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SUMMARY

This thesis studies the field of operator algebras, non-commutative functional analysis
and rigidity theory. We study structural properties of C -algebras and von Neumann
algebras, with a focus on the latter. These mathematical structures were introduced
by von Neumann in [Neu30] motivated by the need for a non-commutative framework
to describe quantum systems. The theory was further developed by Murray and von
Neumann in several papers: [MN36], [MN37], [Neu39], [Neu40], [MN43], [Neu43] and
[Neu49]. Nowadays, the study of these operator algebras forms its own field in mathe-
matics. Over the years effort has been made in trying to classify von Neumann algebras.
Many structural properties of von Neumann algebras have been introduced and stud-
ied. In this thesis we study such properties including: absence of Cartan subalgebras,
primeness, the (weak-%) CCAP, the Akemann-Ostrand property and strong solidity. Fur-
thermore we study operator estimates for commutators.

For a discrete group G we study the group von Neumann algebra Z(G). The aim is to
establish connections between the group G and its von Neumann algebra Z(G). In par-
ticular, we study rigidity theory, which concerns the question what information of G can
be retrieved from £ (G). We are particularly interested in Coxeter groups. Such a group
# can be seen as an abstract reflection group. For a Coxeter group #  we will not only
study the group von Neumann algebra £ (#'), but also its q-deformations: A4 (#) called
Hecke-von Neumann algebras. The focus is on Coxeter groups that are right-angled.
These Coxeter groups naturally decompose as graph product # = *,r#,, of the groups
W, = Z/2Z. The construction of graph products of groups was introduced by Green in
[Gre90] as a generalization of both direct sums G; ® G, and free products G; * G. Later
graph products have also been defined in the setting of C"-algebras and von Neumann
algebras in [M1o04] and [CF17]. In this setting graph products generalize both tensor
products and free products. This notion of graph products interacts nicely with the no-
tion for groups since £ (*,rG,) = *,r£(G,). In the case of right-angled Coxeter groups,
a similar decomposition holds true for Hecke-von Neumann algebras.

This thesis consists of 7 chapters, including the introduction (Chapter 1) and the pre-
liminaries (Chapter 2). In Chapter 3 we perform calculations in graph products that
we need in later chapters. In Chapter 4 the study is focused on (right-angled) Coxeter
groups, their group von Neumann algebra £ (#) and Hecke-von Neumann algebras
Aq#). For these von Neumann algebras we study when they are strongly solid and
when they posses the Akemann-Ostrand property (AO)*. Strong solidity is a strength-
ened version of Ozawa’s property solidity [0za04] and can be seen as a strong indecom-
posability property. Indeed, this property implies that the von Neumann algebra does
not decompose as tensor product M = M;®M, (primeness) nor as a group measure
space M = L*°(0,1) X G (absence of Cartan). Using quantum Markov semigroups and the

Xi



Xii SUMMARY

non-commutative Riesz transform we prove new strong solidity results for right-angled
Hecke-algebras.

In Chapter 5 we study strong solidity for general graph products Mt = #,r(M,,7,)
of von Neumann algebras. We use Popa’s intertwining-by-bimodule theory to obtain a
full characterization of strong solidity for graph products. In particular, we complete the
characterization for right-angled Hecke-algebra. For right-angled Coxeter groups this
provides a simple characterization of when the group von Neumann algebra is strongly
solid. We also study other aspects of graph products. Indeed, we give sufficient con-
ditions for the (reduced) graph product to be nuclear. Moreover we fully characterize
primeness and free indecomposability for graph products. We also study rigidity theory
for graph products. The aim is to retrieve the graph I" and the vertex von Neumann al-
gebras (M,) yer from the von Neumann algebra Mr. We introduce in this thesis a class
%Vvertex Of von Neumann algebras and a class of graphs that we call rigid and show that
from Mr = *,r(M,,7,) we can retrieve the rigid graph I and the vertex von Neumann al-
gebras M, € Gyerex Up to amplification. In particular, we obtain unique prime factoriza-
tion and unique free product decompositions for new classes of von Neumann algebras.
We also show that, without imposing strong conditions on the vertex von Neumann al-
gebras M, it is possible to retrieve the radius of the graph I, up to a constant, from the
graph product Mr.

In Chapter 6 we study approximation properties for graph products. For a group
G, approximation properties assert that we can approximate the constant function 15
pointwise by nice functions my : G — C. Likewise, for an operator algebra M, approx-
imation properties assert that we can approximate the identity map Id; pointwise by
nice maps 0 : M — M. For reduced graph products of C -algebras we study the com-
pletely contractive approximation property (CCAP). Similar, for graph products of von
Neumann algebras we study the weak-*+ CCAP. These approximation properties are the
operator algebraic counterparts of weak amenability with constant 1. We study stability
of these properties under graph products and extend results from [Rec17] and [RX06].

In Chapter 7 we deviate from the main topic of this thesis and study commutators
estimates. We extend the operator estimates from [BS12b], [BS12a] and [BHS23] for self-
adjoint elements to normal elements in factors. More precisely, for a normal element a
in a factor M we show the existence of a unitary u € M that satisfies a nice operator esti-
mate for the commutator [a, u] := au— ua. In particular, for finite factors this provides a
lower estimate on the L!-norm of the form

‘/5228 la—z1nl s < M@ wlll 1 a0y

We then use this result to obtain sharp estimates on the norm (64l p—. 1 (pr 1) Of the
derivation 6, : M — L' (M, 1) given by 6 ,(x) = [a, x].



INTRODUCTION

The main topics of this thesis include: von Neumann algebras, Coxeter groups, graph
products, approximation properties, rigidity theory and commutator estimates. We dis-
cuss these topics in Sections 1.1 to 1.5 at the level of a general mathematical audience.
In Section 1.6, we present the main results obtained in this thesis and give an overview
of the content of the individual chapters.

1.1. VON NEUMANN ALGEBRAS

In 1929, John von Neumann initiated the study of rings of operators, [Neu30]. These
rings of operators, now known as von Neumann algebras, are of main interest in this the-
sis. By definition a von Neumann algebra M is a certain nice subalgebra of the space of
bounded operators B(#°) on a complex Hilbert space /. While the main focus is on von
Neumann algebras, we also study the related notion of C"-algebras. These operator alge-
bras posses rich algebraic and topological structures. Indeed, for a, b € M and c € C there
are the algebraic operations of scalar multiplication ca, addition a+ b, multiplication ab,
and the operation of taking adjoints a*. Furthermore, these algebras are equipped with
several topologies, including: the norm topology, the strong operator topology (SOT),
the weak operator topology (WOT), the o-weak topology and many more. What makes
C"-algebras and von Neumann algebras most interesting is their non-commutative na-
ture. This is to say that ab is generally unequal to ba for a, b € M. Such non-commutative
behaviour naturally occurs in quantum physics, where the order in which one performs
measurements is of interest. As an example, the operators x and p corresponding to
measuring position and momentum respectively, satisfy the commutation relation

xp—px=—ih.

This accounts for the Heisenberg uncertainty that one can not know both the exact po-
sition and exact velocity of a particle at the same time. The motivation to introduce
C"-algebras/von Neumann algebras also came from the need for a non-commutative
mathematical framework to describe quantum systems. However, the theory has slightly
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deviated from the physical theory and in this thesis we will purely study the mathemat-
ical structures of C"-algebras and von Neumann algebras. Although all von Neumann
algebras are in fact C'-algebras, the two structures are studied from different angles. The
theory of C"-algebras is often thought of as non-commutative topology, while the study of
von Neumann algebras is thought of as non-commutative measure theory. This accounts
for the fact that every commutative C -algebra can be described as Cy(X) for some topo-
logical space X, while every commutative von Neumann algebra is of the form L*°(Q, p)
for some measure space (Q, ). Of interest are those von Neumann algebras that are very
far away from the commutative setting (factors) and the non-commutative analogue of
integrals (traces).

FACTORS AND TRACIAL VON NEUMANN ALGEBRAS

The most important von Neumann algebras are those that are factors. Factors can be
thought of as building blocks for general von Neumann algebras since any von Neumann
algebra M decomposes as a direct sum or direct integral of factors, see [Neu49]. Murray
and von Neumann [MN36] and Connes [Con73] classified factors precisely into one of
the following types:

I, meN), Ioo» 114, oo, Iy 0sA<1). (1.1

The simplest examples of factors are the spaces Mat,(C) of n x n matrices. These von
Neumann algebras form precisely the factors of type I,, for n = 1. Of interest for these
spaces is the matrix trace Tr, : Mat,(C) — C, which for a matrix A is defined as the
sum of its diagonal entries. Recall for matrices A, B that Tr,(AB) = Tr,(BA) and that
Tr, (A* A) = 0, with strict inequality when A is non-zero. Interestingly, for projections
P e Mat, (C) the trace satisfies Tr, (P) = dim Range(P), and thus Tr,, can be thought of as
measuring the dimension.

In this thesis we mostly encounter von Neumann algebras M of type II;, which con-
trary to matrix algebras are of infinite dimension. For these algebras there exist a linear
map 7 : M — C which for a, b € M satisfies

1. 7(1p) =1
2. t(ab)=1(ba)
3. 1(a*a) = 0 with strict inequality when a is non-zero.

The map 71, called a trace, is analogous to the normalized matrix trace tr, := %Trn but
with one important difference. Namely, the trace tr,(P) of a projection P € Mat, (C) lies
in the discrete set {0, %, s ”T_l, 1}, while the trace 7(p) of a projection p € M can be any
value in the interval [0, 1]. This means that von Neumann algebras of type II; have a sort

of continuous dimension function which makes them interesting to study.

We convey that, while for n = 1 there is only one factor of type I, there are many
different (i.e. non-isomorphic) factors of type II;. Indeed, already Murray and von Neu-
mann distinguished two different II; -factors [MN43], and later Mcduff showed the ex-
istence of uncountably many different II; -factors, [McD69a; McD69b]. The question
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remains how to classify all II;-factors. A full classification is far beyond reach. How-
ever, over the years many properties for von Neumann algebras have been introduced
and studied. A recurring theme in this thesis is that we want to characterize what von
Neumann algebras posses a given property. The properties we study, and which will
be discussed later in this introduction, include: the weak-+* CCAP, primeness, absence
of Cartan subalgebra, the Akemann-Ostrand property (AO), solidity and strong solid-
ity. Furthermore, for a von Neumann algebra M we study unique prime factorizations,
unique free product decompositions and unique graph product decompositions inside
a given class 6. We mostly study these properties and decompositions for von Neumann
algebras arising from graph products or arising from discrete groups.

THE GROUP VON NEUMANN ALGEBRA

There are different ways for constructing examples of von Neumann algebras. One that
dates back to Murray and von Neumann is the construction of the group von Neumann
algebra [MN36]. The group von Neumann algebra Z(G) can be constructed for a lo-
cally compact group G. Examples of locally compact groups include the integers Z, the
torus T = {z € C : |z| = 1}, the real numbers R and the general linear group GL,(R),
each equipped with their natural topology. In this thesis we only encounter discrete
groups, i.e. groups equipped with the discrete topology. For a discrete group G the group
von Neumann algebra is constructed as follows. For s € G define the linear operator
As: 0%(G) — 0%(G) by

(Asg) (1) =g(s™ D).

The group von Neumann algebra Z(G) < B(¢%(G)) is defined as the closure in the
strong operator topology of the linear span of the operators {Ag}gcg, i.e.

£(G):=Spanids:seGy .

We note that, in a similar fashion, the reduced group C*-algebra Cr G ¢c B(¢%(G)) is de-
fined as the norm-closure of the linear span of {Ag}gcc. We also note that for count-
able discrete groups G the group von Neumann algebra £ (G) in fact possesses a normal
faithful trace 7 given by

7(x) =(xb¢,0¢) (1.2)
where 6, denotes the dirac delta function corresponding to the unit element e of G.

It was shown by Connes in [Con75] that not every von Neumann algebras can be
constructed from a group. However, group von Neumann algebras do provide many
interesting examples. Moreover, the construction connects the study of von Neumann
algebras to the study of groups. One of the most fundamental questions in the theory go-
ing back to von Neumann is to study relations between the group G and the group von
Neumann algebra £ (G). Some properties of the group are known to carry over to the
von Neumann algebra. For example a group G is finite if and only if the von Neumann
algebra £ (G) is finite-dimensional. Another example is that a group G is abelian if and
only if the von Neumann algebra £ (G) is commutative. Yet another example is that G is



4 1. INTRODUCTION

infinite-conjugacy class (icc) if and only if £(G) is a factor of type II;. Some other group
properties that have a von Neumann algebraic counterpart include: amenability, weak
amenability, the Haagerup property and property (T). One might hope that all informa-
tion of the group G can be retrieved from its von Neumann algebra. Generally, this is
not the case. In [Con76] Connes showed that the group von Neumann algebras £ (G) of
amenable, infinite-conjugacy class, groups are all isomorphic. Thus information is lost.
The question what information of the group G can be retrieved from its von Neumann
algebra is part of rigidity theory and is one of the main interests in this thesis.

Rigidity theory in more generality concerns the question what properties of an object
can be retrieved when passing to another object. Several rigidity results were obtained by
Connes in [Con80] and [C]85] for icc property (T) groups. Moreover, Connes conjectured
in [Con82] that these groups satisfy a very strong rigidity property called W* -superrigid.
This property asserts for a discrete group G that if £(G) =~ £ (H) for any other discrete
group H, then G = H. Some groups, such as the lamplighter group L = (Z/227)1Z, have
been shown to satisfy this property, see [IPV13; CDD23b]. Moreover, [Chi+23] obtained
the first examples of icc property (T) groups that are W*-superrigid. However, Connes
rigidity conjecture still remains open.

In this thesis we study Coxeter groups. These groups are in some sense opposite
to property (T) groups and are often not W*-supperrigid. However, we can still obtain
rigidity results for these groups. Moreover, we also study rigidity theory in a broader
sense for graph products.

1.2. COXETER GROUPS AND GRAPH PRODUCTS

The study of group forms a vast field in mathematics. This originated from the study of
solutions of polynomial equations and was formalized by Galois and Cauchy, see [Kle86].
In this thesis we focus on a specific class of (discrete) groups called Coxeter groups. For
such groups # we study their von Neumann algebra £ (#'), and more generally their
Hecke-von Neumann algebra Aq(#'). We mostly encounter a specific type of Coxeter
groups called right-angled Coxeter groups. Such groups # naturally decompose as graph
products, as was defined by Green in [Gre90]. In this thesis we also study more general
graph products in the setting of C -algebras and von Neumann algebras as was intro-
duced in [Mlo04] and [CF17].

COXETER GROUPS

In geometry, a finite reflection group is a finite group generated by orthogonal linear
reflections on R%. Examples of such groups include the dihedral groups D, of symme-
tries of the regular polygon with n vertices. Finite reflection groups are important for
the classification of Lie groups and Lie algebras and for the classification of regular poly-
topes (see discussion in [Dav08, Appendix B]). We note that finite reflection groups act
isometrically on the unit sphere S?~!. In a similar fashion, one can study groups gen-
erated by reflections in Euclidean space E4 and in hyperbolic space H?. As an example,
the cover of this thesis depicts a pattern of turtles in hyperbolic space whose symmetry
group is an infinite group generated by reflections. The study of reflection groups has
led to a classification of regular tessalisations of s4 E4 and HY, see [Dav0s, Appendix B].
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In this thesis we study Coxeter groups which can be seen as abstract reflection groups.
These groups were formally introduced by Tits [Tit13] as a group # universally generated
by a set S subject to relations of the form

(st =e fors,teS (1.3)

where e denotes the group unit, and where m;,; € NU {oo} satisfies m;; = 1 whenever
s =t and mg,; = m;s = 2 whenever s # t. Here, m,; = co means that no relation of the
form (st)k = eis imposed for any k = 1. Such a group #  is denoted by # = (S| M) where
M denotes the Coxeter matrix M = (m; )s,res. However, we note that a Coxeter group
# may be represented by different pairs S, M, for example through diagram twisting
[Bra+02]. The pair (#/, S) is called a Coxeter system, to emphasise that we fix a generating
set S. In the study of Coxeter groups it is often sufficient to study Coxeter systems that
are irreducible. Indeed, any Coxeter group can be written as a direct sum of irreducible
ones. All finite irreducible Coxeter systems have been classified by Coxeter in [Cox35]
in terms of the Coxeter Matrix (m,) s res. Furthermore, [Cox34] and [Cox35] show that
finite Coxeter groups are precisely the finite reflection groups.

To a Coxeter system (#/, S) one can associate the Cayley graph, which gives rise to the
word length function |- |g: # — Z>(. Coxeter groups and other discrete groups can be
studied using their Cayley graphs and this has led to interesting notions such as that of
hyperbolic groups. For hyperbolic groups one can construct the Gromov boundary of its
Cayley graph, see [Gro87]. In this thesis we encounter the notion of smaliness at infin-
ity (see [BO08]) which requires such boundary to be well-behaved algebraically (Theo-
rem A).

In this thesis we mostly study right-angled Coxeter groups, which are Coxeter groups
of the form # = (S|M) with mg; € {1,2,00} for s, ¢ € S. We note that, since all elements
s, t € S satisfy s2 = 2 = e, a relation of the form ms,; = 2 simply asserts that s and ¢
commute. This also explains the name ‘Tight-angled’ since two orthogonal reflections
commute if and only if they intersect at a right-angle. All information of a right-angled
Coxeter system # = (S|M) can be encoded in a graph I whose vertex set is S and whose
edge set consists of the pairs {s, #} that satisfy m;; = 2. In fact there is a unique corre-
spondence

T —

between graphs and right-angled Coxeter groups.

HECKE-ALGEBRAS

For a Coxeter group # one can study the group von Neumann algebra £ (#'). More gen-
erally, one can study Hecke-von Neumann algebras associated to #'. These are certain
q-deformations of the group von Neumann algebra £ (#') and were first introduced in
[DymO06]. These structures are of interest in the the study of weighted L?-cohomology of
Coxeter groups, see also [Dav+07]. Given a Coxeter system # = (S|M) and a tuple q =
(gs)ses € Rio satisfying gs = g; whenever s and ¢ are conjugate in #/, the Hecke-von Neu-



6 1. INTRODUCTION

mann algebra Ag(#) is defined as follows. For s € S define the operator T; € B(¢%(#))
by

Osv [svls > |vls
Ts0y = .
Osv+ ps(@by  |svls<|vls

Interestingly, forw = w, - -- w, € # with w; € S the operator given by

Tw:=Tw, ... Tw,
is well-defined, i.e. does not depend on the representative of w. Furthermore, for we #
these operators satisfy

T‘:; =Ty1.

The Hecke-von Neumann algebra A4 (#) is defined, similar to the group von Neumann
algebra, as the closure in the strong operator topology of the linear span of the operators
{Twlwew, i.€.
—————————S0T
NqW) =Span{Ty :we W'} .

Similar also the reduced Hecke C -algebra can be defined.

From a single parameter g > 0 and a Coxeter group # one can construct the single
parameter Hecke-algebra A (#) (= Aq(#') where g, = q for s € S) and we observe that
LW)=MW). In [Gar16] Garncarek characterized for g > 0 precisely when the single
parameter Hecke algebra A4 (#) is a factor. This was extended by Raum and Skalski
in [RS23] to the multiparameter case. In this thesis we study general Hecke-algebras
Nq(#) in the multiparameter setting. Oftentimes the Coxeter group #  that we consider
is right-angled. In such case the Hecke-algebra naturally decompose as a graph product
NqWT) = %y 1N, (Z1227) as we will discuss now.

GRAPH PRODUCTS

In mathematics it is often useful to construct a new object A from two smaller objects A;
and A,. For groups common operations are those of the direct sum G; @ G, and of the
free product G; * G,. In [Gre90] Green introduced a new construction, called graph prod-
ucts, which generalizes both these constructions. Given a simple graph I" and groups G,
for every vertex v of I, the graph product Gr := %, G, is the group defined by Gr = G/ H
where G is the free product of the groups (G,) ,er and where H < G is the normal sub-
group generated by the set

{sts_lt‘1

:5€ Gy, t € Gy, such that v and w share an edge}.

Edges in the graph I' correspond to direct sums, and absence of edges correspond to
free products. Indeed, when the graph I" has no edges, then Gr equals the free product
Gr = G and when I is a complete graph then Gr equals the direct sum Gr = @ Gy.
Some groups, such as right-angled Coxeter groups, naturally decompose as graph prod-
ucts. Indeed, any right-angled Coxeter group #1 can be written as #1 = *,r#), where
W, = Z/2Z for each vertex v. Many group properties are preserved under graph prod-
ucts, including approximation properties such as the Haagerup property [AD14; DG23]
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and weak amenability with constant 1 [Rec17].

Graph product have also been defined in the setting of operator algebras in [M1004]
and [CF17] as a generalization of both tensor products M;® M, and (tracial/statial) free
products M; * M,. The von Neumann algebraic graph product Mt = *,r(M,,¢,) is
constructed such that My equals the tensor product @, M, whenever I is a complete
graph and such that Mr equals the free product *,(M,,7,) whenever I is a graph with
no edges. The reduced graph product Ar = *r,firn(A,,, ¢y) of C -algebras satisfies similar
relations. The notions of operator algebraic graph products agree with that for groups in
the sense that for discrete groups G, one has

Cr (+yrGy) = *ICH(Gy) and  L(x,rGy) = %, 1 L(Gy). (1.4)

Similar to the case of groups, many properties of C"-algebras/von Neumann algebras are
preserved under graph products. Indeed, in [CF17] they showed stability of exactness
(for C"-algebras), Haagerup property and II; -factoriality (for von Neumann algebras). In
this thesis we will study stability of the CCAP and the weak-* CCAP under graph prod-
ucts. We will now discuss these and other approximation properties.

1.3. APPROXIMATION PROPERTIES

In this thesis we study and apply approximation properties including: amenability, weak-
amenability and the Haagerup property. For a discrete group G, these properties assert
that we can approximate the constant function 1 on G pointwise by certain nice func-
tions my : G — C. These properties also have their counterparts for (unital) C"-algebras
and von Neumann algebras. For a C'-algebra/von Neumann algebra M it asserts that
we can approximate the identity map Idy; pointwise by nice maps 0y : M — M. These
approximation properties play an important role in group theory, in operator algebras,
in functional analysis and in harmonic analysis.

We show how approximation properties appear in harmonic analysis. Of main inter-
est in harmonic analysis is the Fourier transform . : L2(T) — ¢?(Z), which is the unitary
satisfying

F(@m :=f g(2)z"dz F @@= gmz".
T nez
In many practical applications it is important to approximate functions by functions
with finite Fourier series. For this we can use approximation properties of the group Z.
Given a sequence (my)y=1 of bounded functions my : Z — C converging to 1 pointwise,
we can consider their Fourier multiplier T;y,, : L3(T) — L2(T) given by

Y fmz"— Y mp(n)f(m)z". (1.5)

nez nez

When the function mj are chosen appropriately (finitely supported and positive defi-
nite), then the maps T, can be used to approximate any continuous function g € C(T)
uniformly by the continuous functions (T, §) k=1 that satisfy || Ty, gllc(m) < llgllcm and
have finite Fourier series. Examples of such appropriate functions (my)> are given by
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my(n) := max{0,1 — %} which corresponds to approximation by Cesaro sums.

The above result is precisely Fejér’s theorem. While for a discrete group G, the Fourier
transform is only defined when G is abelian, it is still possible to study such approxi-
mations when the group G is non-abelian by considering the multipliers Ty, : £Z(G) —
Z£(G) given by

Y f@Ag— 3 me(@)f(8)Ag. (1.6)
geG geG

The multipliers T, can also be regarded as maps on the reduced C"-algebra C} (G) (note
for the group Z that C; (Z) = C(T) and £ (Z) = L*(T)). When the functions mj are cho-
sen appropriately, then the maps 0y := T, provide approximations of the identity map
on the C-algebra/von Neumann algebra.

AMENABILITY, NUCLEARITY AND SEMIDISCRETENESS

The property of amenability appears in different equivalent forms. One of the many
characterizations is that a discrete group G is amenable if the approximating functions
my : G — C can be chosen to be finitely supported and positive definite. The original def-
inition, which was given by von Neumann in [Neu29], involved the existence of invari-
ant means. The motivation came from the Banach-Tarski paradox [BT24] which loosely
states that the 3-dimensional unit ball can be cut into several pieces which can be rear-
ranged in such a way that they will form two unit balls. More precisely, it asserts for d = 3
that any two bounded subsets A, B < R? with non-empty interior can be decomposed in
finitely many mutually disjoint pieces A= A; U...U A, and B = B; U---U By, such that
for 1 < i < n there is a Euclidean transformation T; € E(d) for which T;(A;) = B;. This
paradoxical decomposition has to do with the non-amenability of the group E(d) (con-
sisting of isometries of d-dimensional Euclidean space). Examples of amenable groups
include abelian groups, groups with polynomial growth and solvable groups. The stan-
dard example of a non-amenable group is [, := Z * Z, the free group on 2 generators. In
fact, in [Neu29] von Neumann conjectured that any non-amenable group must contain
[F, as a subgroup, but this was disproven by Ol'shanski [Ols80] who gave an example of a
non-amenable group whose proper subgroups are all cyclic.

The operator algebraic counterparts of amenability are nuclearity and semidiscrete-
ness. Indeed, a discrete group G is amenable if and only if the reduced C"-algebra C; (G)
is nuclear, if and only if the group von Neumann algebra £ (G) is semidiscrete. It was
shown by the fundamental work of Connes [Con76] and others, that for von Neumann al-
gebras (with separable predual) semidiscreteness coincides with other known von Neu-
mann algebraic notions such as: hyperfiniteness, the extension property, injectivity and
amenability. This property, now often referred to as amenability, is well understood and
plays a central role in the theory of von Neumann algebras. The notion of amenabil-
ity also plays an important role in Popa’s deformation/rigidity theory which arose from
[Pop06b; PopO6a]. In this thesis we encounter amenability due to its connection to
strong solidity, as well as in various other places. Furthermore, we also study the notion
of amenability in the relative setting as was introduced by Ozawa and Popa in [OP10a],
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see Theorem N.

WEAK AMENABILITY AND THE CBAP/CCAP

Weak amenability is a weakened version of amenability that for a discrete group G asserts
that the approximating functions my : G — C can be chosen to be finitely supported and
such that supy || Ty, llcb < A for some finite constant A. If the constant A may be chosen
to be 1, then G is said to be weakly amenable with constant 1. Examples of such groups
include all amenable groups but also, for instance, the free group [F, [Haa78]. The no-
tion of weak amenability for groups originates from the work of Haagerup [Haa78], De
Canniere-Haagerup [CH85] and Cowling-Haagerup [CH89]. The corresponding notion
for unital C"-algebras and von Neumann algebras is given by the completely bounded
approximation property (CBAP) and the weak-* CBAP in the sense that a discrete group
is weakly amenable if and only if its reduced group C’-algebra possesses the CBAP if
and only if its group von Neumann algebra possess the weak-* CBAP. The notions cor-
responding to weak amenability with constant 1 are the completely contractive approxi-
mation property (CCAP) and the weak-* CCAP. We study these properties for graph prod-
ucts, see Theorem O and Theorem P.

1.4. RIGIDITY THEORY AND INDECOMPOSABILITY

One of the most important series of von Neumann algebras are the free group factors,
which for n = 2 are the group von Neumann algebras Z(F,) corresponding to the free
group F, on n generators. The free group factors satisfy many interesting indecom-
posability properties like: primeness, absence of Cartan subalgebra, solidity and strong
solidity. We will discuss these properties as well as unique prime factorizations (UPF),
unique free product decompositions and unique rigid graph product decompositions.

PRIMENESS AND UPF
It is a simple fact that a matrix algebra Maty (C) factorizes as the tensor product

Maty (C) = Mat, (C)® Mat,, (C)

if and only if k = nm. In particular, the matrix algebra Mat (C) does not have any non-
trivial tensor product decomposition if and only if k is a prime number. Similarly, for
a II; -factor M one can ask whether it decomposes as a tensor product M = My ®M, of
factors M and M,. As it turns out for n = 1 every II;-factor M decomposes as tensor
product M = N® Mat, (C) for some unique II; -factor N (denoted M 1/n) called an ampli-
fication of M. In fact, amplifications M’ are defined more generally for any t € (0,00).
The question that we are interested in however, is what factors M decompose as

M= M ®M,

for some infinite-dimensional von Neumann algebras M; and M. A factor that does not
decompose in this way is called prime. The first known example of a prime factor was the
group von Neumann algebra of the free group with uncountable many generators £ (Fg)
as was shown Popa in [Pop83]. Thereafter, Ge showed in [Ge96] that Z(F,) is a prime



10 1. INTRODUCTION

factor for n = 2 by computing Voiculescu’s free entropy. Later, in [0za04] Ozawa intro-
duced a new property, called solidity, which for non-amenable factors implies prime-
ness. He showed that all II, -factors satisfying the Akemann-Ostrand property (AO) are
solid. For a discrete hyperbolic group G it had already been shown in [HG04] by using
the Gromov boundary that £ (G) possesses (AO). Thus Z(G) is a prime factor for any
icc, non-amenable, hyperbolic group G. There are many more examples of prime fac-
tors, see e.g. [BHV18; CSS18; CKP16; CSU13; DHI19; Pet08; Sak09; SW13]. In this thesis
we will present a characterization of primeness for von Neumann algebras coming from
graph products, see Theorem H.

Given a class € of von Neumann algebras, a natural question is whether any von
Neumann algebra M € € has a tensor product decomposition M = M;®---®M,, for
some m = 1 and prime factors Mi,..., M;, € € and whether this prime factorization
is unique. Generally, it holds true that if M = M®M, is a prime factorization, then
M = M{@Mz” ! also is a prime factorization for any ¢ € (0,00). Hence, uniqueness of
prime factorizations is always studied up to amplifications. The first unique prime fac-
torization (UPF) results were established by Ozawa and Popa in [OP04] for tensor prod-
ucts of certain group von Neumann algebras. Later, UPF results were obtained in [[s017],
[HI17] for other classes of von Neumann algebras. In the setting of graph products, UPF
results have been obtained in [CSS18, Theorem 6.16] under the condition that the vertex
von Neumann algebras are group von Neumann algebras. In this thesis, we present in
Theorem | new UPF results for von Neumann algebras in the class 6rigiq coming from
(rigid) von Neumann algebraic graph products.

FREE-INDECOMPOSABILITY AND KUROSH TYPE THEOREMS

Similar to unique prime factorizations one can ask whether a tracial von Neumann al-
gebra (M, 1) decomposes as a (reduced) free product M = Mj * --- % My, in a unique
way. In [0za06] Ozawa extended the results [OP04] for tensor products to the setting
of free products. In particular, he showed for M = M; * --- * M,;; a von Neumann alge-
braic free product of non-prime, non-amenable, semiexact II; -factors Mj,..., My, that if
M = Nj #---% Ny, is another free product decomposition into non-prime, non-amenable,
semiexact II;-factors Ny, ..., Ny, then m = n and, up to permutation of the indices, M;
unitarily conjugates to N; inside M for each 1 < i < m. This result can be seen as a von
Neumann algebraic version of the Kurosh isomorphism theorem [Kur34], which states
that any discrete group uniquely decomposes as a free product of freely indecompos-
able groups. Versions of Ozawa’s result were later shown for other classes of von Neu-
mann algebras, see [Ash09; [PP08; Pet08]. In [HU16] these results were then extended by
Houdayer and Ueda to a single, large class of von Neumann algebras. Other Kurosh type
theorems have recently been obtained in [Dri23, Corollary 8.1], [DE24b, Corollary 1.8].
In this thesis we obtain Kurosh type results for graph product in the class 6rigid \ Gvertex,
see Theorem K.

RIGID GRAPH PRODUCTS
In rigidity theory, the famous free factor problem [Kad67] asks whether one can retrieve
the number n = 2 of generators from the von Neumann algebra £ (F,), i.e. is it true that
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L (F,) # ZL(Fp) for n # m? This question is related to Kurosh type results since the free
group factor £ (F,) decomposes as the tracial free product

LF)=R+*---%xR (ntimes)

of hyperfinite II; -factors R, see [Dyk94]. On a level of C"-algebras the question has been
answered by Pimsner and Voiculescu in [PV82]. Indeed, they showed that the reduced
group C’-algebras C; (F,) for n = 2 are pairwise non-isomorphic by computing their K-
theory. However, the question for von Neumann algebras is still open.

It was shown independently by Rddulescu [Rad94] and by Dykema [Dyk94] that it is
possible to extend the definition of the free group factors Z(F,) and more generally, for
r € (1,00], construct the interpolated free group factors £ (F,) which satisfy

ZLFrrsd) =ZLE) « L (Fy) 1, s€(1,00] (1.7)
LE) =L F), ) r € (1,00], 1 € (0,00) (1.8)

(observe that the group F; is only defined when r € N). Rddulescu moreover showed in
[Rad94] that the free factors Z(F,) for r € (1,00] are either all isomorphic or pairwise
non-isomorphic. It is widely believed that the free factor problem is true, but the prob-
lem is considered very hard.

A natural generalization of the free factor problem is to ask what information of the
graph I" we can retrieve from the graph product Mr = *,r(M,,7,). For the case of Hecke
algebras, Garncarek showed in [Garl6] using [Dyk93] that when I is a non-complete
graph whose connected components are complete and when g € [0, 1] is close enough
to 1 then A4 (#1) is equal to an interpolated free group factor. In particular, as stated in
[CSW19] when T is a graph of size N = |T'| = 3 and with no edges, then for g € [ﬁ, 1] it
holds true that

Wq(%") =$(ﬂ:2Nq/(l+q)2) (].9)

This shows the connection with the free factor problem.

The theory of graph products becomes somewhat more elegant when the vertex von
Neumann algebras M, are all taken to be II; -factors. In this setting rigidity results were
obtain for graph products Mr = %, r(M,,7,) in [CDD22; CDD23a] when M, comes from
a class of group von Neumann algebras of certain property (T) groups. In this thesis
we study rigidity results for other classes of von Neumann algebraic graph products of
I1; -factors. We will obtain several rigidity results that allow us, in some cases, to fully or
partially retrieve the graph I' and the von Neumann algebras M, from the graph product
Mr, see Theorem F and Theorem G.

CARTAN SUBALGEBRAS AND STRONG SOLIDITY

A construction more general than that of the group von Neumann algebra is that of
the crossed product M x, G, which can be build from a trace preserving group action
a : G — Aut(M) on a von Neumann algebra (M, 7). Group von Neumann algebras are
a special case of crossed products since £ (G) = C x G. A question that has been stud-
ied is what von Neumann algebras decompose as a group measure space L*(0,1) x4, G
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for some group G and some group action a on L*°(0,1). This question reduces to the
question what von Neumann algebras posses a Cartan subalgebra. Indeed, the theorem
of [FM77a; FM77b] shows that a von Neumann algebra decomposes as a (generalized)
group measure space von Neumann algebra if and only if M possesses a Cartan sub-
algebra. It was first shown by Voiculescu in [Voi96] that the free group factors Z(F;)
for t € (1,00) do not posses a Cartan subalgebra. Later, Popa and Ozawa introduced in
[OP10a] the property strong solidity which is a strengthened version of Ozawa’s property
solidity that moreover implies absence of Cartan subalgebras. A von Neumann algebra
M is called strongly solid if for every amenable von Neumann subalgebra A € M that is
diffuse (i.e. that contains no minimal projections) the set of normalizers

Norp(A) :={u€ M unitary: u* Au = A}

generates a von Neumann algebra that is amenable again. Popa and Ozawa showed that
the free group factors posses this property which moreover retrieved Voiculescu’s result.
Many examples of strongly solid von Neumann algebras have been obtain, see [Cas22;
CS13; DP23; Isol5a; PV14b]. In this thesis we fully characterize when a graph product of
von Neumann algebras is strongly solid (see Theorem C, Theorem D and Theorem E).

1.5. DERIVATIONS AND QUANTUM MARKOV SEMIGROUPS
Derivations are linear maps 6 that satisfy the Leibniz rule 6 (xy) = §(x)y + x6(y). They
play an essential role in the theory of Lie algebras, cohomology, and in quantum physics,
see [KL.14; SS95]. Derivations are also of interest in the study of semigroups since deriva-
tions are square-roots of generators of quantum Markov semi-groups (QMS). In this the-
sis we will study commutator estimates to obtain estimates on the norms of derivations.
Furthermore, we will study QMS’s on Hecke algebras to obtain strong solidity results.

COMMUTATOR ESTIMATES AND NORMS OF DERIVATIONS

A classical result on derivations is due to Stampfli [Sta70] which asserts that for a € B(#)
the derivation d , : B(#’) — B(#°) defined by the commutator 0 ,(x) = [a, x] = ax—xa has
operator norm ||§ 4|l = 2infzec lla— z1p7]l. Through the work of [KI'T20; Gaj72; Zsi73], the
result of Stampfli has been extended to derivations on arbitrary von Neumann algebras
M (see also [Mag95] for more in this direction). More precisely, the result of Zsidé [Zsi73,
Corollary] asserts that for M a von Neumann algebra and a € M, the derivationd,: M —
M associated to a satisfies the distance formula:

o M =2 min |la-2z|, 1.10
10 all pr—nm i I I ( )

where Z(M) denotes the center of M. Derivations have also been studied as maps from
M to the predual M,. Indeed, the predual M, is a M-bimodule (see Section 7.7) and
therefore it is possible to consider derivations 6 : M — M,. Important work on such
derivations was done in [BP80; Haa83; BGM12] and particularly the result of [Haa83,
Theorem 4.1] showed that all these derivations are inner, i.e. of the form 6 = §, for some
a € M, defined by d,(x) = ax — xa. These studies arose after Connes proved in [Con78]
that all C'-algebras that are amenable (as a Banach *-algebra) are necessarily nuclear.
Haagerup proved in [Haa83] that the reverse implication is also true.
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In [BHS23] the norms of these derivations were studied and results analogous to
(1.10) were found in certain cases: for M properly infinite it was shown that some form of
formula (1.10) holds true and for M finite the same was proved under the condition that
a is self-adjoint. The proofs of these results were based on improvements of the operator
estimates obtained in [BS12b; BS12a]. The estimates in [BHS23] show in particular for
a factor M and a self-adjoint a € M that there is a A € C so that for € > 0 there exists a
unitary u, € M for which

lla, ugll =2 A —€e)(la— ALyl + uela— AL plue). (1.11)

In this thesis we show analogous estimates for normal elements (Theorem Q) and
obtain sharp estimates on the norm [|§ 41l p;— 11(ps,7) for finite factors M (Theorem R).

QU/\N'I‘U M MARKOV SEMIGROUPS AND GR/\DIHN'I'—SV

A quantum Markov semigroup (QMS) (®;);>¢ on a tracial von Neumann algebra (M, 1)
is a semigroup of nice maps ®;: M — M. As already mentioned, QMS’s are connected
to derivations, since by [CS03] the generator A of a (symmetric) QMS can be written
as A = §*6 for some derivation §. Furthermore, QMS’s are also connected to approxi-
mation properties, since the maps (® 1 k=1 form an approximation of the identity Idy,.
In fact, as was shown by Jolissaint in [JM04] there exists on a von Neumann algebra
(M, ) a (symmetric) QMS whose generator has compact resolvent if and only if M pos-
sesses the Haagerup approximation property. This approximation property is, just as
weak amenability, a weakened version of amenability. The Haagerup property first arose
for groups in [Haa78] and later for C'-algebras/von Neumann algebras [Cho83; Jol02;
CS15]. As was shown by [B]S88] (see also [Tit09, p. 2.22]) all Coxeter groups # posses the
Haagerup property. For a Coxeter group # it is thus possible to study QMS’s (®;) ;¢ on
the group von Neumann algebra £ (#'). In this thesis we study such semigroups (The-
orem A and Theorem B) with the aim to obtain strong solidity results for the group von
Neumann algebra £ (#') and more generally for the Hecke-algebra A4 (#). This further
develops the connections between QMS’s and rigidity theory that were made in [Cas21]
and [CIW21].

1.6. THESIS RESULTS AND STRUCTURE OVERVIEW
In this section we present the main results obtained in this thesis. Before we list these
results, we give a quick overview of the structure of this thesis.

* In Chapter 2 (the preliminaries) we recap general theory and fix notation. In par-
ticular, we introduce the notation that we use for simple graphs and for operator
algebraic graph products.

* In Chapter 3 we perform some technical calculations in graph products concern-
ing annihilation, diagonal and creation operators. These calculations are used in
Chapter 6 and in a few parts of Chapter 5.

¢ In Chapter 4 we study the gradient-S, property for QMS’s. We apply this study
to obtain strong solidity results for group von Neumann algebras of right-angled
Coxeter groups and for right-angled Hecke algebras.
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 In Chapter 5 we fully characterize strong solidity for von Neumann algebraic graph
products. We stress that the techniques we use here are completely different from
those in Chapter 4. Furthermore, in this chapter we also study nuclearity, relative
amenability, primeness and free indecomposability for graph products. Moreover,
we obtain unique rigid graph product decompositions and show unique prime
factorizations and unique free product decompositions for new classes of von Neu-
mann algebras. We also show that in many cases the graph radius can be retrieved
from the graph product.

* In Chapter 6 we study stability of the CCAP and weak-* CCAP under graph prod-
ucts. We are able to show that graph products of finite-dimensional von Neumann
algebras posses the weak-* CCAP. Furthermore, we are able to show that a prop-
erty slightly stronger than the CCAP is preserved under reduced graph products.

 In Chapter 7 we slightly deviate from the main topics of this thesis and study com-
mutator estimates for normal operators in factors. We apply these estimates to
obtain optimal norm bounds on derivations.

We stress that the chapters in this thesis are not logically dependent and can be read
in any order; the only exception is Chapter 3. We now summarize the main results. For
some of the notation we refer to later chapters.

QU/\N'I'U M MARKOV SEMIGROUPS AND GRADI EN'[‘—S/,

In Chapter 4 we study quantum Markov semigroups (QMS) on £ (#') for Coxeter groups
¥ . Specifically, for a Coxeter system # = (S| M) we study the QMS on £ (#') associated
with the word length |- |s. This is the semigroup (®;) ;>0 of the form &, = e~ where the
(unbounded) generator A on Z(¥) is given by

A(Aw) = [W[sAw.

For these QMS’s we precisely characterize when it possesses the Gradient-S, property as
was defined in [Cas21] (for p = 2) and [CIW21] (for general p), see Definition 4.3.3.

Theorem A (Theorem 4.4.15). Let # = (S|M) be a Coxeter system. Fix p € [1,00]. The
following are equivalent:

1. The QMS (®;)>o associated with the word length |- |s is gradient-S, on L (W).
2. Forallse S theset{ve W :sv=vs} is finite.
3. The Coxeter system W = (S|M) is small at infinity.

As we show in Theorem B, in most cases you can characterize the equivalent state-
ments of Theorem A in purely graph theoretical terms (see Definitions 4.4.5 and 4.4.6).

Theorem B (Theorem 4.4.8 and Theorem 4.4.9). Let # = (S|M) be a Coxeter group. If
there does not exist a cyclic parity path in Graphs(#') then the semi-group (®;)>¢ asso-
ciated to the word length | - |s is gradient-S, for all p € [1,00]. The converse holds true if
m;j #2 foralli, j.



1.6. THESIS RESULTS AND STRUCTURE OVERVIEW 15

STRONG SOLIDITY

Continuing, in Chapter 4 we study for right-angled Coxeter groups #1r some QMS’s on
Z (#1) that are associated to different kinds of word lengths. Using the non-commutative
Riesz transform R = Vo A~ we show that if #t is hyperbolic then the group von Neu-
mann algebra £ (#1) possesses AO" and is strongly solid (Theorem 4.6.2). This result
was already known using different techniques, see [PV14b]. However, when we apply
our results on QMS’s on right-angled Hecke von Neumann algebras we are able to ob-
tain the following new result.

Theorem C (Theorem 4.7.5). LetT be a finite simple graph and letq = (q,) yer With q, > 0.
Assume
A:={reTl:3s,t eI such thatr € Linkr (s) n Linkr (1), s € Starr ()}

is a clique in T. Then the Hecke von Neumann algebra Nq(#t) satisfies the Akemann-
Ostrand property AO" and is strongly solid.

In the next chapter, Chapter 5, we study general von Neumann algebraic graph prod-
ucts. Using completely different techniques (such as Popa’s intertwining by bimodule
theory) we are able to fully characterize when a graph product of tracial von Neumann
algebras is strongly solid.

Theorem D (Theorem 5.6.7). LetT be a finite graph, and for each veT let M, (# C) bea
von Neumann algebra with normal faithful trace t,,. Then Mt = *,1r(M,,T,) is strongly
solid if and only if the following conditions are satisfied:

1. Foreach vertex v € I' the von Neumann algebra M, is strongly solid.

2. For each subgraph A € T with My non-amenable, we have that Mynk ) is not dif-
fuse.

3. For each subgraph A < T with Mp non-amenable and diffuse, we have moreover
that Myink(n) is atomic.

We remark that in most cases the stated conditions can be easily verified from the
graph T" and the vertex von Neumann algebras M,. In particular, Theorem D com-
pletes the characterization of strong solidity for right-angled Hecke-algebras, see The-
orem 5.6.12 Moreover, for group von Neumann algebras of Coxeter groups we obtain the
following simple characterization of strong solidity.

Theorem E (Theorem 5.6.13). Let #1 be a right-angled Coxeter group. The following are
equivalent:

1. The von Neumann algebra £ (Wr) is strongly solid.
2. The Coxeter group #r does not contain Z x F, as a subgroup.

3. The graphT does not contain Ky 3 nor KZS as a subgraph (see Figure 5.1).

We do remark that a right-angled Coxeter group #r is hyperbolic if and only if #r
does not contain Z x Z as a subgroup, if and only if the graph I' does not contain Z4
(the cyclic graph with four vertices) as a (induced) subgraph (see [Dav08]). The result
of Theorem E establishes strong solidity of £ (#r) for a broader class of right-angled
Coxeter groups than just those that are hyperbolic.



16 1. INTRODUCTION

RIGID GRAPH PRODUCTS

In Chapter 5 we moreover study other rigidity properties of graph products. Indeed, we
introduce a class 6yertex Of 117 -factors (see Definition 5.5.4) and introduce the notion of
a rigid graph (see Definition 5.2.1). We then study graph product von Neumann algebras
Mr = *,1r(M,,7,) whose vertex algebras M, are in 6vertex, and whose graph T is rigid.
We show that the Neumann algebra Mr uniquely decomposes as such a graph product.
This is the content of the following theorem.

Theorem F (Theorem 5.5.19 and Theorem 5.7.5). LetT be finite rigid graphs and forv e T’
let M, be von Neumann algebras in the class Gveriex With faithful normal trace t,. Let
Mr = *,r(M,,T,) be their graph product. Suppose there is another graph product decom-
position of Mr over another rigid graph A and other von Neumann algebras Ny, € Gvertex
weA,ie Mr=%*ya(Ny Tw). Then thereisa graph isomorphisma :T' — A, and for each
v el thereis a unitary u, € Mr and a real number0 < t, < oo such that:

Mstar) = u;NStar(a(v)) Uy and M, = Néy(v)- (1.12)
Furthermore, for the connected componentT', < T of any vertex v € ', we have Mr, =
”:thr(Fu) uy; and for any irreducible component I'g < I', 3ty € (0,00) such that Mr, =

0
Na(Fo)'

For more general graph products we study what information of the graph I" can be
retrieved from the graph products Mr. Indeed, we introduce the notion of the radius
of a von Neumann algebra (see Definition 5.9.3), and show that in many cases we can
retrieve the radius of the graph I" (up to some constant) from the radius of the von Neu-
mann algebra Mr (Remark 5.9.7). In particular, this allows us to distinguish certain graph
products of hyperfinite II; -factors.

Theorem G (Theorem 5.9.6 and Theorem 5.9.11). LetT be a finite, non-complete graph.
For v eT let M, be a II; -factor and let Mr = *,r(M,,T,) be the tracial graph product.
Suppose one of the following holds true.

1. Forallv €T thevertex algebra M, possesses strong (AO) and has separable predual.
2. Forallv el we have M, = £(G,) for some countable icc group G,,.
Then
Radius(I') — 2 < Radius(Mr) < max{2, Radius(I')}.

UNIQUE PRIME FACTORIZATIONS
In Chapter 5 we also prove the following result which characterizes primeness for graph
products.

Theorem H (Theorem 5.7.4). LetT be a finite graph of size|I'| = 2. Forany v €T, let M, be
a IT, -factor. The graph product Mr = *,1(M,,T,) is prime if and only if T is irreducible.

By combing Theorem H with Theorem F we are able to obtain the following unique
prime factorization result.
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Theorem I (Theorem 5.7.6). Any von Neumann algebra M € 6rigiq has a prime factor-
ization inside Grigid, i.e.

M=M®- - &My, (1.13)

for some m =1 and prime factors My, ..., My, € GRigid-
Suppose M has another prime factorization inside 6rigiq, i.e.

M=N;®---®N,, (1.14)

for some n =1, and prime factors Ny, ..., Ny, € Grigia. Then m = n and there is a permuta-
tion o of {1,..., m} such that M; is isomorphic to an amplification of Ny for1 <i < m.

UNIQUE FREE PRODUCT DECOMPOSITION
In Chapter 5 we also study free product decompositions. The following result character-
izes when a graph product decomposes as free product of II, -factor.

Theorem J (Theorem 5.8.1). Let T be a finite graph of size |T'| = 2, and for each v € T let
M, be II; -factor with separable predual. Then the graph product Mt := % ,r(M,,7,) can
decompose as a tracial free product Mr = (M1,11) * (M, T2) of IT; -factors My,M, if and
only if T is not connected.

Combining with Theorem ] with Theorem F we obtain the follow unique free product
decomposition for von Neumann in the class 6rigiq \ Gvertex-

Theorem K (Theorem 5.8.2). Any von Neumann algebra M € 6rigid \ Gvertex can decom-
pose as a tracial free product inside 6Rigid \ GVertex, I-€.

M= M;j - % My, (1.15)

for some m = 1 and factors My, ... My, € 6rigid \ Gvertex that can not decompose as any
tracial free product of I -factors.
Suppose M can decompose as another tracial free product inside €Rigid \ GVertex, i-€.

M:Nl*...*Nn,

for some n =1 and factors Ny, ..., Ny € 6rigid \ Gvertex that can not decompose as tracial
free product of I, -factors. Then m = n and there is a permutation o of {1,..., m} such that
N; unitarily conjugate to My ;) in M.

NUCLEARITY, (RELATIVE) AMENABILITY AND THE (WEAK-x*) CCAP
We study several approximation properties for graph products.

GRAPH PRODUCTS AND NUCLEARITY

In Chapter 5 we give sufficient conditions for a reduced graph product of unital C*-
algebras to be nuclear. This is a generalization of Ozawa’s result for free products [0za02]
and is needed in the proof of Theorem F.

Theorem L (Theorem 5.3.4). Let Ar = *ryr}irn(Ay,<py) be the reduced C* -algebraic graph
product of nuclear, unital C* -algebras A, with GNS-faithful statep,,. Let 76, := L*(A,,¢,)
andletm,: A, — B(#,) be the GNS-representation. If forany v €T, m,(A,) contains the

space of compact operators K(#,), then Ar is nuclear.
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GRAPH PRODUCTS AND (RELATIVE) AMENABILITY

The following result from Chapter 5 is the graph product analogue of [HI17, Theorem
5.1] and [0za06, Theorem 3.3], and is crucial in the proof of Theorem F for establishing
the graph isomorphism.

Theorem M (Theorem 5.5.15). Let (Mr, 1) = *,r(M,,7,) be the graph product of finite
von Neumann algebras M, that satisfy condition strong (AO) and have separable predual.
Let Q < Mr be a diffuse von Neumann subalgebra. At least one of the following holds:

1. The relative commutant Q' N Mr is amenable;

2. ThereexistsI'g €T such that Q <pi Mr, and Link(T'g) # @.

We also study relative amenability for graph products and obtain the following result
which is needed in the proof of Theorem D, Theorem G and Theorem H.

Theorem N (Theorem 5.4.8). LetT be a graph with subgraphsT,I'y €T. ForeachveTl
let (M, T,) be a von Neumann algebra with a normal faithful trace. Let P c Mt be a von
Neumann subalgebra that is amenable relative to Mr, inside Mr for i =1,2. Then P is
amenable relative to My, qr, inside Mr.

GRAPH PRODUCTS AND THE CCAP

In the next chapter, Chapter 6, the focus is on showing stability of the CCAP and weak—x
CCAP under graph products. Similar to [RX06] we are able to show for reduced graph
products of unital C’-algebras that a condition slightly stronger than the CCAP is pre-
served.

Theorem O (Theorem 6.5.2). LetT be a simple graph and for v €T let (Ay,@,) be unital
C"-algebras that have a u.c.p. extension for the CCAR Then the reduced graph product

(Ar, ) =%y (Ay,@,) has the CCAP

For von Neumann algebraic graph products we are able to show the following result.

Theorem P (Corollary 6.3.4). Let T be a simple graph and for v € T let M,, be a finite-
dimensional von Neumann algebra together with a normal faithful state ¢,. Then the
von Neumann algebraic graph product (Mr, ¢) = *,v (M, ¢,) has the weak-* CCAP

COMMUTATOR ESTIMATES AND DERIVATIONS

The topic of the last chapter, Chapter 7, is slightly different from the other parts of this
thesis and does not concern Coxeter groups or graph products. The aim is to generalize
commutator estimates from [BS12b], [BS12a] and [BHS23] for self-adjoint elements to
normal elements. We obtain the following result; here S(M) denotes the algebra of mea-
surable operators affiliated with M. The constants A, and A,, are defined in Section 7.3
in (7.12) and (7.13) and estimates on these constants are given in Theorem 7.A.1.

Theorem Q (see Theorems 7.5.6, 7.6.4). Let M be a factor and let a € S(M) be normal.
Then there is a Ay € C and unitaries u, v, w € U(M) such that

lla,ull = C(vla—Aolplv™ + wla—Aolplw™) (1.16)

for some constant C > 0 independent of a. Moreover
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1. when M is a I,,-factor, n < oo, the optimal constant satisfies A, < C < %T\n.

2. when M is a II; -factor, the optimal constant is C = ‘/75

3. when M is an infinite factor, we can choose C arbitrarily close to 1.

We apply the commutator estimates from Theorem Q to obtain for a finite factor
M sharp estimates on the norm ||6u||M_,L1(M,T), where §, : M — LY(M, 1) is the inner
derivation given by 6 ,(x) = ax — xa associated to a normal measurable a € LY (M, 7). In
this result we denote n(M) = n if M is a I ,,-factor and put n(M) = oo if M is a I, -factor.

Theorem R. Let M be a finite factor with a faithful tracial state T and let a € L' (M, 1) \
Z(M) be normal and measurable. Then the derivation§,: M — L' (M, 1) satisfies:

6alloo

; < (1.17)
mingec la—zlpmlh

2u/\n(M) =

Moreover, when M # C there exist non-zero derivations 6 4,0}, corresponding to normal
a,b e M such that |6 4lleo1 < Apvy mingec lla—z1pll1 and|l6pllco,1 = 2mingec |1b—2z1pll1.

We remark if n(M) ¢ {1, 2,4} then the distance formula |6 4llco,1 = 2minzec la—2z1pll1
from [BHS23, Theorem 1.1](Theorem 7.7.1) for self-adjoint a does not extend to arbitrary
normal measurable a € L} (M, 1), since A n(v < 2in these cases. Furthermore, we remark
when M is a II;-factor or a I;-factor with n = 0 mod 3 then the constant bounds given
in (1.17) can not be improved as in these cases 2A ) = V3 = A -

DISCUSSION

In the last section of Chapter 4 and of Chapter 5 respectively we discuss some natural
open problems related to the topics of these chapters. In the discussion of Chapter 5
we moreover state a conjecture on rigidity of graph products of hyperfinite II; -factors
(Conjecture 5.10.5).






PRELIMINARIES

We recall general theory used in this thesis and establish our notation. In Section 2.1 we
recap theory of C"-algebras, von Neumann algebras and bimodules. In Section 2.2 we es-
tablish the notation we use for (simple) graphs. In Section 2.3 we discuss discrete groups
and their *-algebras, reduced C’-algebras and group von Neumann algebra. Further-
more, we establish notation for Coxeter groups and Hecke-algebras and we define graph
products of groups. In Section 2.4 we show the construction of (reduced) graph prod-
ucts in the setting of C'-algebras/ von Neumann algebras as was introduced in [CF17].
In Section 2.5 we define several properties for groups, C -algebras and von Neumann al-
gebras and discuss how they are connected.

Conventions and general notation: We denote N = {1,2,...} for the set of natural
numbers. For a set S we write |S]| for its cardinality and 25 for its power set. All Hilbert
spaces ./ considered are complex, and with inner products (:,-) that are linear in the
first variable.

2.1. OPERATOR ALGEBRAS AND BIMODULES

In Section 2.1.1 we discuss the bounded operators, schatten classes, C -algebras and op-
ertor spaces. In Section 2.1.2 we discuss von Neumann algebras and in Section 2.1.3 we
discuss bimodules. For a detailed exposition on these topics we refer to [SZ19; Mur90;
AP17; Tak02; Tak03a; Tak03b]. Furthermore, we refer to [ER00; Pis03] for general theory
of operator spaces, and we refer to [DPS22; FK86] for more theory on locally measurable
operators.

2.1.1. THE SPACE OF BOUNDED OPERATORS

Given a complex Hilbert space / we denote B(#°) and K(#°) respectively for the space
of bounded operators on . and the space of compact operators on /.

21
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SCHATTEN-VON NEUMANN CLASSES S,,(Jf)
For positive x € B(#°) we denote

Tr(x) = )_(xe;, e;) 2.1
iel
where (e;);es is any orthonormal basis for #. For p € (0,00) we define the Schatten-von
Neumann class S, (#) as the space of all x € B(#) for which

lxl, = Tr(lx1P) 7 2.2)

is finite. If p € [1,00) then (2.2) defines a norm turning S, (%) into a Banach space that
is moreover a 2-sided ideal in B(#). We additionally define || - ||, equal to the operator
norm | -|| and put Soo (#) = K(A#). Moreover, we extend the trace (2.1) linearly to define a
bounded map Tr: S; (#) — C. The Schatten class S; (/) can be identified as the predual
of B(#) through the identification S; (#) 3 x — Tr(-x).

TOPOLOGIES ON B(A#)
We recall the three most imporant topologies on B(A).

1. The strong operator topology (SOT). A net (x;);e; converges strongly to x if || x;¢|| —
[|x¢|| forall & € A.

2. Theweak operator topology (WOT). Anet (x;) ;e converges weakly to x if (x;¢, ) —
(x¢,n)y forall &,ne A.

3. The o-weak topology. A net (x;);c; converges o-weakly to x if Y ,>1(x;p,n) —
Y p=1{xEn,ny) for all sequences (&) p=1, Mn)ns1 in A for which ¥ ,,5; 1€, 1% and
Y n=1 0 ll? are finite.

We note that convergence in norm implies strong convergence implies weak conver-
gence. Furthermore, we note also that o-weak convergence implies weak convergence.
In fact, on the unit ball the weak operator topology and the o-weak topology coincide.

C*-ALGEBRAS AND TENSOR PRODUCTS

An algebra A is a vector space equipped with a multiplication, i.e. a map A x A — A that
is bilinear and associative. A *-algebra is an algebra A equipped with an involution =,
i.e. an antilinear map A — A satisfying (a*)* = a and (ab)* = b*a* for a,b € A. When
A is unital, we denote by 1,4 the unit of A. A C*-norm on a *-algebra A is a norm | - ||
satisfying [ xyll < llxllllyl, Ix*Il = Ix]l and [|x*x[| = [lx]|? for x,y € A. A C*-algebra is a
x-algebra A equipped with a C’-norm that makes A into a Banach space. We recall the
following notions of tensor products.

1. For vector spaces V, W we let V ®,; W be the algebraical tensor product.

2. For Hilbert spaces #, £ we let #£® £ be the Hilbert space tensor product, which
is the Hilbert space completion of /# ®,, £ with respect to the inner product

given by ({1 ®11,82 ®102) = (&1, &) M1, N2) v
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3. For C*-algebras A and B we let A ®pin B be the minimal tensor product and let
A ®max B be the maximal tensor product. These are the completions of A ®;,; B
w.r.t the C'-norms | - lmin respectively || - [Imax that are defined by the property that
I lmin < I I < Il - | max for any C'-norm || - | on A ®alg B.

4. For (concrete) C*—algebras A € B(A#) and B < B(#£") we can construct an embed-
ding 7w: A®,g B— B(# @ &) as n(a® b)(§ ®n) = (af) ® (bn). The norm closure of
7 (A®ge B) is called the spatial tensor product. By [Tak02, Theorem 4.19] the spatial
tensor product agrees with the minimal tensor product A ® i B.

5. For linear maps T; : V; — W; between vector spaces V; and W;, we denote by T ®
T : V1 ®41¢ V2 — W) @410 W, the map given by (T1 ® T5) (x® y) = T1(x) ® To(y). When
T; is a bounded map between Hilbert spaces .#; and .%; then we extend T} ® T to
amap from S ® # to K1 @ A>.

We remark for n = 1 that the algebraic tensor product A ®,; Mat,(C) can be equipped
with a unique norm making it into a C"-algebra [B008, Proposition 3.3.2].

OPERATOR SPACES

An operator space is a (norm-)closed subspace of B(#°) for some complex Hilbert space
J¢. Given a operator space B < B(/#) we identify B ® Mat, (C) with the corresponding
(closed) subspace of B(# ® C""). A bounded map 6 : By — B, between operator spaces
By, B is said to be a completely isometry if for all n = 1 the map 0 ® Idmat, () between
B; ® Mat,(C) and B, ® Mat,(C) is an isometry. Furthermore we denote,

10lch := sup 10 ® Idmat, ) |l
n=1

and call 6 completely bounded whenever [0||, is finite. We call 8 completely contrac-
tive whenever ||0]p < 1. A bounded map 6 : A; — A between C*-algebras is called a
homomorphismif 0(ab) = 0(a)0(b) for a,b e A;. We call 8 a x-homomorphism (or repre-
sentation) if moreover 0(a*) = 6(a)* for a € A. We recall the following dilation theorem.

Theorem 2.1.1 (Theorem 8.4 in [Pau02]). Let A be a C -algebra and 0 : A — B(#) be a
completely bounded map. Then there is a Hilbert space X , a representationn : A — B(%")
and bounded maps V1,V : /€ — A such that

O@=Vin(@V, acA (2.3)
and ||0|l¢:p = V1111 V2ll. Moreover, if 10|, = 1 then Vi and Vo> may be taken to be isometries.

We also remark that if A is a C'-algebra and 6 : A — B(#) is any map that can be
written as (2.3), then it is completely bounded. Furthermore, when for i = 1,2 we are
given completely bounded maps T; between C -algebras A; and B; then we may extend
T, ® T» to amap from A; ®min A2 to By ®min Ba.

For operator spaces, V, W we denote V ®;, W for their Haagerup tensor product, see
[ER0O, Chapter 9].
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2.1.2. VON NEUMANN ALGEBRAS
Given a complex Hilbert space ./ and a subset S < B(/°) we denote by

§':={xeB(A): xy—yx=0for ye S}

the commutant of S. Moreover, we denote by S” := (§')’ the double commutant of S. A
von Neumann algebra M is a subset M < B(#) that satisfies M"” = M. Equivalently, a
von Neumann algebra M is a SOT-closed unital *-subalgebra of B(#) for some complex
Hilbert space /. For a von Neumann algebra M € B(#) we denote M* :={a*a: a € M}
for the cone of positive elements, U(M) for the group of unitaries, P(M) for the lattice of
projections and Z(M) := M’ n M for the center. We denote the unit of M by 1,; (= Id ).
We call M a factor if Z(M) = Cly;. We call N € M a von Neumann subalgebra when
N is a von Neumann algebra and 1 = 1. For a projection p € P(M’) we call the von
Neumann algebra Mp|,.z < B(p#€) the reduction of M, and for a projection p € P(M) we
call the von Neumann algebra pMpl,_7 < B(pA) a corner of M. If M < B(#) and N <
B(%) are von Neumann algebras, we denote M® N < B(# ® %) for their von Neumann
tensor product, which is the SOT-closure of their spatial tensor product. We say that von
Neumann algebras M and N are isomorphic if there is a *-isomorphism from M to N,
i.e. a bijective linear map 6 : M — N that satisfies 8(xy) = 0(x)0(y) and 0(x*) = 0(x)*
for x,y € M. In this case we write M = N, or sometimes just M = N. We say that M
and N are stably isomorphic if M® B(#) ~ N® B(#) where J is the separable infinite-
dimensional Hilbert space. For u € U(M) we denote Ad,, : M — M for the *-isomorphism
given by Ad, (x) = uxu*. For von Neumann subalgebra N < 1y M1y we denote by

Norp(N) ={ue UM): uNu* = N}

the group of normalizers of N inside M. Furthermore, we define the *-algebra of quasi-
normalizers of N inside M as

n m
gNory,(N)={xeM:In,meN, x1,...,Xp, Y1,.., Ym : XN S Z Nxi,Nx < Z YN
i=1 j=1
COMPLETELY POSITIVE MAPS, COMPLETELY BOUNDED MAPS, STATES AND TRACES

Let M and N be von Neumann algebras (or unital C -algebras). A linear map 6 : M — N
is called unital if it maps the unit of M to the unit of N, i.e. 8(1);) = 1y. A linear map
0 is called positive if it maps positive elements to positive elements, i.e. (M) € N*. A
positive map is called faithful if 6 (a* a) > 0 whenever a is non-zero. We call a linear map
0: M — N completely postiveif 0 ® Idmat ,(c) is a positive map for all n = 1. We call a linear
map 0 unital completely positive (u.c.p) if the map is both unital and completely positive.
We note that every u.c.p map is completely contractive [Pau02, Proposition 3.2].

