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S U M M A R Y 

This study contains two topics which are important for the use of a one-dimensional computer 

model, calculating morphological changes in time. 

Firstly, for a good prediction of the morphological changes by the model a good reproduction 

of the water movement and the sediment movement is necessary. One of the conditions for a 

good reproduction o f the process is a good schematisation of the river cross-section in the 

model. In the river cross-section, a good reproduction of all the parameters playing a role in 

the morphological process is required. Several schematisation-methods are treated, considering 

a fluctuation in the discharge and irregularly shaped cross-sections. 

The second topic of this study considers the interpretation of the calculated morphological 

change to the real cross-section. The calculated morphological change is distributed over the 

width o f the cross-section in several ways, each distribution with his own physical background. 

The results show an influence of the distribution-option on some practical parameters. 

For both topics data are used of the Da River in Vietnam and of the River Waal in the 

Netherlands. 
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1 I N T R O D U C T I O N 

1.1 General 

The complex process of the movement of water and the movement of sediment over the 

movable river bottom is called river hydraulics. These movements may vary considerably in 

magnitude, both in time and space. The insight in the behaviour of a river under certain 

circumstances is necessary when we want to predict its morphological evolution. These 

predictions are of basic importance for the assessments of flooding risks. They are also 

important in estimating the impact of natural changes, e.g. in climate changes, and of human 

interferences in river systems. The results give insight in the protection measures needed and 

management policies, called river engineering. Predictions can be made by means o f scale 

models or mathematical models. Nowadays, due to the availability of cheap computer power, 

and to their more general applicability, mathematical models are often the most suitable tools 

for studies of river morphology. 

The use of a model is a three-step approach: 

• The river is schematised into a model 

• The new situation is calculated in the model 

• This solution is interpreted for the real river 

This study regards mathematical models for calculating large-scale, long-term morphological 
changes due to human interference or natural changes. Such a program overlaps the transition 
period to reach a new equilibrium for longitudinal profiles of a large river basin. 
The phenomena of erosion and material deposition are of a three-dimensional nature, but the 
simulation of these complex phenomena and the accuracy achieved are not necessary for the 
large-scale and long-term predictions. Apart from the huge demand of computer power, and 
the accumulation of errors deriving from the repeated computations, a serious problem is 
represented by the definition o f appropriated boundary conditions which should remain valid 
during the simulation (Di Silvio, 1993). 

One-dimensional models are generally considered most suitable for these predictions. They are 
based on strong simplifications of the problems and inevitably give less accurate information 
than models based on more space dimensions, but, on the other hand, they require less data 
(data are often difficult to obtain) and usually can be run on a microcomputer. 

1.2 Short overview 

Regarding a mathematical model for the calculation of morphological changes, large numerical 
time-steps and space-steps are recommended, which allows some simplification of the whole 
process. Two important assumptions are the validity of the sediment transport as a function of 
the flow velocity, and a quasi-steady state of the water movement. The last assumption makes 
it possible to decouple the water movement and the sediment movement for each time step in 
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the model (Chapter 2). This is only valid when no storage outside the cross-section is assumed. 

The derivation of a one-dimensional model from a fully three-dimensional one is called "down 
scaling from 3D to I D " (Crosato 1995). This procedure must be performed accurately, 
because the relevant information on the main parameters playing a role in the processes to be 
modelled, should not be lost. One of the conditions for a good schematisation of reality in the 
model is a good schematisation of the cross-section o f the river, regarding these parameters. 
The first aim of this study is to schematise the river cross-section for a one-dimensional 
mathematical model which calculates morphological changes, considering an irregular shape of 
the cross-section and a variation in the discharge. 

A characteristic approach for a one-dimensional model is that some morphological parameters 
(flow velocity, bed level, water depth) are averaged over the cross-section. With this approach, 
the morphological change wil l be expressed as a change in time of the bed level Azb(x,t) over a 
sediment carrying width BstJx), which has to be constant in time. 

In Chapter 3 this approach is worked out. Herefore some measured bed elevations o f the River 
Da, in Vietnam are used, together with some relations between the discharge O and the water 
level h, the O-h rating curves. In section 3.2, some important parameters are described, 
together with their schematisation-notation. In the following sections some schematisation-
options are studied, each giving a good reproduction o f two parameters in the initial state, 
which is assumed to be in equilibrium. However, for a good reproduction of the water 
movement and the sediment movement, more than two parameters have to be schematised 
well. When the cross-section of the river has a not rectangular form, and a variation in the 
discharge is considered, a good schematisation of whole the process, including flow profiles, 
wi l l not be possible with this approach. This is also caused by the fact that in this approach the 
sediment carrying width is not a function of time, what is not realistic with a varying discharge 
(c.q. water level). 

In Chapter 4 a different approach is followed. The water depth and the bed level are not 
averaged over the cross-section anymore, and the morphological change in time will be 
expressed as a change in time of the cross-sectional area AA(x,t). The cross-section is 
schematised in the model with a notation of the width as function of the water level. This 
schematisation gives a good reproduction of the water movement, as well in the initial state as 
in a f low profile, and needs less input data compared to the notation o f the real cross-section 
with the bed level as function of the width. 

This means that a good schematisation of the sediment movement is left, and because of a 
good reproduction of the f low velocity, more in particular a good schematisation of the 
sediment carrying width is left. In Chapter 4 a method is developed to determine the sediment 
carrying width. With this method, the sediment carrying width will become an artificial 
parameter which is calculated by the model at each space step for each time step. This way a 
fluctuation in time of this parameter can be followed. The calculated BsJx,t) is a function of 
the geometry of the cross-section, of the water level and of the used sediment transport 
formula, information which is all known in the quasi-steady approach in the model. The 
calculated BseJx,f) is not a function of the local f low situation, what makes this method also 
valid in a f low profile. This approach is tested with some measurements of sediment transport 
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at the River Waal, in the Netherlands, with a satisfying result. 

The second aim of this study is to find a realistic interpretation of the morphological changes 

for the real river, the so-called "up scaling", and to study the influence of this interpretation. 

With the result o f Chapter 4, this means that the calculated change of the cross-sectional area 

AA(x,t) has to be divided over the width o f the cross-section, so a two-dimensional result is 

achieved. 

In Chapter 5 some suggestions are given how to divide the morphological change over the 

width, each one with an own physical background. 

For the situation of withdrawing water upstream, the new equilibrium situation at the river 

mouth is calculated, regarding the influence of these divisions. It shows that the use of different 

division-options results in different values for some practical parameters in the new equilibrium 

situation. 
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2 B A S I C T H E O R Y 

2.1 General 

Two phenomena play an important role where rivers are concerned, the movement o f water 
and that of sediment. These two elements may vary considerably in magnitude, both in time 
and space. 

2.2 Water movement 

The Saint Venant equations give a good description of the one-dimensional water movement, 

with a variation in time (t) and longitudinal direction (x). The two partial differential equations, 

containing mean values over the cross-section, are: 

The equation for water motion: 

dQ ,20 dA . 
dt A at 8 5 

1-0 ,Q% dz 
U 6161 -c 

dx dx 
+gA — i U *d*ü = o (2.1) 

with: 0 = discharge 
As = conveying cross-section 
Bs = stream width, surface width of conveying part 

g = acceleration due to gravity 
a = water depth 

zh = bottom level 

C = Chézy coefficient 

R = hydraulic radius 

a' = coefficient 

The equation of continuity of water: 

dz p>n 
5 ^ + ^ = 0 (2.2) 

dt dx 

with: B = storage width (width at water surface) 

zw. = water level 

The coefficient a'is a correction term considering a non-uniform velocity distribution over 
width and depth in the conveying cross-section A„ which carries the total discharge. In case of 
a rectangular form, & ' can be assumed approximately unity. However, for a cross-section with 
a different shape this wil l not be the case. Assuming a constant surface slope over the width 
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and a vertical mean velocity u at each instant according to u = Cvfaif,, this results in: 

y-i 

a' = A f a 2 C2 dy ƒ C a312 dy 

yi 

•2 

(2.3) 

The resulting a' is usually quite close to unity. Moreover, in practical calculations the factor a' 
is often of little significance. When there are parts in the cross-section which do not carry any 
(net) f low at all, the terms cc' and R concern A„ in which the non-solid parts of the wetted 
perimeter will also show a shear stress because there is a significant gradient o f the mean 
velocity. There are indications that this shear stress may be comparable to the bottom shear 
stress. 

There are some simplifications of the equation for water movement. Considering a river with 
steady uniform flow, this becomes: 

A Q\Q\ 
SAs "T~ + = 0 (2.4) 

In another form: 

Q = A C jRi (2.5) 

This last formula is the Chezy-equation for steady uniform flow. 

2.3 Sediment movement 

Regarding the one-dimensional situation, the following partial differential equation is available 
for alluvial rivers: 

The equation for continuity of sediment: 

D dz 8S n 

with: S = sediment transport as bulk volume 

The equation for sediment motion: 

S = B ƒ (U, parameters) (2.7) 

6 



For the last equation an important assumption is made. The local transport is governed by the 
local hydraulic parameters of which the local mean velocity U, especially, varies in time and 
space. In other words, the sediment transport is a function of the water velocity, s =f(u), 
assuming an equilibrium profile of the sediment concentration in vertical direction, 4>e(z). 
Because the adaptation time Ta and the adaptation length La are much smaller than the time-
step and space-step respectively, this assumption is justified. There are several sediment 
transport formulas, each for a different f low or topographical situation. In this study, the 
general form is used: 

S = B m0U" (2.8) 

The coefficient m0 and the exponent n contain important characteristic parameters which 
govern the transport process, such as the grain size D , the Chézy coefficient C, the relative 
density A =(p-p)/p and the ripple factor p. Most o f these parameters wil l be assumed to be 
constant in time and space, while in reality there wil l be variations. For example, there wil l be 
variation in the grain diameter D in longitudinal direction. Also, the Chézy coefficient C, 
determined by the form of the cross-section and the water level, wil l vary in time and space, as 
well in longitudinal as in transverse direction. 

Regarding the sediment movement, two other assumptions are made: 

* Uniform bed material is supposed to be present 

* Fixed banks are postulated. Or, in other words, the erodibility of the banks is 
much smaller than that of the bed 

2.4 Quasi-steady flow 

To prove the validity of assuming a quasi-steady situation, it is hypothesized for the time being 

that B(x,t) = B = constant. Consequently, the four partial differential equations can be written 

for the unit of width. 

Equation for water motion: 

du du da dz u\u\ 
Tt + u~cïx~+ g T + gTc ' ~8~c\t ( 2 - 9 ) 

Equation for continuity of water: 

da da du n 

¥ + "T - 0 <2'10> 
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or 

to + ii = o 
dt dx 

(2.11) 

Equation for continuity o f sediment: 

È. + ?± = o 
dt dx (2.12) 

Equation for sediment motion: 

s = fiu, parameters) (2.13) 

with: u(x, t) = f low velocity 

s(x,t) = sediment transport 
a(x, t) = water depth 
z(x,t) = bed level 

Fig. 2.1 

The two sediment equations can be combined into 

dz d f(u) du 
dt d u dx 

= 0 (2.14) 

This equation and the two water equations form a system of three partial differential equations 
with the three dependent variables u, a and z. 

According to the cubic equation (de Vries, 1959) three celerities c = dx/d/ of this hyperbolic 
system are found: 
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- c 3 + 2uc2 + (ga - u2 + g f j c - ugfu = 0 (2.15) 

and in dimensionless form: 

<D3 - 2 $ 2 + (1 - Fr~2 - W 2 ) $ + YFr 2 = 0 (2.16) 

with: <E> = c/w 

= u/vga 
= relative celerity 

= Froude number 

= dimensionless transport parameter 

In this equation there are three celerities. Two of them, c, and c2, express the propagation of a 

disturbance at the water surface. The third, c3, expresses the propagation of a disturbance of 

the bed. 

