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Abstract: Generation of feasible and optimal reference trajectories is crucial in tracking
Nonlinear Model Predictive Control. Especially, for stability and optimality in presence of a
time varying parameter, adaptation of the tracking trajectory has to be implemented. General
approaches are real-time generation of trajectories or switching between a discrete set of
precomputed trajectories. In order to circumvent the operational efforts of these methods for a
special type of dynamical systems, we propose time warping as an alternative approach. This
algorithm implements online generation of tracking trajectories by warping a single precomputed
reference. In detail, warpable systems, feasibility and optimality of trajectories and the controller
implementation are discussed. Finally, as an application example, simulation results of a tethered
kite system for airborne wind energy generation are presented.

Keywords: Predictive control, optimal trajectory, renewable energy systems, optimization.

1. INTRODUCTION

In the last decade, with the rise of computational power,
tracking Nonlinear Model Predictive Control (NMPC)
(Rawlings and Mayne (2009)) has been shown to be a
viable and efficient solution for multivariable control of dif-
ferent nonlinear systems. In its standard implementation,
the algorithm comprises two steps: first, offline generation
of optimal or feasible trajectories, and then, online track-
ing of these trajectories by means of NMPC. While the
concept has been successfully implemented and demon-
strated in different scenarios (Guerreiro et al. (2009)), it
suffers from robustness and stability issues. In particular,
as the trajectories are computed offline, the controller lacks
online adaptation to real disturbances and model mis-
matches. Moreover, in contrast with economic NMPC and
despite offering a more stable controller than the latter, it
is not able to guarantee optimality of the tracked trajec-
tories. In order to potentially improve the performance
of tracking NMPC in several different areas, generating
optimal trajectories in real time is highly desired though
demanding and still subject to current research activities
(Hehn and D’Andrea (2011)).

In this paper, we regard a tracking NMPC scheme control-
ling a dynamical system whose equations of motion (EOM)
depend on a time variable parameter p(t) ∈ R. General
approaches to include the p(t) dependence are based either
on real time generation of optimal trajectories or switching
between a discrete set of precomputed trajectories for
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different p values (Ilzhoefer et al. (2007)). However, as both
approaches suffer from operational drawbacks, we propose
an algorithm to perform online generation of feasible and
optimal tracking trajectories. By exploiting the specific
structure of the considered dynamical systems, tracking
trajectories for any p(t) value are obtained by time warping
a single reference trajectory yref computed for the reference
value pref .

In order to derive and illustrate the algorithm, this paper
is organized as follows: In a first section, we introduce the
warping operation and define the class of warpable systems
and their particular property of preserving feasibility un-
der the warping operation. The second section deals with
the class of warpable optimal control problems (WOCP)
as a type of optimization problems to generate optimal
trajectories for warpable systems; in detail optimality and
limitations due to constraints are discussed. In the third
section, the implementation of warping NMPC based on
the previously introduced theory is explained. Finally, the
last section illustrates the performance of the algorithm
applied to an airborne wind energy system that is subject
to a varying wind speed vw.

For notational simplicity, concatenations of several vec-
tors, e.g. [x�, y�]�, will be shortened as (x, y).

2. WARPABLE SYSTEMS

Definition 1. (Warped Time Frame τ). Consider a real
time frame t used to describe the motion of a dynamical
system. A warped time frame τ with respect to t is defined
by the relation between the time velocities dt and dτ . This
relation is called warping factor ẇ(t) and is defined as:
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dτ

dt
= ẇ(t), (1)

with ẇ(t) > 0, dt > 0 and dτ > 0.

Remark 2. Time transformations from t to τ can be com-
puted by τ = w(t) =

∫ t

0
ẇ(t′)dt′. Likewise, τ can be

warped back to obtain t by using dt
dτ = 1

ẇ(t) , i.e. the

warping operation is bidirectional.

Regard a general dynamical system defined by the EOM
ẋ(t) = Φ(x(t), u(t), p(t), t), with t representing the time,
x ∈ Rnx the system state, u ∈ Rnu the system input, and
p ∈ Rnp the time dependent parameters.

Definition 3. (Warpable Dynamical System). We define
the system to be a warpable dynamic system if the EOM
can be expressed as:

ẋ(t) = p(t) f
(
x(t), u1(t)

)
+ l

(
x(t), u1(t)

)
u2(t)

= p(t) g(t) + s(t)u2(t),
(2)

with : p(t) ∈ R, u(t) =
(
u1(t), u2(t)

)
∈ Rnu1

+nu2 ,

f : Rnx+nu1 −→ Rnx , l : Rnx+nu1 −→ Rnx×nu2 .