Alinear map 6 : M — N is called normal if it is continuous for the o-weak topology.
We note that a positive map 6 between von Neumann algebras M and N is normal if and
only if for any increasing net (a;); in M we have 0(sup; a;) = sup0(a;), see [Sakl2, Theo-
rem 1.13.2].

For a von Neumann algebra M (or C-algebra) its (Banach space) dual M* is the space
of all bounded linear functionals ¢ : M — C. A state on M is a positive linear functional



2.1. OPERATOR ALGEBRAS AND BIMODULES 25

¢ € M* of norm || = 1. Given a von Neumann subalgebra N € M, a state on M is called
N-central if T(ab) = t(ba) for all a € N, b e M. A state on M is called tracial if it is M-
central, i.e. if ¢(ab) = ¢(ba) for all a,b € M. A weight on M is amap ¢ : M™ — [0,00]
satistying ¢(a+ b) = ¢(a) + ¢(b) and ¢(La) = A@(a) for a,b € M and A € [0,00). For a
weight ¢ we denote

M, = Span{a e M* : ¢(a) < oo} (2.4)

We may extend a weight linearly to a map ¢ : 901, — C. We call a weight semifinite if 9,
is o-weakly dense in M. We call a weight finiteif ¢(x) < oo forall x € M*. We call a weight
tracial if p(x* x) = @p(xx™*) for x € M. We call a weight faithful if ¢ (x* x) > 0 for x € M. We
call a weight normal if p(sup; a;) = sup; ¢(a;) for every increasing net (a;) ;e in M*. We
note that the map Tr from (2.1) defines a normal semifinite tracial weight on B(#°). Fur-
thermore, we observe that all states are weights (by restiction) and that all finite weights
extend linearly to positive functionals on M.

For a normal state ¢ on a von Neumann algebra M (or a state ¢ on a C -algebra) put
Np={aeM:p(a*a) =0} (2.5)

and denote L2(M, ) for the GNS-Hilbert space, which is the completion of M/ .4, with
respect to the inner product (x+.4;, y+.A4;) := ¢(y*x). Weletw : M — B(L*(M, ¢)) be the
GNS-representation, which is the *-homomorphism given by 7(a) (b + Ay) = ab + A,.
When ¢ is normal and faithful we call (M, ¢) a statial von Neumann algebra. For 1 is
a normal faithful tracial state, we call (M, 1) a tracial von Neumann algebra. We denote
LY(M, 1) for the Banach space completion of M w.r.t. the norm | x|l; = 7(|x|). For a von
Neumann algebra M we denote by M, the predual of M, which is a Banach space such
that (M,)* = M. We can identify M, with the space of all o-weakly continuous linear
functionals. When (M, 7) is a tracial von Neumann algebra, the predual M, is isomorphic
to L1 (M, 1) under the identification L' (M, 7) 3 x — 7(-x) € M. We will sometimes require
a von Neumann algebra M to have a separable predual. This is equivalent with saying
that M can be faithfully representated as M — B(.#°) on a separable Hilbert space 7.

SUPPORT, PROJECTIONS, TYPE CLASSIFICATION AND AMPLIFICATIONS
For x € M we denote |x| := vx* x for its absolute value, R(x) := ’“’2—"* for its real part
and S(x) := % for its imaginary part. For self-adjoint x € M we denote x; := Ix'% for
its postive part and x_ := IxIfo for its negative part, and we note that x_ and x; satisfy
x_x4+ = 0. For x € M we denote the left support (resp. right support) of x by 1(x) (resp.
r(x)) which is the smallest projection p € P(M) such that px = x (resp. xp = x). We recall
that any x € M can be written as a polar decomposition x = u|x| where u € M is a partial
isometry with uu* =1(x) and u* u = r(x). For projections p, g € P(M) we say that

We denote the support of x by s(x) :=1(x) vr(x) € M (i.e. s(x) is the smallest projection
larger than 1(x) and r(x)). Furthermore, we denote the central support of x by z(x), which
is the smallest projection in M n M’ such that s(x) < z(x).

Projections p, g € P(M) are said to be (Murray-von Neumann) equivalent (in M), de-
noted p ~ g, whenever there is a v € M such that p = v* v and g = vv*. We write p < g
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whenever r < g for some projection r with r ~ p. Moreover, we write p < g when p < g
and p # q. A projection p € P(M) is called central (in M) if p € Mn M'. A projection
p € P(M) is called abelian (in M) if the corner pMp is commutative. A non-zero pro-
jection p € P(M) is called minimal (in M) if there is no non-zero projection g € P(M)
satisfying g < p. A projection p € P(M) is called finite (in M) if g < p with g ~ p im-
plies g = p for any projection g € P(M). There are the following types of von Neumann
algebras M.

* TypeIif every projection 0 # p € M majorizes an abelian projection 0 # e € M.

e Type II if M does not contain any non-zero abelian projection and if every non-
zero central projection in M majorizes a non-zero finite projection.

* Type Il if M does not contain any non-zero finite projection.

A von Neumann algebra is called atomic if every non-zero projection majorizes a non-
zero abelian projection. A von Neumann algebra M is called diffuse if there are no min-
imal projections. A von Neumann algebra M is called finite if the projection 1), is finite
in M. Equivalently, M is finite if and only if there exists a normal faithful tracial state
on M. When M is moreover a factor, then this trace is in fact unique. A von Neumann
algebra that is not finite is called infinite. A von Neumann algebra is called semifinite if
any non-zero central projection p € M majorizes a non-zero finite projection.

Every factor is precisely of one of the three types: I, IT or I1I. Factors of type I are always
atomic and of the form M = B(#) for some Hilbert space .#. When M is moreover finite
then n := dim ./ < co and we call M a factor of type I,,. A von Neumann algebra of type
I that is not finite, is said to be of type I. Von Neumann algebras of type II and III are
always diffuse. A type II von Neumann algebra is said to be of type II; if it is finite, and
otherwise it is said to be of type IIo,. Factors M of type I, are always semifinite and
of the form M = N ® B(#°) for some II; -factor IV and some infinite-dimensional Hilbert
space . Whenever M is a factor of type II;, the unique normal faithful tracial state ©
satisfies T(P(M)) = [0,1]. Given t € (0,00) we then denote by M’ the amplification of M
by t. Writing ¢ = ns for some n =1 and s € (0, 1) this amplification is defined as

M':= pMp®Mat,(C)

where p € P(M) has trace 7(p) = s. We note that this definition is independent of the
choice of n, s and p. Furthermore, we note for ¢ € (0,00) that the amplification M’ is
stably isomorphic to M.

OPPOSITE ALGEBRA AND THE STANDARD FORM

For an algebra A its opposite algebra A°P is defined as a vector space as A and for a € A
the corresponding element in A°P is denoted by a®°P. We equip A°P with the multipli-
cation A°P x A% 3 (a®P, b°P) — (ba)°P € A°P making it into an algebra. When A has an
involution, then we equip A°P? with the involution (a®P)* := (a*)°P, making it into a *-
algebra. When A is a C'-algebra, then so is A°P when equipped with the same norm.

Let M < B(#) be a von Neumann algebra. Recall that a vector ¢ € A is called cyclic
if M¢ is dense in A and that it is called separating if x{ = 0 implies x = 0 for x € M.
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The inclusion M < B(#) is said be be in standard form if there exists a conjugation
] : € — A (i.e. a conjugate-linear isometric map satisfying J> = Id #) such that the
map j : M°P — M’ given by x°P — Jx* J defines a *-isomorphism that acts as the iden-
tity on Z(M). In this case A is called the standard Hilbert space for M and denoted by
L2(M). The map J is called the modular conjugate operator. If there exists a vector ¢ € A
that is both cyclic and separating, then M is in standard form [SZ19, Introduction (8°) of
Chapter 10]. In such case we shall identify M°P with JM].

CONDITIONAL EXPECTATIONS
Let M be avon Neumann algebraand N € M avon Neumann subalgebra. Amap E: M —
N is called a conditional expectation from M to N if it satisfies the following conditions

1. Eispositive (i.e. E(M*) < N¥)
2. E(a=aforae N
3. E(axb)=aE(x)bfora,be N, xe M.

An equivalent definition is that E is a projection on N with norm [|E|| = 1. We note
that conditional expectations are u.c.p maps and therefore satisfy the Schwarz inequality
E(x)*E(x) < E(x*x) [Pau02, proposition 3.3].

If (M, 1) is a tracial von Neumann algebra and N € M is a von Neumann subalgebra,
then there is a unique conditional expectation E on N that is trace-preserving (i.e. sat-
isfies 7(En(x)) = 7(x) for x € M), see [AP17, Theorem 9.1.2]. The map Ep is automatically
normal and faithful and moreover extends to a contraction on L?(M, 1) as

IENGO N3 = T(En (%) En(x) < T(En(x* X)) = T(x* x) = | x]I5

This L?-extension is denoted by ey and called the Jones projection. We denote by (M, e’
the Jones extension of M, which is the von Neumann algebra (M U {en})".

LOCALLY MEASURABLE OPERATORS
Let M be a von Neumann algebra on a Hilbert space .#°. Given a linear subspace #3 <
#€, we call a linear operator x : #y — A densely defined if #, < A is dense. We denote
Dom(x) := A for the domain of x. We say that a linear operator y extends x, denoted
x <y, if Dom(x) < Dom(y) and x¢ = y¢ for { € Dom(x). We call a densely defined linear
operator x closed if its graph ¥4 (x) := {({, x¢) : ¢ € Ay} is a closed subspace of # & .
We call x preclosed if it is densely defined and if the closure of 4 (x) in /& A is the
graph of a linear operator called the closure of x. For linear operators x : Dom(x) — /2,
y:Dom(y) — A we let x + y and xy be the linear operators with domain Dom(x + y) :=
Dom(x) nDom(y) and Dom(xy) := {{ € Dom(y) : y¢ € Dom(x)} respectively and defined
in the obvious way.

A densely defined, closed linear operator x : Dom(x) — # is said to be affiliated with
M if yx < xy for all y from the commutant M’ of the algebra M. A linear operator x
affiliated with M is called measurable with respect to M if y (1 o) (|1x|) is a finite projection
for some A > 0. Here y(1,00)(Ix|) is the spectral projection of |x| corresponding to the
interval (A, +o00). We denote the set of all measurable operators by S(M). Clearly, M is a
subset of S(M). It is clear that if M is a factor of type I or III then S(M) = M.
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Let x, y € S(M). It is well known that x + y and xy are densely-defined and preclosed
operators [DPS22]. We define the strong sum respectively the strong product of x and y
as the closures of these operators, which we simply also denote by x + y and xy respec-
tively. When S(M) is equipped with the operation of strong sum, operation of strong
product, and the *-operation, it becomes a unital *-algebra over C. It is clear that M is
a *-subalgebra of S(M). Moreover, in the case that M is finite, every operator affiliated
with M becomes measurable. In particular, the set of all affiliated operators then forms a
*-algebra, which coincides with S(M). Following [K1.14; KI'I'20], in the case when the von
Neumann algebra M is finite, we refer to the algebra S(M) as the Murray-von Neumann
algebra associated with M.

Let M be semifinite and let 7 be a faithful normal semifinite trace on M. A linear oper-
ator x affiliated with M is called 7-measurable with respect to M if 7(y (3,00) (|1 x])) < oo for
some A > 0. We denote the set of all 7-measurable operators by S(M, 7). The set S(M, 1)
is a *-subalgebra of S(M) that contains M. Consider the topology f; of convergence in
measure or measure topology on S(M, 1), which is defined by the following neighbor-
hoods of zero:

N(,6)={xeSWM,1):JecP(M), T(1ps—e) <0, xee M, | xe| <&},

where ¢, are positive numbers. The algebra S(M, 1) equipped with the measure topol-
ogy is a topological *-algebra and F-space [DPS22].

A linear operator x affiliated with M is called locally measurable with respect to M if
there exist increasing central projections (p;,) in P(Z(M)) converging strongly to 1, and
such that xp, € S(M). The set LS(M) of locally measurable operators forms a *-algebra
with respect to the operations of a strong sum and a strong product. It is clear that if M
is a factor then LS(M) = S(M).

2.1.3. BIMODULES

Let Abe a x-algebra. A left Hilbert A-module, or simply a left A-module, is a Hilbert space
JC together with a left A action, i.e. a *-homomorphism 7;: A— B(A). Forac€ A, ¢ € A
we simply write aé for n;(a)¢. A right A-module is a Hilbert space with a right A action,
i.e. a *-homomorphism 7, : A°P — B(A#°). For a€ A, ¢ € H we write a for 7, (a°P)¢. Let
A, B be %-algebras. An A— B-bimodule is a Hilbert space # that is both a left A-module
and a right B-module and such that 7;(A) and 7, (B°P) commute. Forne #,a€ A, be B
we can write 7;(a)7,(b)n by anb without ambiguity. To emphatize that # is a A— B bi-
module we sometimes write 4./’ for /4. When A = B we simply call ./ an A bimodule.
In case A, B are also C*-algebras we require that both actions are continuous as maps
A — B(#) (and therefore contractive). In case A, B are von Neumann algebra we require
both actions to be normal. We refer to these bimodules as A— B bimodules and it should
be clear from the context whether this is a bimodule over a *-algebra, C*-algebra or von
Neumann algebra.

Given a von Neumann algebra M, we call a Banach space X a Banach M-bimodule
if we are given homomorphisms 7; : M — B(X) and 7, : M°P — B(X) for which 7;(M)
and 7,(M°P) commute. A linear map § from a von Neumann algebra M to a Banach
M-bimodule X is called a derivation if 6 (ab) = 6(a)b + ad (b) for a,b € M. For a tracial
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von Neumann algebra (M, T) we remark that L! (M, ) is a Banach M-Bimodule with the
obvious actions.

THE TRIVIAL BIMODULE AND THE COARSE BIMODULE

Let M be a von Neumann algebra. The M — M-bimodule L?(M) with the actions 7; (x)n =
xn and 7, (x°P) = Jx* Jn is called the trivial bimodule. Let M, N be von Neumann alge-
bras with standard Hilbert spaces L%2(M) and L%(N). Then the M — N-bimodule L2(M) ®
L?(N) with actions 7;(x)7, (1) (M1 ®1n2) = (xn1) ® (Jy* Jn2) is called the coarse bimodule.

CONTAINEMENT, WEAK-CONTAINMENT AND QUASI-CONTAINEMENT

We say that an A— B bimodule # is containedin an A— B bimodule % if ./ is a Hilbert
subspace of £ that is invariant under the actions of A and B. We say that / is quasi-
contained in & if A is contained in ®;¢; £ for some index set I (if A/ is separable we
may choose I = N). We say that ./ is weakly contained in % if for every ¢ > 0, every
finite sets & < A, 4 < B and every ¢ € J there exist finitely many n; € £ indexed by
jeGsuchthatforxe &, ye¥,

KxEy,&) = Y (xnjynjl<e.
jeG

Containment implies quasi-containment which implies weak containment. Note that if
A s a *-subalgebra of a von Neumann algebra M and K is an A bimodule that is quasi-
contained in a M-bimodule. Then the left and right A actions on K are normal and can
be extended to M so that K is a M-bimodule.

POPA’S INTERTWINING-BY-BIMODULE TECHIQUE
We recall the following definition from the fundamental work of [Pop06c; Pop06d]. In
this section we let M be a finite von Neumann algebra.

Definition 2.1.2 (Embedding A <j; B). For von Neumann subalgebras A< 1,M14,B <
1pM1p we will say that A embeds in B inside M (denoted by A <y B) if one of the follow-
ing equivalent statements holds:

1. There exist projections p € A, q € B, a normal *-homomorphism 6 : pAp — qBq
and a non-zero partial isometry v e gMp such that0(x)v = vx forall x € pAp;

2. There exists no net of unitaries (u;); in A such that for any x,y € 14M1p we have
that |Eg(x™ u; y)ll2 — 0;

3. Thereexists a Hilbert A-B bimodule # < L*(M, 1) such thatdimpg A < oo (see [JS97,
Definition 2.2.3] for the definition of dimp /).

We say that A embeds stably in B inside M (denoted by A <3, B) if for any projection
re A'n M we have Ar <j; B.
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2.2. GRAPHS

We establish notation related to graphs, which will be excessively used throughout the
thesis. The graphs we will consider are simple (i.e. undirected, no double edges, no self-
loops). Formally, this means that a graph I consists of a pair (V, E) where V is a set and
Eis asubsetof {{v,w}: v,w € V,v # w}. The set V is called the vertex set and the set E is
called the edge set. In practice we will identify I with the vertex set V and write v € T to
mean that v is a vertex of I'. We also write |T'| for the cardinality of V, and call it the size
of the graph. We say I' is finite when |I'| < co. Two vertices v, w € I are said to share an
edgein I if {v, w} € E. A graph is said to be complete if any two distinct vertices v, w € T
share an edge. An induced subgraph or simply subgraph of T is a graph I'y whose vertex
set is a subset of the vertex set of I and that is such that v, w € T’y share an edge in I’y if
and only if v, w share an edge in I'. This is denoted as I'y = I'. We call a subgraph I'g of I'
strict when I'y # I, and we denote this by I'y C I'. We will always identify subsets of the
vertex set of I' with their induced subgraphs. For example, if I';,T'; are subgraphs of T,
thensoareI'y UT'p, I'1 NI, and I'; \T'y. A complete subgraph of I is called a clique and
the set of all cliques is denoted by Cliq(I") (this includes the empty graph). For a vertex
v € I' we define the link of v, respectively the star of v as

Linkr(v) := {w €T': vand w share an edge in I'} (2.6)
Starp(v) := {v} U Linkr (v) 2.7

and consider them as a subgraph of I'. More generally, the link of a subgraph A T is
defined as
Linkr(A) := (1) Linkr(v)
VEA
with the convention Linkr (@) = I'. When the graph I is fixed, and we only consider sub-
graphs of I', we will omit the subscript I in the notation and simply write Link(v), Link(A)
and Star(v). We observe for v € T that it always holds true that v € Link(Link(v)).

A graph I' will be called reducible if there are disjoint non-empty subgraphsI'y,I'» T
such thatI' =T'; uT; and Linkr (I';) = T'2. The graph I" will be called irreducible if it is not
reducible. An irreducible component of a graph I' is a non-empty subgraph A T thatis
irreducible and satisfies Linkr (A) = '\ A. For a graph I" and verices u, v € I a path from u
towisatuple P = (vy,..., vy) of vertices vy, ..., v, € I' such that v;_; shares an edge with
v;fori=1,...,nandsuch that vy = u and v, = w. The number 7 is called the length of P
and is denoted by |P|. A path from u to v is called a geodesic if it is the shortest path from
u to v. If a path from u to w exists then we say that v and w are connected by a path and
we write Distr (u, w) for the minimal length of a path from u to w. If such path does not
exists we put Distr(u, w) = co. We define the radius of a non-empty graph I as

Radius(I") = inf sup Distr (u, w)
uel' yer

and put Radius(I') = 0 when I is empty. We say that a graph I is connected if any two
vertices v, w € I' are connected by a path. A connected component of a graph T’ is a non-
empty subgraph A ¢ T that is connected and satisfies for v € A that Linkr(v) € A.
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d—e f

Figure 2.1: A finite graph I with vertices {a, b, ¢, d, e, f} is depicted. As an example, we have
Link(e) = {b,c,d} Star(e) ={b,c,d,e} Link({b,e})={c}

The graph I is irreducible, not connected and has radius Radius(I') = co. The only irreducible component of
T is I itself. The connected components of I are {a} and {b,c,d, e, f}. The cliques of I' are the empty graph
@ (size 0), the singletons {a}, {b}, {c}, {d},{e}, {f} (size 1), and the subgraphs {b, ¢}, {b, e},{D, f},{c, e}, {c, f}, {d, e}
(size 2) and {b,c, e}, {b,c, f} (size 3). A path from b to d is given by P = (b, ¢, e,d). This is not a geodesic since
Q= (b,e,d) is apath from b to d of length |Q| =2 <3 =|P|

We say that a graph I' is a tree if for every two vertices u, w € I there is a unique path
from u to w. We say that a graph I is a forest if its connected components are trees. Two
graphs I" and A are said to be isomorphic if there is a bijection ¢ : ' — A between their
vertex sets, such that v, w € I share an edge if and only if ((v), ((w) share an edge. These
definitions are illustrated in Fig. 2.1.

2.3. DISCRETE GROUPS

In Section 2.3.1 we discuss for discrete groups G the Cayley graph Cayley¢(G), hyperbol-
icity, word lengths and other function ¥ : G — C. In Section 2.3.2 we discuss the group al-
gebra C[G], the reduced group C*-algebra C; (G), the group von Neumann algebra £ (G)
and the coarse bimodule #2(G) ® £2(G). In Section 2.3.3 we introduce notation for Cox-
eter groups and Hecke algebras and furthermore state the definition of graph products
of groups. For more background on Coxeter groups we refer to [Hum90][Dav08] [Tit09].

2.3.1. CAYLEY GRAPHS, WORD LENGTHS AND HYPERBOLICITY

Recall that a fopological group is a group G equipped with a topology for which the in-
version map G 3 g — g~ ! € G and the multiplication map G x G 3 (g,h) — gh € G are
continuous. We only consider discrete groups, i.e. groups equipped with the discrete
topology. For a group G we always denote by e its unit element.

CAYLEY GRAPH AND WORD LENGTH

A group G is said to be generated by a subset S € G if G is the only subgroup of G that
contains S. We say that G is finitely generated if there exists a finite set S that generates
G. For asubset S< G we put S~ = {s7! : s € S} and we define the Cayley graph as follows.

Definition 2.3.1 (Cayley graph). Let G be a group that is generated by a set S. Then the
Cayley graph Cayley(G) is the simple graph with vertex set G and where distinct g,h € G
share an edge if and only ifgh™' e SUS™L.
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The Cayley graph Cayley¢(G) is connected and for a group element g € G we define
its word length as

18ls = DiStCayleyS(G) (e 8).

We observe that |g|s equals the minimal integer n such that we can write g = g1---gn
where g;e SUS ! for1<i<n.

HYPERBOLICITY
We state the definition of hyperbolicity for connected graphs.

Definition 2.3.2 (Hyperbolicity). A connected graphT is called hyperbolic if there exists a
R > 0 satisfying the following condition: for every u, v, w € I' and every geodesic P) from u
to v, geodesic P, from v to w and geodesic Ps from w to u we have that P3 < Br(P1 U P»)
(here Br(Py U Py) denotes the open ball of radius R around the set of vertices in Py U P,).

A group G generated by a finite set S is called hyperbolic or word hyperbolic if the
Cayley graph Cayleyg(G) is hyperbolic. This definition is independent of the choice of
the generating set S, see [BO08, Section 5.3]. We emphasize that in this thesis ‘hyper-
bolic’ and ‘word hyperbolic’ mean the same thing. The terminology ‘word hyperbolic’ is
more common in the theory of Coxeter groups.

FUNCTIONS ON GROUPS

A length function ¥ on a discrete group G is a function ¢ : G — Ry satisfying w(uv) <
() +w () forall u, v € G. If G is generated by a finite set S then a typical length function
is defined by v (w) = |w|s. A function ¥ : G — R is called conditionally of negative type if
we)=0,v(g =vw(Eg )geGandforallneNand gi,...,g, € Gand cy,...,c, € C with

Y1, ci =0we have

n n
> Y Cicjw(gy g <0.
i=1j=1

Afunction ¢ : G — Ris called positive definiteifforne Nand gi,...,g, € Gand ¢y, ...,cp €

C we have
n

> Ticjy(g; g = 0.
1j=1

M=

1

A function ¥ : G — R is called proper if the inverse image of a compact set is compact
(hence finite as G is discrete). The function v is called symmetric if w(g™!) = w(g) for
geG.

2.3.2. THE GROUP VON NEUMANN ALGEBRA

For a discrete group G we show the construction of the group algebra C[G], reduced
group C-algebra C/ (G) and of the group von Neumann algebra £ (G). We shall denote
¢2(G) for the space of all square summable functions f : G — C. This is a Hilbert space
with an orthonormal basis given by (6;) ;e where 0 is the delta function at t € G (i.e.
6+(s) equals 1if s = t and equals 0 otherwise). For s € G define bounded operators A, p :
0%(G) — ¢*(G) as

AN = f(s ' Dps @) = f(29) (2.8)
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and observe that A;6; = 65, and pg6; = 6,1 for s, € G. We define the left (resp. right)
regular representation

G—B?(G)):s— A, 2.9)
G—B(%(G)): s— ps. (2.10)

The group algebra C[G] is the *-algebra generated by A, s € G. The reduced group C* -
algebra C; (G) is the norm closure of C[G]. The group von Neumann algebra £ (G) is the
strong operator topology closure of C[G]. The von Neumann algebra £ (G) is finite with
normal faithful tracial state

T(x) =(x6¢,0¢), x€ Z(G). (2.11)

Furthermore, the commutant £ (G)’ equals the von Neumann algebra generated by the
set {ps : s € G}. We note that we have an identification as Hilbert spaces L (£ (G)) = £?(G)
by x — x8, with x € C[G]. Under this identification #?(G) is the trivial bimodule with
actions given by the left and right regular representations A and p. The coarse bimodule
is then given by £2(G) ® £?(G) with left and right actions given by

x-Een-y=xHeMmy), &nel?G).

We simply call £2(G) ® £?(G) with these bimodule actions the coarse bimodule of G. We
also summarize that

G<CIGl S C!(G) € Z(G) < *(G),

where the first inclusion is given by s — A and the others were discussed above.

2.3.3. COXETER GROUPS, HECKE-ALGEBRAS AND GRAPH PRODUCTS

Let S be a (possibly infinite) set. A Coxeter matrix on S is a symmetric matrix M =
(mg, 1) res (indexed by S) with m =1 for se Sand mg, = m; € {2,3,...} U{oo} for s # t.
We write # := (S|M) to denote the corresponding Coxeter group, which is defined by

W =(S|(st)™st =efors,teS) (2.12)

that is, # is the group generated by S subject to the relations (st)"s* = e for s, € S.
When m; ; = co, we mean that no relation of the form (st)¥ = e exists for k = 1. We call
(#,S) a Coxeter system. When such a system is fixed, we write | - | for the length function
|-|s. We call a Coxeter system finite rank if S is finite. An element v € S is referred to as
a letter, and an element v € # is referred to as a word. We will say that an expression
W =W Ws Wy, is reduced if [w| = |wy| + [wy| +... + [w,|. We will say that a word w starts
with v if [w| = [v| + [v"'w]| and we will say that w ends with v if [w| = [wv™!| + |v].

HECKE ALGEBRAS
Fix a Coxeter system # = (S|M). Let q = (gs) ses With g5 > 0 for s € S and such that g; = g,
whenever s, f € S are conjugate in #'. In this thesis we shall call such tuples Hecke tuples.
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Moreover, we will denote p;(q) = 21 We can as in [Dav08, Theorem 19.1.1] define for

Vs
s € S the operators Ts(q) OEW) = 02W) given by
1) [sw| > |w]
Ts(q) (6w) = w .
Osw+ ps(@bw |sw| <|w|

For these operators we have

(T (6),62) = (S sw> 2) + (D5 (@B, 6,01 (IsW] < [W])
= (0w, 0sz) + (0w, ps(@Q 01 (| 52| < |z])
= (6w, T2 (6,))

that is (Ts(q))* = Ts(q). For a word w € # with a reduced expression w = w; ... wy we can
set

(@ (q) (@
T’ = Tyb o Tyl

which is well-defined by [Dav08, Theorem 19.1.1]. We note that we have (T‘qu))* = T‘i’q_)l
and T‘f‘,q) (0¢) = Ow. Furthermore for s € S and w € # they satisfy the equations

TOTY = 79 4 po(@ TP 1(|sw| < [wl),

TOTD = 7D 4 p (@ TP 1 (ws] < [wi).

Note that the first equation holds by the proof of [Dav08, Theorem 19.1.1], and the sec-
ond equation follows by taking the adjoint on both sides.

We will denote Cq[#'] for the *-algebra spanned by the linear basis {T‘,(,,q) WEW}. We
furthermore denote C;,(#) < B(¢?(#)) for the reduced C*-algebra obtained by taking
the norm closure of C4[#/]. Finally, we define the Hecke von Neumann algebra Aq(#') as
the strong closure of C; 4 (#). We equip the von Neumann algebra with the faithful finite
trace 7(x) = {(x6¢,0.). For g > 0 we write A7 (#') for the Hecke algebra corresponding to
the tuple q = (g5)ses with g5 = g for s € S. We note here that when ¢ is taken equal to 1,
then (A, (#),7) is simply the group von Neumann algebra £ (#') with canonical trace 7.

RIGHT-ANGLED COXETER GROUPS

A Coxeter group ¥ is called right-angled if it can be represented in the form # = (S|M)
where my; € {2,00} for s # t. Let I' be a simple graph. We will write #t for the right-
angled Coxeter group #r := (S|M) where S =T and M = (m,)s,res satisfies mg; = 1 if
s=t, ms,; =2 when s, t share an edge and m; ; = co otherwise. By [Gre90, Theorem 4.12]
every right-angled Coxeter group corresponds to a unique simple graph.

For v,w € #1, we say that v is a subword of w if we can write w in reduced form w =
vivv, for some vy, v, € #1. A Coxeter word w € T" with reduced expression w = w, --- wy,
is called a clique word if w; commutes with w; forall 1 < i, j < n. We can define a partial
order on the set of clique words by writing v < w if v is a subword of w. We observe that a
clique word w in #1 uniquely corresponds to a subgraphs of I (the graph of all letters in
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w). For clique words w= w; -+ wy, v=v; - v, we write wnv for the clique word with
letters {wy,..., w,} N{vy,..., vy} If wand v moreover commute, we write wuU v for the
clique word with letters {w;,..., w,} U{vy,..., v;}. For a word u € #1 we write s;(u) for
the maximal clique word that u start with and write s, (u) for the maximal clique word
that u ends with.

For a subset S < #1 we will write

#1(S) ;= {w € #1 :uw is reduced for all u € S} (2.13)
#{(S) := {w € #1 : wu is reduced for all u € S} (2.14)

This notation will in particular be used when S < I € #r is a subgraph of I" or when

= {u} is a singleton. In the latter case we simply write #{(u) respectively #{!(u) for
#r({u}) respectively 71/r/({u}). Furthermore, when the graph T is fixed, we will omit the
subscript I in the notation.

GRAPH PRODUCTS OF GROUPS
Given a simple graph I" and groups G, for v € I'. Let G be the free product of the groups
(Gy) yer- Let H < G be the normal subgroup generated by

{ghg 'h™':g€G,, he G, for v,w €T that share an edge}
The graph product Gr = *,,rG, is defined by the quotient Gr := G/ H.

2.4. GRAPH PRODUCTS OF OPERATOR ALGEBRAS

At the end of previous section we defined graph products of groups. In this section we
show the construction of the reduced graph product and the von Neumann algebraic
graph products as in [CF17]. First, in Section 2.4.1 we construct the graph product of
pointed Hilbert spaces, which will be needed in Section 2.4.2 where we construct the re-
duced graph product of unital C -algebras. In Section 2.4.3 we define the von Neumann
algebraic graph product.

2.4.1. THE GRAPH PRODUCT OF POINTED HILBERT SPACES

Let I" be a simple graph and for v € T let (ny,cf ») be a pair of a Hilbert space -, and
a unit vector ¢, € #£,. For v € I' we denote Jﬁy = cfl for the orthogonal complement

Furthermore, for a vector 1) € A, we write f):=n—(n,&)¢ € 2, for the projection in .

For every word w € #1 with w # e we fix a reduced representative (w;,..., w,) and define
the Hilbert space

o= oy, ® - ® Hyy . (2.15)
We also set
Hy:=CQ (2.16)

where the vector Q is called the vacuum vector. For d = 0 define the Hilbert space

Hra= @ S 2.17)

went,Iwl=d
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The graph product of the pointed Hilbert spaces (#,,¢ ) is defined by

o

Ho= P A (2.18)

and this will also be denoted by (AT, Q) = *,r(#,,¢,). We observe for a subgraph AT’
that the Hilbert space /), is a subspace of #7.
For a subset S € #1 we denote

)= P Hw HS= P Hu (2.19)
WeHL(S) we# [ (S)

This notation will in particularly be used when S € I € #r is a subgraph of I" or when
S = {u} is a singleton and in the latter case we simply write .77 (u) and .%7.(u) respectively.
Furthermore, often we will omit the subscript I, and just write #(S) and #'(S).

2.4.2. THE REDUCED GRAPH PRODUCT

Let I be a simple graph with to each vertex v € I' associated a unital C -algebra A, to-
gether with a state ¢, on A, that is GNS-faithful (meaning the GNS-representations is
faithful). For v € T let /, := L?>(A,, ¢) denote the GNS-Hilbert space. As by assumption
the GNS-representations 7, : A, — B(#4,) are faithful we may consider A, < B(#,) as a
subalgebra. Let ¢, € A, be a unit vector for which ¢, (x) = (x¢,,¢,) for x € A. We will let
(Hr,Q) := *,7(HA),¢y) be the graph product of the Hilbert spaces. We put /01,, =kerg,
and for ae A, write @ :=a— (py(a)lAU € A, and @:= aé, € #,. We observe for a € A,
that @ = d and particularly that a € A, implies @ € Hy.

For an element w € #1, w # e with representative (w; ... w;) define the algebraic ten-
sor product

A=Ay ® - ®4,,. (2.20)
Furthermore, define
A, :=B(A,). (2.21)

Moreover, for d = 0 we define the algebraic direct sums

Arqa:= @ Aw (2.22)
WEWT
lwl=d

Ar:= @ Aw (2.23)
weHWT

In order to define the reduced graph product of the algebras (A,,¢,) we will define a
linear map A : Ar — B(#7). To define A we first define maps 2y,,...v,,) for certain words
Vi,...,Vy E L.

.....
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IDENTIFYING HILBERT SPACES AND OPERATOR ALGEBRAS

Let n =1, and (vy,...,v,) € 71/r” be s.t. |vi---vy| = |vi|+...+ |v,|. We will define linear
maps Z,,....v,) Which will be used in defining the graph product for operator algebras.
Write .# for the set of all indices 1 < i < ns.t. v; # e. For i € .# write (v 1),..., V(1))
for the representative of v;. Also, write (77, ..., U;) for the representative of v:=v; ---vy,.
By the assumption it holds that [ = }_;c s I;. For convenience, we define a bijection o
from {1,...,1} to {(i, )li € £,1 = j < [;} as o(m) = (i, j) where (i, j) is uniquely cho-
sen with the property that m = j + Y ycsx<ilx. Now, we have by the definitions that
(Wo)s--» Vo) ~ (U1,...,77). Therefore, by [CF17, Lemma 2.3] we obtain that there is
a unique permutation 7 of {1,..., I} with the property that

(Ug'(n'(l)), ceey Uo'(n(l))) = (ﬁl,. . ﬁl) (2.24)

and satisfying thatif 1 < i < j <[ ares.t. v5(j) = Vg(j), then (@) < 7(j).

We will now define a unitary 2y, v, : J?vl ®-® Jofvn - Jofvl...vn as follows. For
i € # choose pure tensors7; =1;1®-+-®1; , € JZ’vi and for 1 =i < nwith i ¢ .# denote
n; = Q. We define

Nom) ® @ Ngy) When.s # @

(2.25)
Q when . = @

Lwy,v) (M1 @ @1y) = {

and we extend this definition linearly to a bounded map.

Similarly, we define another map 2y, v, : Ay, ® - ® Ay, — Ay, ..y, denoted by the
same symbol, as follows. For i € .# choose pure tensors a; = a;1 ® - ® a; j, EAvi and for
1<i<nwithi¢g.# denote a; = Idjgje. We define

Ag(r(1) ® - ® g1y When.# # @

(2.26)
Id - when % = @

Qwy,.vp(@1®--®ap) = {

and we extend this definition to a linear map.

DEFINING THE GRAPH PRODUCT

We will for a subgraph A T define unitaries
Up: O\ FT(N) — A+ as UA|<#u®jw:Q(u,w) forue #y,we #r(A) (2.27)
Up: (N @ HN— Hr as Ul o =2uw  fOrue# (A, wewy (2.28)

and define operators A : B(#)) — B(A7F) and pp : B(#)) — B(AT) as

Ax(a) = Up(a®1d) Uy (2.29)
pala) =Uy(dea)(Uy)". (2.30)

For u € I' we simply write Uy, Uy,. Ay, py instead of Upy, U{;, Ay, piu respectively. The
definitions of Uy, U; and 1,, p, are the same as in [CF17] and the intuition behind these
maps is as follows. The unitary U}, represents a pure tensorn=1m,, ® --®1,, € A, S Fr
by an element in /#, ® #7(u) by either shuffling the indices (when v starts with u), or
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tensoring with the vector ¢, (when v does not start with u). The operator 1,(a) acts
on 1) € #r by rearranging the tensor n using U,;, acting with a on the part in /,, and
subsequently using U,, to map the vector back to an element from 7.

This construction also coincides with [CKL21, Section 1.5] where the shuffling is
done implicit by usmg an equlvalence relation (called shuffle equlvalence) to 1dent1fy
Hilbert spaces wal ®J€w and Jf’ '®- ®J€ , whenever wy -+ wy = wy - wy,
are two reduced expressions for the same word. The actlon is then defined by a-n =
a®n+<p(a)n when v does not start with , and a-n = (ang) ®n' +{any, & ,)n' whenv starts

with u and 1) is shuffle equivalent to no ® ' € Ty ® Hoypy.

We define a linear map A : Ar — B(#7) for w € #1 with representative (wy,... w;) and
forapuretensora=a; ®---® a; € Ay as

Mar®---® a;) = Aw, (a1)Aw, (a2) ... Aw, (ar) (2.31)

and we moreover define A(Id ;) = Id#.. We note that A is injective as @ := A(a)Q =

418+ -® 4, for a= a; ®---® a, € Ay,. We moreover note that for words vy, ..., v,, € #f with
[vq] + ...+ |vy| = |v1---vy,| and elements a; € Avi we have for a = D, v, (a1 ®---® ay)
that A(a) = A(a1)...A(ay,). We call an operator a = Ay, (a1) -+ Ay, (an) withw=w; --- wy,
reduced and w; € zzlwi for 1 < i < n a reduced operator. Sometimes we leave out the em-
bedding A,, and simply write a = a; --- a;.

We now define the reduced graph product as

—
Ar = =M (A, ¢,) == A(Ar) (2.32)

Also, for d = 0 we define the homogeneous subspace of degree d as

Arg:=MAra) (2.33)
Also, for v € #t we define
o = lll
Av:i= 1Ay . (2.34)

We moreover define the graph product state ¢r on Ar (or simply denoted as ¢) by ¢r(a) =
(aQ,Q). This is a faithful state on Ar which restricts to ¢, o /1;1 on A,(A,). The vertex
C*-algebras A, are included in Ar through A, and we simply identify A, as subalgebras
of Ar. By the universal property [CF17, Proposition 3.12, Proposition 3.22] these inclu-
sions extend to an inclusion of Ay € Ar, for A € T'. This inclusion admits a unique ¢r-
preserving conditional expectation E4, : Ar — Ap that is determined by the following
formula, where a; ... a, is a reduced operator with a; € ;l,,i,

Vi,v; € A;

otherwise. (2.35)

a...ay,
[EAA(al-'-an)z{ ! 0 "

We state the following result which we will often use in this thesis (for reduced amal-
gamated free products we refer to [VDNO02, Section 3.8]
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Theorem 2.4.1 (Theorem 3.15 in [CF17]). Let T be a graph and for v € T let (Ay,¢,) be
a C'-algebra with a GNS-faithful state ¢,. Let Ar = *™2(A,,¢,) be their reduced graph

vel
product. Fix u € . There is a *-isomorphism from the reduced amalgamated free product

T AStar(u) *ALink(u) AF\{u} nd Ar (236)
that is state-preserving and so that 71| o, and 7| sy, are the canonical inclusions.

Remark 2.4.2. While this may be obvious, we remark that the graph product notation
depends on the initial notation. For example, If we are given a simple graph A and C’-
algebras (B, ,) we use notation like B,, By, By, By and .

2.4.3. THE VON NEUMANN ALGEBRAIC GRAPH PRODUCT

Let I be a simple graph and for v € T let (M, ¢,) be von Neumann algebras with normal
faithful states ¢,. We define the von Neumann algebraic graph product as the closure in
the strong operator topology of the reduced C -algebraic graph product, i.e.

——F—=S0T
Mr = *U,F(Mm Qy) = A(Mr) . (2.37)

Again we define a faithful state ¢ on Mr by ¢(a) = (aQ2, Q) which is normal in this case.
We also define the homogeneous subspace of degree d as

—FF—F—F—SOT
Mr g := A(Mr,q) (2.38)

Also, for v € #1 we define

. —SOT

My:=AMy) . (2.39)
We note that the conditional expectations from (2.35) extend to normal conditional ex-
pectations Eps, : Mr — M,. We also have the following amalgamated free product de-
composition.

Theorem 2.4.3 (Theorem 3.26 in [CF17]). LetT be a graph and for v €T let (My,¢,) be
a von Neumann algebra with a normal faithful state ¢,. Let Mr = % er (My, @) be their
von Neumann algebraic graph product. Fix u € I'. There is a * -isomorphism from the von
Neumann algebraic amalgamated free product

0 2 Mstar(u) * My My — Mr (2.40)

that is state-preserving and so that 7\ yg,.,, and 7|y, are the canonical inclusions.

2.5. PROPERTIES FOR GROUPS AND OPERATOR ALGEBRAS

We recall some approximation properties, rigidity properties and indecomposability prop-
erties and collect some results that explain how these properties are related. For a more
detailed exposition we refer to [BO08] and [AP17].

2.5.1. APPROXIMATION PROPERTIES
We recap several approximation properties.
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NUCLEAR MAPS AND EXACTNESS
We state the following definitions.

Definition 2.5.1 (Nuclear maps). Amap@ : A— B between C’ -algebras is called nuclear if
there are contractive, completely positive maps ¢, : A— Maty, (C) and vy, : Mat, (C) — B
such that ¢, oy, — 0 pointwise in the norm topology, i.e.

lpnow,(a)—0(a)ll — 0 asn— oo
forallac A.

Definition 2.5.2 (Weakly nuclear maps). Amap8: M — N between von Neumann alge-
bras is called weakly nuclear if there are contractive, completely positive maps ¢, : M —
Maty, (C) andy,, : Maty, (C) — N such that ¢, oy, — 0 pointwise in the o -weak topology,
ie.

@@noyn(a)—0(a)) —0asn— oo

forall ae A and all normal functionals ¢ € N,

Definition 2.5.3 (Exactness). A C -algebra A is exact if there exists a faithful representa-
tionm : A — B(H) such that n is nuclear. A discrete group G is exact if C; (G) is exact.

AMENABILITY AND RELATIVE AMENABILITY

We state the notion of amenability for discrete groups, the notion of nuclearity for C"-
algebras, and the notion of semidiscreteness for von Neumann algebras.

Definition 2.5.4 (Amenability). A discrete group G is called amenable if there exists a net
(my)« of finitely supported, positive definite functions my. : G — C that converge pointwise
to the constant function 1.

Definition 2.5.5 (Nuclearity). A C -algebra A is called nuclear if the map1d : A— A is
nuclear.

Definition 2.5.6 (Semidiscreteness). A von Neumann algebra A is called semidiscrete if
the mapld s : A— A is weakly nuclear.

We state the following result which relates these notions.

Proposition 2.5.7 (Theorem 2.6.8 in [BO08]). Let G be a discrete group. Then G is amenable
ifand only if C; (G) is nuclear if and only if £ (G) if semidiscrete.

For von Neumann algebras the notion of semidiscreteness agrees with another prop-
erty called injectivity, see [BO08, Theorem 9.3.3]. Injectivity was introduced in [Loe74]
where it was moreover shown to be equivalent to the extension property from [HT67].

Definition 2.5.8 (Extension property). A von Neumann algebra M < B(J) satisfies the
extension property if there exists a Banach space projection P : B(/#) — M of norm 1.

We state a definition and a result of due to Murray and von Neumann.
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Definition 2.5.9 (Hyperfiniteness). A von Neumann algebra M is called hyperfinite if
there exists a chain A1 € Ay ... € M of finite-dimensional *-algebras A,, such that M
is the von Neumann algebra generated by U1 An, i.e. M = (Up=1 An)".

Proposition 2.5.10 ([MN43]). All hyperfinite II; -factors are isomorphic.

In the fundamental work of [Con76] Connes showed for von Neumann algebras M
acting on separable von Neumann algebras that the notion of injectivity coincides with
hyperfiniteness. Furthermore, in [JKR72, Corollary 6.4] it was shown that all hyperfi-
nite von Neumann algebras satisfy a certain cohomological property, called amenability.
Connes moreover showed in [Con78] that amenability implies injectivity. Thus all these
notions agree when M has separable predual. Nowadays, the notions of semidiscrete-
ness, injectivity and the extension property are referred to as amenability. Furthermore,
in [OP10a] Ozawa and Popa introduced the following notion of relative amenability.

Definition 2.5.11. Let (M, 1) be a tracial von Neumann algebra and let P < 1pM1p,Q <
M be von Neumann subalgebras. Say that P is amenable relative to Q inside M if there ex-
ists a P-central positive functional on 1p{M, eq)1p that restricts to the tracet on 1p M1p.

We also remark by [OP10a, Proposition 2.4] that if Q is hyperfinite and P is amenable
relative to Q inside M, then also P is hyperfinite.

WEAK AMENABILITY AND THE CBAP/CCAP AND THE WEAK-* CBAP/WEAK-* CCAP

In the following definition we will, for a function m : G — C on a discrete group G, denote
by Ty, : C; (G) — C; (G) the Fourier multiplier given by T),A; = m(g)Ag (whenever T, is
well-defined).

Definition 2.5.12 (Weak amenability). A discrete group G is said to be weakly amenable
with constant A < oo if there is a net (my)y of finitely supported functions my : G — C
that converge pointwise to the constant function 1g and satisfy supy | Tm o = A. The
Cowling-Haagerup constant A¢, (G) is defined as the infimum of all constants A for which
such net exists.

We state the definitions of the CBAP (completely bounded approximation property)
and the CCAP (completely contractive approximation property) for C -algebras as well as
their analogues for von Neumann algebras

Definition 2.5.13 (CBAP and CCAP). AC’-algebra A has the CBAP with constant A < oo if
there exists anet (0;); of finite rank maps8; : A — A that converge pointwise to the identity
operator1d 4 in norm (i.e. |16;(a) — al — 0 for a € A) and such that sup; [|0;llc, < A. The
Cowling-Haagerup constant A¢, (A) is defined as the infimum of all constants A for which
there exists such net. If A, (A) = 1 we say that A has the CCAP

Definition 2.5.14 (weak-* CBAP and weak-* CCAP). A von Neumann algebra M has the
weak-+ CBAP with constant A < oo if there exists a net (0;); of normal, finite rank maps
0; : M — M that converge pointwise to the identity operator 1dy, in the o -weak topology
(i.e. (0;(a)—a) — 0 for ae M and normal ¢ € M,.) and such that sup; 10;llcp, < A. The
Cowling-Haagerup constant A, (M) is defined as the infimum of all constants A for which
there exists such net. If A¢p, (M) = 1 we say that M has the weak-+* CCAP.
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We state the following result which relates these notions.

Proposition 2.5.15 (Theorem 12.3.8 in [BO08]). Let G be a discrete group. Then

Aeb(G) = Aeh (CF () = Aeh (Z(G))

THE HAAGERUP PROPERTY AND QUANTUM MARKOV SEMI-GROUPS
We state the definition of the Haagerup property for groups.

Definition 2.5.16. A discrete group G is has the Haagerup property if there exists a net
(p1); of positive definite functions ¢; : G — C that vanish at infinity and converge point-
wise to1g.

We state the definition of the Haagerup property for a finite von Neumann algebra
(M, 1) and remark by [Jol02, Proposition 2.4] that this is independent of the trace 7.

Definition 2.5.17. A finite von Neumann algebra (M, ) has the Haagerup property if
there exists a net (®;); of normal, completely positive maps ®; : M — M such that for
x € M we have |¢p;(x) — x|l — 0 asi — oo and so thatto ¥ < 1.

We state the definition of a quantum Markov semigroup and state a result which re-
lates it to the Haagerup property.

Definition 2.5.18. A quantum Markov semigroup (QMS) on a finite von Neumann al-
gebra (M, 1) is a family (®;) =0 of normal, trace preserving u.c.p maps ®;: M — M such
that

1. The family (®;) ;>0 forms a semigroup, i.e. D43 =D 0D for t,s =0 and Oy =1dy,.
2. Forx € M the map t — ®.(x) is strongly continuous.
3. Fort=0andx,y€ M we havet(D;(x)y) = 1(xD;(y)) (Symmetric).

We stress that we assume the QMS to be symmetric, so QMS always means symmetric QMS.

Proposition 2.5.19 (Theorem 1 in [JM04]). A finite von Neumann algebra (M, t) with
separable predual has the Haagerup property if and only if there exists a QMS (®;) y=¢ on
M such that for t > 0 the maps ®, : M — M extend to compact operators on L*(M, 1).

2.5.2. RIGIDY PROPERTIES OF VON NEUMANN ALGEBRAS
We recall versions of the Akemann-Ostrand property and recall the notions of Cartan
subalgebras, primeness, solidity and strong solidity and how they are related.

AKEMANN-OSTRAND PROPERTIES (AO), (AO)™ AND STRONG (AQO)
We state the definition of versions of the Akemann-Ostrand property.

Definition 2.5.20 (Property (AO) [AO75] and (AO)* [Iso15al). A finite von Neumann al-
gebra M possesses the Akemann Ostrand property (AO) if there are o -weakly dense unital
C"-subalgebra A, B < M such that
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1. A s locally reflexive [BO0S, Definition 9.1.2]

2. There exists a u.c.p map
0: A® B°® — B(L*(M))

such that 6(a ® b°P) — ab®P is compact forallae€ A, be A°P.

Furthermore, we say that M possesses the property (AO)* if the C -algebras A and B can
be chosen equal.

Local reflexivity is a certain approximation property satisfied by many C"-algebras,
including all exact C -algebras [B008, Corollary 9.4.1]. As we will not deal with local
reflexivity directly, we leave out its definition. We note for an exact group G that Z(G)
has (AO) if and only if it has (AO)*, see [DP23, Corollary 7.18].

We state the definition of strong (AO).

Definition 2.5.21 (Strong property (AO), see [HI17]). Let M be a von Neumann algebra
with standard form (M, L2(M), ], LA (M)™). We say that M has strong property (AO) if there
exist unital C* -subalgebras A< M and C B(L2(M)) such that:

° Aiso-weakly densein M,
e C is nuclear and contains A,

* The commutators [C,JA]] = {[c,Ja]] | c € C,a € A} are contained in the space of
compact operators K(L?(M)).

We remark by [HI17, Remark 2.7] for general von Neumann algebras that strong (AO)
implies (AO). Moreover, under some extra conditions strong (AO) also implies (AO)*.
Furthermore, we note by [Iso15b, Lemma 3.1.4] that the von Neumann algebra Z(G)
has strong (AO) for any hyperbolic discrete group G.

CARTAN SUBALGEBRAS, PRIMENESS, SOLIDITY AND STRONG SOLIDITY
We recall the following definition.

Definition 2.5.22 (MASA). A maximal abelian subalgebra (MASA) in a von Neumann
algebra M is von Neumann subalgebra A < M that satisfies A' n M = A.

We remark that every von Neumann algebra M possesses a MASA (this can be shown
using Zorn’s Lemma).

Definition 2.5.23 (Cartan subalgebra). A Cartan subalgebra A of a von Neumann algebra
M is a MASA in M for which the set of normalizers

Norpy(A) ={uec UM) : uAu* = A}
generate M as a von Neumann algebra, i.e. Norp(A)” = M.

Without providing the definition of the group measure space M := L*(0,1) x4 G,
we remark that for a countable discrete group G and a free, ergodic action @ the von
Neumann algebra M possesses L*°(0, 1) as a Cartan subalgebra.
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Definition 2.5.24 (Primeness). A I -factor M is called prime if it does not decompose as
a tensor product M = M;® M, with both My and M, diffuse.

We now state the definitions of solidity and strong solidity that were introduced by
Ozawa [0za04] and Ozawa and Popa [OP10a].

Definition 2.5.25 (Solidity). A von Neumann algebra M is called solid if for every diffuse
von Neumann subalgebra A < M its relative commutant A' 0\ M is amenable.

Definition 2.5.26 (Strong solidity). A von Neumann algebra M is called strongly solid if
for every diffuse amenable subalgebra A < M the set of normalizers Nor;(A) generates a
von Neumann algebra that is amenable again.

The following result provides sufficient conditions to be strongly solid.

Proposition 2.5.27 (Theorem A in [Iso15a]). Let M be a II; -factor with separable predual.
If M has condition (AO)* and has the weak-+ CBAP then M is strongly solid.

In Proposition 2.5.29 we state some direct implications of solidy/strong solidity. For
the interested reader we included a short proof, that uses the following lemma.

Lemma 2.5.28. If A isa MASA in a diffuse von Neumann algebra M, then A is also diffuse.

Proof. Let Abe a MASA in a diffuse von Neumann algebra M. Suppose A is not diffuse
and let p € A be a minimal projection (in A). Since M is diffuse there is a projection
q € M satisfying 0 < g < p. Now, for a € A we have qa = gpa = gpap since g < p and
p e A=A’ n M. Now since p is minimal in A we obtain pAp = Cp. Hence, ga = agq, i.e.
g € A'nM = A. This contradicts that p is minimal in A. We conclude that A is diffuse. O

Proposition 2.5.29. A solid factor is amenable or prime. A diffuse, strongly solid von
Neumann algebra is amenable or does not posses a Cartan subalgebra. Furthermore, every
strongly solid von Neumann algebra is solid.

Proof. Suppose M is a solid factor. Suppose M is not prime, we show it is amenable.
Indeed, we can write M = M;®M> for some diffuse M;, M>. Then since M is solid, the
relative commutants M, = M; N M and M; = M; N M are amenable. Hence, M = M, ® M,
is amenable.

Now suppose M is diffuse, strongly solid and non-amenable. We show it does not
posses a Cartan subalgebra. Indeed, let A < M be a MASA in M. Then A is diffuse by
Lemma 2.5.28. Furthermore, A is commutative, hence amenable. Thus, Norys(A)” is
again amenable, since M is strongly solid. Therefore, since M is non-amenable we have
Norps(A)” # M. Thus A can not be a Cartan subalgebra. This shows M does not posses
any Cartan subalgebra.

Let M be a strongly solid von Neumann algebra. We show M is solid. Indeed, let
A € M be a diffuse von Neumann subalgebra. We let B < A be a MASA in A. Note that
this MASA always exists and is amenable (since it is commutative). Furthermore, note
that B is diffuse by Lemma 2.5.28 since A is diffuse. Then by strong solidity of M we have
that Norp,(B)” is amenable as well. Observe that A’n M < B’ n M < Nor;(B)”. Thus
A'n M is amenable. Thus M is solid. O



CALCULATIONS IN GRAPH
PRODUCTS

In this chapter we will not prove any main results, but instead preform some calculations
in graph products which will be used in Chapter 6 and also in a few parts of Chapter 5.
These calculations involve the annihilation, diagonal and creation operators which were
considered in [CKL.21]. We introduce new notation and prove some additional results.

This chapter is based on (a small part of) the paper:

° Matthijs Borst, The CCAP for graph products of operator algebras, Journal of Func-
tional Analysis 286.8 (2024) 110350.

3.1. CREATION, ANNIHILATION AND DIAGONAL OPERATORS
Let I be a finite graph and for v € T let (A,,¢,) be a C -algebra equipped with a GNS-

faithful state. Let ., := L?(A,,¢,) and consider A, € B(#,). Let Ar = *f;li,“(A,,,<p,,)

be the reduced graph product. For v € I" denote P, € B(#7) for the projection on the
complement of #£(v). We make the following definitions.

Definition 3.1.1. We define the annihilation operator A4y, : Ar — B(AT), the diagonal
operator Agi, : Ar — B(AT) and the creation operator A¢re : Ar — B(AT) for a pure tensor
a:a1®---®an€1°&w:;lwl ®---®Awn Withw e #r, W # e as
Aann(@ ®-++® ap) = (Pyy, A(a1) Py,) (Pis, M(@2) Psy) . .. (Pyy, Alan) Py, 3.1
Adialay ®-+-® ay) = (P, A(al)Pwl)(PuQA(az)Png) e (Pwna(an)Pwn) (3.2)
Acre(a1 ® - ® ay) = (Py, May) Py ) (Pu, Maz) Pyy,) ... (Py, Man) Py, ). (3.3)

Furthermore, we put Ag,,(1d J?’e) = Agiad J?e) = Aere(d J?e) =1d 7 and we extend these
maps linearly.
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Lemma3.1.2. LetT beasimplegraph. Letw €T and letve #r. Letb € Ay andletn e Hy.
Then Agnn(b)n € vy, Aaia(b)n € & and Acre(b)n € F6yy. Furthermore,

1. If Agnn(b)n is non-zero then v starts with w.
2. IfA4ia(b)n is non-zero then v starts with w.
3. If Acre(b)n is non-zero then v does not start with w.
Moreover, ifn is a pure tensor, then so are A g, (b)1), Lgia(b)n and A¢re(b)7.

Proof. Let v,w, b and 7 be given. Note that P,,7 = 0 when v does not start with w and
that P;n = 0 when v starts with w. This shows Agn, (b)) = Agiq(b)n = 0 when v does
not start with w and that A.,.(b)n = 0 when v starts with v. This already shows (1), (2)
and (3). To prove the other statements we may assume that 7 is a pure tensor. We show
that Ay, (b)n € Hy. We may assume that v starts with w (since 0 € Huy). Thus write
1 =2w,wv) (M1 ®12) for some 1, € JZ”W andn; € JZ’W‘,. Then

Aann(b)n = Pw/l(h)n = Pw(‘g(w,wv)((b;h) ®12) + (bQ, nn2) = <bQ;7]1>T]2 € «]?wv-

We now show that Ag4i,(b)n € J?v. Again we may assume that v starts with w (since
0 € #&). Thus write n = 2y, wv) (171 ® 172) for some 1, € A, and 1, € #,y. Then

Adia(B)n = PLADIN = P (20,00 (b11) ®12) + (B, 11)102) = L(w,u0v) (B11) ©12) € A,

We now show that A¢..(b)n € jﬂwv, This time we may assume that v does not start with
w (since 0 € #,,y). Then

Adia(b)n =PyAb)n = Pig(w,v) (beny) = 2ww) (b®ny) e Jofwv'
The final remark now also follows directly from these calculations. O

Definition 3.1.3. Let (W1, w,,W3) € 7// be s.t. W:= W1WoW3 is a reduced expression We
define a linear map Aw, w,,w;) : Ar — B(Jfr) as follows. For a pure tensor a € Ay, there is
a unique tensor a; ® a; ® dz € Awl ®Aw2 ®AW3 S.toa= 2w, w,ws (a1 ® ax ® az). We then
define

A(Wl wa,ws) (@) = Acre(an)Agia(az)Aann(as) (3.4)

Furthermore, we define A, w,w;) (@) =0 fora € Aw/ Withw # wiwows.

The operator Aw, w,ws) (@) must be seen as the part of A(a) that acts on a pure tensor
1 € A precisely by annihilating the ws-part, diagonally acting on a w»-part, and creating
awj-part. We prove the following lemma.

Lemma 3.1.4. Letw,v € #r, let (W, Wy, W3) € 71/r3 with wiwows reduced, let a € Ay and
ne jfv. Then Aw, w,,ws) (@)n € jfu where u = wiwzv. Moreover, if Adw,w,,w3) (@)1 is non-
zero, we have thatrw = wiw>ws, thatwy is a clique word and thatv andu start with wy lwy
and wwy respectively. Moreover, if a andn are pure tensors, then so is A, w,,ws) (@)7.
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Proof. Let w,v, (w;,wy,w3),a and 1 be a stated. It follows directly from Lemma 3.1.2
that Aw,,w,,ws) (@)1 € JZ”u where u := wijwyv. Suppose Aw,,w,,ws) (@)1 is non-zero. By
Definition 3.1.3 we have that w = wywows We may assume that a is of the form a =
a1 azas with a; € Aw,-- Then Lemma 3.1.2(1) asserts that 177 := A(e,ews) (a3)7 € Jg’wsv and
that v starts with wy 1. Moreover, Lemma 3.1.2(2) then implies that AMewa,ws) (A2 a3)N =
Alews,e)(@2)n1 € JZ”WSV and that wyv starts every letter from wy. This already shows wy is a
clique word and that v starts with wy lw,. Last, Lemma 3.1.2(3) implies that A w, w,,ws) (@) =
Awy,e,e) (A1) A(ewa,ws) (A2aG3)N € jfwlm‘, and that w;wsv starts with w;. Hence u:= wywsv
starts with wyws. The statements on pure tensors follows directly from Lemma 3.1.2. O

For convenience we make the following definition.
Definition 3.1.5. For an elementw € #1 we define the set of triple splittings

W =W WrW3
Fw =1 (Wi, wy,w3) € 7//F?’ w» is a clique word (3.5)
|w| = |wy |+ |wa| + |ws]

and also define 9t = Uwews Fw-

Remark 3.1.6. We explain how the definitions of the sets .%4 relates to permutations
defined in [CKL.21, Definition 2.3]. Let v = v;---v4 € #1 be a reduced expression, let
0<l=<d,0<k=<d-1andlettu;,u, € # be clique words such that u;t, tu;, are clique
words, u;tu, is reduced, and |t| = [ (in the notation of [CKI.21, Definition 2.3] t,u;, u, cor-
respond to the cliques I'y,I'1,T'», and the conditions we put on t,u;,u, are equivalent to
I'p € Cliq', 1) and (I'1,T2) € Comm(I'p)). Then a permutation o (= U‘l,,k,t,uz,ur) is defined
(if existent) as the permutation such that (1) v= vsq) - V@), @) Vok+1)* " Votk+)) = ¢,
(3) 1ve) - Voy S| = k — 1 for any letter s of u;, (4) |vg(1) - Vo(k) S| = k + 1 for any letter s
such that su;tis areduced clique word, (5) |SUs(k+1+1) " Vo(a)l = d— k—[—1 for any letter
sofuy, (6) ISUs(k+1+1) Vo)l = d — k=1 +1 for any letter s such that su,tis a reduced
clique word. Furthermore o is chosen such that the expressions v := vg1)*** Ug(k), V2 :=
Vo(k+1) " Vatk+1) And V3 1= Ug(k+1+1) - * Vo(q) are the representatives of their equivalence
classes and such that v; = v; for i < j implies o(i) < o(j). Such permutation, if exis-
tent, is unique. We make a few remarks on the definition of o. First of all we note that
conditions (3)+(4) are equivalent to

Sr(Vo1) - Vo) = ugt
and similarly that conditions (5)+(6) are equivalent to

81 (tVg(k+1+1) " Vo(a)) = Urt.

Secondly, we note that, when o exists, the obtained triple (v;,v2,v3) lies in .%,. In fact,
forv=wv;---v,; € ¥, this correspondence

(lr krul)ur)t) e (Vlyv2!v3)

between tuples (I, k,u;,u,,t) for which a‘l’ ktupu exists, and tuples (vq,v,v3) in 4, is
4 »yur

bijective. Indeed, for (v1,vy,v3) € %4 the tuple (I, k,u;,u,,t) such that the corresponding
permutation o satisfies vi = Ug(1) - Vg(k), V2 = Vg (k+1) " ** Volk+1)» V3 = Vo (k+1+1) *** Vo(d) 1S
given by k = |vy|, [ = |2, t = v, u; = s, (viO)t, u, = s;(tvs)t.
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The following lemma was essentially proven in [CKL21, Lemma 2.5, Proposition 2.6],
and tells in what ways an element a € A(Ar) can act on a vector.

Lemma3.1.7. We have forwe #r and a € AW that

A= Z A(Wl W2, W3) (3.6)
(Wy,Wo,W3)eHA
AMa) = Z Awy,wa,ws) (@). 3.7)

(W1,W2,W3)EAy

Moreover, for wiwows a reduced expression in #r we have that Aw, w,w;) = 0 whenever
Wy is not a clique word.

Proof. Letw= w; - -wy € #r and (w;,wy,w3) € %y and let o be the corresponding per-
mutation with w; = wg () e Wo (k) W2 = Woktl)  Wolk+D) and W3 = Wy (kt1+1) " W
Then, fora=a, ®---® a; € Ay we have

Ay, wa,wg) (@) = (3.8)
= Acre(@o) ® -+ ® dg (k) (3.9)
“Adia(Ag(ic+1) ® -+ ® Ag(k+1)) (3.10)
“Aann(@o(k+1+1) ®** ® Ao () (3.11)

= Pugy Mgy (“U(U)ngm) - Py Awgy (“U(k))P'uL/g(k)) (3.12)
Py Mg sy Aok 1) Pug i) -+ Py Ay (Ao tes 1) Prog ) (3.13)
“Pigy enron Moonen @ s 161 Puggenrin)) - Py o Moy (@) Puoa))- (3.14)

Equation (3.7) now follows from [CKL21, Proposition 2.6] and from the bijective corre-
spondence between the tuples ([, k,u;,u;,t) and the elements in .%y as described in Re-
mark 3.1.6. Equation (3.6) then follows from linearity and the fact that A, w,w;) (b) =0
whenever b € A, with w # w. Last, we note that by [CKI.21, Lemma 2.5] we have
Awy,wo,wz) (@) = 0 whenever wy is not a clique word, which completes the proof. O

We now prove the following lemma.

