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a9 db z = z@® learning_rate X o (Equation V)
¥ rinin 2(1-b) x P (Equation 1) - 0z

If y is Utilization, then .
Furthermore, it becomes unnecessary to try to decrease

(Utilization, Interstorey Drift Ratio) or increase (Buckling

Load Factor) that metric if the metric is already under

a9 du . acceptable limits (no failure). To account for such

oo =2-1Dx— (Equation 1) conditions, the gradient update is configured accordingly
by adding additional conditions.

y =@u-1)?

If ¥ is Interstorey Drift Ratio, then

& (i 2
$ = (i—0.010) If (u—1) > 0, performthe update; otherwise, do nothing.
ay di If (1 —5) > 0, perform the update; otherwise, do nothing.
—— = 2(i — 0.010) x — (Equation I11)
oz dz If (i —0.010) > 0, perform the update; otherwise, do nothing.

Failure conditions are taken into account in each (Equation VI)

performance metric and ¥ is calculated accordingly.

Buckling Load Factor <1

Utilization > 1 ]'_:'ﬂ'-?
Interstorev Drift Ratio > 0.010h (as specified in Eurocode 8) Pﬁ e Ej]'l l[ o -- )
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ELBO(¢) = E,, log p,(x | 2)] — Dy (a,(z | %) || p(z))- | pos
Ty —— .
z=utome (pos2i+1] = B {1 m:[:nzlﬁfm:-m)

where € ~ N (0, 1), and p and o are the mean and the standard
deviation of g (z | x). € is & standard Gaussian variable that
plays a role of introducing noise, and & denotes an
element-wise product (Zhang et al., 2016).

In order to constrain the optimized meshes to be within a certain height threshold and to minimize material usage by
minimizing mass, the gradient function was altered to account for multiple objectives instead of a single objective.

For single objective optimizations, the gradient function was as mentioned below:

P

r ay
y'(2) =3,

To consider multiple objectives, the different gradients were aggregated to form the overall gradient. Weights were
included for each gradient to allow the user to optimize specific metrics over others.

v = () e (57) 4 (35)
where,
V' = aggregated gradient
V.= Height
¥, = Mass
¥, = Performance metric

z = latent space

Wi, W2, W3 = Weightage for respective gradients )
(Equation VII)

p(z.z.y)=pix|zyipl(z|¥y)

The conditional VAE tries to maximize:

log pB(x | y) = [, log(p(x | z y)p(z | y))dz

while the loss function to minimize is:

ELBO(p) =E ., [logp(x |z ¥)] — Dy lq(z| = ¥) || p(z | ¥)).




L X KEEP IT SIM PLE In order to constrain the optimized meshes to be within a certain height threshold and to minimize material usage by

minimizing mass, the gradient function was altered to account for multiple objectives instead of a single objective.
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CATALAN VAULT

WHATISA CATALAN VAULT?




CATALAN VAULT
WHATISA CATALAN VAULT?

—
i -

2-3 layers

10mm thick mortar

25mm fired earth tile



http://www.archweb.com/en/design/page/catalan-vaulting/

CATALAN VAULT
USE AS A FLOOR SLAB




CATALAN VAULT
SEISMIC STABILITY
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MAIN RESEARCH QUESTION

Can an Al based generative framework generate new Catalan vaults for optimized
seismic performance for use as a floor slab?

3
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RESEARCH DOMAINS
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GENERATIVE SEISMIC

CATALAN
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WHAT IS THE AL FRAMEWORK?

Geometry Generation

Data Structuring Generator
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WHAT IS THE AI FRAMEWORK?

Geometry Generation

Data Structuring Generator




BEHIND THE BLACKBOX
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Topology Reconstruction VAE NN Surrogate Model
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http://arxiv.org/abs/2107.10661
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Topology Reconstruction VAE NN Surrogate Model

HEIGHT (c)
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Topology Reconstruction VAE NN Surrogate Model
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new meshes sampled
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Topology Reconstruction VAE NN Surrogate Model
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decoder
Topology Reconstruction VAE NN Surrogate Model




GENERATOR

prediction on seismic analysis
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GENERATOR
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Topology Reconstruction VAE NN Surrogate Model
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optimization of mesh
Topology Reconstruction VAE NN Surrogate Model
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optimization of mesh
Topology Reconstruction VAE NN Surrogate Model







GEOMETRY GENERATION




GEOMETRY GENERATION

Force Density Method Particle Spring Systems Dynamic Relaxation

Natural Shape Finding Thrust Network Analysis Surface Stress Density Method




GEOMETRY GENERATION
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HOW CAN A NEURAL NETWORK READ GEOMETRY?




DATA STRUCTURING

initial approach: ADJACENCY MATRIX
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DATA STRUCTURING

initial approach: ADJACENCY MATRIX
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DATA STRUCTURING
176x176 MATRIX 3 0 ) 9 7 6 VALUES PER MESH
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DATA STRUCTURING

1 5 ) 40 0 VALUES PER MESH

SIZE OF SAMPLE REDUCED BY

150.28%




27 VALUES PER MESH

SIZE OF SAMPLE REDUCED BY

199,82,




DATA STRUCTURING

[[[a g,

where,

1q41q51q61

»Ags Ugs Q4> q11] d

polyedge = row

[q121q13’q14’ 155 A16:917:9158:919:9200 215 Y225 Ua30 U2as Aos: Uogr Uo7 ]

Each value is a force density for that polyedge

1 force density value
per edge

FIGURE 01: Representation of polyedges and their relationship to force densities in a creased dataset. (Own Work)

1 force density value
per polyedge




DATA STRUCTURING

polyedge = row

[ [q1’ q2’ ’q4’q5’q6’ ’q8’ q9’ q10’ q11] g [q12’q13’q14’ q15’ q16’q17’q18’q19’q20’ q21’ q22’ q23’ q24’ q25’ q26’ q27 ] ]

row_16

row_15

row_14

row_13

row_12

15 edges COLUMN

per column Individual Edge

number

row_11

row_10

row_9

row_8

row_7

row_6

row_5

row_4

32 | 34 | 36 | 38 |40 |42 | 44 | 46 |48 | 50 | 52 |54 | 56 58 60 | 61
63 |65 [ 67 |69 |71 |73 | 75 | 77 |70 | 81 | 83 |85 | 87 89 91 | 92 row 3
10 edges ..
TrOICITE 94 | 96 | 98 | 100 | 102 | 104 | 106 | 108 |110 | 112 | 114 |116 | 118 | 120 | 122 | 123
per row Edge 125 | 127 | 129 | 131 [133 [135 | 137 | 139 [141 [143 | 145 [147 | 149 | 151 | 153 | 154 row_2 I

number
156 | 158 160 162 | 164 166 168 170 | 172 | 174 176 178 180 182 184 185
187 | 189 191 193 | 195 197 199 201 | 203 | 205 207 | 209 211 213 215 216

218 | 220 | 222 | 224 | 226 | 228 230 232 | 234 | 236 238 | 240 | 242 244 246 | 247
249 | 251 253 | 255 | 257 | 259 261 263 |265 | 267 269 [ 271 273 275 277 278

row_1 ® n




DATA STRUCTURING
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WHAT IS THE EFFECT OF VARYING FORCE DENSITY?




DATA STRUCTURING
DATASET: UNIFORM FORCE DENSITIES
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DATA STRUCTURING

DATASET. UNIFORM FORCE DENSITIES

DATASET: uniform force densities
mesh number

Edge number 2 3 4 5

1] 1

5 3 2 1 |06 |03 FORCE DENSITY =5

5 3 2 1 |06 |03

S 3 2 1 06 [03 HEIGHT VS FORCE_DENSITY
5 3 2 1 |06 |03 R

5 3 2 1 [o6 |03 S0

5 3 2 1 |06 |03

5 3 2 1 |06 |03 .

5 3 2 1 o6 [03 ] -

5 3 2 1 |06 |03 2

5 3 2 1 |06 |03 2101 '-,--

5 3 2 1 |06 |03 -

5 [ 3 ]2 [ 1 Jos Jo3 = %

5 |3 |2 1 _]o06 [03 .\

5 3 2 1 o6 |03 ®00 0000000000
5 3 2 1 0.6 0.3 : : 3 y : )
5 3 2 1 |06 |03 Force Density

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 o6 |03

5 3 2 1 [o6 |03

5 3 2 1 |06 |03

5 3 2 1 [o6 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 [o6 |03




DATA STRUCTURING

DATASET. UNIFORM FORCE DENSITIES

DATASET: uniform force densities
mesh number

Edge number 2 3 4 5

1] 1

5 3 2 1 |06 |03 FORCE DENSITY =1

5 3 2 1 |06 |03

S 3 2 1 06 [03 HEIGHT VS FORCE_DENSITY
5 3 2 1 |06 |03 R

5 3 2 1 [o06 |03 S0

5 3 2 1 |06 |03

5 3 2 1 |06 |03 .