Lemma 4. (Time Warped Dynamical System). Given the
solution

(
xref(τ), uref1(τ), uref2(τ)

)
for a reference system:

ẋref(τ) = pref f
(
xref(τ), uref1(τ)

)

+ l
(
xref(τ), uref1(τ)

)
uref2(τ)

= pref gref(τ) + sref(τ)uref2(τ),

(3)

a solution for the general system (2) is given by:

x(t) = xref

(
w(t)

)
, (4a)

u1(t) = uref1

(
w(t)

)
, (4b)

u2(t) = ẇ(t)uref2

(
w(t)

)
, (4c)

where the warping factor between t and τ is defined by:

ẇ(t) =
dτ

dt
=

p(t)

pref
and w(t) =

∫ t

0

p(t′)

pref
dt′ = τ. (5)

Note: without loss of generality, the initial condition
x(0) = xref(0) is assumed.

Proof.

ẋ(t)
(4a)
=

dxref

dτ

∣∣∣
τ=w(t)

ẇ(t)

(3)
= ẇ(t) pref f

(
xref

(
w(t)

)
, uref1

(
w(t)

))

+ l
(
xref

(
w(t)

)
, uref1

(
w(t)

))
ẇ(t)uref2

(
w(t)

)

(4a-4c)
=
(5)

p(t) f
(
x(t), u1(t)

)
+ l

(
x(t), u1(t)

)
u2(t). (6)

It is important to note that, in the defined system, the
p parameter determines the speed of the system’s time
evolution. To have a first glance of this time warping
interpretation, Fig. 4 and Fig. 5 depict a time series of
states and controls, respectively.

3. OPTIMALITY OF WARPED TRAJECTORIES

Regard a general Optimal Control Problem (OCP) defined
in a time frame t:

minimize
y(·)

J
(
y(t)

)
=

∫ T

0

L
(
x(t), u(t), p(t)

)
dt (7a)

subject to Φ
(
x(t), u(t), p(t)

)
= ẋ(t), t ∈ [0, T ], (7b)

h
(
x(t), u(t)

)
≤ 0, t ∈ [0, T ], (7c)

r
(
x(0), x(T )

)
≤ 0, (7d)

with

y(t) = (x(t), u(t)). (7e)

Definition 5. (Warpable Optimal Control Problem). If it
holds that:

(i) The dynamical system of the OCP is warpable:

Φ(·) = p(t) f
(
x(t), u1(t)

)
+ l

(
x(t), u1(t)

)
u2(t). (8a)

(ii) p(t) is constant in the time interval [0, T ].
(iii) The OCP path constraints are independent of u2(t):

h
(
x(t), u(t)

)
= h

(
x(t), u1(t)

)
. (8b)

(iv) The cost of the OCP can be written as:

J
(
y(t)

)
=

∫ T

0

L1(p)L2

(
x(t), u1(t),

u2(t)

p

)
dt. (8c)

Then, we define the OCP to be a Warpable Optimal
Control Problem (WOCP).

Remark 6. If (7) is a WOCP, it can be expressed as:

WOCP(p):

minimize
y(·)

∫ T

0

L1(p)L2

(
x(t), u1(t),

u2(t)

p

)
dt (9a)

subject to p g(t) + s(t)u2(t) = ẋ(t), t ∈ [0, T ], (9b)

h
(
x(t), u1(t)

)
≤ 0, t ∈ [0, T ], (9c)

r
(
x(0), x(T )

)
≤ 0. (9d)

Theorem 7. (Optimality of Warpable Dynamical Sys-
tems). Regard the WOCP in a reference time frame:

min
yref(·)

∫ τ̄

0

L1(pref)L2

(
xref(τ), uref1(τ),

uref2(τ)

pref

)
dτ (10)

s.t. pref gref(τ) + sref(τ)uref2(τ) = ẋref(τ), τ ∈ [0, τ̄ ],

h
(
xref(τ), uref1(τ)

)
≤ 0, τ ∈ [0, τ̄ ],

r
(
xref(0), xref(τ̄)

)
≤ 0.

Given the optimal solution of the reference problem:

y∗ref(τ) =
(
x∗
ref(τ), u

∗
ref1(τ), u

∗
ref2(τ)

)
, (11)

then, the warped trajectory of y∗ref(τ):

yp(t) =
(
xp(t), up1(t), up2(t)

)
, (12)

with constant warping factor:

ẇ(t) =
p

pref
= ẇ, (13)

and with warping transformations defined by (4a–4c), is
the optimal solution of (9), i.e.:

xp(t) = x∗
ref

(
w(t)

)
= x∗(t), (14a)

up1(t) = u∗
ref1

(
w(t)

)
= u∗

1(t), (14b)

up2(t) = u∗
ref2

(
w(t)

)
ẇ= u∗

2(t). (14c)

Note that, since the warping factor is time independent,
time warping becomes a linear transformation:

τ =

∫ t

0

p

pref
dt′ =

p

pref
t =⇒ τ̄ = w(T ) =

p

pref
T. (15)
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)
, (4c)

where the warping factor between t and τ is defined by:

ẇ(t) =
dτ

dt
=

p(t)

pref
and w(t) =

∫ t

0

p(t′)

pref
dt′ = τ. (5)

Note: without loss of generality, the initial condition
x(0) = xref(0) is assumed.

Proof.

