
Counting
cherry-picking
sequences in

phylogenetic trees
by

Marit Anna Dee
to obtain the degree of Bachelor of Science

at the Delft University of Technology,

Student number: 5403626
Project duration: March 5, 2024 – June 20, 2024
Thesis committee: Dr. Y. Murakami, TU Delft, supervisor

Dr. W. Groenevelt, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Phylogenetic trees are used to represent evolutionary history of, among others, species, genes or
languages. Phylogenetic trees can be reduced by so called cherry-picking sequences. In this thesis
we take a closer look at cherry-picking sequences to obtain a more fundamental understanding on the
structure and behaviour of these sequences on phylogenetic trees. For binary rooted trees, that is trees
with a root, outdegree-2 tree nodes, and a set of leaves, we count the number of sequences that can
reduce such trees. Furthermore, we try to find the number of sequences of a given tree that is needed
to reduce all subtrees of a given tree. Thus, an enumeration problem and an optimization problem are
considered in this thesis. For both problems, we first look for results on simply structured trees, such
as caterpillars and double caterpillars. Lastly, we try to expand these results to general binary trees in
order to find the answers to the two problems.

ii

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Cherry-picking sequences . 2

3 Caterpillars 5
3.1 Reducing subtrees using TCSs . 5
3.2 Minimal subtree covering number . 8

4 Double caterpillars 10
4.1 How many TCSs reduce a double caterpillar? . 10
4.2 Minimal subtree covering number . 11

5 Trees 13
5.1 Caterpillar decomposition . 13
5.2 Minimal subtree covering number . 13
5.3 How many TCSs reduce a tree?. 15

5.3.1 How many TCSs reduce a tree on 3 maximal sub-caterpillars? 15
5.3.2 How many TCSs reduce a tree on 𝑘 maximal sub-caterpillars? 16
5.3.3 Can we find a closed form for 𝑁(𝑇)? . 16

6 Conclusion and discussion 18

A Appendix 20

iii

1
Introduction

Phylogenetic networks are used to represent the evolutionary history of biological species, genes or
languages. These directed graphs depict evolutionary relationships among taxa, which are represented
by leaves. Traditionally, these graphs are phylogenetic trees, which are rooted directed graphs where
every node has exactly one incoming edge (except for the root).

However, the evolutionary history of organisms or large DNA sequences is often more complex than
a tree-like structure. Evolutionary processes like hybridization, recombination or horizontal gene trans-
fers lead to reticulations, which phylogenetic networks can better represent rather than phylogenetic
trees [1].

A specific class of phylogenetic networks, called cherry-picking networks, or orchard networks was
introduced by Janssen and Murakami [2] and independently by Erdös et al. [3]. These networks can
be reduced to a single leaf with cherry-picking sequences, which will be detailed in Chapter 2.

Janssen and Murakami have shown that within a particular reconstructible class, cherry-picking
networks are uniquely determined by their smallest cherry-picking sequence [2]. This result is used
to address the problem of network containment, that is whether or not a given network is contained in
another network [2, 4].

In this thesis, we will focus on binary phylogenetic trees, which is a subclass of orchard networks.
First, we try to obtain fundamental insights in the structure and behaviour of cherry-picking sequences
on binary phylogenetic trees by addressing an enumeration problem. Therefore, our first research
question that we try to answer in this thesis is the following.

Input: A binary phylogenetic tree 𝑇 on 𝑛 leaves.
Question: How many different cherry-picking sequences can reduce 𝑇?

Furthermore, we take a closer look at the relation between subtrees and cherry-picking sequences
via an optimization problem. A way to differentiate between cherry-picking sequences is to look at
the number of subtrees that a sequence reduces. We say that two sequences are equivalent if they
reduce the same subtrees of a given tree. Looking at the number of sequences that we need to reduce
all subtrees of a tree would be equivalent to looking at how many equivalence classes of sequences
we need to cover all subtrees. This brings us to our second research question that we want to answer
in this thesis.

Input: A binary phylogenetic tree 𝑇 on 𝑛 leaves.
Question: How many cherry-picking sequences do we need to reduce all subtrees of 𝑇?

The structure of the thesis is as follows. In Chapter 2, we state necessary definitions and introduce
cherry-picking sequences. In Chapter 3, we answer the two main research questions for caterpillars.
In Chapter 4, we use the results from Chapter 3 to answer the two research questions for double
caterpillars. In Chapter 5, we combine the results from the previous chapters in order to find the answers
to the two main research questions for general binary trees. Finally, in Chapter 6, we give a summary
of the results that are found in Chapters 3, 4 and 5 and state some suggestions for future research.

1

2
Preliminaries

First, we state a few definitions. Most of the definitions are based on the definitions stated in the article
”On cherry-picking and network containment” [2].

Definition 2.1. A phylogenetic tree 𝑇 is a directed acyclic graph, with vertices, or nodes 𝑉 and edges 𝐸
on a non-empty taxa set 𝑋. 𝑇 has one root (indegree-0, outdegree-2), a set 𝐿(𝑇) of leaves (indegree-1,
outdegree-0) bijectively labeled with 𝑋 and all other nodes are tree nodes (indegree-1, outdegree at
least 2). A phylogenetic tree is called binary if each tree node has outdegree-2.

Since all trees considered in this thesis are binary phylogenetic trees, the terms ’phylogenetic’
and ’binary’ will be dropped in the rest of this thesis. We primarily look at trees on the set of leaves
𝐿 = {1, 2, … , 𝑛}.

For any edge 𝑢𝑣 in 𝑇, 𝑢 is called a parent of 𝑣 and 𝑣 is called a child of 𝑢. If there exists a directed
path from node 𝑢 to 𝑣, then 𝑢 is above 𝑣 and 𝑣 is below 𝑢. We call 𝑢 the tail and 𝑣 the head of an edge
𝑢𝑣. The depth of a node 𝑢 is given by the length of a shortest directed path from the root to 𝑢. A node
with the highest depth is called the deepest node of 𝑇. There can be multiple deepest nodes in a tree.

For any set of vertices 𝑉, we call 𝑢 the lowest common ancestor (LCA) of 𝑉 if 𝑢 ∉ 𝑉, 𝑢 is above all
vertices 𝑣 ∈ 𝑉 and no other vertices below 𝑢 have this property. We denote 𝑢 by 𝑢 = 𝑙𝑐𝑎(𝑉). Note that
the LCA of any two vertices in a tree is unique.

Definition 2.2. Let 𝑇 be a tree on 𝑛 leaves. Let 𝑢 and 𝑣 be the two children of the root. We can relabel
the leaves of 𝑇, such that we have 𝑇1 = {1,… , 𝑗} and 𝑇2 = {𝑗 + 1,… , 𝑛} as a partition of the leaves
{1, … , 𝑛}, where 𝑇1 contains all leaves below 𝑢 and 𝑇2 all leaves below 𝑣. We call 𝑇1 and 𝑇2 the two
branches of 𝑇.

2.1. Cherry-picking sequences
In this section we introduce cherry-picking sequences. Therefore, we first need to define what a cherry
is, and how one can pick a cherry.

Definition 2.3. Let (𝑥, 𝑦) be an ordered pair of leaves in a tree 𝑇. We call (𝑥, 𝑦) a cherry if 𝑥 and 𝑦
share a common parent, that is, if 𝑝𝑥 = 𝑝𝑦, where 𝑝𝑥 and 𝑝𝑦 denote the parents of 𝑥 and 𝑦, respectively.
We say that (𝑥, 𝑦) is a reducible pair if (𝑥, 𝑦) is a cherry in 𝑇.

We can reduce a reducible pair from a tree to obtain a tree of a smaller size. Let 𝑇 and 𝑇′ be trees.
We call 𝑇′ a subtree of 𝑇 if 𝑇′ is can be obtained from 𝑇 by deleting nodes and contracting edges. We
denote the set of all subtrees of a tree 𝑇 by 𝒟(𝑇). With a subtree rooted at a node 𝑢 of 𝑇, we refer to
the subtree obtained by removing all nodes and their adjacent edges that are not below 𝑢. The (new)
root of the obtained subtree is 𝑢.
Definition 2.4. Let 𝑇 be a tree and let (𝑥, 𝑦) be an ordered pair of leaves in 𝑇. If (𝑥, 𝑦) is a cherry, let
𝑝 denote the common parent of leaves 𝑥 and 𝑦 and let 𝑝𝑝 denote the parent of 𝑝. We may pick cherry
or reduce the pair (𝑥, 𝑦) in 𝑇 by executing the following steps

2

2.1. Cherry-picking sequences 3

pp

p

x y

(a) Cherry (𝑥, 𝑦).

pp

p

y

(b) Remove leaf 𝑥 and edge 𝑝𝑥.

pp

y

(c) Suppress node 𝑝.

Figure 2.1: Picking cherry (𝑥, 𝑦) following the steps from Definition 2.4

1. Remove leaf 𝑥 in 𝑇 together with the edge 𝑝𝑥;

2. Suppress node 𝑝 by removing node 𝑝 and replacing the edges 𝑝𝑦 and 𝑝𝑝𝑝 with one edge 𝑝𝑝𝑦.

If (𝑥, 𝑦) is not a cherry in 𝑇, we may reduce or pick the pair (𝑥, 𝑦) in 𝑇 by doing nothing.
The resulting tree after reducing pair (𝑥, 𝑦) in 𝑇 is denoted by 𝑇(𝑥, 𝑦). We say that (𝑥, 𝑦) affects 𝑇 if

𝑇(𝑥, 𝑦) ≠ 𝑇.

In Figure 2.1 the two steps of picking a cherry (𝑥, 𝑦) are shown.

We can repeat the action of cherry-picking in a tree to eventually reduce a tree to a tree on a single
leaf. Let 𝑇 be a tree and let 𝑆 = 𝑆1𝑆2…𝑆|𝑆| = (𝑥1, 𝑦1)… (𝑥|𝑠|, 𝑦|𝑆|) be a sequence of ordered pairs. The
tree obtained by repeatedly reducing 𝑇 with every element of 𝑆 in order, is denoted by 𝑇𝑆. We say that
𝑆 reduces 𝑇 if 𝑇𝑆 is a single-leaf tree, that is if 𝑇𝑆 is a tree with a single leaf, a root and no other vertices.

Definition 2.5. Let 𝑋 be a non-empty taxa set. Let 𝑆 be a sequence of ordered pairs of distinct elements
of 𝑋. 𝑆 is called a cherry-picking sequence (CPS) if the second coordinate of each ordered pair occurs
as a first coordinate in some ordered pair later in the sequence or as the second coordinate of the last
pair.

Definition 2.6. A CPS is a tree-child sequence (TCS) if every leaf appearing as the first coordinate
does not appear as a second coordinate in the rest of the sequence.

Every tree has a TCS, since every CPS of a tree is a TCS.

Definition 2.7. A subsequence of a sequence 𝑆 is a sequence of ordered pairs that are in 𝑆 and appear
in the same order as in 𝑆. A subsequence of a sequence can be obtained by deleting some pairs from
the sequence. We say that the empty sequence is not a subsequence of any sequence.

We say that a TCS 𝑆 is a minimal TCS for a tree 𝑇, if 𝑆 reduces 𝑇 and if every ordered pair in 𝑆
affects the intermediate trees.

In Figure 2.2 an example of a TCS 𝑆 that reduces a tree 𝑇 is shown. Note that 𝑆 is a minimal TCS
for 𝑇, since every pair of 𝑆 affects the tree. 𝑆′ = (5, 4)(1, 4) is an example of a subsequence of 𝑆. Note
that 𝑆′ is also a TCS. However, a subsequence of a TCS does not need to be a TCS in general.
Remark. A minimal TCS that reduces a tree 𝑇 on 𝑛 leaves, always has length 𝑛 − 1, since with every
pair a leaf is removed. 𝑇 is reduced when it only has one leaf left, so with 𝑛−1 pairs we can reduce 𝑇.