I t was noted by de Vries (1959) that for low Froude numbers (Fr < 0,6) the water and 
sediment equations can be decoupled, because \cu\ > > c3. This gives the following 
advantages: 

- with respect to the water movement, the time interval for the computations (a few 
days) is too small to record some important bed changes, thus, it can be assumed that 
the propagation of the bed disturbance c3 is zero. The propagation of the water surface 
disturbances, c12 = u± /ga is not influenced by the mobility of the bed. A fixed bed 
can be assumed. 

- regarding river-bed movement, the disturbance at the bed has the celerity: 

the two celerities cJ 2 form the characteristic d7 = 0 in the x, /-plane. In other words, the 
water f low can be considered quasi-steady. 

This is illustrated in figure 2.2. 

x ii (2.17) 
l-Fr2 
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Fig. 2.2 

Inserting duldt = 0 and da/dt = O in the water flow equations it can easily be shown that the 
partial differential equations are reduced to ordinary differential equations. Because of the 
large time steps in morphological calculations the time derivatives become negligible compared 
to the others terms in the equations (convective, pressure and friction). 
In the equation for water motion it is no problem to neglect the time derivatives. The equation 
is reduced to the one for steady non-uniform flow. 

The equation for continuity of water should be considered more carefully. I f da/dt = 0, this 
implies dqldx = 0. To understand the implications it has to be remarked that from dqldx = 0 it 
follows that q(x,t) becomes q(t). Hence, at every time / there is steady flow. For each time 
step, however, a different discharge can be used, so that the fluctuation over a year is well-
reproducible. 

The fact that dqldx = 0 implies the important restriction that there is no storage outside the 
cross-section, for the whole river reach. Only then a quasi-steady calculation is allowed. 

Concerning a large river reach and considering a variation in the discharge over a year, in some 
cases it is not realistic to assume B(x,t) = B = constant. This approximation only serves to 
indicate the quasi-steady approximation (with the cubic equation). In reality, the width B can 
become a function of time and space. Then the general equations have to be used again, in 
quasi-steady form: 
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d_Q = 

dx 

a 
da 
dx 

idAr dz, n\n\ 
K'— i + a4 —* + g - M i ^ L = 0 

2 * 'dx * C 2 M 2 

•Q 

A 
(2.19) 

2.5 Varying discharge 

Each river has a seasonal fluctuation in the discharge. The morphological changes due to the 
entire river regime have to be known. In the past, when computational capacity was restricted, 
there was need to simplify the river regime by using a single discharge, correlated with some 
kind o f average river characteristics. 

Al l parameters in the river theory are discharge-dependent and change over time in a different 
fashion. 

I t has been proved sufficiently that a single discharge wil l not give a good reproduction of the 
morphological changes caused by the real sequence of discharges (De Vries, 1993 a). 
For calculations of long term morphological changes, where time dependent fluctuations are 
not primarily of interest, the quasi steady approach worked out in section 2.4 makes it possible 
to use a probability distribution of the discharge Q, giving a good representation of the river 
regime. It has to be mentioned that the chosen time step in the computer program has to make 
it possible to simulate the river regime. 

2.6 Morphological changes 

Morphological changes occur when a discontinuity disturbs an equilibrium and causes a flow 
profile in the river. This implies a gradient in the water velocity, dU/dx, followed by a gradient 
in the sediment transport dS/dx, which causes the morphological change dz/dt, according to the 
equation of continuity of sediment. So a good calculation of morphological changes requires a 
good schematisation of the sediment transport, and its change in time. The general form of the 
equation for sediment movement: 

S = Bsed m0 U" (2.20) 

with Bsed = sediment carrying width 

shows that this demands a good schematisation of the mean water velocity U and its change in 
time. Regarding the simplified one-dimensional equation of a f low profile: 
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C2RA2ib 

(2.21) 
1 - Q2B 

gA3 

it follows that the important parameters for the water movement are the wetted area A in the 
cross-section, the hydraulic radius R and the discharge O. These have to be approximated well 
in the model, i f a good reproduction of the sediment transport and its change in time is wanted. 
For changes in time, the surface width Bsur influences a good reproduction o f a f low profile, 
because of its impact on the interaction between the changes in the wetted area AA, the 
changing water level and the changing hydraulic radius in equation 2.21. 

The parameters A, R and Bsur wi l l vary along the river and vary with the varying discharge. 
Finally, considering m0 and n constant in time and place (and known), the sediment carrying 
width Bsed completes a good reproduction of the sediment transport. In reality, this parameter 
wil l also vary in space and with the discharge. 

2.7 Assumptions for this study 

This schematisation-study is for mathematical models calculating morphological changes. 

These models are one-dimensional, representing only longitudinal bed profiles and longitudinal 

free surface profiles. The sediment transport is a function of time and hydraulic f low 

conditions. For this study, the following hydraulic assumptions are made: 

* No storage in the cross-section. As= A 

* Froude number Fr < 0.6. This means that the water movement and the sediment 
movement can be decoupled. 

* Quasi-steady state of the water movement. 

* The Chézy value C is constant over the width 

* The water-surface slope is equal over the width of the river. 

* The pressure is hydrostatic, which implies that streamline curvature is small and 
the vertical acceleration is negligible 

* Uniform bed material 
* Fixed banks 
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3 S C H E M A T I S A T I O N 

3.1 General 

Step one of the use o f a model is the schematisation of reality into a model. One of the 
boundary conditions is a good reproduction of the initial state. 

In a characteristic one-dimensional approach the morphological parameters are averaged over 
the cross-section. These are: 

* The flow velocity U 
* The water depth a 
* The bed level z 

Because most river cross-sections show a large width compared to the depth, a possible 

schematisation, often used in movable bed models, is a rectangular cross-section in the model 

(subscript m) as representative of the real cross-section (subscript r). This makes it also 

possible to work with the equations for unit of width. The calculated morphological change 

wil l be expressed by a change in bed level Az(x,f) over a sediment carrying width. Using this 

method, two problems arise which have not been solved yet: 

* Schematisation of the initial condition zm(x,o) from z/x,y,o). 

* Interpretation o f the computed values zm(x,t) to the desired prediction of zr(x,y,t) 

The schematisation problem wil l be studied in this Chapter and Chapter 4. The interpretation 
problem wil l be worked out in Chapter 5. 

Keeping the water level in the model the same as in reality, this leaves two unknown 
parameters for the rectangular schematisation, Bm and zm, which can be found by proper 
schematising of some important parameters (see figure 3.1). 

Fig. 3.1 
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There are three difficulties regarding the schematisation. 

* Firstly^ a good reproduction of morphological changes requires a good reproduction 
o f more parameters playing a role in the morphological process, as well from the water 
movement as from the sediment movement. 

* Secondly, when a discontinuity occurs, the change of the water movement has to be 

followed as good as possible, while it causes the morphological change. 

* Thirdly, the schematisation has to be valid for various discharges, with respect to the 
seasonal fluctuation in the discharge. 

In section 3.2 some parameters playing an important role in the process are mentioned, 
together with their possible schematisation in a rectangular cross-section. 

In section 3.3, the first two difficulties are studied for one discharge, considering a calculation 

of the morphological change expressed by a change in the bed level Az(x,t). 
In section 3.4, the variation in the discharge is considered. 

3.2 Schematisation of parameters 

Now the parameters, mentioned in section 2.6, will be calculated, which results in some 
options for schematisation. 

For the water movement, it is necessary to select Bm = Br, when a good reproduction of the 
storage is wanted. For this study a quasi-steady state of the water movement is assumed, so 
this reproduction is not necessary. Two other important parameters for a good reproduction of 
the water movement are the wetted area^4m and the discharge Om. During calculation time, the 
important water f low velocity U (for the sediment movement) will be calculated according to 
U = Q/A, with the discharge O as a hard boundary condition. When the initial state is assumed 
to be in equilibrium, the following two equations apply. The wetted area in the model, Am wil l 
be the same as in reality (Ar), acccording to the A-integral (over the width o f the cross-
section): 

the wetted area in the model, Am will be the same as in reality (Ar). 

Using the Chézy equation for steady uniform flow, the discharge O can be expressed and 
schematised accurately with the Q-integral: 

(3.1) 

o 
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C f b Br {h-zj™ =C f b j(h-z(y)f2dy (3.2) 
O 

considering a constant Chézy value C over the width. 

For the hydraulic radius R two options are discussed here. First the general form ofR= A/P, in 

which P is the wetted perimeter. However, it should be considered that to reduce the amount 

of input data of the initial real cross-section, the input can be given by the Br = Br(hr)-notation, 

and not by the regular zr = z r(7i^-notation. It can be proved that for a constant value of a (see 

eq. 3.3), the integral over the width 

Br 

f(hr-z(y)ydy (3.3) 
o 

has the same value for both methods of notation (De Vries and Wang, 1995). Both methods 

are illustrated in figure 3.2. 

h-amax 

> Br 

Fig. 3.2 

For the wetted perimeter P, however, the values of both options will be different for irregularly 
shaped cross-sections. When there is a large width to depth ratio, the difference will mainly be 
caused by the y- axis value (h-zmw) in the Br = Br(hr) notation. So leaving this value out o f the 
calculation of the wetted perimeter, this gives a good approximation of the real wetted 
perimeter. 

For nearly rectangular profiles, however, it is not necessary to leave this value out of the 
calculation of P. In that case both methods of notation results in the same P. 
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Another notation o f the hydraulic radius, especially useful for irregularly shaped cross-sections, 

is proposed by Engelund (Jansen et.al. 1979, p. 50). The dynamics of the river flow are 

influenced basically by the bottom shear stress. For irregularly shaped cross-sections the 

bottom shear stress will vary within the cross-section. Theoretical treatment of this value can 

only be applied to the very special case of steady, uniform, two-dimensional flow. The 

transverse derivatives vanish. 

This way, the following simplified form of the formula for water movement is obtained. 

dz i dx 

g - f i r = 0 <3-4) 
dx p dz 

Integrating this formula over the depth, and using the boundary condition: 

T« = zb 0 - - ) (3.5) a 

the following mean bottom stress, vb, is obtained: 

dz,. 
^ r - P F f (3-6) 

dx 

Using P = A/R this gives: 

R 
fa dv = 

dz 

dx 
(3.7) 

Another possible resistance law for the bottom friction is a relation between the depth mean 
velocity u (for unit o f width), the shear velocity w., and vb. This gives: 

T = P g (Q\2 

where 
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Br I " Br 

0 - faudy = j ( ^ ) (Ca^dy (3.9) 

Here C, is a representative Chézy value for the main river-channel. The combination of these 

equations gives the following hydraulic radius: 

valid only in steady uniform flow. However, it can also be used for slowly varying or slightly 

non-uniform flow. For this study, it is allowed to use this method, because the following two 

assumptions are made: 

* a quasi-steady state 

* low Froude numbers (< 0.6) 

Using this method, it wil l be shown that the circle is closed, with respect to the Chézy equation 
for steady uniform flow and the three schematised parameters. So a good schematisation of ,4 
and O results in a good schematisation of R. 

To show its importance, in Appendix A both expressions of R are compared for some cross-
sections, where the Chézy value C is presumed constant over the width, which may not be 
realistic. I t is shown that both values are quite the same for cross-sections with an approxima
ting rectangular form (difference about 10%). However, for cross-sections approximating a 
triangular form, the difference increases to up to 30%. 

