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Abstract

Floating offshore wind energy is a technology that has gained significant interest over
the past few years due to its potential to unlock vast, high-quality wind resources far
from shore and in deeper waters, areas that fixed-bottom turbines cannot reach. How-
ever, harnessing this resource presents unique challenges, among them are maximising
annual energy production (AEP) while minimising blade fatigue damage. These objec-
tives inherently conflict. Aggressive control settings that boost energy capture tend to
increase loads, accelerating material fatigue. Crucially, both AEP and fatigue life de-
pend on the turbine controller. By systematically varying a set of key features of a
proportional–integral (PI) controller, this thesis sets up a workflow to investigate how
controller parameters shape the trade-off between AEP and blade fatigue. To navigate
this multi-objective landscape, Pareto optimisation is employed, generating a front of
controller configurations that balance energy yield against blade durability. Economic
viability is assessed through levelised cost of energy (LCOE) calculations, linking ex-
tended fatigue life to deferred maintenance costs and potential improved lifetime. Within
the existing literature, where past studies have treated AEP, fatigue, and control in iso-
lation, this work offers a unified framework, demonstrating how slight adjustments in
controller settings can unlock significant performance gains. The core contribution of
this thesis lies in the framework itself. An end-to-end roadmap is presented, combining
metocean data analysis from Utsira Nord, aero-servo-hydrodynamic simulations using
SIMA, AEP analysis and fatigue life estimation, Pareto front construction, and LCOE
impact assessment. Key results show that blade life can be extended by over 15% with
less than a 1% drop in AEP, translating to a meaningful reduction in LCOE of at least
3% under typical economic assumptions. These findings highlight the opportunity to ex-
plore the controller parameter space further with this system, paving the way for more
finely tuned strategies that optimise the balance between the two objectives.
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1
Introduction

1.1. Background
The transition to renewable energy is essential to mitigating climate change and reduc-
ing dependence on fossil fuels. Offshore wind energy has emerged as a key contributor
to this transition, offering vast energy potential and more consistent wind resources
compared to onshore installations. This underscores the importance of maximising en-
ergy production, which remains a key objective in the effort to fully harness renewable
resources. However, the expansion of offshore wind is moving in the direction of float-
ing offshore wind turbines (FOWTs) and this remains an expensive undertaking. The
levelised cost of energy (LCOE) for floating wind is still significantly higher than that
of fixed-bottom offshore wind farms, primarily due to the high upfront capital expenses,
the complexity of floating structures, installation challenges, and larger distances off the
coast. As of 2035, the estimated LCOE for floating wind projects is approximately 165
€/MWh, compared to 76 €/MWh for bottom-fixed offshore wind [37].

One of the primary cost drivers in FOWTs is component reliability and maintenance, with
wind turbine blades being among the most critical structural elements. Additionally, wind
turbine blades are difficult components to recycle due to their large size, complex struc-
ture, and the materials used in their manufacturing [59]. Furthermore, blade failures
account for a significant proportion of major component failures, leading to extensive
downtime and expensive replacements [17]. Even though complete blade failures are
rare, a recent example of this occurred at the Vineyard Wind offshore wind project in
July of 2024, where a blade sustained severe damage, as shown in Figure 1.1. This
incident sparked significant media attention and raised concerns about blade durabil-
ity. Therefore, thinking about blade failure is highly relevant, especially with increasing
turbine sizes and loads.

1



1.2. Research Objective 2

Figure 1.1: Damaged blade at the Vineyard Wind offshore wind project [32].

A crucial factor influencing both energy production and blade fatigue loads in wind tur-
bines is the control strategy. The industry standard, proportional-integral (PI) control,
has been widely adopted because of its robustness and effectiveness in regulating tur-
bine performance. However, the two main objectives that define turbine performance,
maximising annual energy production (AEP) and extending fatigue, are fundamentally
in conflict.

Combining these two goals into a single control approach requires a method that can
evaluate both aspects simultaneously. Pareto optimisation provides a structured way
to explore the trade-off between competing objectives, identifying solutions that are bal-
anced. Although some research has used Pareto methods in wind turbine control, pre-
vious work has focused on different aspects of the system. For example, Brandetti et
al. (2023) applied Pareto optimisation to investigate the trade-off between maximising
power and minimising torque fluctuations [9]. To date, no study has directly examined
how different gain-scheduled PI controllers influence AEP, blade fatigue life, and eco-
nomic performance in a combined analysis. While each of these aspects has been
explored separately in the literature, their integration into a unified framework remains
largely unaddressed.

1.2. Research Objective
The above-mentioned gap is addressed by creating such a framework. Starting of by
executing a systematic parametric tuning of a PI controller that generates proportional
and integral gains, resulting in a spectrum of gain-scheduled PI controllers for floating
offshore turbines. This research uses the Reference OpenSource Controller (ROSCO),
developed by the U.S. National Renewable Energy Laboratory (NREL). ROSCO allows
flexible tuning of the controller, making it well-suited for systematic performance com-
parisons across different gain configurations. These controllers are implemented in sim-
ulations using the SIMA software, driven by site-specific metocean data. The simulation
results are used to compute annual energy production and blade fatigue life. A Pareto
front analysis is then carried out to map the trade-off between these two objectives
and identify optimal controller configurations. Finally, a separate economic assessment
evaluates how changes in fatigue life and maintenance needs affect the levelised cost
of energy, providing insight into the long-term financial implications of different control
strategies.



1.3. Research Questions 3

In essence, the research objective can be defined as:

Develop and apply a modular framework to assess how variations in underlying ROSCO
controller parameters, used to derive gain schedules, affect both annual energy produc-
tion and blade fatigue life in floating offshore wind turbines, and to evaluate the economic
implications through a levelised cost of energy analysis.

1.3. Research Questions
To achieve this objective, the following key research questions are explored:

• What PI-based control strategies are in use for floating offshore wind turbines, and
how do their core parameter settings influence performance?

• What are important controller parameters affecting the trade-off between fatigue
and annual energy production in FOWT control strategies?

• How significant do the different parameter settings within the same PI controller
law affect blade fatigue reduction and power performance in FOWTs?

• What role do metocean conditions play in optimising a PI controller?

• How can Pareto front analysis be applied to optimise a PI controller for FOWTs
that balance blade fatigue life and energy yield?

• How does extending the fatigue life of turbine blades impact the long-term eco-
nomic viability and energy production of FOWTs?

• How can amodular control framework be applied to optimise floating offshore wind
turbine performance across a range of operational scenarios?

By addressing these research questions, this study aims to fill the gap in the existing
literature and contribute valuable insights, laying the groundwork for future research.

1.4. Structure of the Thesis
The thesis is organised into five chapters that guide the reader from background to con-
clusions. Chapter 2 begins with a critical review of proportional integral control strategies
for floating offshore wind turbines, the foundations of annual energy production calcu-
lations, fatigue life estimation for composite blades, Pareto optimisation methods and
common financial assessment models. In Chapter 3, the offshore environment is de-
scribed through wind and wave spectral representations before presenting the theory
behind the ROSCO generator torque and blade pitch control with adaptations for im-
proved efficiency and incorporation of floating platforms. The chapter also covers AEP
calculation, fatigue analysis via rainflow counting and S-N curves, Pareto front concepts
and the levelised cost of energy formula. Chapter 4 details the modular framework, in-
cluding SIMA and ROSCO model setup and validation, the selection and variation of
controller parameters, metocean scenario generation and the procedures for evaluat-
ing AEP, fatigue and LCOE. In Chapter 5, model validation results precede the pre-
sentation of metocean statistics, simulated AEP and fatigue outcomes, the constructed
Pareto front and LCOE comparisons for chosen controller cases. Finally, Chapter 6
interprets key findings and discusses limitations, and Chapter 7 offers the final remarks
and recommendations.



2
Literature Review

Floating offshore wind turbines have garnered significant interest in recent years, re-
sulting in a growing body of literature. This chapter will synthesise the current state of
the art on key developments in PI control for FOWTs, the importance of maximising an-
nual energy production, opportunities for extending blade fatigue life, the balancing of
conflicting objectives, and the economic implications of these factors.

2.1. PI Control Strategies for FOWTs
Proportional-Integral control has long been the industry standard in the wind energy
industry. Due to its simplicity and robust nature. For floating wind turbines, strategies
for PI control have modifications in order to secure adequate performance.

The ROSCO controller literature, presented by Abbas et al. (2022), serves as an excel-
lent baseline and will be used throughout the remainder of this thesis. ROSCO employs
gain-scheduled PI controllers for both generator torque and collective blade pitch con-
trol, with its tuning process driven by the turbine’s power coefficient surface. Notably, it
incorporates a floating-specific feedback module to account for platform dynamics, en-
hancing stability in FOWT applications. Its modular architecture and automated tuning
via the ROSCO toolbox make it versatile and easily adaptable across different turbine
designs, providing a robust reference framework for further control strategy develop-
ment [1].

Another interesting feedback approach was presented by Lenfest et al. (2020). In this
study the challenges of applying proportional-integral (PI) control to floating offshore
wind turbines were addressed, particularly the destabilising effects from the interaction
between the turbine controller and platform dynamics. They proposed a straightfor-
ward tuning strategy that incorporates nacelle velocity feedback into an existing gain-
scheduled PI controller. Utilising a two-degree-of-freedom model focusing on tower-top
fore-aft and rotor angular displacements, they developed a method to efficiently sched-
ule feedback gains across various turbine and hull configurations. Their approach was
evaluated against baseline land-based and detuned controllers using an example sys-
tem under multiple load cases. The results demonstrated that the modified controller
effectively mitigated adverse platform-controller interactions, enhancing overall system

4
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stability without the need for complex tuning procedures [31]. This work underscores
the importance of tailored PI control strategies in FOWTs to ensure reliable performance
amidst the unique dynamic challenges posed by floating platforms.

A similar modification can be found in the paper by Olondriz et al. (2019) where an
enhanced detuned and gain-scheduled PI controller was presented. This was done by
incorporating a blade load feedback loop that uses blade-root flapwise bending moment
measurements. This modification helps distinguish between wind- and wave-induced
motions, leading to improved platform stabilisation and reduced blade loads under rough
sea conditions, with a slight increase in tower loads observed in simulations [46].

Similarly, Meng et al. (2023) demonstrated that incorporating a tower top velocity feed-
back loop into a PI-based blade pitch controller can effectively mitigate floater pitch
instabilities in floating wind turbines. A block diagram, which is presented in the paper
but is applicable to several of the mentioned studies, can be seen in Figure 2.1. Their
experimental study on a scaled turbine model revealed that an appropriately tuned tower
feedback gain helps suppress the oscillations induced by negative aerodynamic damp-
ing [38].

Figure 2.1: Block diagram of a controller with tower top velocity feedback loop [38].

López-Romero et al. (2024) present a PI-based Active Tower Damper (ATD) architec-
ture that uses blade-pitch modulation. This is done via two simple PI loops (one on
tower-top acceleration, one on velocity) to mitigate tower vibrations on a floating tur-
bine model in OpenFAST. They compare both configurations in the time and frequency
domains and demonstrate clear reductions in vibration amplitudes and frequency re-
sponse peaks across the tower spectrum, confirming that a standard PI framework can
effectively damp tower motion without added hardware complexity [34].

Another way of improving the effectiveness of the controller is by feedforward control.
More specifically, Scholbrock et al. (2016) looked into the possibility of using LiDAR to
detect incoming wind. In their synthesis of the existing state of the art, they concluded
that integrating this can positively impact power regulation [56].

Additionally, gain scheduling has been the focus of several recent studies, highlighting its
relevance in the development of control strategies for wind turbines. Kumar and Detroja
(2024) propose a novel method for designing gain-scheduled PI controllers for wind tur-
bines using Multi-Objective Reinforcement Learning (MORL). Their research addresses
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the challenge of achieving optimal control performance across varying wind conditions
while managing competing objectives such as power regulation and system stability. By
leveraging MORL, the authors generate gain schedules that adapt to different operat-
ing regions, replacing conventional manual tuning with a data-driven approach. Their
framework is tested on a floating wind turbine model, where the MORL-tuned PI con-
troller demonstrates improved energy capture compared to traditional gain-scheduled
methods [47]. This study highlights the potential of intelligent control tuning methods to
enhance the adaptability and effectiveness of PI-based strategies for FOWTs.

Lemmer et al. (2019) introduced a robust gain-scheduled PI controller tailored for float-
ing offshore wind turbines, addressing the pitch instability challenges inherent in such
systems. Unlike advanced multi-input-multi-output controllers that often require addi-
tional platform state measurements, their approach utilises a standard PI controller
structure, feeding back only the rotor speed error. This simplicity enhances robust-
ness by reducing sensitivity to unmodeled dynamics and facilitates full automation of the
model-based control design process. A tailored linearised coupled dynamic model, in-
corporating detailed hydrodynamic viscous drag, was employed to design the controller,
with stability margin serving as the primary design criterion across varying wind speeds.
The resulting gain scheduling function differs fundamentally from that of fixed-bottom
turbines, reflecting the unique dynamics of floating platforms. Performance evaluations
against advanced controllers and fixed-bottom turbine versions demonstrated that, de-
spite its simplicity, the proposed controller meets common design requirements, offering
a viable and robust solution for FOWT applications [30].

These studies collectively underscore the adaptability and enduring relevance of PI con-
trol strategies in the floating offshore wind sector. By incorporating platform-specific
feedback mechanisms, gain scheduling, and even data-driven tuning approaches like
reinforcement learning, researchers continue to push the boundaries of what simple PI
frameworks can achieve. As floating wind turbines face increasingly complex dynamic
environments, these tailored enhancements ensure that PI control remains a robust,
scalable, and effective solution for next-generation offshore wind applications.

2.2. Importance of Annual Energy Production
Annual Energy Production quantifies the total electrical energy a turbine or wind farm de-
livers over a year, making it the key performance indicator for both technical assessment
and financial viability. For industry players, it is often an indication to analyse potential
sites and compare turbine capabilities so that they can then make informed decisions.

Lee and Fields (2021) conducted a comprehensive review to understand and quantify
the biases, losses, and uncertainties associated with wind energy production predic-
tions. Recognising that overestimations in annual energy production can have signifi-
cant financial implications for wind projects, they analysed over 150 sources, including
industry reports and academic studies, to assess the accuracy of preconstruction en-
ergy yield assessments. Their findings indicated a historical trend of overprediction in
AEP estimates, with recent improvements attributed to advancements in modelling and
measurement techniques. However, they also identified persistent uncertainties, par-
ticularly related to wake effects, environmental losses, and wind speed variability. The
study emphasised the need for standardised assessment frameworks, such as the IEC
61400-15, and highlighted the importance of continued efforts to validate and reduce
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prediction uncertainties to enhance the reliability and financial viability of wind energy
projects [29].

Amaral et al. (2022) addressed the computational challenges of estimating the Annual
Energy Production (AEP) of floating offshore wind turbines during early design stages.
To reduce reliance on thousands of fully coupled time-domain simulations, they pro-
posed a frequency–time domain approach. This method uses Response Power Oper-
ators (RPOs), which relate average turbine power output to single-degree-of-freedom
platform motions of varying frequency and amplitude. These RPOs, generated using
OpenFAST for the IEA 15 MW WindCrete spar-buoy model, are combined with site-
specific spectral wave data to estimate AEP. Their approach was validated against con-
ventional simulation-based results and showed good agreement, offering a faster and
reasonably accurate alternative for preliminary AEP assessment [5].

Sedaghat et al. (2017) investigated how to determine the optimal rated wind speed for
variable speed wind turbines in order to maximise AEP. They introduced a new capacity
value metric, which integrates the turbine’s power curve with site-specific wind speed
distributions modelled using theWeibull function. Their findings showed that the optimal
rated wind speed depends strongly on the shape factor of the wind distribution, typically
falling between 2 and 5 times the annual mean wind speed. For example, at a mean
wind speed of 4 m/s, the optimal rated speed ranged between 9 and 20 m/s depending
on the shape factor. The study highlighted that a mismatch between turbine rating and
wind site characteristics could reduce AEP by as much as 43 percent, emphasising the
importance of tailored turbine design for specific wind sites [58].

Fontanella et al. (2024) examined how waves and platform dynamics affect the AEP of
floating offshore wind turbines. They analysed four FOWT designs ranging from 5 to 15
MW, supported by spar and semi-submersible platforms, under realistic Mediterranean
Sea conditions. The study found that, contrary to the theoretical possibility of waves
enhancing power output by inducing rotor motion against the wind, actual platform de-
signs aim to minimise such movements to reduce structural loads. Consequently, the
anticipated power gains from wave-induced motions are not realised in practice. Ad-
ditionally, the research highlighted that wind turbulence, rather than platform motion,
is the primary driver of power fluctuations. Overall, the AEP of the analysed FOWTS
was found to be 1.5% to 2.5% lower than that of fixed-bottom turbines, primarily due to
platform tilt reducing the rotor’s effective wind-facing area. These findings underscore
the importance of considering platform dynamics in the accurate estimation of AEP for
floating wind projects [20].

The impact of the controller on the AEP can not be overstated. And in simulations, it
is important to come as close to reality as possible. Therefore, Song and Paek (2020)
developed a dynamic wind turbine model incorporating torque and pitch control algo-
rithms which were tuned to match the power curve of the target wind turbine, including
a peak shaving feature, to predict AEP. The model was validated against measured
data, achieving a prediction error as low as 0.16% [63].

These studies demonstrate that AEP is influenced not only by the wind resource and
turbine design but also by the accuracy of modelling techniques, the quality of control
strategies, and the dynamic behaviour of floating platforms. As the floating wind sector
continues to expand, refining these aspects is crucial to ensure reliable performance
predictions and secure investor confidence through accurate energy yield assessments.
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2.3. Fatigue Life Estimation and Extension
Fatigue life estimation is a critical aspect of wind turbine reliability, as turbine compo-
nents, particularly blades, experience variable and cyclic loading that can lead to mate-
rial degradation over time. Accurate fatigue estimation is essential for effective mainte-
nance planning and the design of more resilient turbine structures.

Fatigue analysis for composites is hard, but nevertheless insightful. It is clear form the
existing literature and was also found by Jahani et al. (2022) that predicting the fatigue
life of composite blades is challenging because of environmental variability (wind, waves,
temperature, humidity), a lack of comprehensive fatigue data accompanied by large
scatter, non-linear damage accumulation in the material, and uncertainties introduced
during manufacturing [24].

Finite element models (FEM), commonly used for fatigue analysis, is often seen as the
most accurate way of fatigue analysis. This method was done by multiple researchers
such as Grujicic et al. (2010) [23] and Kulkarni et al. (2018) [27], in both cases, the
external loads on a 5 MW wind turbine were estimated using time domain models and
were subsequently distributed on the nodes of the FEM. The latter of the two employed
deep neural networks to predict long-term fatigue behaviour of wind turbine blades and
found that blade life was estimated to be 23.6 years. While this can be seen as an
accurate way of predicting fatigue life, computational effort of FEM is expensive and
often too cumbersome.

Another study that used FEM was executed by Liu et al. (2023), who evaluated the fa-
tigue life of offshore composite wind turbine blades at the Zhoushan Islands by first com-
piling one year of site-specific wind measurements at Jintang Island and using a modi-
fied blade element momentum theory to derive time-domain aerodynamic loads, which
were then mapped onto a full-scale finite element model of the blade for cycle-by-cycle
damage tracking. They incorporated composite failure criteria and progressive damage
laws within the FEM to capture stiffness degradation under varying load conditions and
then applied rainflow counting alongside S–N fatigue curves and the Palmgren–Miner
rule to compute cumulative damage. Their analysis clearly demonstrated that the point
of interest is most definitely the blade root, which can be seen in Figure 2.2. Across
three different composite skin materials, the calculations yielded fatigue life estimates
of 19 to 22 years, in close agreement with the design lifespans specified for Chinese
offshore turbines [33].
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Figure 2.2: The maximum principal stress distribution along the blade [33].

Other options were explored as well. Sanchez et al. (2016) compared two distinct mod-
elling approaches for fatigue estimation and remaining useful life predictions in wind
turbine blades. The study contrasts the traditional rainflow counting algorithm, which de-
composes complex load histories into equivalent cycles based on the Palmgren-Miner
rule, with a fatigue stiffness degradation model that predicts damage progression by
quantifying the reduction in material stiffness due to cyclic loading. Using blade root
moment signals from high-fidelity FAST simulations under various constant wind speed
scenarios, the authors demonstrated that while the rainflow method offers a straightfor-
ward empirical means of assessing fatigue damage, it can be computationally demand-
ing and sensitive to parameter selection. Conversely, the stiffness degradation model
provides a more physically meaningful prediction of damage evolution and remaining
useful life, albeit at the cost of increased modelling complexity. Both approaches con-
sistently indicate that higher mean stresses lead to accelerated damage accumulation,
underscoring the importance of tailored fatigue estimation techniques for wind turbine
blade prognostics [54].