In this thesis we often refer to minimal TCSs for a tree as a TCS of/for a tree 𝑇.

Lemma 2.1. Let 𝑇 be a tree on 𝑛 leaves and let 𝑆 be a TCS that reduces 𝑇. Let 𝑇′ be a subtree of 𝑇
that is reduced by 𝑆. Then there exists a unique subsequence of 𝑆 that is a minimal TCS for 𝑇′.

T T (2, 1)

1 2 3 4 5 1 3 4 5

T (2, 1)(5, 4)

1 3 4

T (2, 1)(5, 4)(3, 1)

1 4

T (2, 1)(5, 4)(3, 1)(1, 4) = TS

4

(2, 1) (5, 4) (3, 1) (1, 4)

Figure 2.2: A tree 𝑇 is reduced to leaf 4 by TCS 𝑆 = (2, 1)(5, 4)(3, 1)(1, 4).

4 2. Preliminaries

Proof. Let 𝑇 be a tree on 𝑛 leaves and let 𝑆 be a TCS that reduces 𝑇. Let 𝑇′ be a subtree of 𝑇 on 𝑘
leaves, with 2 ≤ 𝑘 ≤ 𝑛. Note that 𝑆 has 𝑛 − 1 pairs, of which exactly 𝑘 − 1 pairs affect 𝑇′. These 𝑘 − 1
pairs form a minimal TCS 𝑆′ that reduces 𝑇′, since every pair of 𝑆′ affects 𝑇′. Note that all minimal
TCSs that reduces 𝑇′ have 𝑘−1 pairs. Therefore 𝑆′ is the only subsequence of 𝑆 that reduces 𝑇′, that
is a minimal TCS for 𝑇′.

A partial TCS 𝑆′ of length 𝑚 is a sequence of ordered pairs, where there exists a TCS 𝑆, such that
𝑆′ is equal to the first 𝑚 elements of 𝑆. If 𝑇 is a tree and 𝑆 and 𝑆′ are partial TCSs, then applying 𝑆 to
𝑇 and then 𝑆′ to 𝑇𝑆 is the same as appending 𝑆′ to 𝑆, denoted 𝑆𝑆′, and applying the whole sequence
to 𝑇. In notation, we write

(𝑇𝑆)𝑆′ = 𝑇(𝑆𝑆′),
hence we can write this tree without parentheses as 𝑇𝑆𝑆′.

3
Caterpillars

In this chapter we will look at simply structured trees called caterpillars. We try to count howmany TCSs
can reduce a caterpillar and we try to find the minimal number of TCSs that are needed to reduce all
subtrees of such caterpillar.

3.1. Reducing subtrees using TCSs
In this section we try to find the minimal 𝑚 and maximal 𝑀 number of subtrees that can be reduced by
a TCS of a caterpillar 𝑇. Doing so, we may obtain a better understanding of the possibilities for a single
TCS, and see how we can combine multiple TCSs to eventually reduce all subtrees of a caterpillar.

Definition 3.1. Let 𝑇 be a tree on 𝑛 leaves {𝑥1, … , 𝑥𝑛}. Let 𝑝𝑖 denote the parent of leaf 𝑥𝑖, for all 𝑖. 𝑇
is called an 𝑛-caterpillar if 𝑝1 = 𝑝2 and (𝑝𝑖+1, 𝑝𝑖) is an edge in 𝑇 for all 𝑖 ∈ {2, … , 𝑛 − 1}. The main path
from the root, 𝑝𝑛, to leaf 𝑥1 that connects all 𝑝𝑖 is called the spine of the caterpillar.

Note that the depth of every leaf in a caterpillar is unique, except for the leaves 𝑥1 and 𝑥2. Leaves
𝑥1 and 𝑥2 are the deepest nodes with depth 𝑛 − 1. We assume that a caterpillar on a taxa set {1, … , 𝑛}
displays its leaves in ascending order from the deepest node to the least deep node. We call a caterpillar
on 3 leaves a triplet. In Figure 3.1 an example of a 5-caterpillar and an 𝑛-caterpillar is shown. Observe
that every subtree of a caterpillar is again a caterpillar.

First, we observe how many TCSs can reduce a caterpillar on 𝑛 leaves.

Lemma 3.1. Let 𝑇 be an 𝑛-caterpillar, with 𝑛 ≥ 2. Then there exist 2𝑛−1 different TCSs that reduce it.

Proof. We prove the lemma by induction on the number of leaves 𝑛. Let 𝑇 be an 𝑛-caterpillar. Note
that every TCS that reduces 𝑇 has length 𝑛 − 1. For the base case, we consider a 2-caterpillar, that
is a cherry (𝑥1, 𝑥2). There are 2 = 22−1 TCSs that reduce this 2-caterpillar, namely 𝑆1 = (𝑥1, 𝑥2) and
𝑆2 = (𝑥2, 𝑥1).

For the induction hypothesis, we assume that the lemma is true for all caterpillars on 𝑚 < 𝑛 leaves.
Let 𝑇 be an 𝑛-caterpillar on the leaves {𝑥1, … , 𝑥𝑛}, with 𝑛 ≥ 3. 𝑇 has only one cherry (𝑥1, 𝑥2), so the
first pair of a TCS that reduces 𝑇 needs to be either (𝑥1, 𝑥2) or (𝑥2, 𝑥1). Upon reducing the first pair

1 2 3 4 5

p1

p3

p4

p5

(a) 5-caterpillar on leaves {1, 2, 3, 4, 5}
1 2 3 . . . n

p1

p3

pn

(b) 𝑛-caterpillar on leaves {1, … , 𝑛}

Figure 3.1: A caterpillar (a) on 5 leaves and (b) on 𝑛 leaves.

5

6 3. Caterpillars

(𝑥1, 𝑥2), we obtain a caterpillar 𝑇′ on 𝑛 − 1 leaves {𝑥2, … , 𝑥𝑛}. By the induction hypothesis there exist
2𝑛−2 TCSs, 𝑆1, … , 𝑆2𝑛−2 that reduce 𝑇′. Adding (𝑥1, 𝑥2) as a prefix to these sequences gives us 2𝑛−2
different TCSs, (𝑥1, 𝑥2)𝑆1, … , (𝑥1, 𝑥2)𝑆2𝑛−2 that reduce 𝑇. With the same argument, swapping 𝑥1 and
𝑥2, we can find another 2𝑛−2 different TCSs, (𝑥2, 𝑥1)𝑅1, … , (𝑥2, 𝑥1)𝑅2𝑛−2 that reduce 𝑇, where 𝑅𝑖 is the
sequence 𝑆𝑖 with 𝑥1 and 𝑥2 swapped. So in total there are 2 ⋅ 2𝑛−2 = 2𝑛−1 different TCSs that reduce
𝑇.

Thus by induction we have shown that there exist 2𝑛−1 different TCSs that reduce an 𝑛-caterpillar,
for all 𝑛 ≥ 2.

Let 𝑇 be a caterpillar on 𝑛 leaves and let 𝒟(𝑇) be the set of all subtrees of 𝑇. The cardinality of the

set of subtrees is |𝒟(𝑇)| = ∑𝑛𝑘=2 (
𝑛
𝑘) = 2

𝑛 − 𝑛 − 1, not counting the single-leaf trees as subtrees. We

want to know howmany subtrees can be reduced by a single TCS for 𝑇, by looking at the subsequences
of the given TCS.

For each (minimal) TCS 𝑆 that reduces 𝑇, there exist ∑𝑛−1𝑘=1 (
𝑛 − 1
𝑘) = 2𝑛−1 − 1 subsequences,

by removing some pairs from the sequence 𝑆. The empty sequence is not taken into account, which
explains the −1 term. We do count 𝑆 itself as a subsequence of 𝑆. Now not all of these subsequences
are necessarily a TCS. For example, let 𝑇 be a 4-caterpillar. The TCS 𝑆 = (1, 2)(2, 3)(3, 4) reduces
𝑇 and has subsequence 𝑆′ = (1, 2)(3, 4). However, 𝑆′ is not a TCS, since 2 appears as the second
coordinate of the first pair, but does not appear as a first coordinate in the rest of the sequence or in
the last coordinate.

By Lemma 2.1 we know that every subtree of a caterpillar 𝑇 that is reduced by a TCS 𝑆, corresponds
with a unique subsequence of 𝑇 that is a TCS. Therefore, the amount of subtrees that can be reduced
by a TCS 𝑆 is equal to the amount of subsequences of 𝑆 that are still a TCS. Thus our problem reduces
to finding the minimum and maximum amount of subsequences of a TCS that are still a TCS.

First, we observe the structure of a TCS that reduces an 𝑛-caterpillar. Let 𝑇 be an 𝑛-caterpillar on
the leaves {1, … , 𝑛} and let 𝑆 = 𝑆1𝑆2…𝑆𝑛−1 be a TCS that reduces 𝑇, where 𝑆𝑘 = (𝑥𝑘 , 𝑦𝑘) denotes the
𝑘-th element of 𝑆. Then pair 𝑆𝑖 is of the form (𝑗, 𝑖 + 1) or (𝑖 + 1, 𝑗), where 𝑗 ≤ 𝑖 and 𝑗 ≠ 𝑥𝑘 for all 𝑘 < 𝑖.
The last requirement ensures the property of a TCS that every first coordinate does not appear as a
second coordinate in the rest of the sequence. This happens in general, since the first coordinate is
always removed from trees.

Note that the following subsequences are always a TCS.

• The original TCS 𝑆 that reduces 𝑇 is a subsequence and is a TCS. This gives 1 TCS;

• All single pairs are TCSs. This gives (𝑛 − 1) TCSs;

• All subsequences where the first 0 < 𝑘 < 𝑛 − 2 pairs are removed from the original TCS are
TCSs. The properties of a TCS remain in such subsequences, since for the pairs 𝑘 + 1,… , 𝑛 − 1
the second coordinate of each ordered pair occurs as a first coordinate in some ordered pair
later in the sequence, or as the second coordinate of the last pair. And just as in 𝑆, every leaf
appearing as the first coordinate in such subsequence does not appear as a second coordinate
in the rest of the sequence. This gives (𝑛 − 2) TCSs;

• All subsequences where the last 0 < 𝑘 < 𝑛−2 pairs are removed from the original TCS. Removing
the last 𝑘 pairs of a TCS remains the properties of a TCS, since every leaf appearing as the first
coordinate still does not appear as a second coordinate in the rest of the sequence. Furthermore,
the second coordinate of each ordered pair appears either as a first coordinate in the next ordered
pair, or as the second coordinate of the last pair. This gives (𝑛 − 2) TCSs.

Summing all of these sequences gives 1+ (𝑛−1)+ (𝑛−2)+ (𝑛−2) sequences. Since the first single
pair is in the single pair category and the category where the last 𝑛 − 2 pairs are reduced, it is counted
twice. The same holds for the last pair, when you remove the first 𝑛 − 2 pairs. So there are at least
1 + (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 2) − 2 = 3𝑛 − 6 subsequences that are a TCS. So we have found a first

3.1. Reducing subtrees using TCSs 7

lower bound on the minimal number of subsequences that are a TCS. So 𝑚 ≥ 3𝑛 − 6.

To see if this is the highest lower bound on the minimum 𝑚 and to find the maximum 𝑀, we will
look at what happens if an ordered pair is removed from 𝑆 in any other combination than the four
combinations described above.

We first look at what happens if one removes an 𝑖-th pair of the form (𝑗, 𝑖 + 1). We assume that
𝑖 > 1, because for removing the first pair, we have already shown that a TCS will be preserved. Here,
𝑗 appears for the first time as a first coordinate in the sequence, because when a leaf appears as first
coordinate in a pair, it is removed and cannot appear later in the sequence. Since 𝑗 ≤ 𝑖, 𝑗 has appeared
earlier in the sequence, in fact as a second coordinate of the 𝑖−1-th pair. By removing the pair (𝑗, 𝑖+1),
𝑗 is a second coordinate in pair 𝑆𝑖−1, but no longer appears as a first coordinate later in the sequence.
So the property of being a TCS is no longer met. So removing a pair (not the first) of the form (𝑗, 𝑖 + 1)
will give a subsequence which is no longer a TCS. Note that removing all pairs after the removed pair
will again give a TCS, because then 𝑗 appears as a second coordinate in the last pair, namely pair 𝑆𝑖−1.