5 3 2 1 o6 [03 E” n

5 3 2 1 |06 |03 2

5 3 2 1 [06 |03 2101 '-,--

5 3 2 1 |06 |03 -

5 3 2 1 |06 |03 o %

5 |38 |2 1 _]o6 [03 .\

5 3 2 1 |06 |03 ®00 0000000000
5 3 2 1 0.6 0.3 : : 3 y : )
5 3 2 1 |06 |03 Force Density

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 [o06 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 |06 |03

5 3 2 1 [o06 |03




DATA STRUCTURING

DATASET: uniform force densities

mesh number
Edge number

0 1 p 3 4 5
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3
5 3 2 1 06 | 0.3

DATASET. UNIFORM FORCE DENSITIES

FORCE DENSITY =0.3

Height/m

/II’ '~§‘ \\
AT SR

N

\‘\\\\

i

HEIGHT VS FORCE_DENSITY

1.0 4




Edge number

DATASET: creased force densities
mesh number

DATASET. CREASED FORCE DENSITIES

0 1 p 3 4 5
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 137 | 137 | 170
1 1 1 1 1 1
1 1 94 1 1 1
118 | 100 1 1 1 1
1 1 1 127 1 1
1 120 1 1 147 1
1 1 1 1 1 140
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 93 1 198 | 93
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
95 131 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 217 1 1
1 1 1 1 1 1
1 96 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




Edge number

DATASET: creased force densities
mesh number

DATASET. CREASED FORCE DENSITIES

0 1 p 3 4 5
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 137 | 137 | 170
1 1 1 1 1 1
1 1 94 1 1 1
118 | 100 1 1 1 1
1 1 1 127 1 1
1 120 1 1 147 1
1 1 1 1 1 140
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 93 1 198 | 93
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
95 131 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 217 1 1
1 1 1 1 1 1
1 96 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




DATASET. CREASED FORCE DENSITIES

DATASET: creased force densities

mesh number
Edge number

0 1 p 3 4 5
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 137 | 137 | 170
1 1 1 1 1 1
1 1 94 1 1 1
118 | 100 1 1 1 1
1 1 1 127 1 1
1 120 1 1 147 1
1 1 1 1 1 140
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 93 1 198 | 93
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
95 131 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 217 1 1
1 1 1 1 1 1
1 96 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




DATASET. CREASED FORCE DENSITIES

DATASET: creased force densities

mesh number
Edge number

0 1 2 K] 4 5
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 137 | 137 | 170 Normal Distribution: = 150, ¢ = 30
1 1 1 1 1 1 ' :
1 1 94 1 1 1 D012 1
118 [100 | 1 1 1 1
1 1 1 [127 | 1 1 S
1 [120 | 1 1 (147 [ 1 % noos
1 1 1 1 1 [140 s
1 1 1 1 1 1 fé T
1 | 1 1 1 1 1 " oo0s-
1 1 1 1 1 1
1 1 1 1 1 1 bR
1 1 93 [ 1 [198 [ 93 2000
1 1 1 1 1 1 5 % o w0 a0 20 w0
T | 1 T | 1 1 1 oo
1 , ] v ] : load = 35.0
95 |131 | 1 | 1 1 1 h=150
1 1 1 1 1 1 0 =230
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 217 | 1 1
1 1 1 1 1 1
1 [96 | 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




Edge number

DATASET: creased force densities
mesh number

DATASET. CREASED FORCE DENSITIES

0 1 p 3 4 5
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 137 | 137 | 170
1 1 1 1 1 1
1 1 94 1 1 1
118 | 100 1 1 1 1
1 1 1 127 1 1
1 120 1 1 147 1
1 1 1 1 1 140
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 93 1 198 | 93
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
95 131 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 217 1 1
1 1 1 1 1 1
1 96 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Probability Density

0.012

MNormal Distribution: u= 150, ¢ =30

0.010 1 T

0.008

o
=]
=1
=]

=
=]
£

0.002 4 T

0.000

5 o Too %0 200 250 %o
Force Density
load =35.0

n=150
o=30



DATA STRUCTURING

DATASET. RANDOMIZED FORCE DENSITIES

DATASET: randomized force densities
mesh number

6 10 12 20 30 40
0.1 6.3 | 26 | 21 0.5 | 0.2
1.1 0.8 | 0.1 1.3 2 0.1
0.2 | 0.6 1.1 0.2 1.7 1.4 kg Newinial Distbution
0.2 |05 |05 |03 99 |55 ' '
0.3 | 3.1 1 0.1 05 |44 R
0.2 6 03 | 1.5 7 1 —_—
46 |04 1 0.2 8 10
19 |13 |04 |29 |22 |03
0.6 |41 1 1.4 09 | 8.5
43 | 3.7 |06 |01 0.2 1.4
10 1.7 123 | 3.9 0.8 | 6.6
1.9 |10.9 3 0.5 3 1.7
03 (03 |02 |14 0.7 | 23
04 (04 | 0.1 0.6 1 1.6

Edge number

0.54

Probability Density

T @ = 2 = = =
load =40.0

H =log(1)
o = (log(100) - log(0.2)) / 4

0.8 | 1.6 1.2 |01 0.1 0.1
3.2 |06 1.1 0.2 [49 (03
5.3 1 0.8 [ 0.5 0.3 |01
14 109 |12.1 | 0.3 52 | 0.6
47 |04 |04 |13 0.2 | 0.8
16 |22 |42 |09 09 |04
0.6 | 0.1 71 2.1 1.2 | 0.1
0.1 0.2 1.2 |01 04 ]0.2
1.6 | 0.1 0.2 |06 1.2 |[14.5
0.8 2 36 0.2 1.4 | 25
0.8 1 1 0.1 2.8 | 0.6
0.1 22 |07 [1.5 1.1 0.9




DATA STRUCTURING

DATASET. RANDOMIZED FORCE DENSITIES

DATASET: randomized force densities
mesh number

6 10 12 20 30 40
01 [63 [26 [21 [05 |02
11 |08 |01 |13 2 0.1
02 |06 (1.1 |02 [17 |1.4 L gENGeal Distrlsution
02 |05 (05 |03 [99 |55 ' '
0.3 | 3.1 1 0.1 [05 | 4.4 i
0.2 6 03 |15 7 1 06
46 |04 1 0.2 8 10
19 |13 |04 |29 |22 |03
0.6 | 4.1 1 14 |09 |85
43 |37 (06 [01 |02 |14
10 | 1.7 |123 |39 |08 | 6.6
1.9 [0.9 3 0.5 3 1.7
03 (03 (02 [14 (07 |23
04 (04 (01 |06 1 1.6

Edge number

0.54

Probability Density

T @ = 2 = = =
load =40.0

H =log(1)
o = (log(100) - log(0.2)) / 4

0.8 | 1.6 1.2 |01 0.1 0.1
3.2 |06 1.1 0.2 [49 (03
5.3 1 0.8 (05 |03 |O0.1
14 109 |12.1 | 0.3 52 | 0.6
47 |04 |04 |13 0.2 | 0.8
16 |22 |42 |09 09 |04
0.6 | 0.1 71 2.1 1.2 | 0.1
0.1 0.2 1.2 |01 04 ]0.2
1.6 | 0.1 0.2 |06 1.2 |[14.5
0.8 2 36 0.2 1.4 | 25
0.8 1 1 0.1 2.8 | 0.6
0.1 22 107 |15 1.1 0.9




DATA STRUCTURING

DATASET. RANDOMIZED FORCE DENSITIES

DATASET: randomized force densities
mesh number

6 10 12 20 30 40
01 [63 [26 [21 [05 |02
11 (08 |01 [1.3 2 0.1
02 |06 (11 |02 [17 |1.4 L gENGeal Distrlsution
02 |05 [05 |03 [99 |55 ' '
0.3 | 3.1 1 0.1 [05 | 4.4 i
0.2 6 03 |15 7 1 06
46 |04 1 0.2 8 10
19 |13 |04 |29 |22 |03
0.6 | 4.1 1 14 |09 |85
43 |37 (06 [01 |02 |14
10 | 1.7 |123 |39 |08 | 6.6
1.9 [ 0.9 3 0.5 3 1.7
03 (03 (02 [14 (07 |23
04 (04 (01 |06 1 1.6