This rainflow counting strategy was also used by Sirigu et al. (2024), where they con-
ducted amultiaxial fatigue failure comparison between three aeroelastic models in Open-
FAST. The results showed that there was a significant impact on expected lifetime of the
blades based on the selection of the model, with outcomes ranging from 23.2 years to
1.2 years depending on the model. On the other hand, the models consistently predict
similar patterns of where fatigue damage accumulates and the wind speeds at which it
becomes critical [61].

Gao et al. (2022) also performed a multiaxial fatigue assessment of 15 MW floating
turbine blades on three compliant platform types by applying nonlinear beam theory to
derive three-dimensional blade displacements under combined wind-wave loading and
converting those into both maximum principal and normal strain histories for rainflow-
based damage counting. They found that blades mounted on floaters with very low
rotational stiffness experience the highest fatigue damage rates, highlighting the critical
influence of platform compliance on blade durability [22].
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Additionally, Requate and Meyer (2020) investigated model predictive control strategies
aimed at mitigating overall fatigue loads in wind turbines by leveraging active load control
techniques. Their study focused on pitch and torque control adaptations that dynami-
cally respond to fluctuating wind conditions, effectively redistributing aerodynamic forces
to reduce structural fatigue. By integrating real-time load estimation with adaptive con-
trol adjustments, the proposed methodology demonstrated significant improvements in
turbine lifespan while maintaining stable power output. The authors validated their ap-
proach through high-fidelity simulations, showing that optimised control strategies could
achieve meaningful reductions in damage-equivalent loads across various wind scenar-
ios. Their findings reinforce the importance of advanced control systems in fatigue load
mitigation and highlight potential synergies with supervisory switching control strategies
for floating offshore wind turbines [51].

Moreover, Smilden et al. (2018) analysed the effects of site-specific control strategies
for fatigue load reduction of the monopile in fixed-bottom offshore wind turbines. Their
study highlighted that fatigue life is highly sensitive to variations in environmental con-
ditions such as water depth and soil properties. Using time-domain aero-hydro-servo-
elastic simulations of a 10 MW wind turbine at Dogger Bank, the authors evaluated con-
trol strategies that extend fatigue life by dynamically adjusting pitch and torque control
mechanisms based on site-specific conditions. The study demonstrated that a combi-
nation of active aerodynamic damping, active generator torque control, and soft cut-out
strategies could lead to a 50% reduction in fatigue damage over a 20-year lifespan. How-
ever, they also emphasised the trade-offs, such as increased pitch actuator wear and
fluctuations in power output. Their findings underscore the importance of integrating
control strategies into the overall wind turbine design process to account for variations
in fatigue loads across different site conditions [62].

Together, these studies show that fatigue analysis is highly variable, influenced by mod-
elling choices, site conditions, and material behaviour. Despite these uncertainties, it
remains a critical factor in wind turbine design and operation. Accurate lifetime esti-
mation and the potential to extend it through targeted control strategies form a clear
opportunity for improving reliability. This makes fatigue analysis and mitigation a highly
relevant and worthwhile focus for further research in the field.

2.4. Navigating Conflicting Objectives
Floating offshore wind turbine control involvesmanagingmultiple, often conflicting objec-
tives. Addressing these trade-offs requires methods that can evaluate and balance com-
peting performance metrics. This section reviews relevant strategies from the literature
that deal with such multi-objective challenges, including but not limited to Pareto-based
approaches, and highlights how these methods inform controller design and evaluation
in wind energy applications.

One critical component that is often researched is the tower. Lara et al. (2023) present a
multi-objective control strategy aimed at simultaneously stabilizing power output andmit-
igating tower vibrations in wind turbines. Their approach integrates collective pitch con-
trol with two active dampingmechanisms. One addresses frontal oscillations through ad-
ditional pitch modulation, and another targets lateral displacements via generator torque
adjustments. The control parameters are optimised using multi-objective techniques
and multi-criteria decision-making methods, implemented through simulations in FAST
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and MATLAB/Simulink. Under extreme wind direction changes, the proposed control
scheme effectively reduces tower vibrations without significantly impacting power gen-
eration, demonstrating a successful balance between these conflicting objectives [28].

Oh et al. (2015) present a novel control algorithm that addresses the conflicting ob-
jectives inherent in floating offshore wind turbine operation. In their work, the authors
address the trade-off between reducing tower loads and minimising power fluctuations,
a challenge arising from the negative damping characteristics of conventional pitch con-
trol strategies at above-rated wind speeds. Their approach employs a region-switch
mechanism within the pitch control loop, whereby the controller operates at a lower fre-
quency in moderate wind conditions to enhance damping and suppress tower vibrations,
and switches to a higher frequency in stronger winds to ensure prompt pitch responses
for optimal power regulation [45]. The simulation results demonstrate that this adaptive
strategy successfully balances load reduction against power capture, offering valuable
insights for this research.

Fitzgerald and Sarkar (2024) present an observer-based individual pitch control strat-
egy that navigates the conflicting objectives of power regulation and overall structural
load mitigation in floating offshore wind turbines. Their approach employs a Kalman
filter to estimate the turbine’s full state using readily available measurements, such as
blade strain and accelerometer data, in situations where direct state measurement is
impractical. This estimated state is then used within a state-feedback framework for
individual blade pitch control, enabling the system to simultaneously maintain optimal
rotor speed and reduce structural loads that contribute to fatigue. Comparative analy-
ses demonstrate that the observer-based controller achieves performance on par with
full state-feedback designs, while surpassing traditional PI controllers in managing the
trade-off between power output and load reduction [18].

When it comes to Pareto optimisation, Odgaard et al. (2016) explore the use of Pareto
optimality in tuning a linear model predictive controller (MPC) for wind turbines. Their
method involves generating Pareto curves to analyse the trade-off between maximis-
ing power output and minimising tower fore-aft fatigue loads. The MPC is evaluated
on a high-fidelity Vestas wind turbine simulator, showing that it can achieve power out-
puts comparable to an industrial baseline controller while significantly reducing structural
loads [44].

In another study, Zalkind et al. (2022) looked at optimising floating wind turbine control
with the AEP and tower base damage equivalent loads (DELs) as the main objectives to
optimise. This was done by implementing different thrust limits and then trying to find a
balance, of which an optimisation plot can be seen in Figure 2.3. Doing this resulted in
the finding that an increase in 1% AEP resulted in 5% increase in tower base DELs and
vice versa [70]. This highlights the interconnectedness of the controller, the production
of energy and the structural integrity of the system.
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Figure 2.3: Results of setting different thrust limits (from 0.75 to 1.00) on the AEP and tower base
damage equivalent loads [70].

Brandetti et al. (2023) applied Pareto optimisation to analyse multi-objective torque
control strategies. Their work formulated a trade-off between power maximisation and
torque fluctuation minimisation, revealing that while the baseline controller achieves
near-optimal energy capture, a slight reduction in controller bandwidth (resulting in a
power decrease of about 2%) can lead to an 80% reduction in torque actuation effort.
These findings underscore the effectiveness of Pareto optimisation in balancing control
performance and structural load reduction, thereby enhancing overall turbine reliability
[9].

Together, these studies make clear that navigating the trade-off between power produc-
tion and structural load mitigation is central to effective wind turbine control, especially
for floating systems, where platform dynamics further complicate this balance. Pareto
optimisation emerges as a powerful tool to explore these trade-offs and guide controller
design. It not only supports better lifetime and performance outcomes but also offers a
structured way to evaluate the impact of control decisions. What is clear, however, is
that blade fatigue life and AEP have not yet been thoroughly examined in such a way.

2.5. Economic Impact
The economic feasibility of the proposed strategy will be influenced by two main points,
added revenue by extending the life of the system and the reduction in maintenance
costs. Previous studies have mapped out how both these elements play a role in the
financial aspect of the wind turbine industry.

Some studies qualitatively address the economic impact. Rubert et al. (2019), for ex-
ample, propose a comprehensive decision-making framework that leverages structural
health monitoring data to evaluate the economic viability of wind turbine lifetime ex-
tension. By integrating long-term structural health measurements with fatigue analysis
simulations, the study reduces uncertainties in estimating remaining useful life and quan-
tifies the impact on the levelised cost of energy. Their analysis reveals that a strategic
lifetime extension can be economically attractive when no major component replace-
ments are required [53].
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Additionally, Pustina et al. (2023) aimed to address the challenge of reducing sea-
induced vibratory loads on floating offshore wind turbines, which can significantly impact
structural integrity and maintenance costs. They developed a multi-layer control strat-
egy combining resonant controllers targeting wave-induced loads and a PI controller for
mitigating rotor-induced vibrations. The control system was validated through simula-
tions on both 5 MW and 15 MW wind turbines mounted on spar and semi-submersible
platforms. Results demonstrated substantial reductions in blade root flapping moments
and rotor nacelle assembly loads, indicating potential for decreased maintenance re-
quirements and extended component lifespans. While the study did not provide exact
LCOE figures, the authors highlighted that such load reductions could contribute to low-
ering the LCOE [50].

Furthermore, Florian and Sørensen (2015) developed a fracture mechanics model to
assess the remaining life of wind turbine blades, focusing on crack propagation in ad-
hesive joints. The model integrates with a risk-based maintenance decision framework
to optimise operation and maintenance (O&M) planning. Their analysis revealed that
preventive maintenance, guided by regular inspections and timely repairs, significantly
reduces the likelihood of catastrophic blade failures. Specifically, they found that cor-
rective repairs, which involve blade replacement, are substantially more expensive and
result in longer turbine downtimes compared to preventive interventions. By optimising
inspection intervals and repair thresholds, the study demonstrated potential reductions
in total O&M costs and associated revenue losses. These findings underscore the eco-
nomic benefits of incorporating advanced control strategies and condition monitoring
systems in floating offshore wind turbines [19].

A more quantitative method was done by Shafiee (2024), who introduces PESTLE, an
analysis of political, economic, social, technological, legal and environmental factors,
to build a six-stage decision framework for extending offshore wind-turbine life. He
starts by identifying key degradation modes and estimating remaining useful life, then
assesses structural integrity before carrying out economic and environmental evalua-
tions. A comparison of three extension technologies (remanufacturing, retrofitting and
reconditioning) is done. The results show that a five- to ten-year service-life extension
can defer a $3–5 million-per-MW repowering cost, improve return on investment by up
to 20 percent and reduce levelized cost of energy by roughly 5–15 percent [59].

More recently, Amlashi and Lotfizadeh (2025) present a probabilistic framework for as-
sessing the levelized cost of energy in floating offshore wind farms, emphasising the
significant impact of operational expenditures (OPEX) on LCOE variability. Their Monte
Carlo simulations reveal that fluctuations in OPEX contribute more to LCOE uncertainty
than variations in capital expenditures (CAPEX). Notably, increasing OPEX from 0.1
to 0.4 million EUR/MW/year substantially raises the probability of exceeding a charac-
teristic LCOE threshold, whereas similar adjustments in CAPEX have a lesser effect
[6].

These studies collectively highlight the significant economic benefits of extending the
life of wind turbines through advanced control strategies, maintenance optimisation, and
structural health monitoring. By reducing the need for costly replacements and defer-
ring major repowering expenses, these strategies can improve return on investment,
reduce maintenance costs, and lower the LCOE. Meaning that the integration of these
approaches would surely be a significant improvement.
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2.6. Research Gap and Justification
The primary objective of this thesis is to integrate key findings from various research
areas, specifically PI control, annual energy production, fatigue life assessment, Pareto
optimisation, and the economic aspects of floating wind turbines, into a cohesive frame-
work. Although individual studies have explored these topics separately, there is a sig-
nificant gap in the literature regarding their combined application to optimise control
strategies for floating wind turbines. Furthermore, research into Pareto optimisation for
simultaneously balancing blade fatigue life and AEP remains limited.

This work aims to fill this gap by investigating the ROSCO PI control strategy, focus-
ing on tuning the controller to test these two conflicting objectives. By applying Pareto
front analysis, this research will compare various gain-scheduled controller settings and
benchmark them against the baseline ROSCO performance, all done with site-specific
data, to create realistic simulation scenarios. This way, the research builds on concepts
that exist in literature, but stands out as a novel approach.

The hypothesis is that, while prioritising blade fatigue life may lead to a reduction in
power output, the resultant extension of blade life will ultimately contribute to greater
cumulative energy production and an improved overall business case for floating wind
turbines. By integrating control gain tuning with comprehensive metocean data, fatigue
analysis, AEP analysis, and LCOE calculation, this research provides an innovative
approach that has not been explored in the current literature.



3
Theoretical Background

This chapter provides the theoretical background for the study, covering the offshore en-
vironment, PI control fundamentals, and methods for controller tuning. The key perfor-
mance metrics, such as annual energy production and blade fatigue life, are introduced,
along with the concept of Pareto optimisation. The chapter concludes with an overview
of the levelised cost of energy as an economic assessment tool.

3.1. The Offshore Environment
Floating offshore wind turbines are subjected to complex and often severe environmen-
tal conditions, where both wind and wave dynamics play a critical role in system perfor-
mance and structural loading. To establish a solid foundation for subsequent analysis,
it is essential to first explore the theoretical principles governing these environmental
forces. This section will examine the key characteristics of wind and wave conditions
and their spectral representations.

3.1.1. Wind

Wind originates from pressure gradients in the Earth’s atmosphere, which are primarily
driven by the uneven heating of the planet’s surface by solar radiation. Since warm
air is less dense than cooler air, it rises, prompting air from high-pressure regions to
move toward low-pressure areas in an attempt to restore balance. This continuous
redistribution of air is what we perceive as wind.

In the context of wind energy, offshore locations offer particularly favourable conditions.
Over open water, the absence of physical obstacles such as trees and buildings allows
the wind to flow more freely. As a result, offshore winds are typically stronger, more
uniform, and less turbulent than their onshore counterparts, making them ideal for power
generation [16, 49].

While understanding global wind behaviour helps grasp the overall resource potential,
site-specific wind characteristics are critical for designing and operating a wind turbine
effectively. Especially in load modelling and control optimisation, detailed knowledge
of local wind conditions is essential. One such local phenomenon is the vertical wind
profile, shown in Figure 3.1.

15
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Figure 3.1: Vertical wind profile for neutral, unstable, and stable conditions [49].

This variation in wind speed with altitude is commonly known as wind shear. Accurately
capturing this behaviour is essential not only for assessing turbine placement but also for
estimating aerodynamic loads during the design phase. When wind measurements are
only available at a single height, theoretical profiles can be employed to estimate wind
speeds at other elevations. For neutrally stable atmospheric conditions, the logarithmic
wind profile shown in Equation 3.1 is typically used, where u∗ represents the friction
velocity, κ is the von Kármán constant, and z0 is the surface roughness length.

U =
u∗
κ

[
ln

z

z0

]
(3.1)

By using a known reference wind speed, Uref , at a certain height, zref , this relationship
can be reformulated to estimate wind speeds at any other height, as shown in Equa-
tion 3.2.

U

Uref
=

ln z
z0

ln
zref
z0

(3.2)

Alternatively, the power law is another empirical method often used to approximate ver-
tical wind profiles, especially when limited data is available. As shown in Equation 3.3,
this model introduces an exponent, α, which characterises the rate at which wind speed
increases with height and typically ranges between 0.10 and 0.20 for offshore conditions
[16, 35].

U

Uref
=

(
z

zref

)α

(3.3)

In addition to wind shear, turbulence plays a critical role in turbine load assessments. It
refers to irregular fluctuations in wind speed caused by thermal instabilities and terrain
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variability. These include short-lived gusts that can induce significant, unpredictable
loads on turbine components. Unlike the gradual variations captured in vertical profiles,
turbulence manifests over shorter timescales, from seconds to minutes, and is typically
characterised by the turbulence intensity, Iu, as defined in Equation 3.4. Here, σu is the
standard deviation of the wind speed over a given time window, typically between 10 to
60 minutes with adequate sampling resolution.

Iu =
σu
U

(3.4)

In offshore environments, turbulence intensity under neutral stability conditions is gen-
erally lower than onshore, often around 8% [49]. Nevertheless, it remains a key factor
in turbine design and control, as it directly impacts fatigue loading and operational relia-
bility.

With a solid understanding of wind behaviour, the next step is to model its variability over
time. Because wind is inherently unsteady, effective analysis requires methods that cap-
ture its dynamic nature. One such method is the wind energy spectrum, which describes
how wind energy is distributed across different frequencies. Among the various spectral
models available, the Kaimal spectrum is widely adopted for simulating turbulent wind
fields in engineering applications [8]. In this thesis, the Kaimal model was chosen to
represent the spectral distribution of longitudinal wind velocity fluctuations. It can be
expressed as:

Su(z, f) =
105u∗

2
z/U(z)[

1 + 33
(

fz
U(z)

)]5/3 (3.5)

where:

• Su(z, f) is the power spectral density function for the longitudinal turbulent com-
ponent.

• f is the frequency in Hz.

• u∗ is the friction velocity, which is related to the standard deviation by: σ2 = 5.7u∗
2 .

These relationships are implemented in the wind modelling setup to accurately repre-
sent the incoming wind conditions, thereby improving the stability and reliability of the
simulation results.

3.1.2. Waves

Understanding wave behaviour is fundamental for modelling the hydrodynamic forces
acting on floating offshore wind turbines. Waves play a critical role in the dynamic re-
sponse of floating structures, influencingmotions, mooring loads, and fatigue life. There-
fore, a theoretical understanding of wave mechanics is essential before performing any
detailed analysis.

To begin, defining the key terminology that describes ocean waves is useful, as these
foundational concepts are used throughout wave modelling and analysis [57]. A visual
overview of typical wave characteristics is provided in Figure 3.2.
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• Wave Height (H): The vertical distance between the wave crest and trough. This
is a key indicator of wave energy and potential structural impact.

• Wavelength (λ): The horizontal spacing between successive crests or troughs,
giving insight into wave propagation.

• Wave Period (T): The time interval between two passing wave crests at a fixed
location. It determines the wave frequency and is central to spectral analysis.

• Wave Frequency (f ): Defined as f = 1
T , it quantifies how often waves pass a

point per unit time.

• Radian Frequency (ωw): Given by ω = 2πf = 2π
T , this angular form is preferred

in spectral models.

• Wave Speed (cw): Also known as phase speed, calculated as cw = λ
T , indicating

how quickly a wave crest travels.

• Amplitude (aw): Half the wave height, corresponding to the wave’s maximum
displacement from the still water level.

• Still Water Level (SWL): The calm sea surface without wave action, used as a
reference elevation.

• Free Surface Elevation (η): The instantaneous deviation of the sea surface from
the SWL, varying with time due to wave motion.

Figure 3.2: Regular traveling wave with wave characteristics [3].

In reality, ocean waves do not follow regular patterns but are instead irregular and ran-
dom in nature. To capture this complexity, wave spectra are employed. A wave spec-
trum provides a statistical description of howwave energy is distributed over frequencies,
allowing for the modelling of realistic sea states with variable wave heights, directions,
and periods.

Among the spectral models used in ocean engineering, the JONSWAP spectrum is par-
ticularly prominent and used in the subsequent simulations [64]. The spectrum is defined
as:
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S(ω) = α
g2

ω5
w

exp

[
−5

4

(
ωp

ωw

)4
]
γ
exp

[
− 1

2

(
ωw−ωp
σωp

)2
]

(3.6)

In this formulation, α is the Phillips constant, ωp the peak frequency, γ the peak param-
eter, and σ a spectral width parameter. This model assumes that sea surface elevation
can be treated as a zero-mean Gaussian process composed of sinusoidal components
with random phases and amplitudes. Such modelling enables simulations that more
accurately represent the complex interaction between waves and offshore structures.

Key derived parameters from the spectrum, which will be used to set up the simulation
scenarios, include:

• Significant Wave Height (Hs): A statistical measure approximating the average
height of the highest third of waves in a given sea state. It is related to the zeroth
spectral moment m0 by:

Hs = 4
√
m0, where m0 =

∫ ∞

0
S(ωw) dωw (3.7)

• Peak Period (Tp): The period corresponding to the spectral peak frequency ωp.
This represents the dominant wave period and is calculated as:

Tp =
2π

ωp
(3.8)

By incorporating these spectral models, of which a power spectral density plot can be
seen in Figure 3.3, it is possible to simulate a wide range of wind and wave conditions
and evaluate the performance and durability of floating wind turbines under realistic
environmental loading.