Now, we look what happens when removing a pair (𝑖 + 1, 𝑗).

Lemma 3.2. Let 𝑇 be an 𝑛-caterpillar and let 𝑆 = 𝑆1𝑆2…𝑆𝑛−1 be a TCS that reduces 𝑇, where 𝑆𝑘 =
(𝑥𝑘 , 𝑦𝑘) denotes the 𝑘-th ordered pair of 𝑆. Then the subsequence obtained upon removing an ordered
pair 𝑆𝑖 of the form (𝑖 + 1, 𝑗), where 𝑗 ≤ 𝑖, is a TCS.

Proof. Let 𝑇 be an 𝑛-caterpillar and let 𝑆 = 𝑆1𝑆2…𝑆𝑛−1 be a TCS that reduces 𝑇, where 𝑆𝑘 = (𝑥𝑘 , 𝑦𝑘)
denotes the 𝑘-th ordered pair of 𝑆. Let 𝑆′ be the subsequence obtained by removing ordered pair
𝑆𝑖 = (𝑖 + 1, 𝑗), where 𝑗 ≤ 𝑖. Note that 𝑗 ≠ 𝑥𝑘 for all 𝑘 < 𝑗, since the first coordinate of an ordered pair is
always removed. We assume that 𝑖 ≤ 𝑛−2, since we have already shown that upon removing the last
pair of a TCS, a TCS is obtained. Note that the leaf 𝑖 + 1 is appearing for the first time in the sequence
𝑆 in the pair 𝑆𝑖. So all pairs earlier in the sequence have their second coordinate appearing as a first
coordinate in an ordered pair of 𝑆′, or appearing in the last pair 𝑆𝑛−1 of 𝑆′. Just as in the TCS 𝑆, we
have that every leaf appearing as the first coordinate in 𝑆′ does not appear as a second coordinate in
the rest of the sequence. So upon removing the pair 𝑆𝑖, both requirements of a TCS are still met for all
pairs in 𝑆′. Thus 𝑆′ is a TCS.

In particular, the TCS obtained in the setting of Lemma 3.2 corresponds to the tree where leaf 𝑖 + 1
is removed. Note that this lemma also holds when you remove multiple pairs of this form. Using these
observations, we can find two TCSs which will give the minimum and maximum number of subtrees
that can be reduced by one TCS.

First, take the TCS 𝑆 = (1, 2)(2, 3)⋯ (𝑛 − 1, 𝑛). This TCS has only pairs of the form (𝑗, 𝑖 + 1), thus
removing any of those pairs, apart from those at the start or the end, will no longer give a TCS. So the
TCS subsequences obtained by one of the four actions defined above, are the only subsequences of 𝑆
that are a TCS. So 𝑆 has 3𝑛 − 6 subsequences that are TCSs. Thus the minimum number of subtrees
that can be reduced by a TCS of an 𝑛-caterpillar is at most 3𝑛−6, and the lower bound obtained earlier
is tight. Thus 𝑚 = 3𝑛 − 6.

To find the maximum 𝑀, we look at the TCS 𝑆 = (2, 1)(3, 1)⋯ (𝑛, 1). This TCS has all pairs of
the form (𝑖 + 1, 𝑗), so by Lemma 3.2 we know that removing any of the pairs will still preserve a TCS.
So all 2𝑛−1 − 1 subsequences of 𝑆 are a TCS, which gives a lower bound for maximum number of
subtrees that can be reduced by a TCS, and thus we have 𝑀 ≥ 2𝑛−1 − 1. Note that the total number
of subsequences of a TCS 𝑆 gives an upper bound for the maximum 𝑀 ≤ 2𝑛−1 − 1, combined with
the lower bound, we have 𝑀 = 2𝑛−1 − 1. We combine these results in the following lemma, the proof
follows from the reasoning above.

Lemma 3.3. Let 𝑇 be an 𝑛-caterpillar. There exists a TCS for 𝑇 which has exactly 3𝑛−6 subsequences
that are TCSs. There exists a TCS for 𝑇 which has 2𝑛−1 −1 subsequences that are TCSs. Every TCS
for 𝑇 has between 3𝑛 − 6 and 2𝑛−1 − 1 subsequences that are TCSs.

Because this last sequence has the nice property of having only TCS subsequences, we give a
general definition for this type of sequence.

8 3. Caterpillars

Definition 3.2. A TCS is called a 1-fixed tree child sequence of length 𝑛−1 if every second coordinate
of each pair is leaf 1. We denote the 1-fixed TCS by 𝑆1.

Sequences can also be fixed on a higher leaf number, say leaf 𝑖 > 1.
Definition 3.3. A TCS is called a 𝑖-fixed tree child sequence if pair 𝑖 + 1 and all later pairs in the
sequence have leaf 𝑖 as a second coordinate. We denote the 𝑖-fixed TCS by 𝑆i.

Remark. For 𝑘 > 1, there exist 2𝑘−2 different 𝑘-fixed TCSs, because for the first 𝑘−1 leaves there are
no restrictions in the ordering of picking the cherries. Thus, by Lemma 3.1 we have 2𝑘−2 partial TCSs
that reduce the subcaterpillar rooted at 𝑙𝑐𝑎({1, … , 𝑘 − 1}). For the rest of the leaves, there is no choice
in the ordering of the cherries, as leaf 𝑘 has to be fixed.

Let 𝑇 be a 6-caterpillar on taxa set 𝑋 = {1,… , 6}. An example of a 1-fixed TCS that reduces 𝑇 is
(2, 1)(3, 1)(4, 1)(5, 1)(6, 1). And an example of a 4-fixed TCS that reduces 𝑇 is (2, 1)(3, 1)(1, 4)(5, 4)(6, 4).
Note that (1, 2)(3, 2)(2, 4)(5, 4)(6, 4) is also a 4-fixed TCS that reduces 𝑇.

3.2. Minimal subtree covering number
Let 𝑇 be an 𝑛-caterpillar. We know that with one TCS of length 𝑛 − 1, at most 𝑀 = 2𝑛−1 − 1 subtrees
can be reduced. So not all |𝒟(𝑇)| = 2𝑛 − 𝑛 − 1 subtrees can be covered by one TCS. We want to
know how many TCSs we at least need in order to reduce all subtrees in 𝒟(𝑇). We call this number
the minimal subtree covering number of 𝑇, denoted by 𝑆(𝑇).

Since the fixed TCSs reduce the maximal number of subtrees with one TCS, we first look at the
subtrees that are covered by a fixed TCS.

Lemma 3.4. A 1-fixed TCS reduces all subtrees of an 𝑛-caterpillar that contain leaf 1.
Proof. Let 𝑇 be an 𝑛-caterpillar. The 1-fixed TCS is 𝑆 = (2, 1)(3, 1)⋯ (𝑛, 1). Note that every subtree
on two leaves with leaf 1 is reduced by a single pair of 𝑆. Moreover, 𝑆 reduces all subtrees with leaf
1. All pairs (𝑖, 1) where 𝑖 is not in the subtree, do nothing. All other pairs (𝑗, 1), where 𝑗 is a leaf in the
subtree, reduce the leaves 𝑗 in ascending order.

This does not hold for an 𝑖-fixed TCS, because for example the 3-fixed TCS for an 𝑛-caterpillar

𝑆3 = (2, 1)(3, 1)(4, 3)(5, 3)⋯ (𝑛, 3)

does not reduce the cherry (2, 3), which is a subtree of the 𝑛-caterpillar. However, we can prove that it
reduces all subtrees where 3 is the lowest leaf.

Lemma 3.5. Let 𝑇 be an 𝑛-caterpillar and let 𝑇′ be a subtree of 𝑇, with lowest leaf 𝑖, for some 1 ≤ 𝑖 ≤ 𝑛.
Then the 𝑖-fixed TCS reduces 𝑇′.
Proof. Let 𝑇 be an 𝑛-caterpillar and let 𝑇′ be a subtree of 𝑇, with lowest leaf 𝑖, for some 1 ≤ 𝑖 ≤ 𝑛.
Let 𝑆𝑖 be an 𝑖−fixed TCS that reduces 𝑇. Note that 𝑇′ is also a caterpillar, since every subtree of a
caterpillar is a caterpillar. Because the leaves of a caterpillar are ordered from the least deep node to
the deepest node, the lowest leaf 𝑖 is the deepest node of 𝑇′, and thus part of the only cherry in 𝑇′.
Therefore, the first 𝑖 − 1 pairs of 𝑆𝑖 do not affect 𝑇′, since the first 𝑖 − 1 pairs of 𝑆𝑖 contain leaves with
labels fewer than 𝑖. All other pairs of 𝑆𝑖 are of the form (𝑗, 𝑖), where 𝑗 = 𝑖 + 1, ..., 𝑛. So leaf 𝑖 never gets
removed, and thus the sequence 𝑆𝑖 reduces 𝑇′ by removing all other leaves one by one, in ascending
order.

Using this result, we can give an upper bound on the minimal subtree covering number 𝑆(𝑇) for
𝑛-caterpillar 𝑇. We claim that with 𝑛 − 1 𝑘-fixed TCSs, where 𝑘 = 1, ..., 𝑛 − 1, all subtrees of 𝑇 can be
reduced. This is true since every subtree has some lowest leaf 𝑖, which will be reduced by the 𝑖-fixed
TCS. Thus that would give the upper bound 𝑆(𝑇) ≤ 𝑛 − 1.
Theorem 3.1. Let 𝑇 be a caterpillar on 𝑛 leaves. The minimal subtree covering number is given by

𝑆(𝑇) = 𝑛 − 1.

3.2. Minimal subtree covering number 9

Proof. Let 𝑇 be a caterpillar on 𝑛 leaves. Note that there exist 𝑛 − 1 cherries with leaf 𝑛 that are all
subtrees of 𝑇. Observe that no two of such cherries can be reduced by one TCS, since such cherry
can only be reduced in the last pair of a TCS that reduces 𝑇. Therefore, we need at least 𝑛−1 different
TCSs to reduce all subtrees in 𝒟(𝑇), giving a lower bound 𝑆(𝑇) ≥ 𝑛−1. Together with the upper bound
from above, we have that 𝑆(𝑇) = 𝑛 − 1.

4
Double caterpillars

We can try to find similar results for different types of trees. In this chapter we study double caterpillars,
or (𝑘, 𝑛 − 𝑘)-caterpillars.

Definition 4.1. Let 𝑇 be a tree on 𝑛 leaves, with root 𝑟. 𝑇 is called a double caterpillar or the (𝑘, 𝑛 −
𝑘)−caterpillar, with 1 ≤ 𝑘 ≤ 𝑛 − 1, if the root has children 𝑝𝑘 and 𝑝𝑘+1 and if the subtrees rooted at 𝑝𝑘
and 𝑝𝑘−1 are caterpillars on 𝑘 and 𝑛 − 𝑘 leaves, respectively, where 𝑝𝑘 and 𝑝𝑘+1 denote the parents of
leaves 𝑘 and 𝑘 + 1, respectively.

Note that the (𝑛−1, 1)-caterpillar, or equivalently the (1, 𝑛−1)-caterpillar, is the same as the ’regular’
𝑛-caterpillar. We order the leaves in a double caterpillar 𝑇 from deepest node to the least deep node in
the first branch 𝑇1 = {1,… , 𝑘}. And we order the leaves from the least deep node to the deepest node
in the other branch 𝑇2. In Figure 4.1 an example of a double caterpillar is shown, with the right leaf
ordering.

4.1. How many TCSs reduce a double caterpillar?
With a recurrence relation, we can find the number of TCSs that reduce a double caterpillar.