ẋ(t)
(4a)
=

dxref

dτ

∣∣∣
τ=w(t)

ẇ(t)

(3)
= ẇ(t) pref f

(
xref

(
w(t)

)
, uref1

(
w(t)

))

+ l
(
xref

(
w(t)

)
, uref1

(
w(t)

))
ẇ(t)uref2

(
w(t)

)

(4a-4c)
=
(5)

p(t) f
(
x(t), u1(t)

)
+ l

(
x(t), u1(t)

)
u2(t). (6)

It is important to note that, in the defined system, the
p parameter determines the speed of the system’s time
evolution. To have a first glance of this time warping
interpretation, Fig. 4 and Fig. 5 depict a time series of
states and controls, respectively.

3. OPTIMALITY OF WARPED TRAJECTORIES

Regard a general Optimal Control Problem (OCP) defined
in a time frame t:

minimize
y(·)

J
(
y(t)

)
=

∫ T

0

L
(
x(t), u(t), p(t)

)
dt (7a)

subject to Φ
(
x(t), u(t), p(t)

)
= ẋ(t), t ∈ [0, T ], (7b)

h
(
x(t), u(t)

)
≤ 0, t ∈ [0, T ], (7c)

r
(
x(0), x(T )

)
≤ 0, (7d)

with

y(t) = (x(t), u(t)). (7e)

Definition 5. (Warpable Optimal Control Problem). If it
holds that:

(i) The dynamical system of the OCP is warpable:

Φ(·) = p(t) f
(
x(t), u1(t)

)
+ l

(
x(t), u1(t)

)
u2(t). (8a)

(ii) p(t) is constant in the time interval [0, T ].
(iii) The OCP path constraints are independent of u2(t):

h
(
x(t), u(t)

)
= h

(
x(t), u1(t)

)
. (8b)

(iv) The cost of the OCP can be written as:

J
(
y(t)

)
=

∫ T

0

L1(p)L2

(
x(t), u1(t),

u2(t)

p

)
dt. (8c)

Then, we define the OCP to be a Warpable Optimal
Control Problem (WOCP).

Remark 6. If (7) is a WOCP, it can be expressed as:

WOCP(p):

minimize
y(·)

∫ T

0

L1(p)L2

(
x(t), u1(t),

u2(t)

p

)
dt (9a)

subject to p g(t) + s(t)u2(t) = ẋ(t), t ∈ [0, T ], (9b)

h
(
x(t), u1(t)

)
≤ 0, t ∈ [0, T ], (9c)

r
(
x(0), x(T )

)
≤ 0. (9d)

Theorem 7. (Optimality of Warpable Dynamical Sys-
tems). Regard the WOCP in a reference time frame:

min
yref(·)

∫ τ̄

0

L1(pref)L2

(
xref(τ), uref1(τ),

uref2(τ)

pref

)
dτ (10)

s.t. pref gref(τ) + sref(τ)uref2(τ) = ẋref(τ), τ ∈ [0, τ̄ ],

h
(
xref(τ), uref1(τ)

)
≤ 0, τ ∈ [0, τ̄ ],

r
(
xref(0), xref(τ̄)

)
≤ 0.

Given the optimal solution of the reference problem:

y∗ref(τ) =
(
x∗
ref(τ), u

∗
ref1(τ), u

∗
ref2(τ)

)
, (11)

then, the warped trajectory of y∗ref(τ):

yp(t) =
(
xp(t), up1(t), up2(t)

)
, (12)

with constant warping factor:

ẇ(t) =
p

pref
= ẇ, (13)

and with warping transformations defined by (4a–4c), is
the optimal solution of (9), i.e.:

xp(t) = x∗
ref

(
w(t)

)
= x∗(t), (14a)

up1(t) = u∗
ref1

(
w(t)

)
= u∗

1(t), (14b)

up2(t) = u∗
ref2

(
w(t)

)
ẇ= u∗

2(t). (14c)

Note that, since the warping factor is time independent,
time warping becomes a linear transformation:

τ =

∫ t

0

p

pref
dt′ =

p

pref
t =⇒ τ̄ = w(T ) =

p

pref
T. (15)
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Proof.

J
(
yref(τ)

)
=

∫ τ̄=w(T )

0

L1(pref)L2

(
xref(τ), uref1(τ),

uref2(τ)

pref

)
dτ

=

∫ T

0

L1(pref)L2

(
xref

(
w(t)

)
, uref1

(
w(t)

)
,
uref2

(
w(t)

)
pref

)
ẇ dt

(4c)
(13)
=
(4a)
(4b)

pL1(pref)

pref L1(p)

∫ T

0

L1(p)L2

(
x(t), u1(t),

u2(t)

p

)
dt

=
pL1(pref)

pref L1(p)
J
(
y(t)

)
. (16)

In other words, the cost function of a general WOCP(p) and
the cost function of the reference WOCP(pref) counter-
part just differ in a constant factor. Therefore, if the
problems were unconstrained, the optimal solutions of the
WOCP(pref) and the WOCP(p) are related by warping.