Regarding a good schematisation of the water movement in the initial state, one parameter is 

left, i.e. the surface width Bsur. As we consider only cross-sections without storage (an 

assumption for a quasi steady flow) an accurate representation of the storage width is not 

However, all these schematisations are irrelevant with respect to the sediment transport, except 
that the important factor, the water velocity U, wil l be simulated quite well. For the sediment 
transport, the same Chézy equation for steady uniform water motion provides an option for 
schematisation according to the S-integral 

(3.10) 

necessary. 
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m, <QC" f b

n f(h-z(y)THy = m0C" f b " B m (h-zj ,n/2 (3.11) 
o 

where n, ib and C are the same on both sides. 

For these schematisations sufficient data are necessary. In reality, these are not always 
available. The most common data are discharge rating-curves and bed elevations at only a 
limited number o f places. However, with combinations of these and the assumption o f an initial 
state in equilibrium, the schematisations according to the integrals are possible. 

As well the sediment transport schematisation as the discharge schematisation are on both 
sides multiplied by a certain power of C Ab. For this study a constant Chézy value C over the 
width is assumed. This value can be calculated next way. When it is required that: 

in which Qr is the measured discharge in steady uniform state, C /ib is found. 
Another possibility concerns the hydraulic radius R, according to the equation for water moti
on: 

As mentioned before, there are two ways to find R, giving quite different values for some 
cross-sections. Regarding the resulting C \4b for both calculations, the Q-integral is only 
representative, when the hydraulic radius R according to Engelund is used. With this C Ab 

value, the S-integral wil l also be more realistic. 

The value (which is) found can be checked when the averaged bottom slope over the river is 
calculated with some discharge rating-curves along the river. Assuming a steady uniform flow, 
the water surface slope is equal to the bottom slope. This gives a Chézy value which should be 
realistic. For a varying water level, the Chézy value wil l fluctuate as well, what is realistic. 
In Appendix B, where the integral-theory is checked with data of the River Waal, the Chézy 
value is illustrated as well, with his fluctuation. 

(3.12) 
o 

(3.13) 
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3.3 One discharge 

3.3.1 General 

First, the problem of schematising the cross-section in a rectangular profile wi l l be studied for 
one discharge. Regarding the initial equilibrium state, we can calculate some important 
parameters and schematise them well in a rectangular cross-section for the model. This wil l be 
worked out in subsection 3.3.2. 

In subsection 3.3.3 it wil l be studied wether the possible schematisation options give a good 
reproduction of the f low profile. This is important for a good reproduction of the 
morphological changes. 

3.3.2 Rectangular profile for initial state 

There are three parameters left which have to be schematised well. To determine the 
rectangular cross-section with the two unknowns, Bm and zm, two parameter-schematisations 
are neccessary. Combining two parameters, there are three options: 

* A and Q 
*AmdS 
*QmdS 

according to: Am=Ar: 

B ( h - z ) = f(hr-z(y))dy (3.14) 

Bm (hr-zmr12 = f(hr-z(y)y/2dy (3.16) 
o 

During this study, some theories and calculations are illustrated with two example cross-
sections with a nearly rectangular shape (Hoa Binh) and a nearly triangular shape (Trung Ha). 
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These are real cross-sections from the Da River, a tributary of the Red River in Vietnam. For 
both cross-sections a discharge rating-curve and a bed level elevation are available. The 
following figure shows both shapes in the Br(hr) notation. The names of the cross-sections are 
connected to places nearby. 

Hoa Binh cross-section 

o -
_5 -I I I I L 

0 100 200 300 400 500 
Br(m) 

20 
Trung-Ha cross-section 

15 - _ y ' 
O S 10 -
é s -
** 0 -

-5 -
-10 1 i i i i i 

0 100 200 300 400 500 600 700 
Br(m) 

Fig 3.3 

When the real cross-section has a nearly rectangular form, the resulting values of Bm and zm o f 
the three options wil l be aproximately the same. However, when the shape of the cross-section 
is different, the options wi l l give different values. In Appendix A the results for several cross-
sections will be shown. An overall outcome is that the g.^-method results in the largest width 
and smallest depth, and the Q, ^-method the opposite. 

This means that each option does not gives a good reproduction of the total process in the 
initial state. 

During calculation time, the flow velocity U will be calculated according to U = Q/A with the 
discharge Or as a hard boundary condition. 

The 2,^-option shows a good reproduction of the one-dimensional water movement, with the 

parameters A, Q, U and R. Only the real sediment transport wil l be larger than the obtained 

Bm tn0 IT. The effect wil l be an incorrect time scale of morphological changes. 

The A,^-option has a different equilibrium depth, belonging to the discharge Qr. This implies a 
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lower water level, followed by a smaller wetted area A and thus a larger water velocity U in the 
modei. This problem can be solved by calibrating the Chézy value until the same water level is 
reached with respect to a steady uniform flow. 

Option O, S also gives a smaller wetted area A, followed by an error in R and a larger water 

velocity U compared to reality. In this case, the equilibrium depth is correct. 

The sediment transport S is correct in the initial state. 

3.3.3 Reproduction of the flow profile 

When a discontinuity disturbs the initial equilibrium state, morphological changes occur. These 
are caused by a gradient in the water velocity dU/dx. Consequently, for a good reproduction of 
the morphological changes, a good reproduction of the flow profile, and thus the flow velocity 
gradient, is needed. 

In fig 3.4 an example is given of two flow profiles. The induced discontinuity is a withdrawal 
of water. 

M2 

Fig 3.4 

Studying the flow profiles of the rectangular options and the i?r(7zr)-notation, it becomes clear 
that the gradients in the flow velocity belonging to the rectangular options are not replicas of 
"reality". The "real" situation can be reproduced quite well by the /3r(/77.)-notation, a 
schematisation where the width is given as function of the water level. This is no problem when 
only a reproduction of the water movement is required. Regarding the one-dimensional 
equation of a f low profile 
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the deviation of the flow-velocity gradients is caused by two errors. 

Firstly, by a wrong reproduction of one of the parameters of equation 3.17 in a rectangular 
schematisation. 

Secondly, a wrong reproduction of the f low profile is caused by the deviation o f the water 

surface profile o f the rectangular cross-sections, which causes another interaction between the 

changing parameters of equation 3.17. In the flow profile, the three options of schematisation 

have a different interaction between the changes in the water level, the changes in the wetted 

area A and the changes in the hydraulic radius R. 
The Q,A-option approximates the water movement best, because of the best reproduction of 

the surface width. This implies the same relative change of the flow velocity in the f low profile 

compared to "reality". The Q,A-option also approximates the parameters with influence in the 

flow profile equation quite well. This implies the same values in the flow profile. 

For example, the Q,S-option shows a much larger fluctuation of the flow-velocity compared to 

"reality", and different values as well. 

A good reproduction of this gradient (and interaction between the parameters) demands a 
good reconstruction of the real surface width in the area of the water levels and also a good 
reproduction o f some parameters. A solution is "calibrating" the schematisation- profile. 
The g.-^-schematisation starts following the 5X^ r)-notation (going up) at the height where 
the calculated Bm of this option reaches the width of the 5 r(/2 r)-notation. 
Now the wetted area A increases compared to the old g,-<4-schematisation. To compensate 
this, the zm is lifted up until Am equals Ar for the water level hr belonging to Br(hr) = Bm, 
according to 

The calibrated schematisation has a hydraulic radius which differs from reality. This can be 

solved by calibrating the Chézy-value. 

For the Q,A-ophon, the "calibrated" 0,^-option and the ^(/^-schematisation the water 

velocity gradients are plotted in figure 3.5. Regarding the resulting gradients, the different 

values for the coefficients C and R also cause a deviation from "reality". However, much 

smaller than the results of the rectangular Q,A -option. One has to consider that the plotted 

gradient of the 0,A-option already was the best reproduction of the three rectangular options. 

B, 
(3.18) 

o 
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The figure illustrates a situation where at N = 200 water is withdrawn. At N = 0, the river 
flows in a lake. Figure 3.5 shows that the "calibrated" cross-section gives a quite good 
reproduction of "reality". 
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300 200 100 

n (*500 m) 

Q,A-option 

calibrated Q,A-option 

—^— B(hr)-schematisation 

Fig 3.5 

Now, the schematisation o f the cross-section is not rectangular anymore, which means that the 
general equations for water movement have to be used instead of the equations for unit of 
width. 

The sediment transport wil l be calculated according to S = Bm IT. With the "calibrated" 

schematisation, the gradient in the sediment transport will be schematised quite accurately, but 

the quantity will be wrong, because the Bm has nothing to do with the sediment transport or 

morphology. The final morphological changes at t = «> will be calculated correctly. However, 

the time scale of the morphological change will be wrong. 

To achieve a schematisation of the real quantity of sediment transport in the cross-section, The 
Bm must be calculated according to Sm=Sr: 

f(hr-z(y)y<2dy =BmR"<2 (3.19) 
o 

23 



with 

B \ 2 
R = 

A ƒ (3.20) 

o 

with C = C; = constant over the width. 

For this Bm, the profile is "calibrated" again. In practice, the calculated Bm wil l be close to the 
surface width, so a nearly rectangular cross-section will be obtained, with (smaller) errors in 
the water velocity gradient when a discontinuity occurs. The hydraulic radius wi l l also differ 
from the real value, which means that the Chézy value has to be adapted, which gives the small 
known error. 

When in equation 3.19 the hydraulic radius R according to R = A/P would be used, which is 
smaller for irregularly shaped cross-sections, the calculated Bm would be larger than the surface 
width. 

The final result is a definition of the initial condition zjx, 0) from zr(x,y, 0). Regarding the 

parameters of the water movement, the wetted area and the surface width (for only a small 

range of height) are well-reproducible. The hydraulic radius wi l l be smaller, so the Chézy value 

has to be adapted. The schematisation gives a good reproduction of the sediment transport in 

the initial state. The morphological changes wil l be calculated according to Az(x,t) overBm. 
However, this cross-section is only valid for one discharge. 

3.4 Varying discharge 

3.4.1 General 

In reality there wil l be a fluctuating discharge. As mentioned before, a single discharge cannot 
provide the same morphological changes as the real sequence of discharges ( De Vries, 1993 a). 
So the schematisation profile has to be valid for a sequence of discharges. 

For each discharge, the sediment transport wil l be different, caused by a different water 
velocity U, but also caused by a variation in the sediment carrying width Bsed, calculated 
according to equation 3 .19. Again, this will especially apply to irregularly-shaped cross-
sections. For almost rectangular cross-sections, the fluctuation in Bsed wi l l be small. 
The limitation of expressing the morphological changes as Az(x,t) is that also one Bsed(x) is 
required. When at each time step during the calculation, the morphological change ti l l that 
moment has to be given well by Az(x,t), a fluctuation of Bsed(x) is not allowed, because it 
would imply a fluctuation in the total morphological change (AASeJx,f)= Az(x,l) * BseJx)). 
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In view of these findings it becomes difficult to find one fixed schematisation, valid for all the 

discharges, regarding the conditions mentioned in section 2.6. Using a statistical method, with 

a probability density p(Q), it is possible to find one zm (x, 0) and one BseJx). 

3.4.2 Schematisation 

The general idea of calculating with one fixed schematisation profile, is to express the 

calculated morphological change as Az(x,t) over BseJx), according to 

A possibility to determine one Bsed(x) is to find a mean Bsed(x) by schematising the total 

sediment transport in a year (V). Having a probability densi typ{Q} and a discharge rating-

curve, the mean BseJx) wil l be found with 

B sed 
dz + ds 

(3.21) 
dt dx 

(3.22) 

in which 

E {P(K) S(K) } = E \P(.K){ C fb(hr)}» f(hr-z(y)y/2dy (3.23) 

o 

and 

n 

E {piK) u(hry} = E \ P ( K ) o (3.24) 

f(hr~z(y))dy 

o 
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Subsequently, the profile will be "calibrated" (as in subsection 3.3.3). This method has been 
worked out for two cross-sections, a nearly rectangular and a nearly triangular cross-section. 
The results are shown in figure 3.6 and figure 3.7. Two types of errors occur using this 
method. 

