s method. Kraaijevanger and Spijker's method has a noticeable
coefficient in the denominator as most amplification factors have coefficients of absolute values less or
equal than 1, but Kraaijevanger and Spijker’s method has a coefficient of value —2. The method has a
higher number of stages than its order of the local truncation error.
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Method Type | Amplification factor Q(1h) Error | Stages
Forward Euler ERK | 1+ 4h o) |1
Backward Euler DIRK | — om) |1
Trapezoidal DIRK ij: oh?) | 2
2
RK4 ERK | 142k + 2(Ah)2 + 2(Ah)* + —(AR)* | O(h*) | 4
Van der Houwen and Wray | ERK | 1+ 4k + >(Ah)? + z(Ah)? okd) |3
Kraaijevanger and Spijker | DIRK 11—_2/1/1};1 o) |2
Radau IRK % om3) | 2

Table 3.1: The amplification factor and local truncation error of seven Runge-Kutta methods.

3.2.2. Computation of the stability region
The stability regions of the seven given Runge-Kutta methods can be found by using the amplification
factors in Table 3.1 and finding the values of Ah for which the inequality |Q (1h)| < 1 holds.

The stability region of four methods is shown in Figure 3.1.

6 6
4 4
2 2
= | 3
2 o0 s o0
: ® :
-2 4 -2
-4 -4
-6 4 —64 i
6 -4 2 0 2 4 6 T -2 2 0 2 a1 s
Re(Ah) Re(Ah)
(a) Stability region of the Forward Euler method. (b) Stability region of van der Houwen and Wray’s method.

Im(Ah)
Im(Ah)

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Re(Ah) Re(Ah)
(c) Stability region of Kraaijevanger and Spijker’s method. (d) Stability region of Radau’s method.

Figure 3.1: Stability region of four Runge-Kutta methods.

For the Forward Euler method, the condition |Q(1h)| < 1 results in the inequality |1 + Ah] < 1. In
the complex plane, this is a circle with radius 1 and centre point (0, —1). Figure 3.1a shows the stability
region of the Forward Euler method.
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The stability region of van der Houwen and Wray’s method in Figure 3.1b is a shape that touches
the origin. This means that the method is stable for small values of step size h. The method is not
stable for any values that lie outside of the shape.

The stability region of Kraaijevanger and Spijker’s method is shown in Figure 3.1c. We notice that
the method is stable for any step size h when the real part of the eigenvalue 1 is non-positive. This
behaviour is expected from implicit Runge-Kutta methods. Furthermore, we notice that the circle in
which the method is not stable is relatively small.

Finally, the stability region of Radau’s method is shown in Figure 3.1d. Like Kraaijevanger and Spi-
jker's method, Radau’s method is implicit and unconditionally stable for eigenvalues with non-positive
real part. The shape in which the method is not stable is significantly larger than the relevant shapes
of other methods.

The stability regions of Backward Euler, the Trapezoidal method and RK4 are shown in Appendix A.

Using Algorithm 1 one can determine the range of h for which the inequality |Q(1h)| < 1 holds. We
will perform computations for the explicit methods introduced in Chapter 2. The computations will be
done with 1 = —3, which is the eigenvalue of Equation (4.1). The results of the computations rounded
to six decimal places are tabulated in Table 3.2.

Method Amplification factor Q(—3h) | hs.t. |Q(—3h)| =1
Forward Euler 1-3h 0.666667
RK4 1-3h+2h? — 2h% + Zh* | 0.928431
Van der Houwen and Wray | 1 —3h + %hz - §h3 0.837582

Table 3.2: The result of Algorithm 1 for A = —3.

The result shown in Table 3.2 indicate that the Forward Euler method is stable for 0 < h < 0.666667,
RK4 is stable for 0 < h < 0.928431 and Van der Houwen and Wray’s method is stable for 0 < h <
0.837582. As the amplification factor of the Forward Euler method is a first degree polynomial, it is
simple to validate the result for this method. The inequality |Q(—3h)| < 1 can be written as

-1<1-3h<1,

or equivalently

—=<h<

Wl
wl N

Since the step size h is non-negative, the relevant bounds are 0 < h < § which is corresponds to the
value in Table 3.2.

The next chapter will discuss algorithms to perform time steps of the Runge-Kutta methods. When
computing the time steps for explicit methods, one should take into account the bounds for h described
in this chapter.