Nevertheless, the WOCP is a constrained minimization
problem; as a result, to prove that both WOCPs share the
same solution, the constraints have to also be equivalent.

Dynamic constraints:

ẋref(τ)− pref gref(τ) + sref(τ)uref2(τ) = 0,

⇐⇒ ẋ(t) − p g(t) + s(t)u2(t) = 0.

(17)

holds directly by Theorem 4.

Path and boundary constraints:

h
(
xref(τ), uref1(τ)

) (4a, 4b)
=
(15)

h
(
x(t), u1(t)

)
≤ 0, (18)

r
(
xref(0), xref(τ̄)

) (4a)
=
(15)

r
(
x(0), x(T )

)
≤ 0. (19)

Feasible time set:

τ ∈ [0, τ̄ ]
(15)
=⇒ p

pref
t ∈ [0,

p

pref
T ] =⇒ t ∈ [0, T ]. (20)

As it can be seen from (19–20), the constraints in both
WOCPs represent the exact same information. Therefore,
considering (16–20), solving the reference WOCP given
by (10) is equivalent to solving the real WOCP given by
(9). As a result, the optimal solutions of both WOCPs,
y∗ref

(
w(t)

)
and y∗(t), are equivalent and related by (14).

Definition 8. (Semi-WOCP (SWOCP)). Consider a gen-
eral WOCP as given by (9a-9d). The problem extension of
adding u2(t)-dependent path constraints as h2(·) is defined
as Semi-Warpable Optimal Control Problem (SWOCP)
and can be expressed as:

SWOCP(p):

min
y(·)

∫ T

0

L1(p)L2

(
x(t), u1(t),

u2(t)

p

)
dt (21a)

s.t. p g(t) + s(t)u2(t) = ẋ(t), t ∈ [0, T ], (21b)

h
(
x(t), u1(t)

)
≤ 0, t ∈ [0, T ], (21c)

h2

(
x(t), u1(t), u2(t)

)
≤ 0 t ∈ [0, T ], (21d)

r
(
x(0), x(T )

)
≤ 0. (21e)

It is important to note that, by adding u2-dependent
constraints, a warped version yp of an optimal reference
trajectory y∗ref(τ) does not necessarily satisfy feasibility:

h2

(
x∗
ref(τ), u

∗
ref1(τ), u

∗
ref2(τ)

)
≤ 0

=⇒ h2

(
xp(t), up1(t),

pref
p

up2(t)
)
≤ 0

�=⇒ h2

(
xp(t), up1(t), up2(t)

)
≤ 0. (22)

Definition 9. (Warpable Reference (WR)) Regard a gen-
eral warpable system with p ∈ [pmin, pmax]. Consider as
well general inequality constraints

h2

(
x(t), u1(t), u2(t)

)
≤ 0, t ∈ [0, T ], (23)

that any feasible trajectory should satisfy. Then, we define
the trajectory ywr(t), obtained for a parameter value pwr,
to be a warpable reference (WR) if:

(i) ywr(t) satisfies (23).
(ii) Any warped trajectory of ywr(t), with warping factor

ẇ = p/pwr, satisfies (23).

Definition 10. (Best Warpable Reference (BWR)) Regard
a general SWOCP as defined by (21) and with p ∈
[pmin, pmax]. A trajectory ybwr(τ), obtained for a parame-
ter value pbwr, is defined to be a best warpable reference
(BWR) if:

(i) ybwr(t) is an optimal solution of the SWOCP(pbwr).
(ii) ybwr(t) is a WR with respect to the constraint (23).

Corollary 11. (Optimal Reference for SWOCP). Regard a
SWOCP for which a BWR exists and the constraint (21d)
is inactive at this BWR. Then, the BWR could be regarded
as an optimal reference, i.e. pref = pbwr, and any warped
trajectory yp(t), obtained by warping the optimal solution
y∗ref(τ) of the reference SWOCP(pref)=SWOCP(pbwr), is
also an optimal solution of the general SWOCP(p).

Proof. In an optimization problem, any inactive inequal-
ity constraint at the optimal solution can be removed
from the problem without modifying the local optimal
solution (global in case of convex problems). In our case,
the u2-dependent constraint (21d) is inactive at y∗ref(τ)
and by Definition 9 and 10 any warped trajectory yp(t)
also satisfies (21d). As a result, (21d) can be removed,
the original SWOCP is transformed into a WOCP and
Corollary 11 holds directly due to Theorem 7.

Remark 12. If h2 is active for pbwr, i.e. h2

(
ybwr(τ)

)
= 0,

the warped trajectories yp(t) are usually suboptimal. In
this case, since they are still feasible and are generated
from an optimal trajectory, they still represent a better
solution than a random feasible trajectory.