Edge number

0.54

Probability Density

T @ = 2 = = =
load =40.0

H =log(1)
o = (log(100) - log(0.2)) / 4

0.8 | 1.6 1.2 |01 0.1 0.1
3.2 |06 1.1 0.2 [49 (03
5.3 1 0.8 | 0.5 0.3 |01
14 109 |12.1 | 0.3 52 | 0.6
47 |04 |04 |13 0.2 | 0.8
16 |22 |42 |09 09 |04
0.6 | 0.1 71 2.1 1.2 | 0.1
0.1 0.2 1.2 |01 04 ]0.2
1.6 | 0.1 0.2 |06 1.2 |[14.5
0.8 2 36 |02 1.4 | 25
0.8 1 1 0.1 2.8 | 0.6
0.1 22 |07 |15 1.1 0.9




DATA STRUCTURING

DATASET. RANDOMIZED FORCE DENSITIES

DATASET: randomized force densities
mesh number
6 10 12 20 30 40

0.1 6.3 | 26 |21 0.5 | 0.2
1.1 0.8 | 0.1 1.3 2 0.1

Edge number

0.2 0.6 1.1 0.2 1.7 1.4 Log-Normal Distribution
02 (05 (05 |03 [99 |55 ' '

03 [381 | 1 |01 [05 |44 =

0.2 6 0.3 [1.5 7 1 0.6 1

46 |04 1 0.2 8 10
1.9 1.3 |04 [29 |22 |03
0.6 |41 1 1.4 09 | 8.5
43 | 3.7 |06 |01 0.2 1.4
10 1.7 123 | 3.9 0.8 | 6.6
1.9 10.9 3 0.5 3 1.7
03 [03 |02 |14 0.7 | 23
04 (04 | 0.1 0.6 1 1.6

0.54

Probability Density

T @ = 2 = = =
load =40.0

H =log(1)
o = (log(100) - log(0.2)) / 4

0.8 | 1.6 1.2 |01 0.1 0.1
3.2 |06 1.1 02 [49 (03
5.3 1 0.8 (05 |03 |O0.1
14 109 |12.1 | 0.3 52 | 0.6
47 |04 |04 |13 0.2 | 0.8
16 |22 |42 |09 09 |04
0.6 | 0.1 71 2.1 1.2 | 0.1
0.1 0.2 1.2 |01 04 ]0.2
1.6 | 0.1 0.2 |06 1.2 |[14.5
0.8 2 36 0.2 1.4 | 25
0.8 1 1 0.1 2.8 | 0.6
0.1 22 107 |15 1.1 0.9
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PERFORMANCE EVALUATION

< Start >

N
N 7

WORKFLOW

Modal Analysis

Seismic weight

N2
Check mass participation of
dominant modes
2

Time period of structure

N
Spectral Accelerations

-
Il
™M
hd

LUl1]

x Response Spectrum Analysis

Base Shear
N
SRSS
N
Vertical Distribution of forces
N2
Apply Seismic Loads to FEA Model

N2

Calculate Interstorey Drift and get
other internal reactions

10,000
simulations
completed?

&




PERFORMANCE EVALUATION

q
BUCKLING LOAD FACTOR UTILIZATION INTERSTOREY DRIFT RATIOS

STABILITY STRENGTH STIFFNESS




PERFORMANCE EVALUATION

failure

BUCKLING

PERFORMANCE METRICS

&

LOAD FACTOR UTILIZATION INTERSTOREY DRIFT RATIOS

—
1.5 0.015h —
N L0 1| 1
0.5 0.005h
e —




PERFORMANCE EVALUATION
SEISMIC REGION

o
Pakistan N
“’+ E
S

Seismic zoning
BCP - PGA (m/sq. sec)

B Zone 1(<0.8)

B Zone2A(0.8-1.6)
. Zone2B(1.6-24)
W Zone3(24-3.2)
B Zoned(>3.2)

0 4000
s —

kilometers
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SEISMIC REGION

v
Pakistan N

Seismic zoning
BCP - PGA (m/sq. sec)

Zone 2B (1.6-2.4)

0 4000
H
kilometers




PERFORMANCE EVALUATION
BUILDING TYPE REGION

v
Pakistan

L et . =
the other building types in “few” range.

L Predominantly adobe structures with all ‘




PERFORMANCE EVALUATION
VARIATION IN FORCE DENSITIES

. . BUCKLING LOAD FACTOR
a) uniform force densities dataset

DATASET 16 B e e DATASET 16
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VARIATION IN FORCE DENSITIES

: . UTILIZATION
a) uniform force densities dataset

DATASET 16 ® DATASET_16

Log(Utilizatio




PERFORMANCE EVALUATION
VARIATION IN FORCE DENSITIES

: . INTERSTOREY DRIFT RAITIOS
a) uniform force densities dataset

DATASET 16
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PERFORMANCE EVALUATION
VARIATION IN DATASET STRATEGIES

/ Performance improves
small vault uniform force densities creased vault
(1/3 original (1/3 original length)
length) 7@ 74?‘\

supports at outer perimeter

segmented vaults randomized force densities
(1/3 original length)

suppported separately

30 samples per dataset

supports also along the
whole perimeter of each
segmented vault




PERFORMANCE EVALUATION
VARIATION IN DATASET STRATEGIES

segmented vaults
(1/3 original length)
suppported separately

uniform force densities
seismic load

SeisSmic load

/

creased vault

(1/3 original length)

randomized force densities Seismic load

top view

SeisSmic load
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10,000 samples = 9,950 samples + 50 samples
\ \

randomized force uniform force
densities densities
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failure

BUCKLING

PERFORMANCE METRICS

&

LOAD FACTOR UTILIZATION INTERSTOREY DRIFT RATIOS
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1.5 0.015h —
N L0 1| 1
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PERFORMANCE EVALUATION
PERFORMANCE OF RANDOMIZED DATASET

UTILIZATION

All meshes fail in Utilization .
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GENERATOR

WORKFLOW

carried out in tensorflow in python

number of epochs latent dimensions

batch size beta
learning rate loss type
normalized along normalized
with force densities independantly

thickness not included

One-Hot encoding  labels not included

Sinusoidal Positional encoding

( Normalize the samples )

(Reshape the data (8) into (n, 28))

A
Split the dataset into training
((80% test validation data (20%))

Set the hyperparameters

Set the thickness parameter

Concaetenate with Conditioning
labels (c)

VAE

— Architecture of the VAE

GEEETED
D
*

Training

required
epochs

965

number of layers

number of neurons activation function
of each layer at layer

no

completed?
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VAE
CONCEPT

( ) T O
. latent space
0 |
=
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__________________________
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OUTPUT
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VAE

CONCEPT

Force densities
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VAE
PREDICTION OF SAMPLE FORCE DENSITIES

HYPERPARAMETERS: latent_dimension = 4, beta = 0.2, epochs = 600,

creased dataset
batch_size = 64, learning_rate = 1E-03

200 A
A
» 150 ,";l
v ih
b~ [/
2 i\ —— prediction
. S 100 A A h
27 27 o i —-=—- ground_trut
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ACTIVATION FUNCTION = sigmoid

HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, epochs = 600,
batch_size = 128, learning_rate = 1E-05

() (5 Q)
28 28
je) he)
o o -
5 5 5 |2
o n ” -
Z|l—> —> - —> |3
\_/ \—/
Across Dimension 1
Latent Space Distribution
4-
3..
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=
k=]
2
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i

Latent Dimension 1
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00

sigmoid

VAE

Visualizing Thickness across dimensions

Thickness/m

g B Dimension 2: -2.0
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VAE 2

Dimension 2: Visualizing Force Densities across dimensions

ACTIVATION FUNCTION = sigmoid + ReLU

HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, epochs = 600, sigmoid 204
batch_size = 128, learning_rate = 1E-04 “’ . 2.5
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CONDITIONAL VAE

Small dense latent space

Index (i) 4
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Small dense latent space

Latent Dimension 2
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&
8 4]
% @
f{'ﬁ

5 9 a A
e ® ® L 4
54

-6

T T T T T T T T T
-6 =5 =4 =3 =2 =1 0 1 2 3

CONDITIONAL VAE

Sinusoidal positional encoding
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CONDITIONAL VAE

Small dense latent space

Label = 0.8 m
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CONDITIONAL VAE

Large sparse latent space

Label = 0.8 m
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CONDITIONAL VAE