Algorithms for time steps

In this chapter, we will provide algorithms to perform time steps of the three types of Runge-Kutta
methods. These algorithms will be applied to an initial value problem and the numerical approximation
will be compared to the analytical solution.

We will approximate the solution to the IVP

dy
o = 3y F6t+5, y(0) =3 (4.1)

The analytical solution to the IVP is known and given by y(t) = 2e~3t + 2t + 1. The solution is stable,
as Equation (4.1) has eigenvalue 1 = —3 < 0. The IVP will be considered on the domain [0, 2].

4.1. Time step explicit method

This section treats the algorithm to perform time steps of explicit Runge-Kutta methods.

4.1.1. Algorithm

The algorithm for an explicit time step is straightforward. One can define the IVP and the desired explicit
method to approximate the solution. Each stage of the method can be computed directly. Consequently,
each time step can be computed. The reason that the algorithm for explicit methods is straightforward
is because each k,, in Equation (2.3) only depends on previously computed values.

4.1.2. Van der Houwen and Wray’s method

We have implemented the algorithm described in 4.1.1 and performed time steps for van der Houwen
and Wray’s method with step size h = 0.001. This choice for step size ensures stability as it lies within
the bounds stated in Table 3.2. The analytical solution and numerical approximation are plotted in
Figure 4.1a.

The difference between the analytical solution and the numerical approximation is barely visible
from Figure 4.1a. For that reason, we have plotted the absolute difference between the two in Figure
4.1b. This difference corresponds with the numerical error of the method. We notice that the size of
the error is very small compared to the value of the solution.

15
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(b) Absolute difference between analytical solution and numerical ap-
(a) Analytical solution and numerical approximation. proximation.

Figure 4.1: Analytical solution and numerical approximation of IVP (4.1) using van der Houwen and Wray’s method.

4.2. Time step diagonally implicit method

This section treats the algorithm to perform time steps of diagonally implicit Runge-Kutta methods.

4.2.1. Algorithm

The algorithm for a diagonally implicit method is less straightforward than the algorithm for an explicit
method. This is due to the fact that each k,, in Equation (2.3) depends on itself. The restriction to
diagonally implicit methods allows for an algorithm with less computations than needed for implicit
methods. The latter will be discussed in Section 4.3. For each k,,, with 1 < m < s the equation to be
solved is given by Equation (4.2):

K = f(tn + cihwy + h X2, agiky). (4.2)

Note that the sum over i is only up to m, since the value for k,, does not depend on any k; with i > m.
We use the Picard iteration as described in Vuik et al., 2007 to solve the fixed point problem. The
algorithm to solve Equation (2.2) at each time t,, with t, < t,, < teng for a diagonally implicit method
with s stages is given by Algorithm 2. Specifically, the algorithm to perform one time step is described
in Lines 8-19.

In Algorithm 2 the initial guess for k@ [i] is 0, as can be seen in Line 8. This corresponds with the
initial guess for w,,; being w,,. We choose this initial guess to ensure that the first estimate is close to
the previous value.

The value for e = 107 in Line 11 and the stop condition in Line 17 are chosen such that the ratio of

the difference between the previous two guesses kﬁa[i] — kb [i] to the current guess kb [i] is smaller than
1:1,000,000. The value for € is chosen large enough that it does not interfere with machine precision.

There are a few assumptions that the expression for each kﬁb[i], which we will call g(k;), needs
to satisfy. First, the function g(k;) needs to be continuous on [a,b]. This is satisfied if the func-
tion f is continuous on [a, b]. The domain considered is (—o, ). The expression should be a map
g(k;) = (—o0,00) = (—o0,0), which again is satisfied if it is true for the function f. Satisfaction of these
assumptions implies the existence of a fixed point.

To ensure uniqueness, the derivative g’ (k;) should exist for all k; € (—oo, ©). Furthermore, there
should be a positive constant p < 1 such that |g'(k;)| < p for all k; € (—o0, ). If these assumptions
are not satisfied, Algorithm 2 may not converge to a unique fixed point.
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Algorithm 2 Algorithm diagonally implicit method

Define 4, b and ¢
Define function f
Define t,

Set Wo = Yo

Sete=10"°
forn=0,...,@—1do

1:
2:
3:
4:
5. Set h = step size
6:
7:
8
9

Initialise k@ = 0
Initialise kP = 0

See Table 2.1
See Equation (2.1)

KP[i] = f(t, + clilh,wy + h E523 A[L, jTk; + RA[, (]K4[i])

10: fori=1,..,sdo

1: Initialise S > ¢

12: while S > € do

13:

14: if k?[i] = 0 then

15: Break while loop

16: end if .