Theorem 13. (Existence and Generation of BWRs) Re-
gard the optimal solution of the SWOCP(pmax) to be
y∗max(τ). Regard as well m inequality constraints involv-
ing u2, i.e. h2(x, u1, u2) = [h2,1(·), h2,2(·), . . . , h2,m(·)]. If
h2,i

(
x(τ), u1(τ), u2(τ)

)
, ∀ i = 1, . . . ,m and ∀ τ ∈ [0, τ̄ ], is

monotonically increasing (decreasing) with respect to u2

and is only active for u2 ≥ 0 (u2 ≤ 0), then y∗max(τ) is a
BWR.

Proof. Since y∗pmax
(τ) is an optimal solution, it satisfies

the constraint h2,i(·) ≤ 0. Furthermore, using the standard
warping relations (14a-14c), feasibility is equivalent to
saying that any warped trajectory yp(t) satisfies:

h2,i

(
xp(t), up1(t),

pmax

p
up2(t)

)
≤ 0. (24)

Moreover, for any monotonically increasing (decreasing)
h2,i and positive (negative) values of u2 it holds that:
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h2,i

(
xp(t), up1(t), up2(t)

)
≤ h2,i

(
xp(t), up1(t),

pmax

p
up2(t)

)

(25)

Finally, combining (24–25) and using the fact that h2 is
only active for positive (negative) u2 values, it holds that:

h2,i

(
xp(t), up1(t), up2(t)

)
≤ 0. (26)

As a result, any warped trajectory yp(t) is a feasible
solution with respect to h2,i(·), ∀ i = 1, . . . ,m, and
y∗pmax

(τ) is a BWR.

Remark 14. An important class of functions satisfying the
above equations is any h2

(
x(t), u1(t), u2(t)

)
that can be

reformulated as:

fmin

(
x(t), u1(t)

)
≤ u2(t) ≤ fmax

(
x(t), u1(t)

)
,

where : fmin(x, u1) ≤ 0, fmax(x, u1) ≥ 0.
(27)

It should be finally mentioned, that there are SWOCPs,
for which no BWR exists. The applicability of warping to
those kind of SWOCPs and generation of reasonable WRs
go far beyond the scope of this paper.

4. WARPING NMPC

Considering a warpable system in the field of tracking
NMPC, Theorems 4 and 7 have an implication on the
controller stability and efficiency. In particular for online
generation of feasible and optimal tracking trajectories as
a function of p(t), we introduce a novel algorithm called
Warping NMPC for the specific set of warpable systems.

4.1 Generation of Feasible Trajectories

A first variant of warping NMPC exploits Lemma 4 for
warpable dynamical systems. In particular, making use
of Definition 9, any WR of the system can be used as
reference yref(τ) = ywr(τ) and then time warped to obtain
feasible tracking trajectories yp(t) for any p(t) value.

Figure 1 illustrates the warping NMPC concept: the ref-
erence trajectory yref , feasible for a constant pref , is com-
puted offline. Then, by time warping yref online, warping
NMPC generates a feasible tracking trajectory for the real
p(t). In a computer implementation, a discrete precom-
puted reference trajectory Yref = (Yref,0, . . . , Yref,N ) is used
to obtain the discrete tracking trajectory at the current
time Ytrack = (Ytrack,0, . . . , Ytrack,N ).

0 2 4 6 8 10
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−0.5

0

0.5

1

← Ypre,N

← x0

← Ytrack,N

T

t− t0

y

yref - Continuous reference trajectory

yp - Warped feasible trajectory for p(t)

Ypre - NMPC reference trajectory

Ytrack - NMPC tracking trajectory

Fig. 1. Warping NMPC example with ẇ(t) = p(t)
pref

= 1
2 .

4.2 Generation of Optimal Trajectories

Feasibility is in many cases a requirement that is strong
enough to ensure stability of the tracking NMPC scheme.
However, if optimality is desired, the following two variants
of warping NMPC can be regarded:

(i) For a WOCP(p), any warping-generated tracking
trajectory yp(t) from an optimal reference trajectory
y∗ref(τ) will also be optimal due to Theorem 7.

(ii) In case of a SWOCP(p), an existing BWR can be used
as reference trajectory y∗ref(τ) with pref = pbwr. Then,
by Corollary 11, the warped tracking trajectories
yp(t) will be either optimal or suboptimal depending
on whether h2(·) is inactive or active at y∗ref(τ). In
the latter case, since the trajectories are warped from
an optimal trajectory, they still represent a better
solution than a random feasible trajectory. However,
before a real implementation, a concrete evaluation
of their quality should be performed.

4.3 Implementation

For a real implementation, the reference trajectory y∗ref(τ)
is defined as a discrete reference trajectory Yref on a refer-
ence time grid τref = [τref,0, τref,1, . . . , τref,M ]. The warped
tracking trajectory is denoted as Ytrack, the controller
sampling time as ∆t and the current time point in the
warped time frame as τ0. Considering a NMPC horizon
of N + 1 points, the algorithm to generate optimal and
feasible tracking trajectories is given by Algorithm 1.