Large sparse latent space

Label = 0.8 m
© 100 -
\e)
o
5 80 -
o o
5 4 : : " : o 60
. Sinusoidal positional encoding >
4 4 ... > ® 45' 40 A
[ ) [u]
3 & ® —— 2
* & f ‘!n 2 = - -3 9 20-
I - i N
E 2 . & @?’ ilt’ . IQPE':“ 0 1 T 1 T T T 1 T T 1 T T 1 1 T T T
i) 14 - -y 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 1.7 1.
T Height/m
E 01
()
L= _1 4
g Label = 0.8 m
5 -2+ N -
ks e ~
=3 e ® we / \\ @ 100 -
= V4 c
-4 * > / \ S 80-
51 . / \ g
/ AJ o 60
B ; , ; , , , : : , . , / One Hot vector engoding o
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 \ c 40
/ \ o
/ o i
, \ g 20

T T = T T T T T T T T T T T T T T T T T
0.0 03 06 09 12 1.5 1.8 21 2.4 2.7 3.0 3.3 3.6 3.9 42 45 48 51 54 57 6.
Height/m

Desired vault ——
Sampled vault =——




GENERATOR

Large sparse latent space

Latent Dimension 2

Latent Space Distribution

Latent Dimension 1

CONDITIONAL VAE

Dimension 2: Visualizing Force Densities across dimensions, Sampled Height = 0.8 m
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GENERATOR

WORKFLOW

carried out in tensorflow in python

Seismic Performance

Buckling Load Factor

Utilization

Interstorey Drift Ratio

Mass

Height

SURROGATE MODEL

Select metric(s)

J
Pre-processing labels Pre-processing features

il e

for each performance T
metric from both seismic
. , —> Set the hyperparameters
directions for each @eshape the data into (n, 28)) e
sample of the dataset
N2 Set the thickness parameter
Extracting best 10
samples in each of the batch size number of epochs
three metrics Architecture of the Surrogate Model
\I/ .
oFmalize The Samples learning rate loss type
(y) across each metric ) | L ( Training to get the prediction ¥ )
normalized along normalized
with force densities independantly

number of
surrogate
models (x)

required
epochs
completed?

thickness not included

number of layers

@eshape labels into (n,x)) number of neurons  activation function

of each layer at layer
[ Split the dataset into training )

(80%), test validation data (20%))
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SURROGATE MODEL

One surrogate model

(—




1 surrogate model would unite them all.
1 model would guide them

1 would be connected to the VAE

And, through gradient descent,
optimize them

T N




GENERATOR

HYPERPARAMETERS: epochs = 3000, batch_size = 128,
learning_rate = 1E-06

(A o) ()
28 3

-] -] D =
[ | | - o
2 Q Q 0] o
o o o o -
zZ 2
- @)
\_/ N

SURROGATE MODEL

Buckling_Load_Factor

Buckling_Load_Factor
o
=
=

Calculated Scores
Predicted Scores

A A ) o ) > 5 © & o
% 5 “ A I D 2t A » o5
F L o N B LF LN
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Sample
Utilization
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Jwe | e Calculated Scares
' | ' —— Predicted Scores
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=

105

Drift_Rati

----- Calculated Scores
—— Predicted Scores
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SURROGATE MODEL

n
1 2
loss, = ?; Z(}’Li - yl,true,i)
i=1

n
1 2
loss, = E Z(yz,i - yz,true,i)
i=1

n

1 2

loss; = E Z(}’&i - y3,true,i)
i=1
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SURROGATE MODEL

n
1 2
loss, = ?; Z(}’Li - yl,true,i)
i=1

] "

1 2
loss, = - E (y'2,i — yume’i) —»  lossiorqr = Wy.loss 1+ wy.loss, + ws.loss

i=1
L n
2
loss; = Z(}’&i - y3,true,i)
i=1

n
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SURROGATE MODEL

n
1 2
loss, = ?; Z(}’Li - yl,true,i)
i=1

n
1 2
loss, = n Z(yz,i - yz,true,i)
i=1

1

n
2
loss; = Z(yB,i - y3,t'rue,i)
i=1

n




Is it really that PRECIOUS?
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Or is there a surrogate
PRECIOUS-er?

/
» @
» @
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SURROGATE MODEL L

Single Surrogate Model 3 separate surrogate models

BUCKLING LOAD FATOR

UTILIZATION

INTERSTOREY DRIFT RATIOS
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SURROGATE MODEL L

Single Surrogate Model 3 separate surrogate models
NMRSE OF NMRSE OF
() ()
14 74 O/ BUCKLING LOAD FATOR 7 2 70/ 28 1
[ | o | o D D O |+
= — — - )
) (0] [0) [O) o
o o o o -
zZ|l— —> —> —> 8
\_/ - \_/

HYPERPARAMETERS: epochs = 2000, batch_size = 256,
learning_rate = 5E-06
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L 2092% e 9.18% f:A-[
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HYPERPARAMETERS: epochs = 3000, batch_size = 128, —/ —

learning_rate = 1E-06 HYPERPARAMETERS: epochs = 3000, batch_size = 256,

learning_rate = 5E-06

NMRSE OF NMRSE OF (2-2?

14.26% = 9,81%
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O M2 O E2E O 28 O
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—_ s s s s >

INPUT

( OUTPUT —x)

\—/

HYPERPARAMETERS: epochs = 2000, batch_size = 256,
learning_rate = 5E-06
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Single Surrogate Model

NMRSE OF

14.74%

29) (3)

- - O |E NMRSE OF
= - - | -
- [3) [} 5} o
: Loalisl 20.929%
Zz 3 [ 0
\_/ \—/

HYPERPARAMETERS: epochs = 3000, batch_size = 128,
learning_rate = 1E-06

NMRSE OF

14.26%

SURROGATE MODEL

REDUCTION OF

BUCKLING LOAD FATOR ¢ 50.70/0

REDUCTION OF

w4 56.1%

REDUCTION OF

INTERSTOREY DRIFT RATIOS ¢ 31.20/0

965

3 separate surrogate models
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HYPERPARAMETERS: epochs = 2000, batch_size = 256,
learning_rate = 5E-06
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GENERATOR

WORKFLOW

Buckling Load Factor

Utilization

Interstorey Drift Ratio

Mass

Height

©0 000

OPTIMIZATION

C Start )
y

/ Selection of a input mesh /
v

{

Set number of objectives to optimize ]

Select metric(s) and weight(s)
Y

Setting the learning rate and number of )
iterations

Normalization and reshaping of the
input n\il,esh (8)

Compressing the tensor
into Iatenivecor (2)

Decoding(z) to get the decoded
tensor (0)

Predicting the performance (y)
through the surrogate model

VAE

Surrogate Model

%[ Calculating the gradient y(z) = 56\’2 j

yes

4

( z = z - learning_rate * gradient )

required
iterations
completed?

no

(s )




GENERATOR

OPTIMIZATION

Optimization Percentage for Different Learning Rates

250 1 —@— Buckling_Load Factor
Y —&— Utilization
é 200 1 —&— Interstorey Drift Ratios
£ 150-
[1¥]
o
£ 100
Y]
=
DATASET: randomized g P
: Values before ) ]
Metric N ® 0
Optimization e
] .
12.6 g —°
o
10.6 ~100 - =
2.83E-03h ' ' . ' ' TR '
D.Oo1 01 1.0 5.0 100 15.0 200 30.0
0.06m Log of Leaming Rate




GENERATOR

SINGLE OJECTIVE OPTIMIZATION

Force densities

Ratio
0.6
0.3
0.3
0.4
0.4
0.6
0.3
0.5
0.4
0.4
0.3
0.5
Values before 0.4
Optimization 03

12.6 05
10.6 0.4
2.83E-03h 0.3

0.06m 0.5
0.3

0.5
0.4
0.4
0.5
0.5
0.4
0.4
0.4

DATASET: randomized

Metric




GENERATOR

DATASET: randomized

Metric

Values before
Optimization

12.6

Force densities

SINGLE OJECTIVE OPTIMIZATION

Force densities of Optimized mesh in

10.6

2.83E-03h

0.06m

of Initial Mesh Bucll:(élgt%ll:oad Utilization Interth:tri%y Drift
0.2 Near zero Near zero 0.6
0.3 Near zero Near zero 0.3
0.4 Near zero Near zero 0.3
0.1 Near zero Near zero 0.4
0.5 Near zero Near zero 0.4
3.3 Near zero Near zero 0.6
0.5 Near zero Near zero 0.3
0.5 Near zero Near zero 0.5
4.2 Near zero Near zero 0.4
0.6 Near zero Near zero 0.4
1.3
7.5
0.8
3.4 Near zero Near zero
1.0 Near zero Near zero
1.0
0.3
3.4 .
9.6 Near zero Near zero 0.3
4.9 Near zero Near zero 0.5
0.8 Near zero Near zero 0.4
0.4 Near zero Near zero 0.4
0.6 Near zero Near zero 0.5
1.9 Near zero Near zero 0.5
0.4 Near zero Near zero 0.4
0.1 Near zero Near zero 0.4
0.5 Near zero Near zero 0.4