The nearly rectangular cross-section shows a rather good schematisation of the parameters o f 
the water movement for all discharges. However, the mean Bsed(x) is too large for the small 
discharges and too small for the large discharges in the sequence over a year. These two errors 
compensate each other, so sediment transport that in reality occurs in time of high discharges, 
now occurs in time of low discharges. In other words, the fluctuation in the sediment carrying 
width during the year is not followed by the fixed schematisation profile. 
The second type of error is illustrated by the nearly triangular cross-section. The fixed 
schematisation-profile causes errors in the parameters of the water movement for the lower 
discharges, because the mean Bsed (x) wi l l be larger than their surface width. 

These two errors are especially caused by the general one-dimensional approach of the 
morphological parameters a and z, which are averaged over the cross-section. Working with 
one zm and the expression of the morphological change by Az(x, t) makes a mean Bse£x) 
necessary. On the last page of this chapter, an overview is given o f all errors that occur when 
an averaged water depth and an averaged bed level are required, together with the solution 
which wil l be worked out in chapter 5. 
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for each occuring discharge, the obtained parameter for the schematisation 
is compared with the real parameter 

Qr hr Bopm/Bop Rm/Rr Qm/Qr Am/Ar Sm/Sr Csqrti 

462 12.78 1.03 0.88 0.93 0.99 1.11 0.06 
500 12.88 1.03 0.88 0.94 0.99 1.11 0.07 
522 12.9 1.03 0.89 0.94 0.99 1.11 0.07 
533 12.92 1.03 0.89 0.94 0.99 1.11 0.07 
516 13.02 1.03 0.89 0.94 0.99 1.1 0.07 
526 13.03 1.03 0.89 0.94 0.99 1.1 0.07 
557 13.06 1.03 0.89 0.94 1 1.1 0.07 
553 13.11 1.03 0.89 0.94 1 1.1 0.07 
636 13.29 1.03 0.89 0.94 1 1.09 0.08 
807 13.33 1.03 0.89 0.94 1 1.09 0.1 
652 13.36 1.03 0.89 0.94 1 1.09 0.08 
725 13.45 1.03 0.9 0.94 1 1.09 0.09 
958 13.74 1.02 0.9 0.95 1 1.08 0.11 

1210 14.32 1.02 0.91 0.95 1 1.06 0.13 
1290 14.43 1.02 0.91 0.95 1 1.06 0.14 
1580 14.88 1.01 0.92 0.96 1 1.05 0.16 
1820 15.28 1.01 0.93 0.96 1 1.04 0.17 
2600 15.94 1 0.93 0.97 1 1.04 0.22 
2720 16.04 1 0.94 0.97 1 1.03 0.23 
4520 18.14 1 0.95 0.98 1 1.02 0.3 
4480 18.2 1 0.95 0.98 1 1.02 0.3 
6500 20.28 1 0.97 0.98 1 0.98 0.35 

Fig. 3.6 
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Nearly triangular cross-section 

width B (m) 

— s c h e m a t i s a t i o n real cross-section 

For each occuring discharge, the obtained parameter for the schematisation 
is compared with the real parameter 

Qr hr Bopm/Bop Rm/Rr Qm/Qr Am/Ar Sm/Sr Csqrti 

516 9.58 1.25 0.54 0.67 0.91 2.34 0.09 
522 9.63 1.24 0.55 0.67 0.91 2.3 0.09 
462 9.71 1.24 0.55 0.68 0.91 2.24 0.08 
526 9.78 1.23 0.56 0.68 0.92 2.18 0.09 
572 9.88 1.23 0.57 0.69 0.92 2.11 0.1 
557 9.9 1.23 0.57 0.69 0.92 2.1 0.09 
533 9.91 1.23 0.57 0.69 0.92 2.09 0.09 
553 9.94 1.22 0.57 0.7 0.92 2.07 0.09 
636 10.04 1.22 0.58 0.71 0.93 2.01 0.1 
500 10.05 1.22 0.58 0.71 0.93 2 0.08 
725 10.08 1.22 0.58 0.71 0.93 1.98 0.12 
807 10.29 1.21 0.6 0.72 0.94 1.87 0.13 
652 10.74 1.18 0.63 0.75 0.95 1.67 0.09 
958 10.88 1.17 0.63 0.76 0.96 1.62 0.13 

1290 11 1.17 0.64 0.77 0.96 1.58 0.18 
1210 11.51 1.15 0.67 0.8 0.97 1.44 0.15 
1580 11.73 1.14 0.68 0.81 0.98 1.39 0.19 
1820 11.77 1.14 0.69 0.81 0.98 1.39 0.22 
2600 12.04 1.13 0.7 0.82 0.98 1.33 0.3 
2720 12.18 1.13 0.71 0.83 0.99 1.31 0.31 
4480 14.04 1 0.79 0.89 1 1.07 0.39 
4520 14.07 1 0.79 0.89 1 1.06 0.39 
6500 14.8 1 0.82 0.91 1 0.94 0.5 

Fig. 3.7 
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1-dimensional approach: parameters S. U. z. and a averaged over cross-section 

One discharge 
rectangular profile with two unknown: zm and B 

0,^4-option initial state: A, U, ae, R good, S too small 
flow profile: wrong interaction between AA, AR and 

Ah. Best reproduction o f three options 
because of most realistic Bsur result is a 
wrong time scale of the morphological 
changes 

O.'S'-option initial state: ae and S good, A too small thus U too 

large and R too small 
flow profile: wrong interaction, smaller Bsur 

A,S-opüon. initial state: ae too large, O as boundary condition, A 
smaller thus U larger, thus S larger. R 
smaller 

flow profile: worst interaction, smallest Bsur 

solution: not rectangular profile with: 

BSed w i ï h S-integral 
zm with A-integral until hr(Bsed) 
hr>hr(Bsed). real cross-section 

initial state: A, U, and S good, R not good, so C has 

to be adapted 

flow profile: quite good, good Bsur 

Varying discharge 
required: one zm and one Bsed. 
solution: statistical method with probability density p{Q] 
errors because: no variation in Bsed possible for varying discharge 

errors in parameters for smaller discharges, because 

Bsed > Bsur, especially for irregular profiles. 

Solution: 1-dimensional approach: no averaged a and z. A. S and R with integrals 
cross-section: B = B(hr). water movement: initial state and flow profile good 

good for all discharges and all shapes, 
sediment movement: calculation Bsed with S- and R-
integrals: valid for initial state and flow profile good 

variation of parameters over the width is integrated in the 1-dimensional 

calculation, so a 2-dimensional accuracy is achieved. 
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4 S C H E M A T I S A T I O N : W I D T H AS F U N C T I O N O F W A T E R L E V E L 

4.1 General 

Leaving the general idea of schematising the morphological change as a change of the bed level 

Az(x,t) over a sediment carrying width BseJx), a one-dimensional approach arises, in which the 

morphological parameters a (water depth) and z (bed level) are not averaged over the cross-

section anymore. 

Instead of averaging a and zb over the cross-section, the cross-section is given as Bm(hr) = 
Bn(hr). Regarding the water movement, for all occurring discharges the conditions of section 

2.6 are no problem anymore. The parameter A (wetted area) is calculated with the integral-
theory, while Q is given as boundary condition. An averaged water flow velocity U over the 

cross-section can be calculated according to U - Q/A. For all water levels, the parameters in 

the one-dimensional equation for the flow profile are reproduced correctly. 

This is also important for a good reproduction of the sediment movement. However, for the 

sediment movement a sediment carrying width is still missing. In a computer model, it is 

possible to give it as a parameter, which will be worked out in this Chapter. 

The result is a one-dimensional model (only the longitudinal direction), while at each space-

step x the morphological parameters are calculated with a two-dimensional accuracy 

(transverse direction) for a varying discharge. The morphological change wil l be expressed as 

AAsecfx, t), a change in the cross-sectional area under the cross-section ti l l a certain reference 

level. This area is illustrated in figure 4.1 

Fig 4.1 

The parameters U, Ased and S wi l l be given as one value as function of x. The equation for 
continuity o f sediment becomes: 
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dAsed + dS = Q 

dt dx ' 
(4.1) 

I t can be assumed that most morphological changes occur in the deeper part of the river, so 
that the calculated AAseJx,t) wi l l be representative for all water levels. 

4.2 Sediment carrying width 

4.2.1 Definition 

In the steady uniform flow situation, a good reproduction of the sediment transport, with a 
variation over the width, is given by: 

S = C" i f fa"l2dy (4.2) 

Using the Chézy law for the one-dimensional reproduction of the sediment transport, this 
gives: 

' n j " / 2 t> nil S = B s e d C " C R ' (4.3) 

Using the Engelund equation for R, the sediment carrying width Bsed becomes 

f(h-z(y)y'2dy 

B 
sed 

f(h-z(y))dy 

(4.4) 

Thus, for a steady uniform situation, the sediment carrying width can be found this way, as 
function of the water level and the geometry of the cross-section, Bsedihr). 

4.2.2 Sediment carrying width as function of the water level 
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However, morphological changes occur in a non-uniform situation, when there is a flow profile 
over the river. Regarding a one-dimensionai computer program, the water movement, and thus 
the gradient in the water velocity, which is important with respect to morphological changes, 
is schematised accurately when the real cross-section is used. The sediment transport will be 
calculated with: 

S = Bsed (QlAf (4.5) 

The question is whether the equation obtained for the sediment carrying width Bsed, as function 

of the water level, can be used in a f low profile. It can be proved that the calculation of the 

sediment carrying width is not dependent on the flow conditions, but is dependent on the 

geometry of the cross-section and the water level. 

Considering a flow profile, which gives the same water level, only with a discharge which is B 
times the discharge which belongs to that water level when a steady uniform flow is 
considered, the sediment transport is calculated in the following way. 
First the discharge Qr is distributed over the width of the real cross-section proportionally to 
cr^O). The proportions o f this distribution are plotted in the figure 4.2, for the nearly 
rectangular profile 

proportional q (y ) profile over width 
almost triangular cross-section 

y (m) 

Fig. 4.2 

resulting in qr(y) according to 
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Then, the depth mean velocity u is calculated as function o f y , delivering a u(y) = q(y)/a(y) 
profile over the cross-section width. 

Now the total sediment transport can be calculated according to: 

S = f(ü(y))"dy (4.7) 
o 

In the computer program the one-dimensional mean water velocity U = Q/A is used. The 
sediment carrying width Bsed is: 

f(M(y)fdy 
{ (4-8) 

Bsed 
(Q/A)" 

The result is a sediment carrying width which is the same as the one belonging to that water 
level for a steady uniform flow. 

Bsed (stat. uniform) = Bsed (flow profile) 

This proves that the sediment carrying width is not dependent on the flow conditions, but is 
dependent on the geometry of the cross-section and on the water level. 

When the water level h is calculated with the one-dimensional flow profile equation, Bsed(h) 
and A(h) can be calculated, resulting in a good representation of the total sediment transport 
through the total cross-section. 

To show the variation of Bsed (x, t) as function of hr(x, t), and the dependence of the geometry 
on the variation of Bsefx,t), for both the nearly rectangular and the nearly triangular cross-
section, this variation is given in figure 4.3 (for the formula of Engelund and Hansen, 1967, 
with n = 5) 
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Influence of h on the sediment carying width 
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Fig 4.3 

This figure shows a small variation of Bsed(x,i) for the nearly rectangular cross-section, 
compared to the nearly triangular cross-section. 

In Appendix A the variation of Bsed(x,i) as a function of hr is given for some more cross-
sections. 

4.2.3 Sensitively of the exponent n 

The general formula for sediment transport, S=Bsed*m*U", shows a dependence on the 
exponent n, which contains, together with m, all parameters which govern the transport 
process. 