17 Set 5 = |KLL-k
kP[]

18: Set ka[i] = kb[i]

19: end while

20: end for

21: Setty,,, =ty +h

22:  Setwpy, = w, +hY;_, b[i]ka[i]

23: end for

We notice that Algorithm 2 can also be used to compute time steps of explicit Runge-Kutta methods,
as they satisfy the conditions of diagonally implicit methods, just with 0 in the diagonal. When we apply
the algorithm to an explicit method, we find that the term that contains kﬁa[i] in Line 12 will always be
0,as Vi: A[i,i] = 0. This results in kb [i] being computed as described in Section 4.1. After one more
iteration of the loop that starts in Line 12, the value of kﬁa[i] will be equal to kﬁb[i] and the loop ends.
This is less efficient than the method of Section 4.1, as it requires the value of kﬁa[i] to be computed

twice.

4.2.2. Kraaijevanger and Spijker’s method
The algorithm discussed in the previous subsection is used to compute time steps of a diagonally
implicit Runge-Kutta method. The results are shown in Figure 4.2
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2.54
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P

N

0.00 0.25 050 0.75 1.00 125 1.50 1.75 2.00

(a) Analytical solution and numerical approximation.
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(b) Absolute difference between analytical solution and numerical ap-
proximation.

Figure 4.2: Analytical solution and numerical approximation of IVP (4.1) using Kraaijevanger and Spijker’s method.
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Algorithm 2 is used to compute a numerical approximation of the solution of IVP (4.1) using Kraai-
jevanger and Spijker’s method with step size h = 0.001. The choice for step size does not influence
the stability of the method, since the method is implicit. The approximation and the analytical solution
are plotted in Figure 4.2a.

As the numerical method seems to give a good approximation of the analytical solution, it is unclear
from the plot what the size of the error is. We have therefore also plotted the difference between the
analytical solution and the numerical solution in Figure 4.2b.

From Figure 4.2b we can see that the difference between the analytical solution and numerical
approximation is in the same order as the chosen step size. We will analyse the error further in Chapter
5.

4.3. Time step implicit method

This section treats the algorithm to perform time steps of implicit Runge-Kutta methods.

4.3.1. Algorithm
The algorithm to perform time steps of implicit methods is given in Algorithm 3.

Algorithm 3 Algorithm implicit method

Define 4, b and & See Table 2.1
Define function f See Equation (2.1)
Define t,

Set Wo = Yo

Set h = step size

Sete =10"°

t, -t
forn=0,...,%—1do

Initialise k& = §
Initialise k> = 0
Initialise S > €
while S > € do
for i=1.,s do
KP[i] = £ (ty + clilh,wn + h X5, AL, j1K2[i])
end for
if ||k?||, = O then
Break while loop
end if

Set S =

© N oo w2

©

_— e A A A A -
[ T e =

-—
~

[k —kP] I

G

19: Set k@ = kb

20: end while

21: Settyy, =t, +h

2. Setwpyy = w, +hY;_, b[i]ka[i]
23: end for

-
®

The algorithm for implicit methods has roughly the same set-up as the algorithm for diagonally im-
plicit methods. However, Algorithm 2 only considers k; for 1 < i < m when computing k,,, while k,,
may depend on k; with m < i < s in an implicit method. We again use the Picard iteration to determine
the value of every k,,. Due to the dependency, the values are not determined one at the time. The
algorithm makes an estimate in the form of a vector k and uses the Picard iteration to approximate the

values of the entries. The expression for each kb [i] should again satisfy the assumptions described in
Subsection 4.2.1. The initial guess for each k,, is again zero, as this corresponds with the first guess
for w,,4;, being w,,. The pseudocode of the algorithm to perform time steps from ¢, t0 teng is given in
Algorithm 3.
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The algorithm for implicit methods will also give the desired approximation for an explicit or diago-
nally implicit method. However, the algorithm then requires more computations than necessary for the
method. The initialisation of vector k as the zero vector means that each entry of k is assumed to be
unknown, while the entries are easy to compute, especially for explicit methods.