Lemma 3.1.8. Letvy, vy € #f with |vivsa| = |v1| +|vyl. Letn € val‘,z be a pure tensor, and
writen = L, v,) (11 ®N32) for somen; ®nz € val ® JfVZ Letw € Wi and let a € Ay,. The
following holds

1. If|vy| = |wl + [wvy ]| then also lwv vy | = [wvy| + |v2| and

Aann(a)n = Q(wvl Vo) (Aann (a)m ®1n32) (3.15)
Adia(@N = 2w, vo) Aaia(@n1 ®12). (3.16)

2. Iflwvyvy| = [W| + |V vy then also [wvy| = |wl| + |vy| and

Acre(a)n :Q(WVI,Vz)(/lCI‘e(a)TII ®12). (3.17)
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3. If (w1, w2, W3) € Ay and if [vi| = [waws| +|[Wow3 vy | and [wiw3viva| = [wi|+[w3v vy,
then also |[W1w3Vv vy | = [wiwgvy | + [va| and

/l(wl,wz,w@ (a)n = Q(W1W3v1,v2) ()"(Wl,wz,W3) (@)1 ®132). (3.18)

Proof. (1) Assume that |v;| = |[w| + [wvy|. Then
[Viva| — W] < [wvivo| < [wvq| + [vo| = [vi| + V2| — W] = |V V2| — |w]. (3.19)

Hence, lwvivy| = [wvy| + |[v2|, which proves the remark. We now prove that the equations
by induction to the length |w]. First of all, it is clear that the statement holds when w=e,
asthen Agun(a) =Agiq(a) =ac Cldjge.

Thus assume that |w| = 1 and that the statement holds for w with |w| < |w| — 1. Write
w=ww withw e #f and w € I" and s.t. [W| = |w| — 1. Then we also have |v{| = |w|+ |wv;].
Letus write a = 2, ) (a1 ®az) with a1 ®ay € Au®A,,. Then A gnn (@) = Agnn(a1) Aann(a2).

Now, write 1 = 2w, wv,,v») Mw ® N} ®12) for some 1, @ 1) @17 € Hoy ® Hury, ® Hoy,
and define

' = 2w v 1) ®12) (3.20)
M = 2w,uwvy) Mw ®N7) 3.21)

so that also 171 = 2y, wvivy) Mw 1) = Ly vy (111 ®72).
We now have, using the definitions, that

Aann(@2)n = PiAw(a2)Pun = P Uy ((a2nw) 1) = (aanw, Ew)n’ (3.22)
Aann(@2)m = PiAy(a2) Pyni = P Uy (a2nw) ®1}) = (@ w, €)M} (3.23)

and
Adia(@2)n = PuUw((@21w) © 1) = 2w, wvivy (@ w) 1) (3.24)
Adia(@)n1 = PuUy(@nw) 1)) = Lawwvy) ((anw) ®1)). (3.25)

Now this means that

Aann(az)n =@wlazn w)n’ (3.26)
= 2w, vp) (@21 w0, €T} @1)2) (3.27)
= 2wvyvs) Aann(@)ni ©1n2) (3.28)
and
Aaia(a2)n = 2w,y (@270) @17') (3.29)
= D, wvy v (@210) ® 1) ®12) (3.30)
= Q(Vl,Vz)(Q(w,wvl)((dzhw) ®n)) ®ns) (3.31)

= 2w,y (Aaialaz)n ®12). (3.32)
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Now, we note that |wv;| = |W| + [Wwwv,| so that using the induction hypothesis and the
fact that [w| = |w| — 1 we find

Aann(@n = Agnn(@) Aann(ax)n (3.33)
= Aann(al)g(wvl Vo) (lann(az)fll ®12) (3.34)
= Dwwwv,,vo) Aann(@1) dann(a2)n1 ®12) (3.35)
= D wvyvy) Aann(@mn1 ®12). (3.36)
Similarly
Adia(@n = Agia(a)Agia(az)n (3.37)
= Agia(a1) 2w, v») Aaiala2)n ©n2) (3.38)
= Qv vy) Adia(@) Agia(az)n ®12) (3.39)
= 2, v») Aaia(@)n1 @ 12). (3.40)

This finishes the induction, and proves the statement.

(2) Assume that [wvyvy| = |[w| + [vyvy|. Then
[Wvva| < [wvy| + Vo] < [W[+ Vi | + Vo] = [W] + [v1V2| = [Wvyval. (3.41)

Hence |wv;| = |w| + |v;], which shows the first remark. Again we prove the equation by
induction to the length |w|. Again, it is clear that the statement holds when w = e. Thus
assume that [w| = 1 and that the statement holds for w with |wW| < |w| — 1. Write w = ww
withwe #r and w €T and s.t. [w| = [w| — 1. Then we also have |wv;v,| = |w| + [viv2]|. Let
us write a = 2, ) (a1 ® az) with a; ® a; € Ag ® Ay, Then Aere(a) = Aere(@r) Acre(as).

We now have by definition

Acre(@)n = Py (a2) Pon = (P U) (@26 1) ® 1) = 2(uv,vy) (@2 ®1) (3.42)
/lcre(az)nl = owlw(ﬂz)Pim = (PupUw) (@28 w) ®n) = Q(w,vl)(az ®n1). (3.43)

Now this means that

Acre(@2)n = Zyvy) (@2 © 1) (3.44)
= 2w, v (G2 @11 ®1)2) (3.45)
= 2wv o) (L) (G2 ®11) ®1)2) (3.46)
= 2wy ,v2) Acre(@)ni ®12). (3.47)

Now, we note that [wwv;v,| = [W| + |wv;Vv,| so that using the induction hypothesis and
the fact that |w| = [w| — 1 we find

Acre(@n = Agre(a)Acre(az)n (3.48)
= Acre(al)‘g(wvhvz)(Acre(az)nl ®12) (3.49)
= Q(vavl,VZ) (Acre(@)Acre(a2)n ®n2) (3.50)

= Q(wvl,vz) (Acre(mnl ®12). (3.51)
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This finishes the induction, and proves the statement.

(3) Let (w1, wp,w3) € HAy bes.t|vy| = [wows|+|[wowzvy | and [wyw3viva| = [wy|+|w3vival.
We will write Aw, ,wy,w3) (@) = Acre(@1)Agia(a2) Aann(az) for some a; ® a; ® as € Ay, ®Ay, ®
Ay, Now, first, as |vi| = [wows| + [wowsvy |, we also have

[vi] < |w3| + |wzvy| (3.52)
< |lwa |+ |ws| + [wows v | (3.53)
= [waws| + [Waw3 v | (3.54)
= Ivq] (3.55)

and therefore |v;| = |ws| + [w3v;|. By (1) this gives us

Aann(az)n = Q(W3v1,v2) (Aann(az)ni ®nz) (3.56)
and also |w3v; vz | = [w3v;| + |v2|. Now, we also find

[wavi| = |vi| = |w3| = [Wows| + [Wows vy | — [W3| = [wa| + [Wowsvy|. (3.57)

Let us set v| =wsvy and V), = vy, so that [V} v, | = |V} |+ |v}| and [v]| = [w>| + [w>V||. More-

over set ' = Aann(az)n and 1) = Agnn(az)n and n), = n,. Nown' = ‘Q(V'I,V'Z)(nll ®1,) and
we see that the conditions for applying (1) are satisfied. This thus gives us that

Adia(a2) Aann(az)n = Q(W3V1,V2) (Adia(a@)dann(az)ni ®no). (3.58)

Now, set V; = V| = w3v; and V> = v, = v, so that again [V, V| = [¥;| + [V2|. Also we get
[W1V1V2| = [Wiw3viva| = [wiwavy| + |va| = [wiVi| + [Va]. Also set 7] = Agjq(a2) dann(as)n
and 1 = Agiqa(a@2)Aann(as)n and 2 =12 Then ) = Q(v’l,v’z) (171 ®7)2) and all conditions for
applying (2) are satisfied. By (2) we thus get

Acre(@)Agia(az) Aann(az)n = Q(W1W3V1,V2) Aere(a)Aaia(a2) Aann(as)ni ©n2) (3.59)

and moreover [wywsv; | = [wy|+|wsv;|. The previous equation is precisely what we needed
to show, and we moreover obtain [wiw3viva| = |wWi| + [w3vva| = [wy| + [w3vy| + |[vo| =
|[wiwsvy |+ |[v2|, which proves the statement. O






BIMODULE COEFFICIENTS, RIESZ
TRANSFORMS AND STRONG
SOLIDITY

In deformation-rigidity theory, it is often important to know whether certain bimodules
are weakly contained in the coarse bimodule. Consider a bimodule .# over the group
algebra C[G] with G a discrete group. The starting point of this chapter is that if a dense
set of the so-called coefficients of # is contained in the Schatten S, class p € [2,00),
then the n-fold tensor power 5" for n = 2 is quasi-contained in the coarse bimodule.
We apply this to gradient bimodules associated with the carré du champ of a symmetric
quantum Markov semigroup.

For Coxeter groups, we give a number of characterizations of having coefficients in
Sy for the gradient bimodule constructed from the word length function. We get equiva-
lence of: (1) the gradient-S, property, (2) smallness at infinity of a natural compactifica-
tion of the Coxeter group, and for a large class of Coxeter groups, (3) walks in the Coxeter
diagram called parity paths. We derive several strong solidity results. In particular, we
obtain current strong solidity results for right-angled Hecke von Neumann algebras be-
yond right-angled Coxeter groups that are small at infinity.

This chapter is based on the paper:

° Matthijs Borst, Martijn Caspers and Mateusz Wasilewski, Bimodule coefficients,
Riesz transforms on Coxeter groups and strong solidity, Groups, Geometry, and Dy-
namics 18.2 (2023) pp. 501-549.

4.1. INTRODUCTION

This chapter establishes bridges between the Riesz transform in modern harmonic anal-
ysis and von Neumann algebra theory. The original Riesz transform can be defined as
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follows. Consider the positive unbounded Laplace operator A and the directional gradi-
ent V; on L*(R") given by
no 52 0

A:_Zﬁ, ij—., lsjsn.
J=1E4)

Then the Riesz transform R; = Vo A" forls= j < nis an isometry on L?(R") that has
been studied extensively in classical harmonic analysis in the context of Fourier multi-
pliers, singular integral operators and Calder6n-Zygmund theory.

Riesz transforms can be defined abstractly for any Cy-semigroup of positive mea-
sure preserving unital contractions on L*° (X, u), with (X, u) a finite Borel measure space.
Such semigroups admit a generator A and a natural replacement of the gradient V known

as the carré du champ. The Riesz transform is then defined as VoA~z. These Riesz trans-
forms were studied by Meyer [Mey84] for (commutative) Gaussian algebras and their
study was continued by Bakry [Bak85], [Bak87], Gundy [Gun86], Pisier [Pis88], amongst
others. This in particular involves an analysis of diffusion semigroups on compact Rie-
mannian manifolds with lower bounds on the Ricci curvature [Bak87]. Furthermore,
in the non-commutative situation, Clifford algebras were considered by Lust-Piquard
[Lus99], [Lus98]. Also the Riesz transform was studied on general groups [JMP18] using
certain multipliers associated with cocycles.

In this chapter, we study Riesz transforms associated with non-commutative gener-
alizations of diffusion semigroups: (symmetric) quantum Markov semigroups. Let M be
a finite von Neumann algebra and ® = (®;);>( a point-strongly continuous semigroup
of trace preserving unital completely positive maps. Such a semigroup comes with a
generator A. The proper replacement of the gradient is played by a bilinear form that is
a non-commutative version of the carré du champ. For simplicity, we consider mostly
quantum Markov semigroups of Fourier multipliers associated with a discrete group G,
acting on the group algebra C[G]. Then the carré du champ allows the construction of a
C[G] bimodule #% and a derivation, i.e. a map satisfying the Leibnizrule, V : C[G] — A&
such that (here formally) A = V*V. So V is a root of A just as in the case of the Laplace
operator and the gradient. We refer to Cipriani and Sauvageot [CS03] where also the an-
alytical framework is established. Then there is an isometry Vo A2 0%(G) — Ay called
the Riesz transform. This Riesz transform was studied in the context of g-Gaussian alge-
bras [CIW21], [Lus99], [Lus98] and compact quantum groups [Cas22], [Cas21].

In the current chapter we are interested in applications of the Riesz transform to
group von Neumann algebras of discrete groups; we focus on Coxeter groups but we
also obtain results for other groups.

Recall that to a discrete group G we may associate the group von Neumann algebra
Z£(G) which is the von Neumann algebra generated by the left regular representation.
Let [, be the free group with two generators. In his fundamental papers on free probabil-
ity Voiculescu [V0i96] showed that Z (F,) does not possess a Cartan subalgebra, meaning
that there does not exist a maximal abelian subalgebra (MASA) of £ (F,) whose normal-
izer generates Z(F»). An important consequence is that £ (F,) does not non-trivially
decompose as a crossed product and cannot be constructed from an equivalence rela-
tion with a cocycle as was shown by Feldman and Moore [FM77a], [FM77b]. In [OP10a]
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Ozawa and Popa gave an alternative proof of the Voiculescu’s result. They showed that
Z([F,) is strongly solid. This means that the normalizer of any diffuse amenable von Neu-
mann subalgebra of Z(F,) generates a von Neumann algebra that is amenable again.
Since Z(F») is nonamenable and since MASA’s are diffuse it automatically follows that
Z(F,) does not possess a Cartan subalgebra. After [OP10a] many von Neumann algebras
were proven to be strongly solid, see e.g. [Iso15a], [OP10b], [PV14b] and references given
there. As a consequence of the methods in this chapter we are able to prove such strong
solidity results as well.

To motivate the first part of this chapter we recall the following theorem from [CIW21].
We do not explain for now the technical terms that occur in this theorem but in the sub-
sequent paragraph we explain what the crucial partis. Theorem 4.1.1 itself is actually not
that hard to prove; however its consequences (see [PV14b], [[so15a]) and proving that its
assumptions hold in examples is rather intricate.

Theorem 4.1.1 (Proposition 5.2 in [CIW21]). Let.# beaC[G] bimoduleand letV : ¢*(G) —
J€ be bounded. Assume that /€ is quasi-contained in the coarse bimodule of G, that V is
almost bimodular and that V*V is Fredholm. Assume that C; (G) is locally reflexive. Then
ZL(G) satisfies AO*.

The Akemann-Ostrand property AO* (as in [[sol5a]) will be used frequently in this
chapter for which we refer to Definition 4.2.11. If G is weakly amenable then AO* implies
strong solidity [PV14b], [Iso15a]. The Coxeter groups in this thesis are weakly amenable
[Fen02], [Jan02] as are all hyperbolic discrete groups [0za08].

In view of Theorem 4.1.1 we are mostly still interested in two things: (1) constructing
almost bimodular maps V : £?(G) — .# with . a C[G] bimodule; (2) showing that the
C[G] bimodule # is quasi-contained in the coarse bimodule 02(G) ® 0%(G) of G. It turns
out that very often the Riesz transform is an almost bimodular map. Further, we provide
comprehensible conditions that show that the gradient bimodule is quasi-contained in
the coarse bimodule. We will develop general theory for this as follows.

In the first part of this chapter we study bimodules over C[G] and their coefficients.
We define coefficients of a C[G] bimodule as a certain map C[G] — C[G]. This notion
occurs for instance in [AP17, Section 13] for von Neumann algebras; the more algebraic
notion we present here is more convenient for our purposes. Since C[G] < ¢?(G) a coef-
ficient determines a densely defined map ¢ 2(G) — 0%(G). We study when these maps are
contained in the Schatten von Neumann non-commutative Ly-space S.

For two C[G] bimodules .# and /> we shall also show that ./ ® #» has a natural
C[G] bimodule structure and we denote this bimodule by #; ® /. As a Hilbert space
JO ®g A = F, ® H,. Recall that the coarse bimodule of G is given by £?(G) ® £%(G)
where the left action of C[G] is on the first tensor leg and the right action on the second
tensor leg. In Section 4.2 we prove the following, amongst other results (except for part
(4), which is proved in Section 4.3, see Corollary 4.3.13).

Theorem 4.1.2. Let /¢, /) and 76 be C[I'] bimodules.

1. Ifadense set of coefficients of /€ are in S, then € is a £ (G) bimodule that is quasi-
contained in the coarse bimodule of G.
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2. Ifadense set of coefficients of #;,i = 1,2 is contained inS,, p; € [1,00) then a dense
set of coefficients of 76, ® g A, is contained in S, where % = % + é.

3. IfV; 1 02(G) — A0 = 1,2 is almost C[G] bimodular then so is Vi = Vs := (V, ® V,) o
Ag: 02(G) - 7 ®¢ S where Ag : 02(G) — 02(G) ® P%(G) is the comultiplication.

4. Consider a proper length functiony : G — Z¢ that is conditionally of negative type,
defined on a finitely generated group G. Then the associated Riesz transform R :
02(G) — 0%(G)v is almost bimodular.

Theorem 4.1.2 provides a clear strategy towards obtaining the input of Theorem 4.1.1.
Namely we start with a proper length function y : G — R that is conditionally of negative
type. We construct the associated gradient bimodule .#% and show that its coefficients
arein S, for some p € [1,00). By tensoring we obtain a bimodule (va)g”, n= [g] and a
map

V(G) — ()

with the desired properties of Theorem 4.1.1. This is the rough idea of our strategy. We
say ‘rough’ since in all applications we need some suitably adapted variation of this idea.

In the second part of this chapter we analyse when coefficients of a gradient bimod-
ule Ay are in Sy, p € [1,00). In order to do so we recall the property gradient-S, for
quantum Markov semigroups from [Cas21], [CIW21]. If a quantum Markov semigroup
has gradient-S, then a dense set of coefficients of A% are in Sp; consequently Ay is
quasi-contained in the coarse bimodule of G.

We first show (Lemma 4.3.11) that if ¥ : I' — Z is a proper length function that is
conditionally of negative type then gradient S, p € [1,00) for the associated quantum
Markov semigroup is independent of p. Then we analyse when the word length function
of a general (finite rank) Coxeter group is gradient-S,. We find the following characteri-
zation.

Theorem A (Theorem 4.4.15). Let # = (S|M) be a finite rank Coxeter system. Fix p €
[1,00]. The following are equivalent:

1. The quantum Markov semigroup associated with the word length is gradient-S .
2. Forallse€ S theset{we ¥ :ws = sw} is finite.
3. The Coxeter system (S|M) is small at infinity (as in [KIi23D]).

In particular for right-angled Coxeter groups these statements are equivalent to the
Coxeter group being a free product of finite abelian Coxeter groups, see [Kli23b]. This
shows that gradient-S,, is rather rare. However with the right tensor techniques it can
still be turned into a very useful property. We also provide an almost characterization
of when the equivalent statements of Theorem A hold in the following theorem. For the
definition of the graph Graphgs(#') we refer to Definition 4.4.5. The definition of a parity
path is given in Definition 4.4.6.



4.2. COEFFICIENTS OF BIMODULES 57

Theorem B (Theorem 4.4.8 and Theorem 4.4.9). Let # = (S|M) be a Coxeter group. If
there does not exist a cyclic parity path in Graphs(W') then the semigroup (®;) > asso-
ciated to the word length | - |s is gradient-S, for all p € [1,00]. The converse holds true if
m;j#2foralli,j.

Section 4.4 shows that it is usually easy to determine whether Graphgs(#') has a par-
ity path, see Corollaries 4.4.11 and 4.4.12.

Next we obtain strong solidity results for Hecke von Neumann algebas, i.e. for q-
deformations of group von Neumann algebras of Coxeter groups. The following theo-
rem extends [Kli23b, Theorem 0.7] in the case of a right-angled Coxeter system. What
is of particular interest is that our methods really improve on the approach based on
compactifications and boundaries in [Kli23b]. More precisely, [Kli23b] shows that if the
action of a right-angled Coxeter group on a natural boundary associated with it is small
at infinity, then actually the Coxeter group is a free product of finite (commutative) Cox-
eter groups. So the approach in [Kli23b, Theorem 0.7] cannot be extended to the current
generality.

Theorem C (Theorem 4.7.5). LetT be a finite simple graph and letq = (q,) yer with q, > 0.
Assume

A:={reTl:3s,t eI such thatr € Linkr (s) N Linkr (), s € Starp (1)}

is a clique in T. Then the Hecke von Neumann algebra Nq(#1) satisfies the Akemann-
Ostrand property AO" and is strongly solid.

We note that a large part of the analysis in proving Theorem C applies to general
Hecke algebras. However, the strong solidity properties are still pending on whether cer-
tain semigroups extend to quantum Markov semigroups. In the final Section 4.8 of this
chapter we summarize some open problems.

Structure of the chapter. Section 4.2 contains results on bimodules and their coef-
ficients and we prove Theorem 4.1.2. Section 4.3 introduces quantum Markov semi-
groups, the gradient bimodule and the Riesz transform. We also derive many of the basic
properties. Section 4.4 proves Theorem A and Theorem B. Note that here we also estab-
lish the Corollaries 4.4.11 and 4.4.12 which make it easy to see if a Coxeter group is small
at infinity. Section 4.5 contains an analysis of quantum Markov semigroups with weights
on the generators. This applies mostly to right-angled Coxeter groups and it is crucial
in the later sections. Section 4.6 proves strong solidity results for Coxeter groups using
tensor methods. In Section 4.7 we prove Theorem C. We have included Section 4.8 to list
some problems that are left open.

4.2. COEFFICIENTS OF BIMODULES

In this section we study bimodules over the group algebra of a discrete group and provide
sufficient criteria for when such a bimodule is quasi-contained in the coarse bimodule.
We also consider tensor products of such bimodules.
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4.2.1. COEFFICIENTS AND QUASI-CONTAINMENT
Let G be a discrete group with group algebra C[G], reduced group C*-algebra C; (G) and
group von Neumann algebra Z(G). They include naturally

CIGI€C/ (G £ (G).

In turn Z(G) < £?(G) by x — x8,. Hence we may and will view C[G] as the subspace of
¢%(G) of functions with finite support. Now a C[G] bimodule will be a Hilbert space .#
with commuting left and right actions of G and thus of C[G] by extending the actions
linearly.

Definition 4.2.1 (Coefficients). Let /¢ be aC[G] bimodule. Let&,n € A be such that there
exists amap Tg ; : C[G] — CI[G] such that

(T y(0y) = (xEy,m), X,y €CIGI. 4.1)

Then T, is called the coefficient of 7€ at §,n. Set T := T ¢. We say that the coefficient Tg ;,
isinS, with p € [1,00] ifo,n exists and extends to a bounded operator Ten: 02(G) — 0%(G)
that is moreover in the Schatten class Sy, := Sp(f2 (G)).

Note that if the map T, is existent then it is uniquely determined by (4.1). Indeed,

if Té} . is another map with this property then 7((T¢ ; - Téyn)(x) y)=0forall x,y e C[I'] so
that T, | = Tg.
Remark 4.2.2. In [AP17, Definition 13.1.6] the notion of a coefficient of a von Neumann
bimodule is defined. Definition 4.2.1 is an algebraic analogue which is more convenient
for our purposes. The reason that we work in this algebraic setting is that the bimodules
we consider in this chapter are a priori not necessarily von Neumann bimodules. In fact
for the gradient bimodules we consider in Section 4.3 this is not even true in general.
However, under the conditions of Proposition 4.2.3 the normal extensions of the left and
right actions automatically exist.

Proposition 4.2.3 (Quasi-containment). Let /¢ be a C[G] bimodule. Suppose that there
exists a dense subset 7, < F€ such that for any ¢ € 76 the coefficient Ty : C[G] — C[G] isin
S,. Then the left and right C[G] actions on A extend to (bounded) normal £ (G) actions
and the £ (G) bimodule S is quasi-contained in the coarse bimodule 02(G) ® 42(G).

Proof. Take ¢ € /. Define the functional
p:CIG] ®,¢CIGI? = C: x® y°P — (x-&-y,).
For x, y € C[G] by definition of T,
p(x®yP)=(x-¢- 3,8 =1(T:(x)y) = T(yTe (%)) = (Te (%), y* )z
Now as T; is Hilbert-Schmidt there exists a vector {; € £%(G) ® £*(G) such that

p(x®yP)=(x®y°P, ) =((x® y°P)-(1®1),{¢).
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This shows that p extends contractively to C; (G) ®min C; (G). Moreover, this shows that
p extends to a normal contractive map on the von Neumann algebraic tensor prod-
uct Z(G)®%(G) — C. By Kaplansky’s density theorem this extension of p is moreover
positive. Since 22(G) ® ¢%(G) is the standard form of £ (G)®.%£(G)°P there exists ne
0%(G) ® £?(G) such that

px®yP)=(x-n-ym,  xyeL(G.

This proves that the conditions of [CIW21, Lemma 2.2] are fulfilled and hence # is
quasi-contained in the coarse bimodule. We already observed in the preliminaries that
this quasi-containment implies that the left and right actions extend to normal actions
of Z(G). O

A subset Ay < A of a C[G] bimodule .7 is called cyclic if #7 := spanC[I'#oCIT]
is dense in /. The following lemma tells us that we can reduce Proposition 4.2.3 to
checking the property only for the coefficient in a cyclic subset.

Lemma 4.2.4 (Reduction to cyclic subset). Suppose that #yo < H is a subset whose co-
efficients T, for {,m € #yo are in'Sy. Then for §,n € 6 := spanC[Gl A0 CIG] the coef-
ficients T¢ , are in Sy. Consequently, if #uo is cyclic then 7€ is a £(G) bimodule that is
quasi-contained in the coarse bimodule ¢*(G) ® (?(G).

Proof. Let¢' = AgéAp and n' = AsnA, for some g, h, s, t € G and &,1 € A#y. We have that

T(Ter (1)) = (X&' y, 1"y = (X AgEARY, AsAr) = (A1 XAgEAR Y A1, 1)
=1(T¢y (/1S71X/1g)/1hy/1t71) =1(A1 Tg,n(/lsflx/lg)/lhy).

This shows that Tgr ; (x) = A1 T (A1 XAg) Ay and so Ty is in Sp. The first statement
then follows by linearity. By Proposition 4.2.3 we find that . is quasi-contained in the
coarse bimodule 2 (G) ® £2(G) in case .y is cyclic. O

4,2.2, TENSORING BIMODULES
If /4 and A are two C[G] bimodules then we can construct a bimodule /4 ®g 5,
which, as a Hilbert space, is the same as #, ® /% and the actions are given by

s-(Eon):=sé®sn and Eons:=&sens, e S,ne A, seQG.

The actions extend by linearity to actions of C[G]. If we take an n-fold tensor power of
a given bimodule 7, it will be denoted by #Z". For later use we also recall that the
comultiplication

Ag: CIG] — CIG] ® CIG]

is given by the linear extension of the assignment g — g® g,g € G. Then A extends to
an isometry £%(G) — £%(G) ® £?(G) which we still denote by Ag.

Lemma4.2.5. Let1<p,q,r <oo with+ = % + 1. There exists a bounded bilinear map

1
q

SpxSq—Sr:(x,y) = Aj(x® y)Ag.
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Proof. For r =1 take (x,y) € Sp xSy both positive so that Af,(x® y)Ag € S; is positive.
Then

IAZ(x@ PAGl =T(AL(x® Y)AG) = Y (xg, 8)(V8, &)

geG
1 1
p q
S(Z<xg,g>’”) (Z(yg,gﬂ) =lxlplylg.
geG geG

As every element in S, and S, can be written as a linear combination of 4 positive ele-
ments with smaller or equal norm the lemma follows for r = 1. Now, take r = co. Then
also p = g = co and for (x,y) € S, xS4 we see that Ag(x ® y)Ag € S;. Furthermore, we
have the norm estimate

IAG(x® AGI<IAGI-Ix®yl- 1Al < lIx]l- 1yl
The lemma then follows from bilinear complex interpolation [BL12, Theorem 4.4.1] O

Lemma4.2.6. Letl<p,q,r < oo with % = % + é. Let /6, and 76 be C[G] bimodules and
let{ € A0, andn € J65. Suppose that the coefficient Tr is in S, and the the coefficient T is
inSq. Then the coefficient Tggy, of 70, ®r A, isin S;.

Proof. We have for s, t € G,
T(Teen($) 1) = (s€t®snt,{ @ M)

= (861, &) (snt,m)
=T(Te () DT (TH(8) D).

It follows that T, = Af, (T ® T) Ag. We conclude the proof by Lemma 4.2.5. O

Proposition 4.2.7. Let A be a C[G] bimodule such that for a dense subset of # the coef-
ficients are inSp,. Then the bimodule 763" is quasi-contained in the coarse bimodule for
anyn = g.

Proof. By Lemma 4.2.6 (and induction) we get that a dense subset of coefficients of 2"
isin Sp =Sy, so by Proposition 4.2.3 we get the quasi-containment. O
n

Definition 4.2.8. Let # and % be C[G] bimodules. A linear map V : # — X is called
almost bimodular if for every x, y € C[G] the map

H— K E—xV(Ey-V(xéy),
is compact.

Lemma 4.2.9. Let /0, and J be bimodules over C[G]. Suppose V;: 0%(G) — A, and
Vy: 02(G) — H are almost bimodular bounded linear maps. Then

Vi* Vo= (V) @ Va)oAg: 2(G) — 76, &G 75

is almost bimodular.



4.2. COEFFICIENTS OF BIMODULES 61

Proof. 1Tt suffices to check the almost bimodularity for x = s and y = ¢, as the general
case will follow by taking linear combinations. For a map V : £?(G) — ./ with 7 a C[G]
bimodule we will write (sV£) (&) = sV (&) t and V(&) := V(s&t) where € € £2(G). Tt follows
from the definitions that

sV« W)t=(s®8)- (V1@ Va)oAg) - (t® 1) = (sVit*sVot).
Further, for ¢ € £2(G),

(V1 * Vo)™ (&) =(Vi 8 Va)Ag(sé1)
=(V1 8 Vo) ((s® $)Ag(E) (£ & 1) = (V"' * V') (&).

Hence
(V1 # Vo)™ =V s Vol

Therefore we have
sV Vo)t — (Vi % Vo)™ = ((sVit = V") sVat) + (VP % (sVat = V'), (4.2)

By our assumption the operators sV; t — Vf’t and sVt — V;’t are compact. So it suffices
to check that if K is compact and T is bounded then both K * T and T % K are com-
pact. To check that, for every finite subset F c G consider the corresponding finite rank
orthogonal projection Pr onto the linear span of 55 € £2(G), s € F. We can easily check
that Ago Pr = (Pp®1d) o Ag = Id®Pp) o Ag. It follows that (K * T)Pr = (KPg * T), so
(K* T)Pr—K=* T = (KPr—K) = T. Further,

(K* T)Pp—K* Tl < [KPp—KI|ITI.

By compactness of K we see that || KPr — K|l goes to 0 as F increases. So K * T can be
approximated in norm by finite rank operators and thus is compact. The proof for T * K
is the same. Hence the operator in (4.2) is compact, i.e. V; * V, is almost bimodular. O

Lemma 4.2.10. For i = 1,2 suppose that V; : (>(G) — F; is a partial isometry to a C[G)
bimodule 7¢; such thatker(V;) is spanned linearly by a subset F; € G. Then Vy * V, isa
partial isometry whose kernel is the linear span of F; U F.

Proof. The comultiplication Ag is anisometry £2(G) — ¢?(G)®¢?(G). Clearly Ag(s) = s®s
is contained in ker(V; ® V») if s is in F; U F,. Further, V; ® V5 is isometric on ker(V;)1
ker(V»)1 and so it is certainly isometric on the linear span of Ag(s) = s®s,s€ G\(FiUF).
These observations conclude the lemma. O

4.2.3. THE AKEMANN-OSTRAND PROPERTY AO* AND STRONG SOLIDITY
This section serves as a blackbox that connects the theory that we develop in this chapter
to a central concept in deformation-rigidity theory: strong solidity. Firstly we recall a
version of the Akemann-Ostrand property that was introduced in [Iso15a].

Definition 4.2.11. A finite von Neumann algebra M has property AO* if there exists a
o -weakly dense unital C* -subalgebra A< M such that:
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1. A is locally reflexive [BO0S, Section 9];

2. There exists a unital completely positive map 6 : A ® i, A°° — B(L?(M)) such that
0(a® b°P) — ab®P is compact forall a,b € A.

The following theorem will be the main tool to prove that certain von Neumann al-
gebras have AO* using the Riesz transforms in this chapter.

Theorem 4.2.12 (Proposition 5.2 in [CIW21]). Let A be a C[G] bimodule and let V :
0%(G) — A be bounded. Assume that # is quasi-contained in the coarse bimodule of
G, that V is almost bimodular and that V*V is Fredholm. Assume that C; (G) is locally
reflexive. Then £(G) satisfies AO™.

The following theorem in turn yields the strong solidity results from AO*. For the no-
tion of weak amenability we refer to [BO08, Section 12.3]. If G is a weakly amenable dis-
crete group then C; (G) is automatically locally reflexive. All Coxeter groups are weakly
amenable [Fen02], [Jan02] as well as simple Lie groups of real rank one [CH85], [CH89].
We recall that amenability of a von Neumann algebra was defined in the introduction
and preliminaries. We note that, in this chapter, amenability and weak amenability shall
not appear explicitly in the proofs. We recall that a von Neumann algebra is called diffuse
if it does not contain minimal projections.

Definition 4.2.13. A finite von Neumann algebra M is called strongly solid if for every
diffuse amenable von Neumann subalgebra B < M we have that the normalizer

Nor;(B) :={u € M : u unitary and uBu* = B},
generates a von Neumann algebra that is amenable again.

Theorem 4.2.14 (See [PV14b] and [Isol5al). Let G be a discrete weakly amenable group
such that £ (G) satisfies AO*. Then £(G) is strongly solid.

4.3. QUANTUM MARKOV SEMIGROUPS, GRADIENTS AND THE

RIESZ TRANSFORMS

In this section we study quantum Markov semigroups of Fourier multipliers on the group
von Neumann algebra of a discrete group. We introduce the associated Riesz transform
which takes values in a certain bimodule that we call the ‘gradient bimodule’ or the bi-
module associated with the ‘carré du champ’ Our main goal is to analyze when the co-
efficients of this bimodule are in the Schatten S, space and consequently when this bi-
module is quasi-contained in the coarse bimodule. We also show that under very natural
conditions the Riesz transform is an almost bimodular map in the sense of Section 4.2.

4.3.1. QUAN'I'UM MARKOV SEMIGROUPS, THE GRADIENT BIMODULE AND
THE RIESZ TRANSFORM

We start defining the Riesz transform of a quantum Markov semigroup (QMS). Recall the

definition of a QMS.
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Definition 4.3.1. A quantum Markov semigroup (QMS) on a finite von Neumann algebra
(M, ) is a semigroup ® = (®;) ;>0 of normal unital completely positive maps ®;: M — M
that are trace preserving (to®; =1, t = 0) and such that for every x € M the map t — ®;(x)
is strongly continuous. We shall moreover assume that a quantum Markov semigroup is
symmetric meaning that for every x,y € M and t = 0 we have 1(®(x)y) = 7(x®;(y)). So
QMS always means symmetric QMS.

Fixa QMS @ = (?;) ;> on a finite von Neumann algebra M with a normal faithful tra-
cial state 7. By the Kadison-Schwarz inequality there exists a semigroup of contractions
(@) 120 on L*(M) = L*(M, 7) by

q)(,z)(xQT) =D, (x)Qy, x€ M.

Here Q; = 1), is the cyclic vector in I%2(M). The semigroup (CIJ(tZ)) =0 iS moreover point-
norm continuous, i.e. it is continuous for the strong topology on B(L?(M)). By a special
case of the Hille-Yosida theorem there exists an unbounded positive self-adjoint opera-
tor A on L?(M) such that ®? = exp(—tA). We will assume the existence of a g-weakly
dense *-subalgebra A < M such that AQ; < Dom(A) and A(AQ;) € AQ;. By identifying
a € Awith aQ; € L2(M) we may and will view A as a map A — A. We now introduce the
carré du champ or gradient as

I''AxA— A:(a,b)— %(A(b*)aer*A(a) - A(b* a)).

Let A be any A bimodule, i.e. we recall # is a Hilbert space with commuting left and
right actions of A. For a, b € A,¢,n € /€ we set the possibly degenerate inner product on
A®yg A by

(a®¢,ben) =(T'(a,b),n).

The Hilbert space obtained by quotienting out the degenerate part of this inner product
and taking the completion shall be denoted by .#%. We denote by a®y ¢ the element a®¢
identified in A% . For x,y,a € A and ¢ € # we define commuting left and right actions
by

x-(a®yé)=xa®yi—-x®yvas, (a®yl)-y=aeyiy. (4.3)

In this chapter we shall only deal with the case .# = L?(M) with actions by left and right
multiplication of M. In this case the actions (4.3) extend to contractive actions on the
norm closure of A. We do not say anything about whether the actions are normal at this
point, but rather use Proposition 4.2.3 to show that they are normal in the cases that are
relevant. We define a derivation

ViA—*(M)y:a— a®yQ;.
More precisely, V satisfies the Leibniz rule

V(xy)=xV() +V(x)y, x,yeA
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with respect to the module actions (4.3). This fact uses that 7 is tracial. Since ®; is 7-
preserving it follows that for x € A we have (A(x)Q;,Q;) = %I,:O((Dt(x)QT,QT) =0 (up-
per derivative). Therefore, as A = 0,

IV(a)I? =(T'(a, ®)Qr, Q)

=%(<A(amr, ady) +(aQy, A@)Qr) — (A(a* ), Qr))
:%«A%(amr,ﬁ(ama + (A2 (@)Qr, AZ(@)Q) —0)

=A% (@Q 2.
It follows that we have an isometric map
VA~ tker(A) — L2 (M)y.
We extend this map to a partial isometry
Ro: L*(M) — L*(M)y

by defining it to have ker(A) as its kernel. We call Ry the Riesz transform.

Remark 4.3.2. This Riesz transform was also used in [CIW21, Section 5]. Note that map-
ping that was introduced in [CIW21, Section 5, Eqn. (5.1)] differs from Rg only on ker(A).
If the kernel of A is finite-dimensional then Rq agrees with [CIW21, Eqn. (5.1)] up to a
finite rank perturbation. In particular this is the case if A = 0 has a compact resolvent.
The results of [CIW21, Section 5] stay intact under this finite rank perturbation.

4.3.2. COEFFICIENTS OF THE GRADIENT BIMODULE

We now start our analysis of coefficients of the gradient bimodule. The following defi-
nition of ‘gradient-S,’ that first occurred in [Cas21] (for p = 2) and [CIW21] (for general
p) plays a central role in this chapter. The definition may depend on the choice of the
o-weakly dense subalgebra A of M which we fixed before in our notation. This thesis
contains the first results for the gradient-S, property in the context of group algebras.

Definition 4.3.3. Let p € [1,00]. Consider a QMS ® on a finite von Neumann algebra
(M, 1) with generator A and a dense *-subalgebra A < M as in Section 4.3.1. Then ® is
called gradient-S,, if for every a, b € A the map

wab A Ay A(axb)+ aA(x)b— A(ax)b— aA(xb),

extends as xQ, — Y42 (x)Q; to a bounded map on L%(M) that is moreover in the Schatten
p-class Sy, = S, (L*(M)).

Remark 4.3.4. Since A is self-adjoint we have for a, b, x, y € A,
(\P“’b(x)QT,yQT> =((A(axb) + aA(x)b—A(ax)b— aA(xb))Qr, yQr)
=(xQ¢, (A(@*yb*) + a*A(y)b* — A(@* x)b* — a* A(yb*)Q;)
=(xQ;, ¥V (1)Q0).

So it follows that
(Peby =g b g pe A (4.4)
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The following lemma simplifies verifying whether a QMS has the gradient-S, prop-
erty.

Lemma 4.3.5 (Condition that implies Gradient-S, property). Let p € [1,00]. Let Ag € A
be a self-adjoint subset that generates A as a x-algebra. Then (®;);»¢ is gradient-S, if and
only iffor all a,b € Ay we have that Y*? is in Sp.

Proof. The only if statement follows directly from the definition of gradient-S,. We will
prove the other direction. We must prove that ¥%? is in S p for every a, b € A. Since A is
self-adjoint, A is generated by Ag as an algebra. So A is spanned linearly by (Ag)”, n € N.
Note that the map ¥*? depends linearly on both a and b. So in order to prove that ¥*?
is in Sy, for all a, b € A it suffices to prove that wab is in Sy for all a, b € (Ag)" for every
n € N>;. We shall prove this latter statement by induction on n. The case n = 1 holds by
assumption of the lemma. We now assume that we have proved the statement for n and
shall prove it for n+ 1.
First note that for u, uy, v, w € A we have

YW )y = A(ugupvw) + ug s A(W) w — A(ug us ) w — ug up A(vw)

= (A upvw) + 1 Aluav)w — A(ugup v) w — U A(upx vw))

(4.5)
+u (A(upvw) + waA(V)w — A(usv) w — us A(vw))
=V (o 0) + 1 Y2 (v),
and likewise for u, v, w;, w, € A we have
P2 () = WL (p,) + P2 (D) wy. (4.6)
Combining these expressions we see that for u = u; uy and w = w, w; we have
\PL{,W(U) — \I/u] UQ,W(U)
=V  (upv) + i P2 (v)
4.7)

=yl w2 (Upv) + ul\PuZ'wzwl (v)

= (WY (wgvwn) + W2 (upv)wn ) + g (W2 (vwp) + P22 () wy )«

By the induction hypothesis we have that W1, UL W2 \phz Wi @iz W2 are all in S).
Since the S, class forms an ideal in B(L2(M, 1)) we have that the four operators in (4.7)
are all in Sp,. This finishes the induction and thus shows that the associated semigroup
is gradient-S,,. O

4.3.3. ALMOST BIMODULARITY OF THE RIESZ TRANSFORM

Next we analyze when the Riesz transform is almost bimodular. Therefore we introduce
the following notions. We say that a QMS @ on a finite von Neumann algebra is filtered if
the generator A has a compact resolvent (i.e. (A— z)7Lis compact for some z € C) and for
every eigenvalue A of A there exists a (necessarily finite dimensional) subspace A(1) € A
such that A(1)Q; equals the eigenspace of A at eigenvalue 1. Moreover, we assume that
for an increasing enumeration (A,) ;>0 of the eigenvalues of A we have for all k, [ = 0 that

oo I+k
A=PAAD,  AADANL =D Ay
n=0

n=0
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We will further say that A has subexponential growth if

li Ak+1 _
im — =

1.
k—o00 /lk

Remark 4.3.6. In [Cas22] a more general notion of filtering and subexponential growth
was considered for central Fourier multipliers on compact quantum groups. The current
‘linear’ type of definition suffices however for our purposes.

Theorem 4.3.7 (Theorem 5.12 of [CIW21]). Suppose that a QMS ® on a finite von Neu-
mann algebra M is filtered with subexponential growth. Then the Riesz transform Rg :
L2(M) — L2(M)y is almost bimodular.

4.3.4. SEMIGROUPS OF FOURIER MULTIPLIERS ON GROUP VON NEUMANN
ALGEBRAS

Now consider the case that M is a group von Neumann algebra £ (G) of a discrete group
G and A = C[G]. The following theorem is a version of Schonberg’s theorem.

Theorem 4.3.8 (See Appendix C of [BHV08]). Letw : G — R. The following are equivalent:
1. v is conditionally of negative type.
2. There exists a (recall: symmetric) QMS ® = (®;) ;9 on M determined by
D;(Ag) = exp(—ty(g))Ag, geG.

We will call a QMS @ as in Theorem 4.3.8 a QMS of Fourier multipliers or a QMS
associated with ¥ : G — R. Note that we assume such QMS’s to be symmetric. We view
the generator of this semigroup as a map on C[G] which is given by

Ay :CIG] = C[G]: Ag— w(g)Ag.
The following Theorem 4.3.9 connects Definition 4.3.3 to Section 4.2.
Theorem 4.3.9. Consider a QMS ® = (®;)>o of Fourier multipliers on £(G). Let
Fo ={a®y ce l*(G)y: a,ce C[G} € £*(G)y.

If © is gradient-S, with p € [1,00] then for every ¢,n € spanC|Gl#0CIG] the coefficient
Tey isinSp.

Proof. Leta,b,c,d,x,y€C[G] andlet ¢ = a®y c,n = b®y d be elements of #),. We have
2(x-(a®vc)-y,boyd)=2(xa®ycy—x®vyacy,boyd)
=2(I'(xa,b)cy-T'(x,b)acy,d),
=((b*A(xa)+ Ab™")xa—Ab*xa) - b*A(x)a— A" ) xa+ Ab* x)a)cy, d),
=((Ab* x)a+b*A(xa) - A(b*xa) - b*A(x)a)cy,d);
= —(¥"" Y (x)cy, d),
= —7(d* P (x)cy).
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We conclude that
—2T¢(x) =d* ¥ ()c.

In particular if ¥¥"+%isin S, then so is Tt ;. The result now follows from Lemma 4.2.4. O

Let us now show that in the case of semigroups of Fourier multipliers, the case gradient-
Sp is conceptually much easier to understand. Consider again a QMS ® = (®)>¢ of
Fourier multipliers associated with a function ¥ : G — R that is conditionally of negative
type. Let Ay : C[G] — C[G] be as before. For u, w € G we define a function }/Z/'w :G—Ras

)fl’,’yw(v)=u/(uvw)+u/(v)—w(uv)—w(vw). (4.8)

We have that the function ylfzw is related to the operator $A«wAw associated with Ay as
follows

‘yi:m(/lu) = Ay Auww) + AuBDy M)A = Ay Q) i = My L) = Ve 0 () Auvio-

Now as by (4.4) we have (‘{”1“"1'”)* = At = gA-14,-1 e obtain that
[pheteP(dy) = whethetphete Q) =Y wow)yl A =1l 0P @4.9)

Now for p € [1,00), this then means that |pAwre|P(},) = 1Y, w(IP A, and therefore, as
{Ay}ver forms an orthonormal basis, we have that
1
Pwhetels, = (3 (Wt PA), AP = Iy wller - (4.10)
vell

In order to check whether WA« v is in Sp we thus need to check whether ﬂf,w € P (G).
Moreover, for p = oo, the condition that ¥*«Aw ¢ § p means that yAwlw js a compact op-
erator, which is precisely the case when ylfj,w € ¢y(G), i.e. when ylg,w vanishes at infinity.

The above calculations, together with Lemma 4.3.5, give us a simple condition to
check for p € [1,00] whether the semigroup (®;) > is gradient-S.

Lemma 4.3.10. Let p € [1,00). Let Gy = G be a subset that generates a discrete group G
with Gy 1= Gy. Let ® = (@) ;=0 be a QMS associated with a proper function ¢ : G — R
that is conditionally of negative type. Ifﬂfyw € P (G) forall u, w € Gy then the QMS ® is
gradient-S,,. The same holds true for p = co when £P (G) is replaced with cy(G).

Proof. We denote Ag := {Ag: g € Go} = C[G]. Since G, e Gy and Gy generates G we have
that Ay is self-adjoint and generates C[G] as an algebra. Now, if for u, w € Gy we have
that ﬂf,w € /P (G) then by (4.10) we have that WAwAw ¢ Sp. Then Lemma 4.3.5 shows that
® is gradient-S,. The proof is similar for p = co. O

Lemma 4.3.11. Let ® = (D) ;=0 be a QMS associated to a proper symmetric function y :
G — Z that is conditionally of negative type. If ® is gradient-S, for some p € [1,00] then
for every u,v € G the function ﬂf’,, : G — Z has compact support. In particular by (4.9) we
find that W s of finite rank and ® is gradient-Sy, for all p € [1,00].

Proof. If y takes integer values then so does y'fj, p for all u, v € G. Therefore 7/15',, is con-
tained in £”(G), p € [1,00) or ¢y(G) if and only if )/K',, has compact support. The remain-
der of the lemma is directly clear. O
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4.3.5. ALMOST BIMODULARITY OF THE RIESZ TRANSFORM FOR LENGTH FUNC-
TIONS

We show that a QMS of Fourier multipliers associated with a Z-¢-valued length func-

tion automatically satisfies the conditions of Theorem 4.3.7. Recall thatw : G — Z5p is a

length function if

v(uw) =yu)+y(w) for all u,weQG. (4.11)

Theorem 4.3.12. Let v : G — Z>q be a proper length function that is conditionally of
negative type. Then Ay is moreover filtered. If w(G) = Zxg or if G is finitely generated then
Ay has subexponential growth.

Proof. First of all we have that (1+Ay) "' (A,) = 1+ (v)) A, forall v € T. As y is proper
this shows that (1 + Al,,)‘1 is a compact operator on ¢?(G). Consider the finite dimen-
sional spaces

CIGI(]):=Spanfd, e C[Gl :w(v) =1} forle Zxp. (4.12)
Then C[G](1)Q; equals the eigenspace of Ay, at the eigenvalue /. We have
I+k
CIG] :@C[G](l) C[G](I)C[G](k)g@C[G](j) forl,k=0 (4.13)
=0 j=0

where @ denotes the algebraic direct sum. The first equality holds because v only takes
positive integer values and the second equality holds because v is a length function, i.e.
(4.11). This shows that Ay is filtered.

That Ay has subexponential growth follows in the first case from the fact that Z5 is
the set of eigenvalues and we have (I +1)/] — 1 as I — co. In case G is generated by a
finite set Gy we set K := {maxy (u) : u € Gp}. Then (4.11) implies that Z-(\y(G) cannot
contain an interval oflength K+ 1. Hence if Ao < 1; <...is an increasing enumeration of
¥(G) then Ag;1 < A+ K. Hence Ay /A — 1as k — oo. O

Corollary 4.3.13. Assume that G is finitely generated. Let v : G — Zx( be a proper length
function that is conditionally of negative type. Let ® be the associated QMS of Fourier
multipliers. Then the Riesz transform R : 02(G) — 0%(G)y is almost bimodular.

Proof. This follows from Theorem 4.3.7 and Theorem 4.3.12. O

Theorem 4.3.14. Assume that G is finitely generated and that C; (G) is locally reflexive.
If there exists a proper length function v : G — Zx¢ that is conditionally of negative type
such that the associated QMS is gradient-S,, for some p € [1,00). Then £(G) has AO".

Proof. Let #y := £?(G)y be the gradient bimodule. Let n > g. Then by Proposition 4.2.7
the bimodule (Jt?v)g” is quasi-contained in the coarse bimodule. Let Ry : 02(G) — Hy
be the Riesz transform. The kernel of Ry is spanned by all 6 with y(g) = 0. Since v is
proper ker(Rg) is finite dimensional. By Corollary 4.3.13 we see that Ry is almost bimod-
ular. By Lemma 4.2.9 and Lemma 4.2.10 the convolved Riesz transform Ry": 2(G) —
(Ag)¢" is an almost bimodular partial isometry. Therefore we obtain AO™ from Theo-
rem4.2.12.

Note that in fact we could have avoided the tensor products in this proof by using
Lemma 4.3.11 instead. O
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4.4. CHARACTERIZING GRADIENT-S,, FOR COXETER GROUPS

In this section we will consider the case of Coxeter groups. For any Coxeter group the
word length defines a proper length function that is conditionally of negative type [BJS88]
(see also [Tit09, p. 2.22]). Therefore it determines a QMS of Fourier multipliers. The aim
of this section is to find characterizations of when this specific QMS is gradient-S .

Throughout Sections 4.4.1 - 4.4.4 we give an almost characterization of gradient-S,
in terms of the Coxeter diagram. In particular we give sufficient conditions for gradient-
Sp that are easy to verify in Corollary 4.4.11 and Corollary 4.4.12. We also argue that
these conditions are necessary for a large class of Coxeter groups. In Section 4.4.5 we
show that gradient-S,, is equivalent to smallness at infinity of the Coxeter group. More
precisely, a certain natural compactification of the Coxeter group that was considered in
[CL11], [Kli23b] (see also [Kli23a]), [LT'15] is small at infinity. This result can be under-
stood directly after Section 4.4.1.

Consider a finite set S = {sy,.., 5} and a symmetric matrix M = (m;j)1<i,j<n With
m;,j € NU {oo} satisfying m; ; = 1 and m; j = 2 whenever i # j. Occasionally we write
my,,s; for m; j; this notation is convenient when considering m,; without referring to
the indices of the generators s, t € S. We let #” = (S| M) be a Coxeter system. In this chap-
ter, all Coxeter systems considered are finite rank. For convenience, we will by g denote
the word length function

Vs W —Zsp:W— |W|.
We state the following result.

Theorem 4.4.1 (See [B]S88]). For any Coxeter group the map ws: W — Zx is condition-
ally of negative type.

Therefore by Theorem 4.3.8 there exists a QMS of Fourier multipliers on £ (#) asso-
ciated with the word length function 5. The aim of the current Section 4.4 is to describe
when this QMS has gradient-S,. Recall that by Lemmas 4.3.10 and 4.3.11 we must thus
investigate for generators u, w € S when precisely yl,’:ysw is finite rank where ylﬁfw was de-
fined in (4.8).

4.4.1. DESCRIBING SUPPORT OF THE FUNCTION Y55,

The aim of this subsection is to describe the support of y‘gfw explicitly. In fact, in antic-
ipation of Section 4.5 we will give this description for more general length functions .
Let 1(-) be the indicator function which equals 1 if the statement within brackets is true.

Lemma 4.4.2. Let # = (S|M) be a Coxeter group. Suppose v : W — R is conditionally
of negative type satisfying w(w) = ¢ (w) + ... + ¥ (wy) whenever w = w;...wy is a reduced
expression. Then for u,w € S andv e ¥ we have that

Iyt w0 = 2w (W1 (uv = vw) = 2y (w) 1 (uv = vw).
Proof. We first note that, since we have u? = w? = e as they are generators, we have that

YW@ =7l wvw) = =yl ,wv) = -yl , (vw).
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When vis fixed, we canlet z € {v, uv,vw, uvw} be such that |z| = min{|v]|, |uv]|, [vw|, |uvw|}.
Then we have Iyllf_w(z)l = I)/Z'_w(v)l. Furthermore, because |z| is minimal we have |uz| =
|lzw| = |z| + 1. Thus, if z = z;....z} is a reduced expression for z we have that uz;...z; and
z....zw are reduced expressions for uz respectively zw. Therefore, v (uz) = v (u) + v (z)
and y(zw) = v (z) + ¥ (w). Hence

Vi w@ = y(uzw) +y (@) - y(uz) - y(zw)
=y (uzw) —y(z) —y(u) —y(w).

Now, since |uz| = |z|+1 we either have that |uzw| = |z|+2 or |uzw| = |z|. We shall consider
these two separate cases, from which the result will follow.

In the first case we have that uz;....z; w is reduced so that y(uzw) = w(u) + v (z) +
w(w) and therefore |YZ/,W(V)| = I)/Z/_w(z)| = 0. We note that in this case also uv # vw.
Namely, uv = vw would imply uz = zw and hence uzw = z, which contradicts that
luzw| = |z| + 2.

In the second case we have that uz; ....zx w is not reduced. Therefore, by the exchange
condition (see [Dav08, Theorem 3.3.4.]) and the fact that |uzw| = |z| < |zw| we have that
uzy...zpw is equal to z1...2;_12;41..2x w for some index 1 < i < k, or that uz...zxw =
Z1....2;. Now in the former case we also have that uz = z,...z;_1z;+1...2; so that |uz| < |z|
which is a contradiction. In this case we must thus have that uzw = z and hence uz = zw.
This then implies that y(uzw) = ¢(z) and v (v) = w(uz) -y (z) = w(zw)-v (@ =y(w). In
this case we thus obtain that

YZ’,W(Z) =y (uzw) —y(z) —y(u) —w(w) = -2y (u) = -2y (w)

which shows that Iﬁfyw W] = Iy'f,’,w(z)l =2y (u) = 2y (w) in this case.

The result now follows from these cases. Namely, either we have that Iﬂfy wW)|=0and
that v does not satisfy uv = vw, or we have that Iﬂf’w W)| =2y (w) =2y (w) and that vdoes
satisfy uv = vw. This thus shows us that Iyll’:,w(v)l =2y (Wl (uv =vw) =2y (w)l(uv =
vuw).

O

4.,4,2. A CHARACTERIZATION IN TERMS OF COXETER DIAGRAMS

We note that for the word length w5 we have ys(s) > 0 for all generators s € S. Now by
Lemma 4.4.2, in order to see when ﬂf,sw is finite-rank, we have to know what kind of
words v € # have the property that uv = vw. For this we introduce some notation.

For distinct i, j € {1,...,|S|} we will, whenever the label m; ; is finite, denote k; ; =
L%J > 1. Now if m;,; is even, then m; j = 2k; ; and we set r; j = s;(s;s;) %71 If m; j is
odd, then m; j = 2k; ; + 1 and we set r; j = (s;s;)*i-/. Furthermore we set

s; m; ;even s; m; jeven
al-,j =S b,',j = ! W Ci,j = Sj di,j = I wl . (4.14)
i Mi,j odd i Mi,j odd
Then a; ; and b;,; are respectively the first and last letter of the word r; ;. Furthermore

when m; j is even we have

ci,j¥i,; = 8j8i(sjs0) 07 = (5750500 = (550 =1 555 =1y 5dy j,
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and when m; ; is odd we have

ki : ki
Ci j¥i,j = Sj(sisj)" = si(sjs)"" =¥ jsi =¥ jd;.

Thus in either case ¢; jr; j =r; jd; ;.

For given generators u, w € S we will now check for what kind of words v € # with
[v|] < |uv], [vw| we have that uv = vw. In Proposition 4.4.4 we then give a precise descrip-
tion of the support of y1,5,.

Lemma4.4.3. For generators u,w € S and a wordv € W with |v| < |uv|, |vw| we have uv =
vw if and only ifv can be written in the reduced formv =x;, j,....x; ;. sothatu = c; j, and
w =d,;,, . andsothatforl=1,.., k-1 wehavethatc;,, j., = di,j and a;,,, j,., 1S, Sj}
and biyjy € {Siy,1» Sjy, )+

Proof. First, suppose that v can be written in the given form v = r;, j,.....r;, ;, with the
given conditions on ¢;;,j, and d;, j,. Then since we have ¢;, j, ¥y, j, = ¥i;,j,di,, i, = Yi), j, Ciren, i
forl=1,..,k-1, and since u = ¢;, ;, and w = d; j, we have uv = vw, which shows the
‘if” direction.

We now prove the opposite direction. First note that the statement holds for v= e as
this can be written as the empty word. We now prove by induction on » that for ve #
with [v| =1 and |v| < n and |v| < |uv],[vw| and uv = vw for some u, w € S, we can write v
in the given form. Note first that the statement holds for n = 0, since then no suchve #
exists. Thus, assume that the statement holds for n — 1, we prove the statement for .
Let u,we Sandve # bewith [v|=nand |uv| = |vw| = |v|+1 and uv=vw. Let v7...v;,
be a reduced expression for v. Then the expression uv;...v, and v; ... v, w are reduced
expressions for uv = vw. In particular we have u # v;. Set m := my,,,. Now, since uv
and vw are equal and u # v, we can as in the proof of [Dav08, theorem 3.4.2(ii)] find a
reduced expression y; ... yu+1 for uvwith n=m—-1sothat y; ...y, = uvyuv; ... u when-
ever mis odd, and y; ...y, = uv; ... uv; whenever m is even. This is to say that if we let
io, jo € {1,...,ISI} be such that vy = s;; and u = s;,, then we have that r;; j, = y2...ym and
Cig,jo = Sj, = U. Note that by the proof of [Dav08, theorem 3.4.2(ii)] we have in particular
that m < co. Now moreover, since y; = u we have that y,...y,,+; w is an expression for
vw, and this expression is reduced since |[vw| = n+1.

Now suppose that m = n+1, then v =r;, j, and ip # jo since u # v;. Now, we have
U = Sj, = Cjy,j, and furthermore, since ry, j, di,, jo = Ci, joTig iy = UV = VW = Tjy jo W, also
w = djy, j,- Thus in this case we can write v in the given form.

Now suppose m < n+1 and define v/ = yp,41... yu41 and v’ = d; j, and w' = w. Note
that since u = s, = ¢;, j, and v’ = d;; j, we have
Fig joU'V = urj joV =uv=vw=r; jvVw'

Therefore u'v' =v'w'. Moreover |u'v/| = |V w'| = |V/| + 1 since y;;41... Yn+1 W is a reduced
expression for v'w. Now, since also [v/| = 1 and |v/| < n—1 we have by the induction
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hypothesis that there is a reduced expression v' = r;, j,....r; j, for some indices ij, j; €
{1,...,1S} with i; # j; so that u' = ¢;, ;, and w' = d;, j, and so thatfor I =1,...,k -1 we
have that c;,,, j,,, = dij, and @iy, j,,, & {8i, j,} and biy,j, & {Si,,,, Sji,, 1. Hence we can
write v = rj, oV = Tjy jo...Ti,, j,- We also have u = sj, = ¢;,,j, and w = w' = d;, j, and
djy, j, = ' = ¢, j,. Furthermore, since |v| = n = (m—1)+(n—m+1) = |r;, j,|+|V'|, and since
the expression for v’ is reduced we thus have that the expression for v is also reduced.
Now suppose that b j, € {s;;,s;}. We note that by j, # dig,j, = Ciy,j; # @iy,j,- NOW as
also ¢;,,j,, aiy,j, € {si;, sj;} we obtain that a;, ;, = bj,, j,. However as r; j, ends with b;, j,
and as r;, j starts with a;, j, we then obtain that r;y j r;; ; is not a reduced expression.
This contradicts the fact that the expression for v is reduced. Likewise, if a;,, j; € {si,, $j,}
we have because of the fact that a;,,;, # ciy,j; = diy,jo # big,jo and diy, jo, big, jo € {Sig» Sjo}
that a;,,j, = by, j,- This then shows that r;, j,r;, j, is not a reduced expression, which
contradicts the fact that the expression for v is reduced. This proves the lemma. O

Proposition 4.4.4. Letu,we S. Thenze supp(}/lg’sw if and only ifz € {v,uv,vw, uvw},
wherev is a word as in Lemma 4.4.3.

Proof. Itis clear that if z € {v, uv,vw, uvw} where v is of the form of Lemma 4.4.3, that we
then have that uz = zw, and hence by Lemma 4.4.2 that w',fysw (z) # 0. For the other direc-
tion we suppose thatz € supp(y‘,ﬁu). Then we have that uz = zw holds by Lemma 4.4.2.
Now there is a v € {z, uz,zw, uzw} such that |v| < |uv|,|vw|. This word v moreover satis-
fies uv = vw as we had uz = zw. Now, this means that v can be written in an expression
as in Lemma 4.4.3. Last, we note that z € {v, uv, vw, uvw}, which finishes the proof. O

4.4.3. PARITY PATHS IN COXETER DIAGRAM

In Proposition 4.4.4 we showed precisely for what kind of words v € # we have v €
supp(ylgﬁy). The question is now whether this support is finite or infinite. It follows
from the proposition that the support is finite if and only if there exist only finitely many
words v € # that can be written in the form v = r; j,....r;, j with the condition from
Lemma 4.4.3. To answer the question on whether this is the case, we shall identify these
expressions with certain walks in a graph. The following defines essentially the Coxeter
diagram with the difference that in a Coxeter diagram the edges that are labeled with
m;, ; = 2 are deleted and those labeled with m; ; = co are added. Recall that a graph is
simplicial if it contains no double edges and no edges from a point to itself.

Definition 4.4.5. We will let Graphs(W') = (V, E) be the complete simplicial graph with
vertex set V = S and labels m; ; on the edges {s;, s} € E.

Definition 4.4.6. Letk=1andij, j €{1,..,|S|} forl=1,...,k. Let
P= (Sj1'si1’sj2’ ..... ,Sjk,Sik)

be a walk in the Graphs(W'), which has even length. We will say that P is a parity path
if the edges of P have finite labels, and if (1) i; # j; forall l; 2) forl =1,..,k—1 we have
Sj = diy,j, and (3) ipyq € iy, jit. We will moreover call the parity path P a cyclic parity
path if the path? = (8715 Siys oo Sy Sigs Sjy» Siy) 1S @ parity path.
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The intuition for a parity path is that if you walk an edge with odd label, you have
to stay there for one turn and then continue your walk over a different edge than you
came from. Furthermore, when you walk an edge with an even label you have to return
directly over the same edge, and then continue your walk using another edge. Note that
in both cases you may still use same edges as before at a later point in your walk. A cyclic
parity path is defined so that walking the same path any number of times in a row gives
you a parity path.

We state the following definition.

Definition 4.4.7. An elementary M-operation on a word v,....vy is one of the following
operations

1. Delete a subword of the form s;s;.

2. Replace an alternating subword of the form s;s;s;s;... of length m; ; by the alternat-
ing word s s;s;s;.... of the same length.

A word is called M-reduced if it cannot be shortened by elementary M-operations.

We shall now show in the following two Theorems that the gradient-S, property of
the semigroup (®;);>9 on Z(¥#') associated to the word length g, is almost equivalent
with the non-existence of cyclic parity paths in Graphs(#').