Using equation 4.4 for the sediment carrying width, there is also an influence of n onBseJx,t). 
For a non-rectangular profile, an increase in n causes an increase mBsed(x,t). 

This wil l be demonstrated by an example of a composite cross-section, shown in figure 4.4, 
with 5 , =B7 = B. 
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Fig. 4.4 

The function for Bsed becomes 

B . = B 
sed 

1 + a nil 

1 + CC3/2 

1 + a 

(4.9) 

With a < 1 and n > 3, this function gives an increasing Bsed with an exponential character for 
an increasing n. 

Depending on the geometry of the cross-section, this influence can be either small or large. For 
the nearly rectangular and the nearly triangular cross-section, the results are plotted in figure 
4.5. 

Influence of n on the sediment carying width 
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The general formula for sediment transport thus becomes: 

S = BsJn) m U n (4.10) 

Consequently, it is concluded that the sediment carrying width Bsej(x,t) is a function of: 

* The geometry o f the cross-section 

* The chosen transport formula («) 

* The occurring water level hr(x, f ) 

For calculations with one discharge, it is advisable to use this method also, because it is to be 

expected that the sediment carrying width changes in a flow profile with varying water levels. 

4.3 Chézy value as a function of the water level 

In the initial state it is possible to determine the Chézy value C according to 

When an averaged bottom slope is assumed this gives a Chézy value. Because the water 
movement is reproduced correctly, it is not necessary to calibrate this C, which means it can be 
used in the model, and is constant over the width. 

When there is a fluctuation in the water level, there will be a fluctuation in the Chézy value as 
well, which is realistic, regarding the Colebrook-White formula (for values of R/k below 1000) 

In which k is the bottom roughness. An increasing R induces an increasing C. 

Again, this fluctuation wil l be smaller for nearly rectangular cross-sections compared to 
irregularly shaped cross-sections. 

4.4 Validation of integral-theory 

To use the approach with the .8r(/2r)-schematisation in the model, and the calculation of the 
sediment carrying width for each space-step at each time-step (the integi-al-theoxy), the data 
needed are O-h rating curves and bed elevations of cross-sections. Moreover approximating 
values of the coefficient m0 and the exponent n have to be known. 

(4.11) 

C = 18 log 12 R 
k 

(4.12) 
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It is possible to validate the integral-theory when measurements of the sediment transport are 
done and Chézy values are known. These data are not very often available . 

However, for the River Waal these data are available at R.W.S. Arnhem, and some tests have 
been done. The available data are Chézy-values belonging to some discharges and 
measurements of the sediment transport in combination with discharges for a characteristic 
reach o f the River Waal, between Tiel and Dodewaard. Also approximating values of n and m0 

are known: n = 4 and m0 = 0.000042. 

The methods of measurement used for the sediment transport of bed material are divided into 
bed load (transport) and suspended load (transport). 

For the bed load, two methods are used, both plotted in figure 4.6.. First the dune-tracking 
method. With an echo-sounder the dune-velocity is estimated. These are the input data for a 
software package, which gives the bed load as output data. This method is plotted as +. The 
second method used here is the BTMA-method (bodem transport meter Arnhem), which is 
plotted as o. 

For the suspended load and the bed load together, the used method is called "akoestische zand 
transport meter" the AZTM, indicated in figure 4.6 by A. 

Two mathematical calculation methods are also plotted. One for the bed load, according to the 
Meyer-Peter and Miiller formula, and one for suspended load of bed material, according to the 
Engelund and Hansen formula. 

It has to be mentioned that the tests with the integral-theory are only valid for the conveying 
cross-section between the groynes. These tests assume only sediment transport in the summer 
bed. For water levels higher than the top of the groyne, errors wil l arise in the results of the 
calculation according to the integral-theory, because of the discharge over the groynes. The 
calculation contains the influence of the wetted area in the cross-section above the groynes as 
good as possible. Here a reasonable height of the top of the groynes is used, because the height 
is not exactly known for each cross-section. 

The result is a quite good approximation o f the total sediment transport of the bed material ( A ) 
by the integral-theory, as can be seen in figure 4.6. Here, for one cross-section only the 
calculation is plotted which takes the influence of the wetted area above the groynes into 
account. In Appendix B, the results for some more cross-sections are given, together with the 
data used. 

In the following tables, the measured and calculated results of some parameters are given for 
one cross-section. The results of the calculated parameters wil l be compared with the measured 
parameters for some discharges (in Table 1, 2 and 3). Here also the results of the calculation 
without the influence o f the wetted area above the groynes are given. Note the errors in this 
calculation for the higher discharges: 
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Calculation one: without influence of wetted area above the groynes 
Calculation two: with influence of wetted area above the groynes 

0= 1345 m3/s: 

Table 1 

velocity U 
(m/s) 

depth a (R) 

(m) 

Chézy C 

(m 1 / 2/s) 

measured 1.05 4.94 43.73 

calculation 1 1.047 4.90 43.73 

calculation 2 1.047 4.90 43.2 

Q = 2145 m3/s: 

Table 2 

velocity U 
(m/s) 

depth a (R) 

Cm) 

Chézy C 
(m 1 / 2/s) 

measured 1.24 6.64 44.28 

calculation 1 1.22 6.51 43.6 

calculation 2 1.19 6.51 43.3 

Q = 4247 m3/s: 

Table 3 

velocity U 
(m/s) 

depth a (R) 

(m) 

Chézy C 
(m 1 / 2/s) 

measured 1.43 8.98 44.93 

calculation 1 1.73 8.76 53 

calculation 2 1.51 8.76 48.9 

The results show that the integral-theory approximates the measured data quite good, certainly 

when the calculation contains the influence of the discharge over the groynes. 
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5 I N T E R P R E T A T I O N O F M O R P H O L O G I C A L C H A N G E S 

5.1 General 

As mentioned before, the use o f a model is a three-step approach: 

* The river is schematised into a model 
* The new situation is calculated for the model-river 

* The solution is interpreted for the real river 

Regarding a one-dimensional mathematical model, in Chapter 3 the first and the third step 

where translated into two problems which have not been solved yet: 

* Schematisation o f the initial condition z^x.O) from zr(x,y,0). 

* Interpretation o f the computed values zjx,t) for the required prediction of zr(x,y,t) 

Chapter 3 shows that it is not possible to calculate an average z j x , 0) from zr(x,y, 0), which 
gives together with a sediment carrying width a good reproduction of the total morphological 
process for a sequence of discharges and an irregular cross-section. A solution is to leave the 
one-dimensional approach, in which the water depth and the bed level are averaged over the 
cross-section. With the results o f Chapter 4, step three is no longer a problem in finding a good 
interpretation of the computed values zm(x,t) for the required zr(x,y,f), but finding a good 
interpretation of the calculated morphological change, expressed as a change in the cross-
sectional area AAsej(x, t), for the real cross-section. 

There are two problems regarding the changes: 

* distribution over the real cross-section ( see also Cunge 1980 ) 

* Change in time of some significant parameters during calculation time has to be 
followed as well as possible 

5.2 Distribution over real cross-section 

According to the one-dimensional equation for continuity of mass, the morphological change is 
given as a change in the cross-sectional area AAseJx,t), the eroded or deposited sediment in a 
cross-section (see figure 6.1.) 
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Br 

Fig. 5.1 

Physically, it is not right to distribute the AAseJx,t) equal over the whole cross-section. More 

realistic options are distributions proportional to 

* the water depth, a' 
* the water velocity, a1'2 

* the sediment transport capacity, a5'2 

This way a two-dimensional result in space is calculated with a one-dimensional calculation. 

5.3 Influences on new equilibrium state at river mouth 

5.3.1 General 

A study wil l be performed on a cross-section at the mouth o f a river, flowing in a lake with a 

constant water level. Upstream, there wil l be a discontinuity, i.e. the withdrawal of water, 

To get a first impression of the morphological change regarding the three options of 
distribution, only the two equilibrium situations are considered. 

The new equilibrium state, at r = » has two conditions: 0, = (1-y) * Q0 

S, = Sg 

With: 

0=ACv/RA 

S = BsedC"SRWh" 

Using the integrals discussed before, S becomes: 
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\ n 

f(h-z(y))nf2dy 

S = C" i n i nil 0 

f(h-z(y))dy 

f(h-z(y)f2dy 
_o 

f(h-z(y))dy (5.1) 

which gives: 

S = C" f b " f(h-z(y)y,2dy (5.2) 

and 0 becomes: 

O = C • f b • f(h-z(y)f2dy (5.3) 

Regarding the two conditions for t=°°, the new bottom slope can be defined in two ways: 

* fio j(h-z0(y)?'2dy 
o 

f ( h - Z l ( y ) f 2 d y 

(5.4) 

and: 

f(h-z0(y)Y'2 dy nil 
•bO 

nil _ 0 
'hi (5.5) 

f i h - z & y f 2 dy 
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By way of iteration, the new equilibrium state can be calculated, considering the correlation 
between the three changing parameters. This is done by enlarging the deposited material 
AAsed(x,t) and distributing it proportional to a(, until the two bottom slopes are equal. 

There are two coefficients which have an influence on the final result, i.e. the distribution 
coefficient <f and the sediment transport exponent n. 

There are some important practical differences caused by these two parameters. For navigation 

aspects these are the maximum water depth amax, or in other words the width with the 

minimum water depth needed for navigation. For navigation, the mean water velocity U is also 

important. For inundation danger upstream an important parameter is the final bottom slope ib, 
which influences the water level h upstream. 

5.3.2 Influence of distribution coefficient cf 

First, the influence of the distribution coefficient tf on these parameters is shown. Again, the 

influence will be greater when a cross-section is less rectangular. In the complex calculation for 

the new equilibrium state an increasing f has the following influences: 

* a decreasing AA, and thus an increasing U = Q/A 
* a decreasing amax 

* an increasing ib 

which wil l be shown in the figures 5.2, 5.3 and 5.4, where it is calculated for the nearly 
triangular and the nearly triangular cross-section with n = 5, for the formula of Engelund and 
Hansen (1967). The discontinuity which causes the morphological changes is a withdrawal of 
water. 

For the A-integral, and especially the S- and Q-integrals, the deeper parts o f the river 
determine the magnitude of the value. To obtain a lower value for the Q-integral, less deposit 
material is needed when more is distributed over the deeper parts, which happens with an 
increase in the f-value, as can be seen in figure 5.2. 
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Fig. 5.2 

With an increase in cf it stands to reason that the deeper parts will get proportionally more 
deposited material, which implies a decrease in a m a r ( f i g 5.3). However, when the minimum 
navigation depth is much smaller than the maximum water depth, the distribution coefficient is 
still of some importance. For this situation, an increase in cf implies an increase in the possible 
navigation width. 

Influence of £ on maximum water depth 
n=5 
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distribution factor cf 
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Fig. 5.3 
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An increase in ^ causes an increase in ib in the final new equilibrium state, and thus in the water 
level upstream. This requires higher river dikes upstream. This influence is plotted in figure 
5.4. 

o 
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o 
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O 

J3 

Influence of £ on bottom slope 
n=5 

0,5 1 1,5 2 2,5 
distribution factor £ 

x almost triangular almost rectangular 

Fig 5.4 

Al l figures show less influence of a varying distribution parameter for a nearly rectangular 
cross-section, which is physically correct. 
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5.3.3 Influence of the exponent n 

The sediment transport exponent n influences the range of fluctuation caused by the 

distribution parameter i f . 

For the ib this fluctuation decreases for a decreasing n, and becomes zero for n = 3. For the 

nearly triangular cross-section, with a larger fluctuation, this is shown in figure 5.5, by plotting 

the variation of ib under influence of the exponent n for the three realistic distribution options. 