The choice for € in Line 6 is justified by roughly the same argument that the stop condition does not
interfere with the problems that may arise due to machine precision. The stop condition makes sure

that the length of the difference between ka and kP relative to the length of kb is smaller than 10.

4.3.2. Radau’s method

We apply Algorithm 3 to IVP (4.1) with Radau’s method, again with step size h = 0.001. The approxi-
mation and the analytical solution are plotted in Figure 4.3a, the difference between the approximation
and analytical solution is plotted in Figure 4.3b.
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Analytical solution
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0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00
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(b) Absolute difference between analytical solution and numerical ap-
(a) Analytical solution and numerical approximation. proximation.

Figure 4.3: Analytical solution and numerical approximation of IVP (4.1) using Radau’s method.

We again notice that the algorithm gives a good approximation of the solution. The size of the error
is very small in comparison to the value of the solution.

In this chapter, we discussed algorithms for computing time steps of explicit, diagonally implicit
and implicit methods. These algorithms were applied to IVP (4.1) for van der Houwen and Wray’s
method, Kraaijevanger and Spijker’'s method and Radau’s method. The next chapter will discuss the
errors made in the approximations more thoroughly and validate the local truncation errors mentioned
in Subsection 3.2.1.






Global truncation error analysis

In Chapter 3 the local truncation errors of several Runge-Kutta methods were given. The local trun-
cation error is caused by one iteration of a numerical method. Another relevant error of numerical
methods is the global truncation error, which is the cumulative error caused by many iterations and can
be found by analysing the difference between the analytical solution and the numerical approximation.
Chapter 4 discussed algorithms to compute a numerical approximation of the solution of an IVP. The
results of the algorithms will be used in this chapter to analyse the global truncation error.

5.1. Absolute error analysis

The error e,, at time ¢, is given by the difference between the analytical value y,, and the numerical
approximation w,,. As the numerical approximation may either be an overestimation or an underesti-
mation, the absolute value of the error should be considered, that is e,, = |y,, — wy|. It should be noted
that this computation requires the analytical solution to the considered IVP to be known, which is not
always true. The error can also be written as e, = ¢ - h?, where ¢ is a positive constant, h is the step
size and p is the order of the global truncation error of the method. Combining the two expressions for
en, we find |y, —wy,| = ¢ - hP. To find the order p of the method, one can take the logarithm of both
sides and rewrite the equation to find a linear relation between log(e,,) and log(h).

log(|yn, — wy|) = log(c - hP)

= log(c) + p - log(h). (5-1)

In Equation (5.1) it can be seen that the order p of the truncation error corresponds to the slope of
the logarithmic graph. We will consider IVP (4.1) and the computation of the numerical approximation
as described in Chapter 4. The logarithmic graph of the absolute error is shown in Figure 5.1. The
computations are done for h € [0.04,0.02,0.01,0.005,0.0025,0.00125].

21
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Figure 5.1: Absolute error of the numerical approximation of IVP (4.1) of seven Runge-Kutta methods methods.

We notice that the relation between the step size and the error on logarithmic scale seems linear.
This behaviour was expected by Equation (5.1). One can use the graphs in Figure 5.1 to find the global
truncation error by calculating the slope of each graph. One way to determine the slope is by linear
interpolation. We have determined the slope by considering the error for h = 0.04 and h = 0.00125.
The resulting slope of each method is given in Table 5.1.

Method Type | Slope | Global truncation error | Local truncation error
Forward Euler ERK | 0.97 O(h) O(h)

Backward Euler DIRK | 1.03 O(h) o(h)

Trapezoidal DIRK | 2.00 | 0(h?) 0(h?)

RK4 ERK | 3.97 0(h" O(h%)

Van der Houwen and Wray | ERK | 3.03 | 0(h®) 0(h®)

Kraaijevanger and Spijker | DIRK | 1.09 O(h) O(h)

Radau IRK | 3.00 | ok® 0(h®)

Table 5.1: The global and local truncation error of seven Runge-Kutta methods.

We notice that the order of the global truncation error and local truncation error of most methods are
the same. Vuik et al., 2007 describes Lax’s equivalence theorem, which states that the global truncation
error and the local truncation error are of the same order if a numerical method is stable and consistent.