Theorem 4.4.8. Let W = (S|M) be a Coxeter system. Suppose there is a cyclic parity path
P =(8j),8iy)Sjyreer Sjpr i)

in Graphs(#) in which the labels m;, j,, m;, i,,,, Mj, i,,, are all unequal to 2. Then the
semigroup (®¢) =0 associated to the word lengthy s is not gradient-Sy, for any p € [1,00].

Proof. Suppose the assumptions hold. Then we have that there exists a parity path
of the form P = (8}, Si;s Sjpy e Sjps Sigr Sjsr» Sipy,) Where s; = s, and s, = sj,,,. We
will denote vy = 1y, j...r;,j,- We note that by the definition of a parity path we have
diyj; = Sjj.y = Cippyjiey for 1 =1,.,k—1and d; j, = Sj.,, = Sj; = Ciy,j;- We now de-
fine u = ¢;;,j, = d;,,j,. Now we thus have uv; = viu. This means by Lemma 4.4.2 that
yhS,(v1) # 0. We show that ws(vi) = k. To see this, note that a;,,, j,,, = Si,., & {5i,, 5}
by the definition of the parity path. Furthermore, since b, j, # dj, j, = ¢iy,,,j,,, and
biyj, # @iy, iy @S @i,y € 18085} 3 bi ) and @i,y = Sipy # Sjiy = Cipgy,jrag We
have that b;;j, € {ai,,,,j..1> Citerrjisn} = 1Sip0r Sj, )+ Now, since there are no labels m;, j,
equal to 2 we have that the sub-wordsr;, j, contain both elements s;, and s;,. This means,
since a;,,,,j,,, € {si;, $j,} and b, j, € {si;,,,Sj,,, }, that the only sub-words of v; of the form
$iSjS;i...8;Sj OI §;5;$;...s;s; are the sub-words of r;, j, for some [ = 1, ..., k, and the words
by, j,ai,, i, for I =1,., k- 1. For an alternating subword x of r; ; for some i, j we have
thatx is an alternating sequence of s;’s and s;’s and further

x| <Ir;jl < m;j—1.
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Furthermore, for a word s;s; with s; = by, j, and s; = a;,,, j,,, forsome [ =1,...,k—1 (in
which case we have i € {i, j;} and j = i;,;) we have that

Isisjl =2 <min{m ;. ,, mj,i,,} —1<m; ;-1

Furthermore, there are no sub-words of v; of the form s;s;. This means that the
expression for vy is M-reduced, and therefore, by [Dav08, Theorem 3.4.2], that the ex-
pression is reduced. This means that ys(v;) = k. Now, since we can create cyclic parity
paths P, by walking over P a n number of times, we can create v, € # with ys(v,) = nk
and yZSu (vp) # 0. Therefore y% is not finite rank, and hence the semigroup (®;) > is
not gradient-S,, for any p € [1,00]. O

Theorem 4.4.9. Let # = (S|M) be a Coxeter group. If there does not exist a cyclic par-
ity path in Graphs(W') then the semigroup (®;) > associated to the word length v is
gradient-Sy, for all p € [1,00].

Proof. Suppose that (@)~ is not gradient-S, for some p € [1,00]. We will show that a
cyclic parity path exists. Namely, since the semigroup is not gradient-S,, there exist by
Lemma 4.3.11 generators u, w € S for which y:ﬁ, is not finite rank. Set m = max{m;,; :
1<1i,j<|SI}\{oc}. We can thus let z € supp(y’;’,’ysw) be with ws(z) > m|S|?> +2. Then
by Proposition 4.4.4 there is a v € {z, uz,zw, uzw} such that we can write v in reduced
formv=r; j...r;, j, with the conditions as in Lemma 4.4.3. Now define the path P =
($j15Siys - Sjy» i ). We show that this is a parity path. By the properties that we obtained
from Lemma 4.4.3, we have that i; # j; and that m;, j, < oo for all /. Moreover sj,,, =
Ciperjin = diy,j, and s, = ag,,j; € {8y, Sj;,, 1. This shows that P is a parity path. Note
furthermore that since y5(v) = ¥s(z) — 2 > m|S|?, we have that P has length |P| = 2k =
ZWST(V) > 2|S|2. Therefore, there must exist indices I < I such that (8jp> Sip) = (Sjy Siy)- The
sub-path (sz»sz-l seeorSjp_y,jp_,) thenis a cyclic parity path.

O

4.4.4. CHARACTERIZATION OF GRAPHS THAT CONTAIN CYCLIC PARITY PATHS
In the previous subsection, in Theorem 4.4.8 and Theorem 4.4.9 we have shown that the

gradient-S, property is almost equivalent to the non-existence of a cyclic parity path.

We shall now characterize in Proposition 4.4.10 precisely when a graph possesses a cyclic

parity path. The content of this proposition is moreover visualized in Figure 4.1. There-

after we state two corollaries that follow from this proposition and from Theorem 4.4.8

and Theorem 4.4.9. These corollaries give an ‘almost’ complete characterization of the

types of Coxeter systems for which the semigroup associated to s is gradient-S,.

The following proposition shows exactly when a cyclic parity path P in the graph
Graphs(#) exists. Recall that a forest is a union of trees. A graph is a tree if it has no
loops/cycles.

Proposition 4.4.10. Let us denote V = S and Ey = {{i, j} : m; j € 2N} and Ey = {{i, j} :
m;,j € 2N+1}. Then there does not exist a cyclic parity path P in Graphs(#') if and only if
(V, Ey) is a forest, and for every connected component C of (V, E}) there is at most one edge
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Graphs with and without a cyclic parity path

(c) Graph with a cyclic parity path

Figure 4.1: The graph Graphg(#) is denoted for three different Coxeter systems # = (S|M) with |S| = 6. In
each of the graphs the label m; ; is shown on the edge {s;, sj}. We colored the edge orange when the label is
even, we colored it blue when the label is odd, and we colored it black when the label is infinity. The relations
we imposed on the generators are almost the same in the three cases. They only differ on the edges {s4, s5} and
{s5,s6}. The graph in (A) satisfies the assumptions of Proposition 4.4.10 and hence does not contain a cyclic
parity path. The graph in (B) does not satisfy the assumptions of the proposition as for the connected compo-
nent C = {s3, s4} of (V, E7) there are two distinct edges {s2, s3} and {s4, s5} with even label and with (at least) one
endpoint in C. Therefore the graph contains a cyclic parity path. One is given by P = (s3, 52, 3, $4, 54, S5, $4, 53)
(another cyclic parity path uses the node sj). The graph in (C) does also not satisfy the assumptions of the
proposition as it contains a cycle with odd labels. Here a cyclic parity path is given by P = (s1, s5, S5, S6, S6, S1)
(another cyclic parity path is obtained by walking in reverse order).

{t,r} € Ey withte C andr ¢ C, and for every connected component C of (V, E) there is no
edge{t,t'} € By with t,t' € C.

Proof. Firstsuppose that (V, E1) is notaforest. Then thereisacycle Q = (s, Sj,,..., Sj;., ;)
in (V, E7). Now, since all edges are odd, this means that

P =(8j1)SjarSjar Sjar Sjar o Sjier Sjior Sip)

is a cyclic parity path. Indeed, if we denote ji.1 := j1 and jg42 := jo, then j; # ji;; for
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I=1,...,k and we have s;,,, = dj,, j, and ji1» & {ji+1, ji}, which shows all conditions
hold.

Now suppose that there is a connected component C of (V, E;) for which there are
two distinct edges {t, 11}, {f2, 12} € Ey with t;, b e Cand r, 1, ¢ C. If t; = o then r; # 1
and a cyclic parity path is given by P = (£, 11, 1, 12). In the case that #; and #, are distinct
there is a simple path Q = (1, s}, ..., §j, £2) in (V, E1) from #; to £,. The path

pP= (tly sjlrsjlrsjzysjzyvur sjk’ sjk’ 2, 12,12, 12, Sjk’ Sjk’ sjk—l’sjk—l""’ sjl’sjl’ h, 1, rl)
then is a cyclic parity path. Indeed, just as the previous case we have that the paths
Pl = (tlrsjl)sjl)Sjgysjz)--'rsjk)sjk, tZ)

and
Py = (12, 8jr Sjr Sjp_1r Sjgrr -+ Sji> Sjyr 1)

are parity paths, since they are obtained from a simple path in (V, E;). We then only
have to check that in the middle and at the start/end of the path P the conditions are
satisfied. For the middle, we see that indeed r; ¢ {s},, 12} as the label of the edge between
I and r is even. Furthermore, since P is a parity path we have that s; # . Thus
also s, ¢ {2, r2}. Furthermore, if we let i, j be such that # = s;, r» = s;, then since m;, ;
is odd, we have that #, = d; j, and since m;,; is even we have #, = d; j. This shows all
conditions in the middle. The conditions at the start/end hold by symmetry. Thus P is
indeed a cyclic parity path.

Now, suppose that there is a connected component C of (V, E;) for which there exists
an edge {1, t'} € Ey with £, ¢’ € C. Then we can, similar to what we just did, obtain a cyclic
parity path by taking fy = tand tp=t'and r; =’ and r, = ¢.

We now prove the other direction. Thus, suppose that (V, E)) is a forest and that for
every connected component C there is at most edge {¢,r} € Ey with € C and r € V, and
that for every connected component there is no edge {¢, t'} € Ey with t,¢' € C. Suppose
there exists a cyclic parity path P = (s}, $i;, ..., $j;, $i) in (V, Eg U E1), we show that this
gives a contradiction. First suppose that P only has odd edges. Then s;,,, = d;,,j, = s;,
forl=1,.,k—1and sj, = d;, j, = i, and thus P = (8;, Si;, Si|» Siys Sips-ees Siy_y» Sif,)- HOW-
ever, since also iz & {i}, ji} = {i1,i;-1}, this means that Q = (s, Si,,...., Si;» Si) is a cy-
cle in (V, E;). But this is not possible since (V, E}) is a forest, which gives the contra-
diction. We thus assume that there is an index / such that the label m;, ;, is even. By
choosing the starting point of P as j; instead of j;, we can assume that m;, ; is even.
Now in that case we have s;, = d;;,j, = sj,. We must moreover have i, ¢ {i1, j;} as P
is a parity path. Now as the edges {i1, j1} and {iy, j»} are thus distinct, and share an
endpoint, we obtain that m;, ;, is odd. This means that j3 = d;,, j, = i # j». Now the
sub-path (sj,, Si,, ..., Sj;, Si» Sjy» Sip) is also a parity path. Denote jiy1 = j1 and ig = i
and let 3 < k' < k+ 1 be the smallest index such that s;, = s;,. Note that such k' ex-
ists since sj,,, = §j, = sj,. Then the sub-path P’ := (s, sj,, ..., Sj,,, Si,,) is a parity path,
and the labels m;, ;, for I = 2,...,k' =1 are odd since sj, is the only vertex in its con-
nected component in (V, E;) that is connected by an edge in Ey. Thus, just like in the
previous case we have that P’ := (Siys» Sips Siy» Sigr-+rSiys_,» Sips). NOW this means that the
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path Q = (si,,, Siy, Siz) - -+, Si,,) contains a cycle, which is a contradiction with the fact that
(V, Ey) is a forest. This proves the lemma. O

We now state two corollaries that directly follow from Theorem 4.4.8, Theorem 4.4.9
and Theorem 4.4.10.

Corollary 4.4.11. Let # = (SIM) be a Coxeter system and fix p € [1,00]. Let us denote
Eo =1{(i, ) : m;j € 2N} and Ey = {(i, j) : m; j € 2N+ 1}. Then the semigroup (®) o on
ZL W) associated to the word lengthy s is gradient-Sy, if (S, E1) is a forest, and if for every
connected component C of (S, E1) there is at most one edge {t,r} € Ey withte Candr g C
and no edge {t,t'} € Ey with t,t' € C.

Corollary 4.4.12. Let # = (S|M) be a Coxeter system satisfying m; ; # 2 for all i, j. Fix
p € [1,00]. Let us denote Eg = {(i, j) : m; j € 2N} and Ey = {(i, j) : m;,j € 2N+ 1}. Then the
semigroup (®;) ;>0 on L (W) associated to the word length s is gradient-S,, if and only if
(S, E1) is a forest, and for every connected component C of (S, E1) there is at most one edge
{t,r}€ By witht€ C andr ¢ C and no edge {t,t'} € Ey with t,t' € C.

We would also like to point out the following result from [Bra+02, Example 5.1]. It
follows that the Coxeter groups are in some cases actually equal. In such cases we have
obtained the gradient-S, property for multiple quantum Markov semigroups.

Proposition 4.4.13. Let#; = (S;|M;) be Coxeter systems fori = 1,2 such thatGraphs, (#;)
has no edges of even label, and such that the edges of odd label form a tree. Then if
Graphs,(#>) has the same set of labels as Graphs,(#2) (counting multiplicities), then
the Coxeter groups are equal, thatis W1 = W,.

4.4.5. SMALLNESS AT INFINITY

We recall the construction of a natural compactification and boundary associated with
a finite rank Coxeter group. We base ourselves mostly on the very general construction
from [KIli23b] but in the case of Coxeter groups this boundary was also considered in
[CL11], [LT15]. In [K]i23b] then smallness at infinity was studied as well as its connection
to the Gromov boundary, which generally is different from the construction below.

Let # = (S|M) be a finite rank Coxeter system and let Cayley¢(#’) be its Cayley graph
which has vertex set # and w,v € # are connected by an edge if and only if w = vs for
some s € S. We see Cayley4(#') as arooted graph with e € # the root. We say thatw<v
if there exists a geodesic (=shortest path) from e to v passing through w. An infinite
geodesic path is a sequence a = (@;) ey such that: (1) @; € #/, (2) a; and ;4 have dis-
tance 1 in the Cayley graph, (3) (a;);=o,...» is a shortest path (geodesic) from «, to a,, for
every n. For every w € # we have either w < ¢; for all large enough i or w £ a; for all
large enough i. We write w < a in the former case and w £ «a in the latter case. We define
an equivalence relation ~ by saying that for two infinite geodesics a and  we have a ~
if for all w € # both implications w < a ©& w < S hold. Let 0(¥#/, S) be the set of infinite
geodesics modulo ~. Define (#,S) = # uo(#,S). We equip (#/,S) with the topology
generated by the subbase consisting of

%w:z{aE(W—,S):wsa}, %@::{aem:wfcx},



78 4. BIMODULE COEFFICIENTS, RIESZ TRANSFORMS AND STRONG SOLIDITY

with w € #. Then (#/,S) contains # as an open dense subset and the left translation
action of # on # extends to a continuous action on (¥#/,S) (see [Kli23b]). This means
that (#, S) is a compactification of # in the sense of [BO08, Definition 5.3.15] and (¥, S)
is the boundary. We now recall the following definition from [BO08, Definition 5.3.15].

Definition 4.4.14. We will say that a finite rank Coxeter system (¥#',S) is small at infin-
ity if the compactification (¥, S) is small at infinity. This means that for every sequence
(xi)ien € W converging to a boundary point z € 0(W,S) and for everyw € W we have that
XiW— Z.

The following is the main theorem of this subsection. The authors are indebted to
Mario Klisse for noting the connections in this theorem as well as its proof.

Theorem 4.4.15. Let # = (S|M) be a Coxeter system. Fix p € [1,00]. The following are
equivalent:

1. The QMS (®;) =0 associated with the word lengthy s is gradient-S, on LW').
2. Forallu,we S theset{ve ¥ :uv=vw} is finite.

3. Forallse S theset{ve W} : sv=vs} is finite.

4. The Coxeter system W = (S|M) is small at infinity.

Proof. (1) is equivalent to saying that for all u, v € S we have that y‘ff,s,, has compact sup-
portbyLemma4.3.11. By Lemma 4.4.2 this is equivalent to (1). The equivalence between
(3) and (4) was proven in [Kli23b, Theorem 0.3]. The implication (2) = (3) is immedi-
ate.

Now assume (4). We shall prove that (2) holds by contradiction. So suppose that
[{v : uv = vw}| = oo for some u, w € S. Choose a sequence (v;); in {v: uv = vw} which
has increasing word length. By the compactness of the compactification (#/, S) [Kli23b,
Proposition 2.8] this implies that (by possibly going over to a subsequence) the sequence
(vi); converges to a boundary point z. Now, by the smallness at infinity and the assump-
tion that uv; = v;w we have that z = lim; v;w = lim; uv; = u-z. We have either u < z
or u £ z but not both in the partial order from [Kli23b, Lemma 2.2]. Further, u £ z iff
u < u-z =z which yields a contradiction. O

Remark 4.4.16. We refer to [Kli23b, Theorem 0.3] for yet another statement that is equiv-
alent to the statements in Theorem 4.4.15. A consequence of [Kli23b, Theorem 0.3] is
that Coxeter groups that are small at infinity are word hyperbolic. Conversely, not every
word hyperbolic Coxeter group is small at infinity. The simplest example is probably the
Coxeter group generated by S = {s1, s2, 53, 54} where m; j = 2if|i— j| = 1 and m;,j = oo oth-
erwise. We thus see that not for every hyperbolic Coxeter group we have the gradient-S,,
property for the QMS associated with the word length. However, in Section 4.6 we show
that using tensoring we may still use our methods for such Coxeter groups.

Remark 4.4.17. Itis known that every discrete hyperbolic group is strongly solid by com-
bining results in [HG04] (to get AO* using amenable actions on the Gromov bound-
ary), [0za08] (for weak amenability, see [Fen02], [Jan02] for general Coxeter groups) and
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[PV14b] (for Theorem 4.2.14). Condition AO* may also be obtained by Theorem 4.3.14
for the Coxeter groups that admit a QMS with gradient-S,. However, Remark 4.4.16
shows that this covers a smaller class than [HG04] and so our methods — for now at least
- do not improve on existing methods concerning strong solidity questions.

There are still two large benefits of the results in this section. Firstly, given a Coxeter
system # = (S|M) it is not directly clear whether it is small at infinity. A combination
of Theorem 4.4.15 and Corollaries 4.4.11 and 4.4.12 gives in many cases an easy way to
see whether a Coxeter group is small at infinity. Secondly, for now we may not improve
on current strong solidity results but in Section 4.6 we show that using the tensor meth-
ods of Section 4.2 we may prove strong solidity for all hyperbolic right-angled Coxeter
groups. This gives an alternative path to the method of [HG04] (still not outweighing
known results). In Section 4.7 this alternative path also gives strong solidity results for
Hecke von Neumann algebras. Here we really improve on existing results as the methods
of [HG04] can only be applied in a limited way, see [Kli23b, Theorem 3.15 and Corollary
3.17].

Remark 4.4.18. By Theorem 4.4.15 (see [Kli23b, Theorem 0.3]) smallness at infinity or
gradient-S,, can be characterized in terms of the finiteness of the centralizers of the gen-
erators. Such centralizers can be analyzed using the methods from [All13], [Bri96].

4.5. GRADIENT—SP SEMIGROUPS ASSOCIATED TO WEIGHTED WORD

LENGTHS ON COXETER GROUPS

In this section we will consider proper length functions on Coxeter groups that are con-
ditionally of negative type and are different from the standard word length. We can
then consider the quantum Markov semigroups associated to these other functions, and
study the gradient-S, property of these semigroups. We show that these other semi-
groups may have the gradient-S, properties in cases where the semigroup associated to
the word length ¢ fails to be gradient-S,. For p € [1,00] this gives us new examples of
Coxeter groups # for which there exist a gradient-S, quantum Markov semigroup on
ZL#). These results will turn out to be crucial in Section 4.6.

4.5.1. WEIGHTED WORD LENGTHS
For non-negative weights x = (x1, ...x|s|) we consider, if existent, the function yx : # — R
by taking the word length with respect to the weights x on the generators (see below).
These functions are conditionally of negative definite type as follows for instance as a
special case of [B594, Theorem 1.1]. Here we give another purely group theoretical proof.
Fix again a (finite rank) Coxeter group # = (S|M). Recall that the graph Graphs(#’)
was defined in Definition 4.4.5. Let Graph’S(W) be the subgraph of Graphs(#') that
has vertex set S and edge set E = {(s;,$;) : 3 < m; j := My,,s; < oo}. Then let 6; be the
connected component in Graphj(#) that contains s;.

Lemma4.5.1. Let # = (S|M) be a Coxeter group. Then ifx € [0,00)S! is such that x; = x;
whenever €; = 6, then the function

WX:W - [O)OO))
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given for a word w = w;....wy. in reduced expression by yx(w) = Z'{jl xil{l : wy = si}| is
well-defined and is conditionally of negative type.

Proof. Letn = (ny, ..., njg) € NI! be such that n; = n; whenever 6; = €;. We will con-
struct a new Coxeter group W = {Sn|Mp) as follows. We denote Sp ={s; :1<i=<|S],1=<
k < n;} for the set of letters. We then define My, : S, — N U {oo} as:

Mg,,s; 6i=%¢jand k=1

Mns; si0 = 2 Gi=%¢jand k#1.
msi,s]' cgl' # (gj
We put 77/:1 := (Sn|Mp). We now define a homomorphism ¢y : # — 77/; given for genera-
tors by @n (i) = $i,15i2..-5i,n;- We note that @n(5:)? = $i,1.--5in; Si,1--Sin; = 3?,1"'312',ni =e.

Furthermore, when €; = €; we have that n; = n; and

(@n ()P ()™ = (Si,1eeSi,ny Sj1ewSjn )™ = (80187, (81,2, 8,2) ™ ooee (S Sjn )™

This means that in this case ((pn(si)(pn(sj))mxi'sj =e If6; # % then either Myg;,s; = 2 or
My, ,s; = 00. Ifmsl.,sj =2 then also @n (5;)Pn(sj) = i 1...8i,n; Sj-Sjnj = Sj1e-Sj,n; Si,1-w-Sin; =
¢n(si)¢n(s;j) holds. Therefore, we can extend ¢y to words w = w;....wy € # by defining
¢n(W) = @n(w1)...on(wy). By what we just showed, this map is well-defined. Further-
more, from the definition it follows that this map is a homomorphism. Moreover, we
note that if w = w;...wy € # is a reduced expression, then @, (W) = @n(w1)...on(wy) is
also a reduced expression. This means in particular that ¢y, is injective. Furthermore, if
we denote iy, for the word length on 7?/;, then we have that foraword w= w;...wy e #
written in a reduced expression that

k S| N

Uno@nW) =Y Un(@awp) = Y Wnl@a(s))Hl: wy =i}l = ) nilll: wy = s;}].
=1 i=1 i=1

Now fix x € [0,00)!S! with x; = xj whenever 6€; = 6€;. For m € N define n,;, € NISI by
(ny,); = [mx;1+1eN. Now, for we # with reduced expression w = w;...wy we have

1 _ |S| |S]| My);
—Unp 0 Pn,, W) = Y xil{l:wy = s} <) | =xil -1l wp = s}
m i=1 i=1 m

1Sl 2 2|w|
{lrwy=sH<) —Hl:w =s}l<s—,
m m

_% Tmaxi] +1 = muxi|
i=1 i=1

and hence Ly, 0 g, W) — X1

that yy is well defined. Now, since -y, © ¢n,, — ¥x point-wise. Since -9y, © ¢n,, is
conditionally of negative type we have by [BHV08, Proposition C.2.4(ii)] that y is con-
ditionally of negative type. O

x;|{l : w; = s;}] as m — oo. This shows in particular

Remark 4.5.2. By Lemma 4.5.1 in the case of a right-angled Coxeter group # = (S|M)
we have that every weight x € [0,00)'% defines a function that is conditionally of negative

type.
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Remark4.5.3. For ageneral Coxeter group # = (S| M) and arbitrary non-negative weights
x € [0,00)!! the weighted word length is not well-defined. Indeed, if s;,s; € S are such
that My, isodd, thenfor k; ; := L% msi,st we have that (s,-sj)kivf s;and s; (s,-sj)kivf are two
reduced expressions for the same word, but the values of |[{!: w; = s;}| and |{]: w; = sitl
depend on the choice of the reduced expressions.

We shall now turn to examine when a weighted word length is proper. Fix again a
Coxeter system # = (S|M). Let T < S be a subset of the generators such that for i =
1,...,|S|either €; < Tor6;n T =@. We set

vr=vy,  withxe[0,00)"® defined by x(i) = y7(i),

where y r is the indicator function on 7. Then by Lemma 4.5.1 we have that yr: # — R
is a well-defined function that is conditionally of negative type. We give the following
characterization on when the function ¥ 1 is proper.

Proposition 4.5.4. The function vt is proper if and only if the elements S\ T generate a
finite subgroup.

Proof. Indeed, if the generated group H is infinite, then y r is not properas ¢ r|g = 0. On

the other hand, if the generated group H contains N < oo elements, then for a reduced

expression w = wj....wy € # we can not have that w;, w;,1,...w;.n € S\ T for some 1 <

I < k— N as the expressions w;, w; L|u1|+1, W Wi+ Wiyo,.. would all be distinct elements in
W]

H. This thus implies that w7 (w) > 177 —1 which shows that ¢ is proper in this case. O

4.5.2. GRADIENT—S/) PROPERTY WITH RESPECT TO WEIGHTED WORD LENGTHS

ON RIGHT-ANGLED COXETER GROUPS
In this subsection we shall consider a finite rank Coxeter group # = (S|M). By Remark
4.5.2 it follows that for any x € [0,00)!S! we have that Yx : # — Ris well-defined and con-
ditionally of negative definite type. We note also that ¢ (w) = ¥y (w1) +.. + Yx(wy) when
w = w;...wy is areduced expression. Therefore by Lemma 4.4.2 we have that y‘,f,"w w) #0
for u,we Sand ve # if and only if uv=vw and yx(u) > 0.

Theorem 4.5.5. Let # = (S|M) be a finite rank, right-angled Coxeter group. LetXx €
[0,00)!S! and p € [1,00]. Suppose the function yy : W — R is proper. Then, the semigroup
(@) =0 induced by y is gradient-S,, if and only if there do not exist (distinct) generators
rs,tel withmys=my;=2,ms; =00 andyx(r) >0.

Proof. Suppose that (®;) ;>0 is not gradient-S,, for some p € [1,00]. We will show the gen-
erators with the given properties exist. Namely, there are generators u, w € S for which
yﬂ"w is not finite rank. We can thus let v e # with |v| > |S| + 1 be such that yz"w (v) #0.
Then uv = vw and yx(u), yx(w) > 0 by Lemma 4.4.2. We note moreover that by [Dav08,
Lemma 3.3.3] we have that u = w because these elements are conjugate and the Coxeter
group is right-angled. We can now let z € {v, uv,vw, uvw} be such that |z| < |uz|, |zw|.
Then the equality uz = zw also holds. Therefore, we can write z in reduced form z =
r;, j---Ti,j, With the conditions as in Lemma 4.4.3. Now, as m;,,j, := Ms; s;, < 00 We
must have my; s; =2 for I =1,..,k. Hence z = s;,s;,...si,. Furthermore s;,., = s, for
[=1,.,k—1since my, s; is even. We define r = s;,. Then r = ¢;; j, = u so that yx(r) > 0.
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Furthermore, since k = |z| = |[v| — 1 > |§] there exist indices [ < I’ such that Ms;,,s5i), = OO
We then set s = s;, and ¢ = Siy- Then my, = Ms; sj, = 2 and likewise m;,, = 2. This shows
that all stated properties hold for r, s, £.

For the other direction, suppose that there exist r, s, t € S with m, s = m,; = 2 and
ms,; = oo and Yx(r) > 0. Define the words v,, = (st)”. Then we have |v,| = 2n and
hence {v,},>; are all distinct. Moreover, we have rv, = v,r and wx(r) > 0. This means
by Lemma 4.4.2 that y;’f’r‘ (Vi) = wx(r) >0 for n = 1. Thus the semigroup (®;) ¢ is not
gradient-S,,. O

4.6. STRONG SOLIDITY FOR HYPERBOLIC RIGHT-ANGLED COX-

ETER GROUPS

We conclude this chapter with two applications that combines all the techniques that
we have developed so far. This section contains the first application. We prove that any
right-angled hyperbolic Coxeter group has a strongly solid group von Neumann algebra.
This result was surely known before; it follows for instance from [PV14b]. Nevertheless
we present our alternative proof to demonstrate the techniques that we have established
in this chapter. For the rest of this section fix a right-angled Coxeter group #1 associated
to a finite graph I'. We shall use the following characterisation of word hyperbolicity.

Theorem 4.6.1 (See [Dav08]). Let#r be a right-angled Coxeter group associated to a finite
graphT. The following are equivalent:

1. The Coxeter group #r is word hyperbolic.
2. The graphT does not contain the cyclic graph Z4 of size |Z4| = 4 as a subgraph.

Our aim is to prove the following. The proofis based on Proposition 4.6.3 and Lemma
4.6.4 which we prove at the end. Recall that a clique of T is a complete subgraph A < T.
We denote by Cliq(I') the set of all cliques. Note that this precisely correspond to the set
of those subgraphs A cT that generate a finite Coxeter subgroup #) < #r.

Theorem 4.6.2. Let #r be a word hyperbolic right-angled Coxeter group associated to a
finite graphT. Then &£ (1) satisfies AO* and is strongly solid.

Proof. For A € Cliq(I') the function yr\, is proper (see Proposition 4.5.4) and condi-
tionally of negative type (see Lemma 4.5.1). We may therefore consider the QMS @,
associated with yr\,, the associated gradient C[#1] bimodule J&y; A := 42(71/r)vq,A and
the Riesz transform Ry A : 2(Wr) — Jy: . The Riesz transform Ry 4 is then a partial
isometry with a finite dimensional kernel spanned by 6, u € #,. Furthermore, Ry 5 is
almost bimodular by Corollary 4.3.13. We now consider the ® tensor product of bimod-
ules with G = #1 over all A € Cliq(I') as was defined in Section 4.2.2,

Hoy= Q  Fyp (4.15)
AeClig(I)

We note that the order in which the tensor products are taken is not relevant for our
analysis. Consider the convolution product of Riesz transforms

2
Ry; = * aecliqm) Bug,n 2 € WD) — Fyy..
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By Lemma 4.2.9 and Lemma 4.2.10 we see that Ry, is an almost bimodular partial isom-
etry whose kernel is spanned by all vectors §,, where u € #) for some A € Cliq(I'). In
particular the kernel of Ry is finite dimensional. Let £ < /%; be the smallest C[#7]
subbimodule containing the image of Ry;. Then Ry; : 02(Wr) — K is still an almost
bimodular partial isometry with finite dimensional kernel.

Recall that C; (#1) is locally reflexive and £ (#1) has the weak- * completely bounded
approximation property as #f is weakly amenable (see [Fen02], [Jan02]). It then follows
from Theorem 4.2.12 that if £ is quasi-contained in the coarse bimodule of #r then
L (Wr) satisfies AO*. Consequently, £ (#1) is strongly solid by Theorem 4.2.14. The
proof that £ is quasi-contained in the coarse bimodule of #f is given in Proposition
4.6.3 below. O

Proposition 4.6.3. TheC[#r] bimodule % defined in the proof of Theorem 4.6.2 is quasi-
contained in the coarse bimodule of the word hyperbolic right-angled Coxeter group #r .

Proof. We shall prove that a cyclic set of coefficients is in S, so that the proposition fol-
lows from Lemma 4.2.4. Let us denote #py < A for the sets of all the vectors

§vi=(acclign Ry, ) 0v) = Q) Ave®y, e,  VEWL.
A€eClig(T)

Here we used the symbol ®y, to denote elements in the gradient bimodule constructed
from A. By construction of £ we have that ./ is cyclic for £ . For &y, {w € Ao we now
inspect the coefficient T¢ ¢, . We have for u,v,we #1,y € C[#1],

T(T6W)fu (A'V)y) = </IV . £w Y Eu)d"fy/r
= J1 Av-(w®v,80)- 3 Au®v, 6e) 5, 5

AeClig(I")
A1, \w
= [1 @ "™A8ey.6e)
AeClig(T)
= [T 7% 0 QAg1vwbey,be).
A€eClig(I) ’
Define the function

Fuw®= I 71ia ). (4.16)

AeClig(I)

Then, if ¥-1 (V) = 0 we have that 7(T¢,, ¢, (Av)y) = 0 for all y € C[#1] and consequently
T¢,, ¢q (Av) = 0. We thus have that T, ¢, is finite rank whenever ¥,-1 , has finite support.
In Lemma 4.6.4 we shall show that the function ¥y has finite rank for all u,w € #t so
that we conclude the proof. O

In order to prove Lemma 4.6.4 rigorously we shall introduce some notation here. A
tuple (wy, ..., wi) with w; € I’ will be call reduced if the expression w; ... wy is reduced.
Furthermore, we will call the tuple semi-reduced whenever w; e T U{e} for 1 <i < k and
|wy ... wi|+ {1 : w; = e}| = k. We will say that a pair (i, j) with i < j collapses for a tuple
(wy,..., wi) whenever w; = w; # e and the elements {w; : i < [ < j} pair-wise commute.
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In that case we will call the tuple (wy, ..., W;-1,€, Wit1,..., Wj-1,6 Wj41,..., W) the tuple
obtained from (wn, ..., wy) by collapsing on the pair (i, j). We note that the word w; ... wy
corresponding to (wy,..., wy) equals the word w1 ... w;—1ew;41... Wj-1€Wj1 ... Wi COI-
responding to the collapsed tuple. The notation that we introduced here is convenient
because it keeps indices aligned correctly. We also note that a tuple (wy, ..., wy) is semi-
reduced if and only if we cannot collapse on any pair (i, j). Hence, for a general tuple we
can obtain a semi-reduced tuple by subsequently collapsing on pairs (i1, j1),..., (ig, j¢)-

Lemma 4.6.4. For a right-angled word hyperbolic Coxeter group #t associated to a finite
graph T, we have that foru,w € #r the function Yuw : #r — R defined in (4.16) has finite
support.

Proof. Letu=uy...Uy,,V="01...Vp,, W= Wj... Wy, € ¥ written in reduced expression.
We will moreover assume that |v| > |u| + |w]| +|T'| + 2. We will show that for such words we
have yy,w(v) = 0. This then shows that ¥, w has finite support.

Let (u},..., Uy, V},..., Up,) be the semi-reduced tuple obtained by subsequently col-
lapsing the tuple (u1,..., Up,, U1,..., Un,) OD pairs (i, j;), ..., (iii1 , jéh). Then we must have
i; < n and j; > ny since the expressions for u and v were reduced. Also |uv| = [u| + |v| —
24, and more generally for a weight x € [0,00)"! we have

91
Yx (V) = Y () + (V) =2 ) px(uy).
=1

Likewise let (v7,..., v%z, wy,..., w%) be the semi-reduced tuple obtained by subse-

quently collapsing the tuple (vy,..., Vn,, W1,..., Wy,) on pairs (if, ji),..., (igz,]gz). Then
we must have i)' < np and j;' > n, since the expressions for v and w were reduced. Also
|vw]| = |v| + |[w| — 2¢» and more generally for a weight x € [0,00)'S! we have

q2
Yx(VW) = Y (V) + Yx(W) =2 ) Y (wpr_p,).
=1

Let us denote
_ L o o -/ =11
A={vj:jell,...nd\({j; —m,..., jg —mpUliy,..., ig, N}

Now since np = |v| > |u| + [w| +|T'| +2 = g1 + g2 + |T'| + 2 we have that |A| = |T'| + 2. Hence,
there are two elements g1, g2 € A that do not mutually commute. Now, if s1, s» € I’ com-
mute with all elements in A, then s;, s, commute with both g; and g» so that by the word
hyperbolicity of #1 (see (2) of Theorem 4.6.1) we must have that also s; commutes with
s2. We now let Ag < T be the set of all generators that commute with all elements in A,
i.e. Ag =yen Starr(v). Then by what we just mentioned we have that the elements in
Ao pair-wise commute, i.e. Ag € Cliq(D).

Now, for i =1,...,n let us set u; = u;. andfori=1,...,n3 set w; = w;’. Furthermore,
fori=1,...,n, set U; = e whenever either v; = e or v/ = e but not both, and set 7; = v;
otherwise. Let us also denote U= U ... Uy,, V= 11...Uy, and W= 07 ... Wy,.
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We claim that Gvw = uvw. Indeed, we have that uvw = uv{'...v;, wy...wy,. Now

-
we can collapse (uy,..., Uny, V},..., Up,, wy,..., wy ) subsequently on the pairs (i}, J;) for

1=1,...,41 except when U;./l # Vit for some 1 < [ < ¢, in which case U}’l’*nl =e. If
thisis the case then j;—nj = i k; ' forsome k; € {1,..., ¢»}. In particular it follows that in this

case U = Vji_y, =V =W i - n, and that this element commutes with all elements in A.
K

Therefore u il € Ao We can then simply interchange the elements at index i; (which is u ,-;)
and the element at index j; (which is v}’,_m = e). This manipulation does not change the
1

word, and allows us to continue collapsing on the remaining pairs. Once we are done col-
lapsing on all pairs we have obtained the tuple (i, .. ,iLTI,TJI, o Unyy W1, ..., Wi3). This
thus shows us that uvw = uvw. It also shows us that v;/_, Vji—m € feyUAgforl=1,...,q2. Note
that also by definition u;/ il = efori=1,...,.quand w;i_,, Win—p, = efor I=1,...,q. Therefore we
also have that wF\AO(LT/) =Yr\a,(e) =0for I =1,...,4; and likewise WF\AO(W] ) =0
forl=1,...,¢o. Furthermore ‘I/F\AO(V j—m )=0for Il =1,...,q1 and Y\, (U} ;,) =0 for
l=1,...,9.

If we can collapse (U3,...,Upn,, U1,..., Uny, W1,..., Wy;) ON some pair (i, j) then we must
have i < ny and j > n; + n,. Indeed otherwise we have that either (uj,..., uill, Vpseoo ugz)
or (vy,.. ,vnz, wy,... w;{3) is not semi-reduced, which is a contradiction. We will let
q = 0 and let (i1, j1),...,(ig, j4) be pairs on which we can subsequently collapse the tu-
ple (u3,..., Uy, V1,...Uny, W1,..., Wy,) to obtain a semi-reduced tuple. Then we thus must
have i; < n; and j; > n; + np. This thus implies that for / = 1,..., g we have that u; =
Wj,—n;—n, commutes with the elements from A. Therefore we have {u;,: [ =1,...,q} =
{Wj—n—np : 1=1,...,q} < Ag. Now, we have that

WT\A (UVW) = Y\ Ao (W) +YT\Ay (V) + YT\ p, (W)

q1 q2 q
> wra, (ui;) +) Yna, (wi;r_nz) + 3y, (7))
=1 =1 =1

q
= Yr\a, (V) + YT\ ag (VW) —Yra, (V) +2 ) W, (137,)
=1

=YT\A (V) + YT\ A (VW) — YTy, (V).

This shows that ywmo (v) = 0. Therefore, as Ag € Cliq(I') we obtain that yy,w(v) = 0. Now
as this holds for every v € #1 with |v| > |u| + [w| + |T'| + 2, we obtain that ¥y has finite
support. O

4.7. STRONG SOLIDITY OF HECKE VON NEUMANN ALGEBRAS
In this final section we obtain strong solidity results for Hecke von Neumann algebras.
These are g-deformations of the group (von Neumann) algebra of a Coxeter group. If
g = 1 we retrieve the classical case of a group (von Neumann) algebra of a Coxeter group.
For the Hecke deformations our methods turn out to improve on existing strong so-
lidity results. In [Kli23b, Theorem 0.7] it was shown that for Coxeter groups that are small
at infinity, their Hecke von Neumann algebras satisfy the condition AO™. If such Hecke
von Neumann algebras have the weak-* completely bounded approximation property
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(weak-* CBAP) then they are strongly solid by [Iso15a, Theorem A] (this is a generalisa-
tion of Theorem 4.2.14 from [PV14b]). The weak-* CBAP was proved in [Cas20] for Hecke
von Neumann algebras of right-angled Coxeter groups (see also Example 6.3.7); For gen-
eral Coxeter groups this is an open problem. Therefore right-angled Coxeter groups that
are small at infinity have strongly solid Hecke von Neumann algebras. It was proved in
[Kli23b] that such Coxeter groups are in fact free products of abelian Coxeter groups;
hence this result is somewhat more limited than one would hope for.

It is natural to ask whether these strong solidity results for Hecke von Neumann al-
gebras apply to more general word hyperbolic Coxeter groups. In the group case (g = 1)
this is exactly Theorem 4.6.2. However, the results from [Kli23b] and in particular [Kli23b,
Corollary 3.17] show that it is hard to extend current methods beyond free products of
abelian Coxeter groups. A typical right-angled word hyperbolic Coxeter group that was
not covered before this chapter is given by

({81, 82, 83, $4} M = (m;, j);, ) with m; j =2if |i — j| = 1 and m; ; = oo otherwise.
(4.17)
In this section we prove that also the Hecke deformations of this Coxeter group satisfy
AO™ and are strongly solid. The precise statement is contained in Theorem 4.7.5.

4,7.1. COEFFICIENTS FOR GRADIENT BIMODULES OF HECKE ALGEBRAS
Let # = (S|M) be a finite rank Coxeter group. We use the notation of Hecke-algebras
from the preliminaries. Fix a Hecke-tuple q = (gs) ses- We will simply write Ty, instead of
T‘fﬂ) and p; instead of ps(q). We let ¢ : # — R be proper and conditionally of negative
type. Define

Ay = A :Cql#) — Cql# ) : T—w(W) Ty,

and for t = 0,
®;:= 0V Cq[W ] — CqlW1: Ty — exp(—ty(w)) Tyy. (4.18)

We will now work under the following assumption.

Assumption 4.7.1. For t = 0 the map ®; extends to a normal unital completely positive
map NqW) — NqHW).

The main point of the assumption is the complete positivity of @;; the unitality is
automatic since ¥(e) = e and also the existence of a normal extension can usually be
proved using a standard argument once one knows that ®; is bounded (see the final
paragraph of the proof of [Cas20, Theorem 4.13]).

The assumption holds in case q = 1 by Schonberg’s theorem and in case #’ is right-
angled by combining [Cas20, Corollary 3.4, Proposition 3.7] and [CF17, Proposition 2.30].
Note that if the assumption holds then A4 (#) satisfies the Haagerup property since v is
proper. In general we do not know whether Assumption 4.7.1 holds. In fact, it is not even
known whether A4 (#) has the Haagerup property unless #” is right-angled (see [Cas20,
Section 3]) or q =1 (see [B]S88]).

It is standard to check that if Assumption 4.7.1 holds then ® = (®;) ;¢ is a symmet-
ric quantum Markov semigroup. For the continuity property note that ®, is a contractive
semigroup on I? (Nq(#),7) and then use that on the unit ball of A4 (#) the strong topol-
ogy equals the L?(Nq(#), 7)-topology.
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We shall now investigate the gradient-S,, p € [1,00] property for ® with respect to the
o-weak dense subalgebra A := Cq4[#] of Nq(#). The set Ay := {T; : s € S} forms a self-
adjoint set that generates the *-algebra A. Therefore by Lemma 4.3.5 in order to check
the gradient-S, property for ® we only have to check that WTwlw given in Definition
4331isin S, = S,[,(L2 (Nq(#), 7)) for generators u, w € S. To check this we shall make
some calculations to obtain a simplified expression for ¥ 7w Tw,

Fix u, w € S and let ve #. We have by the multiplication rules that

Ty(TyTy) =T, Ty + TuTva]l(|VW| <|vl)
=Tuvw + puTvwl(uvw| < vwl)
+ (Tyv + puTvL(Juvl < VD)) pu1(vw| < |v]).

We can now make the following calculations

Ay (Ty Ty Ty) =y (uvw) Tyyyw + Y (VW) py Ty 1(luvw| < [vw|)
+ Y (V) Tywpuwl(vw| < V) + ¢ (V) pu Ty puL(uv] < V) 1(lvw| < |v]),
Ty Ay (1) Ty =y (V) (Tyww + puTvwl(luvw| < [vw]))
+YWV)(Tyy + pu Ty L (luv| < V) pyu 1(ivw| < |v]),
TuAy (TyTw) =y vw) Ty Tyw + v (N Ty Typu 1(Ivw| < |v)),
=y (VW) (Tyvw + puTvwl(luvw| < [vwl))
+ Y (V) (Tyy + pu Ty (luvl < V) pu 1 (ivw| < |v)),
Ay(TuT) Tw = (V) Tyy Ty + Y ) pu Ty Ty L (luv] < V)
=y (uv) (Tyyw + Tuypw 1 (uvw| < |uvl))
+Y W) pu(Tyyw + TypyuL(ivw| < VD)) L(Juv| < |v]).

Let ¢ g be again the word length function on #'. Now by collecting all previous terms we
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get

P lwTw (1) =Ay (T Ty Tw) + TuBy (1) Tw — Tuly (Ty Tip) = Ay (Tu Ty) T

=y (uvw) +y(v) —y(vw) -y (uv) Tyvw
+ (@ (uv) +y(v) —y () L(vw| < v]) —w @) 1(uvw| < |uv)] Tywpw
+l(wvw) +y ) -y vw)l(uvw| < [vw]) =y @) L(uvl < [V py Tyw
+ W)+ ) —yp ) -y L(uvl < IV)L(vw| < V) pu Typw

ZYZI, wW) Ty
+ywv)M(vw| < v)) - L(luvw| < [uv])) Tyvpw
+y W) L(uvw| < [vw)) = L(uvl < VD) puTvw

:YILIJI, w W) Tyvw
vl—=lvw|+1 |uv|—|uvw|+1
+y(uv) - Tuvpw
2 2
vw|—luvw|+1 |v|—|uv|+1
+yv) 2 - 2 Pulvw

1
=Y1,f,w(V) Tuvw + 3 (uvw|+ vl = lvw| = |uvl]) (W (uv) Tyypw — ¥ V) pu Tyw)

v 1 Vs
=Yu,w(v) Tuvw + Eyu,w(v) (W) Tywpw — Y (V) pu Tyw).

Now when uv # vw we have by Lemma 4.4.2 that }/Z’Sw (v) = 0. When uv = vw we have

|%7’1L’¢/,Sw (V)| = ws(u) = 1. In this case the elements u and w are also conjugate and there-

fore p,, = pw. Combining these facts we obtain the simplified formula

1
wholu () =yl W) Tuvw + Eﬁfw(v) W) —y ) TuvPuw- (4.19)

We will proceed under the further assumption that v is a length function.

Assumption 4.7.2. We shall assume from this point that the proper, conditionally of neg-
ative type function v : W — R is also a length function.

Using the fact that {Ty}yey is an orthonormal basis for L? (Nq(#),T) we obtain that
for the Sy-norm of ¥« Tw we have the following bound

e teng, =3 (el (1), e T (1)
veW

1
=Y |yt w@PF+ Z|y‘5,sw(v)|2|w(uv)—u/(v)|2|pu|2 (4.20)
vVEW

1
v 2 2.2 vs 12
S"Yu,w”gZ(W)"_Zhl/(u)' pu||7/u,w||€2(7f/)

We are then thus interested in functions ¥ for which this bound is finite for all u, w € S.
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Theorem 4.7.3. Let# = (S|M) be a finite-rank Coxeter group. Let q = (qs) ses With qs > 0.
Let T < S be a subset that generates a finite subgroup Wr < Ws, i.e. T € Cliq(S|M). Suppose
thaty := ys\7 satisfies Assumption 4.7.1. Then the QMS on Nq(#') determined by (4.18)
associated with s\t is gradient-S,.

Proof. lemma:gradient-Sp-weighted-word-length-right-angled-Coxeter-group O

Theorem 4.7.4. LetT be a finite simple graph and let q = (qy) yer With q, > 0. Assume
A:={reTl:3s,t €T such thatr € Linkr (s) N Linkr (), s € Starp (£)} (4.21)

is a clique inT'. Then the QMS on Nq(#1) determined by (4.18) associated with yr\, is
gradient-S.

Proof. Tt follows from Theorem 4.5.5 that for u, w € I' we have that y},\* € ¢(#r). Now
if u € A then Y1\ (1) = 0 and hence by (4.20),

Tu,Tw 2 < YI\A 12
P TeTo )2 < Iy, . <co.

If u e T\ A then ws\a (1) = 1 and therefore by Lemma 4.4.2 we have

YT\A

Yot W) = 2y (W1 (uv = vw) = 2y (Wl (uv =vw) = [yp5, W]

This means that in this case y}, 5 = Y55, € £2(#1). We conclude from (4.20) that

1
Tu, Tw 112 YI\A 12 2 yr 2
O

Theorem 4.7.5. LetT be a finite graph and let Wt be the corresponding right-angled Cox-
eter group. Let q = (qy) yer With q, > 0. Assume that (4.21) is contained in Cliq(I'). Then
NqW7) satisfies AO* and is strongly solid.

Proof. Theorem 4.7.4 shows that the QMS ® on Aq(#1) associated with the length func-
tion yr\a is gradient-S; . Therefore by Theorem 4.3.9 we see that a dense set of co-
efficients of the associated gradient bimodule 12 (Nq#1),T)v is in Sp. Note that The-
orem 4.3.9 is stated only for groups, but a straightforward adaptation of the computa-
tions in the proof yields the same result for Hecke algebras. Hence the gradient bimod-
ule is quasi-contained in the coarse bimodule of A4 (#1) by [CIW21, Theorem 3.9] (see
also Proposition 4.2.3). The Riesz transform is then an isometry Ry : I? (Nq#),T) —
I? (Nq#1),T)v. The kernel of Ry is given by the space spanned by the vectors Ty, with
w in the (finite) group #,. Essentially in the same way as in the group case (q = 1) one
checks that @ is filtered with subexponential growth. Therefore by Theorem 4.3.7 we see
that R is almost bimodular. By [CKL21, Theorem 6.1] Co(#1) is exact and hence lo-
cally reflexive [BO08]. We may now invoke Theorem [CIW21, Proposition 5.2] (see also
Theorem 4.2.12) to conclude that Aq (#1) satisfies AO*. By [Cas20, Theorem A] Nq#1)
satisfies the weak-* completely bounded approximation property. Hence [Iso15a, The-
orem A] (see also Theorem 4.2.14) shows that A4 (#) is strongly solid. O
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Remark 4.7.6. The strong solidity result of Theorem 4.7.5 can also be proved by com-
bining the results in this chapter with the methods of [Cas21], [OP10b], [Pet08] without
using condition AO™.

Remark4.7.7. The set (4.21) can be understood as all elements in S that belong to exactly
one maximal clique.

4.8. DISCUSSION

We list two natural problems.

Problem 4.8.1. Consider a Coxeter system # = (S|M) and q = (gs)ses with g; > 0,s € S
such that g; = q; whenever s, ¢ € S are conjugate in #". Does the Hecke von Neumann
algebra .Aq(#') have the Haagerup property and/or the weak-* completely bounded ap-
proximation property? An affirmative answer for both properties is known in case g; =1
for all s € S [BJS88], [Fen02], [Jan02] or in case # = (S|M) is right-angled [Cas20]. For
general cases these properties are open. In particular we do not know in which general-
ity Assumption 4.7.1 holds for ¢ = ¢ the (unweighted) word length function.

Problem 4.8.2. For a right-angled word hyperbolic Coxeter system # = (S|M) and q =
(gs)ses a tuple with g5 > 0, s € S we ask if the Hecke-algebra Aq (#) is strongly solid? The
cases obtained in Theorem 4.7.5 are word hyperbolic but do not exhaust all word hyper-
bolic right-angled Coxeter groups. In case g; = 1,s € S the tensor product techniques
from Section 4.6 allows one to improve the results of Section 4.7 to all word hyperbolic
right-angled Coxeter groups. However, such tensor products of bimodules are unavail-
able unless g; = 1, s € S by the absence of a suitable comultiplication for Hecke algebras.

We will resolve parts of these problems in the coming chapters. Indeed, in Chapter 5
(Theorem 5.6.13) we precisely characterize for finite rank, right-angled Coxeter groups
when £ (#1) is strong solidity in terms of the graph I'. More generally we even char-
acterize strong solidity for arbitrary graph products of von Neumann algebras (Theo-
rem 5.6.7); in particular right-angled Hecke-von Neumann algebras Aq(#1). Further-
more, in Chapter 6 we study the weak-* completely contractive approximation property
(weak-* CCAP) for graph products. We show that Mr = *, (M, ¢,) posses the weak-*
CCAP whenever dim M, < oo for v € T'. This in particular shows that A4 (#) possesses
the weak-* CCAP whenever # can be written as graph product # = *, v #,, of finite Cox-
eter groups #,.
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We prove rigidity properties for von Neumann algebraic graph products. We introduce
the notion of rigid graphs and define a class of II; -factors named 6gjgiq. For von Neu-
mann algebras in this class we show a unique rigid graph product decomposition. In
particular, we obtain unique prime factorization results and unique free product de-
composition results for new classes of von Neumann algebras. Furthermore, we show
that for many graph products of II;-factors we can, up to some constant, retrieve the
radius of the graph from the graph product. We also prove several technical results con-
cerning relative amenability and embeddings of (quasi)-normalizers in graph products.
Furthermore, we give sufficient conditions for a graph product to be nuclear and char-
acterize strong solidity, primeness and free-indecomposability for graph products.

This chapter is based on the papers:

* Matthijs Borst and Martijn Caspers, Classification of right-angled Coxeter groups
with a strongly solid von Neumann algebra, Journal de Mathématiques Pures et
Appliquées 189 (2024) 103591.

° Matthijs Borst, Martijn Caspers and Enli Chen, Rigid graph products, Preprint
submitted to journal: Arxiv:2408.06171v2.

5.1. INTRODUCTION

The advent of Popa’s deformation-rigidity theory has led to major applications to the
structure of von Neumann algebras and their decomposability properties for crossed
products, tensor products and free products. For instance, in [OP10a] Ozawa and Popa
studied the notion of strongly solid von Neumann algebras (see Definition 5.6.1) and
proved that the free group factors possess this property. Consequently, these von Neu-
mann algebras do not admit certain crossed product decompositions, and they are prime
factors (see Definition 5.7.1), meaning that they can not decompose as tensor products
in non-trivial way (see also [0za04], [Pop83]). More general prime factorization results
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were then obtained in e.g. [CKP16; CSU13; HI17; Isol17; OP04; Pet08; Sak09; SW13]. In
the same spirit, decompositions of von Neumann algebras in terms of free products and
Kurosh type results were studied in e.g. [HU16; [PP08; Oza06; Pet08].

This chapter contributes to decomposability and rigidity results for von Neumann
algebras that appear as graph products. We will prove rigidity results for graph products
of von Neumann algebras. We first discuss our main result Theorem F which establishes
unique rigid graph product decompositions. Thereafter, we give new unique prime fac-
torization results and unique free product decomposion results. Furthermore, we state
results that characterize primeness, free indecomposability and strong solidity for graph
products. Hereafter, we present other main results that are needed in the proofs. Last,
we give an overview of the structure of the chapter.

5.1.1. UNIQUE RIGID GRAPH PRODUCT DECOMPOSITION

Our main result, Theorem F, concerns the question whether from the graph product
*,17(M)y,,) we can, under some conditions, retrieve the graph I' and the vertex von
Neumann algebras M, . Such questions have already been studied for graph products of
groups. In [Gre90, Theorem 4.12] Green showed the following rigidity result, which for
graph products *, G, of prime cycles G, asserts that the graph I' and the vertex groups
G, can be retrieved from the graph product group.

Theorem (Green). LetI', A be finite graphs, Gr := *,rG, and Hp := 4,7 H,, be graph
products of groups G, := Z/p,Z and H,, := Z/q,Z with some prime numbers p,,q.
If Gr and H) are isomorphic, then there is a graph isomorphism a : I' — A such that
Ha(u) = GU.

In the current chapter we prove an analogy of this result for graph products Mr =
*,17(M)y,T,) of tracial von Neumann algebras (M,,7,). Earlier rigidity results for von
Neumann algebraic graph products have already been proven in [CDD22, Theorem A
and C] for group von Neumann algebras M, := £(G,) for certain discrete property (T)
groups G, and for graphs I from a class called CC;. In our main result, Theorem F, we
also prove rigidity results for graph products of von Neumann algebras Mr = *,,r (M, 7,).
Our result compares to [CDD22; CDD23a] as follows. On the one hand we cover a much
richer class of graphs than CC; and our vertex von Neumann algebras M, come from a
different class than [CDD22; CDD23a]. In this chapter M, are not even necessarily group
von Neumann algebras. On the other hand the type of rigidity obtained in [CDD22;
CDD23a] is stronger as it recovers the groups up to isomorphism, and not just the von
Neumann algebras. Furthermore, [CDD22; CDD23a] obtains a so-called superrigidity
result, meaning that the group can be recovered from an isomorphism of Z(G) with any
other group von Neumann algebra, whereas our rigidity results are usually for an iso-
morphism of two von Neumann algebras in the class 6rigiq introduced below. Such a
superrigidity result is simply not true in the context of the current chapter as we argue in
Remark 5.5.6.

The condition we impose on the vertex von Neumann algebras M, is that they lie
in the class Gyerex Of all non-amenable II; -factors that satisfy property strong (AO) (see



5.1. INTRODUCTION 93

Definition 5.5.4) and have separable preduals. This is a natural class of von Neumann al-
gebras including the (interpolated) free group factors Z(F;) for 1 < ¢ < 0o, the group von
Neumann algebras £ (G) of non-amenable hyperbolic icc groups G [HG04], g-Gaussian
von Neumann algebras M, (Hp) associated with real Hilbert spaces Hg with 2 < dim(Hg) <
oo [Bor+23, Remark 4.5], [Kuz23], free orthogonal quantum groups [VV07] as well as
several common series of easy quantum groups and free wreath products of quantum
groups [Cas22, Theorem 0.5].

The condition we impose on the graph I' is that each vertex v satisfies Link(Link(v)) =
{v}. Such graphs, which we call rigid, form a large natural class of graphs containing for
example complete graphs and cyclic graphs with at least 5 vertices. We also observe
that all graphs in CC; are rigid (see Remark 5.2.10). We stress that some restrictions
on the graphs need to be imposed. Indeed, for general graphs I', and graph products
Mr = #,r(M,,1,) with M}, € Gvertex, it is not possible to retrieve the graphs I" from Mr
(see Remark 5.5.6). This is due to the fact that the free product (M,,7,) * (M, Ty) of
factors My, M, € 6vertex again lies again in the class 6verex (see Remark 5.5.5).

We now state our main result which shows rigidity for the class 6gigiq of all graph
products Mr = *,r(M,, T,) with I non-empty, finite, rigid graphs and with M, € Gvertex-

Theorem F (Theorem 5.5.19 and Theorem 5.7.5). LetT be finite rigid graphs and forv e T’
let M), be von Neumann algebras in the class Gveriex With faithful normal state T,. Let
Mr = %, r(M,,1,) be their graph product. Suppose there is another graph product decom-
position of Mr over another rigid graph A and other von Neumann algebras Ny, € Gvertex,
weA,ie Mr=#*ya(Ny Ty). Then thereis a graph isomorphism « :T' — A, and for each
v €T thereis a unitary u, € Mr and a real number0 < t,, < oo such that:

t
Mstar(v) = ty, Nstar(a(v)) Uv and M, = Nau(y)~ (6.1

Furthermore, for the connected component ', € T' of any vertex v € I', we have Mr, =
uy Ny, Uy, and for any irreducible component Ty < T', 3ty € (0,00) such that My, =

0]
Na(Fo)'

We remark that in the setting of [CDD22, Theorem 7.9], it is possible to obtain uni-
tary conjugacy between the vertex von Neumann algebras M, = £(G,). In our setting it
is generally only possible to obtain isomorphisms up to amplification between the ver-
tex von Neumann algebras. The reason is that the tensor product M, ® M,, of I1;-factors
is isomorphic to the tensor product M’ ®M}/* for any 0 < ¢ < co. For certain subgraphs
I'y < I' we do however obtain unitary conjugacy of the graph products Mr, to Ny (r,) in-
side Mr. Indeed, this is the case when Iy is a connected component of I or is of the form
T’y = Star(v) for some vertex v of I'. Moreover, for I'y an irreducible component of I we
are able to show that Mr, is isomorphic to a amplification of Ny r).

5.1.2. UNIQUE PRIME FACTORIZATION
For classes of von Neumann algebras we are interested in unique prime factorization
results. Recall that a II; -factor M is prime if it can not decompose as a tensor product
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M = My ®M, of diffuse factors M;, M. The first example of a prime factor was given by
Popa in [Pop83]. Thereafter, Ge showed in [Ge96] that £ (F;,) is a prime factor for n = 2
by computing Voiculescu’s free entropy. Later, in [0za04] Ozawa introduced a new prop-
erty, called solidity, which for non-amenable factors implies primeness. He showed that
all finite von Neumann algebras satisfying the Akemann-Ostrand property are solid. We
note that in particular all von Neummann algebras in %yerex are prime. There are many
more examples of prime factors, see e.g. [BHV18; CSS18; CKP16; CSU13; DHI19; Pet08;
Sak09; SW13].

Given a class € of von Neumann algebras, a natural question is whether any von
Neumann algebra M € € has a tensor product decomposition M = M;®---®M,, for
some m = 1 and prime factors Mj,..., M,, € ¢, which is called prime factorization in-
side ¥, and whether the prime factorization is unique. This is to say, given another
prime factorization M = N;®---® Ny, with n = 1 and prime factors Nj,..., Ny, € €, do
we have n = m and, up to permutation of the indices, any M; is isomorphic to an am-
plification of N;. The first unique prime factorization (UPF) results were established by
Ozawa and Popa in [OP04] for tensor products of group von Neumann algebras Z(G,)
for certain groups G,. The groups they considered included non-amenable, icc groups
that are hyperbolic or are discrete subgroups of connected simple Lie groups of rank one.
Later, in [[so17] Isono studied UPF results for free quantum group factors. Thereafter, by
combining results from [OP04] and [Iso17], Houdayer and Isono showed in [HI17] more
general UPF results for tensor products of factors from a class called 6(x0). We note that
our class Gvereex is very similar to 6oy and that Gyeriex S 6a0)- In the setting of graph
products, UPF results have been obtained in [CSS18, Theorem 6.16] under the condition
that the vertex von Neumann algebras are group von Neumann algebras.

We observe that we can use Theorem F to obtain UPF results. Indeed, let 6complete
be the class of all tensor products of von Neumann algebras in 6vertex. If in Theorem F
we restrict our attention to complete graphs (which are rigid) then we precisely obtain
UPF results for the class €complete (see Corollary 5.5.21). This partially retrieves the
UPF results from [HI17]. To obtain more general UPF results we prove the following
result which characterizes primeness for graph products of II;-factors (see also Theo-
rems 5.7.11 and 5.7.12 in the case the vertex von Neumann algebras are not II; -factors).

Theorem H (Theorem 5.7.4). LetT be a finite graph of size|I'| = 2. Forany v €T, let M, be
a II, -factor. The graph product Mr = *,1(M,,T,) is prime if and only if T is irreducible.

We then use Theorem F and Theorem H to prove the following theorem which covers
UPF results for a new class of von Neumann algebras (see Remark 5.7.7).

Theorem I (Theorem 5.7.6). Any von Neumann algebra M € 6xrigiq has a prime factor-
ization inside GRigiq, I.e.

M=M® - @My, (5.2)

for some m =1 and prime factors My, ..., My, € 6Rigiq-
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Suppose M has another prime factorization inside 6rigiq, i.e.
M=N;®---®N,, (5.3)

forsome n =1, and prime factors Ny, ..., Ny, € Grigia.- Then m = n and there is a permuta-
tiono of{1,...,m} such that M; is stably isomorphic to Ny ;) for1 <i < m.

5.1.3. UNIQUE FREE PRODUCT DECOMPOSITION

In [Oza06] Ozawa extended the results [OP04] for tensor products to the setting of free
products. In particular, he showed for M = Mj * --- * M,;; a von Neumann algebraic
free products of non-prime, non-amenable, semiexact finite factors M,..., M,, that if
M = Ny =---x Ny, is another free product decomposition into non-prime, non-amenable,
semiexact finite factors NVy,..., N, then m = n and, up to permutation of the indices,
M; unitarily conjugates to N; inside M for each 1 < i < m. This can be seen as a von
Neumann algebraic version of the Kurosh isomorphism theorem [Kur34], which states
that any discrete group uniquely decomposes as a free product of freely-indecomposable
groups. Versions of Ozawa’s result were later shown for other classes of von Neumann al-
gebras, see [Ash09],[IPP08],[Pet08]. In [HU16] these results were then extended by Hou-
dayer and Ueda to a single, large class of von Neumann algebras. Other Kurosh type
theorems have recently been obtained in [Dri23, Corollary 8.1], [DE24b, Corollary 1.8].

In the current chapter we obtain unique free product decomposition results for a new
class of von Neumann algebras. First, we prove the following result which characterizes
precisely when a graph product Mr = *,r(M,,7,) can decompose as tracial free product
of I; -factors.

Theorem J (Theorem 5.8.1). LetT be a finite graph of size |T'| = 2, and for each v € T let
M, be II; -factor with separable predual. Then the graph product Mt := %,r(M,,7,) can
decompose as a tracial free product Mr = (My,11) * (M, 72) of I -factors My,M, if and
only if T is not connected.

Using Theorem F and Theorem ] we obtain unique free product decomposition for
the class 6rigid \ Gvertex-

Theorem K (Theorem 5.8.2). Any von Neumann algebra M € 6rigid \ Gvertex can decom-
pose as a tracial free product inside 6Rigid \ 6vertex, I-€.