Algorithm 1 Warping NMPC

1: Global τ0 = 0
2: function newTrackingTrajectory(p)
3: Ytrack ← [ ]
4: for i = 0 : N do
5: τi ← mod(τ0 + i∆t p

pref
, τref,M )

6: Ytrack ← [Ytrack, nextPoint(τi, p)]
7: end for
8: τ0 ← τ0 +∆t p

pref

9: return Ytrack

10: end function
11: function nextPoint(τnext, p)
12: τlow ← arg min

τ
|τ−τnext|, s.t. τ ≤ τnext, τ ∈ τref

13: τup ← arg min
τ

|τ−τnext|, s.t. τ > τnext, t ∈ τref
14: ylow ← Yref(τlow), yup ← Yref(τup)

15: ynext ← ylow +
yup−ylow

τup−τlow
(τnext − τlow)

16: ynext(u2) ← ynext(u2)
p

pref

17: return ynext
18: end function

The main principle of the algorithm is to track the current
time point τ0 in the warped time frame and iteratively
build the tracking trajectory starting from τ0. In particu-
lar, the time location of the ith trajectory point is first com-
puted at τi in the reference time grid τref by using a warped
incremental time step ∆t p/pref . Then, the ith tracking
point is computed by interpolation between the closest
points of τi in the reference grid τref . In addition, the u2-
values of ynew are amplified or attenuated accordingly. It
is important to remark that, without loss of generality, we
have used a periodic reference trajectory (line 5).
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h2,i

(
xp(t), up1(t), up2(t)

)
≤ h2,i

(
xp(t), up1(t),

pmax

p
up2(t)

)

(25)

Finally, combining (24–25) and using the fact that h2 is
only active for positive (negative) u2 values, it holds that:

h2,i

(
xp(t), up1(t), up2(t)

)
≤ 0. (26)

As a result, any warped trajectory yp(t) is a feasible
solution with respect to h2,i(·), ∀ i = 1, . . . ,m, and
y∗pmax

(τ) is a BWR.

Remark 14. An important class of functions satisfying the
above equations is any h2

(
x(t), u1(t), u2(t)

)
that can be

reformulated as:

fmin

(
x(t), u1(t)

)
≤ u2(t) ≤ fmax

(
x(t), u1(t)

)
,

where : fmin(x, u1) ≤ 0, fmax(x, u1) ≥ 0.
(27)

It should be finally mentioned, that there are SWOCPs,
for which no BWR exists. The applicability of warping to
those kind of SWOCPs and generation of reasonable WRs
go far beyond the scope of this paper.

4. WARPING NMPC

Considering a warpable system in the field of tracking
NMPC, Theorems 4 and 7 have an implication on the
controller stability and efficiency. In particular for online
generation of feasible and optimal tracking trajectories as
a function of p(t), we introduce a novel algorithm called
Warping NMPC for the specific set of warpable systems.

4.1 Generation of Feasible Trajectories

A first variant of warping NMPC exploits Lemma 4 for
warpable dynamical systems. In particular, making use
of Definition 9, any WR of the system can be used as
reference yref(τ) = ywr(τ) and then time warped to obtain
feasible tracking trajectories yp(t) for any p(t) value.

Figure 1 illustrates the warping NMPC concept: the ref-
erence trajectory yref , feasible for a constant pref , is com-
puted offline. Then, by time warping yref online, warping
NMPC generates a feasible tracking trajectory for the real
p(t). In a computer implementation, a discrete precom-
puted reference trajectory Yref = (Yref,0, . . . , Yref,N ) is used
to obtain the discrete tracking trajectory at the current
time Ytrack = (Ytrack,0, . . . , Ytrack,N ).
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Fig. 1. Warping NMPC example with ẇ(t) = p(t)
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4.2 Generation of Optimal Trajectories

Feasibility is in many cases a requirement that is strong
enough to ensure stability of the tracking NMPC scheme.
However, if optimality is desired, the following two variants
of warping NMPC can be regarded:

(i) For a WOCP(p), any warping-generated tracking
trajectory yp(t) from an optimal reference trajectory
y∗ref(τ) will also be optimal due to Theorem 7.

(ii) In case of a SWOCP(p), an existing BWR can be used
as reference trajectory y∗ref(τ) with pref = pbwr. Then,
by Corollary 11, the warped tracking trajectories
yp(t) will be either optimal or suboptimal depending
on whether h2(·) is inactive or active at y∗ref(τ). In
the latter case, since the trajectories are warped from
an optimal trajectory, they still represent a better
solution than a random feasible trajectory. However,
before a real implementation, a concrete evaluation
of their quality should be performed.

4.3 Implementation

For a real implementation, the reference trajectory y∗ref(τ)
is defined as a discrete reference trajectory Yref on a refer-
ence time grid τref = [τref,0, τref,1, . . . , τref,M ]. The warped
tracking trajectory is denoted as Ytrack, the controller
sampling time as ∆t and the current time point in the
warped time frame as τ0. Considering a NMPC horizon
of N + 1 points, the algorithm to generate optimal and
feasible tracking trajectories is given by Algorithm 1.