Figure 3.3: Comparison of wind (Kaimal) and wave (JONSWAP) power spectral densities [26].
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3.2. Control Technology in Wind Energy
The control of wind turbines plays a crucial role in ensuring efficient power extraction,
structural integrity, and operational reliability across a wide range of wind and wave con-
ditions. This section presents the theoretical foundation underlying wind turbine control
systems, beginning with the primary control objectives, maximising power capture be-
low rated wind speeds and limiting loads and power above rated speeds. Generator
torque control and blade pitch control are examined in detail, as well as approaches
for tuning proportional-integral controllers to meet these varying objectives. In addition
to foundational methods, further modifications are discussed to improve overall func-
tionality and facilitate more specific tuning. The theory on this subject is specific to the
ROSCO controller and therefore largely based on its documentation [1].

3.2.1. Control Objectives and Strategies

Current large-scale wind turbines mostly operate using a ”variable speed, variable pitch”
control strategy, meaning that rotor speed and blade pitch angle are actively adjusted
throughout the operational range to optimise performance and efficiency. As shown in
Figure 3.4, different control strategies apply across distinct wind speed regions. Region
1, which lies below the cut-in wind speed, is characterised by no power production. In
Region 2, between the cut-in and rated wind speeds, the objective is to maximise energy
capture. Here, rotor speed increases approximately linearly with wind speed, generator
torque increases quadratically, and power output grows cubically, while the pitch angle
remains nearly constant. In Region 3, from the rated wind speed to the cut-out speed,
both torque and pitch control are active. The aim here shifts from maximising energy to
limiting loads and maintaining operation at rated power.

Figure 3.4: Operational regions of the wind turbine based on wind speed [68].

To be specific about ROSCO, the strategy is a PI control strategy. Proportional-Integral
control is one of the most widely used control strategies in industrial applications, includ-
ing wind turbine control. It is designed to regulate system outputs by adjusting control
inputs based on both the instantaneous error and the accumulated past error. The PI
controller consists of two main components:
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• Proportional term: Directly responds to the instantaneous error, providing an
immediate corrective action proportional to the magnitude of the deviation.

• Integral term: Accounts for the accumulated error over time, ensuring the elimi-
nation of steady-state errors and improving long-term accuracy.

In general, the control law can be mathematically expressed as:

y = KPu+KI

∫ T

0
udt, (3.9)

where u is an input to the controller, y is the output from the controller passed to the
wind turbine, and KP and KI are the proportional and integral gains, respectively.

3.2.2. Generator Torque Control

As previously discussed, generator torque control is most prominent in Region 2, where
the turbine operates below rated wind speeds. The primary objective in this region is
to maximise power production. To this end, it is useful to define the power coefficient,
expressed as:

Cp =
P

1
2ρπR

2U3
(3.10)

where P is the extracted power, ρ is the air density, R is the rotor radius, and U is
the incoming wind speed. The denominator represents the available power in the wind
across the swept rotor area.

Maximising Cp involves maintaining an optimal tip speed ratio (TSR), as the power coef-
ficient reaches its maximum at a specific value of TSR for each blade pitch angle. This
relationship is illustrated in Figure 3.5. The tip speed ratio, λ, is defined as:

λ =
ωR

U
(3.11)

Figure 3.5: Cp surface for the IEA 15 MW wind turbine [1].
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Therefore, the objective in this region is to maintain the optimal TSR to ensure maximum
aerodynamic efficiency. Determining the corresponding torque is done by first recalling
the definition of mechanical torque:

Q =
P

ω
(3.12)

Substituting the expression for power from the definition of Cp gives:

Q =
Cp

1
2ρπR

2U3

ω
(3.13)

Next, using the expression for wind speed in terms of TSR:

U =
ωR

λ
(3.14)

Substituting this into the torque equation results in a quadratic relationship between
torque and rotor speed:

Q =
Cp

1
2ρπR

5ω2

λ3
(3.15)

This shows that, under the assumption of a constant Cp and λ, the generator torque is
approximately proportional to the square of the rotor speed in Region 2. This quadratic
relationship forms the basis for the torque control strategy aimed at maximising energy
capture in below-rated wind conditions.

To implement this control strategy in practice, the torque control law must be expressed
in terms of generator-side quantities. The rotor and generator speeds are related by the
gearbox ratio Ng as:

ω =
ωg

Ng
, (3.16)

and the generator torque τg is related to the rotor-side torque Q through the gearbox
efficiency ηgb:

τg =
Q

Ngηgb
. (3.17)

Substituting both expressions into the rotor torque equation yields:

τg =
1

Ngηgb
·
Cp

1
2ρπR

5
(

ωg

Ng

)2
λ3

=
Cp

1
2ρπR

5

λ3N3
g ηgb

ω2
g . (3.18)

This results in the following control law for generator torque:
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τg = Kω2
g , (3.19)

where the constant K is defined as:

K =
πρR5Cp,max

2λ3
optN

3
g ηgb

. (3.20)

This quadratic control law is commonly implemented in wind turbine controllers, includ-
ing ROSCO, for optimal torque tracking in below-rated conditions.

In addition to the commonly used control approach known as the Kω2 law, ROSCO
also implements a TSR tracking control strategy. This strategy relies on a PI controller,
where the general PI expression (see Equation 3.9) is adapted to regulate the generator
torque based on the deviation from a reference generator speed:

∆τg = KP [ωg,ref − ωg(t)] +KI

∫ T

0
[ωg,ref − ωg(t)] dt, (3.21)

where ωg(t) is the instantaneous generator speed, and ωg,ref is the reference generator
speed, defined as:

ωg,ref = Ng
λoptv̂

R
, (3.22)

with v̂ representing the estimated rotor-effective wind speed provided by the wind speed
estimator. The aim of this control strategy is to maintain the optimal tip speed ratio λopt,
thereby maximising the aerodynamic efficiency of the turbine in below-rated conditions.

In above-rated wind conditions, the objective of the control strategy shifts from max-
imising energy capture to limiting mechanical loads and maintaining rated power output.
This is achieved by regulating generator torque based on either a constant torque or
constant power strategy. The generator torque setpoint τg,ar(t) is defined as:

τg,ar(t) =


Prated

ωg,rated
, (constant torque)

Prated

ωg(t)
, (constant power).

(3.23)

In both strategies, the generator torque is no longer governed by the Kω2
g law used

in Region 2, but rather directly constrained to maintain rated electrical output. Transi-
tion to above-rated operation typically occurs when the blade pitch exceeds a prede-
fined threshold, indicating that aerodynamic control has become active to regulate rotor
speed.

If TSR tracking is used below rated, the transition to above-rated operation involves
capping the generator torque such that τg(t) ≤ τg,ar(t), ensuring the turbine does not
exceed its rated capacity. A setpoint smoother is often used to gradually shift the refer-
ence generator speed, enabling the torque to saturate at its limit while reducing transient
loads.
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3.2.3. Blade Pitch Control

As previously stated, when transitioning into Region 3, the blade pitch controller be-
comes active. This PI controller determines the collective blade pitch angle to maintain
the rotor speed at a reference value, straightforwardly defined as the rated generator
speed. The control law can be expressed as:

∆β = KP [ωg,rated − ωg(t)] +KI

∫ T

0
[ωg,rated − ωg(t)] dt (3.24)

The controller must account for physical constraints such as maximum pitch angle, rate
limits of the pitch actuators, and mechanical tolerances, which can influence the stability
and responsiveness of the control system. Additionally, the effectiveness of the blade
pitch PI controller is highly dependent on the appropriate selection of its gains.

3.2.4. Controller Tuning

To tune the generator torque and blade pitch controllers, a mathematical model of the
wind turbine system, known as the plant model, is required. This model allows for the
derivation of controller gains based on system dynamics. While a full wind turbine model
is nonlinear and high-dimensional, a simplified first-order representation can be used to
capture the dominant dynamics for controller design purposes.

A commonly used approximation for the rotational dynamics of the drivetrain is:

ω̇g =
Ng

J
(τa −Ngτgηgb) , (3.25)

In this model formulation, J is the total rotational inertia of the turbine, and the term τa
represents the aerodynamic torque and is given by the formula below. Here, Ar = πR2

is the rotor swept area.

τa =
1

2
ρAr

Cp(λ, β)

ω
U3. (3.26)

The first-order linearization of this equation at a steady-state operational point is then
obtained.

∆τa = Γωg

∣∣∣∣
op

∆ωg + Γβ

∣∣∣∣
op

∆β + ΓU

∣∣∣∣
op

∆U, (3.27)

here ”op” refers the operational value for ωg, β, and U at which linearization occurs.
Additionally,

Γωg =
∂τa
∂ωg

, Γβ =
∂τa
∂β

, and, ΓU =
∂τa
∂U

. (3.28)

Now, Equation 3.25 can be rewritten with this linearised form in mind. This results in the
plant model used to tune the controllers and is denoted by,
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∆ω̇g = A(Uop)∆ωg +Bτg∆τg +Bβ(Uop)∆β +BU (Uop)∆U, (3.29)

where,

A(Uop) =
Ng

J

∂τa
∂λ

∂λ

∂ωg
(3.30)

∂τa
∂λ

=
1

2
ρArRU2 1

λ2
op

(
∂Cp

∂λ
λop − Cp,op

)
(3.31)

∂λ

∂ωg
=

1

Ng

R

Uop
(3.32)

This linearised model of the plant serves as the basis for independently tuning the con-
trollers in both above-rated and below-rated operating regions. It is important to note
that during the tuning process, the disturbance input matrix BU , associated with wind
speed variations, is assumed to be zero.

In order to use this to tune the controller however, it is important to recall the expres-
sions for the general PI control law in Equation 3.9, the specific control laws for gen-
erator torque and blade pitch in Equation 3.21 and Equation 3.24, respectively, and
the linearized model in Equation 3.29. Combining these equations makes it possible
to obtain a differential equation that relates ∆ωg,ref and ∆ωg. By subsequently taking
the Laplace transform and setting ∆ωg,ref = 0, the transfer function of the closed-loop
system results in,

H(s) =
∆ωg(s)

∆ωg,ref (s)
=

B(KP (Uop)s+KI(Uop))

s2 + (BKP (Uop)−A(Uop))s+BKI(Uop)
, (3.33)

This second-order system allows for a definition of the proportional and integral gains
as,

KP (Uop) =
1

B
(2ζdesωdes +A(Uop)) (3.34)

KI(Uop) =
ω2
des

B
, (3.35)

here the gains are defined as a function of the desired damping ratio ζdes and the desired
natural frequency ωdes. By modifying these parameters, the response and therefore the
performance, given a certain objective, can be analysed.

In the abovementioned equations, B can be Bτg or Bβ depending on the controller that
is being tuned. So, in the event that the generator torque controller is tuned for the TSR
tracking torque controller in the below rated wind speed region and with the assumption
that ∆β = 0,
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B = Bτg =
−N2

g

J
(3.36)

Similarly, the gains can be found for the collective blade pitch controller. But in this case,
the tuning process has added complexity due to the fact that optimal gains vary across
the whole wind speed range. This calls for a set of gains that are clearly defined for a
variety of operational conditions. This is called gainscheduling, and it has been shown
that this improves blade pitch controller performance. In the ROSCO workflow, the Cp

surface seen in Figure 3.5 is used for this.

For the scenario where constant torque is selected in above rated wind conditions, there
are no changes to the formulation of A(Uop) from Equation 3.30. If constant power is
the chosen strategy, A(Uop) is rewritten as,

A(Uop) =
1

J

∂τa
∂λ

∂λ

∂ωg
−Bτg

Prated

ω2
g,rated

. (3.37)

In both instances, B is redefined as,

B = Bβ(Uop) =
Ng

J

∂τa
∂β

=
Ng

2J
ρArRU2

op

1

λ2
op

(
∂Cp

∂β

∣∣∣∣
λop,βop

λop

)
. (3.38)

The relationship between the rated power coefficient and the operational TSR is given
by

Cp,op = Cp,rated

(
λop

λrated

)3

. (3.39)

Using this expression along with the Cp surface, the corresponding steady-state blade
pitch angles βop(λop) can be determined for any given tip-speed ratio. During steady-
state operation above rated wind speed, the generator speed is typically constant, mak-
ing the TSR a function of wind speed alone. This allows us to define βop(U), and con-
sequently express A(Uop) and Bβ(Uop) as A(βop) and Bβ(βop) for controller tuning pur-
poses. Accordingly, the blade pitch controller gains become KP (βop) and KI(βop), al-
lowing the gain schedule to be implemented as a function of blade pitch angle rather
than estimated wind speed.

3.2.5. Additional Control Modifications

With the core control theory now addressed, it is valuable to explore several additional
capabilities of the ROSCO controller. These modifications serve two main purposes.
First, while the primary control strategy consists of the generator torque controller in
Region 2 and the blade pitch controller in Region 3, the transition between these two re-
gions presents opportunities for refinement. Second, since this controller will be applied
to a floating offshore wind turbine FOWT, it is necessary to account for the dynamics
introduced by the platform’s motion.
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Peak Shaving

To improve controller performance near the rated wind speed, a peak shaving, or thrust
limiting, strategy can be implemented. This approach targets the region where thrust
loads are typically highest, aiming to reduce structural loading by slightly curtailing power
production. While this alleviates the loads caused by the thrust, it comes at the cost of
reduced power, which is a trade-off that will be important.

Figure 3.6: Rotor thrust with and without peak shaving for the IEA 15 MW wind turbine [1].

This is done by making use of the equation for rotor thrust, which is:

Tr(U) =
1

2
ρArU

2Ct(λ, β). (3.40)

So when a limit on the thrust is imposed, commonly as a percentage reduction of the
peak thrust, a blade pitch angle can be found for each TSR through a Ct surface com-
parable to the Cp surface.

Setpoint Smoothing

Similar to peak shaving, setpoint smoothing aims to improve the transition between the
generator torque and blade pitch controllers around rated wind speed. By gradually
adjusting control setpoints, this method reduces abrupt changes and conflicting control
actions, leading to smoother operation and lower transient loads.

This is especially important in the transition zone, where both controllers may become
active. Without smoothing, the torque controller and the blade pitch controller might si-
multaneously attempt to control the generator speed, resulting in instability or increased
mechanical stress.

To mitigate this, setpoint smoothing works by dynamically shifting the generator speed
reference of the saturated controller, typically the torque controller, away from the actual
operating point. This limits it from reacting while the blade pitch controller takes over
control. In practice, this means that once the pitch controller begins to act, the generator
speed reference for the torque controller is increased slightly, pushing it further into
saturation. This ensures that only one controller influences the generator speed at a
time.

Mathematically, this is done by defining an offset of the rotor speed set point as:
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∆ω =


(
β − βmin

βmax

)
︸ ︷︷ ︸

∆β

kvs −
(
τg,max − τg

τg,max

)
︸ ︷︷ ︸

∆τ

kpc

ωg,rated. (3.41)

In this formulation, kvs and kpc are dimensionless tuning parameters greater than zero,
while βmax represents the blade pitch angle at the turbine’s cut-out wind speed. The
structure of the equation ensures that∆β = 0 during below-rated operation, and∆τ = 0
during above-rated operation. To facilitate a smooth transition between the torque and
pitch controllers, the reference generator speeds are adjusted using piecewise logic,
presented below, based on the sign of ∆ω. This shift prevents the simultaneous ac-
tivation of both controllers. An example of its effect, clearly demonstrating a clearer
transition from the above to below rated region, is shown in Figure 3.7.

ωref,τ =

{
ωref,τ −∆ω ∆ω ≥ 0

ωref,τ ∆ω < 0
(3.42)

ωref,β =

{
ωref,β ∆ω ≥ 0

ωref,β −∆ω ∆ω < 0
(3.43)

Figure 3.7: Example of the setpoint smoothing strategy in the near rated wind speed region [1].

Floating Specific Control Strategy

In floating offshore wind turbines, the motion of the platform introduces additional dy-
namics that can interfere with standard control strategies, especially in above-rated wind
conditions. To address this, the ROSCO controller incorporates a compensation mech-
anism that enhances pitch control by reacting to the movement of the platform itself.

Specifically, the controller adds a feedback term based on the nacelle fore-aft velocity,
denoted ∆ẋn, into the blade pitch control loop. This allows the system to counteract
disturbances caused by platform motion more effectively. The traditional PI control law
for blade pitch is thus extended as follows:
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∆β = KP [ωg,rated − ωg(t)] +KI

∫ T

0
[ωg,rated − ωg(t)] dt+Kβfloat

∆ẋn. (3.44)

where Kβfloat
is the gain applied to the platform motion feedback.

To ensure that the floating feedback does not interfere with structural resonance fre-
quencies, ROSCO applies a series of filters. A high-pass filter with a cutoff frequency of
0.01 rad/s removes low-frequency drift, while a low-pass filter targets frequencies above
the platform’s first fore-aft natural frequency. Additionally, a notch filter is implemented
to suppress the tower’s fore-aft eigenfrequency component from the feedback signal.
These filters collectively ensure that only relevant dynamic content from the platform
motion is fed back into the pitch controller.

A Bode plot of the complete filter configuration, seen in Figure 3.8, illustrates how these
elements shape the feedback response and isolate the desired frequency range for
improved stability in floating applications.

Figure 3.8: Bode plot showing the filters used for the IEA 15 MW turbine mounted on the UMaine floater
[1].

3.3. Annual Energy Production
The annual energy production is a key metric in wind turbine performance evaluation,
representing the expected yearly energy output based on site-specific wind conditions
and turbine characteristics. In essence, the goal is to maximise this value, as this will
result in greater economic viability.

To calculate AEP, the wind conditions have to be considered. Since wind speeds vary
throughout the year, their probability of occurrence is typically modelled using theWeibull
distribution:

f(U) =
k

c

(
U

c

)k−1

e−(U/c)k (3.45)

where k is the shape parameter and c is the scale parameter. This distribution is flexible
and well-suited to representing wind patterns at both onshore and offshore sites. Gener-
ally, a higher k indicates less variability in wind speeds, while c reflects the characteristic
wind speed of the site.
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Figure 3.9: Example of a Weibull probability density function with different shape factors [35].

The average power output is computed by integrating the product of the power curve
and the wind speed probability density function:

P̄ =

∫ Umax

0
P (U)f(U)dU (3.46)

Here, P (U) is the turbine’s power output at wind speed U represented by a power curve
as in Figure 3.4, and f(U) is the probability of occurrence of that wind speed. In some
analytical approaches, mechanical or electrical efficiencies may be included in P (U).
However, simulation tools such as SIMA already incorporate these effects in the model
configuration.

Finally, the AEP is determined by multiplying the average power by the number of hours
in a year:

AEP = P̄ × 8760 (3.47)

This methodology provides a realistic and probabilistic estimate of annual energy output
and is widely used in industry and academic assessments of wind turbine performance
[35].

3.4. Blade Fatigue Life Estimation
Another element of this research is evaluating the controller’s influence on the blade
fatigue life, therefore, it is necessary to review the theory used on the subject. Blade
fatigue life estimation involves converting time-varying loads into damage predictions
using a sequence of theoretical steps, seen in Figure 3.10. The sequence involves
stress calculation, followed by cycle counting, S–N curve application, and finally, dam-
age accumulation.
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Figure 3.10: Rainflow counting method for fatigue life estimation [54].

3.4.1. Stress Calculation

At the blade root, stresses arise due to bending and torsion from the applied moments in
all three directions. These must be combined into a single equivalent stress to evaluate
fatigue and structural loading.

In chapter 4, it will be shown that the blade root has a thin-walled circular cross-section.
For such a section, the computations to obtain the stresses are as follows [7, 10].

First, the total flap (z-axis) moment is composed of two primary contributions:

Mz,tot(t) = Mz,aero(t) +Mz,grav(t), (3.48)

where Mz,aero(t) is the aerodynamic moment about the flapwise axis, and Mz,grav(t) is
the gravity-induced moment caused by the blade’s weight during rotation.

The gravity moment is known to fluctuate periodically with the rotational speed of the
rotor (often referred to as the 1P frequency, i.e., once-per-revolution), and is expressed
as:

Mz,grav(t) = mblade g rcg sin(Ωt), (3.49)

where mblade is the blade mass, g is gravitational acceleration, rcg = 2
3Rblade is approx-

imately the distance from the blade root to its center of gravity, and Ω is the rotor’s
angular velocity (in rad/s), derived from generator speed and gearbox ratio.

This additional moment only appears in the flapwise direction because the weight of
the blade, when rotating in the horizontal plane, causes a sinusoidal variation in the
flapwise moment as the blade rotates through different angular positions. This effect
is not present in the edgewise direction (y-axis) and is negligible in torsion for current
purposes.