M =M *---% My, (5.4)

for some m = 1 and factors My, ... My, € 6Rigid \ Gvertex that can not decompose as any
tracial free product of I -factors.
Suppose M can decompose as another tracial free product inside GRigid \ GVertex I-€.

M= Ny *---% Np,

for some n =1 and factors Ny, ..., Ny € 6Rigid \ Gvertex that can not decompose as tracial
free product of I, -factors. Then m = n and there is a permutation o of {1,..., m} such that
N; unitarily conjugate to My ;) in M.
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Letus remark that von Neumann algebras in the class €complete \ GVertex are examples
of non-prime, non-amenable, semiexact, finite factors. Thus Ozawa’s result in particular
asserts a unique free product decomposition for free products of factors in 6complete \
Gvertex- The same result is also covered by Theorem K since any free product of factors in
GComplete \ GVertex lies in the class Grigid \ Gvertex- We observe that, in contrast to Ozawa’s
result, in Theorem K it is possible for the factors M;,..., M, to be prime. More gener-
ally, we remark that the result of Theorem K is not covered by the result from [HU16] (see
Remark 5.8.4). Thus our examples of unique free product decompositions are again new.

5.1.4. GRAPH RADIUS RIGIDITY

We are interested in the question whether from the graph product Mr = *,1(M,,1,)
of II;-factors M, we can retrieve the radius of the graph I'. To study this question we
introduce the notion of the radius of a von Neumann algebra M (see Definition 5.9.3).
As we show in the following theorem, we are in many cases able to estimate the radius of
the von Neumann algebra Mt with the radius of the graph T'.

Theorem G (Theorem 5.9.6 and Theorem 5.9.11). LetT be a finite, non-complete graph.
For v eT let M, be a II; -factor and let Mr = *,r(M,,T,) be the tracial graph product.
Suppose one of the following holds true.

1. ForallveT thevertex algebra M, possesses strong (AO) and has separable predual.
2. Forallv el we have M, = £(G,) for some countable icc group G,,.

Then
Radius(I') — 2 < Radius(Mr) < max{2,Radius(I")}

The above result allows us to distinguish certain von Neumann algebras coming from
graph products. In particular, for graph products Rr; = *,r,(Ry,T,) of hyperfinite II; -
factors R,, we are able to show that Rr, # Rr, whenever 2 < Radius(I'1) < Radius(I'z) —2
(see Remark 5.9.7).

We remark that when A; for i = 1,2 are graph of size 2 < |A;| =: n < |A| =: m and
with no edges, then Ry, = £Z(F,) and Ry, = Z(F;,) by [Dyk94]. In this case, it is very
hard to distinguish R, from R, as this is precisely the free factor problem. Of course,
Theorem G is of no use here since Radius(A;) = oo = Radius(A»).

5.1.5. STRONG SOLIDITY

For a finite von Neumann algebra M the notion of strong solidity was introduced by
Ozawa and Popa in [OP10a]. This property, which in particular implies solidity, asserts
that for any diffuse amenable von Neumann subalgebra A < M, its normalizers Nor;(A)
generates a von Neumann algebra that is amenable. This property implies that for a
non-amenable von Neumann algebra it does not have a Cartan subalgebra, and hence
can not decompose as a crossed product in a natural way. In [OP10a], it was shown
in that the free group factors Z(F;) are strong solidity. Nowadays, many examples of
strongly solid von Neumann algebras are known, see e.g. [Cas22; CS13; DP23; Isol5a;
PV14b]. Moreover, we remark that using the resolution of the Peterson-Thom conjecture
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(see [Hay22], [BC24b] ,[BC24a]), it has been shown in [H]E24] that the free group factors
even satisfy a strengthened version of strong solidity.

In this chapter we study strong solidity for graph products of von Neumann algebras.
We fully characterize strong solidity for arbitrary graph products.

Theorem D (Theorem 5.6.7). LetT be a finite graph, and for each v €T let M,, (# C) be a
von Neumann algebra with normal faithful tracet,. Then Mr is strongly solid if and only
if the following conditions are satisfied:

1. Foreach vertex v € T the von Neumann algebra M, is strongly solid;

2. For each subgraph A €T with My non-amenable, we have that Myni ) is not dif-
fuse;

3. For each subgraph A < T" with My non-amenable and diffuse, we have moreover
that Myink(n) is atomic.

We remark that for a large class of vertex von Neumann algebras M), it can be verified
whether the conditions (1), (2) and (3) hold true for the graph products M, and Myink()-
For group von Neumann algebras of right-angled Coxeter groups we obtain a simple
characterization of strong solidity, see Theorem 5.6.13. More generally, Theorem D com-
pletes the characterization of strong solidity for right-angled Hecke von Neumann alge-
bras (using Theorem 5.6.12 from [CKL21], [RS23]). Partial results in this direction had
already been obtained in [Cas20] and in Chapter 4

5.1.6. OTHER RESULTS

The proofs of the stated theorems require several main results that are of independent
interest, which we present here. Firstly, we give sufficient conditions for a graph prod-
uct of unital C*-algebras to be nuclear. This is a generalizion of Ozawa’s result for free
products [0za02] and is needed in the proof of Theorem F.

Theorem L (Theorem 5.3.4). Let Ar = *I;}“(Ay,w,,) be the reduced C*-algebraic graph
product of nuclear, unital C* -algebras A, with GNS-faithful statep,,. Let 76, := L*(A,, ¢,)
and letmw, : Ay — B(A,) be the GNS-representation. If foranyv eT, m,(A,) contains the

space of compact operators K(#,), then Ar is nuclear.

The following result is the graph product analogue of [H117, Theorem 5.1] and [0za06,
Theorem 3.3], and is crucial in the proof of Theorem F for establishing the graph isomor-
phism.

Theorem M (Theorem 5.5.15). Let (Mr,T) = *,r(My,7,) be the graph product of finite
von Neumann algebras M, that satisfy condition strong (AO) and have separable predu-
als. Let Q < Mr be a diffuse von Neumann subalgebra. At least one of the following holds:

1. The relative commutant Q' N Mr is amenable;
2. ThereexistsT'g ST such that Q <y Mr, and Link(I'p) # @.

The following result concerning relative amenability is needed in the proof of the
characterizations given in Theorem D, Theorem G and Theorem H.
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Theorem N (Theorem 5.4.8). LetT be a graph with subgraphsT'y,I', €T'. ForeachveT
let (My,7,) be a von Neumann algebra with a normal faithful trace. Let P c Mt be a von
Neumann subalgebra that is amenable relative to Mr, inside My for i =1,2. Then P is
amenable relative to Mr, ar, inside Mr.

5.1.7. CHAPTER OVERVIEW

In Section 5.2 we introduce the notion of rigid graphs and study some basic proper-
ties. Here, we also define graph products of graphs and precisely characterize when a
graph product of graphs is rigid. In Section 5.3 we prove Theorem L. which establishes
sufficient conditions for a graph product to be nuclear. In Section 5.4 we prove some
technical results concerning graph products. In particular, using calculation for iter-
ated conditional expectations in graph products we prove Theorem N regarding relative-
amenability, and prove some embedding results for graph products. In Section 5.5 we
prove Theorem M which we then use to prove the major part of Theorem F. In Section 5.6
we prove Theorem D which characterizes strong solidity for graph products. In Sec-
tion 5.7 we prove Theorem H which characterizes primeness in graph products. More-
over, we also complete the proof of Theorem I and we prove Theorem [ which establishes
UPF results for the class 6Rigiq. In Section 5.8 we prove Theorem ] which characterizes
free-indecomposability for graph products and we prove Theorem K which establishes
unique free product decomposition results for the class Grigiq \ Gvertex- In Section 5.9 we
define the radius of a von Neumann algebra and prove Theorem G which for graph prod-
ucts provides good estimates on the radius of the graph. Last, in Section 5.10 we discuss
some open questions and state a conjecture.

5.2. RIGID GRAPHS
In this section we introduce the notion of rigid graphs.

Definition 5.2.1 (Rigid graphs). We say that a simple graph T is rigid if for every v € T
we have Linkr (Linkr (v)) = {v}. When |T'| = 2 this means in particular for each v € T that
Linkr (v) is not empty.

Example5.2.2. We give some examples of rigid graphs which are easy to check:
1. By the convention Linkr (@) = I it follows that if |T'| = 1 then I’ is rigid.
2. Any complete graph is rigid.
3. Forn=2letZ, ={1,...,n} be the cyclic graph of length n, i.e. i, j share an edge if
and onlyif |i — j| =1 or {i, j} = {1, n}. Then for n = 5 the graph Z,, is rigid. Note also

that Z, and Zj are rigid, but Z4 is not.

4. Consider Z as the infinite cyclic graph, i.e. i, j share an edge in Z if and only if
|i—jl=1. Then Z is rigid.

We will now define the notion of graph products of graphs, and construct a large
variety of rigid graphs.
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Definition 5.2.3. LetT be a simple graph and for each v €T let A, be a simple graph. We
denote Ar := *,1\, for the graph product of the graphs {A,},er. This is defined as the
graph with vertices set

{(v,s):vel,se A}, (5.5)

where vertices (v, s) and (w, t) share an edge in Ar if either v = w and t, s share an edge in
Ay orv# wand v, w share an edge inT.

We observe that Ar contains the graphs A, for v € ' as (mutually disjoint) subgraphs.
Furthermore, we observe that if we take |A,| =1 foreach v €T then Ar =T.

Remark 5.2.4. For a simple graph I' and graphs {A,},cr, and groups G,, and von Neu-
mann algebras (N, ¢,,) with normal GNS-faithful state, with w € A, we have

*w,Ar Gw = * 0 (% w0, Guw) (5.6)
*w,Ar (Nw,pw), = *v,l“(*w,Al, (Nw, pw)). (5.7)

Indeed, this follows by the defining universal property of graph products of groups as
well as its analogue for operator algebras that can be found in [CF17, Proposition 3.22].

Lemma 5.2.5. LetT" be a simple graph and for each v €T let A, be a non-empty graph.
Then the graph product graph Ar is rigid if and only if for each vertex v € T the graph A,
is rigid and the vertex v satisfies at least one of the following conditions:

1. Linkr(Linkr(v)) = {v};
2. Ayl =2.

Proof. We may assume I" is non-empty. First, suppose the conditions in the lemma
are satisfied. We show Ar is rigid. Let (v, j) € Ar for some v €T, je A,. Let (z,k) €
Linka, (Linka (v, j)). We need to show that (z, k) = (v, j).

Suppose first that |A,| = 2. Then, as A, is rigid, we have that Link, , (j) is non-empty.
Let [ € Linky, (j). Then (v, ) € Linka . (v, j) and similarly (z, k) € Linka,. (v, ). If z # v then
by the definition of the graph product graph this implies z € Linkr(v). But then, again
by the definition of the graph product graph, we obtain (z, k) € Linka (v, j). However, as
(z, k) ¢ Linka (2, k), this contradicts that (z, k) € Linka (Link,, (v, j)). We conclude that
z =v. Hence, since (z, k) € Link,. (v, ]) we obtain that k € Link, , (). Since this holds true
for all I € Linkp, (), we obtain that k € Link,, (Linka, (), so that k = j by rigidity of A,.
Thus (z, k) = (v, j).

Now suppose that |A,]| < 2, i.e. A, ={j}, and just assume that Linkr (Linkr(v)) = {v}.
If IT| =1 then Ar = A, is rigid. Thus we can assume |I'| = 2. Then Linkr(v) must be
non-empty since Link(@) =T # {v}. Take w € Linkr(v). Then, as by assumption A, is
non-empty, we can pick i € A,,. Now (w, i) € Linka. (v, j), by the definition of the graph
Ar. Thus (z, k) € Linka . (w, 7). If w = z then z € Linkr(v) and so also (z, k) € Link,. (v, j).
But as (z, k) ¢ Link,,. (z, k), this contradicts that (z, k) € Linka . (Linka,. (v, j)). Thus w # z,
and therefore, as (z, k) € Linka. (w, i), we obtain that z € Linkr (w). Therefore, since this
holds for any w € Linkr(v), we obtain that z € Linkr (Linkr (v)) = {v} and thus z = v. Thus
as ke A; = A, ={j}, weobtain (z, k) = (v, j).
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We now prove the reverse direction. First, suppose there is a vertex v € I" such that
Ay is not rigid. Take j € A, such that Linka ,(Linka, (j)) # {j} so that we can choose
k € Link,, (Link,a , (j)) with k # j. Now, one can check that (v, k) € Linka. (Linka, (v, j)),
hence Ar is not rigid.

Now suppose there is vertex v € I' such that Linkr (Linkr(v)) # {v} and [A,| =1, i.e.
Ay ={j} for some j. Then Linka (v, j) = UweLinky (v {(w, 1) : i € Ay}. We can choose a z €
Linkr (Linkr (v)) with z # v and let k € A;. Then we see that (z, k) € Linka . (Linka,. (v, j)),
which shows Ar is not rigid. O

By the result of Lemma 5.2.5, it is possible to construct many different rigid graphs
using the rigid graphs from Example 5.2.2.

Remark 5.2.6. Let I' be a rigid graph. Then any connected component of T' is rigid and
any irreducible component of I' is rigid. Indeed, if Ay, ..., A, are the irreducible compo-
nents of I and we let I1 = {1,..., n} be a complete graph, thenI" = *, A, = Af;. Hence,
by Lemma 5.2.5 and rigidity of I' we obtain that the graphs Ay, ..., A, are rigid. Similarly,
if we let A},..., A}, be connected components of I' and we let IT' = {1,..., m} be a graph
with no edges, then T =,y A/, = Ah, so that by Lemma 5.2.5 and rigidity of I we obtain
that A!,..., A}, are rigid.

We now define the core of a graph.

Definition 5.2.7 (Core of a graph). Let T be a simple graph. We say that two vertices
v,w €T are core equivalent, with notation v ~ w, if Star(v) = Star(w). Let v be the core
equivalence class of v e I'. We define the core of T', with notation €T, as the graph whose
vertices set is the set of all core equivalence classes of I'. The edges set of €71 is defined by
declaring that v, w € €T withv # w share an edge in €T if and only if v, w share an edge
inT.

We remark that € 6T = 6T, that is, the core of the core of a graph is equal to the core
of the graph. In the following lemma we show that any graph can be written as a graph
product over its core.

Lemma 5.2.8. LetT be a simple graph. For v € €T let Ay be the complete graph of size
Ayl =|v|. ThenT = A¢r. Furthermore, if 6T is rigid, then so isT .

Proof. Indeed, as for v € €T we have [v| = |A3], we can build a bijection i3 : 7 — Ay.
We then define the bijection ¢ : I' — A«r as «(v) = (V,13(v)). We show this is a graph
isomorphism. Let v # w € I'. If v, w do not share an edge in I then 7 # w and v, w do not
share an edge in 6T. Hence (v, i3(v)) and (w, 175(w)) do not share an edge in A¢r. Now
suppose v, w do share an edge in I'. If v = w then since Ay = A is complete we obtain
that (7,13(v)) and (w, 133(w)) share an edge in A¢r . On the other hand, if v # w, then
v, w share an edge in 6T so that also (v, 3(v)) and (w, i35(w)) share an edge in A¢r. This
shows that ¢ is an isomorphism and hence I' = Ar.

We prove the last statement. Suppose 67T is rigid. Since for each v € €T the graph Ay
is rigid (since it is complete) and since by rigidity of 6T we have Linke¢r (Linker (7)) = 7,
we obtain by Lemma 5.2.5 that Ar is rigid. Thus I' = A¢r is rigid. O

We make two remarks on Lemma 5.2.8
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Remark 5.2.9. We remark that if a simple graph I' is rigid, then its core is, in general,
not rigid. Indeed, let IT = {v, w} denote the simple graph of size 2 with no edges and let
Ay, Ay, denote complete graphs of size [A,[,|A| = 2. Then the graph I' := Ay is rigid by
Lemma 5.2.5 but 6T =11 is not rigid.

Remark 5.2.10. If a graph I' is in the class CC; as described in [CDD22] then T is rigid.
Indeed if I' is CC; then its core 6T, which is in fact also CCy, is given by the graph of
[CDD22, Eqn. (1.1)]. This graph is rigid as can be checked directly from the very defi-
nition of rigidity. We can then apply Lemma 5.2.8 to obtain that I' is rigid. It thus fol-
lows that the graphs considered in the current chapter form a much richer class than
[CDD22].

5.3. GRAPH PRODUCTS OF NUCLEAR C*-ALGEBRAS

The aim of this section is to give a sufficient condition for when the reduced graph prod-
uct of nuclear C*-algebras is nuclear again. Such a result cannot hold in full general-
ity as it is clear from the fact that the free product of amenable discrete groups is non-
amenable as soon as one group has at least 2 elements and the other group has at least
3 elements. Hence the stability result in this section requires particular conditions on
the states with respect to which we take the graph product. Such a result was obtained
by Ozawa in [0za02] for amalgamated free products and we use the amalgamated free
product decomposition of graph products (Theorem 2.4.1) to show that the same holds
for graph products.

Let T be a finite simple graph. Let (A,,¢,) with v € T be unital C*-algebras A,,
GNS-faithful states ¢, and GNS-representation 7, of A, on the Hilbert space /#, =
L*(Ay, o).

For Hilbert C*-modules we refer to [L.an95]. Consider the reduced graph product
C*-algebras (Ap,@p) for any A = T which is a subalgebra of (Ar, ¢r) with conditional
expectation E,.

Definition 5.3.1. We construct a Hilbert C*-module /%, as the completion of Ar with
respect to the A -valued inner product

(a,b)g, =EA(b" a)

and the corresponding Hilbert Ax-module norm | al = |{a, a)% |. Let g, : Ar — B(H%,)
be the GNS-representation of Ar on the Hilbert C* -module #¢, by adjointable operators.
Then ntg, is given by extending left multiplication

g, (X)a=xa,x€ Ar,a € Ar € FE,
and we shall omit nig, in the notation if the module action is clear.

Definition 5.3.2. An operator on the Hilbert A -module 7, is called finite rank if it is
in the linear span of operators of the form

Onoimy 26— 1206 MK, n; € HE, .

The closure of the space of all finite rank operators are defined as the space of compact
operators K(Ak,).
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Lemma 5.3.3. Suppose there exists v € I" such thatT' = Star(v). If n,(A,) contains K(F,)
then mg,, ., (Astar(v)) contains K(Ag,, .,)-

Proof. We have that Astar(y) = Ay ® ALink(y) Where the tensor product is the minimal ten-
sor product and under this correspondence we have

(Ll ® b, c® d>|ELink(v) = (PV(C* (l)d* b; ace AU! b’ de ALink(v)-

We thus may identify #,, , ,, as the closure of the algebraic tensor product #, ® Arink(y)
with respect to the inner product (¢ ® b,n® d) = (¢,n)d* b. Further, under this correspon-
dence g\, = 7Ty ® 1; where 7;(x)a = xa, x, a € Apjngy) is the left multiplication. Let
pv be the projection of #, onto C¢,. Then p, ® 1 equals the extension of Eyjni(,) as a
bounded map on A, ,, identified with the closure of A, ® Apink(y)- As by assumption
py lies in 7, (A,) it thus follows that p, ® 1 lies in 7wg,;  ,, (Astar(v))- It thus follows that for
a,c,x€ Ay, b,d,y € Arinkw) we have

Oasbeod(X®Y) = @y(c*x)a® bd"y = mg,, , (@® b)(py ® D7E, ., (" ®d")(x® y).

The right hand side is contained in T iy (Astar(vy). Hence g, (Astar(y)) contains a
dense set of finite rank operators and hence must contain all compact operators. O

Theorem 5.3.4. Let I' be a simple graph. If for each v € T, A, is nuclear and n,(A,)
contains the compact operators K(A,), then Ar is nuclear.

Proof. Itsuffices to prove the theorem for I a finite graph as inductive limits of inclusions
of nuclear C*-algebras are nuclear.

Our proof proceeds by induction to the number of vertices in I'. So we assume that
for any A C T we have proved that Ay is nuclear. We shall prove that Ar is nuclear.

If T is complete then Ar is the minimal tensor product of A,, v € I which is nuclear
as each A, is nuclear.

Assume I is not complete. Then we may take v € I' such that Star(v) # I'. By Theo-
rem 2.4.1 we obtain

Ar = AStar(v) * A AT\

where all graph products and amalgamated free products are reduced. By induction
Astar(v) and Aryyy are nuclear. Further the GNS-representation of Astar() With respect to
its conditional expectation onto Ay jni(,) contains all compact operators by Lemma 5.3.3.
Hence [0za02, Theorem 1.1] concludes that Ar is nuclear. O

5.4. RELATIVE AMENABILITY, QUASI-NORMALIZERS AND EMBED-

DINGS IN GRAPH PRODUCTS

In this section we establish the required machinery we need throughout the chapter.
Firstin Section 5.4.1 we discuss how to calculate conditional expectations in graph prod-
ucts. This will be used in Section 5.4.2 to prove a result concerning relative amenability
in graph products. The calculations from Section 5.4.1 will furthermore be used in Sec-
tion 5.4.3 to keep control of certain quasi-normalizers in graph products. Last, in Sec-
tion 5.4.4 we apply results from Section 5.4.3 to establish a unitary embedding of certain
subalgebras in graph products.
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5.4.1. CALCULATING CONDITIONAL EXPECTATIONS IN GRAPH PRODUCTS
For a simple graph I', a graph product (Mr, ¢r) = *,r(M,,¢,) and subgraphs I';,I'» <
I', we will in Proposition 5.4.3 calculate iterated conditional expectations of the form
[EMr2 (cz[EMrl (x)b) for a, b, x € Mr (here Ep, is the condition expectation that preserves
the state ¢r). In [BC23] we have done these calculations in the setting of Coxeter groups,
i.e. the setting M, = £(Z/27) for all v e I'. We will present here a generalisation of our
calculations to the setting of general graph products. However, we note that such general
calculations for graph products were already done in [Cha+24].

For our calculations we need the following combinatorial result concerning words in
Coxeter groups. Here, for u € #1 we denote Link(u) = Link(A,) where A, is the set of all
letters that occur in u. Alternatively, Link(u) can be described as the set of all w e '\ Ay
such that wu=uw.

Lemma 5.4.1. LetT be a graph and letT'1,T; T be subgraphs. Letw € #t,,u,u’ € #t be
such thatu andu’ do not have a letter in T at the start and do not have a letter inT» at
the end. Then the following are equivalent:

-1 ! .
1. uwu €#r,;
i
2. u=u andwe %1 ACyNLink(u) -

Proof. We show that (1) = (2); the other direction is trivial. Suppose that w contains
a letter b in I'; which is not contained in I'y, say that we write w = wj bw» as a reduced
expression. We may assume that w; does not end on any letters commuting with b by
moving those letters into wy. Then as u’ does not have letters from I'; at the start we
see that wu' contains the letter b; more precisely we may write a reduced expression
wu' = w; bwsu” where ws is a start of w, and u” is a tail of v’ Since u~'wu’ is contained
in %1, the letter b cannot occur anymore in its reduced expression. We have u™!'wu’ =
u'w; bwsu” (possibly non-reduced). Now if a letter at the end of u~! deletes the letter b
then this would mean that u has a letter in I'; up front (either b itself or a letter from wy)
which is not possible. We conclude that w € #1r,.

Write u = vu; and u’ = vu] (both reduced) where u;,u; € #t and where v € #1 such
that v commutes with w. Moreover we can assume that u;,uy,v are chosen such that
|v| is maximal over all possible choices. Now, suppose that u’1 # e. Let d be a letter at
the end of u}. Then d ¢ I'; by assumption on u’ (as d is also at the end of u’). Now
u;'wu] = u”'wu' € #f,, which implies that d is deleted, i.e. uj'wu] is not reduced.
Thus a letter c at the start of u; must delete a letter at the end of ul‘lw. If ¢ deletes a letter
from w then in particular ¢ € I'y NI’y (as w € #1,r,). However, as u’ does not start with
letters from I'; this implies that |v| = 1. Now, every letter of v commutes with the letters
from w (by assumption on v). However, not every letter of vcommutes with c, since c is
not at the start of u’. From this we conclude that c is not a letter of w, a contradiction.
We conclude that c is not deleted by a letter from w, and thus that ¢ must commute with
w, and that c deletes a letter at the end of ul‘1 i.e. aletter at the start of u;. Hence, we
can write u; = cup and u} = cu), (both reduced) for some u,,u), € W. But then u = vcuy
and u’ = veu, and we have that ve commutes with w. This contradicts the maximality of
Iv|. We conclude that u} = e. Now as u;'w = u; 'wu) = u™'wu!’ lies in #f,, by assumption
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and as w € #1,nr, we obtain that ul‘l € #1,. But u; does not end with a letter from I'; by
assumption on u (since letters at the end of u; are also at the end of u). This implies that
u; = e. This shows u = v=u’ and that u (= v) commutes with w.

O

In the following lemma we calculate conditional expectations in graph products.
We use the explicit graph product notation from the preliminaries. Furthermore, as in
Chapter 3 we consider for (u;,up,u3) € % the annihilation/diagonal/creation operator
Awy,upuz) : Mr — B(AT). Furthermore, we recall that for a von Neumann subalgebra
Q< M that eg : L*(M,7) — L?(Q, 7) denotes the Jones projection.

Lemma 5.4.2. LetT be a graph and letT'1,T, €T be subgraphs. For v €T let (My,p,)per
be von Neumann algebras with normal faithful states and let (Mr, ) = *,r(M,,¢,) be
the von Neumann algebraic graph product. Let a; € Mu—l and a, € My and az € My
wherew € #r, andu,u’ € Wt are such that u,u’ do not start with letters from I'y and do
not end with letters fromT'». Then

plaraz)az, ulwu' € Wr,;
2

Enmy, (a1a2a3) = { (5.8)

0, else.

Moreover, for x € Mr, we haveEn,, (a1xa3) = ¢(a1a3)Eny i, i (X)-

Proof. Firstassume that a; = A(c;) withc; € I\7Iu-1, € 1\7Iw, c3 € 1\7[u/. Weputn:=arazQ e
Fyu (Observe that wu' is reduced). Now

Enmr, (a1a2a3)Q2 = enp, a1 azazensy, QO = ey, ar?).
Furthermore, by Lemma 3.1.7 we have that

a =Ac)) = Z Atay,up,u3) (€1).

(up,uz,u3)e.S 1

Let (u;,uz,u3) € #,;-1 and suppose emr, A(uy,us,u3) (€1)77 is non-zero. Then by Lemma 3.1.4

we have A, u,,us)(€1)7 € JZ”V where v = ujuswu’ (possibly non-reduced) and moreover
that v starts with u;u,. Moreover, since emr, Ay,up,uz) (€1)7 is non-zero we have that
v € #r,. Then as v starts with ujuy and as ujuy does not start with letters from I'; as
this is true for u™!, we have that ujuy = e. As ujuy is reduced by definition of %1,
we obtain u; = uy = e. Hence, as ujuyus = u~! we obtain uz = u'. We conclude that
(u1,uz,u3) = (¢,e,u” ') and moreover that u™'wu’ = ujuswu’ = ve #r,.

Now suppose that ulwu' ¢ #r,. Then by the above we obtain for all (uj,uz,u3) €
Fy-1 that eMFZ//‘/(ul,uz’u?))(Cl)Tl = 0 and hence emy, arn = 0. But then [EMr2 (a1a2a3)Q) =
emr, a1 = 0. Hence [EMr2 (myazaz) =0.

Now, suppose u~'wu'’ € #f,. By Lemma 5.4.1 we obtain u = u’ and w € #£ 1, Linku) -
Therefore, since w and u commute and have no letters in common, we obtain that the
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operator A, ,,-1y(c1) commutes with A(cz). Now

Ale,eu1) (€N = A eu-1y (C1DA(C2) A(,e,e) (€3)2
= A(CZ)A(e,e,u—l) (Cl)/l(u,e,e) (c3)Q2
= Ae2)p(Alc1)A(e3))Q
=@(aras)aQ)

and hence
emr, 411 = Z emr, Aty uz,u3) (€1)7)
(up,u2,u3)eS 1
= eMF2 A(e,e,u‘l) (c1)n
= emp, ¢laiaz)ax()

= @(aras)aQ.

Thus [EMFZ (maxa3)Q) = p(ajas)aQ) and thus [EMFZ (mazas) = p(ayas)ay. This shows
(5.8) by density of/l(NIv) c ]\°/1v forve #r.

To prove the second statement, let x € Mr, and write x = ZWEer Xw With Xy € Mw.
Then by what we just proved, we get, where y is the indicator function,

Enp, (@1xaz) = ) Eump, (a1xwa3) = plaras) ) xwxyyrz(u_lwu'). (5.9)
WEHT, WEHT,

We now claim that
plara3) xnt, @ 'wu) = p(a as) Xt oy otinka (W)- (5.10)

Indeed, when u # u’ then @(a;as) = 0 so that both sides of (5.10) equal 0. Further-
more, in case u = u’ we have by Lemma 5.4.1 that the conditions ulwu € #r, and
W € #TI,nTynLink) are equivalent, which establishes (5.10). Now, combining (5.9) and
(5.10) we obtain

Evp, (@xag) =@(@as) ), xw=@@183)EnMy, o, pinge (9-
WEHT | Al ALink(w)

This concludes the proof. O

Proposition 5.4.3. Let T be a graph and letT'1,T'y be subgraphs. Letu,v € #1 and write
u = wucu, and v =vv.v, (both reduced) with u;,v; € #r,, u,,v, € #r, and such that
U, V. do not start with letters from 'y and do not end with letters from 5.

For v €T let (My,p,) be a von Neumann algebra with a normal faithful state. Let
a=ajaca, and b = b;b.b, where a; € Mul, ac € Muc, ar € Mu, and b € le, b € MVC,
b € J\O/IV,- Then for x € Mr we have

[EMI"Z ((l* [EMFI ()C) b) = (,0(61: bc)aj IEMrlml"anink(up) (d}k)Cb[)br.
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Proof. As aj,b; € Mr, and a;, by € Mr, we have
Emy, (@ Epy, (0OD) = a7 Eny, (@zEpgy (@] xb)be) by (5.11)
Now as Eg, (@] xb;) € Mr, and a; € ]\°/qu1 and b, € My, we have by Lemma 5.4.2 that

Enmr, (a; Eny, (a; xbi)be) = p(a; bAEM; o, etinkiue) EMry (a; xby) 5.12)
=¢la; bC)[EMl"lnl“szink(uc) (al* xby). '

This proves the statement by combining (5.11) and (5.12).

5.4.2. RELATIVE AMENABILITY IN GRAPH PRODUCTS

Given a finite von Neumann algebra M with normal faithful tracial state 7 and let Q € M
be a von Neumann subalgebra. We recall that (M, e() is the Jones extension which is the
von Neumann subalgebra of B(L3(M, 1)) generated by M U{eg} equipped with the tracial
weight Tr: (M, eQ)+ — [0,00] whose linear extension satisfies Tr(xeqy) = T(xy). Let

To:L'((M, eq), Tr) — L' (M, 1),

be the unique map defined through 7(To(y)x) = Tr(yx) forall y € L'((M, eq),Tr), x € M.
Then Ty is the predual of the inclusion map M < (M, eq) and thus is contractive and pre-
serves positivity. For the following definition of relative amenability we refer to [PV14a,
Definition 2.2, Proposition 2.4].

Definition 5.4.4. Let (M, ) be a tracial von Neumann algebra and let P < 1pM1p,Q <
M be von Neumann subalgebras. We say that P is amenable relative to Q inside M if
there exists a P-central positive functional on 1p(M, eq)1p that restricts to the trace T on
1pMlp.

Remark 5.4.5. Assume the inclusion P € M is not unital. Let p = 1p;—1p. Set P= P& Cp
which is a unital subalgebra of M. We claim: P is amenable relative to Q inside M if and
only if P is amenable relative to Q inside M. Indeed, for the if part, choose a P-central
positive functional Q on (M, eq) that restricts to 7 on M. Set Q to be the restriction of
Qtol p{M, eq)1p which then clearly witnesses relative amenability of P. For the only if
part, let Q be a P-central positive functional on 1p(M, eg)1p thatrestricts to 7 on 1pM1p
then we set Q(x) = Q(pxp) +7((1 — p)x(1p — p)) for any positive functional T extending
7 from (1 — p)M(1p — p) to (1y — p){M, eq)(1p — p). Clearly Q witnesses the relative
amenability of P.

Using the calculations of conditional expectations we will prove Theorem 5.4.8 which
asserts that when a von Neumann algebra P € Mr is amenable relative to M, inside Mr
for some subgraphs I'; < I for i = 1,2, then P is also amenable relative to Mr,qr, inside
Mr. We need the following proposition.

Proposition 5.4.6 (Proposition 2.4 of [PV14a]). Assume P,Q < M are von Neumann sub-
algebras. Then P is amenable relative to Q inside M if and only if there exists a net
(&) € L*((M, eq), Tr)* such that:
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1. 0< TQ(g*?)sleoralljandlimj ||TQ(§§)—1M||1:0;
2. Forally e P we havelim; | y&; —¢;yll2 =0.

Before we prove Theorem 5.4.8, we will in Remark 5.4.7 do some bimodule compu-
tations for the Connes tensor product. Let M, Q, N be tracial von Neumann algebras and
let 77 and o % be bimodules. Recall that a vector ¢ € /2 is called right Q-bounded if
there exists C > 0 s.t. [yl = Clyl for all y € Q. For a right Q-bounded vector ¢ € A we
define L(¢) € B(L?(Q, 1),.#) as L(&)x = £x where x € Q. Then, for right Q-bounded vec-
tors &,n € A we have that L(n)* L({) € Q. We denote by # < A# the subspace of all right
Q-bounded vectors. We equip the algebraic tensor product %, ® £ with the (possibly
degenerate) inner product

G18N1,828M2) 75001 = (L(E2) LN, M2) 20 - (5.13)

The Connes tensor product # ®q £ is the Hilbert space obtained from A% ®,; £ by
quotienting out the degenerate part and taking a completion. The Hilbert space #® . %
is a M- N bimodule with the action

x-(E®on)-y= (x5 ® My).

Remark 5.4.7. We calculate the operator L(¢2)* L(¢;) for certain bimodules and vectors
&1,¢2 € #4. Let (M, 1) be a tracial von Neumann algebra and let B,Q < M be von Neu-
mann subalgebras with Q unital. Consider the bimodule pL%(M, 7)g- Let x,y € M. Then
x,y are right Q-bounded and thus L(x), L(y) : L?(Q,1) — L?(M, 1) are well-defined. We
calculate L(x)* L(y). For q1, g2 € L*(Q, T) we have

(L) LY q1, g2) =y g1, xq2) =1(q5 x* yq1) = T(q, Eo(x* ) q1) = (Eo(x* V) q1, q2).
(5.14)

Thus L(x)*L(y) = Eq(x* y).

Let R € M be a unital von Neumann subalgebra and let N = (M, er), where eg de-
notes the Jones projection of the inclusion R € M. We consider the bimodule p L?(N, Tr) .
For x, x', y,¥' € M we have that xegy and x’egy’ are right Q-bounded vectors as they are
elements in N. We calculate L(xegry)*L(x'er)’). For g1, g» € Q we have,

(L(xery)”L(x'ery")qu, q2) = (x'ery' q1, xeryqo)
=Tr(q; y" erx*x'ery' q1)
=Tr(q; y*Er(x*x)ery' q1)
=1(q5 y Er(x* X"y qn)
=1(EQ(q; y Er(x* Xy q1)
=1(q3 Eo(y Er(x* Xy ) q1)
= (Eq(* Er(x* XNy q1, G2).

Thus we obtain L(xegy)* L(x'egy’) = Eq(y*Er(x*x)y").
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We present Theorem 5.4.8 which we proved in [BC23, Theorem 3.7] in the setting of
right-angled Coxeter groups (i.e. M, = £(Z/27) for v € ') and later in [BCC24, Theo-
rem 5.3] in the general setting. The proof of the theorem follows [PV14a, Proposition 2.7]
but in our case the subalgebras are not regular. We furthermore remark that the bimod-
ule computations we do in the proof of Theorem 5.4.8 are also related to those done in
[Cha+24, Section 5].

Theorem 5.4.8. LetT be a graph and letT'),I'y €T be subgraphs. For v €T let (M,,1,) be
a von Neumann algebra with a normal faithful trace. Let P < 1p Mr1p be a von Neumann
subalgebra that is amenable relative to Mr; inside Mr for i = 1,2. Then P is amenable
relative to Mr,qr, inside Mr.

Proof. By Remark 5.4.5 we may assume without loss of generality that the inclusion
P < Mr is unital and use the characterisation of relative amenability given by Propo-
sition 5.4.6. Put Q; := Mr, for i = 1,2. As before, let T; = T, : Ll((MF,eQi)) — LY(Mp)
be the contraction determined by 7(7;(S)x) = Tr;(Sx) for S € L*((Mr, eq;)) and x € Mr.
Since P is amenable relative to Q;, Proposition 5.4.6 implies the existence of nets (uj.) j

in L*((Mr, eg,))* satisfying
0= Ti(WpA =1, ITiWPH -1 =0,  lyuj-pjylz—0, forallye R (5.15)
where the limits are taken over j. Consider the Mr-Mr bimodule
H = L*((Mr, eq,)) @ vy L (M, €q,))-

Claim: As in [PV14a] we claim that tensor products y; := ”}1 ® u?z € S for certain j =
(j1, j2) can be combined into a net such that

lypj—pjyl—0,  Kxpj,pj)—1x)—0,
for all y € P, x € Mr, where the limit is taken over j. Let us now prove this claim in the
next paragraphs which repeats the argument used in [PV14a, Proposition 2.4].
Proof of the claim. Take &% < P, 9 < M finite and let € > 0. Set ¢! := ¢ and fix j
such that IIy,Lt}-1 - /J}lyllz <eforall y € & and I(xy}l,u}.l) —1(x)| <eforall x € ¢l As
0= Ti((yj.l)z) < 1 and as T; preserves positivity, it follows that for x € Mr the element
Ty (,u}.1 xu}.l) € LY(Mr, 1) is bounded in the uniform norm and thus belongs to M. Set
92 =T (p}lfglu}l) € My, which is finite. We may proceed from % and %2 to find j,
such that ||yy§2 - ,u?zyllz <e¢forall ye & and I(x,ui,yi) —1(x)| < ¢ for all x € 9%. Put
Jj =1, j2) and set yj = u}l ® ui. For y € & it follows by the triangle inequality that

lyp =yl < I m, = 15, 9) @a 15, 1+ 15, @0, (Y45, = 115, )1 < 2.
Now, by construction of the sets ¢’ and the vectors uj.[ we see that for x € ¢ that
ety 1) = TOO1 < [Coepa, ) = (X, 15 )|+ 1pi5,, 13, = (0]

< (T (e V05, 185, = oadl, 12 )| + 1l 415,) = T(0)]

<2¢
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Taking j = j(&,%) with increasing sets & and ¥ as before gives a net of vectors y; €
H with the property that

lyuj—pjyl—0, Kxpj,puj)—7(x)|—0
for all y € P and x € Mr. This proves the claim.

Remainder of the proof. The net (u;) ; in particular shows that the bimodule MmL?(M)p is
weakly contained in p;/p. Denote

V ={ve ¥t :vdoes not start with letters from I'; and does not end with letters from I's},
and define the subspace S, < A as
S = Span{xeq,y ®m; €Q,2:VEV,X,z€ M,y € My},

which is dense in /. Indeed, clearly the span of all operators of the form xeq, y1 ®u;
¥2eq,z for some reduced operators x € My, z € My, and y; € My, for some u,w,vy,vs € #1
is dense in . However, it can be seen that all these operators are also contained in /5,
which shows that A} < # is dense.

We define a bimodule % := L2(Mr) ®Qo L2(Mr) and a map U : #y — L2(Mp) ®Qy K
as

XeQ, ¥y ®my €0,z X®Q, y®Q, 2 X,z2€ Mr,ve Y,y € My.

Fix x,x',z,2' € Mr. Forv,v e ¥ and y € Mv,y’ € My we have by Proposition 5.4.3 that
Eqo (" Eqy(x* X)) = T(y" ¥ )EqynLinkw) (" X) = Eq, (¥*Eq, (x" x) y). (5.16)

Hence for general y, y' € Mr we have Eq, (y*Eq, (x*x")y") = Eq, (y*Eq, (x*x")y') by linear-
ity. Combining this with the bimodule computations from Remark 5.4.7 we obtain

(x' ®Qo ¥y ®Qo Z/'x®Q0y®Qo Z>L2(M)®QOJI = (Eq, (x*x"y’ ®Q Z,’y®Qo 2Dx

= (Eq, (¥ Eq, (x* XN y" 2!, z)
= (Eq, (¥ Eq, (x* X y" 2, z)
=(Tq, ([Eq, (¥ Eq, (x"x)y)eq,2), 2)
=(Tq,(eq, ¥ Eq, (x*x")y eq,2)), 2)
=" Eq (x* x,)y’eQz z, €Q, Téz (2)
= (Eum; ("o, (x" X)) eq, 2, eq, 2)
=(x'eq, ¥y ®m; eq, 2, xeq, ¥y ®my €, 2) 7

Thus U extends to an isometry 4 — L2(Mp) ®q, & , which clearly is Mr- Mr-bimodular.

This shows that p;, L?(Mr) p is weakly contained in p L* (Mr) ® g, #p, which by [PV14a,
Proposition 2.4 (3)] means that P is amenable relative to Qp = Q; N Q> inside Mr. O
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5.4.3. EMBEDDINGS OF QUASI-NORMALIZERS IN GRAPH PRODUCTS

We prove Proposition 5.4.13 and Proposition 5.4.14 concerning embeddings in graph
products. To prove Proposition 5.4.13 we need some auxiliary lemmas. First, we state
Lemma 5.4.9 which was essentially proven in [Vae08, Remark 3.8]. The result is surely
known but for completeness we give the proof.

Lemma5.4.9. Let A, By,...,B,, Q € M be von Neumann subalgebras with B; < Q. Assume
that A <p Q but A £ B; foranyi=1,...,n. Then there exist projections p€ A,q€ Q, a
non-zero partial isometry v € gM p and a normal *-homomorphism0 : pAp — qQq such
that0(x)v =vx,x € pAp and such that0(pAp) #q B; foranyi =1,...,n. Moreover, it may
be assumed that p is majorized by the support of E4(v* v).

Proof. Let pe A,ge Qand 0 : pAp — qQq be a normal *-homomorphism such that
there is a partial isometry v € gMp such that 8(x)v = vx for all x € pAp. We first prove
that without loss of generality we can assume that p is majorized by the support of
Ea(v*v).

Let z be the support of E4(v* v). As pEao(v* v)p =Ea(pv* vp) = Eo(v* v) it follows that
z € pAp. Further for x e pAp we have xE4(v*v) =Ez(xv* v) =Eao(v*0(x)v) =EA(v* vX) =
Es(v*v)x so that z € (pAp)’. We conclude z € (pAp)' N pAp. Now let p' := pz € A, let
0 : p'Ap' — gQq be the restriction of 6 to p’Ap’ and let v’ := vz € gMp'. Then for
x € p'Ap’ we have 0'(x)v' = 0(x)vz = vxz = vzx. We claim further that v’ is non-zero.
Indeed, v = vz =0iff zv*vz=0iff 0 = E4(zv* vz) = zE4(v*v)z. But as v is non-zero
Ea(v*v) is non-zero and hence zE4(v*v)z # 0 by construction of z. We conclude that
v' #0. In all the tuple (0, p’, g, V') witnesses that A <3; Q and the support of E4((v")*v")
majorizes p'.

For the remainder of the proof one just follows [BC23, Lemma 2.1] which does not
affect the assumption that p is majorized by the support of E4(v* v). O

The following lemma is similar to [DHI19, Remark 2.3].

Lemma5.4.10. Let (M, 1) be a tracial von Neumann algebra and let A, By, ..., B, be (pos-
sibly non-unital) von Neumann subalgebras of M. Assume A £y By fork=1,...,n. Then
there is a single net (u;); of unitaries in A such that forl <k <nanda,bel,Mlp, we
have |Eg, (a*u;b)|lo — 0 asi— oo

Proof. Put

B= @ B M= @ M. (5.17)

1<k<n 1<k=n

Let m : M — M be the (normal) diagonal embedding 7 (x) = k=1 X- Suppose 7(A) <37 B.

Then there are projections p € 7(A), g € B, a normal *-homomorphism 6 : pr(A)p —
gBq and a non-zero partial isometry v € gMp s.t. O(x)v = vx for x € pr(A)p. For k =
1,...,nlet m; : M — M be the coordinate projections. Denote py := nx(p) € A, g :=
mi(qg) € B and vy := my(v) € nk(qﬁp) = gxMpy. Define a normal *-homomorphism
Ok : PkAPk — qiBqr as 0k (x) = 1 (0((x))). Then Ox (x)vg = 1 (O (x)) V) = 74 (V7T (X)) =
Ve ((x)) = vx. Since 0 # v = @)_, vk there is 1 < ko < n s.t. vy, # 0. This then shows
that A <y By, which is a contradiction. We conclude that 7(A) £ B.
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Thus, there is a net of unitaries (#;); in 7(A) such that for @', b’ € 1,(4)M15 we have
IEz(a™@;b")|l2 — 0 as i — oo. Let u; € A be the unitary s.t. m(u;) = u;. Fix1< k< nand
leta,be1,M1p,. We can choose 4, b € ln(A)Mlg s.t. mi(a) = a and g (b) = b. We have

~k ~

IEg, (@ u;b)ll2 = IE, 5 (ric(@ WD)z < |E5(@* @ib)lla — 0 as i — oo. (5.18)
This shows the net (;); satisfies the stated property. O

In order to have control over quasi-normalizers we need the following lemma. The
lemma is stated in [Vae07, Lemma D.3] for sequences, but holds equally well for nets.

Remark 5.4.11. Consider an inclusion B < 13 M15 of finite von Neumann algebras with
conditional expectation Ep : 15 M1p — B. We extend it to Ep : M — B by setting Ez(x) =
Eg(1px1p). Fix a normal faithful tracial state 7 on M. If p € B is a non-zero projection
then p is in the multiplicative domain of Eg and so Ep : pMp — pBp is a conditional ex-
pectation. IfEp preserves 7 then it also preserves the normal faithful tracial state 7(p) ™'t
on pMp.

Lemma 5.4.12 (Lemma D.3 in [Vae07]). Let (M, ) be a finite von Neumann algebra with
normal faithful tracet and let B< 13 M1p and A < 14B1 4 be von Neumann subalgebras.
Suppose there is a net of unitaries (u;); in A such that forall a,b € M withEg(a) =Ep(b) =
0 we have

IEg(au;b)|l, — 0 asi — oco. (5.19)
Thenifn=1, xg, x1,...,Xn € M satisfy Axg < ZZ:I X B then we have that 1 4x91 4 € B.

Proof. We put By =14B14 and My =14M14 so that A < By & Mj are unital inclusions.
We observe By = BN My. Now let a,b € My be such that Ep,(a) = Eg,(b) = 0. Then by
Remark 5.4.11 with p = 14 we find Eg(a) = Ep,(a) = 0 and similarly Eg(b) = 0. Thus by as-
sumption ||Eg(au;b) |, — 0as i — co. Hence, since By = 1,4B1 4 we obtain ||Ep, (au; b)ll, —
0 as i — oo. Choose a central projection z € BN B’ such that there exists m > 1 and par-
tial isometries v; € B for 1 < i < m with v;v; <14 and PO vivi =z Nowletn =1,
X0, X1,-.-, Xn € M be such that Axo € YX}'_, xxB. Then

n n m n m
A(laxozlp) = (Axg2)1a S Y xkBzla= )Y Y xkW;1avi)Bla< ) ) xxv] By.
k=1 k=1i=1 k=1i=1

Multiplying both sides from the left with 1,4 gives A(1axozla) € X, X7, 1axkv] Bo
where 1 4 x v;‘ € 14M14. By the existence of the net (u;); this implies, by applying [Vae07,
Lemma D.3] to the inclusions A € By € M), that 14x0214 € B. As we may let z approxi-
mate 1p in the strong topology we find that 14xp14 € B. O

We are now able to show the following result. The second statement in the proposi-
tion should be compared to [loal5, Lemma 9.4]. While the inclusion M, € Mr is gener-
ally not mixing, we still have enough control over the (quasi)-normalizer of subalgebras.
The proof of Proposition 5.4.13(1) uses Lemma 5.4.10, Lemma 5.4.12 and the results from
Section 5.4.1 for calculating conditional expectations in graph products. The proof of
Proposition 5.4.13(2) uses (1) and Lemma 5.4.9.
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Proposition 5.4.13. LetI' be a simple graph and for v € T let (M,,t,) be a finite von
Neumann algebra with normal faithful tracet,. Let A =T be a subgraph, and {A} je ¢ be
a non-empty, finite collection of subgraphs of T'. Define

Aemb:=AU[) U Linkr(v). (5.20)
JEFL VEAA;

Let A< 14Mr1 4 be a von Neumann subalgebra.
1. IfAc1aMpla and A £y My, forall j € 7 then the following properties hold true:

(@) There is a net (u;); of unitaries in A such that for all a,b € 1,Mr14 with
Emy,,, (@) =En, (D) =0 we have |Ep,  (auib)llz —0;

(b) 14qNory,. (A)"1aS Mp,,,;

(c) Forany unitary u € Mr satisfying u* Au< My, wehavelulp€ My, .

2. Denote P = Nor . (A)" and letr € PN P’ be a projection. If r A<p, Mp and rA £y,
My, forje g thenrP <y, My

emb *

We remark that if {\ j} je 4 enumerates all strict subgraphs of A then Aemp = AULinkr (A).

Proof. (1)
By Lemma 5.4.10 we can build a net of unitaries (u;); in A such that for any a, b € Mr
and any j € _¢ we have ”[EMAj (au;b)|l, — 0 when i — co. We show the net (u;); satisfies

the properties of (1a). Let b e My and ¢ € M, for some v,w € #{ \ W h oy - WIitE V=V[V .V,
andw =w;w.w;, withv;,w; € #}_ ., V;, W, € # and such that v, and w. do not start with
letter from Agmp nor do they end with letters from A. Now write b = b;b:b, and ¢ = c;c.c,
with b; € le, ClE Mw,, b: € Mvc, Cc € ch and b, € ]\u/Ivr, cr € er. Thenasvg#,,,, and
V] € Wi, and v, € Wp S #),,,» we have v. ¢ #, . and hence there is a letter v of v,
such that v ¢ Aemp. Thus, there is an index j € _# such that v ¢ Uwen\a,; Linkr (w). Hence
Link(v) €T\ (A\ Aj)=AjU(l\A) and thus ANnLink(v,) € A j. Using Proposition 5.4.3 we
get,

IEMa,,, (b*uic)l2 =IEnm,,, (b*Epmy (ui)O)l2
=17 (b ) by EMy i) (] UicDCr N2
=17 (b €I by EMpnpiniivey @bt (O] wic))er N2

=lbell2licell2libr Mler 1wy, by uichll.

We see that this expression converges to 0 when i — oo. Thus, more generally, for b, c €
Mr with [EM/\emb (b) = [EM/\emb (c) =0, we obtain ”[EMAemb (b*u;c)||l, — 0 when i — oo, which
shows (1a).

(1b) Observe that if x € qNor,, (A) then for some n =1 and xi,..., x;, € Mr we have
Ax < erclzl XrAS 22:1 XM, - Therefore by the existence of the net (1;); shown by (1)
and by Lemma 5.4.12, we have that 1, x14 € My, . This shows 14 qNor,, (A)14 S Mp,,,
and thus proves (1b).
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(1c) Let u € Mr be a unitary for which u*Au € My, . Then Au € uM,,_, so again
by the existence of the net («;); shown by (1a) and by Lemma 5.4.12, we obtain that
laulye MAemb'

(2) By replacing Ajljeg with {A; n A} je s we may assume that Aj c Afor je 2.
We observe that r is central in A, which we will use a number of times in the proof. By
Lemma 5.4.9 the assumptions imply that there exist projections p € rA,q € My a non-
zero partial isometry v € g Mrp and a normal *-homomorphism 6 : pAp — gM, g such
that6(x)v = vxforall x € pAp and such that moreover 0(pAp) £m, My, for j € #. From
(1) we see that 6(p) qQNor, (B(pAp))O(p) € My, -

Now take u € Nor ;. (A). We follow the proof of [Pop06¢c, Lemma 3.5] or [loal5, Lemma
9.4]. Take z € A a central projection such that z = Z?Zl vj v]’f with v; € A partial isome-
tries such that v}‘f vj < p. Then

n n
pzupz(pAp) € pzuA=pzAu=pAzuc ) (pAl/j)v7 uc) (pAp) v;f u,
j=1 j=1

and similarly (pAp)pzupz < Z;’Zl uv;(pAp). We conclude that pzupz € gNor 7, (P Ap).

Now if x € qNor,, ;. ,(pAp) then by direct verification we see that we have that vxv* €
0(p)gNor ;.4 @(pAp))B(p). 1t follows that vpzupzv*, with u € Norpy; (A) as before,
is contained in 0(p)qNor ;. ,(0(pAp))O(p) which was contained in My,,,,. We may
take the projections z to approximate the central support of p and therefore vuv* =
vpupv® € My, . Hence vNory; (A)"v* € My,,,. Set py = v*v e pA'p. Note that p; <
p <. Asboth A and A’ are contained in Nory, (A)” we find that p; € Nory,.(A)” (as p €
A). So we have the *-homomorphism p : p; Nors, (A)” p1 = pirNorag (A)"pr — Ma,,,
x— vxv* with v € gMrp; and clearly p(x)v = vx. We conclude that r Norps. (A)" <p;
My O

emb *

We prove the following result concerning embeddings in graph products.

Proposition 5.4.14. LetT bea simple graph and forv €T, and let (M, T,) be a tracial von
Neumann algebra. Fix v el and let N < M, be diffuse. If N <p Mp for some subgraph
ACT, then v e A. In particular if A = {w}, a singleton set, then v = w.

Proof. Let A T be a subgraph with v ¢ A. We show that N £y, M. Since N is diffuse,
we can choose a net (ug) of unitaries in NV such that 7(u) = 0 and uy — 0 o-weakly.
Since A(Mr) is a dense subspace of Mr, it is sufficient to show for any reduced operators
X=X1X2... Xy, ¥ = Y1YV2... Y, S.L. X € Myi, Vi € Ao/[wi, we have [|Ep, (xugy)ll2 — 0. In-
deed, writing x = x'a, y = by', where a, b € M,, and where x’ respectively y' is a reduced
operator without letter v at the end respectively start. Then

xury = X aurby' = x't(aurh)y’ + x'(aurh —t(aurb))y'.

On the one hand, Epy, (x't(aurh)y’) = t(aurb)Ep, (X'y') = (urh, a*YEp, (x'y") — 0. On
the other hand, we write x' = x"d, y' = ey”, where d, e € Myjn(,) and where x” respec-
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tively y” has no letter from Star(v) at the end respectively at the start. Then we have

X' (aupb—1(auib)y = x"d(aurb—1(auib))ey”
=x"de(aurb—1(auib))y’
=Y x"filaugb -t(aurb))y",
7

where we write de = Y; f; and f; € My, reduced. Since x” f;(aupb—1(augb))y” is re-
duced and v ¢ A we obtain that Epy, (x” fi (aupb—1(aub))y”) = 0. Thus [|Ep, (xugy)llz —
0, which completes the proof. O

Remark 5.4.15. We remark in particular for any graph I', II, -factors {M,},cr and a fi-
nite subgraph A ¢ T that qNor,, (Ma)" = Norpg (Mp)"” = MpyLinka)- Indeed, clearly
My, Miinka) € Nor g (Ma)” (as Miinka) = M), N Mr) so that Maypinka) S Norag (My)" €
gNor . (Myp)". Furthermore, by Proposition 5.4.14 we have My ZMmy Mz for any strict
subgraph A C A so that by Proposition 5.4.13 we obtain gNor My (MA)" € MauLink(a)-

5.4.4. UNITARY CONJUGACY IN GRAPH PRODUCTS
We prove Theorem 5.4.16 which gives sufficient conditions for a subalgebra Q < Mr to
unitarily embed in a subalgebra M,__, . This can be seen as a generalization of [0za06,
Theorem 3.3] where a unitary embedding is proven for free products. The proof of Theo-
rem 5.4.16 combines (the second half of) the proof of [0za06, Theorem 3.3] with results
of Section 5.4.3 concerning embeddings in graph products.

Theorem 5.4.16. Let I be a simple graph and for v € T let (M,,7,) be a I, -factor with
normal faithful trace t,. Let Q < Mr be a subfactor whose relative commutant Q' N My is
also a factor. Let A =T be a subgraph and let {Aj} je ¢ be a non-empty, finite collection of
subgraphs of A. Suppose Q <y Ma and Q £y My, for j € #. Then there is a unitary
u € Mr such that u*Qu < My, , where Aemy is defined as in (5.20).

Proof. Since Q <y Mp and Q #pr; MAj for j € ¢ we have by Lemma 5.4.9 that there
are projections g € Q, e € My, a normal *-homomorphism 6 : Qg — eM e and a non-
zero partial isometry v € eMrq such that 8(x) v = vx for x € Qg and such that moreover

0(gQq) Amy My, for j € #. We may moreover assume that g is majorized by the sup-
port of Eq(v*v). Let go € Q be a non-zero projection with go < g and trace 7(qo) = %
for some m = 1. Put vy := vqo. Note that v*v € (qQq)' N gMrq. Then Eq (v vo) =
Eq(qov*vqo) = Eq(qov™ v) = qolEq(v* v) and the latter expression is non-zero by the as-
sumption that the support of Eq(v*v) majorizes g. As Eq is faithful vy # 0. Define
0o : GoQqo — eMpe as Oy := 0]4,04,- Then for x € goQqo we have 0y (x)vg = 0(x)vqo =
vxqo = vox. Automatically this implies vjvgy € (¢0Qqo)’ N goMrqo. Furthermore for
j € #, the corner 0y(qoQqo) = 00(q0)8(qQq)0(qo) does not embed in MA]. inside Mt
since 6(qQ¢q) does not embed in My, inside Mr. Hence, by Proposition 5.4.13(1b) we
obtain 6(qo) Noras; (Bo(q0Q40))"6(qo) = My, -

Since Q is a factor and 7(qg) = % we can for j = 1,..., m choose a partial isometry u;
in Q such that u}* uj = qo and Z;.”: L Uj u}* = 1p4-. We may moreover assume that u; = qp.
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We define a projection g’ := Z;”:l ujvg vo u;‘ € Mr. We show that ¢’ € Q' n Mr. Indeed, let
¥ € Q. Then using that v v € (q0Qqo)' and u;‘yuj € goQqo for j=1,...,n we get

m m m
Y=Y wiwg iy =Y. Y ui (g o)} yuu
j=1 j=li=1
m m m
* * * * *
=2 2 ujujyuwgrolu =Y yui(vgvoui =yq

j=li=1 i=1
and thus g’ € Q"N Mr. We observe that vj vy = goq'qo = goq’ which shows in particu-
lar that ¢’ is non-zero (since vy # 0). Since Q' N M is a (finite) factor and ¢’ is a non-
zero projection, we can choose a projection g, € Q' M with g < ¢’ and 7(q;) = %1 for
some 1 = 1. Since Q' N Mr is a factor and since 7(q;) = % we can find partial isometries
Uy, ..., uy € Q' Mr with (u))*uj = q; for k=1,...,nand such that Y7 _, u (u})* = Lys;..

We put vg := voqy = vqoqy € eMrqo. Observe that vj,veo = qVg Voqy = g, 4qo has
trace 7(vg,vo0) = T(qg)T(q0) = ﬁ so in particular vy is non-zero. For x € qyQqoy we
have 0 (x) voo = Oo(x) Vo gy = VoXqy = voox. Therefore, voovy, € Oo(goQqo)’ N Mr. Since
Voo Vo < 0(go) we obtain vog vy, € 8(qo) Noras. (Bo(g0Q40))"0(qo) S M, using the first
paragraph.
Since M, is a factor (as it is a graph product of II; -factors), and since 7(voo v(’)‘o) =

# thereexistfor j =1,...,m, k=1,..., npartial isometries Wik € Mp, with Wik w;’k
Voo Vg andZ;.":1 i w]’f’kwj,k =1pp. Putu:= Z;”:l Yo Ui u;cv(’)‘0 wj r € Mr and observe
that u is a unitary. Now for x € Q we have
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* *
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Hence u*Qu S My

emb *

5.5. GRAPH PRODUCT RIGIDITY

The aim of this section is to prove Theorem 5.5.19. This provides a rather general class of
graphs and von Neumann algebras such that the graph product completely remembers
the graph and the vertex von Neumann algebra up to stable isomorphism. Note that we
cannot expect to cover all graphs as this would imply the free factor problem and which
is beyond reach of our methods. The class of rigid graphs as presented in Section 5.2 is
therefore natural.
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5.5.1. VERTEX VON NEUMANN ALGEBRAS
We define classes of von Neumann algebras for which we first recall a version of the
Akemann-Ostrand property [HI17].

Definition 5.5.1. A von Neumann algebra M with standard form (M, LZ(M), ], [2(M)H)
is said to posses strong property (AO) if there exist unital C* -subalgebras A< M and C
B(L*(M)) such that:

° Aiso-weakly densein M,
e C is nuclear and contains A,

* The commutators [C,JA]] = {[c,]Ja]] | c € C,a € A} are contained in the space of
compact operators K(L2(M)).

We recall that a wide class of examples of von Neumann algebras with property strong
(AO) comes from hyperbolic groups.

Theorem 5.5.2 (See Lemma 3.1.4 of [Isol15b] and remarks before). Let G be a discrete
hyperbolic group. Consider the anti-linear isometry J determined by

J:0%(G) — 0*(G): 65— 8,1, seG.
Then there is a nuclear C* -algebra C such that:
1. C}(G) < C<B(F%(G)).
2. C contains all compact operators.
3. The commutator [C, JC; (G)]] is contained in the space of compact operators.

Remark 5.5.3. In view of Section 5.3 it is worth to note that we may always assume with-
out loss of generality that C contains the space of compact operators by replacing C by
C+K(L2(M)) if necessary, see [H117, Remark 2.7]. This fact also underlies Theorem 5.5.2.

Definition 5.5.4. We define the following classes of von Neumann algebras:

° Let Gvertex denote the class of II; -factors M with separable predual M., that satisfy
condition strong (AO) and which are non-amenable;

* Let6complete denote the class of all von Neumann algebraic graph products (Mr, ) =
*,7(My,T,) of tracial von Neumann algebras (M,,T,) in 6vertex taken over non-
empty, finite, complete graphsT’;

* Let 6Rrigiq denote the class of all von Neumann algebraic graph products (Mr, ) =
*,7(My,T,) of tracial von Neumann algebras (M,,T,) in 6vertex taken over non-
empty, finite, rigid graphsT .

Remark 5.5.5. We remark that Gvertex S 6complete < GRigid- Furthermore,

1. The class 6yertex is closed under taking free products (see [H117, Example 2.8(5)]).
Moreover, all von Neumann algebras M € 6yeriex are solid and prime, see [0za04];
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2. The class Gcomplete is closed under taking tensor products. Moreover, we observe
that Gcomplete COincides with the class of tensor products of factors from 6vertex;

3. The class Brigiq is closed under taking graph products over non-empty, finite, rigid
graphs by Remark 5.2.4 and Lemma 5.2.5. In particular, it is closed under tensor
products;

4. The class 6Rigid \ ‘Gvertex is closed under taking graph products over arbitrary non-
empty, finite graphs by Remark 5.2.4 and Lemma 5.2.5. In particular, it is closed
under tensor products and under free products.

Remark 5.5.6. We show that it may happen that a graph product over a rigid graph is
isomorphic to a graph product over a non-rigid graph; even if all vertex von Neumann
algebras come from the class 6veriex. Consider the graph 74 defined in Example 5.2.2(3).
The graph 7, isrigid. For v € Z, let G, be a countable discrete group. Let H, = G, * Gy42.
We have for the graph products of groups that

*U,Z4Gu = (Go* G2) x (G1 * G3) = *y 7, Hy.

We now set G, =, and H, = F4 to be free groups with 2 and 4 generators respectively.
Set M, = £(F»2),v € Z4 and N, = £ (F4),v € Z, equipped with their tracial Plancherel
states 7,. Then M, and N, are in class Gvertex and *,,z,(My,Ty) = *,,7,(N,, 7,). We
have thus given an example of a rigid and non-rigid graph that give isomorphic graph
products.

5.5.2. KEY RESULT FOR EMBEDDINGS OF DIFFUSE SUBALGEBRAS IN GRAPH
PRODUCTS
In this section we fix the following notation. Let I' be a simple graph. For v € T let
(M,,7,) be a tracial von Neumann algebra (M, # C) that satisfies strong (AO) and has
a separable predual. Let (Mt,7r) = *,r(M,,7,) be the von Neumann algebraic graph
product. For v € T let #, = L?>(M,,7,) and let %% be the graph product of these Hilbert
spaces, which is the standard Hilbert space of Mt [CF17]. We denote by J : AT — AT
the modular conjugation. Let B, = B(#,). Let Q, = 1,4, as a vector in ./, and let
wy(x) = (xQy,Qy), x € By. Then w, is a GNS-faithful, but not faithful, state on B, and the
GNS-space of w, can canonically be identified with #,. The reduced C*-algebraic graph

product (Br,wr) = *rynfn (By,wy) gives then by construction a C*-subalgebra B of B(A#7).