Influence of n on the bottom slope 
three distribution options 

6 n i , 

^=0.5 - « - £ = 1 . 0 £=2.5 

Fig. 5.5 

For the two important parameters for navigation, the ranges change also for a varying 
exponent n. (Figure 5.6 and figure 5.7). 

Influence of n on flow velocity 
three distribution options 
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Fig. 5.6 
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The river engineer has to decide which choice to make concerning the two coefficients, n and 

£ For the distribution coefficient f it is not possible to say which one wil l be correct, because 

no experiments have been performed studying this topic. Working with a safety factor, the £ 

with the most negative result for the particular problem can be taken. The exponent n depends 

on the physical situation of each problem, and can be calculated. 

5.4 Change of parameters during calculation time 

Considering the quasi-steady situation and the input o f the real cross-section, a one dimen

sional computer program works with the following set of simplified equations: 

gA 
Q2BS 

gA 

da dzb 

— + gA— + 
dx dx c2RA2 

Q\Q\ _ (5.6) 

dx (5.7) 

dA 

dt 
+ dS _ Q 

dx (5.8) 
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S = B i n ) m U" (5.9) 

With respect to these equations, there are some important parameters with a large influence on 
the total process of water movement and sediment movement in time. During the process of 
morphological changes, these parameters change as well. These changes have to be followed 
as good as possible. 

In the equation for water motion the discharge Q is given as boundary condition. The Chezy-
coefficient C is assumed to be constant over the whole cross-section width. I t is possible to 
give C as a function o f the water level. The change of the parameter for the wetted area A wil l 
be followed well, with AAsed(x, t) as the morphological change. In case of a cross-section with 
no storage, the parameter for the stream width Bs wil l be the same as the surface width. When 
the morphological change AAsedix,i) will be distributed proportionally to a f , the change in this 
parameter is negligibly small. 

This leaves three parameters which have to be considered. The hydraulic radius R, the bottom 

slope ib and the sediment carrying width Bsed. Especially Bsed and R are two parameters which 

change according to the real change of the cross-section. This means that AAseJx,t) has to be 

distributed several times during the calculation time. 

Here the distribution coefficient cf also influences the change in time. Taking the example used 

in section 5.3, at the river mouth, and the rectangular cross-section with a withdrawn of water 

of 11%, the following changes are found for the Bsed. 

f= 1/2: BsedJ = 0.91 Bs 

£ ^ f Bsedl = Bsed0 

cf= 5/2: Bsed] = 1.02 3 

Physically, it is not known wether the Bsed will increase or decrease in case of sedimentation, 

and the differences are small, so it is not possible to conclude which distribution method wil l be 

the right one regarding this parameter. However, these results, for one water level, show that 

the sediment carrying width is not changing very much when morphological changes occur. 

Another important process which has to be considered with respect to a good schematisation 
of reality in time, is the variation of the water level, which wil l influence the distribution of 
AAsed(x,t). Now, there will also be influence on the sediment carrying width which belongs to 
another time-step (with another water level). This requires a distribution o f the morphological 
change after each time-step. 

In section 5.3 a situation at the mouth of the river was studied, with no influence o f a varying 
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discharge on the water level. Here it does not matter i f a morphological change AAsed(x,t) is 
distributed only at t = °°, or several times during the calculation (except when the changes of 
Bsed and R in time are required), because the proportions of the variation in depth is kept the 
same for the latter option. 

However, upstream there wil l be a fluctuation in the water level in time for two reasons. 
Firstly, because of a change in time of the bottom slope ih. Secondly, because of a varying 
discharge, each with his own morphological change. In this point of view, it also should be 
mentioned that the larger discharges have more influence on the morphological changes than 
the smaller discharges. 

When at each time step the resulting AAsed(x,t) is distributed according to the accompanying 
water level, it influences proportions o f the variation o f depth for other water levels. However, 
it would be a good simulation o f reality, but requires much calculation time. It depends on the 
seasonal fluctuation of the water level, wether this is necessary for each time step. Another 
disadvantage is that each numerical space step gives different (y,z) coordinates representing the 
cross-section, which wil l give a large amount o f data, regarding the amount of y,z points of the 
real cross-section. 

A possible solution is not to distribute the calculated AAsedix,t) and to follow the change of the 
parameters as closely as possible. As mentioned above, in case of one water level this wil l be 
no problem for the Bsed,(x,t) because there wil l be almost no change. However, due to the 
fluctuation in the water level, and the correlation mentioned, this solution wil l cause small 
inaccuracies. So BseJx,t) will be calculated at each time- and space-step with the / inequat ion, 
considering the initial bed elevations. This calculation wil l not take much extra calculation 
time. 

The change in the bottom slope can be followed quite well with the following calculation in the 
program: 

Aib = (AAM-AAJ/(BsedAx) 

where Ax is the numerical space step, and k the number of the space steps. 

This leaves the hydraulic radius. Using the Q,A-schematisation option o f a rectangular cross-
section mentioned in Chapter 3, a zm and Bm are found, giving a good approximation of R as 
well. The Bm is used to approximate the changing R in the following way 

R=Rinmal-AA/Bm 

This calculation of Rinitial and Bm for each time- and place-step (because of the varying water 
level in time and place) wil l not take much extra calculation time either. 
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6 C O N C L U S I O N S 

6.1 General 

This study contains two topics. The schematisation of a river cross-section for a one-
dimensional morphological computer model and the interpretation back to reality of the 
calculated morphological change. The next two sections wil l mention the conclusions of this 
study for these two topics. 

6.2 Schematisation of the cross-section 

In the morphological process, more parameters play an important role. In section 3.2, some 
important parameters are described, together with their schematisation-notation. 
Al l these notations are an integral (over the width of the cross-section) of a certain power a of 
the water depth a: 

f(h-z(y)Tdy (6.1) 
0 

For the following parameters the power a is: 

wetted area A: a = 1 
discharge Q: a = 3/2 
Sediment transport S: a = n/2 

It is important that all these parameters are schematised well in the model. 

In Chapter 3 a one-dimensional approach is worked out in which the water depth and the bed 
level are averaged over the cross-section, together with the f low velocity. Here the 
morphological change is expressed by a change in the bed level, Az(x,f) over a sediment 
carrying with Bsed(x). 

Some schematisation-options are studied, each giving a good reproduction of two parameters 
mentioned above, assuming an initial state which is in equilibrium. However, for a good 
reproduction of the water movement and the sediment movement, more than two parameters 
have to schematised well. When the cross-section of the river has a not rectangular form, and 
a variation in the discharge is considered, a good schematisation of whole the process, 
including the f low profiles, wil l not be possible with this approach. This is also caused by the 
fact that in this approach the sediment carrying width is not a function of time, what is not 
realistic with a varying discharge (c.q. water level) and irregularly shaped cross-sections. 
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In Chapter 4 another approach is followed, in which the water depth a and the bed level z are 

not averaged over the cross-section in the model anymore. The cross-section is given as Bm(hr) 
= BR(hr). The parameters A and S are calculated with the integrals and Q is given as a hard 

boundary condition. The morphological changes wil l be expressed as a change in the cross-

sectional area AAse/x,t), So one z j x ) and oneBsed(x) are not needed anymore. The parameters 

Ü, A and S will be given as one value as function of x. 

The result is a good schematisation of the water movement in the computer model for a 

varying discharge and all shapes o f a cross-section. The sediment transport in the initial state as 

well as in a flow profile will be reproduced with 

S = Bsed (OIAT (6.2) 

With a good reproduction o f the water movement, the only missing parameter is the sediment 
carrying width. This parameter is calculated according to 

S - B s e d R " ' 2 (6.3) 

which gives with the use of the hydraulic radius according to Engelund 

B sed 

f(h-z(y)y/2dy 

(6.4) 

I t wi l l supply, together with U = O/A, a satisfying reproduction of the sediment transport in a 
steady uniform flow as well as in a flow profile. I t has been proved that the flow condition 
which causes the water level has no influence. Thus the sediment carrying width can be found 
this way, as function of the water level, Bsed(hr). Each time step, the water level is known 
because the assumed quasi-steady state of the water movement allows it to decouple the water 
movement and the sediment movement. So first the water movement wil l be calculated over 
the whole length of the river. Afterwards, the sediment movement wil l be calculated, 
containing the calculation of the sediment carrying width. 

Overall, the sediment carrying width, becomes a function of the transport formula (n) used, the 
geometry of the cross-section and the water level. This way, a one-dimensional mathematical 
model (x-direction) reaches a two dimensional accuracy (horizontal) at each longitudinal 
space-step. 

52 



The notation of the hydraulic radius R according to Engelund, used in the formula for the 
sediment carrying width, gives a better result than the general formula R = A/P, especially for 
irregular cross-sections. 

For this approach the necessary data are a Q-h rating curve, some characteristic bed elevations 
of the river reach and the type of sediment transport formula valid for the situation studied. 
With this approach a first indication of the sediment transport, the fluctuation over a year, and 
possible morphological changes can be given. For the river Waal the results of this approach 
are compared with measurements of the sediment transport for various discharges. The results 
were satisfying. I t has to be recommended to compare this approach also with measurements in 
an irregularly shaped cross-section, when data are available. 

6.3 Interpretation of calculated morphological changes 

Step three in the three-step approach of the use of a model is the interpretation of the 

morphological change for the real river, which is worked out in Chapter 5. With the results of 

Chapter 4, this results in a good interpretation of the calculated change in the cross-sectional 

area AAsed(x,f) for the real cross-section. There are two problems regarding the changes: 

* distribution over the real cross-section 

* Change in time of some parameters has to be followed in time as good as possible 

For the distribution, three realistic options are available. These are distributions proportional to 

* the water depth, a1 

* the water velocity, a"2 

* the sediment transport capacity, a512 

This way a two-dimensional result is calculated with a one-dimensional calculation in time. 
In Chapter 5, a study is performed on the influence of the distribution coefficient t f , f rom a(\ I t 
concerns a cross-section at the mouth of a river flowing in a lake with a constant water level. 
Because of water withdrawal upstream, aggradation occurs in the river mouth. The final 
equilibrium state is calculated for all three distribution options, showing the influence of cf. 
There are some practical important differences caused by a variation in the distribution 
coefficient. An increase in cf causes: 

* a decrease in the final AAsed, and thus an increase in the flow velocity, according to U 
= Q/A. This can be important for navigation on the river. 

* a decreasing amax. Proportionally more sediment is deposited in the deeper parts of 
the river. This too can be important for navigation, considering the navigation width 
needed with a minimum water depth. 
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* an increasing ib. This has influence on the water level upstream, and thus on the 

inundation danger upstream. Higher river dikes are necessary. 

The magnitude of the fluctuation is strongly influenced by the shape of the cross-section. For 
the nearly rectangular cross-section, the influence o f f is almost zero, which physically stands 
to reason. 

It is not possible to say which distribution wil l be the right one, because no experiments, 

studying this topic, have been performed. However, with these results a river engineer can use 

the distribution option with the most negative result for the particular problem he is dealing 

with. This way a safety-factor is integrated in his predictions. 

In Chapter 5, the fluctuation of the above mentioned practical parameters are plotted as 

function of the distribution coefficient cf. 

There is also an influence o f the exponent n (from s = m IT) on the practical parameters. This 

exponent influences the range of fluctuation caused by the distribution parameter tf. 