Definition 4.2. Let 𝑇 be a (𝑘, 𝑛−𝑘)-caterpillar. We let𝑁(𝑇) = 𝑁(𝑘; 𝑛−𝑘) denote the number of minimal
TCSs that reduce 𝑇.

Lemma 4.1. Let 𝑇 be a (𝑘, 𝑛 − 𝑘)-caterpillar, with 3 ≤ 𝑘 + 1 ≤ 𝑛 − 1. There are 𝑁(𝑘; 𝑛 − 𝑘) TCSs that
reduce 𝑇, where

𝑁(𝑘; 𝑛 − 𝑘) = 2 ⋅ 𝑁(𝑘 − 1; 𝑛 − 𝑘) + 2 ⋅ 𝑁(𝑘; 𝑛 − 𝑘 − 1).

Proof. Let 𝑇 be a (𝑘, 𝑛 − 𝑘)-caterpillar, with 3 ≤ 𝑘 + 1 ≤ 𝑛 − 1. Recall that the leaves are ordered from
1 to 𝑛, where 1 is the deepest node and 𝑘 the least deep node from the first 𝑘 leaves. From the last
𝑛 − 𝑘 leaves, 𝑘 + 1 is the least deep node and 𝑛 is the deepest node. Thus, there are two cherries
that can be picked, cherry (1, 2) and cherry (𝑛 − 1, 𝑛). By picking cherry (1, 2), the resulting tree is a
(𝑘 − 1, 𝑛 − 𝑘)-caterpillar. By picking cherry (𝑛 − 1, 𝑛), an (𝑘, 𝑛 − 𝑘 − 1)-caterpillar is obtained. Recall
that there are always two ordered pairs that can pick a cherry. Thus for picking either cherry, there are

1 2 k k + 1 n.

T

Figure 4.1: A (𝑘, 𝑛 − 𝑘)-caterpillar 𝑇, where 𝑇1 = {1,… , 𝑘} and 𝑇2 = {𝑘 + 1,… , 𝑛}.

10

4.2. Minimal subtree covering number 11

two options. So in total there are 𝑁(𝑘; 𝑛−𝑘) = 2 ⋅𝑁(𝑘−1; 𝑛−𝑘)+2 ⋅𝑁(𝑘; 𝑛−𝑘−1) TCSs that reduce
𝑇.

Let 𝑇 be a (𝑘, 𝑛 − 𝑘)-caterpillar. We discuss the base cases for Lemma 4.1. If 𝑘 = 1 or if 𝑘 = 𝑛 − 1,
then 𝑇 is a caterpillar on 𝑛 leaves, thus 𝑁(𝑘; 𝑛 − 𝑘) = 2𝑛−1. With these corner cases, we get the
following recurrence relation for (2, 𝑛 − 2)-caterpillars, which is equivalent to a (𝑛 − 2, 2)-caterpillar.
Remark. Let 𝑇 be an (2, 𝑛 − 2)-caterpillar, for 𝑛 ≥ 4. The number of TCSs that reduce 𝑇 is given by

𝑁(2; 𝑛 − 2) = 2 ⋅ 𝑁(2; 𝑛 − 3) + 2𝑛−1.

The recurrence relation from Lemma 4.1 can be extended to a closed form for the number of TCSs
of a double caterpillar, making use of the binomial of Pascal’s triangle.

Theorem 4.1. Let 𝑇 be an (𝑘, 𝑛 − 𝑘)-caterpillar, with 1 ≤ 𝑘 ≤ 𝑛 − 1. The number of TCSs that reduce
𝑇 is given by

𝑁(𝑘; 𝑛 − 𝑘) = (𝑛 − 2𝑘 − 1) ⋅ 2
𝑛−1.

Proof. We prove the theorem by induction on the number of leaves 𝑛. For the base case we consider
a tree 𝑇 on 𝑛 = 4 leaves. This is a (2, 2)-caterpillar. All TCSs that reduce 𝑇 consist of 3 pairs. For
the first pair there are 4 cherries to choose, (1, 2), (2, 1), (3, 4) or (4, 3). After picking the first cherry,
there is only one cherry left, giving two choices for the second pair. For the third pair, there is again
one cherry to pick, which gives 2 choices. After picking 3 cherries, the tree is reduced, so in total there
are 4 ⋅ 2 ⋅ 2 = 16 TCSs that reduce 𝑇. This is exactly (4−22−1) ⋅ 2

4−1 = 2 ⋅ 8 = 16.
For the induction hypothesis, we assume that the theorem holds for all (𝑘,𝑚 − 𝑘)-caterpillars on

𝑚 < 𝑛 leaves. Let 𝑇 be a (𝑘, 𝑛−𝑘)-caterpillar on 𝑛 leaves. From Lemma 4.1, we know that𝑁(𝑘; 𝑛−𝑘) =
2 ⋅ 𝑁(𝑘 − 1; 𝑛 − 𝑘) + 2 ⋅ 𝑁(𝑘; 𝑛 − 𝑘 − 1). Since the (𝑘 − 1, 𝑛 − 𝑘)- and (𝑘, 𝑛 − 𝑘 − 1)-caterpillars have
𝑛 − 1 leaves, we can use the induction hypothesis and we find the following.

𝑁(𝑘; 𝑛 − 𝑘) = 2 ⋅ [𝑁(𝑘 − 1; (𝑛 − 1) − (𝑘 − 1)) + 𝑁(𝑘; (𝑛 − 1) − 𝑘)]

= 2 ⋅ [((𝑛 − 1) − 2(𝑘 − 1) − 1) ⋅ 2
𝑛−2 + ((𝑛 − 1) − 2𝑘 − 1) ⋅ 2𝑛−2]

= 2 ⋅ [(𝑛 − 3𝑘 − 2) ⋅ 2
𝑛−2 + (𝑛 − 3𝑘 − 1) ⋅ 2

𝑛−2]

= (𝑛 − 2𝑘 − 1) ⋅ 2
𝑛−1

Thus, by induction we have shown that for all 𝑛 ≥ 4, 𝑘 ≥ 2 with 𝑛 − 𝑘 ≥ 2, the number of TCSs that
reduce a (𝑘, 𝑛 − 𝑘)-caterpillar is given by

𝑁(𝑘; 𝑛 − 𝑘) = (𝑛 − 2𝑘 − 1) ⋅ 2
𝑛−1.

4.2. Minimal subtree covering number
For 𝑛-caterpillars we found a minimum subtree covering number given by 𝑆(𝑇) = 𝑛 − 1, according to
Theorem 3.1. In this section we use this result and try to find a minimum subtree covering number for
double caterpillars.

Let 𝑇 be a (𝑘, 𝑛 − 𝑘)-caterpillar with branches 𝑇1 = {1,… , 𝑘} and 𝑇2 = {𝑘 + 1,… , 𝑛}. We try to find
minimal number of TCSs that reduce all subtrees in𝒟(𝑇). Note that cherries (𝑥, 𝑦), which form subtrees
in 𝒟(𝑇), where 𝑥 ∈ 𝑇1 and 𝑦 ∈ 𝑇2, need to be reduced at the end of a TCS, since they can only appear
as a cherry at the end after picking all other leaves. There are 𝑘(𝑛 − 𝑘) such cherries in 𝒟(𝑇), giving a
lower bound on the minimum covering number 𝑆(𝑇) ≥ 𝑘(𝑛−𝑘). In the next theorem, we show that this
bound is always attained.

12 4. Double caterpillars

Theorem 4.2. Let 𝑇 be a (𝑘, 𝑛 − 𝑘)-caterpillar, with 1 ≤ 𝑘 ≤ 𝑛 − 1. The minimum subtree covering
number of 𝑇 is given by

𝑆(𝑇) = 𝑘(𝑛 − 𝑘).

Proof. We prove the theorem by induction on the number of leaves, 𝑛. For the base case, we have
𝑛 = 2. This gives a (1, 1)-caterpillar, which is just a cherry, with only itself as a subtree, so it can be
reduced by only 1 TCS. Thus 𝑆(𝑇) = 1.

For the induction hypothesis, we assume the theorem holds for all (𝑘,𝑚 − 𝑘)-caterpillars on 𝑚 < 𝑛
leaves. Let 𝑇 be a (𝑘, 𝑛 − 𝑘)-caterpillar. If 𝑘 = 1, we have an 𝑛-caterpillar, that has 𝑛 − 1 TCSs that
reduce all subtrees of 𝑇, by Theorem 3.1.

Suppose 𝑘 ≥ 2. Upon removing leaf 1, which is equivalent to picking the cherry (1, 2), we obtain
a (𝑘 − 1, 𝑛 − 𝑘) caterpillar on 𝑛 − 1 leaves and we call this double caterpillar 𝑇′. By the induction
hypothesis, we know that 𝑆(𝑇′) = (𝑘−1)(𝑛−𝑘). So there are (𝑘−1)(𝑛−𝑘) sequences, 𝑆1, ..., 𝑆(𝑘−1)(𝑛−𝑘),
that reduce all subtrees in 𝒟(𝑇′). Note that these sequences with cherry (1, 2) as prefix, (1, 2)𝑆𝑖, for
𝑖 = 1, ..., (𝑘 − 1)(𝑛 − 𝑘), are TCSs for 𝑇 reducing all subtrees in 𝒟(𝑇′) and all subtrees in 𝒟(𝑇)\𝒟(𝑇′)
containing leaves 1 and 2.

Thus, the only subtrees of 𝑇 that need to be reduced are those in 𝒟(𝑇)\𝒟(𝑇′) which do not contain
leaf 2. We claim that these subtrees can be reduced by 𝑛 − 𝑘 extra TCSs. Note that the cherries
(1, 𝑘 +1), (1, 𝑘 +2), ..., (1, 𝑛) are subtrees in 𝒟(𝑇) that still need to be reduced. The only way that these
subtrees can be reduced by a TCS of 𝑇 is by having the corresponding cherry as the last pair of the
TCS. Therefore the 𝑛−𝑘 TCSs need to start with (2, 1)⋯ (𝑘, 1), in order for leaf 1 to remain for the last
pair. After applying partial TCS 𝑃 = (2, 1)⋯ (𝑘, 1) to 𝑇, we obtain a caterpillar on 𝑛−𝑘+1 leaves, on the
leaves 1, 𝑘 + 1, ..., 𝑛. By Theorem 3.1, we need 𝑛 − 𝑘 sequences, 𝑅1, ..., 𝑅𝑛−𝑘, to reduce all subtrees of
this caterpillar. By appending the partial TCS 𝑃 to those 𝑛−𝑘 partial TCSs, that is 𝑃𝑅𝑖, for 𝑖 = 1, ..., 𝑛−𝑘,
we obtain 𝑛−𝑘 different TCSs for 𝑇. One can verify that these TCSs reduce all subtrees in 𝒟(𝑇)\𝒟(𝑇′)
not containing leaf 2. So we found (𝑘 − 1)(𝑛 − 𝑘) + (𝑛 − 𝑘) = 𝑘(𝑛 − 𝑘) TCSs that reduce all subtrees
of 𝑇. This gives us an upper bound for 𝑆(𝑇). Combined with the lower bound from above, we obtain
𝑆(𝑇) = 𝑘(𝑛−𝑘). Thus by induction, for all 𝑛 ≥ 2, a (𝑘, 𝑛 −𝑘)-caterpillar has 𝑘(𝑛−𝑘) TCSs that reduce
all its subtrees.

5
Trees

With the results from the (double) caterpillars, we can try to answer our two research questions for
general binary trees. In order to do this, we look at the structure of trees in terms of caterpillars, using
partitions on the leaves.