GENERATOR
SINGLE OJECTIVE OPTIMIZATION P

® DATASET_16 ® DATASET 16 0.04hH{ @ DATASET_16




GENERATOR

uniform force densities dataset

DATASET 16

Buckling
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SINGLE OJECTIVE OPTIMIZATION

BUCKLING LOAD FACTOR

UTILIZATION

INTERSTOREY DRIFT RATIOS

s

100001h 1
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b L ]
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0.0005h 1 °
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s _ % 0.0004h 1 .
B ® 5301 ® ®
8 5
® 3 % @
. " 525 00003h - -
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Force density

fd=0.8

0.15%

OF DATASET

Force Density

fd=0.6

0.05%
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fd=0.3

0.00%
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GENERATOR

SINGLE OBJECTIVE OPTIMIZATION




GENERATOR
MULTI OBJECTIVE OPTIMIZATION
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GENERATOR

MULTI-OBJECTIVE OPTIMIZATION
UTILIZATION + INTERSTOREY DRIFT RATIO + HEIGHT

When initial mesh is sampled from dataset

Values before Values before
Optimization Optimization

Metric

2.0m 1.29m

10.6 7.3
2.83E-03h 2.95E-03h

0.06m

Before optimization After optimization




Predicted Utilization

GENERATOR

MULTI-OBJECTIVE OPTIMIZATION : - - — — —
UTILIZATION + INTERSTOREY DRIFT RATIO + HEIGHT

Predicted Interstorey Drift Ratios

e [} [} -
1 ] ] 1

0.003
0.002
When initial mesh is sampled from latent space 0.001
T T T T T T
0 200 400 600 800 1000
lterations
Predicted Height
3.0
2.5
2.0 4
1.5
0 200 400 600 800 1000
lterations
Gradient RMS
0.015
0.010
0 200 400 600 800 1000
lterations
Predicted Thickness
0.0625 -
0.0600 -
0.0575 A
T T T T T T
0 200 400 600 800 1000
Iterations

—
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RANDOMIZED vaults







IN OUT

[ [07010105070! 10,0,0,0] )

polyedge = row force density

[059!0!01070!0!1 loioiololoiolololl E)

[q]

1.0 =support  0.0= not support

]

float value (eg1.2) = force density

of all polyedges of mesh




CORRUGATED vaults
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FUTURE POTENTIAL

1. Dataset revision for
a) Better performing meshes under seismic loads

i3
TLDelft



FUTURE POTENTIAL

1. Dataset revision for
a) Better performing meshes under seismic loads
b) More accurate conditioning of the Conditional VAE

Height of vaults in dataset
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FUTURE POTENTIAL

1. Dataset revision for
a) Better performing meshes under seismic loads
b) More accurate conditioning of the Conditional VAE
c) Better latent space representation for multi-objective optimization of conflicting objectives

Dimension 2: Visualizing Force Densities across dimensions, Sampled Height = 0.8 m

Dimension 1 = -2.0

Latent Space Distribution

11 12 13 14 15 16 17
Polyedge _index

Dimension 1 =-1.5

0 1 12 13 14 15 16 17
poly index

o™
c
R
%]
c
]
E
(a]
]
c
(O]
+—
[+]
-

-1 0 1
Latent Dimension 1

) 1 12 13 14 15 16 17
Polyedge _index




FUTURE POTENTIAL

1. Dataset revision for
a) Better performing meshes under seismic loads
b) More accurate conditioning of the Conditional VAE
c) Better latent space representation for multi-objective optimization of conflicting objectives
2. How to constrain the latent space so that during optimization conditioned samples are within label limits

Predicted fization Sinusoidal positional encoding

Iterations

Predicted_Interstorey Drift_Ratios

Iterations

Predicted_Height

Desired vault -

Iterations

Gradient RMS Sampled vault

Iterations

Predicted_Thickness




FUTURE POTENTIAL

1. Dataset revision for

a) Better performing meshes under seismic loads

b) More accurate conditioning of the Conditional VAE

c) Better latent space representation for multi-objective optimization of conflicting objectives
2. How to constrain the latent space so that during optimization conditioned samples are within label limits
3. Other generative models

i3
TLDelft



FUTURE POTENTIAL

1. Dataset revision for
a) Better performing meshes under seismic loads
b) More accurate conditioning of the Conditional VAE
c) Better latent space representation for multi-objective optimization of conflicting objectives
How to constrain the latent space so that during optimization conditioned samples are within label limits
Other generative models
4. Potential for heavier FEA models

= N

i3
TLDelft



WHY ARE YOU BIASED AND WRONG SO OFTEN?
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polyedge = row force density

1.0 = support  0.0= not support float value (eg1.2) = force density
of all polyedges of mesh

row_16




d) After tiling, Nodes identified for each tile after discretization

a) Form diagram
/ ye L

x

e) Master nodes identified representing aggregated tiles
R e
J A group of tiles (orange
A nodes) is represented
6‘. 4 by a single (black)
A 35 oo master node
SRR
A 2 4
k=
2

s %i
o

SR

b) Segmented into 3 patches for tiling input

c) Tiling is done. Examples below show different options. f) Master nodes filtered One vector direction is
discarded as it would

(Blue) Tween between 2 curves for averaging out pattern. /{ be perpendicular
Offsets may not be of same spacing. (Orange) Pattern follows ‘4
oftset from curves highlighted in orange maintaining constant A
spacing. Staggering of pattern is done next but not shown / ; *
here.

-~

>0 >
Ea =
i

Vectors are averaged
out

\*’\“\ .

g) Master nodes with 1 vector
represented in radians

7

|
L \\\\\

7
]

N




) _ L ¥ =00-b)° |
If § is Buckling Load Factor, then e
ir”j;;”—ﬁ(:lﬂ—’E)i){”””‘i,,r-"‘"”"1_'"_ Z=Z— Iearning_rate Xea—z
oy db z = z@learning_rate x 6—37 (Equation V)
¥ rinie 2(1—b) x PP (Equation 1) - dz

If ¥ is Utilization, then .
Furthermore, it becomes unnecessary to try to decrease

(Utilization, Interstorey Drift Ratio) or increase (Buckling

Load Factor) that metric if the metric is already under

a9 du . acceptable limits (no failure). To account for such

So=2-1)x— (Equation Il) conditions, the gradient update is configured accordingly
by adding additional conditions.

j =@-1)?*

If ¥ is Interstorey Drift Ratio, then

8 —=(i— 2

¥ =(i—0.010) If (u—1) > 0, perform the update; otherwise, do nothing.

ay di If(1—>b) > 0, perform the update; otherwise, do nothing.

—— =2(i — 0.010) x — (Equation 111)

dz dz If (i — 0.010) > 0, perform the update; otherwise, do nothing.
Failure conditions are taken into account in each (Equation VI)

performance metric and y is calculated accordingly.

Buckling Load Factor <1
Utilization > 1

Interstorey Drift Ratio > 0.010h (as specified in Eurocode 8)

pos )
100002 dpads)

pus

(Equation 1V) P'H[LF\'.I.!-'.?--E} = 5in l[

ELBO(9) =, [log p,(x | 2)] — Dy (q,(z | %) || p(z ). |
PEoas 2 qn = CUS
z=ptome (pos i) = HE {1 000D Tmaned

where € ~ N (0, 1), and p and o are the mean and the standard
deviation of g (z | x). € is & standard Gaussian variable that
plays a role of introducing noise, and & denotes an
element-wise product (Zhang et al., 2016).

)

In order to constrain the optimized meshes to be within a certain height threshold and to minimize material usage by
minimizing mass, the gradient function was altered to account for multiple objectives instead of a single objective.

For single objective optimizations, the gradient function was as mentioned below:

P

r ay
y'(2) =3,

To consider multiple objectives, the different gradients were aggregated to form the overall gradient. Weights were
included for each gradient to allow the user to optimize specific metrics over others.