We let A, : B, — B be the canonical embedding. Furthermore we let p, : B;> — B°P be
the map p, (x°P) = JA,(x)*J. As for v € T the von Neumann algebra M, has strong prop-
erty (AO) by assumption (as M, € Gyertex), there are unital C*-subalgebras C, € B, and
A, € M,nC, such that

1. The C*-algebra A, are o-weakly dense in M,,
2. The C*-algebra C, are nuclear,

3. The commutators [C,, J, A, J,] are contained in K(A2,).
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Asin [HI17, Remarks 2.7 (1)] we may and.will moreover assume that K(#,) < C,. We let
(Cr,wr) = *flflrn(C,,, wy) and (Ar,wr) = *‘;;n(A,,, wy) be the reduced graph products of the
C*-algebras. Observe that we now have

Ar € Mr < Br and Ar € Cr € Br,
and the states wr defined through the different graph products coincide.
Lemma 5.5.7. Cr is nuclear.

Proof. The vector Q, is cyclic for M,,. Furthermore, A, is o-weakly dense in M, by as-
sumption and so Q, is also cyclic for A,. It follows that the GNS-representation =, of C,
with respect to w, is unitarily equivalent with the canonical representation given by the
inclusion C, € B(#,), see [Con97, Theorem VIII.5.14 (b)]. We assumed that K(#,) < C,
and that C, is nuclear and so we may apply Theorem 5.3.4 to conclude that Cr is nu-
clear. O

Definition 5.5.8. For A € T" we define the C* -algebra
Dp = U, (K(H'(A) @ B(7))(U))".

The tensor product in the definition of D, is understood as the spatial (minimal) tensor
product, which is the norm closure of the algebraic tensors acting on the tensor product
Hilbert space. In particular Dy = K(HT).

Lemma 5.5.9. Let v €I'. We have Br Dyink ) Br S DLink(v)-

Proof. We note that the proof we give here in particular also works if Link(v) is empty;
though in that case the statement trivially follows from the fact that Dy = K(A7) is an
ideal in B(#%). Take x € B(#,). Then if w ¢ Link(v) we have that /%' (Link(v)) is an
invariant subspace of x and

2= Uiy @ DUy (6.21)

Now suppose that w € Link(v). Let P be the orthogonal projection of #' (Link(v)) onto
' (Link(v)) N A ink(w)- Then

7 1 /% / /%
X = Uping) P~ @ DU i) * Upinkny (P ® D Uiy (6.22)

From the decompositions (5.21), (5.22) we see that XDpink(y), DLink(y) X S DLink(v)- AS Br
is the closed linear span of products of elements in B(#,,), w € T the proof follows. O

Denote Pg, for the orthogonal projection onto CQ.

Lemma5.5.10. Letv,weT. Leta€ B,, be By,. Then

Uétar(u) (Po® [a']b]])(Uétar(v))*’ v=w;

5.23
0, V#EW. ( )

la,Jb]] = {
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Proof. 1If v # w then the result follows from [CF17, Proposition 3.3]. Suppose v = w.
Let vi € #{(Star(v)) and vz € #5ar(v), and put v = vivo. Let 1) € A, 12 € A, be pure

tensors and denote 1 := Uétar(v) (n1 ®n2) € A, We claim

an= {Uétar(v) (i ®(any), ifvi=e (5.24)

Uétar(v)((anl) ®ny), ifv)#e.

Indeed, if v; = e then n; = Q and 1 = 12 up to scalar multiplication, so that Uétar(y) me
(anz)) = ans = an. Thus suppose v; # e. Then it follows that vv; € #'(Star(v)) since
vy € #'(Star(v)).

Suppose vv is reduced. Then also vv; is reduced, and we have an = A ¢, (@)1 and
ani = Aw,e,e)(@)n;. It follows from Lemma 3.1.8(3) that

an = A(V,e,e) (a)n
= Q(le,VZ) ((/l(u,e,e) (a)nl) ® n2)
= 2wv,,v) ((an1) ®n2),
and therefore, as vv; € #'(Star(v)) and vz € #4tar(y), We obtain an = Uétar(y) ((any) ®12).
Now, suppose vv is not reduced. Then also vv; is not reduced as v, € #”' (Star(v)) and

v) #e. Wehave an = A, p,e) (@N+Ae,e,v)(@n and any = A p,e) (@11 + A(e,e,r) (@71. Again,
using Lemma 3.1.8(3) we obtain

an = Ae,v,e)(@N+ Aee,v) (@N
= 2y;,v) (Ae,n,e) (@N1) ®12) + 2wy; vo) (A6, ) (@N1) ®12).
And thus

arn = US/,tar(v) Ae,v,0) (@n1) ®12) + Uétar(y) Aeevy (@n1) ®1M2) = US/,tar(v) ((an1) ®n32)).

This shows (5.24).
We now claim that

JbJn = Uggay,y M ® JbIN2). (5.25)

First, by [CF17, Proposition 2.20] we observe that Jn; € <70£v1—1, Jn2 € ﬂ”v;l and Jn =

J 2012 M1 ®12) = -1 1) U2 @ J11) € 7,1, Furthermore, note that vv,! =v;'vand
vv2 € Wstar(v)-

Suppose that vv~! is reduced. Then 1A' ! is also reduced. Hence, similar as before
we obtain bjn = Q(valyvl—l)((b]ng) ® Jn1). Hence

TbIn = 2u;,00) (M1 ® JbI12)) = Uliary (11 © UBJ12)).

1

Now, suppose that vv~! is not reduced. Then vv, " is not reduced. Similar as before

we obtain

bjn = 9(‘,51,‘71) ((Ae,v,e) (D) IN2) ® J1) + ‘Q(uvz‘l,vfl) (Ae,e,v) (B)IN2) ® JN1).
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Hence

TbIn =2, v) 1M1 © Ae,v,e) (D) IN2)) + Lvy,0v,) 111 © Aie,e,0) (D) TN2))
- Ué[ar(”) (11 ® JA(e,v,e) (D) J112)) + Uétar(v) 1M1® UA(e,e,v) (D) IN2))
= Ugtar(ry 1 ® UbJI12)),

which shows (5.25). Now, combining (5.24) with (5.25) we obtain

(a, T = Ugiar(y M ® ([a, JD]1n2)),  ifvi=¢

0, ifv; #e
and the statement follows. O
Lemma 5.5.11. Forv,wel,ceCy,ae A, we have|c,]a]] € Dyinkw).

Proof. If v # w it actually holds since by [CF17, Proposition 2.3] [c, JaJ] = 0. So assume
v =w. Lemma 5.5.10 gives that

(¢, JaJ] = Ulariy (Pa ® (€, JaT) (Ugar) ™ (5.26)

In what follows we will use the decomposition of Section 2.4 applied to Link(v) as a sub-
graph of Star(v), opposed to Link(v) as a subgraph of I, and correspondingly define the
Hilbert space /' (Link(v)) with respect to this inclusion. We thus have a natural unitary

U]C/ink(y) : Jfétar(y) (Link(v)) ® JfLink(v) - JfStar(v)-

Further as v commutes with all vertices in Link(v) it follows that with respect to this
decomposition we have st’tar(v) (Link(v)) = #,. So

UI:,ink(u) 1 Ay ® Hink(v) — Hstar(v)-

For x € B(#,) we get that
X = Uiy @ DU (5.27)

Set the unitary
Uy = Uspar(ny (1 ® Ul i) : A1 (Star(v) ® 6, ® Hink(w) — H1-
Combining (5.26) and (5.27) we have
lc,Ja]] = U, (Pa®lc,Jall® )U,",

where [c, Ja]] on the left hand side acts on /% and on the right hand side on /. As we
assumed [c, Ja]] € K(A,) it follows that [c, Ja]] is contained in

U, (K(A' (Star())) ® K(#,) ® DU, ™ = Uf; 1y KA Link()) ® DU} () S Diinkw)»

and thus the lemma is proved. O
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Let Q € Mr be an amenable von Neumann subalgebra. As explained in [OP04, p. 228]
there exists a conditional expectation W, : B(#T) — Q' that is proper in the sense that
for any a € B(/7) we have that W (a) is in the o-weak closure of

Conv{uau® | ue %)},
where Conv denotes the convex hull.

Lemma 5.5.12. Let Q € Mr be an amenable von Neumann subalgebra. If thereis A =T
such that Q £p. M, then Dy is contained inker V.

Proof. Let p € K(#'(M)) be a finite rank projection. We first claim that
Uy(pe D)UY} eker¥.

We prove this claim by contradiction so suppose that d := ‘I’Q(Ul/\(p ®1) U//\*) # 0. First
observe that for a € M, we have

Ja] =Ujy(1® JaaJa) Uy,

where J, is the modular conjugation operator of M, acting on .#,. It follows in partic-
ular that
UMDY = Uy B(H#£'(A)&MA) U}

Any u € U(Q) commutes with M’r = JMr] and so certainly it commutes with My J.
As ¥ is proper we find that d as defined above thus commutes with JM,J. Thus
d € U\ (B(A'(A)@Mp)U) . Let Tr the trace on B(#”(A)) and let @, be the center val-
ued trace of M onto Z(M,) = M n M. Using again that W is proper we find by lower
semi-continuity [Tak02, Theorem VII.11.1] that for any normal (necessarily tracial) state
7 on the center Z(Mp) we have

(Tr® (1o @)Uy dU)) < (Tre (To®@,))(pe 1) < oco.
Let e be a spectral projection of d corresponding to the interval [||d]|/2, ||d]]]. Then
(Tr® (To®p))(Uy eUy) <2(Tre (10 ®,)) (U dU}) < co.

Thus it follows that (Tr® ®,) (U}’ eU}) < co. Then £ := e#7 is a Q-M, sub-bimodule of
¢ with dimpy, (£) < oo and A7 is the standard representation Hilbert space of Mr. It
thus follows from Definition 2.1.2(3) that Q <ps. M. This contradicts the assumptions
and the claim is proved.

Taking linear spans and closures it thus follows from the previous paragraph that

Uy (K(A#'(N) @ DU cker¥g.
Using the multiplicative domain of ¥, it follows then that
UL (K(F#'(N) @ B(ZEN)) U, Sker¥o,.

This concludes the proof.
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Lemma 5.5.13. Let Q S Mt be an amenable von Neumann subalgebra. Assume that for
every v €T we have Q £p. Miink(v). Then we have [Cr, J ArJ] € ker(¥ ).

Proof. The commutator [Cr, JA,J] is contained in the closed linear span of the sets
Cr(Cw,JAyJICr, v,weT.
We have, as Cr < Br, by Lemma 5.5.11 and Lemma 5.5.9 that
CrlCw,JAyJ1Cr S BrDrink(v) Br € DLink(v)-

By Lemma 5.5.12 we see that Dynk(,), v € T is contained in the kernel of ¥o. We thus
conclude that [Cr, JA,J] is contained in ker V.
Now [Cr, JArJ] is contained in the closed linear span of the sets

JArJICr,JAyJ1J ArJ, verl.

Note JAr] is contained in My. so certainly in Q'. As ¥ is a Q'-bimodule map it follows
that JArJ[Cr, JA,J1J Ar] is contained in ker W . This finishes the proof. O

Lemma 5.5.14. Let Q € Mr be an amenable von Neumann subalgebra. Assume that for
every v € I' we have Q £ Myink). The map

©:Are® JAr] — B(A7)

(5.28)
a®Jb]—Yqlajb]).
is continuous with respect to the minimal tensor norm.

Proof. Observe that ¥ is a Q'-bimodule map and we have JArJ € My < Q'. It thus
follows from Lemma 5.5.13 that for x € Cr and y € JArJ we have

Yo)y=Yolxy) =¥oyx+I[x,yl) =¥oyx) = y¥ox).

So¥o(Cr) s (JArJ) = Mr. Now consider the composition of maps, see [B008, Theorem
3.3.7and 3.5.3],

©: Cr ®max JArJ — YQ®1 My @05 JArJ —" B(H),

where m is the multiplication map. Note that Cr is nuclear by Lemma 5.5.7. Thus Cr® max
JAr] = Cr ®min JArJ. Then the restriction of ® to Ar ®min JArJ gives the map ©.
O

Theorem 5.5.15. LetI" be a finite simple graph. Let (Mr,t) = *,r(M,,7,) be a graph
product of finite von Neumann algebras M, (# C) that satisfy condition strong (AO) and
have separable preduals. Let Q < Mr be a diffuse von Neumann subalgebra. At least one
of the following holds:

1. The relative commutant Q' N Mr is amenable;

2. There exists a non-empty g €T such that Link(T'g) # @ and Q <y Mr,.
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Proof. We first show we can reduce it to the case that Q is amenable. Indeed, suppose
we have proven that every amenable diffuse subalgebra Qo & Mr satisfies (1) or (2). Let
Q € Mr be an arbitrary diffuse subalgebra. Then by [HI17, Corollary 4.7] there is an
amenable diffuse von Neumann subalgebra Qy < Q such that for subgraphs A < T we
have Qp Ay Ma whenever Q £y Ma. If Q does not satisy (2), then neither does Qp.
Hence Qo satisfies (1), so Qy N My is amenable. Hence also the subalgebra Q' n Mr
Qi N Mr is amenable, i.e. Q satisfies (1), which shows the reduction.

We now prove the statement with the notation introduced in this section. Assume
(2) does not hold and we shall prove (1). By assumption for A < I" with Link(A) # @ we
have Q £y M. In particular we have for all v € I' with Link(v) non-empty that v is
contained in Link(Link(v)) and so Q £p Myink(y)- If Link(v) is empty then Mpnk,,) =C
and so Q £y Miink(y) as Q is diffuse. It follows now from Lemma 5.5.14 that © defined
in (5.28) is bounded for the minimal tensor norm.

Each A, is exact being included in the nuclear C*-algebra C,. Therefore the C*-
algebra Ar is exact by [CF17, Corollary 3.17]. Furthermore, the inclusions Ar € Mr and
JAr]J € Mj. are o-weakly dense.

The conclusions of the previous two paragraphs show that the assumptions of [0za06,
Lemma 2.1] are satisfied and this lemma concludes that Q' N Mr is amenable.

O

5.5.3. UNIQUE RIGID GRAPH PRODUCT DECOMPOSITION

We will prove our main result Theorem 5.5.19 which asserts for a graph product Mr =
*y,0 (My, Tp) € GRigid With M), € Gvertex that we can retrieve the rigid graph I' and retrieve
the vertex von Neumann algebras M, up to stable isomorphism. To prove the result we
need the following lemmas.

Lemma 5.5.16 (Lemma 3.5 of [Vae08]). If A< 14M14,B < 15M1p are von Neumann
subalgebras and A<y B, then B n1gM1p <p AN14M14.

Lemma 5.5.17 (Lemma 2.4 in [DHI19], see also [Vae08]). Let (M, 1) be a tracial von Neu-
mann algebra and let P < 1pM1p, Q € 1oM1q and R € 1 M1g be von Neumann subal-
gebras. Then the following hold:

1. Assume that P <p; Q and Q <§VI R. Then P <) R;

2. Assume that, for any non-zero projection z € Nori , p1, (P)N1pM1p<Z(P'Nn1pMlp),
we have Pz <y Q. Then P <3, Q.

In particular, we note that if Q' 1o M1 is afactor and P <p; Q and Q <y R then P < R.

Lemma 5.5.18. LetT be a finite graph. For v € T, let M,,, N, be II, -factors and put Mt =
*,7(My,Ty) and Nr = #,r(N,,T,). Supposet: Nr — Mr is a * -isomorphism and for v e T
we have

t(NY) <pmp My and My <pp L(NY).
Then the following holds true:

1. ForveT thereis a unitary u, € Mr such that u;,1(Nstar(v)) Uy = Mstar(v)-
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2. Let Ao = A ST be subgraphs with 1«(Np) = Mp. Then t(NAGLinkr(Ag)) = MAULinkr(Ag)-

3. Let P =(vy,...,vy) bea path inT and denote Ty := :1:1 Star(v;). If there exist1 <
J = nandasubgraph A =Ty such that vj € A and 1(Np) = My, then 1(Nr,) = Mr,.

4. LetT'y be a connected component of I'. If there is a non-empty subgraph A € T'g with
t(Np) = My then (Nr,) = Mr,.

Proof. (1) As ((Ny) <pmp My and ((Ny) App Mg (since N, diffuse), and since ¢(IV,) and
{(N)) N Mr (= t(NLink(v))) are factors, we obtain by Theorem 5.4.16 a unitary u, € Mr such
that u}t(Ny) U, S Mstary). By assumption M, <py, ((N,) so that M, <pg. uji(N)uy. If
uyL(Ny) Uy <mr Miink(y) then uji(Ny) u, <zsv1r Minky) by Lemma 5.5.17 (2), since M},nMr
is a factor. Consequently, by Lemma 5.5.17 (1) we obtain M, <p; Myink), Which gives
a contradiction by Proposition 5.4.14. We conclude that u;t(Ny)ty £pp Miinkw). Now,
since u;,L(N,) Uy S Mstar(y) and uj,t(N,) Uy £my Miink(y) We have by Proposition 5.4.13(1b)
that Norpg. (uyt(Ny) uy) S Mstar(v), hence uyt(Nsgarv)) y S Mstar(v)-

By symmetry there is also a unitary #, € Mr such that &} Msiar) iy < t(Nstar(v))-
Hence

ui L‘Z;MStar(v) Uyly S u;l(NStar(v)) Uy € Mstar(v)- (5.29)

Hence, since Mstar(y) Zpm M3 for any strict subgraph A C Star(v) we obtain by Proposi-
tion 5.4.13(1c) that &, u, € Mstar(y). From this we conclude that the inclusions in (5.29)
are in fact equalities so u}¢(Nstar(1)) Uy = Mstar(v)-

(2) Let Ag < A be a subgraph. Then ((Nj,) € t(Np) = M, and by the assumptions
t(Na,) Amr My for any strict subgraph A C Ap. Hence, by Proposition 5.4.13(1b) we ob-
tain that ((Niink(ag) S NoTp ((NA))" € Mautink(ag)- Thus t(Naurink(ag) € MAuLink(Ag)-
By symmetry we also obtain that My rink(a.) S {(INAULink(Ae)) SO We get the equality.

(3) As vj € A and «(Np) = My, using (2) we obtain that t(NAUstar(Vj)) = t(NAUunk(,,j)) =
MAuLink(,,j) = MAUstar(,,j). Now for 1 = i < n with |i - j| = 1 we have v; € AU Star(v;).
Hence, applying (2) again we obtain ¢(}N, Austar(,,j)ustar(,,i)) =M, Austar(vj)uStar(v;)- Repeating
the same argument at most n times we obtain ¢(Nr,) = Mr,.

(4) Let P = (vy,...,v,) be a path in T traversing all vertices in I'y. Then I'y is equal to
U?zl Star(v;). Now since A € Iy is non-empty, we can choose 1 < j < n s.t. vj € A. Now
by (3) we obtain ¢(Nr,) = Mr,. O

Theorem 5.5.19. LetT be a finite rigid graph. For v € T, let M, be von Neumann algebras
in the class Gvertex- Let Mt = *,v(My, 7). Suppose Mr = *, 5 (Ny, T,y) for another finite
rigid graph A and other von Neumann algebras Ny, € Gyertex for w € A. Then there is a
graph isomorphism « : T — A, and for each v € T there is a unitary u, € Mr and a real
number 0 < t,, < oo such that

Mstar(v) = Uy, Nstar(a(v) v and M, =N (5.30)

a(v)”

Furthermore, for each v €T its connected componentT, ST satisfies Mr, = uy, Ny r,) Up-

Proof. First we construct the graph isomorphism a. Take v € I'. As the vertex von Neu-
mann algebras are factors we have

!
M inkw) "M = Muink(Link(v)) = Mo-.
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In particular MICink(v) N M is non-amenable. Therefore Theorem 5.5.15 implies that there
exists Ag € A such that Myjnk(y) <ny Na, and Link(Ao) # @. Thus taking relative commu-
tants (Lemma 5.5.16) we find that Nyinia,) <mp Myp.

So we have shown that for every v € T there exists a subgraph a(v) < A that occurs as
the link of a set such that Ny () <p M,. Conversely, by symmetry, for every w € A there
exists f(w) T that occurs as the link of a set such that Mg,y <pg Np.

Let again v € I'. Then for any w € a(v) we have N,, <p; M, and consequently as
N;,n Mr is a factor N, <;v1r M, see Lemma 5.5.17(2). Therefore, by transitivity of stable
embeddings, i.e. Lemma 5.5.17(1), we find Mgy <mr My. Hence for any v’ € B(w) we
have M,» <p; M,. But then by Proposition 5.4.14 we see that v’ = v. Hence f(w) = v
for any w € a(v) and in particular is a singleton set. So we have proved that for v € I we
have f(a(v)) := Uyeq(v) B(w) = v and by symmetry for w € A we have a(f(w)) = w. But
this can only happen if the values of @ and f are singletons and a and f are inverses of
each other.

If v € ' then we know that Ny ) <pmr My and M, < Ng(p). Taking relative commu-
tants, using again factoriality of the vertex von Neumann algebras, we find

Minkw) <M NLink(a(v)) NLinka(v)) <Mr MLink(v)-

Now take v’ € Link(v) so that the first of these embeddings gives M, <p; NLink(a)),
hence M,/ <wa Niink(a(r)) by Lemma 5.5.17(2). Then again by Lemma 5.5.17(1) we ob-
tain Ny <Ny MNLink(a(v))- This then implies by Proposition 5.4.14 that a(v') € Link(a(v)).
So we conclude that a preserves edges. Similarly B preserves edges, and it follows that

a:TI' — Ais a graph isomorphism.

Since I = A we obtain by Lemma 5.5.18(1) that for each v € T there is a unitary u, €
Mr such that u}, Nsar(a(v)) Uy = Mstar(v). Consider the #-isomorphism ¢, := Adyx : Nr —
Mt which satisfies ¢, (Nstar(a(v))) = Mstar(r)- Then by Lemma 5.5.18(4) we obtain for the
connected componentI', < T of v that u;, Nr,u, =1,(Nr,) = Mr,.

We show the isomorphism of vertex von Neumann algebras up to amplification. Let
w € I'. Since 1y (Nstar(a(w))) = Mstar(w) and since Lw(NLink(a(w))), N Mstar(w) = tw(Na(w)) is
non-amenable, we obtain by Theorem 5.5.15 that ¢y (NLink(a(w))) <Mgware Mry; for some
subgraph I'y < Star(w) with Linksiar(,) (T'1) # @. Thus, by Lemma 5.5.16 we obtain that
MLink(r)) <Mswarw) tw Ne(w))- Let v € Link(T';) (which is non-empty). Then My <
tw (Ng(w)) and, as before, t,, (Ng(w)) <§V1r M,,. Hence M, <ps My, and so v = w by Propo-
sition 5.4.14. Therefore My, <) tw (Na(w)). Analogously, 1y (N (w)) <Mgary Mw-

Since we are dealing with II; -factors these embeddings are also with expectation, i.e.
tw(Na(w) =Msarw) Mw as in [HI17, Definition 4.1]. Thus, since Mstar(w) = My ® Mink(w)
we obtain by [HI17, Lemma 4.13] non-zero projections py, G € Mstar(w), @ partial isom-
etry vy, € Mstar(y) With v}, v, = py and v, v}, = g, and a subfactor Py, S qutw (Ne(w)) Guw
so that

Gutw Naw)) qw = VwMy Vjugpw’ Vw MLink(w) V:u = ngbhulw(NLink(a(w)))qw‘

Since Ny, is prime, so is gutw (Naw))qw- Hence, as v, M, v}, is a II;-factor, we obtain
that Py, is a factor of type I,, for some n € N. We conclude that N, is isomorphic to
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some amplification of M,.
O

We state two corollaries that follow from Theorem 5.5.19. The following result tells
us when a rigid graph product Mr can decompose as graph product over another rigid
graph A.

Corollary 5.5.20. LetT, A be finite rigid graphs. Let Mt = *,, v (M,,T,) be the graph prod-
uct of factors My, € Gvertex- The following are equivalent:

1. Wecan writeT' = %, AT, for some non-empty graphsT',,, w € A;
2. We can write Mr = * A (My, Ty) for some factors My, € 6Grigid, W € A.

Proof. Suppose we can write I' = *, oI';, for non-empty graphs I, for w € A. Note that
I'y is rigid by Lemma 5.2.5. Now by Remark 5.2.4 we have Mr = *, A (M,,,7,,) where
Mw = Mrw € chigid-

For the other direction, suppose Mr = #y, A (M, Ty) for some My, € 6Rigiq for w € A.
Then there are non-empty, finite rigid graphs I', and factors N, € Gyereex for v € I'y, such
that My, = 1, (Ny,7,) for w € I'. Hence, by Remark 5.2.4 we obtain Mr = *,r, (N}, T,).
Since I'y is rigid by Lemma 5.2.5, we obtain by Theorem 5.5.19 that I’ =T'y = %, 5I';,,. O

The following corollary states a unique prime factorization for the class €complete-
This result recovers the result of [F117] for a slightly smaller class.

Corollary 5.5.21. Any von Neumann algebra M € 6€complete Can decompose as tensor
product

M=M®& - 8M,y, (5.31)

for some m = 1 and prime factors My, ..., My, € GVertex-
Furthermore, suppose M = N for

N=N;®:--®Ny, (5.32)

where n = 1, and Ny, ..., Ny, € Gvertex are other prime factors. Then n = m and there is a
permutation a of {1,..., m} such that M; is isomorphic to an amplification of Ny ;).

Proof. Since M € 6complete, there is a non-empty finite complete graph I' and factors
M, € Gyertex for v € T such that M = *,r(M,,7,). Hence M = @Ud-M,, since I' is com-
plete. Moreover, for each v € I the factor M, is prime by Remark 5.5.5(1). This shows
(5.31) with m = |T'|. For each 1 < i < n we have N; € bverex since it is prime. Let A be
a complete graph with n vertices. Then N = ®i<i<nN; = *, A(N;,7;). Since I and A
are rigid we obtain by Theorem 5.5.19 a graph isomorphism « : I' — A such that M; is
isomorphic to an amplification of Ny ;. In particular, n = |A| = |T'| = m. O
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5.6. CLASSIFICATION OF STRONG SOLIDITY FOR GRAPH PROD-
UCTS

We state the definition of strong solidity. We recall the assumption that inclusions of von
Neumann algebras are understood as unital inclusions.

Definition 5.6.1. A von Neumann algebra M is called strongly solid if for any diffuse,
amenable, von Neumann subalgebra A< M, Nor(A)" is also amenable.

Remark5.6.2. Note that a tracial von Neumann algebra that is not diffuse must be strongly
solid as it contains no diffuse unital subalgebras at all.

In Section 5.6.1 we characterize strong solidity for graph products Mr of tracial von
Neumann algebras (M), 7,). In Section 5.6.2 we then show that for many concrete cases
this makes it possible to verify whether the graph product is strongly solid.

5.6.1. STRONG SOLIDITY MAIN RESULT
We proof the main result Theorem 5.6.7. which characterizes strong solidity for graph
products. We use the following result concerning amalgamated free products.

Theorem 5.6.3 (Theorem A of [Vael4]). Let (Ni,71),(N2,T2) be tracial von Neumann al-
gebras with a common von Neumann subalgebra B < N; satisfying 71|p = 12|, and de-
note N := Ny x g N> for their amalgamated free product. Let A< 1,4N1 4 be a von Neumann
algebra that is amenable relative to N\ or N, inside N. Put P = Nory ,n1, (A)". Then at
least one of the following is true:

1. A<y B;

2. P <y N; forsomei=1,2;

3. P isamenable relative to B inside N.

Furthermore, we use the following results that are rather standard.

Proposition 5.6.4. Let N € M be a von Neumann subalgebra and assume N is strongly
solid. Let A< M be a diffuse amenable von Neumann subalgebra and P = Nory;(A)" and
z € PN P’ be a non-zero projection. Assume that zP <p; N. Then zP has an amenable
direct summand.

Proof. We follow [Vael4, Proof of Corollary C]. As zP <js N, using the characteriza-
tion [Vae08, Theorem 3.2.2], (following [Pop06c]), there exists a non-zero projection p €
M,,(C)® N and a normal unital *-homomorphism ¢ : zP — p(M,(C)® N)p. So ¢(Az)isa
diffuse amenable von Neumann subalgebra of M, (C)® N and P= Norpm,©oNp (p(Az)"
contains ¢(Pz). As N is strongly solid, so is its amplification p(M,(C) ® N)p [Houl0,
Proposition 5.2] and hence P is amenable. So ¢(Pz) is amenable and therefore Pz con-
tains an amenable direct summand. O

Recall that a von Neumann algebra M is atomic if any projection in M majorizes
a minimal projection. If M is atomic it is a direct sum of type I factors. We state the
following proposition.
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Proposition 5.6.5. Let N = N1®N, be a tensor product of finite von Neumann algebras
Ny, Ny. The following statements hold:

1. Suppose N, is non-amenable and diffuse and N is strongly solid. Then N, is atomic;
2. Suppose N, is non-amenable and N, is diffuse. Then N is not strongly solid;
3. Suppose N is strongly solid and diffuse and N, is atomic. Then N is strongly solid.

Proof. (1) Write N, = N, @ N; with N, either 0 or a diffuse von Neumann algebra and
Ny an atomic von Neumann algebra. Assume N, # 0. Let A € N, B < N; be diffuse
amenable von Neumann subalgebras. Then C:=Cly, ® A® B&Cly, € N is diffuse and
amenable. Furthermore, Nory(C)” contains N;®A® B®Cly, which is non-amenable.
This contradicts that N is strongly solid and we conclude that N, = 0.

(2) Take any diffuse amenable subalgebra A < N>, for instance we may take A to be
a maximal abelian subalgebra. Then C1y, ® A is a diffuse amenable subalgebra of N and
Nory(C1y,®A)” contains N;® A which is non-amenable. Hence N is not strongly solid.

(3) As N, is atomic we may identify N, with @,y Mat,, (C) where I is some index set
and nq € Nxj. Let 14 be the unit of Mat,,, (C). Let A< N;® N, be a diffuse amenable von
Neumann subalgebra. Then 1,4 € N ® Maty,, (C). So Norn; gMat,, () (1a A) ""is amenable
by [Houl0, Proposition 5.2] since N is strong solid and diffuse. Since

Norn(4)" = @ Nory, eMaty,, © (1a A)”

acl

and direct sums of amenable von Neumann algebras are amenable we conclude that
Nory(A)” is amenable. It follows that N is strongly solid. O

We classify atomicity for graph products.

Proposition 5.6.6. Let (Mr,tr) = *,,r(My,7,) be a graph product of tracial von Neumann
algebras over a finite graph T'. Then Mr is atomic if and only if T is complete and each M,
is atomic.

Proof. Any subalgebra of an atomic von Neumann algebra is atomic again. It follows that
each M, is atomic. If I" would not be complete then we may pick v, w € I" not sharing
an edge and (M,,1,) * (My,T,) € Mr. However, (M,,7,) * (M, T,) is not atomic by
[Uedl11]. So T is complete. Conversely if I' is complete and each M, is atomic then
M= @veFMV is atomic. O

We now classify strong solidity for graph products in terms of conditions on sub-
graphs. These conditions can be verified in most cases (see Proposition 5.6.6, Proposi-
tion 5.6.8, Proposition 5.6.9 and Theorem 5.6.12).

Theorem 5.6.7. LetT be a finite graph and for each v €T let M, (# C) be a von Neumann
algebra with normal faithful tracet ,. Then Mr is strongly solid if and only if the following
conditions are satisfied:

1. Forevery vertex v € I' the von Neumann algebra M, is strongly solid;
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2. For every subgraph A T with M non-amenable, we have that My inx () is not dif-
fuse;

3. For every subgraph A € T with My non-amenable and diffuse, we have moreover
that Myink(n) is atomic.

Proof. Suppose Mr is strongly solid, we show that conditions (1), (2) and (3) are satis-
fied. Since strong solidity passes to subalgebras, as follows from its very definition, we
obtain that (1) is satisfied. Furthermore, suppose I'g € I is a subgraph for which Mr,
is non-amenable. We have Mr,yrinkr,) = Mr,®MLrinkr,) Which is strongly solid being a
von Neumann subalgebra of Mr. Hence, Proposition 5.6.5(2) shows that My;uir,) can-
not be diffuse. This concludes (2). If Mr, is diffuse then Proposition 5.6.5(1) shows that
My ink(r,) is atomic. This concludes (3).

We now show the reverse direction. The proofis based on induction to the number of
vertices of the graph. The statement clearly holds when I' = @ since in that case Mr = C
is strongly solid.

Induction. Let T be a non-empty graph, and assume by induction that Theorem 5.6.7 is
proved for any strictly smaller subgraph of T', i.e. with less vertices. Assume conditions
(1), (2) and (3) are satisfied for I'. Observe that condition (1), (2) and (3) are then satisfied
for all subgraphs of I" as well. Hence by the induction hypothesis we obtain that Mr,
is strongly solid for all strict subgraphs I'y C I'. We shall show that Mr is strongly solid.
Let A € M be diffuse and amenable and denote P = Nors(A)”. We will show that P is
amenable.

Suppose there is v € I" with Star(v) = I'. Then we can decompose the graph product
as Mr = M,®Mr\(,;. Now M, is strongly solid by condition (1), and M\, is strongly
solid by the induction hypothesis as I'\ {v} C T' is a strict subgraph. When both M, and
Mr\;y; are amenable then Mr = M, ® Mr\;y; is also amenable, and hence Mr is strongly
solid. We can thus assume that M, or Mr\y;; is non-amenable. If M, is non-amenable
we need to separate two cases.

e If M, is non-amenable and not diffuse then by condition (2) neither Mty is dif-
fuse and hence neither is Mr = M,,® Mr\,;. Then certainly Mr is strongly solid by
the absence of (unital) diffuse subalgebras.

 If M, is non-amenable and diffuse then by condition (3) we obtain that My
(= Mr\y}) is atomic, so that by Proposition 5.6.5(3) we have Mr = Mink,)® M, is
strongly solid.

The case when Mr\;;,; is non-amenable can be treated in the same way by swapping
the roles of M, and M\ in the previous argument. We summarize that our proof is
complete in case there is v € I" with Star(v) =T.

Now we assume that for all v € I" we have Star(v) #I'. Pick v € I and set I'; := Star(v)
and I'; :=TI'\ {v}. By Theorem 2.4.3 we can decompose Mr = Mr, *my, ., Mr,. Moreover,
asT';, 'y and I'y T, are strict subgraphs of I we obtain by our induction hypothesis that
Mr,, Mr, and Mr,qr, are strongly solid.
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Let z € PN P’ be a central projection such that zP has no amenable direct summand.
Note that zP < Norzp,.2(zA)”. As zA is amenable, it is amenable relative to Mr, in Mr.
Therefore by Theorem 5.6.3 at least one of the following three holds.

1. zA<pp Mrjary;

2. Thereis i € {1,2} such that zP <p;. Mr;;

3. zP is amenable relative to Mr,nr, inside Mr.
We now analyse each of the cases.

Case (2). In Case (2) we have that Proposition 5.6.4 together with the induction hypothe-
sis shows that zP has an amenable direct summand in case z # 0. This is a contradiction
so we conclude z = 0 and hence P is amenable.

Case (1). In Case (1), since zA <p; Mr,ar, but zA £p C = My, there is a subgraph
A Ty NI, such that zA < Mp but zA £y My for any strict subgraph A < A. Put
Aemp := AULiInk(A). Observe that Aepyp contains at least v and A. Furthermore, by
Proposition 5.4.13(2) we obtain that zP <pq My, . If Aemp # T then My, is strongly
solid by the induction hypothesis. Therefore, in case z # 0 we obtain by Proposition 5.6.4
that zP has an amenable direct summand, which is a contradiction. Thus z =0, and P is
amenable. Hence Mr is strongly solid.

We can thus assume that Aep = I'. Suppose M, is non-amenable. Again we separate
two cases:

* Assume that M, is non-amenable and diffuse. Then by condition (3) we have that
Mrink() is atomic and by Proposition 5.6.6 we see that Link(A) must be complete.
But as v € Link(A) this implies that Link(A) <€ Star(v) = I'y and thus Aemp S 1.
Therefore Aemp is a strict subgraph of I', a contradiction. So this case does not
occur;

* Assume that M, is non-amenable and not diffuse. Then by (2) My ink(a) is not dif-
fuse either. As Mr = MA® M inka) we find that Mr is not diffuse and thus strongly
solid by absence of diffuse (unital) subalgebras.

Next suppose Mijnk(a) is non-amenable. Again we separate two cases:

* Assume that M) is non-amenable and diffuse. Then Miinkwinka) = Ma is
atomic by (3). But then zA <ps. M, with zA diffuse leads to a contradiction;

* Assume that Myjni(a) is non-amenable and not diffuse. Then by (2) also M, is not
diffuse and so Mr = M ® M ink(a) is not diffuse and thus strongly solid.

So we are left with the case that M, and M) are amenable. In this case, Mr =
My, = MA®Mink(a) is amenable and hence Mr is strongly solid.

Remainder of the proof of the main theorem in the situation that Case (1) and Case (2)
never occur. We first recall that if we can find a single vertex v as above such that we are
in case (1) or (2) then the proof is finished. Otherwise for any vertex v € I we are in case
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(3). So zP is amenable relative to My ink(y) inside Mr. As(,er Link(v) € Nyper N\ {v} = @ we
obtain by iteratively using Theorem 5.4.8 that zP is amenable relative to (e MLink(y) =
C, thatis zP is amenable. So z = 0 and we conclude again that P is amenable. O

5.6.2. CLASSIFYING STRONG SOLIDITY IN SPECIFIC CASES

We show that in many concrete cases that one can verify whether or not a graph prod-
uct Mr is strongly solid. Theorem 5.6.7 tells us how to decide whether Mr is strongly
solid. For this we need to know for each vertex v whether or not M, is strongly solid.
Furthermore, we need to know for each subgraph A < I" whether of not M, is atomic,
diffuse, or non-amenable. We observe that in concrete cases we can verify whether My
is diffuse, atomic or non-amenable. Indeed, atomicity is classified in Proposition 5.6.6.
Furthermore, amenability was classifed in [Cha+24]. Moreover, in [Cha+24] diffuseness
was classified under the condition that each vertex algebra M, contains a unitary ele-
ment of trace 0, i.e. a Haar unitary. This in particular applies to the case where M, is
either diffuse or a group von Neumann algebra. We state these results here.

Proposition 5.6.8 (Proposition 6.3 of [Cha+24]). LetT be a simple graph. Forv €T let M,
(# C) be a von Neumann algebra with normal faithful state ¢,. Then the graph product
Mr = %, r(M,,@,) is amenable if and only if the following conditions hold:

1. Each vertex von Neumann algebra M, v €T is amenable;
2. Ifv# w €T share no edge, then dim M, = dim M, = 2 and Link({v, w}) =T\ {v, w}.

Proposition 5.6.9 (Theorem E of [Cha+24]). Let (Mr,tr) = *,1(M,,T,) be a graph prod-
uct of tracial von Neumann algebras over a finite graph I'. Assume that each M,,v € T
contains a unitary u, with t,(u,) =0. Then Mr is diffuse if either (a) thereis v € I’ with
M, diffuse; (b)T is not a complete graph.

In case not every vertex von Neumann algebra contain a unitary of trace 0 the situa-
tion becomes more subtle and the analysis becomes significantly more intricate. How-
ever, if the vertex von Neumann algebras are 2-dimensional then the results in [Gar16],
[RS23], [CKL21] again yield a classification of diffuseness (and amenability) of graph
products.

Definition 5.6.10. Suppose thatM,,q,, qy € (0,1] is the 2-dimensional Hecke algebra which
is the x -algebra spanned by the unir1, and an element T, 4, satisfying the Hecke relation

1 _1
(Tug, = 45)(Tug, + G, *) =0, Ty 4, =Tug,.

Define the tracial state T, by setting T,(Tyq,) = 0 and 7,(1,) = 1. For a finite graph T
andq:= (qy) yer € (0, 11" we let Mr q = *y1(My, Ty,q,) be the graph product von Neumann
algebra which is called the right-angled Hecke von Neumann algebra.

Remark 5.6.11. Note that (M,,4,,T,) is isomorphic to c? With tracial state 74(x® y) :=
. _1 / 4 _ qu-1
ax+(1—a)yw1tha—§(1+ l—m) where p,(q) := Vi E( 00,0]. Hence a gen-

eral 2-dimensional von Neumann algebra with a (necessarily tracial) faithful state is of
the form (M,,4,,74) and Hecke algebras correspond to a general graph product of 2-
dimensional von Neumann algebras.
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Let L be the graph with 3 points and no edges and L* be the graph with 3 points and
1 edge between two of the points.

Theorem 5.6.12 (Theorm A of [RS23], Theorem 6.2 of [CKL.21]). LetT be a finite graph
and q:= (qy) ver € (0,1]". Then

1. The Hecke von Neumann algebra Mr q is not diffuse if and only if the sum ¥ wey;. Gw,
converges where gw = qu, ... quw, andw = wy ... wy, reduced;

2. Mrq is non-amenable if and only if W; is non-amenable if and only if L or L* is a
subgraph of T.

Hence, by Theorem 5.6.7 and Proposition 5.6.6 and Theorem 5.6.12 the classification
of strongly solid right-angled Hecke von Neumann algebras is complete. Partial results
toward this classification had been obtained earlier in [Cas20] and in Chapter 4. We state
the following result for the specific case of group von Neumann algebras.

Graphs K; 5 and K; 3

a a
\ \
d d
b b
e e
c / c /
(a) Graph Kz 3 (b) Graph K;‘ 3

Figure 5.1: We depict the graph K3 3 and the graph K2+ 3

Theorem 5.6.13. Let #r1 be a right-angled Coxeter group. The following are equivalent:
1. The von Neumann algebra £ (Wr) is strongly solid.
2. The Coxeter group #1 does not contain Z x [ as a subgroup.
3. ThegraphT does not contain K, 3 nor K2+ 4 as a subgraph (see Figure 5.1).

Proof. (1) = (2) Suppose #f contains Z x [, as a subgroup, we show that £ (#r) is not
strongly solid. Note that £ (Z)® % (F,) < & (#r) is a von Neumann subalgebra. We see
that the subalgebra £(Z) € £ (#r) is amenable (since it is commutative) and is diffuse,
while Nor ¢ (£ (Z))" is non-amenable as it contains £ (F,). This shows £ (#1) is not
strongly solid.

(2) = (3) Suppose I' contains K 3 or K2+, 5 as a subgraph. Then there are distinct
vertices a, b, c,d, e € T such that: a, b ¢ Link(c), d ¢ Link(e) and d, e € Link({a, b, c}). Write
F2 =(g1,82). Put k = 10. It can be seen that the map ¢ : Z x F, — #t given by ¢((0, g1)) =
(ac)k, ¢((0,82) = (be)* and ¢((1,0)) = de extends to an injective group homomorphism.
Thus #r contains Z x [, as a subgroup.
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(3) = (1) Suppose I' does not contain K3 3 or Kzfg as asubgraph. Put M, = £(Z/27)
with the canonical trace 7, so that Mr = %, (M,,7,) = Z(#r). We show M is strongly
solid by showing that all conditions in Theorem 5.6.7 are satisfied. Clearly M, is strongly
solid for v € I'. We show the other conditions are also satisfied. Let A €T for which M, (=
Z(#))) isnon-amenable. From Proposition 5.6.8 it follows that A contains three distinct
elements a, b, ¢ such that a, b ¢ Link(c). We claim that Linkr (A) is complete. Indeed, if A
contains two distinct vertices d, e that share no edge, then the graph {a, b, ¢, d, e} is either
isomorphic to Ky 3 or to KZ 3 which is a contradiction. Thus Linkr(A) is complete and so
Linkr(A) is finite. Hence Mpjnk(p) is atomic (and not diffuse). This shows the conditions
of Theorem 5.6.7 are satisfied. Thus £ (#1) is strongly solid. O

5.7. CLASSIFICATION OF PRIMENESS FOR GRAPH PRODUCTS

We start by recalling the definition of primeness.

Definition 5.7.1. A II) -factor M is called prime if it can not factorize as a tensor product
M = M;®M, with My, M> diﬁ‘use.

We study primeness for graph product Mt = *,r(M,,7,) of tracial von Neumann
algebras M,. In Section 5.7.1 we prove Theorem 5.7.4 which characterizes primeness
for graph products of II;-factors. In Section 5.7.2 we use this to prove Theorem 5.7.5
concerning irreducible components in rigid graph products. Moreover, we prove Theo-
rem 5.7.6 which establishes UPF results for the class ‘6xigiq. Last, in Section 5.7.3 we ex-
tend the primeness characterization from Theorem 5.7.4 to a larger class of graph prod-
ucts.

5.7.1. PRIMENESS RESULTS FOR GRAPH PRODUCTS OF II;-FACTORS

We prove Lemma 5.7.2 which we use in Lemma 5.7.3 to give sufficient conditions for a
graph product to be either prime or amenable. For graph products of II; -factors we then
characterize primeness in Theorem 5.7.4

Lemma 5.7.2. Let T be a finite graph that is irreducible. For v € T let M, (# C) be a
von Neumann algebra with a normal faithful trace t,,. Suppose N < Mr is a diffuse von
Neumann subalgebra. The following are equivalent:

1. N #£pyp Mr, for any strict subgraphTy C T;
2. Norpg. (N)' £y Mr, for any strict subgraphTo CT.

Proof. As N = Nory, (N)”, itis clear that (1) = (2). We will show that (2) = (1).

As N € Mr is a subalgebra, we have that N <p;. Mr. Therefore, there is a (minimal)
subgraph A €T such that N <pq Mp and N £y M5 for all strict subgraphs A CA. By
Proposition 5.4.13 (2) we obtain that Nory. (N)" <pq My, Where Aemp = AU Link(A).
Now by our assumption this implies that Aepp = I Now, as T is irreducible and T' =
A ULink(A) we have that A or Link(A) is empty. As N £y Clag (since N is diffuse) and
N <py Mj we must have that A is non-empty, and thus that Link(A) is empty. Thus
A =T, and this proves the statement. O
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Lemma 5.7.3. Let I be a finite, irreducible graph with |I'| = 2. Forv eT let M, (# C)
be a von Neumann algebra with a normal faithful trace T,. Suppose the graph product
Mr = *y1v(My,7y) is a Il -factor and Mr £y, Mr, for any strict subgraphTo C T'. Then
Mr is prime or amenable.

Proof. Suppose that Mr is not prime, we show it is amenable. As Mr is not prime, we can
write Mr = N;® N, with Nj, N, both diffuse. We observe that Noryy, (N1)” = Mr. There-
fore, using our assumption on Mr and applying Lemma 5.7.2 we obtain that N1 £pq Mr,
for any strict subgraph T'y CT.

As N is diffuse it contains a diffuse amenable von Neumann subalgebra A € N».
Now observe that Norp. (A)” contains N; and hence Nory,. (A)” £um Mr, for any strict
subgraph I'y C I'. Thus, again by Lemma 5.7.2 we obtain that A £ Mr, for any strict
subgraph 'y CT.

Let veT and putI'y := Star(v) and I' := ' \ {v}. We can write

Mr = MT] *MLink(u) Mrz. (533)

As A is amenable relative to Mr, inside Mr (as A is amenable), we obtain using Theo-
rem 5.6.3 that at least one of the following holds:

1. A<mp MLinkw);
2. Norpg (A)” <y Mr, for some i € {1,2};
3. Norj (A)" is amenable relative to My jni(y) inside Mr.

Now as I'1,I'» and Link(v) are strict subgraphs of I' (as I' is irreducible and |T'| = 2), we ob-
tain that only option (3) is possible. Thus Nory,. (A)” is amenable relative to Mynk(y) in-
side Mr. Note that v € I" was chosen arbitarily. Thus, applying Theorem 5.4.8 repeatedly,
and using that Mer Link(v) = @, we obtain that Nory, (A)” is amenable relative to Mg
(= Clyy) inside Mr, i.e. Nory,. (A)” is amenable. Hence the subalgebra Ny < Nor ;. (A)”
is amenable as well. Interchanging the roles of N; and N, we obtain that N, is also
amenable, and hence Mt = N; ® N, is amenable. O

We characterize primeness for graph products of II; -factors.

Theorem 5.7.4. LetT be a finite graph of size |I'| = 2. For each v € T let M, be a II, -factor.
Then the graph product Mr = %, r(My,T,) is prime if and only if T is irreducible.

Proof. Take the simple graph I" with |I'| = 2 and the II;-factors (M,,t,) for v € I'. By
[CF17, Theorem 1.2] the von Neumann algebra Mr is a factor. Furthermore, by Propo-
sition 5.4.14 we have that Mr #£pq Mr, for any strict subgraph I'y C I'. Suppose that I’
is irreducible. Then by applying Lemma 5.7.3 we obtain that Mt is prime or amenable.
Since I is irreducible and has size |[I'| = 2 we obtain that I" is not complete. We then see by
Proposition 5.6.8 that Mr is non-amenable. Thus Mr is prime, which shows one direc-
tion. Now suppose I is reducible, so that we can decompose I' =T'; Uy with '}, €T
non-empty and such that Link(I';) = I'». But then we can decompose Mr = Mr, ® Mr, as
a tensor product and again by [CF17, Theorem 1.2] Mr, and Mr, are II;-factors. Thus
M is not prime. O
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5.7.2. UNIQUE PRIME FACTORIZATION RESULTS

We proof Theorem 5.7.5 which strengthens the statement of Theorem 5.5.19 by showing
for irreducible components I'y that Mr, is isomorphic to an amplification of Ny (r,). We
then use this result to proof Theorem 5.7.6 which establishes UPF results for the class
GRigid-

Theorem 5.7.5. Given a finite rigid graph T'. For each v € T let M, € 6Vertex- Let Mr =
*, 1 (My,T,) be the graph product. Suppose Mr = * y (N, T 1), With another finite rigid
graph A and other von Neumann algerbas Ny, € Gvertex- Let @ : T — A be the graph iso-
morphism from Theorem 5.5.19. Then for any irreducible component Ty € T', M, is iso-
morphic to an amplification of Nyr,).

Proof. We observe that Mf\ro N Mr = Mr, is non-amenable. Hence, by Theorem 5.5.15
we obtain a subgraph Ag € A such that Mr\r, <um. Na, and Linka (Ag) # @. Choose
Ao < Ao minimal with the property that Mr\r, < NT\O' We show Ay = a(T'\ Tp). By
Proposition 5.4.13(2) we have Ny = Mr = Nor . (Mrr,)” <mp Na,,,, where Aemp = AgU
Linka (Ag). By Proposition 5.4.14 we conclude Aemp = A. We note for v € T'\ Ty that
Naw) <My M, and Mn\r, <ISMr N7\0 by Lemma 5.5.17(2). Hence by Lemma 5.5.17(1)
we obtain Ng(y) <mp NT\O' Thus a(T'\Ty) < 1~\0 by Proposition 5.4.14. Put S = Ko Nnaly).
Then

Su Linka(ro) (S) = (Ko @] LiIlkA (S)) n (X(ro) 2 (KE) U Lil’lkA (7\0)) N le(r()) = le(ro).

Since the graph a(I'g) is irreducible, we conclude that S = @ or S = a(I'y). Now, if S =
a(T'y) then a(I'y) € Ay, so that A = a(lp) Ua(I'\Ty) € A . But since Ag S Ag S A this
implies Ag = A, which contradicts the fact that Link, (Ag) # @. We conclude that S = @
and thus KO =al \Ty).

We have obtained Mr\r,, < M, Nariry). Taking relative commutants, by Lemma 5.5.16,
we get Ny (r,) <my Mr,. Since we are dealing with II; -factors, these embeddings are also
with expectation, i.e. Ngr,) <my Mr, as in [HI17, Definition 4.1]. Thus, since Mr =
Mr, ® Mr\r, we obtain by [H117, Lemma 4.13] non-zero projections p, g € Mr and a par-
tial isometry v € Mr with v*v = p and vv* = g and a subfactor P < g Ny r,) q so that

qNa(Fo)q = UMro U*§P and UM]"\]"O 1/* = quNa(F\Fg)q-

By Theorem 5.7.4 we have that Ny (r,) is prime. Hence qNgr)q is prime. Thus, since
vMr,v* is a II;-factor, we obtain that P is a type I,, factor for some n € N. We conclude
that Ny (r,) is isomorphic to some amplification of Mr,. O

Theorem 5.7.6. Any von Neumann algebra M € 6rigia have a prime factorization inside
GRigid, I-e.

M=M®---®Mp, (5.34)

for some m =1 and prime factors My, ..., My, € 6Rigid-
Suppose there is another prime factorization of M inside €rigid, i.e.

M=N;®---®N,, (5.35)
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Jfor another n = 1 and other prime factors Ny, ..., Ny € Grigia- Then m = n and there is a
permutation o of {1,...,m} such that M; is isomorphic to some amplification of Ny ;).

Proof. Since M € GRigid, we can write M = x,1(M,,T,) for some finite rigid graph T
and some My, € Gyertex for v € I'. Let I'y,...,T';; be the irreducible components of T.
Let IT = {1,...,m} be the complete graph with m vertices and put M; = Mr, for i € II.
Then since I' = I'; we have by Remark 5.2.4 that M = *,r (M}, T) = *; n(*p1r; My, Ty)) =
M1®---®M,,. Now, for i € IT we have by Theorem 5.7.4 that M; is prime since T; is irre-
ducible. Note furthermore that I'; is rigid by Remark 5.2.6 and hence M; € 6Rigiq-

Now since N; € 6Rigid for i € {1,2,...,n}, we can write N; = x,5,(Ny,7,) for some
non-empty, finite, rigid graph A;. We note that A; is irreducible by Theorem 5.7.4 since
N; isprime. LetIT' = {1,..., n} be a complete graph with n vertices and put A := A which
is rigid by Lemma 5.2.5. Then by Remark 5.2.4 we have M = N1 ®---®N,, = ; (N, T;) =
*; 11(*p,a; (Ny, Ty)) = * 4 (Ny, Ty). Hence, we can apply Theorem 5.5.19 to obtain a graph
isomorphism a : I' — A. We note that Ay, ..., A, are the irreducible components of A and
thatT'y,..., T, are the irreducible components of I'. Since « is a graph isomorphism, this
implies that m = n and that there is a permutation o of {1,..., m} such that a(I';) = Ag(j)-
Now, for 1 < i < m we obtain by Theorem 5.5.19 a real number 0 < #; < oo such that
M; = Mr, = Ncil(r,-) = Nzt\lum =Nji- O
Remark 5.7.7. In Fig. 5.2 we give an example of a von Neumann algebra for which we
obtain a unique prime factorization. This example was not yet covered by [HI17, The-
orem A] since the graph I is not complete. The example is also not covered by [CSS18,
Theorem 6.16] in case the vertex von Neumann algebras M, € Gyertex are not known to be
group von Neumann algebras. Examples of such M, can be found as von Neumann alge-
bras of free orthogonal quantum groups [VV07] or g-Gaussian algebras of finite dimen-
sional Hilbert spaces and g € (-1,1) sufficiently far away from 0, see [Bor+23, Remark
4.5] which is essentially proved in [Kuz23]. We emphasize that it is not known whether
such von Neumann algebras are group von Neumann algebras; we do not make the more
definite claim that they cannot be isomorphic to group von Neumann algebras.

Figure 5.2: An example of a rigid graph T’ is depicted. Let My € Gyertex for v € I'. Then Theorem 5.7.6 ob-
tains for Mr = =, r(My,7y) the unique prime factorization Mr = MFI§MF2, where 'y = {a,b,c,d, e} and
I'> ={f,g h,i, j} are the irreducible components of I.
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5.7.3. PRIMENESS RESULTS FOR OTHER GRAPH PRODUCTS

In case the von Neumann algebras M, are not (all) type II;-factors, it is interesting to
know whether the condition Mt £, Mr, for any strict subgraph I'yg C T, is satisfied. In
Lemma 5.7.10 we will give sufficient conditions for the property to hold. To prove this,
we need the following lemma.

Lemma 5.7.8. LetT be a graph and for v eT let (M,,1,) be a tracial von Neumann alge-
bra. Let A T be a subgraph and letu € Wy \ Wy. Letv,v' € #t be such that every letters at
the start of v respectivelyV' does not commute with any letters at the end ofu™' respectively
u. Letw,wW € #t with |w| < |v| and |W'| < |V'|. Then

Ery (@xb) =0  for a€ My, X € My 14y, b € My (5.36)

Proof. Letu,v,v/,w,w’ be given as stated. Observe by the assumptions on v and v’ that
in particular v-'uv’ is reduced. Denote

W= P Haw, Mw:= @ My, (5.37)

wWoeW (u) woe# (u)

Observe for y; € AM(u™)), y; € My and y3 € A(M(u)) that if we denote y := ¥ y2y3 and
write y = Y wew; Yw where yy € Mw, then we have that y,, = 0 whenever w does not con-
tain u as a subword. Thus, in particular Ep, (7 y2)3) = 0. We will apply this to obtain the
result.

Let x € M1,y be a pure tensor, and let x; € My, x, € M and x3 € My be s.t.A(x) =
A(x1)*A(x2)A(x3). Let a € My and b € M. Let w € %, then we can write w = (V],V5,V3)
for some v}, v, v} € #r with v/ = v\ v, v;.

By Lemma 3.1.4 we have 1 := A v, v (x3)bQ € ‘]2"6 where v = v|v,w’. We show
that 1, € #(u). In particular, we can assume that 7, is non-zero, so that w’ starts with
(v’s)‘lv’2 and vy starts with v v;,. If V| v}, = e then v, = V/, so that |[vj| + [vjw'| = [W/| < [V'| =
|v’3| and therefore vgw’ = e. We then conclude that n, € Jzﬂe € A£(u). Thus, suppose
v}V, # e. Then v} v,w;, (= v;) starts with a letter v/, at the start of v'. Now, by the assump-
tion on v/ we obtain that v does not commute with elements at the end of u. This implies
that uv{) isreduced and so 7, € #°(u). Now, as A(x3)A(b)Q = Zweyv, Ao (X3)A(D)Q € A (1)
we obtain that y3 := A(x3)A(b) € M(u). In a similar way we obtain y; := A(x))A(@)* €
M(u™!). Hence, putting y, := A(x) we obtain that E s, (A(@)A(x)A(b)) = Epy, (1 y2y3) =0.
The result now follows by density of A(M,) < ]\°4z forze wr. O

Corollary5.7.9. LetT beagraph, A =T be a subgraph and letu € Wy \Wy. Letv,V' € #t be
such that every letters at the start of v respectivelyVv' does not commute with any letters at
the end ofu™ respectivelyu. Letw,w' € #; with |w| < |v| and |w'| < |V'|. Thenwv~'uv'w’ ¢
Wh.

Proof. For veT let M, := £(Z/27), so that Mt = Z#r). Take a = Aw, X = Ay-14y and
b= Ay . Then Lemma 5.7.8 shows that Epg, , (Ayy-1uyw) = Ear, (@xb) = 0. This means that
W1V_lllVW2 W, O
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Lemma 5.7.10. LetT be a finite graph of size |I'| = 3 such that foranyv €T, Star(v) #T.
Forv eT let (My,7,) be a von Neumann algebra with a normal faithful trace. Suppose
forany v €T thereis a unitary u, € Mr with t7,(u,) = 0. Then Mr £y M for any strict
subgraph A CT.

Proof. First observe that the Coxeter group #7 is icc since |I'| = 3 and Star(v) # I for
all veT. Now let A C T be a strict subgraph and fix v € I'\ A. As the conjugacy class
{v"lvv:ve ¥4t} is infinite, we can for 7 € N choose v, € #f such that [v,, ! vv,| > 2n+1. Ifa
letters s commuting with v is at the start of v,, then we can replace v, with v, := sv,, € #1
which does not start with s and is such that ¥,,' v¥,, = v;,! vv,,. Repeating the argument,
we may thus assume that every letter at the start of v, does not commute with v. Then
in particular v;l vvy, isreduced and |v,| = n. Let (vy,1,..., Vy,1,) be a reduced expression
for v;l vv, and define u, := uy,, Uy, € Z\(}Iv#u‘,n. Then u,, is a unitary and for any
w, W € #4 with |wl|,|W| < nand a € My, b € My, we have by Lemma 5.7.8 that

Enm, (au,b) =0. (5.38)

We take x,y € Mr and € > 0. We can choose xy € Mr of the form xy = Zf.(zll x; for some
Ki=1,x;¢€ Mwi with some w; € #1, and with || y|| - || xp — x|l2 < €. We can now also choose
Yo € Mr of the form yy = Zﬁzly,- for some K = 1, y; € Mw;, with some w’l € Wr and
X0l - 1yo — yll2 < €. Put Iy := max<;<k, Wi, I := max)<j<k, Iw;| and I = max{ly, l}. Let
n = [ so that by (5.38) and linearity we have Ep, (x4, o) = 0 and hence

Enry (xupy) = Epgy (X — Xo) U y) + Epgy (Xo Un (y — Y0))- (5.39)

Furthermore,
[(x—x0)unylla < llx—Xoll2- lunyl <e, (5.40)
lxoun(y—yolll2 < llxounll-Ily —yoll2 <e. (5.41)

Thus, as the conditional expectation Epy, is ||-l2-decreasing (this follows from the Schwarz
inequality [Pau02, Proposition 3.3] as Ejy, is trace-preserving and u.c.p.), we obtain for
n = [ that

IEn, (xupy)llz < 2e. (5.42)

This shows for any x, y € Mr that [|Ep, (xu,y)ll2 — 0 as n — oco. By Definition 2.1.2(2) this
means that Mr £y Ma. O

Theorem 5.7.11. LetT be a irreducible finite graph of size |T'| = 3 and for v € T, let M,
(# C) be a von Neumann algebra with a normal faithful trace T, such that there exists a
unitary u, € M, witht,(u,) =0. Then Mr is a prime factor.

Proof. It follows from [Cha+24, Theorem E] and our assumptions that Mr is a II; -factor.
Furthermore, by Lemma 5.7.10 we have that Mr #£pg. M, for any strict subgraph A C
I'. Hence, by Lemma 5.7.3 we obtain that Mr is either prime or amenable. Since I is
irreducible and |T'| = 3 it follows from Proposition 5.6.8 that Mr is non-amenable. Hence,
M is prime. O
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Theorem 5.7.12. LetT bea finite graph. Forv €T, let M,, (# C) be a von Neumann algebra
with a normal faithful trace v, and assume that Mr = *,r(M,,1,) is a Il -factor. Then
M is prime if and only if there is an irreducible component A €T for which My is prime
and Mr\, is finite-dimensional.

Proof. Suppose there is an irreducible component A ¢ I' for which M, is prime and
dim M\ 5 < oco. Then My = MA® M, is prime as it is a matrix amplification of Mj.
For the other direction, suppose that Mr is a prime factor. Denote

A:={veTl:Starr(v) #T or dim M, = oc}.

If w e '\ A then Starp(w) =T and dim M, < oo, so w € Linkr(A). Hence Linkp(A) =T\ A
and so Mr = MA®Mr\ 5. Now, since I'\ A is complete, and since dim M, <ocofor ve '\ A
we have that Mr\, is finite-dimensional. Hence, since Mr is a prime factor also My is a
prime factor.

We now show that the graph A is irreducible so that from Linkr(A) =T'\ A it follows
that A is an irreducible component of I'. Suppose there is a non-empty subgraph A; € A
s.t. A2 := A\A; isnon-empty and Linky (A1) = A2. We show a contradiction. We can write
My = Mp,®M,,. Hence, by primeness of the factor M, there is i € {1,2} s.t. dim M,,; <
co. Let v € A;. Since dim M, < oo we have dim M, < co. Hence, since v € A we have by
definition of A that Starp(v) ZT. Let w € I' \ Starp(v). Then Starp(w) #T so that w € A.
Furthermore, w ¢ Linkr (v) so that w ¢ Linka (A;) = A\ A;, i.e. w € A;. Hence, since the
vertices v, w in A; share no edge we have dim M, = co, which is a contradiction. Thus
A isirreducible. O

5.8. CLASSIFICATION OF FREE INDECOMPOSABILITY FOR GRAPH

PRODUCTS

In this section we study free-indecomposability for graph product of II; -factors. In The-
orem 5.8.1 we characterize for graph products of II;-factors (with separable predual)
when they can decompose as tracial free products of II;-factors. In Theorem 5.8.2 we
combine this result with Theorem 5.5.19 to show unique free product decompositions
for von Neumann algebras in the class 6Rigiq \ ‘Gvertex- Hereafter, we show that Theo-
rem 5.8.1 and Theorem 5.8.2 really cover new examples. Indeed, in Proposition 5.8.3 we
give sufficient conditions for a graph product to not posses a Cartan-subalgebra, which
in Remark 5.8.4 we use to give examples of freely indecomposable von Neumann alge-
bras M € 6Rigid \ Gvertex that are not in the class Gapyi-free from [[HU16]. In Remark 5.8.5
we show that the unique free product decomposition from Theorem 5.8.2 also covers
new examples.

Theorem 5.8.1. LetT be a finite graph of size |T'| = 2, and for v € T let (M,,1,) be tracial
II; -factor with separable predual. Then the graph product My := *,v(M,,T,) can decom-
pose as a tracial free product Mr = (M1, 71) * (M>, T2) of II, -factors My,M, if and only if T
is not connected.