5.1. Caterpillar decomposition
Trees can have varying structures. In order to use the results we found for (double) caterpillars we use
an algorithm to give a tree a suitable structure to work with. We do this here by using the so-called
Heavy-Light-algorithm introduced by Sleator and Tarjan [5] for the link/cut tree structure and by Harel
and Tarjan [6] for their data structure for finding nearest common ancestors. The algorithm decomposes
a tree into heavy-edge paths. For every non-leaf node, its two outgoing edges are labelled heavy or
light, depending on the number of its descendants. The heavy edge is the edge that has the greatest
number of descendants. When both edges have the same number of descendants, the heavy edge
is selected arbitrarily. The selected heavy-edges form heavy-edge paths, decomposing the tree into
paths. Note that every edge of the tree is either a heavy edge or a light edge. Using the heavy-edge
paths as the spines of sub-caterpillars gives a decomposition of caterpillars for the given tree. This way
we can redraw a tree and find maximal sub-caterpillars and relabel the leaves ascending from left to
right. In Figure 5.1 the heavy-light algorithm is executed on a tree as an example.

Definition 5.1. Let 𝑇 be a tree on 𝑛 leaves. A set of leaves 𝐶 = {𝑥1, … , 𝑥𝑝} is called a sub-caterpillar of
𝑇 if the subtree of 𝑇 rooted at the 𝑙𝑐𝑎(𝐶) is a caterpillar on the set of leaves 𝐶. We denote the number
of leaves in the sub-caterpillar by |𝐶|.
Definition 5.2. Let 𝑇 be a tree on 𝑛 leaves. A sub-caterpillar 𝐶 is called a maximal sub-caterpillar of 𝑇
if 𝐶 is no subset of any other sub-caterpillar of 𝑇.
Remark. Note that the leaves of a tree can be uniquely partitioned by its maximal sub-caterpillars,
𝐶1, … , 𝐶𝑘, since every leaf appears in exactly one maximal sub-caterpillar. We call the set of all maximal
sub-caterpillars of a tree 𝑇 the maximal sub-caterpillar decomposition of 𝑇.

5.2. Minimal subtree covering number
For caterpillars we found a minimal subtree covering number. With the decomposition of trees into
maximal sub-caterpillars, we can also attempt to find the minimal subtree covering number for more
general trees on 𝑛 leaves.

Lemma 5.1. Let 𝑇 be a tree on 𝑛 leaves. Then 𝑆(𝑇) ≥ 𝑛 − 1.
Proof. Let 𝑇 be a tree on 𝑛 leaves. Then there are 𝑛−1 different cherries (𝑥, 𝑛) that need to be reduced,
where 𝑥 = 1,… , 𝑛 − 1. Just as in Theorem 3.1, we see that no two of these cherries can be picked
in one TCS. Therefore, for all 𝑛 − 1 cherries (𝑥, 𝑛), we need a new TCS. This gives the lower bound
𝑆(𝑇) ≥ 𝑛 − 1.

13

14 5. Trees

C1 C2 C3 C4 C5 C6 C7

1 n2

(a) Tree 𝑇 before applying the
HL-algorithm.

C1 C2 C3 C4 C5 C6 C7

(b) The heavy edges of 𝑇, according to the
HL-algorithm are fattened.

(c) Maximal sub-caterpillar decomposition
of 𝑇 after applying the HL-algorithm and

relabelling the leaves.

Figure 5.1: Heavy-Light algorithm applied to a tree 𝑇 on 𝑛 leaves in three steps.

Lemma 5.2. Let 𝑇 be a tree on 𝑛 leaves, with maximal sub-caterpillar decomposition {𝐶1, … , 𝐶𝑘}. Then

𝑆(𝑇) ≥
𝑘

∏
𝑖=1

|𝐶𝑖|.

Proof. Let 𝑇 be a tree on 𝑛 leaves, with maximal sub-caterpillar decomposition {𝐶1, … , 𝐶𝑘}. There are
𝑚 = ∏𝑘𝑖=1 |𝐶𝑖| different subtrees of 𝑇 on 𝑘 leaves, where each leaf is from a different maximal caterpillar
𝐶𝑖. Call these subtrees 𝑇1, ..., 𝑇𝑚. Note that no two subtrees 𝑇𝑖 and 𝑇𝑗 (𝑖 ≠ 𝑗), can be reduced by the
same TCS for 𝑇, since within every maximal sub-caterpillar, all leaves can only be picked by a pair with
leaves in that sub-caterpillar until the sub-caterpillar is reduced to a single leaf, from which point that
leaf can form a cherry with a leaf from another maximal sub-caterpillar. So only one leaf per maximal
sub-caterpillar 𝐶𝑖 can form a pair in a TCS with a leaf from another maximal sub-caterpillar 𝐶𝑗 , for 𝑖 ≠ 𝑗.
Therefore, we need at least 𝑚 = ∏𝑘𝑖=1 |𝐶𝑖| different TCSs in order to reduce all subtrees of 𝑇. This
gives us the lower bound 𝑆(𝑇) ≥ ∏𝑘𝑖=1 |𝐶𝑖|.

These lower bounds for the minimal covering number might be tight for certain types of trees.

Conjecture 5.1. Let 𝑇 be a tree on 𝑛 leaves with maximal sub-caterpillar decomposition {𝐶1, … , 𝐶𝑘},
where |𝐶𝑗| = 1 for some 1 ≤ 𝑗 ≤ 𝑘 and |𝐶𝑖| ≥ 2 for all 𝑖 ∈ {1, … , 𝑗 − 1, 𝑗 + 1,… , 𝑘}. Then

𝑆(𝑇) =
𝑘

∏
𝑖=1

|𝐶𝑖|.

Conjecture 5.1 can perhaps be proved by induction on the number of maximal sub-caterpillars 𝑘.

Conjecture 5.2. Let 𝑇 be a tree on 𝑛 leaves, where {𝐶1, … , 𝐶𝑘} is the maximal sub-caterpillar decom-
position of 𝑇. If the second branch is 𝑇2 = 𝐶𝑘 = {𝑛} and |𝐶1|, … , |𝐶𝑚−1| ≥ 2 and |𝐶𝑚| = … = |𝐶𝑘| = 1
for some 1 ≤ 𝑚 ≤ 𝑘, then

𝑆(𝑇) =max{
𝑘

∏
𝑖=1

|𝐶𝑖|, 𝑛 − 1} .

We state a proof for this conjecture, assuming Conjecture 5.1 is true, in Appendix A.

Remark. For integers 𝑧𝑖 ≥ 2 we have
𝑘

∏
𝑖=1

𝑧𝑖 ≥
𝑘

∑
𝑖=1
𝑧𝑖 .

With this result we come to the following conjecture for trees with only maximal sub-caterpillars on
more than 2 leaves.

5.3. How many TCSs reduce a tree? 15

Conjecture 5.3. Let 𝑇 be a non-caterpillar tree on 𝑛 leaves, with maximal sub-caterpillar decomposition
{𝐶1, … , 𝐶𝑘}, with |𝐶𝑖| ≥ 2 for all 𝑖 ∈ {1, … , 𝑘}. Then

𝑆(𝑇) =
𝑘

∏
𝑖=1

|𝐶𝑖|.

We state a proof for this conjecture, assuming Conjecture 5.1 is true, in Appendix A.

Conjecture 5.4. Let 𝑇 be a tree on 𝑛 leaves, with {𝐶1, … , 𝐶𝑘} as its maximal sub-caterpillar decomposi-
tion. Let the two branches of 𝑇 be 𝑇1 = ⋃𝑗𝑖=1 𝐶𝑖 and 𝑇2 = ⋃

𝑘
𝑖=𝑗+1 𝐶𝑖, where |𝐶1|, … , |𝐶𝑚−1|, |𝐶𝑙+1|, … |𝐶𝑘| ≥

2 and |𝐶𝑚| = ⋯ = |𝐶𝑙| = 1 for some 𝑚, 𝑙 with 1 ≤ 𝑚 ≤ 𝑙 ≤ 𝑘. Then

𝑆(𝑇) =max{
𝑘−1

∏
𝑖=1

|𝐶𝑖|, |𝑇1||𝑇2|} .

Perhaps this could be proved similarly as in the (example) proof of Conjecture 5.2.

5.3. How many TCSs reduce a tree?
In Chapters 3 and 4 we found the number of TCSs that reduce a (double) caterpillar. In this section we
try to expand these results to more general trees.

Let 𝑇 be a tree on 𝑛 leaves, with maximal sub-caterpillar decomposition {𝐶1, … , 𝐶𝑘}. Let 𝑇1 = ⋃𝑚𝑖=1 𝐶𝑖
and 𝑇2 = ⋃𝑘𝑖=𝑚+1 𝐶𝑖 be the two branches of 𝑇, for some 1 ≤ 𝑚 ≤ 𝑘. We denote the number of TCSs
that reduce 𝑇 by 𝑁(𝑇) = 𝑁(|𝐶1|, … , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘|).

In Lemma 3.1 we proved that when 𝑘 = 𝑛, that is 𝑇 is an 𝑛-caterpillar, there exist 𝑁(𝑛−1; 1) = 2𝑛−1
different TCSs that reduce 𝑇. In Theorem 4.1 we proved that for 𝑘 = 2, that is, 𝑇 is a double caterpillar

with |𝐶1| = 𝑝, |𝐶2| = 𝑛 − 𝑝, for some 1 ≤ 𝑝 ≤ 𝑛 − 1, there exist 𝑁(𝑝; 𝑛 − 𝑝) = (𝑛 − 2𝑝 − 1) ⋅ 2
𝑛−1 TCSs that

reduce 𝑇.

5.3.1. How many TCSs reduce a tree on 3 maximal sub-caterpillars?
The next step is to consider the case when 𝑘 = 3. Without loss of generality, we can assume that
𝑇1 = 𝐶1 ∪ 𝐶2 and 𝑇2 = 𝐶3. Say that |𝐶1| = 𝑝, |𝐶2| = 𝑞 and |𝐶3| = 𝑟, where 𝑝 ≥ 𝑞 ≥ 2 and 𝑟 ≥ 1. In
order to reduce 𝑇 we can start by picking a cherry from either 𝐶1, 𝐶2 or 𝐶3. For each cherry there are
two ordered pairs to chose from, giving the following recurrence relation.

𝑁(𝑝, 𝑞; 𝑟) = 2 ⋅ 𝑁(𝑝 − 1, 𝑞; 𝑟) + 2 ⋅ 𝑁(𝑝, 𝑞 − 1; 𝑟) + 2 ⋅ 𝑁(𝑝, 𝑞; 𝑟 − 1).

There are three base cases to consider for 𝑁(𝑝, 𝑞; 𝑟).
• If 𝑝 = 1, 𝐶1 and 𝐶2 are no longer maximal sub-caterpillars, since the single leaf from 𝐶1 forms a
sub-caterpillar with the leaves from 𝐶2. Therefore we have a new maximal sub-caterpillar decom-
position {𝐶′2, 𝐶3}, where 𝐶′2 = 𝐶1 ∪𝐶2, with |𝐶′2| = 𝑞 +1. Thus we have a (𝑞 + 1, 𝑟)−caterpillar and
therefore 𝑁(𝑝, 𝑞; 𝑟) = 𝑁(𝑞 + 1; 𝑟) = 2𝑞+𝑟(𝑞 + 𝑟 − 1𝑞).

• If 𝑞 = 1, 𝐶1 and 𝐶2 are no longer maximal sub-caterpillars, since the single leaf from 𝐶2 forms a
sub-caterpillar with the leaves from 𝐶1. Therefore we have a new maximal sub-caterpillar decom-
position {𝐶′1, 𝐶3}, where 𝐶′1 = 𝐶1 ∪𝐶2, with |𝐶′1| = 𝑝 + 1. Thus we have a (𝑝 + 1, 𝑟)−caterpillar and
therefore 𝑁(𝑝, 𝑞; 𝑟) = 𝑁(𝑝 + 1; 𝑟) = 2𝑝+𝑟(𝑝 + 𝑟 − 1𝑝).