@ = (52) +w(57) ¢ (3)
where,
V' = aggregated gradient
V.= Height
¥, = Mass
¥, = Performance metric
z = latent space

Wi, W2, W3 = Weightage for respective gradients )
(Equation VII)

p(z.z.y)=pix|zyipl(z|¥y)

The conditional VAE tries to maximize:

log pB(x | y) = [, log(p(x | z y)p(z | y))dz

while the loss function to minimize is:

ELBO(p) =E ., [logp(x |z ¥)] — Dy lq(z| = ¥) || p(z | ¥)).




PERFORMANCE EVALUATION
VARIATION IN STOREY HEIGHT

&

BUCKLING LOAD FACTOR UTILIZATION INTERSTOREY DRIFT RATIOS
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RESEARCH WORKFLOW
WF2A -WORKFLOW 2A

_________________

regular grid
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RESEARCH WORKFLOW
WF3 _WO RKFLOW 3 direction vector for tile
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Discrete
Element

tile

extrusion Method
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RESEARCH WORKFLOW
WF2B - WORKFLOW 2B

feature-based
topology form finding
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PERFORMANCE EVALUATION

BEST PERFORMING SAMPLES IN THE MAIN DATASET

BUCKLING LOAD FACTOR UTILIZATION
Buckling_Load_Factor Utilization
b b bbb bbb
100 A
12 -
L 10 -
60 - - 8 -
SO (L EEEEETEEEEEEE EEEEE LT ] ——— @ 009090
4-
I I 2-
| \|ll_ll_l_l_llI_I_IIII|I|ll,ll__l_!_lfl_ll_lll__Hl_!Il|III_HIIIII :

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Lo Imr-.m-aoono mmna.-mn = u\\alor-talamwm \u:u mmmmmmmmmmmmmmm

—— Mean

____ Standard Deviation
—— Failure

- Random force densities
=== Uniform force densities

even the best samples fail in utilization

0.01h

0.008h

0.006h -

0.004h

0.002h -

0.0h -

&

INTERSTOREY DRIFT RATIOS

Interstorey_Drift_Ratios

I P L P O O O O L P B e A et O ) ) 50 3 O O A D P ) N P U ) e L LG O P D 0 O L e
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

no failure of any sample within 1
standard deviation from the mean




RESEARCH DOMAINS

perceptron
deep neural networks
data structures

graphs

Graph Convolutional Network [Jilf 2Pplication in software
- S - types of NSP and LSP
Nas nonlinear vs linear
surrogate model static vs dynamic

sofware
pattern generation
form-finding
HulELGEWAE
what is it




GENERATOR
VAE 2

SAMPLING ACROSS LATENT DIMENSIONS Thickness normalization along with force densities thickness normalized independantly

HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, epochs = 600,
batch_size = 64, learning_rate = 1E-04

Visualizing Thickness across dimensions Visualizing Thickness across dimensions
0.068 4 i i T i ]
. & (] 0 WA Dimension 2:-2.0 / +2.0 | W Dimension 2:-2.0 / +2.0
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SUBQUESTIONS

Deep generative + Vault

1. Can unique latent dimension of the VAE
represent unique features representing the
geometry of the vault? If yes, what features
are represented?

Deep generative + Seismic + Vault

2. Can vaults with variable footprints be
generated that are structurally optimized
for seismic performance?

Seismic + Vault

3. How does the depth of the Catalan vault
floor slab get affected by varying input
footprint size?

4. What effect does varying the force
densities have on overall structural
performance?

5. Is there a favourable pattern in terms of
force densities for seismic performance?

3
T Delft

139



PERFORMANCE EVALUATION
MODAL ANALYSIS

DATASET: randomized

Modal Analysis Metrics

Mesh Time

number Period /
S

mesh_1 [82'312’_;21]5'82’ [0.11] 100.91 [3] [100.91] [130.37 yes
mesh_2  [EREN ’7‘;?'52’ [0.09] 36.6 [9] [16.52] 85 no
mesh_4 [% 19?3_’713(])6'52’ [0.11] 92.07 [5] 60.81]  [137.12 yes
mesh_5 [1”'573’2?8'48' [0.11] 54.5 [3] [27.85]  |130.74 no
mesh_6 [69'2412_’6%?'21’ 0[_00';]’ 48.3 8, 11] 511?'756?’ 123.3 no
mesh_11 [9853?’5;?'71 : 0[_00';]’ 48.09 (7, 11] 5231 ('33’ 128.79 no

>90% min = 50%

Mode 1

Tﬂwlunullllmnu'r;
il ”
Ty 5

Mode 2

Mode 3




PERFORMANCE EVALUATION
VARIATION IN SEISMICITY

Seismic zoning BCO - PGA (g)
@® Zone 2A (0.08g - 0.16g) - low

Zone 2B (0.16g - 0.25¢g) - medium
©® Zone 3 (0.25g - 0.33g) - high




PERFORMANCE EVALUATION
VARIATION IN SEISMICITY

a) uniform force densities dataset b) creased dataset c) randomized dataset

100
14041 ® DATASET 25 high @ ® DATASET 10 _high \. 80 4 ® ® DATASET 24 high
»  DATASET 25 medium gg4{ © DATASET_10_medium \.. : ° » DATASET 24 medium
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® @ e o
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Height of Vault/m Height of Vault/m Height of Vault/m
@ High (PGA=2.8)
Medium (PGA = 1.8) BUCKLING LOAD FACTOR

@ Low (PGA=0.8)




PERFORMANCE EVALUATION
VARIATION IN SEISMICITY

a) uniform force densities dataset b) creased dataset c) randomized dataset

&
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PERFORMANCE EVALUATION

a) uniform force densities dataset

VARIATION IN SEISMICITY

b) creased dataset

c) randomized dataset

0.00025h ,.. . @ DATASET 25 high
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@ High (PGA = 2.8)
Medium (PGA = 1.8)

@ Low (PGA=0.8)
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GENERATOR

DISENTANGLEMENT

c) C-VAE + B-VAE, =10

b) B-VAE, B=10

VAE

a) standard (vanilla)
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PERFORMANCE EVALUATION
SUPPORT CONDITIONS

a) uniform force densities dataset

8 Pinned Supports

e Fixed Supports
b) creased dataset

c) randomized dataset




PERFORMANCE EVALUATION

Buckling_Loading_Factor

a) uniform force densities dataset

Pinnned_vs_Fixed: Stability

—— buckling_fixed_supports
100 4 —— buckling_pinned_supports

80 -

60 -

40 1

20 1

012 3 45 6 7 8 91011121314 1516 17 18 19
mesh

26-0% CHANGE

& Pinned Supports
>~ Fixed Supports

Buckling_Loading_Factor

SUPPORT CONDITIONS

b) creased dataset

Pinnned_vs_Fixed: Stability

2254

= = ]
wn ==l o
o tn o
L L '

125

10.0

751

bl
—— buckling_fixed_supports

2.5 4 — buckling_pinned_supports

012 3 456 7 8 91011121314151617 181920
mesh

53-4% CHANGE

BUCKLING LOAD FACTOR

Buckling_Loading_Factor

&

c) randomized dataset

Pinnned_vs_Fixed: Stability

255

20 -

15

10

—— buckling_fixed_supports
——— buckling_pinned_supports
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PERFORMANCE EVALUATION

Utilization

a) uniform force densities dataset

SUPPORT CONDITIONS

b) creased dataset

&

c) randomized dataset

Pinnned_vs_Fixed: Strength
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mesh

26-2% CHANGE

8 Pinned Supports

Yoroa Fixed Supports

Utilization

Pinnned_vs_Fixed: Strength

354

30 4

(%)
w
I

o]
o
1

15

10 A

—— utilization_fixed supports
—— utilization_pinned_supports

9 101112 1314151617 18 19 20

012345678
mesh
UTILIZATION

Utilization

Pinnned_vs_Fixed: Strength

20 A

1549

10

—— utilization_fixed_supports
—— utilization_pinned_supports

101112 1314151617 18 19 20
mesh

=
= o
M A
w 4
g
w4
o
~J -
o 4
O 4




PERFORMANCE EVALUATION

placement / mm

Max_Dis

a) uniform force densities dataset

SUPPORT CONDITIONS

b) creased dataset

&

c) randomized dataset

Pinnned_vs_Fixed: Stiffness
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mesh
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REST OF THE STRUCTURE

Macromodel
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PERFORMANCE EVALUATION
VARIATION IN THICKNESS/ NUMBER OF LAYERS OF TILES