The stresses at the outer fibre of the root cross-section are then calculated using:

σz(t) =
My(t)R

I
, σy(t) =

Mz,tot(t)R

I
, (3.50)

where My(t) and Mz(t) are the time-varying edgewise and flapwise bending moments,
respectively, R is the outer radius of the cross-section, and I is the second moment of
area, also referred to as moment of inertia, for bending.

For a thin-walled circular ring, the second moment of area is:

I =
π

4

(
R4 − (R− t)4

)
≈ πR3t, (3.51)
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where t ≪ R is the wall thickness. The polar moment of inertia is approximately:

Jp = Ix + Iy = 2I. (3.52)

The torsional stress from the twisting moment Mx(t) is:

τ(t) =
Mx(t)R

Jp
. (3.53)

Since stresses occur in multiple directions simultaneously, a scalar equivalent stress
is needed to assess material yield or fatigue. The von Mises stress is a widely used
criterion for this purpose, combining normal and shear stresses into a single expression:

σvm(t) =
√

σ2
y(t) + σ2

z(t) + 3 τ2(t). (3.54)

This scalar value can then be directly compared to material properties such as uniaxial
fatigue limits or yield strengths, which are typically defined under simple loading condi-
tions.

3.4.2. Rainflow Cycle Counting

The rainflow counting method is a widely used technique for identifying and quantify-
ing fatigue cycles in variable-amplitude loading conditions. It is particularly useful for
analysing stress-time histories in structural and mechanical components subjected to
fluctuating loads. The method works by decomposing a complex load history into indi-
vidual stress reversals that contribute to fatigue damage.

In practice, the Python code, which is called the rainflow module, that would be used
to execute the rainflow counting scans through the list of turning points, matches each
peak with the next valley (and vice versa) that “encloses” it, and removes that pair from
further consideration once it forms a full cycle, this procedure can be seen in Figure 3.11.
Any remaining unpaired peaks or valleys at the ends of the record count as half-cycles.

Figure 3.11: Rainflow counting method showing the stress history and the equivalent cycles [65].

By focusing on closed loops, which correspond to true fatigue cycles defined by their
stress range and mean level, the method filters out minor, non-damaging fluctuations.
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By systematically extracting these cycles, the rainflow algorithm allows for accurate fa-
tigue life prediction using damage accumulation models such as the Palmgren-Miner
rule. The rainflow method is preferred over simpler cycle-counting techniques, as it pro-
vides more realistic fatigue load characterisation by preserving load sequence effects,
thereby improving structural integrity assessments [15].

3.4.3. S–N Curve Utilisation

In the context of floating offshore wind turbines, components such as the blade root
experience repeated cyclic loading over millions of cycles throughout their design life.
These load fluctuations can lead to fatigue damage even if the peak stresses remain well
below the ultimate tensile strength of the material. Since such structures are designed
for high reliability and long service life, accurately assessing fatigue life is essential. The
S–N curve provides a fundamental relationship between stress amplitude and fatigue
life, illustrated in Figure 3.12. Using this allows for a quantification of how long a compo-
nent can sustain a given load history before failure. This is critical for assessing control
strategies aimed at load reduction, such as those developed in this study.

Figure 3.12: Example of a typical S-N curve [2].

High-cycle fatigue behaviour is often represented by the Basquin relation [55]. This can
be expressed as:

Sa = aN−1/b, (3.55)

where Sa is the stress amplitude, N is the number of cycles to failure, a the strength
coefficient, and b the fatigue exponent.

To incorporate the effect of non-zero mean stress in the load cycles, the Goodman cor-
rection defines an equivalent stress amplitude. The equation is commonly represented
as a linear relationship between mean stress and alternating stress, defining the maxi-
mum allowable alternating stress a material can endure at a given mean stress before
fatigue failure occurs [69].

Seq =
Sa

1− (σm/UTS)
, (3.56)

where UTS is the material’s ultimate tensile strength. This equivalent amplitude can
then be directly compared to the S–N curve to estimate fatigue damage accumulation.
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3.4.4. Cumulative Damage

Subsequently, the use of the Palmgren-Miner Rule, commonly known asMiner’s Rule, is
necessary. This is a method used in fatigue analysis to predict the lifespan of materials
subjected to varying stress levels. It operates on the principle of cumulative damage, al-
lowing for an estimation of when a material is likely to fail under cyclic loading conditions
[43]. The rule is mathematically represented as:

D =
∑
i

ni

Ni
(3.57)

In this equation,D is the total accumulated damage, ni represents the number of cycles
experienced at a specific stress level Si, and Ni denotes the number of cycles to failure
at that same stress level Si, typically derived from S-N curves. According to Miner’s
Rule, failure is anticipated when the total damage D reaches or exceeds 1:

D ≥ 1 . (3.58)

In practice, Miner’s Rule offers a straightforward approach to assess cumulative damage
under variable amplitude loading. However, it is important to note that this rule assumes
linear damage accumulation and does not account for load sequence effects, which can
influence the actual fatigue life of materials.

3.5. Pareto Optimisation for Conflicting Objectives
In the design and control of wind turbines, it is a challenge to optimise multiple con-
flicting objectives. Two primary objectives are maximising power output and minimising
fatigue loads on structural components such as blades. Improving one often leads to
the detriment of the other.

Pareto optimisation offers a framework to address such conflicts by identifying a set of
optimal trade-off solutions, known as the Pareto front, of which an example, fitting to this
case, can be seen in Figure 3.13. A solution is considered Pareto optimal if no objective
can be improved without compromising at least one other objective [39]. In this context,
the Pareto front represents the set of control strategies where any attempt to reduce
fatigue loads and thereby extend fatigue life will likely come at the cost of decreased
power output, and vice versa.

Mathematically, this multi-objective optimisation problem can be formulated as:

max
k

{
f1(k) = P (k)

f2(k) = F (k)
(3.59)

where:

• k represents the control inputs and gains based on the tuning.

• P (k) is the power output resulting in the AEP.

• F (k) is the fatigue life of the blades.
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Figure 3.13: Pareto front illustrating the Max–Max compromise between two conflicting objectives [11].

By evaluating the performance of various tuning configurations and plotting their out-
comes in objective space, a Pareto front is constructed. This allows for informed selec-
tion of controller settings that offer desirable trade-offs, such as a marginal reduction in
AEP in exchange for substantial gains in fatigue life. However, the selection of the final
optimal solution from the Pareto front ultimately depends on the decision maker’s prior-
ities and preferences, making it inherently subjective and difficult to define in absolute
terms.

3.6. Assessing Economic Impact Through LCOE
The levelised cost of energy is a widely used metric to assess the cost of energy-
producing technologies by combining capital expenditures, operational costs, and en-
ergy production into a single comparable figure. It is particularly valuable for evaluating
trade-offs in controller design where changes in turbine behavior can affect both energy
yield and fatigue life. The LCOE is given by:

LCOE =

∑n
i=1(CAPEX +OPEX)(1 + r)−i∑n

i=1AEP (1 + r)−i
, (3.60)

where n is the number of years that the project is active, CAPEX represents the capital
expenditure (e.g., construction, equipment, installation),OPEX is the annual operational
and maintenance cost, r is the discount rate, and AEP is the annual energy production
in year i [36].

The LCOE reflects the average cost per unit of electricity generated over the turbine’s
lifetime, allowing for direct comparison between different control strategies. Although
all controller tunings evaluated in this work use the same baseline control logic, the
individual parameter settings, such as proportional-integral gains, setpoint smoothing,
or peak shaving thresholds, can significantly affect both AEP and the expected turbine
lifetime, which can alter n, the economic lifetime. Furthermore, fatigue mitigation can
reduce OPEX over time by lowering failure rates or extending the service intervals,
making LCOE a relevant and sensitive metric for controller optimisation.



4
Modeling and Simulation Methods

This chapter outlines the methodology used to develop and evaluate the controllers
for floating offshore wind turbines. It details the simulation framework, the model and
performance evaluation metrics, ensuring transparency and reproducibility.

4.1. Simulation Framework
As this research is driven by simulation experiments, Figure 4.1 outlines the overall
workflow. First, five key controller parameters were systematically varied and passed to
the ROSCO toolbox, whose tuning routines generated a unique DISCON.IN file for each
configuration. These controller files and the accompanying ROSCO dynamic library
were then loaded into SIMA to perform time-domain simulations across a range of wind
speeds and hydrodynamic conditions, each running for 660 s with a 0.01s timestep.
SIMA produced time series of power output and blade root bending moments, which
were exported to Excel and post-processed in Python to calculate annual energy pro-
duction and expected fatigue life. These two metrics form the points of a Pareto front,
illustrating the trade-off between energy yield and structural longevity. The generation
of wind and wave scenarios is described in detail in section 4.5. Subsequent sections
explain the SIMA environment and the ROSCO toolbox implementation.

Figure 4.1: Workflow of the analysis.

4.1.1. SIMA

SIMA is a versatile modelling environment from SINTEF, designed to simulate and anal-
yse (floating) marine structures, with specific extensions for offshore wind turbines [60].
It combines the SIMOmodule, which handles rigid-body motions under wind, wave, and
current loading, with RIFLEX, which captures the dynamic response of flexible compo-
nents such as mooring lines, risers, and blades. Users can seamlessly integrate control
algorithms and realistic wind fields into the same framework, enabling full studies of

36
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turbine performance and structural dynamics. The overall data flow and component
interactions within SIMA are summarised in Figure 4.2.

As can be seen in the figure, SIMA supports importing three-dimensional wind fields
generated by external tools such as TurbSim, which will be further discussed in sec-
tion 4.5, as well as simpler 2D or uniform profiles directly within the workbench. Control
algorithms can be linked seamlessly by implementing user-defined input files, which
were the DISCON.IN files and dynamic libraries from ROSCO in this case. Once a simu-
lation is complete, SIMA’s integrated post-processing environment enables automated
extraction of key metrics and data export, including Excel tables for further analysis.

Figure 4.2: Data transmission scheme between SIMO, RIFLEX, and controller [14].

4.1.2. ROSCO Toolbox

The ROSCO toolbox provides a systematic framework for tuning floating wind turbine
controllers through integration with OpenFAST models. This Python-based tool auto-
mates the derivation of optimal control parameters while ensuring stability across oper-
ational regimes [1, 42].

It uses theOpenFAST input file (.fst) for the IEA 15MW turbine on the UMaine semisub-
mersible, extracting turbine geometry, aerodynamic coefficients, and structural proper-
ties. Rotor performance data are provided by the Cp_Ct_Cq.IEA15MW.txt lookup table,
while the IEA15MW.yaml configuration file is used to adjust the five tuning parameters
(ζpc, ωpc, ps_percent, ss_cornerfreq, ss_pcgain) for each experimental case. Execu-
tion of the ROSCO tuning routines produces a DISCON.IN file containing over 128 pa-
rameters that define the functionality of the controller. Together with the corresponding
dynamic library, these files are then used as inputs to the SIMA time-domain simulation
environment.

4.2. Floating Offshore Wind Turbine Model
By now, it is clear that the model used for all simulations is the IEA 15 MW reference
turbine mounted on the UMaine semi-submersible platform with its three-line catenary
mooring system. Figure 4.3 illustrates this setup in SIMA, where the turbine is subjected
to combined wind and wave loads. The model is capable of fully coupled aero-hydro-
servo-elastic simulations. This allows realistic data of turbine performance, structural
loading, and platform motion under site conditions. All components were configured in
SIMA by SINTEF Ocean.
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Figure 4.3: Setup of IEA 15 MW wind turbine mounted on the UMaine semi-submersible floater in SIMA.

The IEA 15 MW reference wind turbine, with its main characteristics in Table 4.1, was
selected for its status as a widely adopted benchmark in floating wind research and
the availability of detailed design documentation. In SIMA, the tower and blades are
represented as a series of cross-sections of cylinders and airfoils, respectively. This
provides a high-fidelity aerodynamic and structural model that closely reproduces real
behaviour while remaining computationally efficient.

Table 4.1: Main characteristics of the IEA Wind 15-MW Turbine [21].

Parameter Value
Rated power 15 MW
Rotor orientation and configuration Upwind, three blades
Rotor, hub diameter 240 m, 7.94 m
Hub height 150.0 m
Cut-in, rated, cut-out wind speed 3.0 m/s, 10.59 m/s, 25.0 m/s
Minimum, maximum rotor speed 5.0 rpm, 7.56 rpm
Overhang, shaft tilt, pre-cone 11.35 m, 6.0°, -4.0°
RNA, tower mass 1017 t, 860 t

The UMaine VolturnUS-S reference platform was chosen for this simulation, the design
properties of this platform are listed in Table 4.2. Developed as a semisubmersible
design, it is tailored to support the IEA 15 MW reference wind turbine. This platform is
known for its modularity and adaptability in deep-water environments, with a four-column
configuration offering enhanced stability.
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Table 4.2: UMaine VolturnUS-S reference platform characteristics [4].

Parameter Value
Hull Displacement 20,206 m3

Hull Steel Mass 3,914 t
Tower Interface Mass 100 t
Ballast Mass (Fixed/Fluid) 2,540 t/ 11,300 t
Draft 20 m
Freeboard 15 m
Vertical Centre of Gravity from SWL -14.94 m
Vertical Centre of Buoyancy from SWL -13.63 m
Roll Inertia about Center of Gravity 1.251E+10 kg-m2

Pitch Inertia about Center of Gravity 1.251E+10 kg-m2

Yaw Inertia about Center of Gravity 2.367E+10 kg-m2

The mooring system properties in Table 4.3 were chosen to ensure the stability of the
floating platform in deep-water environments. The configuration includes three evenly
spaced chain mooring lines. This is modeled in SIMA as straight, taut elements whose
stiffness, mass distribution, and drag characteristics match those listed below.

Table 4.3: Mooring system properties [4].

Parameter Value
Mooring System Type Chain Catenary
Line Type R3 Studless Mooring Chain
Line Breaking Strength 22,286 kN
Number of Lines 3
Anchor, Fairlead Depth 200 m, 14 m
Anchor, Fairlead Radial Spacing 837.6 m, 58 m
Nominal Chain Diameter 185 mm
Extensional Stiffness 3270 MN
Line Unstretched Length 850 m
Fairlead Pretension 2,437 kN
Fairlead Angle from SWL 56.4°

4.3. Control Strategy
In this study, the ROSCO controller is implemented for the IEA15 MW turbine mounted
on the UMaine floater. The controller is initially configured using the baseline power-
optimal gains, which have been tuned by NREL for maximum power tracking. This
baseline configuration is used to run simulations under predefined metocean conditions,
establishing a reference for performance in terms of annual energy production and the
fatigue life of the blades.

Subsequently, a series of distinct tuning experiments is conducted by making use of
the tuning toolbox [42]. In each experiment, five key controller parameters are system-
atically varied, these are listed below. This sets up the parameter space that can be
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investigated. For each set of these parameters, the ROSCO tuning procedure is ex-
ecuted to generate new proportional and integral gains across the operational range
of pitch angles, thereby producing a new controller input file. These multiple controller
configurations are then used to run simulations under the same predefined metocean
conditions. The chosen values for the controller settings can be seen in Table 4.4.

• Pitch controller damping ratio (ζpc): controls the trade-off between responsive-
ness and overshoot in blade pitch actuation. Lower values yield faster tracking
of wind speed changes (potentially increasing AEP), whereas higher values sup-
press oscillations.

• Pitch controller natural frequency (ωpc): determines how quickly the pitch loop
responds to disturbances. A higher ωpc accelerates corrective action for improved
power tracking but can excite structural modes, while a lower ωpc smooths actuator
movements.

• Peak shaving percentage (ps_percent): limits the maximum thrust in the transi-
tion to the above-rated wind conditions, capping extreme loads. Increasing peak
shaving sacrifices a portion of peak power but potentially extends component life.

• Setpoint smoothing corner frequency (ss_cornerfreq): applies a low-pass fil-
ter to the reference pitch setpoint, reducing controller sensitivity to high-frequency
wind and wave fluctuations. A lower corner frequency enhances smoothing.

• Setpoint smoother gain bias percentage (ss_pcgain): adjusts the weight of
the smoothed setpoint in the pitch loop. A larger bias amplifies the smoothing
effect, whereas a smaller bias allows the controller to more closely follow the raw,
unsmoothed setpoint for energy optimisation.

The baseline ROSCO controller is configured with a pitch damping ratio of ζpc = 1.0, a
pitch natural frequency of ωpc = 0.2 rad/s, a peak shaving fraction of ps_percent=0.8, a
setpoint smoother corner frequency of ss_cornerfreq= 0.17952rad/s, and a smoother
gain bias of ss_pcgain= 0.1. These settings strike a balance between rapid power
capture and moderate load mitigation.

These five parameters were chosen because they govern both the pitch loop, which has
the greatest potential to reduce fatigue under above rated winds and high loading, and
the transition into generator torque control around rated speed. The pitch damping ratio
and natural frequency determine how aggressively the blades respond to gusts, while
the peak shaving percentage, setpoint smoother corner frequency, and smoother gain
bias control how gradual that response is. The below rated torque control region remains
at its default settings to ensure maximum power capture, but smoothing the switch be-
tween torque and pitch control can also improve performance. By systematically varying
a targeted set of controller parameters across ten configurations, a representative spec-
trum of turbine behavior is captured. These configurations span from more aggressive
to more conservative control settings, enabling a structured exploration of the trade-off
between energy production and fatigue. Rather than isolating the impact of each param-
eter, the focus lies on how different combinations influence overall performance, forming
the basis for a Pareto-based roadmap for controller tuning.
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Table 4.4: Tuning parameter variations for different simulation cases

Case ζpc ωpc ps_percent ss_cornerfreq ss_pcgain

C1 0.7 0.35 0.6 0.2 0.1
C1.1 0.7 0.3 0.6 0.2 0.1
C1.2 0.7 0.4 0.6 0.2 0.1
C1.3 0.8 0.35 0.6 0.2 0.1
C1.4 0.6 0.35 0.6 0.2 0.1
C2 1.0 0.30 0.7 0.15 0.2
C3 1.2 0.25 0.8 0.1 0.3
C4 1.5 0.20 0.9 0.08 0.4
C5 2.0 0.18 1.0 0.05 0.5
C6 2.5 0.15 0.85 0.07 0.35
C7 3.0 0.12 0.75 0.09 0.25
C8 3.5 0.10 0.65 0.12 0.15
C9 4.0 0.08 0.55 0.14 0.1
C10 4.5 0.06 0.45 0.16 0.05

4.4. Model Validation
To verify the correct implementation of the simulation environment, the behaviour of the
ROSCO controller within SIMA is validated against reference results from the literature.
The IEA 15 MW reference turbine has been extensively studied, with publicly available
data on its control performance under various wind conditions. Since ROSCO is a well-
established controller developed by NREL, its expected behaviour is known, allowing
for a direct comparison to ensure that the SIMA setup is correctly configured [1].

Simulations are conducted across the full operational wind speed range, generating key
performance metrics such as generator torque, tip-speed ratio, and rotor speed. These
outputs are then compared to published results from the ROSCO literature. Similar
output between the two confirms that the controller functions as intended within the
SIMA environment. Any discrepancies are examined to identify potential issues in the
setup. This validation step ensures that subsequent controller tuning is based on a
reliable and accurately implemented simulation framework.

4.5. Metocean Data Analysis for Simulation Scenarios
To ensure that the simulations are based on realistic environmental conditions, a de-
tailed analysis of the Utsira Nord metocean dataset was conducted. The process of this
analysis is visually laid out in Figure 4.4. The dataset provides comprehensive meto-
cean conditions for the Utsira Nord area, a site located in the North Sea off the coast of
Norway, seen in Figure 4.5. The dataset spans from 1982 to 2022, offering hourly time
series data for key environmental variables, including wind speed, wave height, peak
wave period, and more. These data are collected at various heights above the surface,
providing a detailed representation of the atmospheric and oceanic conditions at differ-
ent levels [13]. The analysis focused on extracting representative metocean conditions
that define meaningful simulation scenarios for evaluating turbine performance.
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Figure 4.4: Workflow to identify the right simulation scenarios based on the Utsira Nord data.

Utsira Nord is particularly relevant for floating offshore wind turbine projects due to its
deep-water location. The region’s significant water depths, ranging from 200 to over
300 meters, make it an ideal candidate for floating wind turbine technology, as this tech-
nology is designed specifically to operate in locations where traditional fixed-bottom
turbines would not be feasible. The site’s challenging metocean conditions, including
strong wind patterns and variable wave heights, also make it suitable for testing and sim-
ulating the performance of floating wind turbines [12]. The importance of utilising estab-
lished metocean data in simulations cannot be overstated. It allows for a more precise
assessment of turbine performance, fatigue life, and energy production potential, while
also accounting for the inherent uncertainties and variability of offshore conditions.