• If 𝑟 = 1, then 𝐶3 does not contain a reducible pair. There are 𝑁(𝑝; 𝑞) different choices for reducing
all leaves from 𝐶1 and 𝐶2 to a single leaf. After doing so, that leaf forms a cherry with the single
leaf from 𝐶3, for which there are 2 choices to pick it. So in total, we have 𝑁(𝑝, 𝑞; 𝑟) = 2𝑁(𝑝; 𝑞) =
2𝑝+𝑞(𝑝 + 𝑞 − 2𝑝 − 1) TCSs that reduce the tree.

16 5. Trees

5.3.2. How many TCSs reduce a tree on 𝑘 maximal sub-caterpillars?
We can extend the results for the trees on three maximal sub-caterpillars to a general recurrence
relation for trees on 𝑘 maximal sub-caterpillars.

Lemma 5.3. Let 𝑇 be a tree on 𝑛 leaves with maximal sub-caterpillar decomposition {𝐶1, … , 𝐶𝑘}. Let
𝑇1 = ⋃𝑚𝑖=1 𝐶𝑖 and 𝑇2 = ⋃𝑘𝑖=𝑚+1 𝐶𝑖 be the two branches of 𝑇, for some 1 ≤ 𝑚 ≤ 𝑘. The number of TCSs
that reduce 𝑇 is given by the following recurrence relation:

𝑁(𝑇) = 𝑁(|𝐶1|, … , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘|)
= 2 ⋅ [𝑁(|𝐶1| − 1,… , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘|) + 𝑁(|𝐶1|, |𝐶2| − 1,… , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘|)
+ ⋯ + 𝑁(|𝐶1|, … , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘| − 1)].

There are a few base cases that we need to consider for 𝑁(|𝐶1|, … , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘|).

• |𝐶2| = … = |𝐶𝑗| = 1 for some 𝑗 ∈ {2, … ,𝑚}. ⋃𝑗𝑖=1 𝐶𝑖 is a new maximal caterpillar on |𝐶1| + 𝑗 − 1
leaves. Thus 𝑁(|𝐶1|, … , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘|) = 𝑁(|𝐶1| + 𝑗 − 1, |𝐶𝑗+1|, … , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘|)

• |𝐶𝑗| = … = |𝐶𝑘−1| = 1 for some 𝑗 ∈ {𝑚 + 1,… , 𝑘 − 1}. ⋃𝑘𝑖=𝑗 𝐶𝑖 is a new maximal caterpillar on
|𝐶𝑘|+𝑘−𝑖 leaves. Thus 𝑁(|𝐶1|, … , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑘|) = 𝑁(|𝐶1|, … , |𝐶𝑚|; |𝐶𝑚+1|, … , |𝐶𝑗−1|, |𝐶𝑘|+
𝑘 − 𝑗).

• |𝐶𝑖| = 1 for some 𝑖 ∈ {1, … , 𝑛}. The maximal sub-caterpillar 𝐶𝑖 has only one leaf, thus it does not
contain a cherry that can be picked. Therefore, we define 𝑁(𝑛1, … , 𝑛𝑚; 𝑛𝑚+1, … , 𝑛𝑘) = 0 if 𝑛𝑗 = 1
for any 𝑗 ∈ {1, … , 𝑛}.

5.3.3. Can we find a closed form for 𝑁(𝑇)?
In Chapter 4, we found a closed form for the recurrence relation on the number of TCSs that reduce a
double caterpillar. We want to find a closed form for the recurrence relation of the number of TCSs that
reduce general trees. In the previous subsection we saw that we have many base cases, since the
maximal sub-caterpillar decomposition of a tree may change after removing a leaf. Therefore it is hard
to find a general closed form for the number of TCSs that reduce a tree. However, in this subsection we
try to give a feeling on what the closed form would look like by giving a few examples. In order to give
these examples, we create an auxiliary graph for a tree, by using cherry covers, which was introduced
by van Iersel et al. in 2021 [7].

Definition 5.3. Let 𝑇 be a tree on 𝑛 leaves. We call a pair of edges 𝐾 = {𝑝𝑥𝑥, 𝑝𝑥𝑦} a cherry shape if 𝑥
and 𝑦 are vertices in 𝑇, with 𝑝𝑥 = 𝑝𝑦.
Definition 5.4. Let 𝑇 be a tree on 𝑛 leaves, with edges 𝐸. We call 𝐾1, … , 𝐾𝑚 a cherry cover of 𝑇 if 𝐾𝑖
are cherry shapes in 𝑇 and form a partition on the edges 𝐸 of 𝑇.

The following examples show how we can use the results of a double caterpillar, as shown in Ex-
ample 5.1, for a tree that contains that double caterpillar, as shown in Example 5.2.

Example 5.1. Let 𝑇 be a (3, 4)-caterpillar. In Figure 5.2a, a cherry cover for 𝑇 is shown. In Figure 5.2b,
an auxiliary tree 𝐴 is made for 𝑇 using the cherry shapes from Figure 5.2a, as the vertices of the tree.

Recall that a TCS 𝑆 that reduces 𝑇 has 6 pairs, as 𝑇 has 7 leaves. Every pair in 𝑆 corresponds with
a vertex from tree 𝐴. A cherry shape 𝐾𝑖 can only occur as a pair in 𝑆 after all the vertices 𝐾𝑗 that are
below 𝐾𝑖 in 𝐴, have been picked earlier in the sequence.

1 2 3 4 5 6 7

T

K3

K4

K5

K6

K2

K1

(a) Cherry cover for (3, 4)-caterpillar 𝑇.

K1

K2

K3

K4

K5

K6

A

(b) Auxiliary tree 𝐴 for cherry cover of 𝑇.

Figure 5.2: Cherry cover for (3, 4)-caterpillar with its auxiliary tree.

5.3. How many TCSs reduce a tree? 17

1 2 3 4 5 6 7

T
′

K3

K4

K5

K6

K2

K1

K7

K8

8 9

(a) Cherry cover for tree 𝑇′.

K1

K2

K3

K4

K5

K6

A
′

K7

K8

(b) Auxiliary tree 𝐴′ for cherry cover of 𝑇′.

Figure 5.3: Cherry cover for tree 𝑇′ with its auxiliary tree 𝐴′.

An example of a TCS that reduces 𝑇 is 𝑆1 = (2, 1)(7, 6)(3, 1)(6, 5)(4, 5)(5, 1). In terms of cherry
shapes, we have the ordering 𝐾1, 𝐾6, 𝐾2, 𝐾5, 𝐾4, 𝐾3 that corresponds with 𝑆1. Note that 𝐾3 always has
to be in the last position, as all other cherry shapes are below 𝐾3 in 𝐴. Furthermore, 𝐾1 always has to
be before 𝐾2 and 𝐾6 has to appear before 𝐾5, which has to be before 𝐾4. These restrictions give the
following results. For the sixth element of a TCS 𝑆 that reduces 𝑇, we have no other choice than the
pair that corresponds with 𝐾3. That leaves us with 5 positions to divide the other cherry shapes in 𝑆.
Note that when we choose a cherry shape for the second and the fourth position, the other positions will

automatically be divided by the order in which the cherry shapes have to be placed. Thus we have (52)
choices for placing the cherry shapes. This corresponds with the binomial coefficient in the number of

TCSs that reduce 𝑇, which is given by 𝑁(𝑇) = 26(52), according to Theorem 4.1. The term 26 comes

from the fact that we have 2 choices for picking each cherry, and we have 6 cherries that we pick in the
sequence, resulting in 26 choices in total after picking the order of the cherry shapes.

Example 5.2. Let 𝑇′ be a tree on 9 leaves, with maximal sub-caterpillar decomposition
{{1, 2}, {3, 4, 5}, {6, 7, 8, 9}}, as illustrated in Figure 5.3a. Note that tree 𝑇 from Example 5.1 is a subtree
of 𝑇′. 𝑇′ is not a double caterpillar, so we do not know a formula for the number of TCSs that reduce
𝑇′. However, using the cherry cover and auxiliary tree 𝐴′, as illustrated in Figure 5.3, we can give an
educated guess on the number of TCSs that reduce 𝑇′.

Let 𝑆 be a TCS that reduces 𝑇′. We know that 𝑆 has length 8, as 𝑇′ has 9 leaves. Furthermore, from
𝐴′ we know that the last pair has to correspond with cherry shape 𝐾8. Note that for cherry shape 𝐾7,
there are no other restrictions on the position than that it has to be before 𝐾8. Thus, 𝐾7 can be placed

in either 7 positions, thus we have (71) choices for placing 𝐾7. Once 𝐾7 is placed somewhere, then we

have 6 positions left to divide in 𝑆. Note that for these 6 positions, we have the same restrictions as in

Example 5.1, thus we have (52) choices for placing the cherry shapes 𝐾1, … , 𝐾6. So in total we have

(71)(
5
2) choices for ordering all the cherry shapes with respect to 𝐴′. Thus, using the same logic as in

Example 5.1, we would have 𝑁(𝑇′) = 28(71)(
5
2).

The problem of placing the cherry shapes in the right order as illustrated in these examples can be
viewed as a special case of the Job Scheduling Problem as described by Lawler et al. in Chapter 9
of Logistics of Production and Inventory [8]. The jobs that need to be performed in the Optimal Job
Scheduling problem in this case would be the vertices in the auxiliary trees, which correspond with the
cherry shapes. There is one ”machine” that can perform the jobs, and they have to be done in particular
order, such that each job is done after all jobs below it are covered. The jobs have to be done in exactly
𝑛 − 1 steps. Therefore, an enumeration of the sequences can lead to an advancement in a seemingly
different field.

6
Conclusion and discussion

In this thesis we explored an enumeration problem and an optimization problem on the number of TCSs
for phylogenetic binary trees. With results from pretty structured trees such as caterpillars and double
caterpillars we tried to generate a formula for the number of TCSs, 𝑁(𝑇), that reduce a tree 𝑇 on 𝑛
leaves and to find the minimum number of TCSs, 𝑆(𝑇), that we need to reduce all subtrees of a given
tree 𝑇 on 𝑛 leaves.

First we summarize our results for the enumeration problem.

Input: A binary phylogenetic tree 𝑇 on 𝑛 leaves.
Question: How many different TCSs can reduce 𝑇?

In Chapter 3 we have found the number of TCSs that reduce a caterpillar with Lemma 3.1. For a
caterpillar 𝑇 on 𝑛 leaves, there exist 𝑁(𝑇) = 2𝑛−1 different TCSs that reduce 𝑇.

In Chapter 4 we found a recurrence relation on the number of TCSs that reduce a double caterpillar
with Lemma 4.1. The base case for this recurrence relation was the number of TCSs for an 𝑛−caterpillar
𝑁(𝑛 − 1, 1) = 𝑁(1, 𝑛 − 1) = 2𝑛−1. With these results, we found a closed form for the number of
TCSs 𝑁(𝑇) that reduce a double caterpillar in Lemma 4.1. For a (𝑘, 𝑛 − 𝑘)-caterpillar 𝑇, there exist

𝑁(𝑇) = 𝑁(𝑘, 𝑛 − 𝑘) = 2𝑛−1(𝑛 − 2𝑘 − 1) different TCSs that reduce 𝑇.
In Chapter 5 we tried to generalize the results from Chapters 3 and 4 for general binary trees. In

Lemma 5.3 we found a similar recurrence relation as in Lemma 4.1 for the number of TCSs that reduce
a tree. We have not yet found a closed form for the number of TCSs, 𝑁(𝑇), that reduce a general
binary tree. Future research, with programming and enhancing the thoughts based on cherry covers
described in Examples 5.1 and 5.2 together with the Job Scheduling Problem, could perhaps lead to a
closed form for the number of TCSs that reduce a tree.

On the other hand, the optimization problem consisted of finding the minimal number of TCSs that
are needed to reduce all subtrees of a binary tree on 𝑛 leaves. We called this number the minimal
covering number for a tree 𝑇, denoted by 𝑆(𝑇).

Input: A binary phylogenetic tree 𝑇 on 𝑛 leaves.
Question: How many TCSs do we need to reduce all subtrees of 𝑇?