&

BUCKLING LOAD FACTOR UTILIZATION INTERSTOREY DRIFT RATIOS
50 -
it 0.06h -
40 0.05h -
80 -
0.04h -
30 -
60 -
0.03h -
40 1 20
0.02h -
R 10 0.01h -
01 " 0.0h -
0 1 2 3 2 g 0 1 2 3 4 5 0 1 2 3 4 5
Height/m Height/m Height/m
DATASET: randomized
_ Number of layers of tiles
. thickness = 0.095m single layer to double layer double layer tiles to triple

tiles layer tiles
213.4% increase 59.1% increase
16.3% reduction 26.6% reduction
38.5% reduction 62.3% reduction

. thickness = 0.060m

. thickness = 0.035m




GENERATOR
VAE

WORKFLOW

/Select sample vector from latent space (z)/

VAE is
conditioned?

yes

4

Select desired condition (&)

/ Decoded normalized feature vector @) /

( De-normalize feature vector(é) )

|




GENERATOR

ACTIVATION FUNCTION = sigmoid

HYPERPARAMETERS: latent_dimension = 2, beta = 0.2, epochs = 600,
batch_size = 128, learning_rate = 1E-05
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GENERATOR

BUCKLING LOAD FACTOR

HYPERPARAMETERS: epochs = 2000, batch_size = 256,
learning_rate = 5E-06

28 (1)
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2 SE é‘é =
Z|l—=K— —> —> | 3

\_/ — \_/
Absolute in crease for 14.25%
notmalization along with
force densities
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SURROGATE MODEL

Predictions on Test Data
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GENERATOR
SURROGATE MODEL L

BUCKLING LOAD FACTOR Predictions on 10 best samples in Buckling Load Factor Training and Validation Losses

HYPERPARAMETERS: epochs = 2000, batch_size = 256,

learning_rate = 5E-06 Buckling_Load_Factor

104—e—t— | OO0 Calculated Best Scores Validation loss vs Training loss
"""""" ~— Predicted Best Scores = U2hing loss
| === Best Score of Training Data 0.0175 A —— validation_loss
0.8 - .. = Mean of Training Data
() N\ —~—=- Standard Deviation of Training Data 0.0150 o
o
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GENERATOR

SURROGATE MODEL

Prediction Pattern

Predictions on Test Data

UTILIZATION

HYPERPARAMETERS: epochs = 2000, batch_size = 256,

Utilization

Utilization

Perfect Prediction

0.20 0.25 0.30
Calculated Utilization

0.15

0.10

T
o
™

0.30 1
0:25
0.15 A1
0.10 A

o
uonez|An paIpaid

Calculated Scores
Predicted Scores

I 866 usaw
b olos ysaw
[ 976 _yssw
| oeTze ysaw
F z90g ysow
0/897usAW
0548 usau
TELR_Ysaw
19587 ys=w
LOTE usI
9Z08 ysIw
TI6L Ysaw
OLEL Y5
BTEL ysaw
acag ysa
7169 ysaw
919 ysaw
GEAS Y5
BHGE s
1455 ysal
TESS Ysmw
0755 ysaw
ZEHC Ysaw
£0E5 Usaw
FLIG Yo
BBy USSW
600K Ysaw
995H s
GEEY Usow
961p UsEw
BLBE_Ysaw
9L6F ysaw
BECE ysal
SOVE YsBWw
BODE Ysaw
L2 Ysaw
6057 Ysaw
16£2 Usal

AR R T

GBZT_Ysaw
PZOZ UseW
THET_us2u
94T Usew
Z65T Usaw
LEVT Ysaw
- GLET ysew
- DLIT ysaw
- SPIL Ysew
[~ 598 ysal
- zay ussw
- T9F usaw

5E-06

learning_rate

T
o
o

0.30 1
0.25 1
0154
0.10 A
0.05 -

o
uonezinn

ml 1Ndino u

Du_mm;,

X LndNl )

Sample

NMRSE OF

9.18%




GENERATOR
SURROGATE MODEL

UTILIZATION Predictions on Test Data
HYPERPARAMETERS: epochs = 2000, batch_size = 256, Utilizati
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GENERATOR

SURROGATE MODEL

Prediction Pattern

Predictions on Test Data

INTERSTOREY DRIFT RATIOS

HYPERPARAMETERS: epochs = 3000, batch_size = 256,

Interstorey_Drift_Ratios
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GENERATOR
SURROGATE MODEL P

INTERSTOREY DRIFT RATIOS Predictions on Test Data Prediction Pattern

HYPERPARAMETERS: epochs = 3000, batch_size = 256,

learning_rate = 5E-06 Interstorey Drift_Ratios

Validation loss vs Training loss
|
0.06 —— training_loss
‘ 0.006 - ——— validation_loss
0.05
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GENERATOR

BUCKLING LOAD FACTOR

mesh_237

DATASET: randomized

Values before
Optimization
12.6452
10.6016
2.83E-03h
0.060m

Metric

40 A

201

0.075

0.050 4

0.025

0.000 -

SINGLE OJECTIVE OPTIMIZATION

Predicted Buckling Load Factor without normalization

200 400 500 800 1000
Iterations

Gradient RMS

o

O—l?:_

200 400 500 800 1000
Iterations

0,09 -
0.08
0.07
0.06

Predicted Thickness without normalization

—

0 200 400 500 800 1000
Iterations

Learning rate = 20
Iterations = 1000

Gradient Descent: Buckling Load Factor

Learning Percentage _Final kL
Rate change Thlfkness Performance

m score

(1 | 20 256.05% 0.094 45.0239

15 255.97% 0.094 45.0139

0.1 159.13% 0.0702 32.768

0.01 72.99% 0.0646 21.8748

1 -49.14% 0.0637 6.4318

5 -49.19% 0.0637 6.4251

10 -49.27% 0.0637 6.4149

30 -49.61% 0.0637 6.3714




GENERATOR
SINGLE OJECTIVE OPTIMIZATION

UTILIZATION

mesh_237

Predicted Utilization_without_normalization

Gradient Descent: Utilization

0 200 400 500 800 1000

o # | ecarning P . Final Final
004 Ll earning Fercentagé rnickness Performance
Rate change /
m score
0.02 A
_ (1 | 15 -81.02% 0.0688 2.0123
DATASET: randomized 000l — — — = .- 20 81.02% 00683 > 0123
Metric Values before | | erations o 1 -80.95% 0.068 2.0197
Optimization 0070+ Predicted_Thickness_without_normalization 5 -80.43% 00718 2 0750
12.6452 — 0.1 -19.99% 0.0637 8.4822
10.6016 ' 10 -19.85% 0.0637 8.4973
2.83E-03h 00601 : : : . : 30 -17.53% 0.0634 8.7430
0 200 400 600 800 1000
0.060m fterations 0.01 -16.04% 0.0637 8.9007

Learning rate = 15
Iterations = 1000




GENERATOR

INTERSTOREY DRIFT RATIOS

mesh_237

DATASET: randomized

Values before
Optimization

12.6452

Metric

10.6016

2.83E-03h

0.060m

0.004

0.002

0.000 A

0.03 A
0.02 4
0014
0.00 4

0.064

0.062

0.060

SINGLE OJECTIVE OPTIMIZATION

Predicted Interstorey Drift Ratios without normalization

\

0 200 400 500 800 1000

Iterations

Gradient RMS

r'\-J\\*_ ‘;\\_
%\\\,‘____J.h_‘\-w
. TR
0 200 400 500 800 1000
Iterations
Predicted Thickness without normalization
0 200 400 500 800 1000

rerations
Learning rate = 0.1
Iterations = 1000

Gradient Descent: Interstorey Drift Ratios

Learning Percentage _Final kL
Thickness Performance
Rate change I'm score
(1 | 0.1 -100% 0.0649 0.00E+00h
10 -100% 0.0668 0.00E+00h
1 -100% 0.0654 0.00E+00h
5 -100% 0.0654 0.00E+00h
0.01 39.99% 0.0636 3.96E-03h
30 49.89% 0.0636 4.24E-03h
15 50.03% 0.0636 4.24E-03h
20 50.12% 0.0636 4.24E-03h




ULS I:

SLS

PERFORMANCE EVALUATION

PERFORMANCE METRICS

DATASET: randomized

Mesh number

mesh_1 mesh_2 mesh_3 mesh_4 mesh_5
Buckling_Load_Factor 20.384 2.468 20.807 17.458 21.273
Utilization 12.469 11.034 5.908 10.041 9.830
Interstorey_Drift_Ratios 0.0033542h |0.00841904h |0.00197305h |0.00251683h | 0.00287915h
10.051 21.939 6.192 9.438 8.500
30.015 76.820 17.778 26.988 26.866
1.233 0.370 1.249 1.568 1.368
12.666 3.052 9.481 13.098 16.628
0.614 0.092 0.469 0.722 0.559
5.055 0.580 2.278 3.965 4.088
-0.996 -1.551 -0.315 -0.804 -0.802
3.314 3.222 1.492 2.719 2.615
0.022 0.035 0.017 0.019 0.020