Figure 4.5: Potential wind farm areas in Norway with a close up of the Utsira Nord location [12].

The dataset used was limited to five files covering the years 2018–2022, which were
merged along the time dimension to create a continuous dataset. A Weibull distribu-
tion was fitted to the full wind speed data to extract the distribution parameters later
used to weight the simulation cases. All conditions were evaluated at a height of 150
meters, corresponding to the hub height of the simulated floating wind turbine. Only
wind speeds within the turbine’s operational range (3–25 m/s) were retained to exclude
non-operational extremes.
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A histogram was plotted to characterise the distribution of wind speeds within the opera-
tional range. Wind speeds were grouped into 1 m/s bins. For each bin, the correspond-
ing friction velocity (u∗) was calculated, and the turbulence intensity was derived using
the standard definition (Equation 3.4). The average wind speed, turbulence intensity,
and friction velocity in each bin served as the basis for defining wind conditions in the
simulations.

For the wave conditions, the significant wave height (Hs) and peak wave period (Tp)
were averaged within each wind bin to reflect the coupling between wind and sea state.
To evaluate their variability across wind speeds, box plots were generated for both Hs

and Tp. This visualisation provided insight into the spread of hydrodynamic conditions
within each bin and helped select representative values for simulation.

The statistical analysis produced a summary table that defines the environmental input
conditions for each simulation case, including values for wind speed, friction velocity,
turbulence intensity, significant wave height, and peak wave period. These values were
used to model the environmental loading conditions in SIMA.

Turbulent wind fields were generated using TurbSim [25], with the Kaimal turbulence
model selected due to its common use in offshore wind energy applications. Input pa-
rameters for TurbSim were taken directly from the bin-wise analysis of wind conditions.
In contrast, wave characteristics such as Hs and Tp were manually specified in SIMA
based on the JONSWAP spectrum. This combined approach ensures that simulations
reflect realistic environmental forcing for accurate assessment of turbine response, fa-
tigue loads, and control system performance.

4.6. Performance Evaluation
The goal of this research was to investigate the effect of the controller on the annual en-
ergy production and the blade fatigue life. Therefore, this section provides the method-
ology of how these metrics were calculated.

4.6.1. Annual Energy Production

The annual energy production (AEP) is determined by integrating the power output
across different wind speeds while considering the probability of occurrence of each
wind speed. Using SIMA, power output is computed for a range of wind speeds based
on simulations of the wind turbine’s performance under different conditions. This in-
volves running simulations at discrete wind speeds, such as U = 3, 4, . . . , 25 m/s, and
extracting the corresponding power output values. By overlaying this with the weibul
distribution, the mean power was straightforwardly computed, following the theory in
section 5.3.

4.6.2. Fatigue Life

One of the key outputs from the simulations is the aerodynamic moment at the blade
root about each axis, providing data for Mx, My, and Mz. These correspond to the
torsional and bending moments. However, In order to translate this to stress magni-
tudes, a couple of structural computations need to be performed, previously laid out in
subsection 3.4.1.
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For this, it is essential to look at the blade’s geometry at the root, which can be seen
in Figure 4.6. More specifically, the inertia of the cross-section. The blade root is a
circular shape with a diameter of 5.20 m and a 100 mm wall thickness [21, 71]. Since a
thin-walled assumption can be made and by making use of Equation 3.51, it was found
that the moment of inertia is, I = 5.21120 m4

(a) Blade root geometry of the airfoil. (b) Entire blade from the root view [21].

Figure 4.6: Comparison of the blade root geometry and the overall blade view from the root.

Further using the equations from subsection 3.4.1, the stress time series at each wind
speed was computed. Each simulation yielded the von Mises stress and its individual
components over the simulation period corresponding to a specific wind speed. How-
ever, because wind speed in operation is inherently variable, these stress time series
must be combined to represent the full operational range.

A Weibull distribution was fitted to the measured wind speed data, providing a statistical
representation of the wind speed probability. This Weibull fit was then used to assign
a weight to the stress time series from each wind speed. Although the resulting ef-
fective stress time series is an average, it accurately reflects both the magnitude of the
stresses and their frequency of occurrence. High-amplitude stress events at higher wind
speeds, while less frequent, are incorporated with lower weights, and the more common,
lower stress levels at lower wind speeds receive higher weights. This weighted combi-
nation, therefore, captures the cumulative damage potential over the turbine’s lifetime
and serves as a robust basis for subsequent fatigue life estimation.

The blade roots of modern offshore wind turbines are constructed from glass-fibre/epoxy
composites whosemechanical properties depend strongly on fibre orientation, ply count,
and laminate stacking sequence. Because Basquin and Goodman parameters reported
in the literature vary widely, a representative set of values was selected: UTS = 400
MPa, fatigue exponent b = 7.0, and fatigue strength coefficient a = 80 MPa [40, 48,
71]. Although using blade-specific material data would yield more precise fatigue pre-
dictions for a single control strategy at a given site, this study compares ten controller
configurations. Applying identical material parameters across all cases ensures that
differences in computed fatigue life arise solely from controller effects and supports an
apples-to-apples comparison while retaining realistic composite behaviour.
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4.6.3. Pareto Front Optimisation

A Pareto front analysis is used to visualise the trade-off between blade fatigue life and
annual energy production. For each controller tuning case, both AEP and blade fatigue
life are computed under identical metocean conditions, and the performance metrics are
plotted to form a Pareto front. This front displays the set of non-dominated solutions,
where any improvement in one metric necessarily results in a decrease in the other.

Each unique controller configuration, defined by its tuning parameters, is evaluated to
identify settings that enhance fatigue life while delivering acceptable AEP. The Pareto
front visualisation facilitates the selection of the optimal controller design by clearly indi-
cating those configurations that achieve significant improvements in fatigue resistance
with minimal energy production penalties. This systematic approach ensures that the
final controller design meets the operational performance and reliability requirements
for floating offshore wind turbines.

Selection of the “optimal” controller is driven primarily by fatigue life extension, reflecting
the priority of this objective function. However, to quantify this problem, the energy
gain over the expected extension of the life is calculated. This requires an important
assumption, which is that if the blade fatigue life is extended, that means that the wind
turbine actually operates that much longer. A sensitivity study then evaluates how the
ranking of controllers changes if the lifetime extension assumption is not as absolute,
ensuring that the chosen tuning remains robust to uncertainties in blade replacement
criteria.

4.6.4. Economic Impact Assessment

The levelised cost of energy is calculated using Equation 3.60, where typical values for
capital expenditure (CAPEX) of 6500 EUR/MW and annual operations andmaintenance
costs (OPEX) of 100 EUR/MW/yr are taken from industry reports [37, 41, 67]. Initially, a
discount rate of r = 7% is assumed, to reflect the cost of capital. The project lifetime n
is initially set equal to the baseline blade fatigue life, and the annual energy production
AEPi uses the values computed for each of the controllers. For the optimally tuned
controller, the blade life extension determined from the fatigue analysis increases n ac-
cordingly, while its slightly lower AEP replaces the baseline value. By inserting these
inputs into the LCOE formula, direct comparison of the baseline and optimal controller
scenarios reveals whether the improved durability, as well as any associated OPEX sav-
ings, offsets the reduction in annual energy yield. A sensitivity study is also performed by
varying r and the assumed OPEX reduction to assess the robustness of the economic
advantage.



5
Results

This chapter presents the results of the study, organised into three main sections: model
validation, metocean data analysis, and performance evaluation of the proposed con-
trol strategies. First, the ROSCO controller implementation in SIMA is validated against
NREL benchmark results to ensure model reliability. Next, environmental data from the
Utsira Nord site is statistically analysed to characterise local wind and wave conditions
used in the simulations. Finally, performance results are reported for a range of con-
troller configurations in terms of annual energy production and estimated fatigue life,
followed by a Pareto analysis that illustrates the trade-offs between power output and
structural longevity.

5.1. Model Validation
The ROSCO implementation in SIMA was benchmarked against NREL’s reference re-
sults for the IEA 15 MW turbine operating in uniform wind. Figure 5.1 presents the
baseline SIMA outputs (blade pitch, generator torque, TSR and rotor speed) across
wind speeds of 3–25 m/s using the default ROSCO settings. Figure 5.2 reproduces
the corresponding NREL reference curves (right panel). The agreement between the
two confirms that the implementation of the turbine, platform, and ROSCO controller in
SIMA is correct.

Figure 5.1: Pitch angle, generator torque, TSR and rotor speed plot for validation of the model and the
controller.
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Figure 5.2: Pitch angle, generator torque, TSR and rotor speed plot obtained from NREL [1].

5.2. Metocean Data Analysis
This section presents the environmental statistics derived from the Utsira Nord dataset
for 2018–2022, as used to define the simulation scenarios.

5.2.1. Wind Speed Distribution

The histogram in Figure 5.3 shows the frequency of hourly wind speeds between 3
m/s and 25 m/s in 1 m/s bins. Figure 5.4 presents the standalone Weibull probability
density function fit (shape k = 1.93, scale c = 11.22 m/s) to the full wind speed record,
which has a median wind speed of 9.87 m/s. The wind speed distribution is positively
skewed, with the highest occurrence in the 8–9 m/s bin and a decreasing frequency
toward higher speeds. Additionally, it was found that turbulence intensities ranged from
8.58% to 9.90% for the entire operational wind speed range.

Figure 5.3: Histogram of wind speeds, within operational conditions, at Utsira Nord between 2018 and
2022.
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Figure 5.4: Probability of wind speed fitted by a Weibull distribution.

5.2.2. Wave Climate Statistics

Box plots in Figure 5.5 and Figure 5.6 illustrate how significant wave height Hs and
peak period Tp vary with wind speed. In Figure 5.5, the interquartile range and whisker
lengths ofHs are narrow at low wind speeds and broaden as wind speed increases, with
fewer outliers at higher speeds. Conversely, Figure 5.6 shows Tp boxes that narrow with
increasing wind speed, also accompanied by a reduction in outlier counts.

Figure 5.5: Box plot of wind speed vs. significant wave height.
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Figure 5.6: Box plot of wind speed vs. Peak Period.

5.3. Performance Evaluation
This section presents the results from the simulations in terms of AEP and Fatigue. Sub-
sequently, the Pareto front is presented, and the analysis of those outputs is established.

5.3.1. Annual Energy Production

Table 5.1 presents the annual energy production (AEP) for all evaluated controller con-
figurations, expressed in MWh and as a percentage change relative to the baseline case
(Case B). As expected, the baseline controller achieves the highest AEP at 71643 MWh.
Most alternative configurations result in a slight reduction in AEP, with Case C2 showing
the largest decrease at -3.49%. Conversely, Case C5 performs almost identically to the
baseline, with only a -0.09% drop in AEP. Overall, the variations in AEP across all cases
are relatively modest.



5.3. Performance Evaluation 50

Table 5.1: Annual energy production for each controller configuration

Case AEP [MWh] ∆AEP [%]
B 71643.01 -
C1 70373.04 -1.77
C1.1 71115.98 -0.74
C1.2 70054.67 -2.22
C1.3 70367.79 -1.78
C1.4 70536.66 -1.54
C2 69139.39 -3.49
C3 70448.97 -1.67
C4 71450.30 -0.27
C5 71578.61 -0.09
C6 71402.97 -0.34
C7 70719.97 -1.29
C8 70651.92 -1.38
C9 71185.95 -0.64
C10 71431.01 -0.30

5.3.2. Fatigue Life

Table 5.2 shows the estimated fatigue life for each controller configuration and the per-
centage change compared to the baseline. The baseline controller yields a fatigue life
of 25.7 years. Several configurations result in substantial improvements. Cases C1.2,
C1.3, C1.4, C3, and C7 reach fatigue life values above 33 years, with Case C1.2 achiev-
ing the highest at 34.7 years (+35.02%). In contrast, Case C2 results in the lowest
fatigue life at 25.6 years, a slight decrease of -0.39% compared to the baseline.

Table 5.2: Estimated fatigue life for each controller configuration

Case Fatigue life [yrs] ∆Fatigue life [%]
B 25.7 -
C1 31.6 +22.96
C1.1 29.1 +13.23
C1.2 34.7 +35.02
C1.3 33.7 +31.13
C1.4 34.5 +34.24
C2 25.6 -0.39
C3 34.5 +34.24
C4 29.3 +14.01
C5 29.2 +13.62
C6 30.4 +18.29
C7 34.4 +33.85
C8 26.7 +3.89
C9 29.7 +15.56
C10 26.7 +3.89



5.3. Performance Evaluation 51

5.3.3. Pareto Front of AEP vs. Fatigue Life

The scatter plot in Figure 5.7 visualises the trade-off between AEP and fatigue life across
all controller configurations. From the distribution of data points, it is possible to have
an idea of an approximate Pareto front, which appears to pass through configurations
C1.4, C3, C4, C5, C6, and C7. These controllers offer strong trade-offs, combining
relatively high AEP with substantially increased fatigue life. In contrast, the remaining
configurations exhibit characteristics of dominated solutions. Notably, Case C2 stands
out as an outlier as it underperforms in both metrics.

Figure 5.7: Pareto front comparing AEP and fatigue life for all strategies.

5.3.4. Cumulative Energy Gain

The bar plot in Figure 5.8 shows the relative change in total energy production for each
controller, assuming longer fatigue life allows extended turbine operation. Most con-
figurations lead to an increase in total energy production, with Cases C1.2, C1.4, C3,
and C7 showing the highest improvements of 32.03%, 32.17%, 32.00%, and 32.13%,
respectively. Other configurations, such as C1, C1.3, C4, C5, C6, and C9, also exhibit
notable increases, ranging from 13.52% to 28.79%. Conversely, Case C2 results in
a decrease of -3.87%. The remaining cases show more modest gains in total energy
production.
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Figure 5.8: Additional energy generated as a function of extended fatigue life.

To test the robustness of the results, a sensitivity analysis is performed by modifying
the fatigue life constraint. Instead of using each controller’s actual fatigue life, a fixed
threshold of 28.27 years, 10% above the baseline, is applied. As shown in Figure 5.9,
most controllers still yield a positive energy gain. Controller C5 achieves the highest
gain at 9.90%, followed by C4 (9.70%), C6 (9.63%), C9 (9.30%), and C1.1 (9.19%).

Figure 5.9: Additional energy generated as a function of extended fatigue life at the limit of 28.27 years.
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5.4. Cost Evaluation: LCOE Comparison
At this point, C1.4 and C5 were identified as the optimal choices in the above-mentioned
cases, with the condition for choosing being the fact that they have the most added
energy. One case being if the assumption is that the extension in fatigue life directly
dictates the operational lifetime, and one being if the goal is to increase fatigue life and
operational life by 10%, respectively. For these cases, an LCOE comparison was made
the results of which can be found in Figure 5.10. These results are plotted for varying
discount rates, for 7%, 8.5% and 10%. For a 7% discount rate, the baseline turbine
yields an LCOE of 136.02 EUR/MWh. C1.4 reduces that to 128.02 EUR/MWh (a 5.8%
drop), and C5 reaches 131.90 EUR/MWh (a 3.0% drop). Higher rates raise all LCOEs
but preserve the same ranking and savings.

Figure 5.10: Comparison of LCOE for the baseline and the optimally tuned controllers for varying
discount rates.

Subsequently, a scenario was evaluated in which the operational lifetime remains fixed
at the baseline value (25.7 years), but annual OPEX for C1.4 and C5 are reduced by
10% to reflect less frequent blade repairs. Under these assumptions, the resulting LCOE
values for a 7% discount rate, shown in Figure 5.11, still favour the tuned controllers. The
baseline LCOE remains at 136.02 EUR/MWh. While C1.4 falls slightly below that value
with an LCOE of 135.60 EUR/MWh, C5 drops to 134.04 EUR/MWh.

Figure 5.11: Comparison of LCOE for the baseline and the optimally tuned controllers for reduced OPEX.



6
Discussion

In this chapter, the findings presented in chapter 5 are examined. First, the metocean
data at Utsira Nord are validated to confirm that the five-year record captures the pre-
dominant wind regimes and wave climates. Subsequent sections then address annual
energy production, fatigue life, Pareto trade-offs between power and durability, cumula-
tive energy gains with sensitivity considerations, and finally, the levelised cost of energy,
each time linking back to the site conditions and control strategies identified earlier.

6.1. Metocean Data at Utsira Nord
To validate the site-specific analysis, the results are compared with the metocean anal-
ysis by Cheynet et al. (2024) [12]. Over the 2018–2022 record at 150 m hub height,
the highest frequency of winds was found between 5 and 10 m/s, and a median speed
of 9.87 m/s was determined, closely matching the 9.7 m/s found by Cheynet. The fit-
ted Weibull parameters (scale c = 11.22, shape k = 1.93) align with Cheynet’s values
(c = 11.6, k = 1.97), and the histogram together with the right-skewed fit confirms a
regime dominated by moderate winds punctuated by rare strong events [12].

The wave statistics similarly reflect Cheynet’s joint wind–wave climatology. Mean sig-
nificant wave height Hs is seen to increase from approximately 1.16 m in the lowest
wind bins to around 5.28 m at the highest, illustrating the greater energy transfer from
wind to waves as wind speed rises. In the box plots, widening interquartile ranges at
higher speeds indicate enhanced variability under gustier conditions, while the reduced
number of outliers suggests that once a threshold wind energy is reached, wave heights
cluster more tightly around an equilibrium state.

Peak period Tp remains near 9 s across most wind bins. With increasing wind speed,
boxes and whiskers narrow and outliers diminish because wave spectra converge to-
ward a dominant frequency once the water body and wind duration permit full wave
development. These trends reproduce Cheynet’s characterization of a moderately en-
ergetic offshore environment, thereby ensuring that subsequent energy production and
load simulations are based on realistic metocean inputs [12].
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6.2. Annual Energy Production Results
The annual energy production results from the simulations fall within the expected out-
put range for a 15 MW wind turbine, with values around 70,000 MWh. This is consistent
with typical expectations for a turbine of this capacity and further validates the correct
implementation of both the controller and the simulation setup [66]. The AEP values for
the various controller configurations are generally in line with the baseline (B) case, con-
firming that the modifications to the controller do not produce unrealistic or excessively
large deviations in performance.

Overall, the changes in AEP are moderate across all the controller tuning cases. This is
not surprising, considering that the bulk of the tuning was focused on the pitch controller
and the transition point. Since themost prominent wind speeds in the operational regime
of the turbine are in the below-rated wind speed region, where the generator torque
controller is typically the dominant controller, it is expected that the impact of changes
to the pitch controller would be relatively minor. The result is that the changes in AEP
remain moderate, with only slight deviations from the baseline case.

Two cases stand out due to the most noticeable changes in AEP, C5 and C2. These
configurations show the most extreme differences from the baseline, making themworth
examining in more detail.

For C5, the AEP is 71,578.61 MWh, which results in a minimal decrease of just 0.09%
compared to the baseline. The power curve for C5, illustrated in Figure 6.1, closely
mirrors that of the baseline, indicating that the turbine operates almost identically to
the baseline case across different wind speeds. This suggests that the changes in the
controller settings for C5 have little impact on overall energy production, with the turbine
maintaining similar performance levels.

In contrast, C2 shows a more significant reduction in AEP, with a 3.49% decrease. The
power curve for C2, illustrated in Figure 6.1, reveals a noticeable delay in reaching rated
power once the wind speed exceeds the rated value, compared to the baseline. This
delayed response indicates that the controller’s settings in C2 affect the turbine’s ability
to quickly reach and maintain rated power, ultimately leading to lower energy production.

The AEP results for Cases C1 to C1.4 provide insight into the effect of tuning the natural
frequency and damping ratio of the pitch controller. Case C1, the initial reference tuning,
shows a 1.77% reduction in AEP compared to the baseline. Decreasing the natural
frequency in Case C1.1 improves AEP to a reduction of only 0.74%, whereas increasing
it in Case C1.2 results in the largest AEP loss of the subset, at 2.22%. This suggests
that a lower natural frequency can improve energy capture. Similarly, increasing the
damping ratio in C1.3 yields a small improvement relative to C1, with a 1.78% drop in
AEP, while decreasing the damping ratio in C1.4 leads to a slightly better result of -1.54%.
These trends imply that the impact of the damping ratio is less pronounced than that of
the natural frequency.
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Figure 6.1: Power curves for C5 and C2 compared to the baseline.