Proof. LetT and (M,,1,)er be given. If T is not connected then for any connected com-
ponent I'g of ' we have Mt = (Mr,, 71) * (Mr\r,,, T2), which shows one direction.
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For the other direction suppose that I' is connected. Assume Mr = (M1, 71) * (M2, T2)
for some II; -factors M;, M,. Fix v € T and by [OP04, Proposition 13] let Ny < M, be an
amenable II; -subfactor with Né N Mr = M), n Mr. Then N is amenable relative to M;
inside M for i = 1,2. Therefore, by Theorem 5.6.3 one of the following holds true:

1. N() <Mr Cer;
2. Norps (No)" <pge M forsome 1 <i <2;
3. Norps (Np)” is amenable relative to C1yy, inside Mr.

Since Nj is diffuse, we can not have (1).

We show that (2) is also not satisfied. Suppose Nor s, (Ng)" < M M. Since Nj is dif-
fuse, it can not embed in any type I factor. It follows that Norps (No)” £p Mg. Therefore,
since Np and Njn Mr = M;, N Mr = Mynk(y) are factors we obtain by Theorem 5.4.16 that
u* Norpy. (No)"u < M; for some unitary u € Mr.

Now take w € I arbitrarily. Since I' is connected there is a path P from v to w, i.e.
P = (vg, vy,...,vy,) for some n = 0 and vertices vy, v1,..., v, € I such that v; € Link(v;_1)
for 1 < i < n and such that vy = v and v,, = w. As |[I'| = 2 we can moreover choose this
path such that it has length n = 1.

Forie{l,...,n} put N; := M,,. Then, as v; € Link(v;_;) we obtain N; € Nors. (N;—-1)".
Since u* Nor s (No)"u € M) we obtain u* Nyu € M. Then since u* Nyu £y My (since
u* Ny u is diffuse) we obtain by Proposition 5.4.13(1b) that Nory, (u* Ny )" < M;. Note
that Norp,. (u* Nyu) = u* Norpy, (N u so that Norpg (u* Nyuw)” = u* Norpg. (N1)” u. Thus
we obtain u* Nory. (N1)”"u = M;. Continuing in this way we obtain u* Nor, (N;)"u <
M, for all 0 < i < n. Thus, in particular u*M,u < u*Nory, (Np-1)"u € M;. Since
w was arbitrary, we obtain that M,, < uM;u* for each w € I'. But this implies M =
Uwer Mw)" € uMyu*. Hence Mr = Mj, which is a contradiction. We conclude that
Nor s (No) Aumy Mi. By symmetry also Norag. (No) An- Me. We obtain that (2) is not
satisfied.

We conclude that (3) is satisfied, i.e. Norys. (Ng)” is amenable. Hence Mjnk) S
Nor s (Np)" is amenable as well. Therefore, by Proposition 5.6.8 we obtain that Link(v)
is a clique and that M, is amenable for any w € Link(v). We observe that v € I" was arbi-
trary, thus for each vertex z € I its Link(z) is a clique. Since I is connected, it follows that
I' is a complete graph. Moreover, for any v € I" choose z € I' \ {v} we have M, S Myink(z),
which shows that M, is amenable. Hence Mr is a tensor product of amenable II; -factors
and so Mr is amenable. But the amenable I1; -factor can not decompose as a free product
of type II; -factors. This gives a contradiction and we conclude that Mt can not decom-
pose as free product of II; -factors. O

Theorem 5.8.2. Any von Neumann algebra M € 6Rigid \ GVertex can decompose as tracial
free product inside 6rigiq \ 6vertex-

M=Mj *---% My, (5.43)

for some m =1 and IL, -factors My, ... My, € GRigid \ ‘6Vertex that can not decompose as any
tracial free product of I, -factors.
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Furthermore, suppose M has another free product decomposition:
M= Ny *---% Np,

forsomen =1 and other I -factors Ny, ..., Ny € 6rigid \ GVertex that can not decompose as
tracial free product of II; -factors. Then m = n and there is a permutation o of {1,...,m}
such that for each i, N; is unitarily conjugate to My ;) in M.

Proof. Since M € 6Rigid \ GVertex We can write M = Mr = *,r(M,, T,) for some rigid graph
T of size |I'| = 2 and some II; -factors M, € 6vertex- LetI'1,...,I';; be the connected com-
ponents of T', which are rigid by Remark 5.2.6. We let IT = {1,..., m} be the graph with
m vertices and no edges. We claim that |I';| = 2 for all i € II. Indeed, if m = 1 then
IT={1} and I'; =T so that |[I';| = |I'| = 2 for all i € IT. On the other hand, if m = 2 then
Linkp (Link (7)) = IT # {i} for all i € II, so it follows from Lemma 5.2.5 and rigidity of
T'n=TIthat|[';|=2foralliell

We denote M; := Mr; € 6Rigiq for i € II. By Theorem 5.5.19 and rigidity of T'; and
the fact that |T';| = 2 it follows that M; € 6vertex. Furthermore, since I'; is connected we
obtain by Theorem 5.8.1 that M; can not decompose as tracial free product of II; -factors.
By Remark 5.2.4 we conclude that Mr = *,,r (M, 7,) = *; n1(Mr,,7;) = My *---* My, which
shows (5.43).

Nowlet n>1andlet Ny, ..., Ny € Grigiq be I1; -factors that can not decompose as tra-
cial free product of I1; -factors. Since N; € GRigiq \ Gvertex we can write N; = # o, (N(i,2), T (i,2))
where A; is a rigid graph and (N(; z)) zea, are II;-factors in Gverrex. Observeforl1<i<n
that |A;| = 2 since N; € Gvertex and that A; is connected by Theorem 5.8.1 since N; can
not decompose as tracial free product of II; -factors. Let I[T' = {1,..., n} be the graph with
n vertices and no edges. Then by Remark 5.2.4 we have:

M=Ny*-x Ny=#; (o0, (NG, Ta,0) = *w,ay (Nw, Tw) = Nag,.

Then since Ay is rigid by Lemma 5.2.5, we obtain by Theorem 5.5.19 that Ay = T'.
The connected components of Ay respectively I' are Ay,..., A, respectively I'y,...,T'p,.
Hence n = m. Moreover, Theorem 5.5.19 asserts, for some permutation o of {1,...,m},
that NA,- (= Ny) is unitarily conjugate to Mr,,,, (= My(;)) in Mr. O

We give sufficient conditions for absence of Cartan-subalgebras in graph products.
We note that in [Cas20] absence of Cartan was studied for right-angled Hecke algebras
and that in [CE23] absence of Cartan was fully characterized for von Neumann algebras
associated to graph products of groups.

For a non-empty connected graph I" we define its radius as

Radius(I') := infsup Distr(s, 1), (5.44)
SEL feT
where Distr (s, £) denotes the minimal length of a path in I' from s to . Furthermore, we
set Radius(I") = 0 if I is empty and set Radius(I') = co if ' is not connected.

Proposition 5.8.3. LetT' be a graph with Radius(I') = 3 and for v € T let M, be a II, -
factor with normal faithful trace t,,. Then Mr = *,r(M,,T,) does not possess a Cartan-
subalgebra.
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Proof. Suppose Mr has a Cartan subalgebra A< Mr. Fix v € I'. Then Mr = Mstar(v) * My j0)
Mr\y. Since A is amenable, one of the statements of Theorem 5.6.3 must hold. Since
Radius(I') = 3, we have Star(v) # I'. Hence Nor . (A)” = Mr £pp Mstar(v) and Norpy, (A) =
Mr #um Mryy by Proposition 5.4.14. Thus we must have that A <p; Mpink) or that
Nors, (A)” is amenable relative to Myink(y) inside Mr. Suppose that A <. MLink(y) then
since A £y My we obtain by Proposition 5.4.13(1b) that Mr = Norp, (A)" € Ma,,
where Aemp = Link(v) UUyerink) Link(w). We see that Radius(Aemp) < 2 (indeed take
as center v). Hence, since Radius(I') = 3 we have Mr = Norp,. (A"cM Aemp & M, @ cOn-
tradiction. We conclude that Nory,. (A)” (= Mr) is amenable relative to Mk in Mr.
Since v was arbitrary we obtain using Theorem 5.4.8 that Mr is amenable. This is a con-
tradiction since Mr is non-amenable by Proposition 5.6.8 (since Radius(I') = 3). Thus
Mt does not have a Cartan subalgebra. O

Remark 5.8.4. We argue that we find new classes of finite von Neumann algebras that
are freely indecomposable. More precisely we argue that Theorem 5.8.1 covers von Neu-
mann algebras that are not in the class Ganti-free from [HU16]. Indeed, let ' be a graph
with Radius(I') = 3 (hence I' is irreducible) and for v € I let M, be a II; -factor with sepa-
rable predual and possessing the Haagerup property. Then the II; -factor Mr does not lie
in the class Ganti-free from [HU16]. Indeed, (i) Mr is prime by Theorem 5.7.4, (ii) Mr is full
(so no property Gamma) by [Cha+24, Theorem E], (iii) Mr does not have a Cartan sub-
algebra by Proposition 5.8.3, and (iv) Mr has the Haagerup property (so no property (T)
by [C]85, Theorem 3]) by [CF17, Theorem 0.2]. If ' is moreover connected and rigid and
if M, lies in Gvertex for each v € T, then Mr lies in 6rigiq and can not decompose as free
product of IT; -factors. As a concrete example, take the cyclic graph I = Z,, for some n = 6
and for each v e I let M, = Z(F2) € Gvertex Which has the Haagerup property by [BO08,
Theorem 12.2.5]. Then Mr is a II; -factor in ‘Rrigid \ Ganti-free that can not decompose as a
(tracial) reduced free product of II; -factors.

Remark5.8.5. We argue that the unique free product decompositions from Theorem 5.8.2
are not covered by [HU16] nor [DE24b]. Indeed, let " be a graph whose connected com-
ponents I'; for i = 1,..., m are of the form Z,,, for some n; = 6. Observe that I' is rigid.
For v € T put M, = Z(F2) € 6Vertex- Then Theorem 5.8.2 asserts the unique free prod-
uct decomposition Mr = Mr, *--+* Mr,, . Since the factors Mr, for i = 1,...,m are not
in the class Fanti—free, this result is not covered by [HU16]. Furthermore, we note for
i =1,...,mthat the group *,,F» is properly proximal by [DE24a, Proposition 3.7] since
Radius(T';) = 3. Hence, also [DE24b, Corollary 1.8] does not apply.

5.9. GRAPH RADIUS RIGIDITY

In this section we generalize the ideas from the proof of Theorem 5.8.1 and show that we
can, in certain cases, retrieve the radius of the graph I' from the graph product Mr. In
Section 5.9.1 we introduce the notion of the radius of a von Neumann algebra. Further-
more, we establish good estimates on Radius(Mr) in terms of the radius of I whenever
the vertex algebras M), posses the property strong (AO). In Section 5.9.2 we establish sim-
ilar estimates when the vertex algebras M, are group von Neumann algebras £(G,) of
countable icc groups G,.
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5.9.1. RADIUS OF VON NEUMANN ALGEBRAS
We introduce the following definition for a simple graph.

Definition 5.9.1. LetT be a simple graph and let A =T be a subgraph. Ford € Zx( put
Br(A;d) ={v el :Distr(v, w) < d for some w € A}.
which is the closed ball of size d around A. Furthermore, define Br(A;00) = Ug>1 Br(A; d).

We will now introduce a similar definition for von Neumann algebras.

Definition 5.9.2. Let M be a diffuse von Neumann algebra and A < M a diffuse von Neu-
mann subalgebra. For d = 0 we define the von Neumann algebra By;(A; d) inductively.
Put Bp(A;0) = A and ford = 1 define

n

By (A;d) = U Nor s (B)
BCBy (A;d-1)
diffuse vNa

Moreover, we also define
"

By (A;00) = (U By (A;d)
d=0

We remark for n,m € Z g that By;(A;n+ m) = By (Bpy(A; n); m).

Recall that the radius of a graph I" was defined in (5.44) and note that it is equal to the
infimum of all d € Z-( for which there exists a vertex v € I' with Br(v;d) =T. In a similar
way we can introduce the notion of the radius of a von Neumann algebras.

Definition 5.9.3. Let M be a diffuse von Neumann algebra. We define Radius(M) as the
infimum of all d € Z> such that there exists a diffuse, amenable subfactor A < M for
which A’ M is a non-amenable factor and such that By(A; d) = M.

We remark that the definition of Radius(M) would be more natural with the relax-
ation that A can be any diffuse amenable von Neumann subalgebra satisfying Bys(A; d) =
M. However, we need the extra restrictions in order to get appropriate lower bounds on
Radius(M).

Proposition 5.9.4. LetT be a finite simple graph and let A =T be a subgraph. Let Mt =
*,7(My,T,) be a graph product of I1; -factors with separable preduals. Then

1. Ford € ZsqU {oo} we have By (Ma;d) = Mp.(p;a)
2. IfT is not complete then Radius(Mr) < max{2, Radius(I')}.

Proof. (1) The statement holds true for d = 0 since Bpg. (Mp,0) = M = Mp;(A,0). We show
the statement for d = 1. Let A< M be amenable and diffuse. Then A £y C. Let {Aj} je 7
be the family {@}. Then by Proposition 5.4.13(1b) we obtain qNoer A" c My, where
Aemb = AUUpea Linkr (v) = Br(A;1). Hence Bp(Ma;1) € Mpp(a;1)- To show equality,
take w € Br(A;1) \ A and let v € A such that v and w share an edge. Let A < M, be
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an amenable and diffuse. Then Norp.(A)"” 2 Mpinkw) 2 M. Hence, My, € By, (Ma;1).
Hence, we obtain equality. Now let d = 1 and suppose the statement holds true for d — 1.
Then

By (Mp; d) = By (Bygr (M d = 1);1) = By (MBra;a-1) 1) = Mprsr(a;d—1);1) = MBrasa)

This proves the statement by induction for d € N. The statement for d = oo follows auto-
matically.

(2) Put r = Radius(I'). We know r = 1 and furthermore we may assume r < oo since
otherwise the statement is trivial. Let v € I" such that Br(v;r) = I'. Observe, since I' is
not complete, that v can be chosen such that Linkr(v) is not a clique in I'. By [OP04,
Proposition 13] we may let A € M, be a diffuse amenable subfactor for which A'n M =
M), N Mr = Myink(y)- Thus A’ n Mr is a non-amenable factor. We show that By, (4;1) =
Mr. We see that

Mink() € Norpg (A)" € By (A;1) € Bpgp (My; 1) € M
Hence,
Mg, winky (0);1) = Bmr MLink(v); 1) € By (Bay (A;1);1) € B (MBr(v;1);1) = Mpr(v;2) (5.45)

Now, observe that By (A;2) = By (Byp (4;1);1) and Br(Linkr (v);1) = Br(v;2). If r <2
then Br(v;2) =T which shows that Radius(Mr) < 2 = max{2, r}. Thus assume r = 2. By
(5.45) we obtain Br(4;2) = Mp(y:2). Thus we obtain

By (A1) = By (Bagy (A;2); 7 — 2) = By (MBr(v:2); T — 2) = MBr(v;r) = Mr

This shows Radius(Mr) < r = max{2, r}.
O

Proposition 5.9.5. Let I' be a finite simple graph. Let Mr = *,r(M,,T,) be a graph
product of II, -factors M,. Let K = 1 be a constant. Suppose for any amenable diffuse
subfactor A < Mr with A'n Mr a non-amenable factor there is a subgraph A = T with
Radius(Br(A, 1)) < K such that A<y; M. Then

Radius(I') — K < Radius(Mr).

Proof. Denote R = Radius(Mr). We may assume R < co. Let A € Mr be an amenable,
diffuse subfactor for which A’ N Mr is a non-amenable factor and for which By (A R) =
Mr. By assumption A <p;. My for some subgraph A ¢ T" with Radius(Br(A;1)) < K. Let
{Aj}je ¢ denote the non-empty familiy {@}. Then by Theorem 5.4.16 we obtain a unitary
u € Mr so that u* Au< My, where Aemp = Br(A;1). Hence, for d = 0 we obtain

u”* By (A; d)u = Bpg (u* Aus d) € By (M a1y @) = ML Brash);d)

Then
Mr = u” By (A; R u € MpBr(A;1;R)



5.9. GRAPH RADIUS RIGIDITY 145

so that I = Br(Br(A; 1); R) Therefore we obtain
Radius(I') < Radius(Br(A;1)) + R < K + Radius(Mr)
which completes the proof. O

Theorem 5.9.6. Let T be a finite simple graph that is not complete. Let My = *, (M, T,)
be a graph product of I, -factors M, that satisfy condition strong (AO) and have separable
predual. Then

Radius(I') — 2 < Radius(Mr) < max{2, Radius(I')}

In particular this holds true when Mr is a graph products of hyperfinite I -factors.

Proof. The upper bound is due to Proposition 5.9.4(2). To obtain the lower bound we
show that the condition of Proposition 5.9.5 is satisfied with constant K = 2. Let A< Mr
be amenable and diffuse and such that A’ n Mr is non-amenable. By Theorem 5.5.15
we obtain A <z My for some non-empty subgraph A < I' with Link(A) non-empty. Let
v € Link(A). Then A ¢ Link(v). Hence, Br(A;1) equals Br(v,2) and has radius at most 2.
This proves the lower bound. O

Remark 5.9.7. We use Theorem 5.9.6 to distinguish certain von Neumann algebras com-
ing from graph products. Indeed, let I' and A be finite, graphs with 2 < Radius(I') <
Radius(A) — 2. Let My = *, 7 (M,,T,) and Ny = %, (N,,T,) be graph products of factors
M,, N, satisfying the conditions from Theorem 5.9.6. Then we obtain

Radius(Mr) < Radius(I") < Radius(A) — 2 < Radius(NVyp)

Thus, in particular Mr # Nj.

5.9.2. RADIUS ESTIMATES FOR GRAPH PRODUCTS GROUPS

We now show that the statement of Theorem 5.9.6 also holds true when the vertex von
Neumann algebras M, are group von Neumann algebras £ (G,) of countable icc groups
(Theorem 5.9.11). We state the following definitions.

Definition 5.9.8. Let G be a countable discrete group and let &# be a family of subgroups
of G. Then a subset F < G is called small relative to & if

k
Fc U giGih;
i=1

forsomek =1, groups Gy,...,Gr € & and elements g1, ...,8x, h1,...,hx € G.

Definition 5.9.9. Let G be a countable discrete group and let &# be a family of subgroups
of G. Let V < Z(G) be a norm bounded subset. We write

14 Sapprox L&)

if for everye > 0 there is a subset F < G that is small relative to ¥ and satisfies forallve V
that |v— Pr(v)|l2 < € (here Pg : £2(G) — ¢?(F) denotes the orthogonal projection,).
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The following proposition is similar to [CSS18, Claim 6.15] and follows from the re-
sults in [Vael3]. In the proof we write (B); for the closed unit ball of the von Neumann
algebra B.

Proposition 5.9.10. Let I be a finite simple graph and for v € T' let G, be a countable
icc group. Let Gr = *,rG, be the graph product and let B < £ (Gr) be a von Neumann
subalgebra for which B' 0 £ (Gr) is a factor. Let {A;}icr be a collection of subgraphs of T
and let A =; A; be their intersection. If B < ¢ Gy) £ (Gyp,) foralli then B <Gy Z£(Gp)

Proof. Assume B <) Z(Gy,;) for i € I. We show B <Gy £(Ga). For i € I we can
by [Vael3, Lemma 2.5] obtain a non-zero projection ¢; € B’ n % (Gr) such that for % :=
{Ga,;} we have

(Bgi)1 Sapprox ZL(F)

Moreover, by [Vael3, Proposition 2.6] we may assume ¢; € Z(Nor g, (B)"). Note that
qi € ZNor Gy (B)") N (B'n £(Gr)) €Z(B'n £ (Gr)) =C1 (5.46)

Thus g; = 1. Denote
S ={(hiGa,h;* | hi € Grfor i € I}.
iel
From [Vael3, Lemma 2.7] it follows that (B)1 Sapprox £ (#). Then from [AM15, Proposi-
tion 3.4] for each (h;) e, h; € Gr there is a subgraph Ag € A and k € Gr such that

() hiGa, h;' = kGpgk ™' S kGpk ™.

iel
Thus, putting .4 = {G} it follows that (B); Sapprox £ (#) and hence by [Vael3, Lemma
2.5] we obtain B < ¢(Gp) Z(Ga). O

Theorem 5.9.11. LetT be a finite simple graph that is not complete. For ve T let G, be a
countable icc group. Let Gr = *,r G, be the graph product. Then

Radius(I') — 2 < Radius(Z(Gr)) < max{2, Radius(I')}

Proof. The upper bound on Radius(Z (Gr)) follows immediately from Proposition 5.9.4
since £(G,) is a Il -factor for v € I'. To prove the lower bound we show the condition of
Proposition 5.9.5 is satisfied with K = 2. Put M, = £(G,) and let Mt = *,r(M,,7,) =
%(Gr) be the graph product. Let R € Mr be an amenable II;-factor for which R’ n
Mr is a non-amenable factor. We need to show that R <ps. M, for some A ¢ T’ with
Radius(Br(A;1)) < 2. Let I be the set of all vertices v in I' for which Nora; (R)" is amenable
relative to Myink, () inside Mr. By Theorem 5.4.8 we obtain that Norys, (R)” is amenable
relative to Myjnk.(;) inside Mr. Since Nory.(R)” is non-amenable (as it contains R' N
M), we obtain that Linkr (1) is non-empty. Let w € Linkr(I). Then I € Br(w;1) so that
Br(I;1) € Br(w,2). Thus since w € Br(I;1) we see that Br(I;2) has radius at most 2.

Now let J =T be the set of all v € T for which R <ps. Mr\(;. Then since R' n £ (Gr) is
a factor we obtain by Proposition 5.9.10 that R <ps Mr\;. Now, if '\ J < I then R <pq. M7
which shows that we may take A = I. Thus assume I'\ J ¢ I. Take ve '\ Jwith v ¢ I. We
can decompose

Mr = Mstar(v) * M iy MLink(v)-

Since R is amenable we get by Theorem 5.6.3 that at least one of the following holds true
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1. R <pmp Miink)
2. NOI‘Mr (R)” <Mr MStar(v) or NOI‘Mr (R)" <Mr Mr\{v}.
3. Nory (R)” is amenable relative to Myjny(y) inside Mr.

Since v is not in I U J we must have that R <, Mpink() 0r Norag, (R)” <ps Mstar(r)- Thus
in particular we obtain R <z Mstar(y). Observe that Br(Star(v); 1) has radius at most 2.
Hence we may take A := Star(v). This finishes the proof. O

5.10. DISCUSSION

We discuss problems concerning rigidity of graph products and state a conjecture. In
Theorem 5.5.19 we obtained rigidity for graph products when the vertex algebras M, lie
in the class 6yertex and the graph T' is rigid. We can not apply Theorem 5.5.19 to graph
products Rr = #, (R, T,) of hyperfinite II; -factors since R, ¢ 6vertex- In fact, the result
of Theorem 5.5.19 for hyperfinite II; -factors does not even hold true since Rr = R, for
any complete graphs I', A (which are rigid). We are interested to know for what class .
of graphs we can distinguish Rr from R, .

Problem 5.10.1. Describe a class of finite graphs . such that:

1. LetT',A € & and let Rr = *,r(R,,7,) and Ry = *,(R,, T,) be tracial graph prod-
ucts of hyperfinite II; -factors. If Ry = Rj then T' = A.

2. Let I be any finite graph. Then there is a graph A € .¥ such that the tracial graph
products Rr = *,(Ry,T,) and Ry = *,, 4 (Ry,T,) of hyperfinite II; -factors are iso-
morphic.

Observe that Problem 5.10.1 is very hard. Indeed, for a finite graph I' with no edges
we have by [Dyk94] that Ry = Z(F,,) whenever n:= |T'| = 2. Thus, to solve Problem 5.10.1
one would first have to solve the free factor problem. To simplify Problem 5.10.1 we
may remove condition (2) and loosely require the class .# to be sufficiently large. In
Remark 5.9.7 we were already able to distinguish graph products Rr and R, based on
the radius of the graphs I and A. Furthermore, as we show in the next remark, Theo-
rem 5.5.19 can be used to distinguish certain graph products of hyperfinite II; -factors.

Remark 5.10.2. Let I'; for i = 1,2 be a rigid graph. Fori =1,2and veT;let A,; bea
graph of size n,,; := |A,,;| = 2 and with no edges. Let Ar, = *, 1, A,,; be the graph product
graph. Observe that RAr,- =#y1;(Rp,;»T) = *y1; (££([Fnuyi),r). Therefore, if RArl ~ RAF2
then by Theorem 5.5.19 we obtain I'y = I'; since T'; is rigid and £ (Fy,;) € Gvertex for
i=1,2, veT;. This shows that RArl # RAr2 whenever I'y # T's.

In the following remark we show a difficulty that can arise.

Remark5.10.3. LetT be a graph whose two irreducible components I'y and I', are graphs
with no edges and of size |[I';| = |T'»| = 3. Similar, let A be a graph whose two irreducible
components A; and A are graphs with no edges and of size |A;| =2 and |A2| = 5. While
I' # A we see using the amplifcation formula (1.8) from [Rad94] that

Rr = 2(F3) ® L(F3) = L(F3)V2 0 L([F3)V'V2 = 2(Fy) ® L(Fs) = Ry
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Say that a finite graph T is graph product prime (gpp) if, whenever I' = *, A, for
some graph IT and non-empty graphs (A,) yer1, then either [II| = 1 or [ =T (but not both).
There are many examples of gpp graphs. For example, for n = 5 the cyclic graph Z,, of
size |Z,| = n is gpp. However, the class of gpp graphs is in some sense also restrictive.
Indeed, a gpp graph I' is always connected and irreducible unless |I'| = 2. We also note
that the graph I of size |I'| = 1 is not gpp. We state the following problem.

Problem 5.10.4. Let I and A be finite, gpp graphs. Let Rr = *,r(R,,7,) be the graph
product of hyperfinite II; -factors and let My = %, (M,,7,) be the graph product of ar-
bitrary II; -factors. Does Rr = M, imply thatI' = A and R, = M, for v e I'?

We note that an affirmative answer to Problem 5.10.4 would imply R * R # R * £ (F»)
which would already resolve the free factor problem. Therefore, we add a restriction and
state the following weaker conjecture which we believe is closer to the horizon.

Conjecture 5.10.5. The class of finite gpp graphs satisfies condition (1) of Problem 5.10.1.

We state another rigidity problem.

Problem5.10.6. We observe thatin Remark 5.9.7 we were able to retrieve the radius of the
graph I (up to constant) from the graph product Mr without imposing any condition on
the II; -factors M, except that they are group von Neumann algebras. Such graph prod-
ucts Mt can generally decompose as graph products in different ways. For example, this
is the case when I" non-trivially decomposes as a graph product of graphs. Thus while the
graph may generally not uniquely be retrieved from the graph product Mr, we are able to
retrieve the radius (up to a constant). We wonder what other graph properties can be re-
trieved like this, without imposing strong conditions on the vertex algebras. In particular,
we ask whether, under some conditions, we can retrieve the diameter (length of largest
geodesic), or the girth (length of smallest cycle) of the graph from the graph product. We
note that, of course the diameter of the graph satisfies Radius(I') < Diam(I') < 2 Radius(I)
hence can, up to a factor 2, be retrieved from the graph product in the setting of Theo-
rem 5.9.11. However we ask for a more precise estimate.

Last, we state a problem concerning strong solidity.

Problem 5.10.7. Let # = (S|M) be a Coxeter group and let q € [Rf be a Hecke-tuple. We
ask if the Hecke-von Neumann algebra Aq(#’) is strongly solid. This question is an-
swered by Theorem 5.6.7 in the case # is right-angled (or a graph product of finite Cox-
eter groups), but it remains open for general Coxeter groups.



THE CCAP FOR GRAPH PRODUCTS
OF OPERATOR ALGEBRAS

For a simple graph I and for unital C"-algebras with GNS-faithful states (A,,¢,) for ve T,
we consider the reduced graph product (Ar, ¢) = *‘;“F“ (Ay,¢y), and show that if every C -
algebra A, has the completely contractive approximation property (CCAP) and satisfies
some additional condition, then the graph product has the CCAP as well. The additional
condition imposed is satisfied in natural cases, for example for the reduced group C'-
algebra of a discrete group G that possesses the CCAP.

This result is an extension of the result of Ricard and Xu in [RX06, Proposition 4.11]
where they prove this result under the same conditions for free products. Moreover, our
result also extends the result of Reckwerdt in [Rec17, Theorem 5.5], where he proved
for groups that weak amenability with Cowling-Haagerup constant 1 is preserved under
graph products. Our result further covers many new cases coming from Hecke-algebras
and discrete quantum groups.

The content of this chapter is based on the paper:

* Matthijs Borst, The CCAP for graph products of operator algebras, Journal of Func-
tional Analysis 286.8 (2024) 110350.

6.1. INTRODUCTION

In this chapter we study the CCAP and weak-* CCAP for operator algebraic graph prod-
ucts. In the setting of groups, graph products were introduced by Green in [Gre90]. They
preserve many interesting properties like: soficity [CHR14], residual finiteness [Gre90],
rapid decay [CHR11] and other properties, see [AM15; Chil2; HM95; HW99]. In particu-
lar, approximation properties like the Haagerup property [AD14] and weak-amenability
with constant 1 [Rec17] are also preserved by graph products of groups.
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Graph products of operator algebras were introduced in [CF17] by Caspers and Fima.
In their paper, they also showed stability of exactness (for C"-algebras), Haagerup prop-
erty, II;-factoriality (for von Neumann algebras) and rapid decay (for certain discrete
quantum groups) under graph products. Also, in [Cas16] it was proven that embeddabil-
ity is preserved under graph products.

The notion of weak amenability for groups originates from the work of Haagerup
[Haa78], De Canniere-Haagerup [CH85] and Cowling-Haagerup [CH89]. The correspond-
ing notion for unital C’-algebras is given by the completely bounded approximation
property (CBAP) in the sense that a discrete group is weakly amenable if and only if its
reduced group C"-algebra possesses the CBAP. We say that a C'-algebra A has the CBAP
if there exists a net of completely bounded maps V,, : A — A that are finite rank, con-
verge to the identity in the point-norm topology and such that sup,, [ Vyllcp < A < oo for
some constant A. The minimal such A is called the Cowling-Haagerup constant. If the
Cowling-Haagerup constant is 1, then we say that A has the completely contractive ap-
proximation property (CCAP).

Weak amenability and the CBAP/CCAP play a crucial role in functional analysis and
operator algebras. Already in case of the group G = Z weak amenability allows, in a way,
to approximate a Fourier series by its partial sums. In operator space theory the CBAP
has led to a deep understanding of several group C' - and von Neumann algebras. Already
the results by Cowling and Haagerup [CH89] allow for the distinction of group von Neu-
mann algebras of lattices in the Lie groups Sp(1, n),n = 2. Later, Ozawa and Popa used
the (weak-%) CCAP in deformation/rigidity theory of von Neumann algebras [OP10a].
Much more recently also graph products have appeared in the deformation-rigidity pro-
gramme, see e.g. [Cas20], [CE23], [CDD22],[DE24a]. This line of investigation, especially
beyond the realm of group algebras, motivates the study of the CCAP for general graph
products.

In this chapter we are concerned with showing that the CCAP is preserved under
graph products. While we are not able to show this in full, we prove this under a mild
extra condition on the algebras (A,,¢,), similar to the one imposed by [RX06] for prov-
ing the same result for free products. The conditions that we impose are stated in Sec-
tion 6.5, and we abbreviate them by saying that the algebra has a u.c.p extension for the
CCAP. This condition is satisfied by many natural unital C'-algebras, under which finite-
dimensional ones (with a GNS-faithful state), reduced C*-algebras of discrete groups
(with the Plancherel state) that possess the CCAP [RX06], and reduced C*—algebras of
compact quantum groups (with the Haar state) whose discrete dual quantum group is
weakly amenable with Cowling-Haagerup constant 1 [Frel2]. Our main result is the fol-
lowing:

Theorem O (Theorem 6.5.2). LetT be a simple graph and for v €T let (Ay,@,) be unital
C"-algebras that have a u.c.p. extension for the CCAP. Then the reduced graph product
(Ar, ) = *1" (A, 9 ) has the CCAR

Along the way we also obtain the following result for von Neumann algebras.
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Theorem P (Corollary 6.3.4). LetT" be a simple graph and for v € T let M, be a finite-
dimensional von Neumann algebra together with a normal faithful state ¢,. Then the
von Neumann algebraic graph product (Mr, ¢) = *, v (M, ®,) has the weak-* CCAP

The method for proving above results is, on a large scale, similar to [RX06]. However,
at most points, the proofs get more involved in order to work for graph products. This
becomes most clear in Section 6.2, where we have to use different methods to show the
completely boundedness of the word-length projection maps Pr 4 : Ar — Ar that project
on Ar 4, the homogeneous subspace of order d. For these maps we show for d = 1 thelin-
ear bound | Pr 4llc» < Crd, where Cr is some constant only depending on the graph I'. In
Section 6.3 we show that the graph product map 6 of state-preserving u.c.p. maps 8, on
unital C’-algebras A,, is again a state-preserving u.c.p. map on the reduced graph prod-
uct Ar. Together with our bound on || Pr 4|, we are then able to show the preliminary
result, Corollary 6.3.4, that, when all C"-algebras, respectively von Neumann algebras,
are finite-dimensional, the reduced graph product has the CCAP, respectively the weak-*
CCAP In Section 6.4 we consider the same problem as in Section 6.3, but now for state-
preserving completely bounded maps. We show that the graph product map T of state-
preserving completely bounded maps T, defines a completely bounded map, when re-
stricted to a homogeneous subspace Ar 4 (i.e. T := T Arg 18 completely bounded). In
order to do this we consider the operator spaces X, from [CKL21] (analogous to [RX06])
and use the Khintchine type inequality [CKL21, Theorem 2.9] they proved. We moreover
construct other operator spaces X, and prove the ‘reversed’ Khintchine type inequality
(Theorem 6.4.2). Finally, in Section 6.5, using all our previous results, we are then able to
show the main result Theorem O (Theorem 6.5.2).

Our results extends [RX06] (as well as [Rec17]) in a natural way, and provides a uni-
fied approach to proving the CCAP and weak-* CCAP for various operator algebras.
Specifically, Theorem P can be applied to the von Neumann algebraic graph product
* 1 Ng, (W) of Hecke-algebras of finite Coxeter groups. Such a graph product is itself
a Hecke-algebra, and by the result we obtained, possesses the weak-* CCAP. This result
is new, and was previously only known, by [Cas20, Theorem A], for the case that #,, is
right-angled for all v. Furthermore, the main theorem, Theorem O, can be applied to
give new examples of C -algebras that posses the CCAP, for example the graph product
*I;}H(AU,(pU), where some algebras A, are finite-dimensional, and others are reduced
group C’-algebras of discrete groups that posses the CCAP.

6.2. POLYNOMIAL GROWTH OF WORD-LENGTH PROJECTIONS

In this section we shall fix a simple finite graph T, together with unital C'-algebras A,
for v € T and states ¢, on A, for which the GNS representation is faithful. We shall look
at the reduced graph product (Ar, ¢) = *rlf"}“(A,,,(p,,) and investigate for d = 0 the natu-
ral projections Pr 4 : Ar — Ar 4. The main result of this section, Theorem 6.2.10, is that
these maps are completely bounded, and that we can obtain a bound on || Pr 4], that
depends only linearly on d. To prove this, we can not use the same method as [RX06],
since that relies on the fact that each element either does not act diagonally on a pure

tensor n € A, < Fr, or acts diagonally on 1 on precisely one letter. This holds true for
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elements in the free product, but not generally for elements in the graph product, as
they may act diagonally on any clique. Therefore, we will instead introduce completely
contractive maps H; (and completely bounded maps ﬁp) and write Pr 4 as linear com-
bination of these. For this we have to do some technical graph product computations.

6.2.1. THE MAPS H;

We introduce some extra notation. Let #1 be the right-angled Coxeter group associated
to the graph I'. Recall, for a word w € #1 we defined s;(w) and s, (w) as the maximal
clique words that w respectively starts with and ends with. Recall that for a word u € #1,,
we defined

W)= WeWt:luw|=ul+|wl}  #'(u) = {we#t: |wu| = |w|+|ul}
For n =0, u € #t we now define

W) = {(we¥ (u):s;(uw) = s;(w)} W' (W) =we#' (u):s, (wu) = s, (w)}

Wow) = {twe W ():|wl=n} W) =twe# W):|w| = n.

Now, letue #¢ and let uy,ug € #f be s.t. [ul = [uu;'| + uz| and [u| = [ug| + uz'ul, ie uy
is some word that u ends with and uy is some word that u starts with. Then we have for
wy € # (u) and wg € #”(u) that uywy and wrug are reduced expressions. Let n = 0. We
define

Awu)= @ Huyw F'wup)= P Hwuy
wew (u) wew'(u)

Fu,uy) = @ %ULW ,]ﬁ’(u,uR)z @ ejﬁqu
we# (u) we# ()

Hp(u,ug) = @ Hurw Jf,’l(uyu}?): @ Hwuay-
wewy, () w€77/;{(u)

For u € #f and n = 0 we moreover define

Fo )= P Fwruw,-
wiEW]) (u)
woeH (u)

We note that for w; € 7/7,{(u) and wy € # (u) we have that w;uw, is a reduced expression.
Indeed, it is clear that wju and uw, are reduced by definition. Now, since moreover
s, (wju) = s, (u), we have that no letter from w; can cancel out a letter of w», so that the
expression is reduced.

Definition 6.2.1. Letu € #t and letx € #t be any clique word thatu ends with. Thenur is
a word in ¥t thatu starts with, and |ur| + IrLf |ul. For n = 0 we define a partial isometw
VM 6 ® A6 — F6r with initial subspace A€}, (u,ur) ® A (u,r) and final subspace 7, ()
as

wr) o — ! .
Vi lJer“rg’Jf'Vmil = 2w, urrvigir) forv, e W,(0),Viqi €W (u).
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We note that this is well-defined. Indeed, as just pointed out, for v, € #(u) and
Viail € W (1) we have that v,uv,,;; is reduced. Therefore, we get |v,uv,;;| < [v,ur| +
[¥Viqil S Ve +url + || + [Vigig| = V] + [ul + Vg0 = [Veuveg;|. This shows that [v,ur| +
[*V;4i1l = [Vruvgl, so that 2, urrv,,;) is well-defined.

Definition 6.2.2. We denote

It = { (uz,u,,t) €7//1-3

ust, tu, clique words,
u;tu, reduced ’

We remark that it follows from the definition that u;,u, andt must also be clique words
and thatuyu, must be reduced.

Definition 6.2.3. Let (u;,u,,t) € 9r. Also let r € #r be a sub-clique word of t and let
ny, ny = 0. For the tuplet = (n;, n;,u;,u,,t,r) define a map H; : B(/T) — B(AT) as

H:(a) = V""" (a® 1d 7,) (V,E?")’r) :

It is clear that H; is completely contractive.

Example 6.2.4. We note that the partial isometry Voe’e 1 AT ® AT — S has initial sub-
space J?z (e,e)® # (e, e) = CQ® AT and final subspace J?o(e) = J4 and that on CQ® A7
it is given by V"(zQ ®n) = zn for z € C, € #;. Setting 7 = (0,0,¢,¢,¢,€) and let-
ting a € Ar be a pure tensor a = a; ® --- ® a;, we can for n € A% calculate H; (A(a))n =
Vo A@Qen). Now, if A(a)Q ¢ CQ, then we get H;(A(a))n = 0. On the other hand,
if 4 = A(a)Q2 € CQ, then we must have that A(a) € CId . and we get H;(a)n = an. We
conclude that Pr o = H(o,0,e,¢,e,e) and [ Prollcp = 1.

Similarly to Example 6.2.4, we aim to write Pr 4 for d = 1 as a linear combination
of H;’s for different tuples 7, in order to give a bound on | Pr 4llcp- To achieve this, we
introduce some convenient notation.

Definition 6.2.5. Let # and /¢, be closed subspaces of #t. For an operator b € B(AT)
we define a closed subspace _#,(F1, #>) of /e as

Ip (A, 765) = {n € F6)|bn € F5}.
Recall that for w € #1 we defined in Definition 3.1.5 the set of triple splittings

W=W]WrW3
Fw =14 (W1, W, W3) € 7//r3 w is a clique word
|w| = [wy| +[wa| + [ws]

and also put S = Uwey; Fw. Recall also for w € 4 that in Definition 3.1.3 we defined
the annihilation/diagonal/creation operator 1. We prove the following proposition.

Proposition 6.2.6. Let (u;,u,,t) € I1. Also letr < t be a sub-clique, and let n;,n, = 0.
Set T = (n;, nr,u,u,,t,r). Forwe #r and o = (W, Wy, W3) € Ky and for pure tensor a =
a; ®---® a; € Ay we have that

H; Ay (@) = Ay (@) Py(T,w)
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where P,(t,w) is the projection in B(#T) on the closed subspace spanned by
U jlw(a) (]?VrUrthil"}?Vtﬂtthﬂ)'

VIEW;, (W,vr W, @t

vm[l€7//(ult)ﬁ7t/(urt]
[vru,tr|=lwows |+ wowsv,u,tr|
[WIW3V UtV g0 | =W [+W3 VUtV

Proof. We show that the identity holds on pure tensors. First, let ve #r and letn € Hy <
J¢r be apure tensor s.t. A, (a)P,(t,w)n=0.1fn L Jﬁn, (urt), then clearly (V“’t fy* n= 0so

that H; (A, (@)n=0= Aw(a)Pa(T w)n, and we are done. Thus, assume thatn € an (u,t)
and n # 0, so that n € Jf’vru,tvm,, for some v, € 71/’ (u,t), viqi1 € # (u,t). Let us write

VY = 01 0112 With 11 € Ay uyte, 12 € Horeyy- Then Hy (e (@) = VA (A (@11 875).
We can assume that 0 # A, (a)n; € Jf,’ll (u;t,uytr) and 1, € A (uyt,r) since otherwise we
find directly H; (14, (a))n = 0. Now we thus have that A, (a)n; € ]l%’v,u,tr for some v; €
W Wy, (uit) and thatn; € JZP ' for some v | €W, ().

As 15 is non-zero, and as 71, € Jﬁrvmll N Jé’rv’ , we find that v,,;; =V, .. e W (wt)n

tail
¥ (u,t). Also, since 1; € va,u,n-o we find by Lemma 3.1.4 that Ay, (a)n; € walmv,u,tr-
Now, we already had A, (a)n1 € #y,u,« and by the assumption that A, (a)n; is non-zero,
we thus find v;u;tr = wywsv,u,tr. Moreover, as A, (a)n; is non-zero, we must have that
[vyu,tr] = |[wows| + [Wowsv,u,tr| and [wywsv,u,tr| = |wp| + [w3v,u,tr|.
Setv; =v,u,tr and vp = rv,;;, so that [v;vy| = [v;| +|v2|, and by the above
[vi| = [wows| + [wowsvy | (6.1)
[wiw3vy| = |wy |+ [w3vy| (6.2)
Moreover, we now find
[wiw3viva| < Wil + [w3vivy|
< |wi| +Iwsvy| +|v2|
= lwyw3vy| + V2|
= [WiwWa v urtr] + [1veq
= [vpuytr| + [rveg;|
= [Viugtveg |
= [WIW3 VU, v
= [W1 W3V V2.
This shows that
[wWiw3vive| = [wi| + [w3vi vy (6.3)
Now as 1) € #y,v,, and as all conditions of Lemma 3.1.8(3) are satisfied, this gives us
Hy (Aw(@)n = V" (A (@)1 ©12)
= 2wy, v) Ao (@11 ®172)
= Ao (@) 2w, wsvy,v2) (1 ®172)
= Aw(a)n.
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By Lemma 3.1.4 Ay (a)7) € Howywavive = Fviutv,qs thus n € 2y, (Fvyuitv, i Hov,uptv,gi)-
By all the conditions we have shown for v;,v,,v,;;, and as we have shown that |v;| =
[wows| + [wowsvy| (Equation (6.1)) and [wywsvvo| = [wi| + [w3vyve| (Equation (6.3)) it
follows that P, (1, w)n = n. We conclude that H; (A (a))n = Ay (@)n = A, (@) Py (T, 0)7.

Alternatively, let ) € JZ’V <€ A& be a pure vector s.t. A, (a)P,4(t,w)n # 0. Then we
must have that P4 (7, w)n = 1) and moreover that A, (a)7 is non-zero. We thus get thatn €
(@) Fuprtviai Pouuyteyegy) With v € #) (gt), v € ;) (U0), Vegip € W () 0 W (ugt)
and so that

[Vru,tr| = [Wows| + [Wows v, u,tr|

[W1W3V U, Vg0 = (Wi + [W3Vu,tvyggl.

Set v; = vru,tr and vy = rv;,;;, so that [vyva| = |v1]| + |v2|. Moreover the above equations
state that |v;| = [wows| + [Wows vy | and [wiwsvva| = [wy| + [W3viva|. As e J’?Lov,urtvm” c
Fn, (u,1), we can write V" n =0y @10y € Ay u,tr ® Hrv,,y = Hou, ® Hy,. By the above
properties we get from Lemma 3.1.8(3) that

Ap(@)n = Q(W1W3V1,V2) Aw(@ni®n2) € e;?WIW3VIV2-

However, we also know that A, (@)n € #yutv,,;- Therefore, as A, (a)n is non-zero we
find vju;tv,,;; = Wi W3V Vo = Wi W3V, U, tV,,;;. We thus find vju;tr = wywsv,u, tr = w;wsvy,
and hence Ay (@)11 € Howwav, = Hvyuue S JL”,'” (ust,ustr). Note that 1, € #(u;t,r) by the

assumption on v,;;. Hence, as 1, (a)n; ® 0z € Jf’,’ll (u;t,u;tr) ® A (u;t,r) we find that

Hy (A (@)1 = V" (Aw(@n1 ®12)
= Dw,wyvy,v2) Ao (@11 ®12)
=Aw(a)n
= Ao (@) Pq(t,0)n

which proves the statement. O

6.2.2. THE MAPS H,,

We shall now introduce other maps, Hp, that are linear combinations of the maps Hy
for different 7’s, and that satisfy a nice equation. We use these maps to show that Pr ; is
completely bounded, and give a bound on || Pr 4| cb-

Definition 6.2.7. Let n;,n, = 0 and (uj,u,,t) € 9r. For w € #r and for the tuple p =
(n;, ny,ug,u,,t) define the set
wi =vu;,wy = tandws = u; lv;!
HA = S Wo, €A — P .
w(p) {(Wl w2, W3) € S for somev; W, (w0),v, €W, (u,t)

Also denote |p| := n; + |u;| + [t| + [u,| + 1.
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Remark 6.2.8. We note that we can partition Ay as {#y(0)}jp|=jwj where we run over
all tuples p = (n;, ny,u;,u,,t) for n;,n, = 0, (u,u,,t) € I with |p| = |w|. Indeed, if
(W1, Wo,W3) € Hy(p) then wy = vju;, wp = t, w3 = u;lv;l for some v; € 7,/7,:1 (u;t) and
vy € 77/Zr (u,t) and we obtain that t = wy, u; = (u;t)t = s, (v;u;t)t = s, (W;wy)wy and u, =
W0t = s, (vou Ot = s, (w3 'wo)wz and n; = [wi| — [wy| = [wy| - |s, (Wiw2)wo| and n, =
[ws| — |uy| = [ws| — |sr(w§1wz)wz|. Since we can retrieve p from (w;,wy,ws), this shows
the sets %4y (p) are disjoint.

Now let (w1, wy,w3) € Ay and set t:=wp, u; :=s,(wit)t, u, := sr(wglt)t. Then u;t and
tu, are clique words and

[W| < [wiwas, (Wiws)| + s, (W1 W2)Wos; (Wows)| + |87 (Wows3)wows |
= (lwywz | —[sr (W1w2)|) + [ugtu,| + (Iwaws| — |87 (Waws3)|)
= [wl+ [ugtuy | —[sy (Wi w)| + [wz | — [s; (waws)|
= |wl + [ugtuy | — s, (Wiw2)wa | — [wa | — [s;(Wows3)wa |
= [wl + lugta, | — [uy| — [t| — [u,|

< |wl.

Thus all inequalities must be equalities and we get |u;tu,| = [u;| + [t| + [u,| so u;tu; is
reduced. This shows (u;,u;,,t) € I1. Now, set n; := |w| —|u;| =0, n, := |w3| —|u,| = 0.
Then we have v; := wlul‘1 € 77,{1 () and v, := wg_lu;1 € 77,; (urt). Set p = (ng, ny,ug,up,t)
and observe that |p| = n; + [ujtu, | + n, = |w|+ [W2 |+ [w3| = |[w|. Now, asw; =vju;, wp =t
and w3 = u;, v, ! we obtain (wj,wz,w3) € %y (p). This proves the claim.

Proposition 6.2.9. Forn;, n, = 0and (u;,u,,t) € It define for the tuple p = (n;, n,,u;,u;,t)
an operator Hy, : B(#1) — B(AT) as

ﬁp = Z(_Um Hnyny 0,60

rct

Then we have forw € #r, w € Sy and a € Ar that

Ap(@)  ifwe FK(p)

6.4
0 else (6.4)

Hy(Ay (@) = {

Proof. Letwe W, we %y andlet a=a; ®---® a; € Ar be a pure tensor. By Proposi-
tion 6.2.6 we have

Hy(Aw(@) =Y (-D" Ay (@ Pal(p,1), 0).

rct

Letve #r and letn € JZPV <€ J7 be a pure tensor. If A,(a)n = 0, then it is clear that
Hp(Ay(a))n = 0, so that Equation (6.4) applied to n holds in either case. Thus assume
Aw(a)n # 0. Let &, , be the set of all sub-clique words r S ts.t. P,((p,r),w)n =1, that is

I =X St|Py((p,1),w)n # 0}

We prove the proposition using the following steps.
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1) We prove that .%; , is closed under taking sub-cliques. Letr; Sr» St, and suppose
thatr; € . ,. Then we must have n € %, (4 (sz”vrurtvm”,jfvlulwm”) with v; € 71/,{[ (u;t),
vy € 7//,{r (u,t) and vy, € # (upt) N # (u,t), and |v,u,tro| = [wowsg| + [Wowsgv,u,tra| and
[W1W3V,u,tv, ;| = Wi+ [W3v,u,tv,,;;|. This means that also

[vrurt] < [veuptrp| + 1]
< lwiwa| + [wiwev,urtry |+ |1y
< [Wiwz |+ [Wiwov u,tra| + [ror | + (1
= [vyu,try| + 1|

= |vurt|
and so [v,u,try| = [wiwz|+|wiwavru,try|. This shows P, ((p,11), w)n =1, hencer; € % .

2) We prove that ., , is closed under taking unions. Letry,r> S t be sub-cliques with
r,r € Jhe. Then P,((p,r1),w)n = P,((p,r2),w)n = 1. Moreover, by previous step we
moreover have P, ((p,e),w)n = 1. We must now have 1 € 21, () (Fo,utv,y; Hvyutvigs)
with v; € 7?/21 (upt), v, € 77,; (u,t) and v, € # (@) N # (u,t), and |wiwsv,u,tv,,;;| =
[w |+ [w3v,u,tv,,;;| and moreover

[Vru,t] = [Wows| + [Wows v, u,t| (6.5)
[Vrurtry| = [wows| + [Wowsv,u,tr | (6.6)
[vru,tr| = [wows| + [Wowsv,u,trp|. 6.7)

Now we note that also |v,u,t| = |[v,u,tr{| + || = [v,u,try| + |r2|, hence
[Wow3 v u,t| = [wowsveu,try| + |1y | = [Wowsv,u,tra| + (12|

Asry, 1, are cliques, this implies r;,r; € s, (Wowsv,u,t) so that for r =r; Ur; it holds that
r € s, (wowsv,u,t). But this implies

[Wowsv,u,t| = [wowsv,eu,tr|+ [rl.

Now, as also [v,u,t| = [v,u,tr|+|r| we find using (6.5) that |[v,u, tr| = [wows|+|Wowzv,u, tr|.
It now directly follows that P((p, 1), w)n = n. This shows that r € .9, ,,, and thus that ., ,
is closed under taking unions.

3) We prove the equation flp Aw(@)n = 1(Fyw = {eh Ay (a)n. Here 1(F , = {e}) de-
notes 1 whenever ., , = {e} is satisfied, and 0 otherwise. In the case that .%, , is empty
we directly find Hp(Ay(a))n =0, so that the equation is satisfied. Thus assume that Inw
is non-zero. Then as ., , is closed under taking unions, there exists a maximal element
Iy € 0. However, since %, is also closed under taking sub-cliques, we then find
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Inw = {r =150} We conclude that

Hy(Aw(@)n =Y (- Ay (@)Pa((p, 1), 0)n

rct

= Y D", @n

rCry,e
= ]l(rr[,w =e)dy(a@)n
=1(Fpw = {eH A (@n.

4) We will now show, for a pure tensor 7 € J?v € A with A, (a)n # 0, that . , = {e} if
and only if w € Ay (p). First, suppose that w € A4y (p). Then we can write w = (wy, wy, w3),
where w; = vju; and w, = t and w3 = u; v, ! for some v; € Wy, (ut) and v, € #, (urt).
Then as A, (@)n) # 0, we must have thatne _# (g (ﬁvru,t‘,m”,ﬁv,ult‘,m”) for some v;,;; €
W (ut) N ¥ (u,t). It is clear that

(W1 W3 VU, tVeg | = [V tveg
= |viuy| + [tvegil
= (Wil + W3V u -tV g0l
Moreover, as Wow3V, Ut  titis also clear that |v,u,t| = [wowg|+|wowsv,u,t|. This shows
that P,((p, e),w)n =1, hence e€ % .

Now let r  t be a sub-clique with r # e. Then we have wowsv,u,tr = r. Hence, we

have

[Vruptr| +[r| = [vru,t|
= |wows| + [wowsv,u,t|
= |waws| + [wowsv,u,tr| — x|
Now as r # e we have |r| = 1, which shows that |v,u,tr| # [wows| + [wowsv,u,tr|. This
proves that P, ((p,1),w)n = 0. Thus r ¢ .%, ,,. This shows .%;, ,, = {e}.
Now, let w € Ay for some w € #1 be s.t. %, = {e}. Then P((p,e),w)n =1n. Hence
NE Zhy (@) Hvurtv,ai Hvutv,y;) for some vy € #'(ut), v € W' (u,t) and vy € # (wyt) N
# (u;t) and [WiW3V, U Vg ] = (Wil + W3V U, Vg and [Vioupt] = [wows| + [wowsv,u,t].
Now as also Ay, (@)1 € Fw,wav,u,tv,,;;» and as A, (@)1 # 0, we have that wiwsv,u, tvy,;; =
Vi tv, 4. Hence, wiws = vyuyu;, v, 1. Now, as P, ((p,1),w)n =0 forallr S twithr # e,
we must have that s, (Wowsv,u,t)Nt = e. However, multiplying wows with v, u,t removes
all letters from wows. This means that s, (wowsv,u,t) € s, (v,u,t) =s,(u,t). Now we also
have
viugt] < [wowy |+ wowy vyt
= wowy |+ [vu b — [wows|
< [wowy | + [wsv,u,t] — [wa
= (w1 |+ |wav,u,t]
= [wiw3v u,t|

= |vjuyt|
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so that [vu;t| = [wowy ! [+wawy 'vju;t|. Now this means thats, (wow] 'vyuyt) S s, (vjut) =
s, (u;t). Hence, as wowsv,u,t= wzwl‘lvlult, we find s, (Wowsv,u,t) Su;tNnu,t=t. How-
ever, as also s, (Wowsv,u,t) Nt = e, we conclude that s, (Wows3v,u,t) = e, so wzwl‘lvlult =
woW3V;u,t = e. But this means that w;lwz =v,u,t and wy;w, = v;u;t. From this it fol-
lows that w, < s, (vju;t) ns, (v u,t) = t. Now, we can not have that wy < t strictly, as this
would mean that ws starts with a part of t that w; ends with, which would contradict
the fact that w;w,wjs is reduced. Thus we now find w, = t and then also w; = v;u; and
W3 = u;lv;l. This means that w € Ay (p).

5) We now conclude the proof of the proposition as we have shown for we #r, w €
Sy, pure tensor a = a; ® --- ® a; € Ar and pure tensor 1 € /&, € A with A, (a)n # 0 that

TT A j = A €y
Hp(/la)(a))ﬂ _ { w(@n 0 {e} _ { w@n o w(p) .
0 else 0 else

Now, as noted earlier, the equation is also satisfied when 7 is a pure tensor with 1, (a)n =
0. Therefore, by linearity and continuity, the equation in the proposition holds for all
1 € 1. By linearity of ﬁp and A, the equation also holds for all a € Ar. This proves the
statement. O

We now prove our main theorem of this section, that shows that || Pr 4llcp is polyno-
mially bounded in d.

Theorem 6.2.10. For d =0 we have (on Ar) that

— x|
PF,d = Z Z(_l) H(n,d—n—lultur|,u1,ur,t,r)-
(uy,u,,)egr ret
O<n=d-|ujtu,|

Moreover, for d = 1 we get the linear bound || Pr 4| b < Crd, where Cr denotes the constant

cr= Y 2W

(u,u;,t)egr

Proof. For d =0 define
Tr,a={p= (g, np,uu,,0 € 220 x It 2 pl = d). 6.8)

)

We recall for w € #1 that {Ay(0)}pegy,, is a partition of A, by Remark 6.2.8. Fix some
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a € Ar. For d = 0 we find using Lemma 3.1.7 that

PraA@)= ). Y Aw(@

wWeHT,\w|l=d weHy

=Y Y Y AW

PEITT,a WEHT ,|W|=d we Fy(p)

- T A[EL T )

PEIT 4 WEWT WE Sy
= Y H\a)
PEIT,a

= Z Z(_l)lrl H(n,d—lulturI—n,ul,u,,t,r) AMa).
(uju,,)egr ret
0<n<d-|u;tu;|
Therefore, the equation holds on A(Ar) and hence, by continuity, on Ar.
Now let d = 1, we show that the bound holds. We note first that by definition V,7'¢ =0
for n = 1. This implies directly that H;,d—n—jutu, lu;u,,te) = 0 for 0 < n < d — Ju;tu,|
whenever (u;, u,,t) = (e, e, e). Therefore we find

||PF,d||cb = Z Z ”H(n,d—n—Iultu,I,ul,ur,t,r) ||cb
(u;,uy,)eIT\{(e)€,0)} TS
0<n=d-|ujtu;|

< Y 2!t

(u;,ur, 09T \{(E,0,0)}
0<n<d-|u;tu,|

s( Y 2")d.

(uz,u;,t)egr

6.3. GRAPH PRODUCTS OF STATE-PRESERVING U.C.P MAPS

In Section 6.3.1 we show that the graph product of state-preserving u.c.p maps extends
to a state-preserving u.c.p map. Thereafter, in Section 6.3.2, we use this to obtain the
result that the graph product of finite-dimensional algebras with GNS-faithful states is
weakly amenable with constant 1.

6.3.1. GRAPH PRODUCTS OF STATE-PRESERVING UCP MAPS

LetI' be a graph, and for veI'let8,: A, — B, be state-preserving maps between unital
C"-algebras (with states s.t. the GNS representation is faithful). Let (Ar, ¢) = * v (Ay, @)
and (Br,vy) = *,r(By,¥,) be their reduced graph products. As 6, is state preserving it
maps Ay to l%,,. We can look at the map 6 : A(Ar) — A(Br) fora; ® ---® as € 121,,1 ® - ® }’lys
for areduced word v; --- vg given as

OAa1®---®as)=A0, (a))®---®0,(as)) (6.9)

and we set 8(Id) = Id. We denote this map by 8 = *, 0, and call it the graph product
map. The map is clearly state-preserving. To prove the main theorem, we need the result
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that the graph product map 6 = *,r0, of state-preserving u.c.p maps 6, extends to a
bounded map on the graph product, and that it is again u.c.p. This result was already
proven by Blanchard-Dykema in [BDO01] for the case of free products. For graph products
the result has been proven by Caspers-Fima in [CF17, Proposition 3.30] in the setting of
von Neumann algebras.

Proposition 6.3.1. [CF17, Proposition 3.30] LetT be a simple graph and forveT, let0,:
M, — N, be state-preserving normal u.c.p. maps between von Neumann algebras M, and
N, that have faithful normal states. Let (Mr, ) = *,v (M, p,) and (Nt,y¥) = %, (N, ¥)
be the von Neumann algebraic graph products. Then there exists a unique normal u.c.p.
map 6 : Mr — Nr s.t. for all pure tensors a; ® --- ® a; € ]\O/Il,1 ®-® I\O/I,,S we have

0A(a1®---®ay)) = /1(91/1 (a1)®---® 01}5 (as)). (6.10)
The map 0 will be denoted as 0 = *10,

We give here a proof for the case of C"-algebras.

Proposition 6.3.2. ForveT letf,: A, — B, be state-preserving, unital completely pos-
itive maps between unital o} -algebras (Ay,¢,) and (B,,v,), and assume ¢, and vy, are
GNS-faithful. Then the graph product map 0 = *,r0, extends to a state-preserving unital
completely positive map between the reduced graph products Ar and Br.

Proof. We will use the notation 72, A2, 74, A4, &8, Q4 et cetera, corresponding
to the reduced graph product (Ar, @) := *mm(A,,,(p,,), and use similar notation for the

reduced graph product (Br,vy) := *mm(B,,,w,,) By the Stinespring’s dilation theorem,

Theorem 2.1.1, we can write 6, (a) vV, m,(a)V, for some Hilbert space Jf,, and unital
*-homomorphism 7, : A, — B(#,) and some 1sometry V, € B(A, ffy) We note that
for a € A, we have ¢,(a) = v,(0,(a)) = (0, (a)f fB> = (ﬂv(a)fvrf ) with &, := vay
Also m,, is faithful, as 7, (a) = 0 implies for b € A, that

0=y (@7, (D), N2 = Iy (@b)E 12 = (my (b* a* ab)éy, &) = ¢, (b* a* ab),

which implies a = 0 since ¢, is GNS-faithful. By these properties we conclude that we
can construct the graph product of the A,’s w.r.t. the representations ,. To distinguish

the notation from the other graph products we use hat-notation like jfv, jz‘?v, J/f\r,;{, Q.
Define a contraction V: 7 — ¢ forn=mn,®---®n;, € AL as

Vig me:--en)=V,me--eVy,n 6.11)

and V(QF) = Q). We note thatn,; € J?fi implies (Vn;,&,.) = (V1, VER Y=, é8)=0and
hence Vn; € jf?vi. This shows that V is well-defined.

By [CF17, Proposition 3.12], we know that there exists a state-preserving, unital -
homomorphism r : Ar — B(#7) thatfora=a,®---®a; € Av is given by

rA N a1 @ ® a)) = Ay, (@) ® - ® 1y, (ap) (6.12)
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We will now show that 0(A4(a)) = V*n(A4(a))V for a € Ar, which then shows that 8 can
be extended to a u.c.p. map on Ar.

Letn=m1®---®n; € Jfﬂf for some ve #; and let a € A, for some v € I'. We will calcu-
late Xv(ny(a))v. First suppose that vv is reduced. We have ((Idﬁy -V, Vj)n,,(a)gy,g,ﬂ =

(m,(@)&,,0) = 0 so that

A((dg, ~V, V) my @)V =0,(Udg, -V, V,)my (@) @1d 7)€, @ Vi)
=U,((dg -V, V,)my (@&, ® V)
= D ((dg, -V, V) (@), © V).

Also we have (V,, Vv*n,,(a)z',,, E,,) =¢y(a) =0 and so we find

Ao (Vo Vy (@) Vi = Uy (V, Vy (@) ®1d 7)€y ® V)
=U0,(V,Vymy(@é, @ Vn)
= 20w (V@) @ V)
= 20w (V,0,(@)5) @ V)
=V (0,5 on)
=VAB@©G,(a)n.

Now, suppose instead that v starts with v. Then we can write n = wav) (no®n') for

some 1)q € Joff andn’ € Jzﬂj‘, and we have Vn = Qw, w) (Vu1o ® V'), Again we have that
(ddg, —VuVy)my(@Vymo,$v) =0 and so

Ap(Udg -V, Vmy(@)Vn=U,(Udg —V,V;)my(a) @1d4)0; Ve
=0,(Udg, -V, V,)my(a) 81d4) (Vo ® V1)
=0, ((dg, ~VoV;mo@Vine) © Vi)

= 20, (g, -V, V)1 (@ Vin) © V1T ).
Furthermore, we have

AoV Vi mp(@) V= U, (V, Vy 7p(@) ®1d74) U5 Vp
=U,(V,V,n,(@) ®1d ) (Ve ® V)
=U, (VyVymy(@Vymo) & V')
=T, ((Vy0,(@no) @ V)
=VU} (6,(@no) &7n')
=VUE(0,(@) ®1d 7 ) (U
=VAB @, (@)n.
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Now,whena=a,®---®ay € Aw, then we have

VAN @)V =V A, (@) ... A, (@r-1))A Vi, Vi, T (@) VD
+ VAT, (@) .. ATy, (ak_l))/T((Idﬁwk ~ Vi Vi I (@) V'
= V* A, (a1) ... ATy, (@1 A Vi Vi T (@) V
=V*rAMNa1 ® -+ ® ag_1))VAE O, (@))n.