Algorithm 1 Warping NMPC

1: Global τ0 = 0
2: function newTrackingTrajectory(p)
3: Ytrack ← [ ]
4: for i = 0 : N do
5: τi ← mod(τ0 + i∆t p

pref
, τref,M )

6: Ytrack ← [Ytrack, nextPoint(τi, p)]
7: end for
8: τ0 ← τ0 +∆t p

pref

9: return Ytrack

10: end function
11: function nextPoint(τnext, p)
12: τlow ← arg min

τ
|τ−τnext|, s.t. τ ≤ τnext, τ ∈ τref

13: τup ← arg min
τ

|τ−τnext|, s.t. τ > τnext, t ∈ τref
14: ylow ← Yref(τlow), yup ← Yref(τup)

15: ynext ← ylow +
yup−ylow

τup−τlow
(τnext − τlow)

16: ynext(u2) ← ynext(u2)
p

pref

17: return ynext
18: end function

The main principle of the algorithm is to track the current
time point τ0 in the warped time frame and iteratively
build the tracking trajectory starting from τ0. In particu-
lar, the time location of the ith trajectory point is first com-
puted at τi in the reference time grid τref by using a warped
incremental time step ∆t p/pref . Then, the ith tracking
point is computed by interpolation between the closest
points of τi in the reference grid τref . In addition, the u2-
values of ynew are amplified or attenuated accordingly. It
is important to remark that, without loss of generality, we
have used a periodic reference trajectory (line 5).
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5. APPLICATION EXAMPLE

In this section, warping NMPC is illustrated and tested
on an airborne wind energy (AWE) system based on a
tethered kite flying periodic optimal trajectories and gen-
erating energy (Fagiano et al. (2009)). The idea is to use
NMPC for tracking optimal trajectories that maximize the
extracted energy in a so-called pumping cycle. More details
on power generation of AWE can be found in Ahrens et al.
(2013).

5.1 Kite Dynamics as Warpable System

The kite model is based on four states as illustrated in
Fig. 2: the tether length l in combination with two polar
coordinates ϑ and ϕ for the kite position, and then, an
angle ψ for the orientation.

Following Erhard and Strauch (2013, 2015), where details
on the model can be found, the subsequent equations of
motion can be derived:

ψ̇ =vw cosϑE
(
gk δ −

cotϑ sinψ

l

)
+vreel E

(cotϑ
l

− gk δ
)

(28a)

ϕ̇ =vw
−E cotϑ sinψ

l
+vreel

E

l sinϑ
, (28b)

ϑ̇ =vw
− sinϑ+ E cosϑ cosψ

l
−vreel

E cosψ

l
, (28c)

l̇ = vreel. (28d)

The kite steering input δ and the tether reeling speed
vreel form the system control input vector [δ, vreel]

�, the
glide ratio E and steering proportionality constant gk are
system parameters, and vw is the ambient wind velocity.

Analyzing the structure of (28a–28d), it can be recognized
that the kite is a warpable system, where u1 = δ, u2 = vreel
and p = vw. In particular, the wind velocity vw as warping
parameter determines the speed of the system dynamics.
As a result, online generation of feasible and optimal
trajectories for different vw values can be done with the
previously described warping NMPC algorithm in order
to implement a stable and robust tracking NMPC scheme.

5.2 Optimal Trajectories

As defined by Erhard et al. (2017), the optimal periodic
trajectories y∗(t) = (x∗(t), u∗(t)), maximizing the average
power in a pumping cycle for a given wind velocity value
vw, are obtained by:

minimize
y(·)

− 1

T

∫ T

0

va(t)
2
l̇(t) dt (29a)

subject to Φ(x(t), u(t), vw) = ẋ(t), t ∈ [0, T ], (29b)

h
(
x(t), δ(t)

)
≤ 0, t ∈ [0, T ], (29c)

vmin ≤ vreel(t) ≤ vmax, t ∈ [0, T ], (29d)

r
(
x(T ), x(0)

)
≤ 0. (29e)

with Φ(·) given by (28a–28d), vmin ≤ 0, vmax ≥ 0 and

va = vw E cosϑ− l̇ E. By expanding the cost function as:

J =− 1

T

∫ T

0

v2a l̇ dt = − 1

T

∫ T

0

(
vw E cosϑ− vreel E

)2
vreel dt

=− v3w
T

∫ T

0

(
E cosϑ−

(
vreel
vw

))2 (
vreel
vw

)
dt (30)

it can be observed that the OCP has the same structure
as (21) with u2(t) = vreel(t) and p = vw, and thus, the
optimal tracking trajectories are the solution of a SWOCP.
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Fig. 2. Kite coordinate system (Erhard et al. (2017)).

As a side result, the scaling of AWE power output with
the cube of wind velocity, a result known for conventional
wind turbines, can be directly concluded from (30).