6.3. Fatigue Life Results
The fatigue analysis reveals significant differences in performance between controller
configurations. All tested controllers, except for one, resulted in an improvement in fa-
tigue life relative to the baseline. This highlights the effectiveness of optimising pitch con-
trol specifically for high-load operating regions. However, it also confirms the sensitivity
of fatigue calculations: minor adjustments in gain parameters can lead to substantial
changes in estimated fatigue life. This is a direct consequence of how fatigue damage
accumulates, not linearly with cycle count, but exponentially with stress amplitude.

The two most noteworthy cases in terms of fatigue behaviour are C2 and C1.2. To gain
more insight into the mechanisms behind their performance, the rainflow-counted stress
amplitudes and corresponding cycle counts were compared to the baseline, as shown
in Figures 6.2 and 6.3.

For C2, the overall stress-cycle distribution is similar to the baseline, but a notable in-
crease in the number of low-stress cycles is observed. This increase in low-amplitude
cycling is not inherently damaging to. More importantly, C2 exhibits a slightly higher
count of high-stress cycles, defined here as cycles exceeding 5 MPa. Specifically, the
high-stress cycle counts are 72.0 for the baseline and 71.0 for C2, a negligible change
in absolute terms, but C2 also has significantly more low-stress cycles (462.0 vs. 323.5),
so the slight decrease in fatigue life is expected; it is only a 0.39% drop after all.

In contrast, C1.2 achieves a more meaningful reduction in high-stress cycles. The total
number of such cycles drops to 66.0, corresponding to only 12.44% of its total rainflow
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cycles compared to 18.2% for the baseline. This decrease may seem small in percent-
age terms, but because fatigue damage is proportional to the stress amplitude raised to
the 7th power (m = 7 in this analysis), it results in a disproportionately large benefit in
terms of fatigue life. A small reduction in high-amplitude loading can thus translate into
a significant improvement in blade lifespan.

These results reinforce the idea that, for composite materials used in rotor blades, fa-
tigue is largely driven by the highest stress ranges. The increase in low-stress cycling
in C2 does not alter the blade fatigue life that much, while C1.2’s ability to reduce high-
amplitude events directly translates to a reduction in damage.

Figure 6.2: Stress amplitudes and cycle counts for Controller 2 compared to the baseline.

Figure 6.3: Stress amplitudes and cycle counts for Controller 1.2 compared to the baseline.

The fatigue life results for Cases C1 to C1.4 highlight the influence of pitch controller
tuning on structural loading. Case C1, which applies a general tuning change from the
baseline, shows a 22.96% improvement in fatigue life. Reducing the natural frequency
in Case C1.1 lowers the controller’s responsiveness, leading to smoother pitch actions
and amoderate fatigue life gain of 13.23%. Conversely, increasing the natural frequency
in Case C1.2 results in the highest observed fatigue life across all configurations, at
+35.02%. This suggests that a faster-reacting pitch controller can effectively mitigate
load excursions under dynamic wind conditions, thereby reducing fatigue. The impact
of damping ratio changes is subtler: increasing the damping in Case C1.3 leads to a
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31.13% gain, while decreasing it in Case C1.4 results in a slightly higher improvement
of 34.24%. These outcomes indicate that a higher natural frequency combined with
relatively low damping offers the best load reduction in this system. In general, while
both parameters play a role, the natural frequency appears to have a more pronounced
influence on fatigue life than the damping ratio.

6.4. Pareto Front
Given the wide range of the parameter space and the distinct differences between each
controller configuration, no direct correlation between individual parameters and perfor-
mance metrics can be reliably established. This was intentional, as the goal was not to
isolate single parameter effects but to explore the broader system response to varied
tuning.

The initial cases C1 to C1.4 provide useful insights into how changes in natural frequency
and damping ratio influence fatigue life and energy production within a controlled subset
of parameters.

The larger parameter space covers a more diverse and intentionally varied set of con-
figurations, which prevents drawing direct conclusions about individual parameters. De-
spite this designed variation, the results reveal a clear and well-defined Pareto front.
This shows that even small adjustments in controller settings can balance fatigue reduc-
tion and energy production effectively.

The appearance of this Pareto front confirms that the evaluation framework can suc-
cessfully identify trade-offs and guide further controller development toward improved
and optimised solutions.

6.5. Cumulative Energy Gain
The results on cumulative energy gain illustrate that several tuned controllers outperform
the baseline in terms of total energy production when extended fatigue life is taken into
account. Controllers C1.2, C1.4, C3, and C7 show the highest gains, all exceeding
32%, indicating that their settings lead to an effective balance between load mitigation
and power output stability. Other cases, such as C1, C1.3, C4, C5, C6, and C9, also
display consistent improvements ranging between roughly 13% and 29%.

While the diversity in parameter combinations makes it difficult to attribute performance
gains to individual tuning changes, the overall spread of results supports the idea that
significant lifecycle benefits can be achieved through targeted controller adjustments.
The negative outcome of Case C2 underscores the importance of careful tuning, as not
all modifications lead to positive results.

To assess the robustness of these findings, a sensitivity analysis was conducted by
fixing the fatigue life to a uniform threshold (10% above baseline). Even under this
constraint, most controllers continued to deliver energy gains, with C5, C4, C6, C9,
and C1.1 ranking highest. In this case these mentioned cases all achieve cumulative
energy gains of over 9%. This consistency across both individual and fixed-lifetime
scenarios suggests that the tuning approach, while broad in parameter variation, can
lead to reliable improvements in long-term performance.
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6.6. Levelised Cost of Energy Analysis
The LCOE comparison provides a practical view of how controller tuning affects overall
economic performance. The reductions achieved by C1.4 and C5 may seem modest in
percentage terms, but they represent meaningful cost savings over the turbine’s lifetime.
C1.4 shows a 5.8% reduction in LCOE, and C5 follows with a 3.0% decrease compared
to the baseline. These results suggest that tuning the controller with fatigue performance
in mind can contribute to lower energy costs. When discount rates rise, cost reductions
persist at higher rates. These reductions may appear modest, but over the lifetime, they
translate into significant savings in the levelised cost of energy.

A scenario was tested with fixed lifetime (25.7 years) but 10 % lower O&M costs for C1.4
and C5. In this case, C5’s LCOE falls to 134.04 EUR/MWh, and C1.4 has an LCOE of
135.60 EUR/MWh. This demonstrates that even without extending turbine life, modest
O&M savings from improved control could yield a tangible reduction in LCOE.

This supports the idea that controller design choices, when aligned with long-term ob-
jectives like fatigue life and power output, can influence not only technical performance
but also financial viability.

The findings also support the structure of the full workflow. They show how early-stage
controller adjustments can propagate through to affect long-term outcomes, including
cost metrics like LCOE. This strengthens the case for integrating fatigue-aware control
strategies in the design of future floating wind systems.



7
Conclusion and Recommendations

This thesis has developed and implemented an end-to-end framework for tuning PI con-
trollers in floating offshore wind turbines. The framework combines metocean data
analysis, controller tuning, high-fidelity aero-hydro-servo simulations, AEP estimation,
fatigue assessment using rainflow counting and S-N curves, Pareto front generation to
balance AEP and fatigue objectives, and levelised cost of energy modelling. It provides
a transparent and reproducible workflow from environmental input to economic output.

The results indicate that even small adjustments to controller parameters can lead to
significant improvements in fatigue performance with minimal impact on energy produc-
tion. In the most favourable cases, annual energy production decreased by less than
1%, while blade fatigue life improved by at least 13%. In other scenarios, fatigue life
was extended by up to 33%, with a slightly higher AEP reduction of 1.3%. These en-
hancements also translate into a lower levelised cost of energy, with reductions of up
to 6% under realistic economic assumptions. This highlights the value of evaluating
and tuning control strategies early in the design process, as these decisions can result
in substantial long-term benefits for structural reliability and overall project economics.
The developed framework supports this process by enabling systematic exploration of
control parameters and their trade-offs, helping researchers and engineers to align con-
trol design with site-specific conditions and project objectives.

While this thesis focused on developing a functional framework to assess controller per-
formance, the emphasis on establishing the overall structure meant that less attention
was given to the specific influence of individual control parameters on AEP and blade
fatigue life. As a result, it remains difficult to draw clear conclusions about which parame-
ter settings are responsible for certain outcomes. A logical next step would be to explore
the parameter space more systematically, isolating the effects of each variable to bet-
ter understand their individual contributions and interactions. Additionally, a Bayesian
optimisation could be explored to enhance this research. This would strengthen the
framework’s ability to guide controller design decisions with greater precision. Further
improvements could also include incorporating artificial intelligence for adaptive tuning
based on real-time turbine performance, as well as expanding the analysis to account for
multidirectional wind and wave conditions, seasonal variations, and evolving structural
health throughout the turbine’s operational life.
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A
Code

A.1. Model Validation
The following script uses the output of SIMA for a standard constant wind condition
simulation to validate the model and the functionality of the ROSCO controller.

Listing A.1: Model Validation Script
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4

5 # Load the Excel file
6 file_path = "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Specialization␣Project/Simulations/
SIMA_Simulations/Constant_Wind_Sim/Constant_Wind_Sim_15MW.xlsx"

7 excel_data = pd.ExcelFile(file_path)
8

9 rated_wind_speed = 10.59
10 # Rotor diameter and radius
11 rotor_diameter = 240 # in meters
12 rotor_radius = rotor_diameter / 2 # in meters
13

14 # Initialize lists to store results
15 wind_speeds = []
16 mean_rotor_speeds = []
17 mean_aero_forces_x = []
18 mean_pitch_angles = []
19 mean_generator_torques = []
20 mean_generator_outputs = []
21 tip_speed_ratios = []
22

23 # Iterate through each sheet (each wind speed)
24 for sheet_name in excel_data.sheet_names:
25 # Extract wind speed from the sheet name
26 wind_speed = float(sheet_name.split("_")[1])
27 wind_speeds.append(wind_speed)
28

29 # Load the data from the sheet
30 data = excel_data.parse(sheet_name , header=1)
31 data = data[1:].reset_index(drop=True) # Drop the units row

67
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32

33

34

35 # Compute mean values for each variable
36 mean_rotor_speed = data['Rotor␣speed␣(rpm)'].mean()
37 mean_rotor_speeds.append(mean_rotor_speed)
38 mean_aero_forces_x.append(data['Aero␣force␣X-dir␣in␣shaft␣system'].mean()

)
39 mean_pitch_angles.append(data['Pitch␣angle␣blade␣1,␣Line:␣bl1foil'].mean

())
40 mean_generator_torques.append(data['Mechanical␣generator␣torque␣on␣LSS'].

mean())
41 mean_generator_outputs.append(data['Electrical␣generator␣output'].mean())
42

43

44 # Compute rotor speed in radians per second
45 angular_velocity = mean_rotor_speed * (2 * np.pi / 60) # Convert RPM to

rad/s
46

47 # Compute TSR
48 tsr = (angular_velocity * rotor_radius) / wind_speed
49 tip_speed_ratios.append(tsr)
50

51 # Sort the results by wind speed
52 sorted_data = sorted(zip(wind_speeds , mean_rotor_speeds , mean_aero_forces_x ,

mean_pitch_angles , mean_generator_torques , mean_generator_outputs))
53 wind_speeds , mean_rotor_speeds , mean_aero_forces_x , mean_pitch_angles ,

mean_generator_torques , mean_generator_outputs = zip(*sorted_data)
54

55

56

57

58 # Plot Mean Rotor Speed vs Wind Speed
59 plt.figure(figsize=(8, 6))
60 plt.plot(wind_speeds , mean_rotor_speeds , '-', label="Mean␣Rotor␣Speed", color

='b')
61 plt.axvline(rated_wind_speed , color='k', linestyle='--', label="Rated␣Wind␣

Speed␣(10.59␣m/s)")
62 plt.xlabel("Wind␣Speed␣(m/s)")
63 plt.ylabel("Mean␣Rotor␣Speed␣(RPM)")
64 plt.grid(True)
65 plt.legend()
66 plt.show()
67

68 # Plot Mean Aerodynamic Force in X-Direction vs Wind Speed
69 plt.figure(figsize=(8, 6))
70 plt.plot(wind_speeds , mean_aero_forces_x , '-', label="Mean␣Thrust␣Force",

color='r')
71 plt.axvline(rated_wind_speed , color='k', linestyle='--', label="Rated␣Wind␣

Speed␣(10.59␣m/s)")
72 plt.xlabel("Wind␣Speed␣(m/s)")
73 plt.ylabel("Mean␣Thrust␣Force␣(N)")
74 plt.grid(True)
75 plt.legend()
76 plt.show()
77

78 # Plot Mean Pitch Angle vs Wind Speed
79 plt.figure(figsize=(8, 6))
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80 plt.plot(wind_speeds , mean_pitch_angles , '-', label="Mean␣Pitch␣Angle", color
='g')

81 plt.axvline(rated_wind_speed , color='k', linestyle='--', label="Rated␣Wind␣
Speed␣(10.59␣m/s)")

82 plt.xlabel("Wind␣Speed␣(m/s)")
83 plt.ylabel("Mean␣Pitch␣Angle␣(degrees)")
84 plt.grid(True)
85 plt.legend()
86 plt.show()
87

88 # Plot Mean Generator Torque vs Wind Speed
89 plt.figure(figsize=(8, 6))
90 plt.plot(wind_speeds , mean_generator_torques , '-', label="Mean␣Generator␣

Torque", color='m')
91 plt.axvline(rated_wind_speed , color='k', linestyle='--', label="Rated␣Wind␣

Speed␣(10.59␣m/s)")
92 plt.xlabel("Wind␣Speed␣(m/s)")
93 plt.ylabel("Mean␣Generator␣Torque␣(Nm)")
94 plt.grid(True)
95 plt.legend()
96 plt.show()
97

98 # Plot Mean Electrical Generator Output vs Wind Speed
99 plt.figure(figsize=(8, 6))
100 plt.plot(wind_speeds , mean_generator_outputs , '-', label="Mean␣Generator␣

Output", color='c')
101 plt.axvline(rated_wind_speed , color='k', linestyle='--', label="Rated␣Wind␣

Speed␣(10.59␣m/s)")
102 plt.xlabel("Wind␣Speed␣(m/s)")
103 plt.ylabel("Mean␣Electrical␣Generator␣Output␣(W)")
104 plt.grid(True)
105 plt.legend()
106 plt.show()
107

108 # Plot Tip Speed Ratio vs Wind Speed
109 plt.figure(figsize=(8, 6))
110 plt.plot(wind_speeds , tip_speed_ratios , '-', label="Tip␣Speed␣Ratio␣(TSR)",

color='b')
111 plt.axvline(10.59, color='k', linestyle='--', label="Rated␣Wind␣Speed␣(10.59␣

m/s)")
112 plt.xlabel("Wind␣Speed␣(m/s)")
113 plt.ylabel("Tip␣Speed␣Ratio␣(TSR)")
114 plt.grid(True)
115 plt.legend()
116 plt.show()

A.2. Utsira Nord Data Analysis
The following Python script processes metocean data for wind and wave characteristic
analysis.

Listing A.2: Metocean Data Analysis Script
1 import xarray as xr
2 import pandas as pd
3 import numpy as np
4 # import glob
5 import matplotlib.pyplot as plt
6 import seaborn as sns
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7 from scipy.stats import weibull_min
8

9 # Define the folder path containing all NetCDF files
10 folder_path = "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Utsira␣Nord␣Data/"
11

12 # List of all NetCDF files for 2018-2022
13 file_names = [
14 "metOcean_UN_2018.nc",
15 "metOcean_UN_2019.nc",
16 "metOcean_UN_2020.nc",
17 "metOcean_UN_2021.nc",
18 "metOcean_UN_2022.nc"
19 ]
20

21 # Load and merge datasets
22 datasets = [xr.open_dataset(folder_path + file) for file in file_names]
23 ds = xr.concat(datasets, dim="time") # Merge along the time dimension
24

25 # Set your location and height index
26 location_index = 50 # Change this index as needed
27 height_index = 4 # For 150 meters height
28

29 # Extract the wind speed (U), significant wave height (hs), and peak wave
period (tp)

30 wind_speed = ds["U"][height_index , location_index , :].values.flatten()
31 significant_wave_height = ds["hs"][location_index , :].values.flatten()
32 peak_wave_period = ds["tp"][location_index , :].values.flatten()
33 u_star = ds["u_star"][location_index , :].values.flatten()
34

35 # Filter out wind speeds outside the operating range (3 to 25 m/s)
36 valid_indices = (wind_speed >= 3) & (wind_speed <= 25)
37 wind_speed = wind_speed[valid_indices]
38 significant_wave_height = significant_wave_height[valid_indices]
39 peak_wave_period = peak_wave_period[valid_indices]
40 u_star = u_star[valid_indices]
41

42 # Define wind speed bins (1 m/s increments from 3 to 25)
43 wind_speed_bins = np.arange(3, 26, 1) # Bins: 3-4, 4-5, ..., 24-25
44 wind_speed_labels = [f'{i}-{i+1}␣m/s' for i in range(3, 25)]
45

46 # Assign each wind speed to a category (bin)
47 wind_speed_categories = pd.cut(wind_speed , bins=wind_speed_bins , labels=

wind_speed_labels , include_lowest=True, right=False)
48

49 # Convert to categorical with ordering
50 wind_speed_categories = pd.Categorical(wind_speed_categories , categories=

wind_speed_labels , ordered=True)
51

52 # Create a DataFrame with the filtered data
53 data = pd.DataFrame({
54 'Wind␣Speed␣(m/s)': wind_speed ,
55 'Wind␣Speed␣Category': wind_speed_categories ,
56 'Significant␣Wave␣Height␣(m)': significant_wave_height ,
57 'Peak␣Wave␣Period␣(s)': peak_wave_period ,
58 'Friction␣Velocity␣(u_star)␣(m/s)': u_star
59 })
60

61 # Calculate the likelihood (probability) of each wind speed category
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62 category_counts = data['Wind␣Speed␣Category'].value_counts(normalize=True).
sort_index() * 100 # percentage

63

64 # Calculate the mean significant wave height and peak wave period for each
wind speed category

65 category_means = data.groupby('Wind␣Speed␣Category').agg({
66 'Significant␣Wave␣Height␣(m)': 'mean',
67 'Peak␣Wave␣Period␣(s)': 'mean'
68 })
69

70 # Combine the likelihood and mean values into a final table
71 distribution_table = pd.concat([category_counts , category_means], axis=1)
72 distribution_table.columns = ['Likelihood␣(%)', 'Mean␣Significant␣Wave␣Height

␣(m)', 'Mean␣Peak␣Wave␣Period␣(s)']
73

74 # Ensure full table display
75 pd.set_option('display.expand_frame_repr', False) # Prevents column

truncation
76 pd.set_option('display.max_columns', None) # Ensures all columns are shown
77 pd.set_option('display.float_format', '{:.2f}'.format) # Consistent decimal

format
78 # Calculate the standard deviation of the wind speed (u-component) within

each wind speed category
79 category_std = data.groupby('Wind␣Speed␣Category')['Wind␣Speed␣(m/s)'].std()
80

81 # Calculate the mean wind speed within each category
82 category_mean = data.groupby('Wind␣Speed␣Category')['Wind␣Speed␣(m/s)'].mean

()
83

84 # Calculate turbulence intensity (TI) for each category
85 turbulence_intensity = category_std / category_mean
86

87 # Add the turbulence intensity to the distribution table
88 distribution_table['Turbulence␣Intensity␣(%)'] = turbulence_intensity*100
89

90 # Display the updated distribution table with turbulence intensity
91 #print(distribution_table)
92

93

94 # Plots
95

96 plt.figure(figsize=(10, 5))
97 plt.bar(distribution_table.index, distribution_table['Likelihood␣(%)'], color

='royalblue', edgecolor='black')
98 plt.xlabel("Wind␣Speed␣(m/s)")
99 plt.ylabel("Likelihood␣(%)")
100 plt.xticks(rotation=45)
101 plt.grid(axis='y', linestyle='--', alpha=0.7)
102 plt.show()
103

104 plt.figure(figsize=(10, 6))
105 plt.scatter(data['Wind␣Speed␣(m/s)'], data['Significant␣Wave␣Height␣(m)'],

alpha=0.3, color='darkblue')
106 plt.xlabel("Wind␣Speed␣(m/s)")
107 plt.ylabel("Significant␣Wave␣Height␣(m)")
108 plt.grid(True, linestyle='--', alpha=0.6)
109 plt.show()
110

111 plt.figure(figsize=(12, 6))
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112 sns.boxplot(x=data['Wind␣Speed␣Category'], y=data['Significant␣Wave␣Height␣(m
)'], palette="coolwarm")