Just like with the enumeration problem, we first found results for caterpillars in Chapter 3. In
Lemma 3.1 we found that with 𝑆(𝑇) = 𝑛 − 1 TCSs we can reduce all subtrees of a caterpillar 𝑇 on
𝑛 leaves. This result was found by introducing fixed TCSs, that have the nice property of reducing all
subtrees that have the leaf which is fixed on as its lowest leaf, as found in Lemma 3.5.

In Chapter 4, we found the minimal covering number for double caterpillars. In Theorem 4.2, we
showed that the minimal covering number for a (𝑘, 𝑛−𝑘)-caterpillar is given by 𝑆(𝑇) = 𝑘(𝑛−𝑘). In the
proof of this theorem, we again used fixed TCSs.

In Chapter 5, we used the Heavy-Light algorithm to decompose general trees into maximal sub-
caterpillars, in order to use the results from double caterpillars that we found in Chapter 5. For trees with

18

19

particular assumptions on the maximal sub-caterpillar decomposition, we found multiple conjectures on
the minimal covering number in Conjectures 5.2 and 5.3. If Conjecture 5.1 can be proven, the proofs
that are stated in Appendix A, can be used to confirm that

𝑆(𝑇) =
𝑘

∏
𝑖=1

|𝐶𝑖|,

for trees with only maximal sub-caterpillars on at least 2 leaves.
For general trees, without restrictions on the maximal sub-caterpillar decomposition, no concrete

formula has been found.
With the results of this thesis we have proposed first steps in solving the enumeration and optimiza-

tion problems associated to cherry-picking sequences for trees. With future research, similar results
may be expanded from binary trees to non-binary trees and eventually even to general phylogenetic
networks.

A
Appendix

Here, we state a proof of Conjectures 5.2 and 5.3, assuming that Conjecture 5.1 is true.

Conjecture (5.2). Let 𝑇 be a tree on 𝑛 leaves, where {𝐶1, … , 𝐶𝑘} is the maximal sub-caterpillar decom-
position of 𝑇. If the second branch is 𝑇2 = 𝐶𝑘 = {𝑛} and |𝐶1|, … , |𝐶𝑚−1| ≥ 2 and |𝐶𝑚| = … = |𝐶𝑘| = 1
for some 1 ≤ 𝑚 ≤ 𝑘. Then

𝑆(𝑇) =max{
𝑘

∏
𝑖=1

|𝐶𝑖|, 𝑛 − 1} .

Proof. We state a proof of the conjecture, assuming Conjecture 5.1 is true. We prove the conjecture
by induction on the number of single-leaf maximal sub-caterpillars 𝑘 −𝑚 + 1.

For the base case we consider the case where 𝑚 = 𝑘. Let 𝑇 be a tree where {𝐶1, … , 𝐶𝑘} is the
maximal sub-caterpillar decomposition of 𝑇, then we have |𝐶𝑖| ≥ 2 for 𝑖 = 1, ..., 𝑘 −1 and 𝐶𝑘 = {𝑛} = 𝑇2.
By Conjecture 5.1 we know that 𝑆(𝑇) = ∏𝑘𝑖=1 |𝐶𝑖|. Since |𝐶𝑖| ≥ 2 for all 𝑖 ≠ 𝑗, we have ∏𝑘𝑖=1 |𝐶𝑖| =
∏𝑘𝑖=1,𝑖≠𝑗 |𝐶𝑖| ≥ ∑

𝑘
𝑖=1,𝑖≠𝑗 |𝐶𝑖| = 𝑛 − 1. Thus 𝑆(𝑇) =max {∏𝑘𝑖=1 |𝐶𝑖|, 𝑛 − 1} .

For the induction hypothesis, we assume that the conjecture holds for all trees with less than 𝑘−𝑚+1
single-leaf maximal sub-caterpillars. Let 𝑇 be a tree on 𝑛 leaves with {𝐶1, … , 𝐶𝑘} as its maximal sub-
caterpillar decomposition, with |𝐶1|, … , |𝐶𝑚−1| ≥ 2, |𝐶𝑚| = ⋯ = |𝐶𝑘| = 1 and 𝑇2 = 𝐶𝑘 = {𝑛}. Upon
removing leaf 𝑛, we obtain a tree 𝑇′ on 𝑛 − 1 leaves, where 𝑇′2 = 𝐶𝑘−1 = {𝑛 − 1}, with {𝐶1, … , 𝐶𝑘−1}
as its maximal sub-caterpillar decomposition. Note that these are the same maximal caterpillars as for
𝑇. 𝑇′ has 𝑘 − 𝑚 single-leaf maximal sub-caterpillars, thus by the induction hypothesis, we have that
𝑆(𝑇′) =max {∏𝑘−1𝑖=1 |𝐶𝑖|, 𝑛 − 2}. We consider two cases:

1) 𝑛 − 2 ≥ ∏𝑘−1𝑖=1 |𝐶𝑖|, hence 𝑆(𝑇′) = 𝑛 − 2;

2) ∏𝑘−1𝑖=1 |𝐶𝑖| > 𝑛 − 2, hence 𝑆(𝑇′) = ∏
𝑘−1
𝑖=1 |𝐶𝑖|.

If case 1) is true, we have 𝑛 − 2 sequences 𝑆1, … , 𝑆𝑛−2 that reduce all subtrees in 𝒟(𝑇′). The only
subtrees of 𝑇 that are not reduced by those sequences are the subtrees that contain leaf 𝑛. Note that
leaf 𝑛 is always the least deep leaf of such subtree. In order for all 𝑛 − 1 cherries containing leaf 𝑛 to
be reduced, we need at least 𝑛 − 1 different TCSs, since no two such cherries can appear as a pair in
one TCS. Since 𝐶𝑘−1 = {𝑛 − 1}, leaf 𝑛 − 1 is the least deep leaf of 𝑇′ and is therefore always reduced
in the last pair of a TCS. Thus, all 𝑛 − 2 cherries containing leaf 𝑛 − 1 appear as the last pair of exactly
one sequence 𝑆𝑖. By adjusting the sequences 𝑆𝑖 such that the last pair is of the form (𝑛 − 1, 𝑥𝑖), where
𝑥𝑖 = 1,… , 𝑛−2, we obtain 𝑛−2 sequences �̄�1, … , �̄�𝑛−2. By adding (𝑛, 𝑥𝑖) as a suffix to the partial TCSs
�̄�𝑖, we obtain 𝑛 − 2 TCSs �̄�1(𝑛, 𝑥1), … , �̄�𝑛−2(𝑛, 𝑥𝑛−2) that reduce all subtrees in 𝒟(𝑇), except the cherry
(𝑛−1, 𝑛). In order to reduce this cherry, we need one more TCS that is fixed on leaf 𝑛−1 and (𝑛, 𝑛−1)
is the last pair. One can verify that with those 𝑛 − 1 TCSs all subtrees in 𝒟(𝑇) are reduced, giving us

20

21

the upper bound

𝑆(𝑇) ≤ 𝑛 − 1 =max{
𝑘−1

∏
𝑖=1

|𝐶𝑖|, 𝑛 − 1} .

If case 2) is true, we have 𝑎 = ∏𝑘−1𝑖=1 |𝐶𝑖| ≥ 𝑛 − 1 TCSs 𝑅1, … , 𝑅𝑎, that reduce all subtrees in 𝒟(𝑇′).
Just like in case 1), we adjust the last pair of the sequences 𝑅𝑖, such that every leaf 1,… , 𝑛−1 appears
at least once as the last element of the last pair in a sequence �̄�𝑖. Since we have 𝑎 ≥ 𝑛−1 sequences,
all 𝑛 − 1 leaves can appear as the last element at least once. Thus we are able to remove all cherries
involving 𝑛. Note that 𝑛 is always the least deep node in a subtree of 𝑇, it can be reduced at the end
of a TCS. Upon adding pairs (𝑛, 𝑥𝑖) as a suffix to all �̄�𝑖, we obtain 𝑎 sequences �̄�1(𝑛, 𝑥1), … , �̄�𝑎(𝑛, 𝑥𝑎)
that reduce all subtrees in 𝒟(𝑇), including all cherries containing leaf 𝑛. This gives us an upper bound

𝑆(𝑇) ≤ 𝑎 =
𝑘−1

∏
𝑖=1

|𝐶𝑖| =max{
𝑘−1

∏
𝑖=1

|𝐶𝑖|, 𝑛 − 1} .

So in both cases we found the upper bound

𝑆(𝑇) ≤max{
𝑘−1

∏
𝑖=1

|𝐶𝑖|, 𝑛 − 1} .

Combined with the lower bounds from Lemmas 5.2 and 5.1, we have

𝑆(𝑇) =max{
𝑘−1

∏
𝑖=1

|𝐶𝑖|, 𝑛 − 1} .

So by induction we have shown that for all trees 𝑇 with 𝑘 − 𝑚 + 1 ≥ 1 single-leaf maximal sub-
caterpillars, such that one child of the root is a leaf, we have

𝑆(𝑇) =max{
𝑘−1

∏
𝑖=1

|𝐶𝑖|, 𝑛 − 1} .

Conjecture (5.3). Let 𝑇 be a non-caterpillar tree on 𝑛 leaves, with maximal sub-caterpillar decompo-
sition {𝐶1, … , 𝐶𝑘}, with |𝐶𝑖| ≥ 2 for all 𝑖 ∈ {1, … , 𝑘}. Then

𝑆(𝑇) =
𝑘

∏
𝑖=1

|𝐶𝑖|.

Proof. We state an example of a proof for the conjecture, assuming that Conjecture 5.1 is true. We
prove the conjecture by induction on the number of leaves 𝑛.

For the base case we consider the balanced tree 𝑇 on 4 leaves. The maximal sub-caterpillar de-
composition of 𝑇 is {𝐶1, 𝐶2}, where 𝐶1 = {1, 2} and 𝐶2 = {3, 4}. By Lemma 5.2 we know that we need at
least 2 ⋅ 2 = 4 TCSs to reduce all subtrees of 𝑇. One can verify that with the following four TCSs we
can reduce all subtrees of 𝑇.

𝑆1 = (1, 2)(3, 4)(2, 4)
𝑆2 = (1, 2)(4, 3)(2, 3)
𝑆3 = (2, 1)(3, 4)(1, 4)
𝑆4 = (2, 1)(4, 3)(1, 3)

Thus we have

𝑆(𝑇) = 4 =
2

∏
𝑖=1

|𝐶𝑖|.

22 A. Appendix

For the induction hypothesis, we assume that the conjecture holds for all trees on less than 𝑛 leaves.
Let 𝑇 be a tree on 𝑛 leaves, with maximal sub-caterpillar decomposition {𝐶1, … , 𝐶𝑘} with |𝐶𝑖| ≥ 2 for all
𝑖.

We consider three cases, where for the third case, we consider two subcases 3a) and 3b).

1) |𝐶1| ≥ 3 or we can relabel the leaves of 𝑇 such that |𝐶1| ≥ 3;

2) |𝐶𝑖| = 2 for all 𝑖 ∈ {1, … , 𝑛} and branch 𝑇1 = {𝐶1}, or we can relabel such that 𝑇1 = {𝐶1}.

3) |𝐶𝑖| = 2 for all 𝑖 ∈ {1, … , 𝑛} and |𝑇1| ≥ 4

a) We can relabel the leaves of 𝑇, such that removing a leaf from 𝐶1 = {1, 2} does not change
the maximal sub-caterpillar decomposition.

b) Upon removing any leaf of 𝑇, say leaf 1 ∈ 𝐶1 the maximal sub-caterpillar decomposition
changes to {𝐶′2, 𝐶3, … , 𝐶𝑘}, where 𝐶′2 is a triplet on the leaves {2, 3, 4}.