PERFORMANCE EVALUATION
REST OF THE STRUCTURE

Fallof roof

Corner
detachment

: More than 4.5m
Horizontal crack

at the gamble base

Diagonal cracks

= Fall of stucco L] Jr 2T to 3T

Vertical cracks  Tilt of walls o
-




PERFORMANCE EVALUATION

REST OF THE STRUCTURE
Mode 1
Mode 2 %ﬂ%gum

Mode 3




FEATURE: force-densities
+ thickness

OVERALL WORKLOW

Topology Reconstruction VAE NN Surrogate Model

yd
N

predicted performance

LATENT SPACE

Gradient Based Topology Optimization using NN surrogates

gradient of predicted performance

w.r.t. latent space



http://arxiv.org/abs/2107.10661

GENERATOR
OVERALL WORKLOW

Topology Reconstruction VAE NN Surrogate Model
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\L/ R
\. y &~ predicted performance
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CONDITION: Height
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O

. O @
FEATURE: force-densities \ ' 2
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Gradient Based Topology Optimization using NN surrogates
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GENERATOR
VAE

ADDING THICKNESS AS FEATURE

indexnumber —— , » 3 4 5 § 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 sample

07 93 01 93 01 06 01 06 11 73 63 04 26 01 35 34 36 03 03 12 21 01 22 1.7 09 01 0.1
06 76 37 39 05 01 11 07 12 06 08 14 01 17 04 10 09 04 05 114 1.3 18 0.8 11.0 0.1 13.8 106
56 34 0.2 02 268 76 0.2 3097 49 04 06 01 11 102 67 26 73 06 04 06 02 10 20 70 34 03 0.1

01 01 06 14 25 09 02 19 10 197 05 11 05 15 04 03 12 72 01 65 03 09 04 38 105 1.0 1.5
19 05 66 05 50 07 03 0.7 181 05 31 03 10 69 11 02 03 02 08 106 0.1 23 19 0.2 11.0 102 09
33 10 209 16 01 25 02 03 01 72 60 04 03 111 84 09 05 160 22 14 15 157 3.1 06 038 01 0.1
14 11 08 03 01 02 46 31 18 11 04 02 10 44 40 07 10 10 06 08 02 168 02 03 20 01 04
29 06 16 10 01 06 19 01 12 01 13 02 04 03 02 08 06 05 26 11 29 06 244 18 16 01 0.7

et b b b b e b [

force densities




GENERATOR

ADDING THICKNESS AS FEATURE
indexnumber —— 4, » 3 4 5 § 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 sample [ 07 93 01 93 01 06 01 06 11 73 63 04 26 01 35 34 36 03 03 1.2 21 01 22 1.7 09 01 0.1 0.09 ]
[ 06 76 37 39 05 01 11 07 12 06 08 1.4 01 17 04 1.0 09 04 05 114 1.3 1.8 0.8 11.0 0.1 13.8 10.6 0.060 ]
[ 55 34 02 02 268 7.6 0.2 3097 49 0.4 06 01 1.1 102 67 26 7.3 06 04 06 02 10 20 7.0 3.4 03 01 0.095 ]
[ 01 01 06 14 25 09 02 19 1.0 197 05 1.1 05 15 04 03 1.2 72 01 65 03 09 04 3.8 105 1.0 1.5 0.035 ]
[ 19 05 66 05 50 07 03 07 181 05 31 03 1.0 69 11 02 03 0.2 08 106 0.1 23 19 02 11.0 102 09 0.095 ]
[ 33 10 209 16 01 25 02 03 01 72 60 04 03 11.1 84 09 05 160 22 14 15 157 3.1 06 08 01 0.1 0.035 ]
[ 14 11 08 03 01 02 46 31 1.8 1.1 04 02 1.0 44 40 07 1.0 1.0 0.6 0.8 02 168 02 0.3 2.0 01 04 0095 ]
[ 29 06 16 10 01 06 19 01 12 01 13 02 04 03 02 08 06 05 26 1.1 29 06 244 18 16 01 07 0.060 ]
| | | |
force densities thickness




GENERATOR
VAE

ADDING THICKNESS AS FEATURE

indexnumber —— 4, » 3 4 5 § 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 sample

07 93 01 93 01 06 01 06 11 73 63 04 26 01 35 34 36 03 03 12 21 01 22 17 09 01 0.1 0.095
06 76 37 39 05 01 11 07 12 06 08 14 01 17 04 10 05 04 05 114 13 18 0.8 11.0 0.1 13.8 10.6 0.060
56 34 02 02 268 76 0.2 3097 49 04 06 01 11 102 67 26 73 06 04 06 02 10 20 70 34 03 0.1 0.095
01 01 06 14 25 09 02 18 10 197 05 11 05 15 04 03 12 72 01 &5 03 09 04 38 105 1.0 15 0.035
19 05 66 05 50 07 03 07 181 05 31 03 10 69 11 02 03 02 08 106 0.1 23 19 02 11.0 10.2 09 0.095
33 10 209 16 01 25 02 03 01 72 60 04 03 111 84 09 05 16,0 2.2 14 15 157 3.1 06 08 0.1 0.1 0.035
14 11 08 03 01 02 46 31 18 11 04 02 10 44 40 07 10 10 06 08 0.2 168 02 03 20 01 04 0.095
29 06 16 10 01 06 19 01 12 01 13 02 04 03 02 08 06 05 26 11 29 06 244 18 16 01 0.7 0.060

force densities thickness

_ 0.060

Independant Normalization of thickness feature

thickness,_,




GENERATOR
VAE

ADDING THICKNESS AS FEATURE

indexnumber —— 4, » 3 4 5 § 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 sample

07 93 01 93 01 06 01 06 11 73 63 04 26 01 35 34 36 03 03 12 21 01 22 17 09 01 0.1 0.095
06 76 37 39 05 01 11 07 12 06 08 14 01 17 04 10 05 04 05 114 13 18 0.8 11.0 0.1 13.8 10.6 0.060
55 34 02 02 268 76 0210388 49 04 06 01 1.1 102 67 26 73 06 04 06 02 10 20 70 34 03 0.1 0.095
01 01 06 14 25 09 02 18 10 197 05 11 05 15 04 03 12 72 01 &5 03 09 04 38 105 1.0 15 0.035
19 05 66 05 50 07 03 07 181 05 31 03 10 69 11 02 03 02 08 106 0.1 23 19 02 11.0 10.2 09 0.095
33 10 209 16 01 25 02 03 01 72 60 04 03 111 84 09 05 16,0 2.2 14 15 157 3.1 06 08 0.1 0.1 0.035
14 11 08 03 01 02 46 31 18 11 04 02 10 44 40 07 10 10 06 08 0.2 168 02 03 20 01 04 0.09
29 06 16 10 01 06 19 01 12 01 13 02 04 03 02 08 06 05 26 11 29 06 244 18 16 01 0.7 0.060

force densities thickness

_ __0.060

Normalization of thickness feature along with force densities

q max




GENERATOR

WORKFLOW

example mesh: mesh_10

maximum

maximum

SURROGATE MODEL

Select metric(s)

\)

Pre-processing labels

Extracting worst results
for each performance
metric from both seismic
directions for each
sample of the dataset

Pre-processing features

(Normalize the samples (0) )

@eshape the data into (n, 28))
|

Nz

Extracting best 10
samples in each of the
three metrics
\_ J

NE
ormalize the samples
(y) across each metric

number of
surrogate
models (x)

@eshape labels into (n,x))

-

N
Split the dataset into training

batch size number of epochs
learning rate loss type
normalized along normalized

with force densities independantly

thickness not included

number of layers

activation function
at layer

number of neurons
of each layer

—

(80%), test validation data (20%))

Set the hyperparameters

Set the thickness parameter

Architecture of the Surrogate Model

il e

( Training to get the prediction y )

required
epochs

completed?




GENERATOR

i Buckling_Load_Factor Utilization Intarstorey_Drift_Ratios
i iid 2500
800
& 800 2000
g oo B o ¥
§ !, § soo £ 15004
Z L 2 g
£ a0 " £
s’l 400 1000 4
200 .PL
e 200 500
. o
0 —— L o 0 -!
00 01 02 03 04 05 02 04 06 08 1D g 02 04 06 OB 1D
Value Value Value
maximum minimum minimum

SURROGATE MODEL

Select metric(s)

\)
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