113 plt.xlabel("Wind␣Speed␣Category␣(m/s)")
114 plt.ylabel("Significant␣Wave␣Height␣(m)")
115 plt.xticks(rotation=45)
116 plt.grid(axis='y', linestyle='--', alpha=0.7)
117 plt.show()
118

119 plt.figure(figsize=(12, 6))
120 sns.boxplot(x=data['Wind␣Speed␣Category'], y=data['Peak␣Wave␣Period␣(s)'],

palette="coolwarm")
121 plt.xlabel("Wind␣Speed␣Category␣(m/s)")
122 plt.ylabel("Peak␣Wave␣Period␣(s)")
123 plt.xticks(rotation=45)
124 plt.grid(axis='y', linestyle='--', alpha=0.7)
125 plt.show()
126

127

128 # Dataset with individual wind speed values
129 def get_wave_params_for_speed(df, target_speed , delta=0.5):
130 subset = df[(df["Wind␣Speed␣(m/s)"] >= target_speed - delta) &
131 (df["Wind␣Speed␣(m/s)"] <= target_speed + delta)]
132 return subset["Significant␣Wave␣Height␣(m)"].mean(), subset["Peak␣Wave␣

Period␣(s)"].mean(), subset["Friction␣Velocity␣(u_star)␣(m/s)"].mean
()

133

134 # Define exact wind speeds for SIMA
135 exact_wind_speeds = np.arange(3, 26, 1)
136

137 # Compute values per wind speed
138 sima_conditions = pd.DataFrame({
139 'Wind␣Speed␣(m/s)': exact_wind_speeds ,
140 'Significant␣Wave␣Height␣(m)': [get_wave_params_for_speed(data, ws)[0]

for ws in exact_wind_speeds],
141 'Peak␣Wave␣Period␣(s)': [get_wave_params_for_speed(data, ws)[1] for ws in

exact_wind_speeds],
142 'Friction␣Velocity␣(u_star)␣(m/s)': [get_wave_params_for_speed(data, ws)

[2] for ws in exact_wind_speeds]
143 })
144

145 # print(sima_conditions)
146

147 # Fit Weibull distribution to all wind speed data (before filtering)
148 shape, loc, scale = weibull_min.fit(ds["U"][height_index , location_index , :].

values.flatten(), floc=0)
149

150 # Use the actual full range of wind speed data
151 x = np.linspace(ds["U"][height_index , location_index , :].min(), ds["U"][

height_index , location_index , :].max(), 100)
152 weibull_pdf = weibull_min.pdf(x, shape, loc, scale)
153

154 # Plot Weibull distribution
155 plt.figure(figsize=(10, 5))
156 plt.plot(x, weibull_pdf , 'r-', linewidth=2, label=f'Weibull␣Fit␣�(={scale:.2f

},␣k={shape:.2f})')
157 plt.xlim(0, x.max())
158 plt.ylim(0, max(weibull_pdf) * 1.1)
159 # Labels and title
160 plt.xlabel("Wind␣Speed␣(m/s)")
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161 plt.ylabel("Probability␣Density")
162 plt.legend()
163 plt.grid(axis='y', linestyle='--', alpha=0.7)
164 plt.show()

A.3. Annual Energy Production
The following Python script uses the SIMA electrical power output and calculates the
AEP given the Weibull fit of the wind speed.

Listing A.3: Annual Energy Production Script
1 import pandas as pd
2 import numpy as np
3

4 # Weibull distribution parameters
5 lambda_weibull = 11.22
6 k_weibull = 1.93
7 hours_per_year = 8760
8

9 # File paths for different controller cases
10 controller_files = {
11 "Baseline": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_Baseline_Output.xlsx",
12 "Controller1": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C1_Output.xlsx",
13 "Controller2": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C2_Output.xlsx",
14 "Controller3": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C3_Output.xlsx",
15 "Controller4": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C4_Output.xlsx",
16 "Controller5": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C5_Output_new.xlsx",
17 "Controller6": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C6_Output.xlsx",
18 "Controller7": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C7_Output.xlsx",
19 "Controller8": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C8_Output.xlsx",
20 "Controller9": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C9_Output.xlsx",
21 "Controller10": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology

/Attachments/Desktop/THESIS/Results/Cases/SIMA_C10_Output.xlsx",
22 "Controller11": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology

/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C11_Output.xlsx"
,

23 "Controller12": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C12_Output.xlsx"
,

24 "Controller13": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C13_Output.xlsx"
,

25 "Controller14": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C14_Output.xlsx"

26

27

28 }
29
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30 # Weibull PDF
31 def weibull_pdf(U, lambda_weibull , k_weibull):
32 return (k_weibull / lambda_weibull) * (U / lambda_weibull)**(k_weibull -

1) * np.exp(-(U / lambda_weibull)**k_weibull)
33

34 # Store results
35 results = []
36

37 for controller_name , file_path in controller_files.items():
38 excel_data = pd.ExcelFile(file_path)
39

40 wind_speeds = []
41 mean_generator_outputs = []
42

43 for sheet_name in excel_data.sheet_names:
44 data = excel_data.parse(sheet_name , header=1)
45 data = data[1:].reset_index(drop=True)
46 data = data.iloc[600:]
47

48 wind_speed = data['Incoming␣wind␣speed␣X-dir␣in␣shaft␣system'].mean()
49 wind_speeds.append(wind_speed)
50

51 mean_power = data['Electrical␣generator␣output'].clip(upper=15e6).
mean()

52 mean_generator_outputs.append(mean_power)
53

54 # Sort data by wind speed
55 wind_speeds , mean_generator_outputs = zip(*sorted(zip(wind_speeds ,

mean_generator_outputs)))
56

57 # AEP calculation
58 AEP = 0
59 for i in range(len(wind_speeds) - 1):
60 U_lower = wind_speeds[i]
61 U_upper = wind_speeds[i + 1]
62 P_U = mean_generator_outputs[i]
63

64 pdf_lower = weibull_pdf(U_lower, lambda_weibull , k_weibull)
65 pdf_upper = weibull_pdf(U_upper, lambda_weibull , k_weibull)
66

67 integration = (P_U * pdf_lower + P_U * pdf_upper) * (U_upper -
U_lower) / 2

68 AEP += integration
69

70 AEP_kWh = AEP * hours_per_year / 1000
71

72 results.append({
73 "Controller": controller_name ,
74 "AEP_kWh": AEP_kWh
75 })
76

77 # Display results
78 results_df = pd.DataFrame(results)
79 print(results_df)

The following script plots the characteristic power curve among other curves, which are
used to investigate behaiour in energy production, used in the discussion.

Listing A.4: Power Curve Script for Discussion
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1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4

5 # Increase global font sizes
6 plt.rcParams['axes.labelsize'] = 15 # axis titles
7 plt.rcParams['xtick.labelsize'] = 10 # x-axis numbers
8 plt.rcParams['ytick.labelsize'] = 10 # y-axis numbers
9 plt.rcParams['legend.fontsize'] = 15 # legend text
10

11 # Choose controllers to compare and wind speed
12 controllers_to_plot = ["Baseline", "Controller2", "Controller5"]
13

14 # File paths for different controller cases
15 controller_files = {
16 "Baseline": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_Baseline_Output.xlsx",
17 "Controller1": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C1_Output.xlsx",
18 "Controller2": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C2_Output.xlsx",
19 "Controller3": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C3_Output.xlsx",
20 "Controller4": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C4_Output.xlsx",
21 "Controller5": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C5_Output_new.xlsx",
22 "Controller6": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C6_Output.xlsx",
23 "Controller7": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C7_Output.xlsx",
24 "Controller8": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C8_Output.xlsx",
25 "Controller9": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C9_Output.xlsx",
26 "Controller10": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology

/Attachments/Desktop/THESIS/Results/Cases/SIMA_C10_Output.xlsx",
27 "Controller11": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology

/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C11_Output.xlsx"
,

28 "Controller12": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C12_Output.xlsx"
,

29 "Controller13": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C13_Output.xlsx"
,

30 "Controller14": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C14_Output.xlsx"

31

32 }
33

34 # Initialize a dictionary to store results for each controller
35 controller_data = {}
36

37 # Function to extract data for a given controller
38 def extract_data(file_path):
39 excel_data = pd.ExcelFile(file_path)
40 rated_wind_speed = 10.59
41 rotor_diameter = 240 # in meters
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42 rotor_radius = rotor_diameter / 2 # in meters
43

44 # Initialize lists to store results for the current controller
45 wind_speeds = []
46 mean_rotor_speeds = []
47 mean_pitch_angles = []
48 mean_generator_torques = []
49 mean_output = []
50 tip_speed_ratios = []
51

52 # Iterate through each sheet (each wind speed)
53 for sheet_name in excel_data.sheet_names:
54 data = excel_data.parse(sheet_name , header=1)
55 data = data[1:].reset_index(drop=True)
56 data = data.iloc[600:]
57

58 wind_speed = data['Incoming␣wind␣speed␣X-dir␣in␣shaft␣system'].mean()
59 wind_speeds.append(wind_speed)
60

61 # Compute mean values for each variable
62 mean_rotor_speed = data['Rotor␣speed␣(rpm)'].mean()
63 mean_rotor_speeds.append(mean_rotor_speed)
64 mean_pitch_angles.append(data['Pitch␣angle␣blade␣1,␣Line:␣bl1foil'].

mean())
65 mean_generator_torques.append(data['Mechanical␣generator␣torque␣on␣

LSS'].mean() / 1e6) # Convert Nm to MNm
66 mean_output.append(data["Electrical␣generator␣output"].mean() / 1e6)
67

68 # Compute rotor speed in radians per second
69 angular_velocity = mean_rotor_speed * (2 * np.pi / 60) # Convert RPM

to rad/s
70

71 # Compute TSR
72 tsr = (angular_velocity * rotor_radius) / wind_speed
73 tip_speed_ratios.append(tsr)
74

75 # Sort the results by wind speed and convert to lists
76 sorted_data = sorted(zip(wind_speeds , mean_rotor_speeds ,

mean_pitch_angles ,
77 mean_generator_torques , tip_speed_ratios))
78 wind_speeds , mean_rotor_speeds , mean_pitch_angles , mean_generator_torques

, tip_speed_ratios = map(list, zip(*sorted_data))
79

80 return wind_speeds , mean_rotor_speeds , mean_pitch_angles ,
mean_generator_torques , mean_output , tip_speed_ratios

81

82 # Load data for the selected controllers
83 for controller in controllers_to_plot:
84 file_path = controller_files[controller]
85 wind_speeds , mean_rotor_speeds , mean_pitch_angles , mean_generator_torques

, mean_output , tip_speed_ratios = extract_data(file_path)
86 controller_data[controller] = {
87 "wind_speeds": wind_speeds ,
88 "mean_rotor_speeds": mean_rotor_speeds ,
89 "mean_pitch_angles": mean_pitch_angles ,
90 "mean_generator_torques": mean_generator_torques ,
91 "mean_output": mean_output ,
92 "tip_speed_ratios": tip_speed_ratios
93 }
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94

95 # Plot Mean Rotor Speed vs Wind Speed for selected controllers
96 plt.figure(figsize=(8, 6))
97 for controller in controllers_to_plot:
98 plt.plot(controller_data[controller]["wind_speeds"], controller_data[

controller]["mean_rotor_speeds"], label=f"{controller}")
99 plt.axvline(10.59, color='k', linestyle='--', label="Rated␣Wind␣Speed␣(10.59␣

m/s)")
100 plt.xlabel("Wind␣Speed␣(m/s)")
101 plt.ylabel("Mean␣Rotor␣Speed␣(RPM)")
102 plt.legend()
103 plt.grid(True)
104 plt.show()
105

106 # Plot Mean Pitch Angle vs Wind Speed for selected controllers
107 plt.figure(figsize=(8, 6))
108 for controller in controllers_to_plot:
109 plt.plot(controller_data[controller]["wind_speeds"], controller_data[

controller]["mean_pitch_angles"], label=f"{controller}")
110 plt.axvline(10.59, color='k', linestyle='--')
111 plt.xlabel("Wind␣Speed␣(m/s)")
112 plt.ylabel("Mean␣Pitch␣Angle␣(degrees)")
113 plt.legend()
114 plt.grid(True)
115 plt.show()
116

117 # Plot Mean Generator Torque vs Wind Speed for selected controllers
118 plt.figure(figsize=(8, 6))
119 for controller in controllers_to_plot:
120 plt.plot(controller_data[controller]["wind_speeds"], controller_data[

controller]["mean_generator_torques"], label=f"{controller}")
121 plt.axvline(10.59, color='k', linestyle='--')
122 plt.xlabel("Wind␣Speed␣(m/s)")
123 plt.ylabel("Mean␣Generator␣Torque␣(MNm)")
124 plt.legend()
125 plt.grid(True)
126 plt.show()
127

128 # Plot Mean Output vs Wind Speed for selected controllers
129 plt.figure(figsize=(8, 6), dpi = 500)
130 for controller in controllers_to_plot:
131 plt.plot(controller_data[controller]["wind_speeds"], controller_data[

controller]["mean_output"], label=f"{controller}")
132 plt.axvline(10.59, color='k', linestyle='--')
133 plt.xlabel("Wind␣Speed␣(m/s)")
134 plt.ylabel("Mean␣Electrical␣Output␣(MW)")
135 plt.legend(loc='upper␣center', bbox_to_anchor=(0.5, -0.2), ncol=3, frameon=

False)
136 plt.grid(True)
137 plt.show()
138

139 # Plot Tip Speed Ratio vs Wind Speed for selected controllers
140 plt.figure(figsize=(8, 6))
141 for controller in controllers_to_plot:
142 plt.plot(controller_data[controller]["wind_speeds"], controller_data[

controller]["tip_speed_ratios"], label=f"{controller}")
143 plt.axvline(10.59, color='k', linestyle='--')
144 plt.xlabel("Wind␣Speed␣(m/s)")
145 plt.ylabel("Tip␣Speed␣Ratio")
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146 plt.legend()
147 plt.grid(True)
148 plt.show()

A.4. Blade Fatifue Life
The following Python script uses the SIMA aerodynamic moment output and calculates
the estimated blade fatigue life given the Weibull fit of the wind speed.

Listing A.5: Blade Fatigue Life Estimation Script
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import rainflow
5

6 # Blade geometry and material properties
7 D = 5.2
8 R = D / 2
9 t = 0.1
10 R_o = R
11 R_i = R_o - t
12 I_x = I_y = (np.pi / 4) * (R_o**4 - R_i**4)
13 J = I_x + I_y
14

15 # Blade and environment constants
16 m_blade = 65000.0
17 blade_R = 120.0
18 r_cg = 2 / 3 * blade_R
19 g = 9.81
20

21 # Weibull parameters
22 lambda_weibull = 11.22
23 k_weibull = 1.93
24

25 # Goodman + Basquin parameters
26 UTS = 400.0 # MPa
27 m = 7.0
28 a = 80.0
29

30 # Controller file paths
31 controller_files = {
32 "Baseline": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_Baseline_Output.xlsx",
33 "Controller1": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C1_Output.xlsx",
34 "Controller2": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C2_Output.xlsx",
35 "Controller3": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C3_Output.xlsx",
36 "Controller4": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C4_Output.xlsx",
37 "Controller5": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C5_Output_new.xlsx",
38 "Controller6": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C6_Output.xlsx",
39 "Controller7": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C7_Output.xlsx",
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40 "Controller8": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/
Attachments/Desktop/THESIS/Results/Cases/SIMA_C8_Output.xlsx",

41 "Controller9": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/
Attachments/Desktop/THESIS/Results/Cases/SIMA_C9_Output.xlsx",

42 "Controller10": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/SIMA_C10_Output.xlsx",

43 "Controller11": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C11_Output.xlsx"
,

44 "Controller12": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C12_Output.xlsx"
,

45 "Controller13": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C13_Output.xlsx"
,

46 "Controller14": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C14_Output.xlsx"

47 }
48

49 def weibull_pdf(U, lam, k):
50 return (k / lam) * (U / lam)**(k - 1) * np.exp(-(U / lam)**k)
51

52 def calculate_stresses(M_x, M_y, M_z):
53 sigma_y = M_y * R / I_y
54 sigma_z = M_z * R / I_x
55 tau = M_x * R / J
56 sigma_vm = np.sqrt(sigma_y**2 + sigma_z**2 + 3 * tau**2)
57 return sigma_y, sigma_z, tau, sigma_vm
58

59 def process_controller(name, filepath):
60 excel_data = pd.ExcelFile(filepath)
61 stress_results = {}
62

63 for sheet_name in excel_data.sheet_names:
64 data = excel_data.parse(sheet_name , header=1)
65 data = data[1:].reset_index(drop=True)
66 data = data.iloc[600:]
67

68 M_x = data["Aero␣moment␣around␣X-axis␣in␣shaft␣system"]
69 M_y = data["Aero␣moment␣around␣Y-axis␣in␣shaft␣system"]
70 M_z_aero = data["Aero␣moment␣around␣Z-axis␣in␣shaft␣system"]
71 rpm = data["Rotor␣speed␣(rpm)"].astype(float).values
72

73 n = len(M_z_aero)
74 dt = 600 / n
75 t = np.arange(n) * dt
76 Omega = (rpm / 60) * 2 * np.pi
77 M_z_grav = m_blade * g * r_cg * np.sin(Omega * t)
78 M_z_total = M_z_aero.values + M_z_grav
79

80 sigma_vm = np.zeros(n)
81 for i in range(n):
82 _, _, _, sigma_vm[i] = calculate_stresses(M_x.iloc[i], M_y.iloc[i

], M_z_total[i])
83

84 stress_results[sheet_name] = sigma_vm
85

86 # Weight by Weibull PDF
87 weights = {



A.4. Blade Fatifue Life 80

88 k: weibull_pdf(float(k), lambda_weibull , k_weibull)
89 for k in stress_results.keys()
90 }
91 total_w = sum(weights.values())
92 weights = {k: v / total_w for k, v in weights.items()}
93

94 sigma_eff = np.zeros(len(next(iter(stress_results.values()))))
95 for k, sigma in stress_results.items():
96 sigma_eff += weights[k] * np.array(sigma)
97

98 # Rainflow cycles
99 cycles = list(rainflow.extract_cycles(sigma_eff))
100 df_cycles = pd.DataFrame([c[:3] for c in cycles], columns=["range", "mean

", "count"])
101

102 # Bin
103 n_bins = 100
104 bins = np.linspace(df_cycles["range"].min(), df_cycles["range"].max(),

n_bins+1)
105 df_cycles["bin"] = pd.cut(df_cycles["range"], bins=bins)
106

107 grouped = (
108 df_cycles.groupby("bin", observed=True)
109 .apply(lambda g: pd.Series({
110 "count": g["count"].sum(),
111 "mean_st": np.average(g["mean"], weights=g["count"])
112 }))
113 .reset_index()
114 )
115

116 # Damage and life
117 S_range = np.array([iv.mid for iv in grouped["bin"]]) / 1e6
118 S_mean = grouped["mean_st"].to_numpy() / 1e6
119 counts = grouped["count"].to_numpy()
120 S_amp = S_range / 2
121 denom = np.clip(1 - S_mean / UTS, 0.1, None)
122 S_eq = S_amp / denom
123 N_i = 0.5 * (a / S_eq)**m
124 d_i = counts / N_i
125 D_blk = d_i.sum()
126 blocks_per_year = 365 * 24 * 6
127 life_years = 1.0 / (D_blk * blocks_per_year)
128

129 print(f"{name}:␣Estimated␣fatigue␣life␣=␣{life_years:.1f}␣years")
130

131 return name, life_years
132

133 # Run the analysis for all controller files
134 results = {}
135 for name, path in controller_files.items():
136 controller_name , life = process_controller(name, path)
137 results[controller_name] = life
138

139 # Optional: Plot all fatigue lives
140 plt.figure(figsize=(12, 6))
141 plt.bar(results.keys(), results.values())
142 plt.ylabel("Estimated␣Fatigue␣Life␣(Years)")
143 plt.xticks(rotation=45)
144 plt.title("Fatigue␣Life␣Comparison␣Across␣Controllers")
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145 plt.grid(True)
146 plt.tight_layout()
147 plt.show()

The following script is used to plot the stress amplitude and cycle counts for controller
configurations. This is used for the additional plots in the discussion.