The next chapter will summarise the analysis from the previous chapters. Furthermore, it will discuss
recommendations for future work.



Summary and recommendations

In this chapter, a summary of the thesis will be given. Furthermore, several recommendations for future
analysis of Runge-Kutta methods will be discussed.

6.1. Summary

In this thesis we have analysed Runge-Kutta methods using Butcher tableaus. A Runge-Kutta method
is a numerical method used to solve initial value problems. Runge-Kutta methods famously compute
the value of the next time step using a certain number of stages. A method is specified by certain
coefficients which can be displayed in a Butcher tableau.

A Runge-Kutta method can be classified as either an explicit or an implicit method. A special kind of
implicit methods are diagonally implicit methods. To provide the reader with a better idea for the types
of Runge-Kutta methods, some examples of methods are given. These examples are used throughout
the thesis to do computations.

The amplification factor of a Runge-Kutta method can be computed by substitution of the test equa-
tion. The amplification factor of an explicit method can be written as a polynomial where the order of
the polynomial is at most as high as the number of stages. It is likely, although not proven in this thesis,
that the amplification factor of an implicit method can be written as a rational function.

The ampilification factor can be used to find the stability region of a Runge-Kutta method. As implicit
methods are unconditionally stable, the interest lies in finding the stability region of explicit methods.
An algorithm is provided to find the values of the step size for which explicit methods are stable.

Two numerical errors that are analysed are the local truncation error and the global truncation error.
The local truncation error, which is caused by one iteration of the method, can be computed using the
amplification factor. The global truncation error is the cumulative error caused by many iterations. In
order to find the global truncation error, time steps of the Runge-Kutta methods need to be compared
to the analytical solution.

Each time step of an explicit Runge-Kutta methods can be found by the straight-forward process
of computing the values of each stage. The computation of a time step of an implicit method is less
straight-forward. For diagonally implicit methods an algorithm is given that used the Picard iteration
as described in Vuik et al., 2007. The algorithm given to perform a time step of an implicit method is
similar to that of the algorithm for a diagonally implicit method and also uses the Picard iteration.

To analyse the global truncation error, a graph of the step size as a function of the error is made.
By plotting both axes on a logarithmic scale and determining the slope, the global truncation error is
approximated.
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6. Summary and recommendations

6.2.

Recommendations

This section provides options to extend analysis of Runge-Kutta methods with Butcher tableaus. Al-
though efforts were made to analyse Runge-Kutta methods thoroughly, there are possibilities for im-
provements that may be relevant in further research.

Theorem 1 states that the amplification factor of an explicit Runge-Kutta method can be written
as a polynomial of at most order s in the indeterminate Ah. It is likely that the amplification factor
of an implicit Runge-Kutta method can be written as a rational function. Further research could
include a proof to justify this statement.

To find the root of |@ (Ah)|—1 for explicit methods we assumed that the values of the stability region
with non-positive real part form a star-shaped subset of the complex plane about the origin. In
order to justify the assumption, a proof should be given that the statement is true for any explicit
method. Alternatively, a classification could be given such that certain methods do satisfy the
assumption and Algorithm 1 can be used for those methods.

Algorithm 2 and Algorithm 3 use the Picard iteration to approximate the value of each k;. The
conditions that need to be met to ensure uniqueness are dependent on the value of step size h.
Further research could include an approach to determine which values of h guarantee that the
conditions for uniqueness are met.

The order of the global truncation error as computed in Chapter 5 required the analytical solution
to the IVP to be given, which is true for the IVP that was considered. One can also analyse
the order of the global truncation error of a Runge-Kutta method for IVPs of which the analytical
solution is not known. This can be done by applying the Runge-Kutta method for several value
of the step size and considering the approximation at t¢,q. This approach is described in more
detail in Section 6.6 of Vuik et al., 2007.

In this thesis, the computations were only considered for first order initial value problems. The
computations could be extended to work for higher order initial value problems. This can be done
by writing them as a system of first order initial value problems.



Stability region of some methods

In Chapter 3 the computation of the stability reiong of Runge-Kutta methods was described. We plot
the stability regions of the Backward Euler, Trapezoidal and RK4 method.
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(a) Stability region of the Backward Euler method. (b) Stability region of the trapezoidal method.
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(c) Stability region of RK4.
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