5.3 Warping Illustration

To have a graphical representation of the warping proper-
ties of the kite system, Fig. 3 depicts the 3D view of the
optimal trajectories for three different vw values. Figure 4
illustrates the same solutions in time domain for two sys-
tem states. We can observe how, in a 3D space, the three
trajectories make the kite fly through the same physical
locations, but, in the time domain, the kite dynamics have
different velocities and the state trajectories are warped
versions of each other.
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To further comprehend the warping properties, Fig. 5
represents the optimal control inputs of the previous
trajectories. As expected, since vreel represents a u2-type
input, it does not just warp but is also attenuated or
amplified. By contrast, the control δ is just warped.
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5.4 Optimality of Warped Solution

Since the tracking trajectories are optimized using a
SWOCP and since (29d) has the structure of (27), by
Theorem 13 we know that a BWR can be computed using
the maximum vw-value (15m/s in this case) as a reference.

Since at the optimal solution y∗ref for 15m/s the constraint
(29d) is active, the warped tracking trajectories yp are
suboptimal (refer to Remark 12). Therefore, to evaluate
the decrease in optimality of yp, Table 1 compares the
power efficiency of optimal trajectories at different p = vw
values with respect to their warped counterparts.

Table 1. Efficiency comparison of optimal so-
lutions and trajectories obtained by warping.

vw 6m/s 8m/s 10m/s 12m/s 14m/s 15m/s

ηLoyd

optimal
35.4% 35.4% 35.3% 34.9% 34.2% 33.7%

ηLoyd

warping
33.7%

The power efficiency ηLoyd is computed as the ratio be-
tween the extracted average power divided by the maxi-
mum ideal power as defined by Loyd (1980):

ηLoyd =
J

4
27 E

2 v3w
(31)

with J given by (30) and the nominator adjusted accord-
ingly to the model (Erhard et al. (2017)).

Considering that explicitly solving the SWOCP for dif-
ferent vw values leads only to a maximum efficiency in-
crease of less than 2%, the warped trajectories represent
a very good approximation of their optimal counterparts.
Therefore, warping NMPC is a highly efficient algorithm
for online generation of nearly optimal trajectories for this
AWE system.

5.5 Warping NMPC

In order to assess the tracking performance of warping
NMPC, the controller is tested against a wind speed
profile decreasing in time from 10m/s to 6m/s. Figure
6 depicts the wind profile as well as the 3D pumping cycle
trajectories at the end of the simulation interval. It can be
observed that normal NMPC, which is based on a constant
tracking trajectory generated at 10m/s, is unable to track

the reference trajectory and extract energy (indicated by
a negative Loyd factor ηLoyd = −2.09%). In particular, it
keeps the kite at a high elevation angle and barely performs
any movement. By contrast, the warping NMPC reaches
power efficiencies (ηLoyd = 31.57%) very close to the ideal
one by adaptation to the varying wind speed vw.
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5.4 Optimality of Warped Solution

Since the tracking trajectories are optimized using a
SWOCP and since (29d) has the structure of (27), by
Theorem 13 we know that a BWR can be computed using
the maximum vw-value (15m/s in this case) as a reference.

Since at the optimal solution y∗ref for 15m/s the constraint
(29d) is active, the warped tracking trajectories yp are
suboptimal (refer to Remark 12). Therefore, to evaluate
the decrease in optimality of yp, Table 1 compares the
power efficiency of optimal trajectories at different p = vw
values with respect to their warped counterparts.

Table 1. Efficiency comparison of optimal so-
lutions and trajectories obtained by warping.

vw 6m/s 8m/s 10m/s 12m/s 14m/s 15m/s

ηLoyd

optimal
35.4% 35.4% 35.3% 34.9% 34.2% 33.7%

ηLoyd

warping
33.7%

The power efficiency ηLoyd is computed as the ratio be-
tween the extracted average power divided by the maxi-
mum ideal power as defined by Loyd (1980):

ηLoyd =
J

4
27 E

2 v3w
(31)

with J given by (30) and the nominator adjusted accord-
ingly to the model (Erhard et al. (2017)).

Considering that explicitly solving the SWOCP for dif-
ferent vw values leads only to a maximum efficiency in-
crease of less than 2%, the warped trajectories represent
a very good approximation of their optimal counterparts.
Therefore, warping NMPC is a highly efficient algorithm
for online generation of nearly optimal trajectories for this
AWE system.

5.5 Warping NMPC

In order to assess the tracking performance of warping
NMPC, the controller is tested against a wind speed
profile decreasing in time from 10m/s to 6m/s. Figure
6 depicts the wind profile as well as the 3D pumping cycle
trajectories at the end of the simulation interval. It can be
observed that normal NMPC, which is based on a constant
tracking trajectory generated at 10m/s, is unable to track

the reference trajectory and extract energy (indicated by
a negative Loyd factor ηLoyd = −2.09%). In particular, it
keeps the kite at a high elevation angle and barely performs
any movement. By contrast, the warping NMPC reaches
power efficiencies (ηLoyd = 31.57%) very close to the ideal
one by adaptation to the varying wind speed vw.
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