Assume we are in case 1). Remove leaf 1 from 𝐶1 and call the resulting tree 𝑇′. The maximal
sub-caterpillar decomposition of 𝑇′ is {𝐶′1, 𝐶2, … , 𝐶𝑘} where 𝐶′1 = 𝐶1\{1}. By the induction hypothesis,
we know that

𝑆(𝑇′) = |𝐶′1| ⋅
𝑘

∏
𝑖=2

|𝐶𝑖| = |𝐶1 − 1| ⋅
𝑘

∏
𝑖=2

|𝐶𝑖| =
𝑘

∏
𝑖=1

|𝐶𝑖| −
𝑘

∏
𝑖=2

|𝐶𝑖| = 𝑎.

Observe that 𝒟(𝑇) contains subtrees

i) with both leaves 1 and 2;

ii) without leaf 1, with leaf 2;

iii) with leaf 1, without leaf 2;

iv) without leaves 1 and 2.

Take the TCSs, 𝑅1, ..., 𝑅𝑎, that reduce all trees in 𝒟(𝑇′). Append (1, 2) as a prefix in order to obtain
sequences (1, 2)𝑅𝑖, for 𝑖 = 1, ..., 𝑎. Note that those sequences are TCSs for 𝑇 that reduce all subtrees
in i), ii) and iv). Thus, the only subtrees of 𝑇 that still need to be reduced, are those in iii).

We claim that with 𝑏 = ∏𝑘𝑖=2 |𝐶𝑖| extra TCSs, 𝑄1, ..., 𝑄𝑏, we can reduce the remaining subtrees. These
sequences can be decomposed in the parts where each maximal caterpillar is reduced. Let 𝐶1, ..., 𝐶𝑝 be
the maximal caterpillars that are in the first branch, 𝑇1, of 𝑇 and let 𝐶𝑝+1, ..., 𝐶𝑘 be the maximal caterpillars
in the second branch, 𝑇2, of 𝑇. From every maximal caterpillar, we need every leaf to remain at least
once, because we need all possible cherries (from different maximal sub-caterpillars) to be reduced
with some TCS.

Each of the sequences 𝑄𝑖 start with 𝑆1𝑆𝑥2 ⋯𝑆𝑥𝑝(𝑥2, 1)⋯ (𝑥𝑝, 1), where 𝑆𝑥𝑗 is the 𝑥𝑗-fixed sequence
which reduces maximal caterpillar 𝐶𝑗, by fixing on leaf 𝑥𝑗 of 𝐶𝑗 for 2 ≤ 𝑗 ≤ 𝑝. 𝑆1 reduces the first maximal
caterpillar, by fixing on leaf 1. Note that for every caterpillar 𝐶𝑗, there are |𝐶𝑗| choices for choosing the
leaf 𝑥𝑗 on which to fix the sequence. Thus, with ∏𝑝𝑖=2 |𝐶𝑖| different combinations, we can obtain all
possible combinations of the 𝑥𝑗 ’s in the first 𝑝 parts of the sequences 𝑄𝑖. After applying this part of the
sequences 𝑄𝑖 to 𝑇, we obtain a tree 𝑇″, with {𝐶″1 , 𝐶𝑝+1, … , 𝐶𝑘} as maximal sub-caterpillar decomposition,
where 𝐶″1 = {1} = 𝑇″1 . By Conjecture 5.2, we know that

𝑆(𝑇″) =max{|𝐶″1 | +
𝑘

∑
𝑖=𝑝+1

|𝐶𝑖| − 1, |𝐶″1 | ⋅
𝑘

∏
𝑖=𝑝+1

|𝐶𝑖|} =max{
𝑘

∑
𝑖=𝑝+1

|𝐶𝑖|,
𝑘

∏
𝑖=𝑝+1

|𝐶𝑖|} =
𝑘

∏
𝑖=𝑝+1

|𝐶𝑖|,

since |𝐶𝑖| ≥ 2 for all 𝑖 ∈ {𝑝 + 1,… , 𝑘}.
Thus with ∏𝑘𝑖=𝑝+1 |𝐶𝑖| TCSs we can reduce all subtrees of 𝑇″. So for the second part of the se-

quences 𝑄𝑖 we have ∏𝑘𝑖=𝑝+1 |𝐶𝑖| different options. Together with the ∏𝑝𝑖=2 |𝐶𝑖| options for the first part,
we obtain∏𝑝𝑖=2 |𝐶𝑖|⋅∏

𝑘
𝑖=𝑝+1 |𝐶𝑖| = ∏

𝑘
𝑖=2 |𝐶𝑖| = 𝑏 different sequences 𝑄1, … , 𝑄𝑏, which reduce all subtrees

in iii).

23

Thus with the 𝑎 = ∏𝑘𝑖=1 |𝐶𝑖| − ∏
𝑘
𝑖=2 |𝐶𝑖| sequences (1, 2)𝑅𝑖 that reduce all subtrees in i), ii) and iv),

and the 𝑏 = ∏𝑘𝑖=2 |𝐶𝑖| sequences 𝑄𝑖 that reduce all subtrees in iii), we have 𝑎+𝑏 = ∏𝑘𝑖=1 |𝐶𝑖| TCSs that
reduce all subtrees of 𝑇.

Assume that we are in case 2) or case 3a). Upon removing leaf 1 from 𝐶1 = {1, 2}, we obtain a tree
𝑇′ on 𝑛−1 leaves with maximal sub-caterpillar decomposition {𝐶′1, 𝐶2, … , 𝐶𝑘}, where 𝐶′1 = 𝐶1\{1} = {2}.
By Conjecture 5.2 we know that

𝑆(𝑇′) =max{|𝐶′1| +
𝑘

∑
𝑖=2
|𝐶𝑖| − 1, |𝐶′1| ⋅

𝑘

∏
𝑖=2

|𝐶𝑖|} =max {2(𝑘 − 1), 2𝑘−1} = 2𝑘−1,

since |𝐶𝑖| = 2 for all 𝑖 ∈ {2, … , 𝑘}. So there exist 2𝑘−1 sequences, 𝑆1, … , 𝑆2𝑘−1 , that reduce all subtrees
of 𝑇′.

Note that 𝒟(𝑇) has subtrees

i) with both leaves 1 and 2;

ii) without leaf 1, with leaf 2;

iii) with leaf 1, without leaf 2;

iv) without leaves 1 and 2.

One can verify that upon appending (1, 2) as a prefix to sequences 𝑆𝑖, we obtain 2𝑘−1 TCSs for 𝑇,
(1, 2)𝑆1, … , (1, 2)𝑆2𝑘−1 that reduce all subtrees in i), ii) and iv). We can obtain another 2𝑘−1 TCSs for 𝑇
by swapping leaves 1 and 2 in all these sequences, obtaining the TCSs (2, 1)�̄�1, … , (2, 1)�̄�2𝑘−1 , wherē𝑆𝑖 denotes the sequence 𝑆𝑖 with 1 and 2 swapped. Note that these TCSs reduce all subtrees in i), iii)
and iv). Thus with 2 ⋅ 2𝑘−1 = 2𝑘 = ∏𝑘𝑖=1 |𝐶𝑖| TCSs we can reduce all subtrees in 𝒟(𝑇).

Assume we are in case 3b). Without loss of generality, we can assume that |𝑇1| ≥ |𝑇2| ≥ 4. Let
𝑇1 = ⋃𝑚𝑖=1 and 𝑇2 = ⋃𝑘𝑖=𝑚+1, for some 𝑚 with 𝑚 ≥ 𝑘−𝑚 ≥ 2. We replace all leaves from 𝑇1 by a single
leaf 𝑙 and call the obtained tree 𝑇′. By Conjecture 5.1 we know that 𝑆(𝑇′) = ∏𝑘𝑖=𝑚+1 |𝐶𝑖| = 2𝑘−𝑚. Thus
there exist 2𝑘−𝑚 sequences, 𝑆1, … , 𝑆2𝑘−𝑚 , that reduce all subtrees of 𝑇′.

Let 𝑇″ be the subtree rooted at the 𝑙𝑐𝑎(𝑇1). By the induction hypothesis we have 𝑆(𝑇″) = ∏
𝑚
𝑖=1 |𝐶𝑖| =

2𝑚. Thus there exist 2𝑚 sequences, 𝑅1, … , 𝑅2𝑚 , that reduce all subtrees of 𝑇″. Note that 2𝑚 > 2𝑚,
since we have 𝑚 ≥ 2. Thus we can adjust the sequences 𝑅𝑖 such that every leaf in 𝑇1 = {1,… , 2𝑚}
appears at least once as the last coordinate of the last pair of such sequence �̄�𝑖.

We can combine the sequences 𝑆𝑖 and �̄�𝑖 in order to reduce all subtrees of 𝑇. We create 2𝑚 ⋅2𝑘−𝑚 =
2𝑘 sequences �̄�1𝑆1,1, … , �̄�2𝑚𝑆1,2𝑚 , … , �̄�1𝑆2𝑘−𝑚 ,1, … , �̄�2𝑚𝑆2𝑘−𝑚 ,2𝑚 , where 𝑆𝑖.𝑗 is denotes the sequence 𝑆𝑖
where leaf 𝑙 is replaced by the leaf that is the last element of sequence �̄�𝑗. One can verify that these
2𝑘 = ∏𝑘𝑖=1 |𝐶𝑖| sequences are TCSs for 𝑇 that reduce all subtrees of 𝑇.

In all three cases we have shown that with ∏𝑘𝑖=1 |𝐶𝑖| TCSs we can reduce all subtrees of 𝑇. This
gives an upper bound on the minimal covering number 𝑆(𝑇) ≤ ∏𝑘𝑖=1 |𝐶𝑖|. Combined with the lower
bound from Lemma 5.2, we have 𝑆(𝑇) = ∏𝑘𝑖=1 |𝐶𝑖|.

Thus by induction, for all 𝑛 ≥ 4, a tree 𝑇 on 𝑛 leaves, with maximal sub-caterpillar decomposition
{𝐶1, … , 𝐶𝑘}, where |𝐶𝑖| ≥ 2 for all 𝑖, has 𝑆(𝑇) = ∏𝑘𝑖=1 |𝐶𝑖| TCSs that reduce all its subtrees.

Bibliography
1. Huson, D. H., Rupp, R. & Scornavacca, C. in Phylogenetic Networks: Concepts, Algorithms and

Applications 68–84 (Cambridge University Press, 2010).
2. Janssen, R. & Murakami, Y. On cherry-picking and network containment. Theoretical Computer

Science (2021).
3. Erdős, P. L., Semple, C. & Steel, M. A class of phylogenetic networks reconstructable from ancestral

profiles. Mathematical Biosciences 313, 33–40 (2019).
4. van Iersel, L., Semple, C. & Steel, M. Locating a tree in a phylogenetic network. Information Pro-

cessing Letters 110, 1037–1043 (2010).
5. Sleator, D. D. & Tarjan, R. E. A Data Structure for Dynamic Trees. Journal of Computer and System

Sciences 26, 362-391 (1983).
6. Harel, D. & Tarjan, R. E. Fast Algorithms for finding Nearest Common Ancestors. SIAM Journal on

Computing 13(2) (1984).
7. van Iersel, L., Janssen, R., Jones, M., Murakami, Y. & Zeh, N. A unifying characterization of tree-

based networks and orchard networks using cherry covers. Advances in Applied Mathematics 129,
102222. ISSN: 0196-8858 (2021).

8. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. & Shmoys, D. B. in Logistics of Production and
Inventory 445–522 (Elsevier, 1993).

24

	Introduction
	Preliminaries
	Cherry-picking sequences

	Caterpillars
	Reducing subtrees using TCSs
	Minimal subtree covering number

	Double caterpillars
	How many TCSs reduce a double caterpillar?
	Minimal subtree covering number

	Trees
	Caterpillar decomposition
	Minimal subtree covering number
	How many TCSs reduce a tree?
	How many TCSs reduce a tree on 3 maximal sub-caterpillars?
	How many TCSs reduce a tree on k maximal sub-caterpillars?
	Can we find a closed form for N(T)?

	Conclusion and discussion
	Appendix