Listing A.6: Blade Stress Amplitude and Cycles Script for Discussion
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import rainflow
5

6 # Increase global font sizes
7 plt.rcParams['axes.labelsize'] = 25 # axis titles
8 plt.rcParams['xtick.labelsize'] = 20 # x-axis numbers
9 plt.rcParams['ytick.labelsize'] = 20 # y-axis numbers
10 plt.rcParams['legend.fontsize'] = 25 # legend text
11

12 # Blade geometry and material properties
13 D = 5.2
14 R = D / 2
15 t = 0.1
16 R_o = R
17 R_i = R_o - t
18 I_x = I_y = (np.pi / 4) * (R_o**4 - R_i**4)
19 J = I_x + I_y
20

21 # Blade and environment constants
22 m_blade = 65000.0
23 blade_R = 120.0
24 r_cg = 2 / 3 * blade_R
25 g = 9.81
26

27 # Weibull parameters
28 lambda_weibull = 11.22
29 k_weibull = 1.93
30

31 # Goodman + Basquin parameters
32 UTS = 400.0 # MPa
33 m = 7.0
34 a = 80.0
35

36 # Controller file paths
37 controller_files = {
38 "Baseline": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_Baseline_Output.xlsx",
39 "Controller1": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C1_Output.xlsx",
40 "Controller2": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C2_Output.xlsx",
41 "Controller3": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C3_Output.xlsx",
42 "Controller4": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C4_Output.xlsx",
43 "Controller5": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C5_Output_new.xlsx",
44 "Controller6": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/

Attachments/Desktop/THESIS/Results/Cases/SIMA_C6_Output.xlsx",
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45 "Controller7": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/
Attachments/Desktop/THESIS/Results/Cases/SIMA_C7_Output.xlsx",

46 "Controller8": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/
Attachments/Desktop/THESIS/Results/Cases/SIMA_C8_Output.xlsx",

47 "Controller9": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology/
Attachments/Desktop/THESIS/Results/Cases/SIMA_C9_Output.xlsx",

48 "Controller10": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/SIMA_C10_Output.xlsx",

49 "Controller11": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C11_Output.xlsx"
,

50 "Controller12": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C12_Output.xlsx"
,

51 "Controller13": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C13_Output.xlsx"
,

52 "Controller14": "C:/Users/toon4/OneDrive␣-␣Delft␣University␣of␣Technology
/Attachments/Desktop/THESIS/Results/Cases/extra/SIMA_C14_Output.xlsx"

53

54 }
55

56 def weibull_pdf(U, lam, k):
57 return (k / lam) * (U / lam)**(k - 1) * np.exp(-(U / lam)**k)
58

59 def calculate_stresses(M_x, M_y, M_z):
60 sigma_y = M_y * R / I_y
61 sigma_z = M_z * R / I_x
62 tau = M_x * R / J
63 sigma_vm = np.sqrt(sigma_y**2 + sigma_z**2 + 3 * tau**2)
64 return sigma_y, sigma_z, tau, sigma_vm
65

66 def process_controller(name, filepath):
67 excel_data = pd.ExcelFile(filepath)
68 stress_results = {}
69

70 for sheet_name in excel_data.sheet_names:
71 data = excel_data.parse(sheet_name , header=1)
72 data = data[1:].reset_index(drop=True)
73 data = data.iloc[600:]
74

75 M_x = data["Aero␣moment␣around␣X-axis␣in␣shaft␣system"]
76 M_y = data["Aero␣moment␣around␣Y-axis␣in␣shaft␣system"]
77 M_z_aero = data["Aero␣moment␣around␣Z-axis␣in␣shaft␣system"]
78 rpm = data["Rotor␣speed␣(rpm)"].astype(float).values
79

80 n = len(M_z_aero)
81 dt = 600 / n
82 t = np.arange(n) * dt
83 Omega = (rpm / 60) * 2 * np.pi
84 M_z_grav = m_blade * g * r_cg * np.sin(Omega * t)
85 M_z_total = M_z_aero.values + M_z_grav
86

87 sigma_vm = np.zeros(n)
88 for i in range(n):
89 _, _, _, sigma_vm[i] = calculate_stresses(M_x.iloc[i], M_y.iloc[i

], M_z_total[i])
90

91 stress_results[sheet_name] = sigma_vm
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92

93 # Weight by Weibull PDF
94 weights = {
95 k: weibull_pdf(float(k), lambda_weibull , k_weibull)
96 for k in stress_results.keys()
97 }
98 total_w = sum(weights.values())
99 weights = {k: v / total_w for k, v in weights.items()}
100

101 sigma_eff = np.zeros(len(next(iter(stress_results.values()))))
102 for k, sigma in stress_results.items():
103 sigma_eff += weights[k] * np.array(sigma)
104

105 # Rainflow cycles
106 cycles = list(rainflow.extract_cycles(sigma_eff))
107 df_cycles = pd.DataFrame([c[:3] for c in cycles], columns=["range", "mean

", "count"])
108

109 # Create evenly spaced bins for stress amplitudes
110 n_bins = 100
111 bins = np.linspace(df_cycles["range"].min(), df_cycles["range"].max(),

n_bins+1)
112 df_cycles["bin"] = pd.cut(df_cycles["range"], bins=bins)
113

114 # Group data by bin and sum the cycle counts
115 grouped = (
116 df_cycles.groupby("bin", observed=True)
117 .apply(lambda g: pd.Series({
118 "count": g["count"].sum(),
119 "mean_st": np.average(g["mean"], weights=g["count"])
120 }))
121 .reset_index()
122 )
123

124 return grouped
125

126

127

128 def plot_comparison_bar(name1, grouped1 , name2, grouped2):
129 # Plotting the stress amplitudes vs cycle count for two controllers
130 plt.figure(figsize=(12, 6), dpi=300)
131

132 # Get the left edge of each bin for both controllers
133 bin_edges_1 = grouped1["bin"].apply(lambda x: x.left).astype(float).

values
134 bin_edges_2 = grouped2["bin"].apply(lambda x: x.left).astype(float).

values
135

136 # Get bin widths for both controllers
137 bin_widths_1 = np.diff(grouped1["bin"].apply(lambda x: x.right).astype(

float).values)
138 bin_widths_2 = np.diff(grouped2["bin"].apply(lambda x: x.right).astype(

float).values)
139

140 # Plot bars for each bin
141 plt.bar(bin_edges_1 , grouped1["count"], width=bin_widths_1[0], align='

edge', edgecolor="black", alpha=0.9, label=name1)
142 plt.bar(bin_edges_2 , grouped2["count"], width=bin_widths_2[0], align='

edge', edgecolor="black", alpha=0.4, label=name2)
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143

144 # Labels and title
145 plt.xlabel("Stress␣Amplitude␣(Pa)")
146 plt.ylabel("Number␣of␣Cycles")
147

148 # Show legend
149 plt.legend(loc='upper␣center', bbox_to_anchor=(0.5, -0.2), ncol=3,

frameon=False)
150

151

152 # Grid and tight layout for clarity
153 plt.grid(True)
154 plt.tight_layout()
155 plt.xlim(right=2e7)
156 plt.show()
157

158 # Load data and process for Baseline , Controller 2, and Controller 3
159 controller_2_path = controller_files["Controller2"]
160 controller_12_path = controller_files["Controller12"]
161 baseline_path = controller_files["Baseline"]
162

163 # Process Baseline , Controller 2, and Controller 3
164 grouped_baseline = process_controller("Baseline", baseline_path)
165 grouped_controller_2 = process_controller("Controller2", controller_2_path)
166 grouped_controller_12 = process_controller("Controller12", controller_12_path

)
167

168 # Plot comparison for Baseline vs Controller 2
169 plot_comparison_bar("Baseline", grouped_baseline , "Controller␣2",

grouped_controller_2)
170

171 # Plot comparison for Baseline vs Controller 3
172 plot_comparison_bar("Baseline", grouped_baseline , "Controller␣1.2",

grouped_controller_12)
173

174

175

176 def quantify_stress_ranges(grouped, threshold=0.5e7):
177 bin_centers = grouped["bin"].apply(lambda x: (x.left + x.right) / 2).

astype(float)
178 low_stress = grouped["count"][bin_centers < threshold].sum()
179 high_stress = grouped["count"][bin_centers >= threshold].sum()
180 total = low_stress + high_stress
181 return {
182 "low_stress": low_stress ,
183 "high_stress": high_stress ,
184 "low_stress_pct": low_stress / total * 100,
185 "high_stress_pct": high_stress / total * 100
186 }
187

188 baseline_stats = quantify_stress_ranges(grouped_baseline)
189 controller2_stats = quantify_stress_ranges(grouped_controller_2)
190 controller12_stats = quantify_stress_ranges(grouped_controller_12)
191

192 print("Baseline:", baseline_stats)
193 print("Controller␣2:", controller2_stats)
194 print("Controller␣1.2:", controller12_stats)
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A.5. Pareto Front
The following Python script uses the calculated AEP and blade fatigue life to plot the
Pareto front. Additionally, the gain in total energy is plotted.

Listing A.7: Pareto Front Script
1 import matplotlib.pyplot as plt
2

3 controllers = [
4 'B', 'C1', 'C1.1', 'C1.2', 'C1.3', 'C1.4', 'C2', 'C3', 'C4', 'C5', 'C6',

'C7', 'C8', 'C9', 'C10'
5

6 ]
7

8 aep = [val / 1000 for val in [
9 71643010.00, 70373040.00, 71115980.00, 70054670.00, 70367790.00,

70536660.00, 69139390.00, 70448970.00,
10 71450300.00, 71578610.00, 71402970.00, 70719970.00,
11 70651920.00, 71185950.00, 71431010.00
12

13 ]]
14

15 fatigue_life = [
16 25.7, 31.6, 29.1, 34.7, 33.7, 34.5 , 25.6, 34.5, 29.3, 29.2, 30.4, 34.4,

26.7, 29.7, 26.7
17

18 ]
19

20

21 # Plot
22 plt.figure(figsize=(10, 7), dpi=300)
23

24 # Plot all except B
25 for i in range(1, len(controllers)):
26 plt.scatter(fatigue_life[i], aep[i], color='blue', s=80)
27 plt.annotate(controllers[i], (fatigue_life[i], aep[i]), textcoords="

offset␣points", xytext=(-5, 0), ha='right', fontsize=15)
28

29 # Highlight baseline (B)
30 plt.scatter(fatigue_life[0], aep[0], color='red', s=80)
31 plt.annotate('B', (fatigue_life[0], aep[0]), textcoords="offset␣points",

xytext=(-5, 3), ha='right', fontsize=15)
32

33 # Labels and grid
34 plt.xlabel("Fatigue␣Life␣[years]", fontsize=20)
35 plt.ylabel("AEP␣[MWh]", fontsize=20)
36 plt.grid(True, linestyle='--', alpha=0.6)
37 plt.xticks(fontsize=15)
38 plt.yticks(fontsize=15)
39 plt.tight_layout()
40 plt.show()
41

42 # Baseline total energy production
43 baseline_energy = aep[0] * fatigue_life[0]
44 relative_energy = [(a * f - baseline_energy) / baseline_energy * 100 for a, f

in zip(aep, fatigue_life)]
45

46 # Colors based on increase/decrease
47 colors = ['green' if val >= 0 else 'red' for val in relative_energy[1:]]
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48

49 # Print the relative energy change for each controller
50 for controller , change in zip(controllers[1:], relative_energy[1:]):
51 print(f"Controller␣{controller}:␣{change:.2f}%")
52

53

54 # Bar plot
55 plt.figure(figsize=(10, 7), dpi = 300)
56 bars = plt.bar(controllers[1:], relative_energy[1:], color=colors)
57 plt.axhline(0, color='black', linewidth=1)
58 plt.ylabel('Change␣in␣Total␣Energy␣Production␣[%]', fontsize=20)
59 plt.xlabel('Controller␣Setting', fontsize=20)
60 plt.xticks(rotation=45)
61 plt.xticks(fontsize=15)
62 plt.yticks(fontsize=15)
63 plt.grid(axis='y', linestyle='--', alpha=0.7)
64 plt.tight_layout()
65 plt.show()
66

67

68

69 # Apply the sensitivity constraint (maximum fatigue life of 30 years)
70 adjusted_fatigue_life = [f if f <= 28.27 else 28.27 for f in fatigue_life]
71

72

73 # Recalculate the total energy production with the new adjusted fatigue life
values

74 relative_energy_adjusted = [(a * f - baseline_energy) / baseline_energy * 100
for a, f in zip(aep, adjusted_fatigue_life)]

75

76 # Colors based on increase/decrease
77 colors_adjusted = ['green' if val >= 0 else 'red' for val in

relative_energy_adjusted[1:]]
78

79 # Bar plot
80 plt.figure(figsize=(10, 7), dpi=300)
81 bars_adjusted = plt.bar(controllers[1:], relative_energy_adjusted[1:], color=

colors_adjusted)
82 plt.axhline(0, color='black', linewidth=1)
83 plt.ylabel('Change␣in␣Total␣Energy␣Production␣[%]', fontsize=20)
84 plt.xlabel('Controller␣Setting', fontsize=20)
85 plt.xticks(rotation=45)
86 plt.xticks(fontsize=15)
87 plt.yticks(fontsize=15)
88 plt.grid(axis='y', linestyle='--', alpha=0.7)
89 plt.tight_layout()
90 plt.show()
91

92 # Print the relative energy change for each controller under the sensitivity
assumption

93 for controller , change in zip(controllers[1:], relative_energy_adjusted[1:]):
94 print(f"Controller␣{controller}:␣{change:.2f}%")
95

96

97

98 # Baseline values
99 baseline_aep = aep[0]
100 baseline_fatigue = fatigue_life[0]
101



A.6. LCOE 87

102 # Percentage change in AEP and Fatigue Life
103 percent_change_aep = [(val - baseline_aep) / baseline_aep * 100 for val in

aep]
104 percent_change_fatigue = [(val - baseline_fatigue) / baseline_fatigue * 100

for val in fatigue_life]
105

106 # Print results
107 for i, controller in enumerate(controllers):
108 print(f"{controller}:␣ΔAEP␣=␣{percent_change_aep[i]:+.2f}%,␣ΔFatigue␣Life

␣=␣{percent_change_fatigue[i]:+.2f}%")

A.6. LCOE
The following Python script calculates the LCOE for the optimal control cases, done for
different discount rates.

Listing A.8: LCOE Calculation Script
1 import numpy as np
2 import matplotlib.pyplot as plt
3 # Increase global font sizes
4 plt.rcParams['axes.labelsize'] = 25 # axis titles
5 plt.rcParams['xtick.labelsize'] = 20 # x-axis numbers
6 plt.rcParams['ytick.labelsize'] = 20 # y-axis numbers
7 plt.rcParams['legend.fontsize'] = 25 # legend text
8

9 def calculate_lcoe_corrected(capex, opex, r, n, aep):
10 """
11 Corrected LCOE calculation:
12 - capex: Capital expenditure paid at year 0 (EUR)
13 - opex: Annual O&M cost (EUR/year)
14 - r: Discount rate (decimal)
15 - n: Project lifetime (years)
16 - aep: Annual energy production (MWh/year)
17 """
18 years = np.arange(1, n + 1)
19 discounted_opex = opex * (1 + r) ** (-years)
20 discounted_energy = aep * (1 + r) ** (-years)
21 return (capex + discounted_opex.sum()) / discounted_energy.sum()
22

23 # Cost assumptions
24 capex_per_mw = 6500 * 1000 # EUR per MW
25 opex_per_mw = 100 * 1000 # EUR per MW-year
26 rating_mw = 15 # MW
27 capex = capex_per_mw * rating_mw
28 opex = opex_per_mw * rating_mw
29

30 # Controller cases and data
31 controllers = ['Baseline', 'C1.4', 'C5']
32 aep_values = {
33 'Baseline': 71643.01,
34 'C1.4': 70536.66, # MWh/year
35 'C5': 71578.61
36

37 }
38 fatigue_life = {
39 'Baseline': 25.7,
40 'C1.4': 34.5 , # years
41 'C5': 28.27
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42

43 }
44

45 # Discount rates to compare
46 discount_rates = [0.07, 0.085, 0.1]
47

48 # Compute LCOE for each controller at each discount rate
49 lcoe_results = {ctrl: [] for ctrl in controllers}
50 for r in discount_rates:
51 for ctrl in controllers:
52 n = fatigue_life[ctrl]
53 aep = aep_values[ctrl]
54 lcoe = calculate_lcoe_corrected(capex, opex, r, n, aep)
55 lcoe_results[ctrl].append(lcoe)
56

57 # Plotting
58 x = np.arange(len(controllers))
59 width = 0.25
60

61 plt.figure(figsize=(10, 6), dpi=300)
62 for i, r in enumerate(discount_rates):
63 values = [lcoe_results[ctrl][i] for ctrl in controllers]
64 plt.bar(x + i*width, values, width, label=f"r␣=␣{r:.3f}")
65

66 plt.xticks(x + width, controllers)
67 plt.xlabel("Controller")
68 plt.ylabel("LCOE␣(EUR/MWh)")
69 plt.legend(loc='upper␣center', bbox_to_anchor=(0.5, -0.2), ncol=3, frameon=

False)
70 plt.grid(axis='y', linestyle='--', alpha=0.9)
71 plt.minorticks_on()
72 plt.grid(which='minor', axis='y', linestyle=':', alpha=0.9)
73 plt.tight_layout()
74 plt.show()
75

76

77 # Print all LCOE values
78 for ctrl in controllers:
79 values = lcoe_results[ctrl]
80 print(f"{ctrl}:")
81 for r, val in zip(discount_rates , values):
82 print(f"␣␣r␣=␣{r:.3f}␣→␣LCOE␣=␣{val:.2f}␣EUR/MWh")

The following Python script calculates the LCOE for the optimal control cases, done for
reduced OPEX values.

Listing A.9: LCOE Calculation Script for OPEX reduction
1 import numpy as np
2 import matplotlib.pyplot as plt
3 # Increase global font sizes
4 plt.rcParams['axes.labelsize'] = 25 # axis titles
5 plt.rcParams['xtick.labelsize'] = 20 # x-axis numbers
6 plt.rcParams['ytick.labelsize'] = 20 # y-axis numbers
7 plt.rcParams['legend.fontsize'] = 25 # legend text
8

9

10 def calculate_lcoe_corrected(capex, opex, r, n, aep):
11 """
12 Corrected LCOE calculation:
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13 - capex: Capital expenditure paid at year 0 (EUR)
14 - opex: Annual O&M cost (EUR/year)
15 - r: Discount rate (decimal)
16 - n: Project lifetime (years)
17 - aep: Annual energy production (MWh/year)
18 """
19 years = np.arange(1, n + 1)
20 discounted_opex = opex * (1 + r) ** (-years)
21 discounted_energy = aep * (1 + r) ** (-years)
22 return (capex + discounted_opex.sum()) / discounted_energy.sum()
23

24 # Cost assumptions
25 capex_per_mw = 6500 * 1000 # EUR per MW
26 opex_per_mw = 100 * 1000 # EUR per MW-year
27 rating_mw = 15 # MW
28 capex = capex_per_mw * rating_mw
29 opex = opex_per_mw * rating_mw
30

31 # Controller cases and data
32 controllers = ['Baseline', 'C1.4', 'C5']
33 aep_values = {
34 'Baseline': 71643.01,
35 'C1.4': 70536.66, # MWh/year
36 'C5': 71578.61
37

38 }
39 fatigue_life = {
40 'Baseline': 25.7, # years
41 'C5': 25.7, # now same as baseline
42 'C1.4': 25.7
43 }
44

45 # Modify C5 OPEX: 10% drop
46 opex_values = {
47 'Baseline': opex,
48 'C5': opex * 0.9,
49 'C1.4': opex * 0.9
50 }
51

52 # Single discount rate
53 discount_rate = 0.07 # 7%
54

55 # Compute LCOE for each controller
56 lcoe_results = {}
57 for ctrl in controllers:
58 n = fatigue_life[ctrl]
59 aep = aep_values[ctrl]
60 opex_ctrl = opex_values[ctrl]
61 lcoe_results[ctrl] = calculate_lcoe_corrected(capex, opex_ctrl ,

discount_rate , n, aep)
62

63 # Print results
64 for ctrl, lcoe in lcoe_results.items():
65 print(f"{ctrl}:␣LCOE␣=␣{lcoe:.2f}␣EUR/MWh")
66

67 # Plotting
68 plt.figure(figsize=(7, 5), dpi=300)
69 plt.bar(lcoe_results.keys(), lcoe_results.values(), color=['gray','tab:blue',

'tab:green'])
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70 plt.xlabel("Controller")
71 plt.ylabel("LCOE␣(EUR/MWh)")
72 # Major grid lines
73 plt.grid(axis='y', linestyle='--', alpha=0.9)
74

75 # Turn on minor ticks and draw minor grid lines
76 plt.minorticks_on()
77 plt.grid(which='minor', axis='y', linestyle=':', alpha=0.5)
78 plt.tight_layout()
79 plt.show()
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