Finally, the change in some parameters is studied when morphological changes occur. These 
are parameters playing a role in the process to be modelled, so the changes have to be followed 
accurately. For one water level (at the river mouth near a lake), there wil l be no difference 
between a distribution of the morphological change at each time step, or only a distribution of 
the morphological change AAseJx, t) at the end of the calculation, because the proportional 
variation of the depth stays the same. I t is also possible to accurately follow the change in all 
the parameters, when only AAseJx,t) is known at each time-step. 
However, for a variation of the water level upstream, this proportional variation will be 
different for each water level, followed by different distributions. These are followed again by 
changes in the proportional variation of the depth for other water levels. Because of the 
correlation between the water levels and their distribution, it is only physically right when the 
morphological change is distributed each time-step. Otherwise it is not possible to assess the 
change of some parameters sufficiently. This requires more calculation time of the model, and 
more memory. 
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M A I N S Y M B O L S 

a depth [L ] 

A cross-sectional area [ L 2 ] 

As conveying cross-sectional area [ L 2 ] 

B width [L ] 
Bs stream width [L] 
b subscript for bottom [-] 

c celerity [LT" 1] 

C Chézy coefficient [L0 5Tl] 
D particle diameter [L ] 

Fr Froude number [-] 

_ƒ[,.,) function o f [-] 

g acceleration o f gravity [LT" 2] 
h water level [L] 

4 mean slope of bottom [-] 
k bed roughness [L ] 
L length [L ] 
m subscript for model [-] 
m0 coefficient in s = m0 u" [-] 
n exponent in s = m0 u" [-] 
P wetted perimeter [L] 
p{. .} probability density [-] 
Q discharge [ L 3 T _ 1 ] 
q discharge per unit width [ L 2 T _ 1 ] 
R hydraulic radius [L] 
r subscript for real [-] 

5 sediment transport (bulk volume) [ L 3 T _ 1 ] 
s sediment transport per unit width [ L 2 T _ 1 ] 
sed subscript for sediment carrying [-] 
Re Reynolds number [-] 
i time [T] 
U mean velocity in x-direction [LT" 1] 
u mean velocity in x-direction [LT" 1 ] 
x coordinate in f low direction [L] 
y transverse coordinate [L] 
z bed level [L] 
cc' correction coeff uniform f low distribution [-] 
A relative density [-] 
\\ distribution coefficient [-] 
p density of water [ML" 3 ] 
ps density of sediment [ML" 3 ] 
r shear stress [ML^T" 2 ] 
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bottom shear stress 

relative celerity 

dimensionless transport parameter 
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A P P E N D I X A 

This appendix regards the behaviour of some significant parameters for several differently 

shaped cross-sections from the River Da in Vietnam. When the cross-section has a more 

irregular shape, the variation in these parameters will become greater. 

Firstly, the two options for the hydraulic radius, mentioned in section (4.2), are compared. 

These are the general formula: 

with C = Cj = constant. This parameter is important for the calculation of the sediment 

carrying width. The Engelund method shows more realistic values for irregularly shaped cross-

sections. 

Secondly, the differences between Bm and zm, the two schematisation-parameters for a 

rectangular cross-section, are shown for the three options of two equations, which are 

necessary to calculate the two unknown parameters. This is mentioned in sub-section (4.3.1). 

The three combinations are: 

R=A/P ( A l ) 

and that according to the Engelund method: 

(A.2) 

* A and Q 
* A and S 
* 0 and S 

according to: 

Am Ar 

(A.3) 

o 

A . l 



sm=sr 

Br 
B

m (K-O"'2 = f(K-z(y)T'2dy (A.5) 
o 

Thirdly, the behaviour o f the sediment carrying width as function of the water level is 
demonstrated, as mentioned in subsection (5.4.2) with 

j(h-z{y)Y2dy 

B sed 

(A.6) 

Finally, the influence of the distribution factor cf on the maximum water depth in the new 
equilibrium state is demonstrated. This parameter is calculated at the river mouth, as 
mentioned in section (6.3). A realistic distribution wil l be proportional to with a being the 
water depth, and cf is varying between 1/2 and 5/2. 
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Cross-section 40 

800 1 2 0 0 
B (m) 

h = 12.64 m h = 15.25 m 

R (A/P) 3.58 6.07 

R (Engel.) 3.75 6.26 

ratio 1.05 1.03 

h = 14.75 m h = 17.98 m 

Bm zm Bm 

Q,/4-option 771.9 8.89 805.3 9.00 

/1,5-option 751.0 8.78 795.3 8.92 

0,^-option 722.6 8.72 783.4 8.88 

8.4 
Influence^' on maximum water depth 

8.4 
\ 1 • 

? 8 . 2 -

1 8-

i) 

| 7.8 -

| 7 . 6 -

\ 1 j 
? 8 . 2 -

1 8-

i) 

| 7.8 -

| 7 . 6 -

? 8 . 2 -

1 8-

i) 

| 7.8 -

| 7 . 6 -

i \ 

? 8 . 2 -

1 8-

i) 

| 7.8 -

| 7 . 6 -

! \ l 

? 8 . 2 -

1 8-

i) 

| 7.8 -

| 7 . 6 -
i i \ 

7 d - i j \ 
/ . *+ I i \ ' 

7 •? - ! ! ^ 
/ . z 

0 lictor^ 

/<3 

Influence irater level h on Bsed 
830 

825] 

13 14- 15 
Mber level h (m) 

16 



Cross-section 36 

h = 13.03 m h = 15.75 m 

R (A/P) 3.04 5.69 

R (Engel.) 3.45 5.95 

ratio 1.14 1.05 

h = 13.03 m h = 15.75 m 

Bm Bm 

0,/4-option 560.4 9.58 617.8 9.80 

/4,5-option 534.6 9.41 605.3 9.68 

Ö.S-option 502.8 9.32 589.9 9.61 

A. 9 



Crass-section 30 

1 0 0 0 

h = 13.62 m h = 16.51 m 

R (A/P) 3.77 5.90 

R (Engel.) 4.53 6.68 

ratio 1.20 1.13 

h = 13.62 m h = 16.51 m 

Bm Bm 

Q,A-option 614.7 9.09 785.1 9.83 

^,5-option 571.5 9.79 748.4 9.49 

0,5-option 537.5 8.67 702.5 9.31 

Influence water level h on Bsed 
9 0 0 

6 0 0 
14 15 16 

wter tevel b (m) 



h = 14.03 m h = 17.04 m 

R (A/P) 4.17 5.79 

R (Engel.) 5.41 7.40 

ratio 1.30 1.28 

h = 14.03 m h = 17.04 m 

Bm Bm Zm 

0,̂ 4-option 408.4 8.62 543.3 9.64 

v4,S-option 388.3 8.34 510.2 9.16 

S.S-option 364.7 8.19 471.9 8.91 



Cfoss-section 20 ] 

B H 

h = 14.38 m h = 17.49 m 

R (A/P) 7.65 10.56 

R (Engel.) 8.91 11.59 

ratio 1.16 1.10 

h = 14.75 m h = 17.98 m 

Bm Bm Zm 

0,^-option 336.2 5.47 363.4 5.90 

y4,.S-option 314.7 4.87 349.0 5.39 

0,5-option 290.5 4.56 331.0 5.13 

Influence water level h on Bsed 
3 9 5 -I : : : 

3 9 0 

3 8 5 • 

I 

3 7 0 1 

365-1 1 \ . i , i , i -
14 15 16 17 18 

Mlflr level h (m) 

A.J 



Cross-section 17 

200 
B(m) 

400 6 0 0 

h = 14.57 m h = 17.74 m 

R (A/P) 4.32 7.40 

R (Engel.) 4.47 7.55 

ratio 1.03 1.02 

h = 14.57 m h = 17.74 m 

Bm 

fit 
Zm 

Bm Zm 

0,/4-option 602.6 9.73 676.9 10.18 

/1,5-option 585.5 9.59 655.7 9.93 

ö^-option 565.4 9.52 628.2 9.80 

Influence f on maximum water depth 
4-60 

4 5 8 

4 5 6 

Influence water level h on Bsed 
4-60 

4 5 8 

4 5 6 

| 4 5 4 -

1452¬

4 5 0 • 

4 4 8 • 

14 15 16 17 18 
Kater level h (m) 
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Cross-section 15 

B H 

h = 14.71 m h = 17.92 m 

R (A/P) 7.46 10.31 

R (Engel.) 9.39 11.88 

ratio 1.26 1.15 

h = 14.71 m h = 17.92 m 

Bm zm 
Bm Zm 

0,/4-option 300.6 5.33 341.4 6.04 

^4,5-option 273.0 4.38 319.4 5.22 

Q, S-option 242.0 3.87 293.4 4.78 

A 9 



h = 14.75 m h = 17.98 m 

R (A/P) 3.20 6.32 

R (Engel.) 3.97 6.75 

ratio 1.24 1.07 

h = 14.75 m h = 17.98 m 

Bm Bm Zm 

0,/4-option 483.9 10.78 575.0 11.23 

^,5-option 451.9 10.51 558.0 11.02 

ö^-opt ion 415.5 10.36 536.6 10.91 

8.3 

8.2 

?8 .1 • 
s. I 8" 
&7.9-

Influence £ o n maximum irater depth 
8.3 

8.2 

?8 .1 • 
s. I 8" 
&7.9-

x j | 
8.3 

8.2 

?8 .1 • 
s. I 8" 
&7.9-

\ . j | 

8.3 

8.2 

?8 .1 • 
s. I 8" 
&7.9-

8.3 

8.2 

?8 .1 • 
s. I 8" 
&7.9-

8.3 

8.2 

?8 .1 • 
s. I 8" 
&7.9-

I N T j 

S 
M ~7 7 -c 
| 7 . 6 - ! jST 

7 4 -
0 1 ^ 2 5 

feeLor 

620 

4-60 

Influence water level h on Bsed 

15 16 17 
«ster level h (m) 

18 
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A P P E N D I X B 

This Appendix regards the vadility of the integral-theory for some more cross-sections of the 

River Waal. As mentioned in section 4.4, sufficient data of the Chézy values and of the 

sediment transport for various discharges have to be available. 

Firstly, the available data wil l be mentioned. These are: 

* a Q-h rating-curve at Tiel, called "Relatie waterstand-afvoer". This is a rating-curve 

belonging to a characteristic cross-section of the reach studied between Tiel and 

Dodenwaard. The water levels can be interpolated to other cross-sections ( with help of 

the information on "dwarspeiling Waal K m 910-915"). The rating-curve is measured in 

1992. (see pa. B.3) 

* The bed elevations of a river reach between Tiel and Dodenwaard. This map is called 
"dwarspeiling Waal K m 910-915'. These bed elevations are given with respect to 
O.L.R., a reference level used on the Dutch rivers. With the information given on this 
map, it is possible to interpolate the Q-h rating-curve over the given reach. The 
measurements took place in 1994. The top of the groynes has a height of ca. + 2 .75 m 
to O.L.R. 

* Measurements of important parameters for the River Waal on the reach " 
Dodenwaard - Tiel. This table gives Chézy-values belonging to some discharges which 
occur. The measurements are taken in 1989. (see pa. B.4) 

* Finally, a 0, ^-relation is given, measured for the River Waal at Druten, which is also 
situated on the reach studied between Dodenwaard and Tiel. The measurements took 
place in 1989. The methods of measurement are explained in section 4.2. (see pa B.5). 

It has to be mentioned that the data have been measured in a range of five years. However, the 

River Waal is a river of which the morphological changes are considered slow, which makes it 

possible to integrate these data. 

The two types of data mentioned first are necessary as input for the integral-theory. The last 
two types mentioned make it possible to validate the integral-theory in two ways. This have 
been performed for some more cross-sections in the reach studied. 

Firstly, the measured Chézy values are compared with the Chézy values calculated according 
to the integral-theory. It has to be stated that two calculations were performed, one with and 
one without the influence of the discharge over the groynes for higher discharges. The 
influence starts at O > 1800. The results given in Table ( B . l ) confirm the results from section 
4.2, i.e. a good approximation of the Chézy values by the mtegral-theory. 

Secondly, The measured sediment transport is compared with the two calculations, confirming 

B . l 



a realistic reproduction of the sediment transport by the integral-theory, especially by the 
second calculation, with the influence of discharge over the groynes. These results are plotted 
in the figures on pages B.6 ti l l B.9. 

M E A S U R E D AND C A L C U L A T E D CHÉZY-VALUES 

Table ( B . l ) 

cross-section discharge 0 
(m3/s) 

measured C 
(/m/s) 

Calculation 

1 o f C 

(/m/s) 

Calculation 

2 o f C 

(/m/s) 

Waal Km 912.625 1350 43.7 43.8 43.8 

2150 44.3 43 42.8 

4250 44.9 51.2 46.7 

Waal Km 910.875 1350 43.7 40.5 40.5 

2150 44.3 41.3 40.4 

4250 44.9 51.3 47.1 

Waal K m 911.813 1350 43.7 41.9 41.9 

2150 44.3 40.7 39.9 

4250 44.9 47.9 45.1 

Waal K m 911.938 1350 43.7 41.3 41.3 

2150 44.3 41.7 41.2 

4250 44.9 50.4 47.6 

B.2 



Ralat i» wattrstand-afvoer 
B> * NAP - D 3 / « 

Waterstand t « i TISL-NAAL (SLUIS) 
R iv i er i WAAL 

ws Q WS Q WS Q WS Q 

1.10 4.10 1314 7.10 2957 10.10 7058 
20 20 1353. 20 3040 20 7228 
30 30 1392 30 3127 30 7400 
40 40 1431 40 3218 40 7574 
50 360 50 1470 50 3310 50 7750 
60 494 60 1511 60 3409 60 7926 
70 428 70 1553 70 3512 70 8103 
60 462 80 1597 80 3621 80 8281 
90 496 90 1642 90 3736 90 8460 

2.00 530 5.00 1690 8.00 3860 11.00 8640 
10 566 10 1736 10 3981 10 8824 
20 602 20 1785 20 4110 20 9008 
30 638 30 1834 30 4244 30 9192 
40 674 40 1884 40 4382 40 9376 
50 710 50 1935 50 4520 50 9560 
60 746 60 1987 60 4668 60 9744 
70 782 70 2041 70 4816 70 9928 
80 818 80 2096 80 4966 80 10112 
90 854 90 2152 90 5117 90 10296 

3.00 890 6.00 2210 9.00 5270 12.00 10480 
10 928 10 2269 10 5430 10 
20 966 20 2329 20 5590 20 
30 1004 30 2391 5750 30 
40 1042 40 2455 4b 5910 40 
50 1080 50 2520 50 6070 50 
60 1119 60 2588 60 6232 60 
70 1158 70 2657 70 6395 70 
80 1197 80 2729 80 6559 80 
90 1236 90 2803 90 6724 90 

4.00 1275 7.00 2880 10.00 6890 13.00 

d i r e c t i e G e l d e r l a n d 

B.3 

25-08-1992 
Afdeling Informatie, ANII 
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XXXXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXX 

R I V I E R : BOVENRIJN EN WAAL 
T R A J E C T : DODEWAARD - T I E L 

AFVOER 

90'/. 
50% 
10% 

V4 
. IX 
MHW 

AFVOER 

90% 
50% 
10% 

1% 
.1% 
MHW 

AFVOER 

90X 
505£ 
10% 

1% 
.1% 
MHW 

D E B I E T 
LOBITH 
( M 3 / S ) 

1100 
1950 
3200 
6400 
7800 

16500 

D E B I E T 
T P L . 

( M 3 / S ) 

865 
1345 
2145 
4247 
5163 

10370 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
D I E P T E 

(M) 

VERHANG 
X10 - 4 

( - ) 

STROOM
S N E L H E I D 

C H E Z Y -
WAARDE 

K-WAARDE DARCY-

GXDM3/ 
/ V I S K 2 

( - ) 

2 8 0 6 0 . 
2 8 0 6 0 . 
2 8 0 6 0 . 
28060 . 
2 8 0 6 0 . 
2 8 0 6 0 . 

13 
94 
64 
98 

9 . 4 7 
1 2 . 3 9 

161 
161 
186 

.127 
1 . 0 6 1 

. 9 0 2 

( M / S ) ( M 1 / 2 / S ) (M) ( - ) 

.81 3 6 . 7 9 . 4 4 8 . 0 5 8 0 
1 . 0 5 4 3 . 7 3 .221 . 0 4 1 0 
1 . 2 4 4 4 . 2 8 . 2 7 6 . 0 4 0 0 
1 . 4 3 4 4 . 9 3 . 3 4 4 . 0 3 8 9 
1 . 4 3 4 5 . 0 7 . 3 5 6 . 0 3 8 6 
1 . 5 3 4 5 . 8 8 . 4 2 0 . 0 3 7 3 

N - F A C T . FROUDE REYNOLDS 
MANNING 

REYNOLDS 

C S / M 1 / 3 ) ( - ) ( - ) 

. 0 3 4 4 . 1 2 7 2 9 1 5 7 9 6 . 

. 0 2 9 8 . 1 5 0 4 5 3 3 8 1 0 . 

. 0 3 1 0 . 1 5 4 7 2 3 0 4 9 9 . 

. 0321 . 1 5 2 1 1 2 4 9 3 4 5 . 

. 0 3 2 3 . 1 4 8 1 1 8 5 7 2 6 6 . 

. 0 3 3 2 . 1 3 9 1 6 6 5 5 1 2 9 . 

K R I T I S C H E 
S C H U I F S P . 

(N/M2) 

. 6 0 9 7 

. 6 2 0 2 

. 6411 

. 6581 

. 6 5 7 6 

. 6 6 4 9 

S C H U I F S P . 

(N/M2) 

4 . 7 0 3 8 
5 . 6 2 6 4 
7 . 7 2 5 4 
9 . 9 2 8 2 
9 . 8 5 6 8 

1 0 . 9 6 3 4 

S C H U I F S P . 
SNELHEID 

CM/S) 

. 0686 

. 0750 

. 0879 

. 0996 

. 0993 

. 1 0 4 7 

STROOM-
VERM. 
(N /MS) 

3 . 7 8 9 2 
5 . 8 9 1 8 
9 . 5 9 8 6 

1 4 . 1 9 0 8 
1 4 . 0 8 1 7 
1 6 . 8 1 5 5 

D I M . L O Z E 
S C H U I F S P . 

( - ) 

. 3 0 5 9 

. 3 6 5 9 

. 5 0 2 4 

. 6 4 5 6 

. 6 4 1 0 

. 7 1 3 0 

T A U - S T E R K R . S C H . 
ACCENT S N E L H . 

C - ) CM/S) 

. 0965 

.1478 

.1961 

.2447 

.2419 

.2644 

. 0 2 4 7 

. 0 2 4 9 

. 0 2 5 3 

. 0 2 5 7 

. 0256 

. 0 2 5 8 

REYNOLDS-
S C H U I F S N . 

( - ) 

2 4 8 2 5 0 . 
3 2 4 7 5 5 . 
5 1 1 4 9 7 . 
7 8 4 1 9 7 . 
8 2 4 0 0 8 . 

1 1 3 6 9 9 6 . 

UK DM/ 
/ V I S K 

C - ) 

9 3 . 
1 0 2 . 
1 1 9 . 
1 3 5 . 
1 3 5 . 
1 4 2 . 

U/W50 

( - ) 

6 
8 

10. 
11 . 
11 
1 2 . 8 

UX/W50 D I E P T E S N E L H . / S C H . S P . / 

( - ) 
/ D 5 0 V (GXD50) ROL*GXDM 

( - ) ( - ) C - ) ( - ) 

. 57 4 3 4 7 . 8 . 3 4 . 1 8 7 5 

. 6 3 5 2 0 0 . 1 0 . 8 5 . 2 2 4 3 

. 7 3 6 9 8 9 . 1 2 . 8 7 . 3 0 7 9 

. 8 3 9 4 5 3 . 1 4 . 8 1 . 3 9 5 7 

. 8 3 9 9 6 8 . 1 4 . 8 0 . 3 9 2 9 

. 8 7 1 3 0 4 2 . 1 5 . 8 9 . 4 3 7 0 

REYNOLDS-
KORREL 

( - ) 

1 0 0 . : 
1 0 0 . 
1 0 0 . 
1 0 0 . 
1 0 0 . 
1 0 0 . 

C - 9 0 

REYNOLDS 
U X D 5 0 / V I S K 

( - ) 

5 7 . 
6 2 . 
7 3 . 
8 3 . 
8 3 . 
8 7 . 

H-ACCENT 
ENGELUND 

(M) 

1 . 3 0 
1. 99 
2 . 5 9 
3 . 4 0 
3 . 5 7 
4 . 6 0 

H-ACCENT 
MANNING 

(M) 

.97 
43 
82 

.33 

.44 

.06 

R I B . F A C . 
ME-PE+MU 

.347 

.437 

.426 

.416 

.415 

.410 

x x x x x x x x x x x x x x x x Z A N D T R A N S P O R T x x x x x x x x x x x x x x x 
n «. F R I J L I N K ME-PE+MU ENG+HANS ACK+WHIT KAL INSKE 

C M 1 / 2 / S ) ( M 3 / M / S ) ( M 3 / M / S ) ( M 3 / M / S ) CM3/M/S) (M3 /M /S ) 

7 4 . 5 0 
7 5 . 9 0 
7 8 . 2 1 
8 0 . 5 7 
8 0 . 9 9 
8 3 . 0 9 

.000008 
000041 
000095 
000161 
000158 
000192 

.000008 

.000038 

.000080 

.000132 

.000130 

.000158 

. 000070 

. 0 0 0 1 5 5 

. 0 0 0 3 5 1 

. 0 0 0 6 7 7 

. 0 0 0 6 6 9 

. 0 0 0 9 0 4 

,000041 
.000120 
, 0 0 0 2 3 3 
000384 
000379 
0 0 0 4 7 2 

. 0 0 0 1 2 0 

. 000150 

. 0 0 0 2 1 3 

. 0 0 0 2 9 4 

. 0 0 0 2 9 2 

.000330 

PARAM. 

(-) 
9 .421 
6.2'50 
4 . 6 7 3 
3 . 7 1 9 
3 . 7 5 8 
3 . 4 1 8 

GEMIDDELD SEDIMENTTRANSPORT PER JAAR : 

F R I J L I N K : 
ME-PE+MU : 
ENG+HANS : 
ACK+WHIT : 
K A L I N S K E : 

3 7 1 0 0 0 . M3/JAAR 
3 2 2 0 0 0 . M3/JAAR 

1 4 9 5 0 0 0 . M3/JAAR 
9 9 8 0 0 0 . M3/JAAR 

1 1 4 3 0 0 0 . M3/JAAR 

T R A J E C T G E G E V E N S : 

T R A J E C T L E N G T E 
NORMAALBREEDTE 
BODEMVERHANG 
VALSNELHEID D-50 
DICHTHEID WATER 

11975 M 
260 M 

1 . 2 9 4 X 1 0 - 4 
. 1 2 M/S 
1 0 0 0 . KG/M3 

D-10 = . 0 0 0 4 7 V\ D-65 = . 0 0 1 4 0 M 
D-35 = . 0 0 0 7 7 M Ö-90 = . 0 0 3 6 0 M 
D-50 = . 0 0 0 9 5 M D-M = . 0 0 1 5 5 M 
KINEMATISCHE V I S C O S I T E I T = 1 . 1 4 1 * 1 0 - 6 M2 /S 
DICHTHEID SFnjMFMT 

DX - 36 . 



Q/S relation of the Waal near Druten 
measured sediment transport 1989 
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Q/S relation of the Waal near Druten 
measured sediment transport 1989 
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Q/S relation of the Waal near Druten 
measured sediment transport 1989 
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Q/S relation of the Waal near Druten 
measured sediment transport 1989 
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Q/S relation of the Waal near Druten 
measured sediment transport 1989 
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