Note here that the reason why we can remove the second summand is because one ten-
sor leg of )L((Idjgw Vi, Vi, ), (ar)) V1 is of the form (Idi?w Vi Vip ) w0, (ak) Vig, Mo

T Vwi Vwy “Vwi Vwy
k k
for some 1 € Jfgk. This tensor leg is not changed by the operator 7(A4(a; ® -+ ® ax_1))
as it may not act on the same letter. Now after the application of V* we obtain for this
tensor leg that V,jjk (Id, =V, Vlj‘,k)ﬂwk (ax) Vi, Mo = 0, so that this term vanishes.
Wk
By what we showed, it now follows from induction to the tensor length k that for all

a € Ar we have V*1(A4(a))V = 0(14(a)) . This then shows the statement. O

6.3.2. CCAP FOR REDUCED GRAPH PRODUCTS OF FINITE-DIMENSIONAL AL-

GEBRAS
We now state the following generalization of [RX06, Proposition 3.5.] to graph products.
The proof uses Theorem 6.2.10 and Proposition 6.3.1 and Proposition 6.3.2 and goes
analogously to [RX06, Proposition 3.5.].

Proposition 6.3.3. Let T be a finite simple graph. For v eT let A, be a unital C"-algebra
together with a GNS-faithful state ¢,. Let (Ar, ) := *IJ}‘FH(AV,q)V) be the reduced graph
product. Ford =0 let Pr 4 : Ar — Ar q be the natural projection. Let0<r <1, neN and

define

[e) n
k k
f’/—r = Z r Pr,k JO_,«’n = Z r Pr'k.
k=0 k=0

Then 9, and 9, are completely bounded with

”%”cb =1 and ”Fj-r _taf_r,n”cb = (6.13)

The maps J,-: for t = 0 form a one-parameter semi-group of unital completely positive
maps on Ar preserving the state ¢. Moreover, the sequence (J,_ 1 ,)n=1 tends pointwise
7

to the identity of Ar andlim,,_. ||371_ﬁ,n||cb =1.

Proof. For v eI we define a state-preservingu.cp map U,,,: Ay = Ay as U, (a) =ra+
(1-r)¢y(a)1ld z,. It can be seen that x,,rU;,, = 9, on A(Ar) and by Proposition 6.3.2 this
map extends to a state-preserving u.c.p map on Ar. Thus |F; |, = 1. Furthermore,

&) & o0 k d rn
19 = Trnllew< D, relIPrillep <Cr ) kr =Crr—( ) (6.14)
k=n+1 k=n dr\1-r
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Therefore, as % (%) =nr" 1A=+ r"0-r1N"2<nr" 11 -r)"2 this proves (6.13).
It is furthermore clear that (9 ,-¢) >0 forms a semi-group since Pr ;, Pr,, = 0 when n # m.
By (6.13) and by the triangle inequality we have [|F7_1 , llcp =1+ Crn®(1 - \/Lﬁ)” -1
7
as n — oo which shows lim |9,_1 ,ll¢p = 1 since the maps 9,_ 1, are unital. More-
n—o0 ‘/ﬁ' \/ﬁ,

over, on A(Ar) it is clear that (J;_ 1 ,n)"21 tends pointwise to the identity. Therefore,
as (7,_ \% wn=1 is uniformly bounded it follows by density that this holds true on Ar as

well.
O

Corollary 6.3.4. ForveT let A, be afinite-dimensional C' -algebras together with a GNS-
faithful state ¢,. Then the reduced graph product Ar has the CCAP. Similarly, for finite
dimensional von Neumann algebras M, together with normal faithful states ¢, we have
that the graph product Mr has the weak-+ CCAP

We give an application of this result to Hecke-algebras (for references on Hecke-
algebras see [Dav08, Chapter 19]). Let # be a Coxeter group generated by some set S
and let q = (gs)ses be a Hecke tuple (i.e. gs > 0 for all s € S and g; = g; whenever s and
¢ are conjugate in #'). Denote Aq(#') for the Hecke algebra corresponding to # and
q. Our application uses the following proposition which asserts that we can decompose
Hecke algebras as graph products. This is somewhat similar to Remark 5.2.4. Further-
more, the result for right-angled Coxeter groups is stated in [Cas20, Corollary 3.4].

Proposition 6.3.5. LetT' be a graph, and for v € T let %, be a Coxeter group generated
by a set S, and let q, = (qy,s)ses, be a Hecke-tuple. Set W = *,r¥, and q := *,rq, =
(Gu,s) ver,ses, - Then we get a graph product decomposition Nq(W') = *, v Nq, #y).

Proof. This follows from [CF17, Proposition 3.22] by considering the natural embed-
dings 7, : Ng, (W) — Nq(#) that send generators to generators. O

The following was already known from [Cas20, Theorem A], but we believe our ap-
proach is more conceptual.

Example 6.3.6. Let # be a right-angled Coxeter group generated by a finite set S, and
q = (q) ves a Hecke-tuple. Then as # = %, r(Z/27) for some (finite) graph I', we can by
Proposition 6.3.5 write Nq(#) = * v Ny, (Z/22). As Ny, (Z1227) is finite-dimensional we
obtain by Corollary 6.3.4 that Aq(#’) has the weak-+ CCAP.

The result for the following example is new.

Example 6.3.7. Let I be a finite simple graph, and for v € I let #), be a finite Coxeter
group generated by some set S, and let q, = (q,,5)ses, be a Hecke-tuple for #;,. Then
ifwelet # = *,r#, and q = *,1qy := (qu,s) ver,ses,, We have by Proposition 6.3.5 that
NqW) = %y rNq, #?). Since g, (#)) is finite-dimensional we obtain by Corollary 6.3.4
that Aq(#) possesses the weak-* CCAP.
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6.4. GRAPH PRODUCT OF COMPLETELY BOUNDED MAPS ON AF,d

The main result of this section is Theorem 6.4.3, which shows that the graph product
of completely bounded maps T, defines a completely bounded map T,; on the homo-
geneous subspace Ar 4 of degree d. The proof of this results follows the lines of [RX06]
(where they use the different convention (4, B} = ¢(a* b)), and uses the construction of
the operator space X, as in [CKI.21] and another operator space Xy, to extend it to graph
products.

6.4.1. FREE PRODUCTS AND OPERATOR SPACES

When given a finite graph I" and algebras (A,, ¢,) we will denote the reduced free prod-
uct of the algebras as (A%C ,(pf ) = *,(Ay, ). Let I'/ be the graph with the same vertex
set as I' and no edges. Note that the free product is simply the reduced graph product
corresponding to I'/, i.e. A{ = Ayy. For the graph product corresponding to I/ we will
use notation using superscript f, that is we will write WFf , Af , P5 , Jf{ ,Jff , f\‘];, et cetera.

We remark that AT < Jé’lf and Ar < A{: as linear subspaces and that A, = A]; forveTl.
For w € #r \ {e} with representative (w1, ..., w,) we will define Ay = #, ®---® 6, and
Ay = Ay, ®---® Ay, and we define S, = CQ and A, = B(#,). Define a subspace L; of

B(Jfg ) by the closed linear span

L =Span{P AL (@ Pl veT,ac A}, Ki=L:. (6.15)

For a Hilbert space # denote /%, #r respectively for the column and row Hilbert
space, see [Pis03]. Recall that /¢ and S can be seen as the subspaces of B(C & /)
given by #¢ = {x¢ : ¢ € A} and AR = {y¢ : { € A} where x; and y; are the operators
given by xg(z@n) = z{ and yg(z@n) = (n,¢). In [RX06, Lemma 2.3 and Corollary 2.4] it is
shown that

vel vel

L1=(®<;?V) y K1=
C

EBJ?SP) (6.16)
R

completely isometrically, and that the maps 0, : A£,1 — Lyand p; : A£,1 — K given for
ac A, by 6, (A],j(a)) = P{A’Uc(cz)Pfl and p; (/V;(a)) = P{l/ljy((a)P,]; are completely contrac-
tive. We denote ®j, for the Haagerup tensor product, see [ER00, Chapter 9]. We denote
Ly = Lf’“d and K; = Kf 14 for the d-fold tensor product and we write 6% for the map
Al ,— La defined for b=by &+ ® by € Ar,q by

024 () =0, (A (b)) ®), - ®1, 01 (A (by)).

Similarly, we write pi@d for the map Alf:’ 4 — Ka defined analoguously.

We introduce notation similar to [CKL21, Section 2]. Let w € 71/rf s.t. in the graph
product w is equivalent to some clique word vr, for some clique I'g £ I" (which we will
denotebyw=vr,). Leta=a;®---®a, € A‘},:,. We define an operator Diag,, (a) : Jflf - Jfrf

on Jf‘f forve 7//rf with |v] = [w| + [w™1v] as

Diag,, (a)| PyaPy, ®---®Py,a4P,,®1d 5 1®"'®Id;2:v (6.17)

J—?vf B Vd+ vl
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and we define Diag,, (a)] =0 if ve #7 is not of the given form. Extending this, we

obtain alinear map Diag,, : A‘],:, - B(]ﬁ{ ). ForacliqueI'p inT', we now define the operator
space

ADlag Span{Dlagw(A‘],cv)lwe 7//f w=vr, )

Also, forwe 7I/rf we consider A,],:, as an operator space by embedding Al c B(%£).

Proposition 6.4.1. For a cliqueT'y and a wordw € 7I/rf withw = vr,, we have that the map

Diag, : Af — ADlag is completely contractive.

Proof. We define a map V4, : j‘ﬁ{ - Jf‘,]; ®J€rf as

ol
Vil o 1= 240 (6.18)

wheneverv e er is s.t. [v] = |w]+|w~1lv| and set leiaf = 0 when vis not of this form. We
then obtain that

Diag,(a) = Vyy (a®1d_ 1) Viy (6.19)
Tr

which shows the statement.
O

As in [RX06] and [CKL21] we define operator spaces X; and additionally we will de-
fine other operator spaces X;. For t € #f a clique word, denote I'; for the clique inI'. We
now set

Xg= @ L”l+|ul| ®hA ®h Knr+|ur (6.20)

ny,ny=0,
(uz,ur,)egT
nj+lugtay|+n,=d

Xaq= @ Lnl+|ul| ®nAt® Knr+\u,\ (6.21)
ny,n,=0,
(ugu,)edr
nj+lustuy|+n,=d

equipped with the sup-norm. We remark here that the operator space structure on A¢
is given by the inclusion A; = A{: c B(Jf’tj,c ) where t' € 7//rf is the representant of t. Also,
recall that 91 was defined in Definition 6.2.2 and that in Definition 6.2.7 for a tuple p =
(ng, nr,ug,u,,t) with ng, n, =0, (u,u,,t) € It we defined |p| = n; + lu| + [t| + [u,| + n;.
By the above, we can find a completely contractive map D : X; — X by defining D, =
(Dp)p,ipl=a Where D, = (Idanul\ ® Diagy ®1dk,,, ) for p = (ny, ny,uy,uy, 0).

We now define two linear maps 0,: Ar,g — X, and ja :Ar,q — X, as follows. Fix a
tuple p = (ny, nr,ug,u,, 1), |pl = d. We denote 77; = n; + Iull and 71, = n; + Iurl Leta €A
be a pure tensor with w € #4. Suppose that w = vju;tu; 'v; ! for some v; € 7//’ (u;t) and
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vy € 77/;’r (u;t). We can then write a = Q(vl“lltyu;lv;l)(al ® ay ® az) for some a; € Avmw
as € A¢and as € Au;lv;l . We then defined

BaA(@), =07 (M (@) @ @z ® p™ (A (a3) (6.22)

ja(@, =07 (A () @ Diagy (az) ® p°™ (A (as)). (6.23)

In the case that w is not of the given form we define ©,(1(a)), = 0 and j,(a), = 0. This
is extended linearly and we set © 4 (A(a)) = (©4(A(a))p)p and jq(a) = (ji(a)p),. We more-
over define the map @, := Dy ° 0,4 and see that j; = ©40 Ala;,. We note that the defi-
nition of j; agrees with that in [CKL.21, Equation (2.16)], and that, in the case of dealing
with free products, the map ©,4 compares with a restriction of the map ©4 in [RX06].
In [CKL21, Equation (2.24)] a completely bounded map 7, : E; — B(/#7T) was defined,
where E; := jq(Ar,q) < X4, and that satisfied 74 0 j; = Ala;,- For d = 1 the norm bound
lmalley < (# Cliq(F))3d holds by [CKL.21, Theorem 2.9], where #Cliq(I") denotes the num-
ber of cliques in the graph I'. We get the following commuting diagram:
Arg < AI’: J

;L]d

d
Arg——E; <

\/

Forna clique word t € #tr with representative (f1,..., fj;) we define a unitary U : {ft —
@Drct # in a natural way. Letn =17 ®---n)y € #; be a tensor with either n; € A, or
n; € C¢y,. For1 <i<|t| setr;:=1 whenn;¢€ J:Ftl. and r; = e when n; € C¢;;,. Then
r:=ry---1y is a subword of t since t is a clique word. Using the identification C¢,, = JZ”e
given by ¢y, — Q we can define U) = ... (1) € Jafr. This extends linearly to a
unitary. We remark that for a € At we have U*A(a)U = a. Indeed, it can be checked that
for a; € Ati we have U*A(a;)U = Id;«gtl ®-- -Id;g[i_l ®a; ®Id;g[i+1 ® - ® Id;«gtm so that the
statement follows as A(a; ® --- ® ay) = Ala;) --- Alay).

Theorem 6.4.2. The map O is completely contractive.

Proof. Choose d = 0. Fix a tuple p = (1, ny,u;,u,,t) with |p| = d and write 77; = n; + |uy|,
nr = ny +|u;|. We define two partial isometries

] 'Jé’f®n~l®if—>J£f®m®Jf (6.24)
1Y t T .

I, #0® Jff — Ay o ) o (6.25)

®7] o
as follows. Letr; St letn=1n1®---®n7 ®Mno € Jflf "e (U* #;,) be a pure tensor and
denote nj, := Ung € #,. If for i = 1 we can write n; = n; ®7; for some 7', € 2y, and
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ni € Jf’rf for which (v1,...,v,) is the representative of v;u; for some v; € 77/2’1 (u;t), then
we define

®71] o
Jon=M1© &%z ® Q(m,-..,vyr,,rﬂ m e n’n~l ®1) € Jﬁg '® Hyuyr, (6.26)

and we define J, as 0 on the complement of all such tensors. Similarly, let r, < t let
o 237 o

N=no®nN ®--- N5 € (U*F,) ®Jé’lf " , denote 1y := Ung € #;, and suppose that for

i =1 we can writen; = n’l. ®1); for some n’i € J?,,i and ;€ Jﬁrf for which (v4,...,v;,) is the

representative of u; 'v;! for some v, € #;] (u,t) we define

Jo1= 2 i i) M ® -+ @1 ®1) 871 ® .. ®T)7; € Hyrupr, ® ﬁ”{wﬁ (6.27)
and we define J; /0 as 0 on the complement of all such tensors.
We shall show that
OsM@), = U* ®1d*™)(1d®™ @ A(a@) © 1d*™)(1d®™ & ]") (6.28)
0= o @1t el

which then shows the statement.

Letwe #1, |lw|l=d,letae Aw be a pure tensor, let w = (W1, Wy, W3) € Ky, Vj € 77;] (upt),
V; € 77n’r (urt) and r;,r, = t. Nowletne J[?v,u,r, be a pure tensor, in which case A, (a)n is
also a pure tensor. Suppose that A, (a)n € Jafv,um and that it is non-zero, so that v;u;r;
and v,u,u, start with wyw, and wg‘lwz respectively and so that wywsv,u,r, = vju;r;.
Then put wy,i; := Wowsv,u, I, = wzwl‘lvlulrl so that wywyowy,;; and wglwzwmﬂ are
reduced expressions for v;u;r; and v,u,r, respectively. We claim that s, (wowy,i;) 2
S (WIWaW;gi1) N sr(wglwzwm,-l). Indeed, let v be a letter in s, (w;wyw;,;;) that is not
in s, (WoWy4i7). Then v is a letter at the end of wy that commutes with wy. If v is at the
same time a letter in s, (wj lwyow,,i;) then v is also a letter at the end of w31, i.e. aletter
at the start of w3. But this would contradict the fact that wyw,wy3 is reduced. Thus we
established the inclusion and obtain

-1
Sr(WoWygi) 28, (WIWoWsq 1) NSy (W3 WoWsg;p) =S, (Viwr) NSy (Veu 1) 21, N1y

so that [wowyg;;| = [r; Nr|. Now, combining all this, we find

d+1r 0|+ [Wegi| < [WiWows| + [WoWygi] + Wil (6.29)
= Wyl +2[Wo| + 2[Wygi0] + W3] (6.30)
= [W1W2Weqir| + W5 ' Wow, g (6.31)
= vl + lagl + g ] + [y | + Jag | + vy | (6.32)
=d+Ir| +r,| -] (6.33)
<d+r)+r, = r;ur, (6.34)
=d+r;Nnryl (6.35)

We conclude that all the above inequalities must be equalities, in particular [w,;;| =0,
[t| = |r;ur,| and [wow,,i;| = |[r;Nr,|. This means t = r; Ur, and wy = wow,,;;. Now as also
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W2 = WoW,4;; 2 ;N1 we conclude thatwy, =r;Nr,. Sett; :=r;wy = (r;Ntr,), t,, :=r;Nr,
and t, := wor, = (tr; Nnr;). Then, as we know v;u;r; = wiwow,,;; = wiwp and v,u,r, =
wglwzwm,-l = wglwz, we then obtain that w; = v;u;t; and ws = tru;lv;l. Hence, w is
of the form w = (vlultl,tm,tru;lv;l). We note that t;, t,,,t, are disjoint subcliques of t
with t;t,,t, = t. In particular we find that the assumption implies w = vju;tu;!v; !, For a
closed subspace £ < #t denote Py for the orthogonal projection on .£". We conclude
that

Pt MOP = Mgty tousiviy @D Pz, (6.36)

. This shows that for
a € Ay, with w not of the form w = vju;tu;'v;! for any v; € #] (w;t), v, € #;, (u,t), the
right-hand side of (6.28) is zero. In this case also the left-hand side is zero by definition
of ©4(A(a)), so that we get equality.

Let ve #1. We define.

and moreover that this expression is zero whenever a ¢ A, ; ¢-1v;!

LZ'/p,V = @ jvulrl Zp,,v = 69 Lykvurrr (637)
st r st
Hpy= @D Ay, Hy= D Ay, (6.38)
vl(—:%l (ut) vreﬁ/::r (u,t)

Let us now assume a € Aw with w = vlultu;lv;l for somev; € 77,{1 (wt), vy € 77,; (u,t)

and write a = Q(vlul't,u;lv;l)(al ® ap ® az) for some a; € Ay,y,, a2 € A¢ and az € A“;lv;l.

Note that in such case the words v;, v, are uniquely determined. By the above, we now
find

PJp/l(a)Pl/pr = (6.39)

= Plp'vl A(a)P‘Zp/,V;’ (6.40)

= P‘}’/P'Vl ) tzt A(vlultl,tm,lru;lv;l) (a) PJ{‘;M (6.41)
LUmstr

partition of t

=Pz, . tZt Awpuee) (@A, t,t0) (A2) A g g =141y (@3) PJAW (6.42)
Ltm,
partitir(n)nroft
Lemma 3.1.7
X P g Ao @M@A g gyt (@) P s (6.43)
= PJL/P"’I A(vlul,e,e) (a)(Uay U*)A(e,e,u;lv;l) (as)PIp’,Vr (6.44)

where we use that A(ay)| = Ua, U™ for r < t. Now, a calculation shows that

(U* Mg oty (@) Py, @1V, = (g @07 (A (a3))) (6.45)

T, Ud®P 41 Ao/ @)l = O (A (@) 8 1d ) (6.46)
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We describe the calculation for (6.45) (the calculation for (6.46) is similar by taking ad-
joints and using that 07" (Af (a1))* = p$"™ (Af (a}))). Letn=no®m ® N5 € (U* H,) ®
Jfgmr for some r; < t and so that 7; is a pure tensor for i = 0,...,7,. Assume that for
i=1,...,7; we can write n; = n’l. ®1]; with n’l. EJofvi and 77; eﬂlf for which (v1,..., v5) is
the representative of u; v, 1. Indeed, if 1) is not of this form then both (P Kl ®Id)J ;n =0
and (Id #, ®pi®"~’ (Af(ag)))n = 0 which gives the equality. Now by definition ];,17 =019
where {1:= 2., vl,rr)(n/ﬁ: ®---®n) ®Uny) € J?v,u,r, and (> ;=71 ®---®75. Now

Meequrtvity (@) Py @10 = A euriveny (@3) Py (1) @02 (6.47)
= A eurtvi)(@3)01) ® L2 (6.48)
=0 ourtvi) (@3) 20 .. Ul)(n,;l‘; ®---®11))(Ung) ®{» (6.49)
= (Uno) ® (0™ AV (@) ®---177) (6.50)
= Uep?™ (A (as))n (6.51)

This shows equality (6.45). Hence, combining (6.45) and (6.46) we obtain

Oa(A(@), =07 (A (@) @ az ® p™ (A (a3) (6.52)
= U ®1d)Ud®Py,, Avuye0(@)Uaz ®pS™ (A (a3))) (6.53)
= U, ®Id)1d®P 41 A(@P 4 r ®1d)(de])) (6.54)
= (]; Id)(Id®A(a) ®1d)(Id ®];)) (6.55)

This shows the equality holds for all a € Ar 4, and hence, by density it holds on Ar 4. This
completes the proof. O

Theorem 6.4.3. For v €T let (A,,¢,) be a unital C -algebra with a GNS-faithful state.
LetT,: A, — A, be a state-preserving completely bounded map and assume it naturally
extends to a bounded map on L?*(A,,¢,) and on L*(AY’,¢,). Fixd = 1. Then, for the
reduced graph product, the map T : Ar,q — Ar,q givenfora=a; ®---® ag € A, SAr4 by

TaAMar®---®ag)) = ATy (@) ®---® Ty, (aq)) (6.56)
admits a completely bounded extension on Ar g with
. 3 d
1 Talles < #CligD)3d - (mUaxC(T,,)) . (6.57)
where

C(Ty) 2= max{ll Ty lleb, | Tolpz2a,. 000 | Tolg g2 22 .0 ) (6.58)

We will denote this map as Ty := *,r T,. Moreover, if (S,) yer are maps satisfying the same
conditions as (Ty) yer then

d-1
I Tq - Salle, < #Clig()3d? (mvaxmax{C(Tv), C(SV)}) maxC(Ty - Sy). (6.59)
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Proof. Fix d = 1 and suppose first that forall 1 <i < d we are given maps E,; : A, — A,
satisfying the assumptions of the theorem for T,. Now for 1 < i < d the direct sum
@ yer Ey,i extends to a bounded map on (P yer J?v)c. Moreover, by [ER00, Theorem
3.4.1] this map is in fact completely bounded with the same norm. Hence by (6.16) the
map Er; := (@ ,er Ev,i) is completely bounded on L; with norm

IELillch < ?&X IEy,i ”B(LZ(AU,(p”))'

Similarly we obtain that Eg; := (P,er T,i) is completely bounded on K; with norm
IER,illcb = maxper |Ev,illg 27 0. Now, fix a tuple p = (ny, nr,u;,u,,t) and denote
n; = n;+|u;| and 71, = n, + |u,|. Then by [ER00, Proposition 9.2.5] we obtain that

Hpl(Ep,i)v,il :=EL1®--®EL 7 ® Ep j+1® -+ ® Epy i+t ® ER i +1t1+1 ® - ® Ep g

is a completely bounded map on Lz; ®, At ®), K; with norm

t] d d
1T, [(Ey,i) il b<H||EL,||CbH||Et, mivillee  []  IErilleo < [ maxC(E, ;). (6.60)
i=1 i=1 i=T+[t1+1 i=1 "

Now let the maps (T,) be given and set T, = I1,[(T}),,;] (i.e. taking E,; = T, for all ).
Hence, we get a completely bounded map T, = (T,), on X4. Denote T/, for the natural
product map on Ar 4 thatis givenby T, ®---® T}, on A, forv= vy ---v4. We then find

TgoMlap, =Ao T¢’1|Ar,d =740 jg0 Tt’1|Al‘,d =mgoDgo0 TdoédoMAr,d- (6.61)

This shows that T; extends to a completely bounded map on Ar ;. The norm-bound
now follows from the bound ||z ll¢p < # Cliq(F))3d, the bound on | T;|lcp and the fact
that D; and ©, are completely contractive.

Now suppose we are given maps (T,) ey and (S,) ey satisfying the assumptions of
the theorem. Set S, :=11,[(S,)] and §d :=(Sp)p- SetEy,; j=Tyfori< j,setE,;;=T,-S,
for i = j and set E,;,; = Sy for i > j. Then by cancellation it follows that I, [(T})] -
I, [(Sy)] = Z;i:l I, [(Ey,i, ) v,il. Thus it follows that

maxC(Ey,j,j) (6.62)
v

) ’:]:..

d d
1T, = Splleb = Znnp (Ev,i,j)v,illlc Z
j=1 =1i
-1
<d (myaxmax{C(Ty), C(s,,)}) maxC(T, - S,). 6.63)
Then as (Ty — Sq) 0 Alar, = TaoDgo (Tg—Sa)0Og 0 Ala,,, we obtain [| Ty — Sqllh <
74 llcp max, | Tp — Spllep which proves the bound. O

Additionally we prove an analogue of Theorem 6.4.3 for the Hilbert spaces.

Theorem 6.4.4. Let T be a finite graph and for v € T let (Ay,¢,) and (B,,v,) be unital
C"-algebras with GNS-faithful states and consider the reduced graph products Ar and Br
respectively. ForveT, let T, : A, — B, be state-preserving maps that extend to bounded
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maps from L*(Ay,¢,) (= 76}') to L*(By,v,) (= 7€,). Fixd = 1. Then the map Ty : 762 | —
7L, deﬁnedforn=n1®---®ndeJ?f§J£fdas

Tam) =Ty (M) ®---® Ty, Na) (6.64)

extends to a bounded map. Moreover, if (S,)yer are maps satisfying the same conditions
as (Ty) yer then

” Td - Sd ”B(ﬁfﬁ’d’%gd) (6.65)

= d(manmaX{” T, “B(ﬁ,j‘,ﬁ’f)* ”SU”B(JET’J%?)})CZ_I mUaX” T, - sl/”]g({]&;“ﬂ;?f) (6.66)

Proof. Fixd z1andforveT and1<i=<dletE,;: A, — B, be state-preserving that

extend to a map in B(#,, #52). Then as E,, ; is state-preserving we have E,, ; () c #5
so that the map I[(E,,;)] : 72 , — 7L | defined forn =1 ®---@ny € 8} < 72 as

(Ey,i)v,ilm) = Eyy 1 (M) ®--- @ Ey, a(Ng) (6.67)

is well-defined algebraically and maps Jof‘;“ to jﬁf for v € #t. Hence, since these sub-
spaces are mutually orthogonal for v € #1 we obtain

II[(Ey ; = II[(E, ; o o 6.68
ITIL( V’l)]"B(‘]fF/?d"]flgd) veﬂl}l},%r)l(:d” [ V”)]”B(Jf‘f,iff) ( )
d
= max E,. i DA 7 6.69
V€7f/1‘,|V|:di:l_[1“ U”l”B(]ﬁfiv]ﬁi) ( )

d
= | 1 max|Ev,illg sz sz8) (6.70)

i=1

Now let (T,) and (S,) be maps satisfying the conditions from the theorem. We see that
Ty =T[(Ty)y,] G.e. taking E;,; = T, forall 1 =i < d) and S; = I1[(S,),,;] so these maps
are indeed bounded. Now set Ey;; = T, for i < j, set Ey; j = T, — Sy for i = j and set
Ey,i,j = Sy for i > j. It follows from cancellation that

d

() p,i] =TS il = Y TI(Ey,i,j) v, (6.71)
j=1

Hence I Tq = Sallg e et ) < T Ty, ) wil A zen , from which (6.65) follows.
c c O

6.5. AU.C.P EXTENSION FOR CCAP 1S PRESERVED UNDER GRAPH
PRODUCTS

We will introduce the following definition, originating from [RX06, Section 4].

Definition 6.5.1. Let (A, ) be a unital C" -algebra with GNS-faithful state ¢. We will say
that it has a u.c.p extension for the CCAP, when the following are all satisfied:
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1. Thereis a net (V;) jej of finite rank state-preserving maps on A that converge to the

identity pointwise and with limsup || Vj|l¢p = 1.
i

2. Thereis a unital C -algebra (B, ) that contains A as a unital subalgebra, and s.t. ¢
is GNS-faithful and extends the state ¢.

3. There exists a net (Uj) je; of state-preserving, u.c.p. maps Uj: A — B for which
1Vj=Uijlleb, 1V = Ujllgz a2y A 1Vj = Ujlipzao,g),12B0ov ) all converge
to0 as j — oo.

Note that by the first property (A, ¢) must posses the CCAP. It is clear that any finite
dimensional C"-algebra possesses the above property. In [RX06, proof of Theorem 4.13]
it was proven that the reduced group C'-algebra of any discrete group that possess the
CCARP also satisfies above criteria. In [Frel2, proof of Theorem 4.2] it was proven that the
same is true for reduced C"-algebra of a compact quantum group with Haar state whose
discrete dual quantum group is weakly amenable with Cowling-Haagerup constant 1.

We will now show in the next theorem that the property of having a u.c.p extension
for the CCAP is being preserved under graph products, for finite simple graphs. The
proof imitates the proof method of [RX06, Proposition 4.11]. We will use here Propo-
sition 6.3.1, Proposition 6.3.2, Proposition 6.3.3 and Theorem 6.4.3 and Theorem 6.4.4

Theorem 6.5.2. Let I be a finite simple graph and for v € T let (A,,¢,) be unital C -
algebras (with GNS-faithful states ¢,) that have a u.c.p. extension for the CCAP. Then the

reduced graph product (Ar, @) = *‘;‘irn(A,,,(p,,) has a u.c.p. extension for the CCAP.

Proof. We let (Vy,j)jej,, (By,¥p) and (Uy,j) jej, be a u.c.p extension for the CCAP for
(Ay,@y). As for all v the algebras A,, B, have GNS-faithful states, their reduced graph
products (Ar,¢) and (Br,w) respectively are well-defined, and the states ¢ and v are
GNS-faithful as well. By [CF17, Proposition 3.12] there exists a unital *-homomorphism
7 : Ar — Br that intertwines the graph product states. Now for a € kerm and b € A(Ar)
we have @(b*a*ab) = w(n(b*)n(a)* m(a)n(b)) = 0. Therefore, by the faithfulness of the
GNS-representation of Ar, this shows that a = 0 and hence 7 is injective. We will hence
consider 7 as an inclusion Ar € Br.

We construct a single directed set _¢ = [],er J, with partial order (j,)yer < (j},) ver if
and only if j, < j, for all v € T. We can now define nets (V,,j) je #, (Uy,j) je # as follows:
for j = (ju)ver weset Vy,j :=V,,j,, and U, j := U,,j,. Note that these nets still satisfy the
assumptions of a u.c.p. extension for CCAP. For v €T, j € ¢ we will set

€0,j =WV, j = Upjlleo + 1Vo,j = Uy, jllguzca,g,r28,u0) + 1Vo.j = Unjllgrza )28 vy

v

and by restricting to a subnet we can assume ¢€,,; < 1. Since the maps U,,; are u.c.p and
state-preserving we have that U, ; is a contraction from L2(Ay,¢y) to L?(B,,w,) and
from LZ(A(,),p,(pU) to 2 (ng»Wv)- Hence we also obtain

|| Vv,j ||cb» || Vv,j ”B(LZ(AUJP),LZ(BU.U/))' || Vy,j ”B(L2(AD’I,wu),LZ(Bﬁp,t//U)) <2

v
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We can now by Theorem 6.4.3 construct for j € ¢, the finite rank c.b. maps Fy ; =
*, 1 Vy,j on Ar 4. We then obtain completely bounded, finite rank maps

N
I 4
Dp,j= (1-—=)"Fg4,iPr,a
j dgﬂ =) Fa

on Ar that on the dense subset A(Ar) tend in norm to the identity as N, j — co. We can
now by Proposition 6.3.2 construct the state-preserving u.c.p maps U; := #,rU,,j, and

by Proposition 6.3.3 construct the u.c.p maps J;_ 1 and the c.b. maps ;1 yon Ar.
VN VN
This gives us state-preserving u.c.p maps Ey,; = Ujo % and state-preserving c.b.
N
maps Dy, j = U; 031'1_% ~- Applying Theorem 6.4.3 and using that C(Vy,;), C(Uy,;) <2
=

and C(V,,; — U, ;) <€,,; we obtain
I1Fq,j = Ujlagllob < (#Clig(D)*d?24™ (maxey, ;) = 0 as j — oo, (6.72)

Similarly, by Theorem 6.4.4 we obtain

Fgi—-U; < d2% " (maxe, ;) — 0 as j — oco. 6.73
I d,j ]”B(]flf?d’%lg,d) ( 1 v,]) J ( )
Now
IEn,j = Dw,jllcb < IEn,j = D, jllch + 1D, j = D, jllep (6.74)
N
[ W leb+ 2 NUjlap, — Fa,jllebll Prall (6.75)
lﬁ IT'NCb L;O J1Ar a4 d,jlicb 1T, d llcb
and similarly
IEN,j = Dn,jlip e, 28 (6.76)
=IEn,;- BNJ"B(J‘K{‘,%l?) +1Dn,j =Dy, Isa,78) 6.77)
. o o
= WUjllgeep, 2191~ L = T1 L nllpep, 6.78)
N
+ U; —Fg P . 6.79
dzz:o I ]|Ap_d d,j ||B(J£rA,d";£1§,d) I r’d”B(‘yflﬁ’ﬂrf?d) ( )

Note that || Pr 4llcp < Crd (Theorem 6.2.10), ||Pr,d||B(JfFA,”I{xd) <1and IIUjIIB(JfrAJflg) =1.
Thus we obtain using Proposition 6.3.3 that

limlim||[Exy i =Dy illep <lm||T,_ 1 —F,_1 Al (6.80)
T N,j N,jlleb = 111 1 E 1 &,N cb
1
<limCrN*(1- —)N =0 (6.81)
N VN
so that in particular limylim; || Dy, jllcp = 1. Similarly we obtain
lnlimIEN,j = D2 g, 2wepy <HRIT 0 =T vlpeep, ey (6:82)
1
<limsup(l1- —)%=0 (6.83)

N g=N \/N
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and analogously limylim; | En,; — Dy, j ”B(L2(Al‘3”,<p),L2(B;””,w)) = 0 can be shown. Now the
construction of (Dy, ), (Br,¥) and (Ey, ;) shows that (Ar, ¢) has a u.c.p extension for the
CCAP. O

Reasoning similarly to [CF17, Corollary 3.17] we show for arbitrary (possibly infinite)
simple graphs that, under the assumptions on the algebras A,, we have that the reduced
graph product possesses the CCAP.

Theorem 6.5.3. Let T be a simple graph and for v € T let (A,,¢,) be unital C" -algebras
that have a u.c.p. extension for the CCAR Then the reduced graph product (Ar,¢) =
*1"(Ay, @) has the CCAP

Proof. It follows from Theorem 6.5.2 that for any finite subgraph I'y € T, the reduced
graph product *I;l}‘; (Ay,py) possesses the CCAP. As the reduced graph product over T' is
the induced limit of all reduced graph products over finite subgraphs and as the CCAP is
preserved under inductive limits, this shows the result O

Corollary 6.5.4. LetT be a simple graph and for v €T let A, be one of the following:
1. (Ay,)) is a finite-dimensional C" -algebra with GNS-faithful state .

2. (Ay, @) is the reduced group C’ -algebra of a discrete group with Plancherel state ¢,
that possesses the CCAP

3. (Ay,@y) is the reduced C’ -algebra of a compact quantum group whose discrete dual
quantum group is weakly amenable with Cowling-Haagerup constant 1. Here ¢,
denotes the Haar state.

Then the reduced graph productC* -algebra (Ar, ) = *r,firn(A,,, @y) has the CCAR

We recall, that for a discrete group G we have that G is weakly amenable with constant
1 if and only if the reduced group C -algebra C; (G) possesses the CCAP, if and only if the
group von Neumann algebra £ (G) possesses the weak-* CCAP. Using this we obtain the
following result for von Neumann algebras.

Corollary 6.5.5. LetI' be a simple graph and for v € T let (M,,y,) be the group von
Neumann algebra £ (G,) of a discrete group G,, equipped with the canonical state. If
M, has the weak-* CCAP for all v € T, then the graph product von Neumann algebra
(Mr,y) = *,r(M,,y,) possesses the weak-* CCAP as well.

Proof. Note that the graph prpduct Mr = %, 1 £(Gy) = £(*,1rGy) has the weak-* CCAP
ifand only if C; (*,,rGy) = *‘1?11“ C? (G,) has the CCAP. The result then follows from Corol-
lary 6.5.4 O

We note that Corollary 6.5.5 was already known by [Rec17] where using different
techniques it was shown that for discrete groups weak amenability with constant 1 is
preserved under graph products. However, Corollary 6.5.4 does give new examples of al-
gebras that posses the CCAP as you can consider graph products of the form *IJ,‘irn(A,,, ®y)
where some of the algebras (A,, ¢,) satisfy condition (1), some satisfy condition (2) and
some satisfy condition (3).






COMMUTATOR ESTIMATES FOR
NORMAL OPERATORS IN FACTORS

For a normal measurable operator a affiliated with a von Neumann factor M we show:
If M is infinite, then there is A € C so that for € > 0 there are u, = u}, v, € U(M) with

vella, ugllvy = (1—€)(la— Aoyl + uela— Aolprlug).

If M is finite, then there is Ag € C and u, v € U(M) so that

3
vlla, ullv* = g(la—ﬂtolMl +ula—Aolplu®).

These bounds are optimal for infinite factors, II; -factors and some I,,-factors. Fur-
thermore, for finite factors applying | - |l -norms to the inequality provides estimates on
the norm of the inner derivation §, : M — L' (M, 1) associated to a. While by [BHS23,
Theorem 1.1] it is known for finite factors and self-adjoint a € LY(M, 1) that

”6a||M~L1(M,r) =2minla-z|,
zeC

we present concrete examples of finite factors M and normal operators a € M for which
this fails.
This chapter is based on the paper:

* Alexei Ber, Matthijs Borst and Fedor Sukochev, Commutator estimates for nor-
mal operators in factors with applications to derivations, Accepted in the Journal
of Operator Algebras. Preprint: Arxiv:2304.10775v1.

7.1. INTRODUCTION

Derivations are linear maps 6 that satisfy the Leibniz rule 6 (xy) = §(x)y + x6(y). They
play an essential role in the theory of Lie algebras, Cohomology, the study of Semi-groups

177


http://dx.doi.org/10.48550/arxiv.2304.10775

178 7. COMMUTATOR ESTIMATES FOR NORMAL OPERATORS IN FACTORS

and in Quantum Physics, see [KL14; SS95]. A classical result on derivations is due to
Stampfli [Sta70] which asserts that for a € B(#°), a bounded operator on a Hilbert space
€, the derivation § ; : B(#) — B(#°) defined by the commutator § ;(x) = [a, x] = ax—xa
has operator norm |6 41| = 2infec [la— z1 . Through the work of [KLR67; Gaj72; Zsi73],
the result of Stampfli has been extended to derivations on arbitrary von Neumann alge-
bras M (see also [Mag95] for more in this direction). More precisely, the result of Zsidé
[Zsi73, Corollary] asserts that for M a von Neumann algebra and a € M, the derivation
04 : M — M associated to a satisfies the distance formula:

10allp—pr =2 min |la-zl, (7.1)
zeZ(M)

where Z(M) denotes the center of M.

Our research aims to obtain results similar to (7.1) for derivations that map M into
the predual M.. Indeed, the predual M. is a M-bimodule (see Section 7.7) and therefore
it is possible to consider derivations § : M — M,. Important work on such derivations
was done in [BP80; Haa83; BGM12] and particularly the result of [[Haa83, Theorem 4.1]
showed that all these derivations are inner (i.e. of the form 6§ = §, for some a € M,,
defined by 6 ,(x) = ax — xa). These studies arose after Connes proved in [Con78] that all
C’-algebras that are amenable (as Banach *-algebra) are necessarily nuclear. Haagerup
proved in [Haa83] that the reverse implication is also true.

In [BHS23] the norms of these derivations were studied and results analogouos to
(7.1) were found in certain cases: for M properly infinite it was shown that some form of
formula (7.1) holds true and for M finite the same was proved under the condition that a
is self-adjoint. The proofs of these results were based on improvements of the operator
estimates obtained in [BS12b; BS12a], see below:

Theorem 7.1.1 (Theorem 1 in [BS12b]). Let M be a factor and let a = a* € S(M) (here
S(M) is the algebra of measurable operators affiliated with M).

1. If M is a finite factor or else a purely infinite o -finite factor, then there exists 1o € R
and uy = uy € U(M), such that

lla, uoll = ugla—Aolplug +1a— Aoyl (7.2)
where U(M) is the group of all unitary operators in M;
2. there exists Ay € R so that for any € > 0 there exists u, = u; € U(M) such that

lla, ugll = (1-¢)la— Aol ml. (7.3)

This theorem was extended to arbitrary von Neumann algebras in [BS12a] with the
replacement of 11, by an element from the center. In [BHS23, Corollary B.3] inequality
(7.3) was extended to:

lla, usll = (1 —¢e)(la—cql + ugla—cqlug) (7.4)

where ¢, € Z;,(LS(M)) (Z;,(LS(M)) is the self-adjoint part of the center of the algebra
LS(M) of locally measurable operators. The question arises: is such an inequality as
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(7.4) true for arbitrary a € S(M)? More precisely, are there such 1y € C, u,v, w € U(M)
and a constant C > 0 such that

lla,ull = C(wla—Aolylv* + wla—Aolylw™) (7.5)

holds true if a is not necessarily self-adjoint? In this chapter, we give an answer to this
question in the case when a is a normal operator (see Theorems 7.5.6, 7.6.4). It turns out
that if M is an infinite factor, then the constant C can be chosen arbitrarily close to 1,

just as in the case of self-adjoint a. However, in the case when M is a finite factor, the

situation changes. For II; -factors the optimal constant C turns out to be equal to ‘/75 and

for I,,-factors appropriate upper and lower bounds on the optimal constant are given
by A, =sC< %An (see (7.12) and (7.13) for definitions of these constants and (7.14) for
estimates). We summarize above results in the following theorem.

Theorem 7.1.2 (see Theorems 7.5.6, 7.6.4). Let M be a factor and let a € S(M) be normal.
Then there is a Ay € C and unitaries u, v, w € U(M) such that

lla, ull = C(vla—Aolplv* + wla— Aol plw™) (7.6)
for some constant C > 0 independent of a. Moreover

1. when M is a I,,-factor, n < oo, the optimal constant satisfies A,, < C < %T\n.

2. when M is a II; -factor, the optimal constant is C = \/Tg

3. when M is an infinite factor, we can choose C arbitrarily close to 1.

This theorem can be applied to obtain norm estimates for derivations 6 : M — M,
and extend results of [BHS23]. Specifically, we consider the case that M is finite, and 7
is a faithful normal tracial state on M. In this case M, is isomorphic to LY(M, 1) (see e.g.
[Tak03a, Lemma 2.12 and Theorem 2.13]). As an application of inequality (7.4), it was
proved in [BHS23, Theorem 1.1] that, for a=a* € LY (M, 1), we have

Oallpr— =2 min |a-z 7.7
Il a”M LY(M,7) 2€Z(S(M)) l I (7.7

(here Z(S(M)) denotes the center of S(M)) and that the minimum is attained at a self-
adjoint element c, = ¢} € L'(M,7) N Z(S(M)). In this thesis, using Theorem 7.1.2, we
show that for a finite factor M and for an arbitrary normal measurable a € LY (M, 1), the
estimate

v3min la-zl; < ||5a||M—»L1(MT) <2minlla- zl; (7.8)
zeC ’ zeC

holds (see remark after Theorem 7.7.3). In Section 7.7 we show that the estimates given
in (7.8) are sharp. In particular, in Theorem 7.7.3 we demonstrate that for any finite II; -
factor M there exists a normal a € M such that the derivation 6, is non-zero and satisfies
10all vy = v3minzec |la— z|1, whereas it follows from Theorem 7.6.4 and [BHS23,
Theorem 3.1] that for any infinite factor M formula (7.7) holds for an arbitrary normal
ae L'(M,T).

Finally, we remark that (7.8) is in fact an estimate for the L'-diameter of the unitary
orbit ©(a) = {uau* : u € UWM)} of a as Diamy1 s ) (@ (@) = 164l py— 11 (01,7)» S€€ €nd of
Section 7.7.
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DISCUSSION OF PROOFS AND COMPARISON TO [BS12B; BS12A; BHS23]
We first discuss our proof techniques. In the proof for II; -factor M we construct a trace-
preserving injective *-homomorphism F from S[0,1] (space of measureable functions
on [0, 1]) to S(M) satisfying F(g) = a for some measurable functipn g (see Theorem 7.5.2).
We then construct a point zy € C and a partition {X;} U {sz” :m=1,i =1,2} of [0,1]
satisfying:

1. g(X1) < {zo}.
2. For m=1the sets X;' and X,"* have equal measure.
3. For m = 1the sets g(X,"") and g(X,"*) are (2o, Z)-conjugate (see Definition 7.4.1).

The statement that g(sz’l) and g(XZm’z) are (zg, %)-conjugate says that zp in some sense
lies in between the sets g(XZm'l) and g(XZm'Z). Using the partition we can build a measure
preserving transformation T of [0, 1] with T'(X1) = X; and T(sz’l) = sz,z and T(sz'z) =
X! for m = 1. Then T will satisfy

V3
|g°T—g|27(Ig—20|+|goT—zO|). (7.9)

Using the map F and operator inequalities we can in a similar way use the partition to
obtain (7.6) for some u, v, w and Ay (= zp). The case of I,,-factors (n < co) is somewhat
analogous and uses the spectral mapping theorem and the analogue of (7.9) for func-
tions g on the measure space Q, ={1,..., n} with counting measure. Upper bounds for
the optimal constant C for I,,-factors and II; factors are obtained using Proposition 7.5.5
and Lemma 7.A.2 by constructing specific operators a.

The proof for infinite factors is based on the structure of the set A of points of densi-
fication of a. This set A < C is by definition the set of all complex numbers A for which
the spectral projection e?(V) is equivalent to 1, for every neighbourhood V of A. The
set A is non-empty and compact and we distinguish three cases:

1. There is a point Ay € A such that e?({Ag}) ~ 1.
2. The set A has a limit point Ag.
3. The set Ais finite and e({A}) # 1), forall A € A.

In case (1) we are directly able to build u, v, w that fulfill (7.6) for C = 1 (actually with
equality), while in the cases (2) and (3) for arbitrary € > 0 we first need to inductively
construct some sequences (pn)n=1, (qn)n=1 of orthogonal projections that we then use
to define u,, v,, w, that satisfy (7.6) for C = 1 — €. This shows that for infinite factors the
constant C from (7.6) can be chosen arbitrarily close to 1.

We now compare our techniques to those applied in [BS12b; BS12a; BHS23]. The
proof of [BS12b, Theorem 1] is based on comparing the spectral projections e%(—oo, 1)
and e%(A,00) for A € R and distinguishing cases. When e%(—o0, 1) + p ~ e%(1¢,00) + ¢q
for some Ay €R, p, g < e*({Ap}) with pg = 0 it is shown that (7.2) is satisfied (see [BS12b,
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Lemma 5]). This is in essence not so different to our proof method of Theorem 7.1.2 (for
finite factors) which requires similar comparisons for certain halfspaces in the complex
plane instead of in the real line (see Lemma 7.4.5). Furthermore, in the case of infinite
factors, the proof of [BS12b, Theorem 1] uses the construction of sequences (py)n=1,
(gn) n=1 which have similarities to those we construct in Theorem 7.6.4; though the con-
structions are different.

The proof of [BS12a, Theorem 1] uses additional techniques to extend the result of
[BS12b, Theorem 1] to the setting of arbitrary von Neumann algebras. In particular this
involves obtaining a self-adjoint central element ¢y € LS(M) and building certain or-
thogonal central projections p+, p—, po € M and combining results for the operators apy,
(a—colp)p- and (a—colp) p+. It is not clear whether the applied techniques can also
be used to extend our results to the setting of arbitrary von Neumann algebras.

The proof of [BHS23, Theorem 13] adapts methods from [BS12b] to obtain the gen-
eralized inequality (7.4) which is more closely related to our method for infinite factors
in Theorem 7.6.4.

STRUCTURE AND OVERVIEW

In Section 7.2 we prove Proposition 7.2.1 and Theorem 7.2.2 that extend some results to
locally measurable operators. In Section 7.3 we introduce the constants A, and A,, for
n € NU {oo} that will be used throughout the chapter. In Section 7.4 our main result is
Theorem 7.4.3, which is closely related to the constants A, and to the operator inequal-
ity (7.5). In Section 7.5 we use this result to obtain Theorem 7.5.6 which establishes the
operator inequality of Theorem 7.1.2 for normal elements in finite factors. In Section 7.6
we obtain the inequality of Theorem 7.1.2 for normal locally measurable operators af-
filiated with an infinite factor, see Theorem 7.6.4. In Section 7.7 we apply our results
to obtain the estimate (7.8) for the norm of derivations 6, : M — L, (M, 1) for normal
a € L1 (M,1), and we show the given bounds are optimal in some cases. In the Appendix,
Section 7.A, we prove two technical results regarding the constants A, and A,,. In par-
ticular, Theorem 7.A.1 determines the exact value of A, for n # 4.

7.2. ESTIMATES FOR LOCALLY MEASURABLE OPERATORS

We prove two results, Proposition 7.2.1 and Theorem 7.2.2, which generalize a known
result (a type of triangle inequality for operators) to locally measurable operators. Let M
be a semifinite von Neumann algebra and let LS(M) be the space of locally measurable
operators (see preliminaries). Let x € LS(M). Denote by 1(x) - the left carrier of x, by r(x)
- the right carrier of x and s(x) =1(x) v r(x). If x = u|x| is the polar decomposition of x,
then 1(x) = uu* and r(x) = u* u. We denote R(x) = % and S(x) = x;f* for respectively
the real and imaginary part of x. For a self-adjoint x € LS(M) we denote by x, (respec-

tively, x_) its positive (respectively negative) part, defined by x, = %'xl (respectively,

X_= _x—TIxI)' We note that x_ and x, are orthogonal, thatis x_x; =0.

We require Theorem 7.2.2 which states a triangle inequality for operators x € LS(M).
The statement is similar to [AAP82, Theorem 2.2] where for operators x € M the result
was shown with partial isometries instead of isometries (see also [FK86, Lemma 4.3] and
[Hia21, Lemma 4.15]). To prove Theorem 7.2.2, we will need the following statement
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which is similar to [AAP82, Proposition 2.1]. Here, v € M is called an isometryif v* v =1y,.

Proposition 7.2.1. For each x € LS(M) there is an isometry v € M such that R(x)+ <
v|x|v*.

Proof. Let p =s(R(x)+), a = p(x+|x|). Then clearly 1(a) < p. We show p =1(a). Put r =
p—1(a) so that 0 = ra = rar = rxr + r|x|r. Taking the real part of this equation gives 0 =
rR(x)r + rlx|r. Since r < p we have rR(x)_r = 0 and therefore rR(x)r = rﬂ?(x)J,r Then

=rRX)r+r|x|r= r%(x)+r+r|x|r and hence rR(x),r =0. Thenas (%(x)+r) (§R(x)+ r)=

rR(x)r = 0, we obtain S“E(x)+r = 0 and hence R(x),.r = 0. Therefore, R(x);(1p;—71) =
R(x)+ which shows (1) — ) = s(R(x)+) = p and we conclude r =0, i.e. p =1(a).

Let a = w|al be the polar decomposition of a. Then ww* = p. Put g = w* w and
s={1p—qg) A p. We show s =0. Indeed as = ags =0, thus s(x+|x|)s = sas = 0 and taking
the real part of this equation gives sR(x)s+ s|x|s = 0. As s < p we have sR(x)_s =0 so that
sR(x)s = sR(x);s. Again, by the same arguments as before, this implies sR(x),+s =0 and
subsequently (1p7—s) = p. Thuss<(1p—p)Ap=0.

Let (1 — p)(Ap — q) = wol(1pr — p)(Aar — q)| be the polar decomposition of (17 —
p)(a — q). Then wowg < 1y~ p and wj wo < 1y — g. Moreover, if t =1~ q— wjwy =
1-g-r((QAp—p)Ap—q)) thenwesee (1p—q)t =t and

Au-pt=Apu-pAu-gt=0=>t<p=>1t=<s=0.

So we obtain the equality wj wy = 1/ — q and thus v = w + wy is an isometry in M.

The inequality R(x); < v|x|v* is proved in the same way as in the proof of [AAP82,
Proposition 2.1] (the monotonicity of the square root function follows from [DPS22, Corol-
lary 2.2.28]). O

The proof of Theorem 7.2.2 is exactly the same as the proof of [AAP82, Theorem 2.2],
but instead of [AAP82, Proposition 2.1] we use Proposition 7.2.1 above. We include the
proof for completeness.

Theorem 7.2.2. For any x,y € LS(M) there are isometries v, w € M such that
Ix+yl < vlxlv* + wlylw™.

Proof. We write the polar decomposition x + y = u|x + y|. Then
1
lx+yl= 5(u*(x+y) +x+ W =R )+Ru"y) (7.10)

1 1
Furthermore, |u* x| = (x* u* ux)?2 < |lul|(x*x)2 < |x| and similarly |u#* y| < |y|. Now apply
Proposition 7.2.1 to u*x and to u* y to obtain isometries v, w € M so that

X+ y|=RW* x)+RWw* y) <viu* x|v* + wlu" ylw* < v|x|v* + wlylw” (7.11)

O
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7.3. CONSTANTS A, AND A,

For n € N we denote by (Q,, ;) the set {1,2,..., n} equipped with the normalized count-
ing measure, and by (Q, Uoo) We denote the interval [0, 1] equipped with Lebesgue mea-
sure. We will moreover write S(Q2,,) for the set of complex measurable functions on Q,,
which is simply the collection of all n-tuples of complex numbers. We write Aut,, for the
automorphism group of (Q,, u5), n € Nu{oo}, where automorphism is defined as follows:

Definition 7.3.1. Let (X1, 1) and (Xo, 1u2) be measure spaces. We will say that a map
T is an isomorphism between X, and X, if T is a measurable bijective map T : N} —
Ny between two sets N1 € X; and N, € X, of full measure, and such that moreover T-1
is also measurable, and p, o T71 = 2. Whenever (X1, 1) = (Xo, 1) we will call T an
automorphism.

Let n € NU {oo}. We now introduce two constant A, and 7\n as follows. Let g € S(Q2,),
T € Aut,, z € C, and put

|g—goT|
lg—zl+|goT -2zl

A(g, T,z) = essinf

where we assume g = 1. By the triangle inequality we have [g—go T| < |g—z|+|go T — 2|
which shows A(g, T,z) < 1forall g, T, z. We put

A(g) =sup{A(g,T,z): T € Aut,,z€ C}

and define A, by
A= geisl(l(fzy,)A(g)' (7.12)
For n > 1 we define A, by setting
2 ifn=2,n=4
V3 if n =3k,
7\":<ﬁ ifn:3k+1,n;£4' (7.13)

28 ifp=3k+2,
3k+6+ 3k
V 3k+2 T 3k+2

V3 if n=o0.

In Section 7.A we will prove two results on the constants A, and A,,. In Theorem 7.A.1
we will precisely determine A, for all values except for n = 4. It turns out that
3 3
A1=Ar=1, and % s=A<1, and A,= g forn¢g{1,2,4}. (7.14)
We observe that this implies that 2A,, < A, for n > 1 with equality when n =0 mod 3 or
n = oo and that moreover lim; ..o 2A, = V3 = nlim Ay
—00
We denote the diameter of a set A € C by Diam(A) :=sup, ;e 4 |z2—w|. InLemma 7.A.2
we will show for n > 1 that there exists g € L*°(Q,) with Diam(g(Q2,)) =1 and A, =
SUP s m, which will be used throughout the text.
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7.4. TECHNICAL RESULT

This section is devoted to the proof of Theorem 7.4.3, which is closely connected to the
operator inequality (7.5) and to the constants A,. To fully state the result we first give the
following definition:

Definition 7.4.1. Letz€ C, 0 < a < . The sets A, B c C will be called (z, @) -conjugate if
there are two lines in C that intersect at the point z at an angle «, such that the sets A and
B lie in opposite closed corners with the vertex z and the magnitude « (see Fig. 7.1)

OF 0

Figure 7.1: Two (z, a)-conjugate sets A and B are depicted.

Remark 7.4.2. Let the sets A, B be (z, a)-conjugate, a € A, b € B. It is easy to see that
a
la—b|=(a-z|+ Ib—zl)cos;

Indeed, it is enough to consider the projections of points a, b on the bisector of the angle
a.

Theorem 7.4.3. Let g € S(Q;), n e NU {oo}. Then there exists a zg € C and an automor-
phism T of Q,, such that

3
lgOT—gIEg(lg—zOIHgoT—zOI). (7.15)
ie.
Ag) = ? (7.16)

Moreover, the set Q);, can be partitioned into disjoint measurable sets as follows:

1. if n is even or n = oo then there is a partition {X;} U {sz‘i :l=sm,l<i=<2}so
that g(X1) < {zo}, un(sz’l) = pn(XZm'z) and the sets g(sz'l), g(sz'z) are (2, §)-
conjugate for m = 1,2,...; Moreover, denoting X, = Q, \ X; we have that Tklxk =
Idy, fork=1,2.

2. ifn is odd then there is a partition X1, X2, X3, X5, so that Tklxk =ldy,, k=1,2,3,5.
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Ifn < oo then there exists zo € C and T € Aut,, so that
A(g, T, z0) = A(g). (7.17)

The above theorem relates to the operator inequality (7.5) through functional cal-
culus. This is best visible in the case of finite-dimensional factors, see Theorem 7.5.1.
Furthermore, we note that Theorem 7.4.3 provides a lower bound on the constants A,.

Indeed, given g € S(Q,,) the obtained z, T are such that A(g, T, z9) = ‘/7§ Hence A, = ‘/7§
for all n € NU {oo}. In the Appendix, Theorem 7.A.1, it is proved that in fact A, = ‘/7§ for

n =3 and n = 5. Therefore, for these values of n, the constant ‘/7§ in the above theorem is
best possible (i.e. maximal so that for all g € S(Q,,) there exist zy, T satisfying (7.15)).

The proof of Theorem 7.4.3 is somewhat technical and requires two other results:
Lemma 7.4.4 and Lemma 7.4.5 We give a sketch of the proof. Given a measurable func-
tion g : Q, — C we first use Lemma 7.4.5 to locate a point zp € C, and divide the plane
into 6 components by drawing 3 lines intersecting in zy making angles of %”. The way
we do this is such that the measure of the inverse image of g of opposing components is
equal. We can then construct an automorphism 7T by just mapping the inverse image of
g of each component to the inverse image of its opposing component. For all w € Q, we
then obtain the estimate Zg(w), zp, g(T(w)) = %” for the angle. Lemma 7.4.4 will then
imply that (7.15) holds true. In the actual proof of Theorem 7.4.3 some difficulties arise
with the boundaries of the components, and particularly for the case that we are dealing
with the measure space Q, with n odd. Because of this reason, it is necessary to consider
multiple cases in the proof.

The following lemma gives for complex numbers zy, z, 2, a sufficient condition for

V3
|ZI_ZZ|27(|ZI_ZO|+|ZZ_ZO|) (7.18)

to hold, namely when the angle satisfies £z;zpz, = %” Equation (7.18) can also be de-

scribed geometrically as saying that the point z lies in the ellipse with foci z; and z, and

eccentricity ‘/7§

Lemma 7.4.4. Let zy, z1, 22 € C be points in the plane, and consider the triangle Azyz) z;.

Denotea=|z1—zl, b =21 — zol, ¢ = |22 — 20|, and a = Lz1 20z Ifa = 2& then
3

az?(b+c).

Proof. According to the cosine theorem we have
a® = b* + ¢* —2bccosa.
Since cosa < —# and b? + ¢® = 2bc we obtain

4a® = 4% + ® + be) 23> +3c® +6bc =3(b+¢)?

which shows the result. O
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The following lemma is used, for a given function g € S(Q2,;), to choose the point
zg € C adequately such that (7.15) holds for some automorphism T that we will later
determine. The point zy € C should be thought of as the center (or rather a center) of
the image of g. In Lemma 7.4.5 we have identified C with R? and the point zy € C is
represented as a vector z € R?. This vector z is chosen together with three affine hy-
perplanes (i.e. lines) through z, that are represented by unit vectors v;, vz, v3 orthogonal
to those affine hyperplanes. The unit vectors vy, v2,v3 moreover make angles Zv;0v;
for i # j of 2?” (this means that the affine hyperplances intersect at angles of %”). To
each of the affine hyperplanes correspond two closed halfspaces. The lemma tells us
that zy, v1, vy, vs can be chosen in such a way that the inverse image of g of each of these
closed halfspaces has measure larger or equal to % This explains why we think of zy as
a center of the image of g. Namely, for all three affine hyperplanes it must hold that an
equal portion of the domain is mapped to each side (or possibly on the affine hyper-
plane). However, we remark that such a ‘center point’ zy with the above properties does
not need to be unique.

Lemma 7.4.5. Let (Q, i) be a probability space and let g be a measurable R? -valued func-
tion. Then, there exists a point zy € R2, unit vectors vi,vs,vs € R? with angles /v,0v, =
Zvy0vy = Lv30vy = %” so that fori =1,2,3, denoting a; := (zy,v;), we have

1

L R 1
m; = u({w €Q: (glw),v;) = a,-}) > > m; = IJ({‘U €Q: (glw),v;) = a,-}) > >

For i = 1,2,3 we point out that m + m® =1 holds if and only if p({w € Q: (g(w),v;) =
a;}) =0.

Proof. We first prove the result for the case that g is bounded. Denote T = R/27Z and
for t € T set v(?) = (cos(?),sin(#)) and define

QL r)={weQ:{(gw),v(t) =r}, TeR,
A = {r eR: L < par r))}
2 M )

a(t) =inf A(?).

Ifr, | a(t) and % < p(Q(t, ry)) then Q(t, 1) 2 Q(t,12) o ... and Q(z, a(r) = N, QL rp).
Hence,

1
> < p(Q(t, a(1)). (7.19)

If r, 1 a(t) then % > u(Q(t,ry) and Q(t, 1) < Q(¢,12) < ... and {w € Q : (g(w),v(?)) <
a()}=U, Q(t,r,). Hence,

1
,u({w €Q: (g(w), V(1) < a(t)}) <5< ,u({w €Q: (g(w), V(1) < a(r)}) (7.20)
and therefore
1
,u({weQ: (g(w), V(D) = a(t)}) 2. (7.21)
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We note that it follows from the definition of a that
1
a(t+m) = —sup{r eR: 3 S plweQ:{(glw),v(1) = r})} (7.22)

since
Q+n,r)={weQ:(gw),v(®))=-r}, reR.

Hence, we obtain by (7.21), (7.22) and by properties of the supremum that a(t) <
—a(t+m) forall £ € T since a(t) € {r eR: 1 < plwe Q: (g),v(D) = r})}. Moreover, in
the second inequality of (7.20), replacing ¢ by ¢ + = we obtain

Su({wEQ: (g(@),v(D) 2—a(t+n)}). (7.23)

N =

Hence, for any t € T, and any b € [a(f), —a(t + m)] we obtain using (7.20) and (7.23) that

< p({w €Q: (gw), V(1) = b}). (7.24)

s <u(wea:goivmsn) S

We show that the function a is continuous. Indeed, let € > 0, and choose § > 0 such
that ||[v(#) —v(s)|l, < € for all ¢, s € T with Dist(s, ) < 8. Now, fix ¢, s € T with Dist(z,s) < 6.
Then for w € Q we have

[{g(w),v(£)) — (g (), V(SN = 18 lloo IV(2) = V()2 < €Il g ll o
But this means for r € R that
fweQ: (gw),v(t) =rfc{iweQ: (gw),v(s)) =71 +e€llglloo}-

This implies in particular that

1
3 < u({w: (g(w), V() = a(t)}) < u({w: (g(w),v(s)) = al(r) +£|Iglloo})

so that a(s) < a(t) + €l|gllo. By symmetry of s and ¢ we obtain similarly a(f) < a(s) +
€llglloo, which implies |a(f) — a(s)| < €l glloo and shows the continuity of a.
Now, for ¢ € T and b € R consider the line

L(t,b) = {iwe R?: (w,v(1)) = b} = bv(t) + Rv(z + g).

For s # t mod 7, the lines L(s) and L(¢) intersect at a unique point w(L(s, b), L(t,¢)). In
particular there is a r € R such that

w(L(s,b),L(t,c)) = bv(s)+rv(s+ g).

c=b(v(s),v(1))

Therefore ¢ := (w(L(s, b), L(¢,¢)),v(t)) = b(v(s),v(t))+r<v(s+%),v(t)) sothatr = LD aD)
%

and thus
¢ —b{v(s),v(1)) 7
(s+—=).

wi(L(s, b),L(t, c) = bV(S) + mv 5
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Let t € T. We are interested in finding values by, by, b; € R such that the lines L(¢— %”, b1),
L(t+ 2?”, b,) and L(t, b3) intersect at a single point. This is to say that the intersection
point w(L(t — 2%, by), L(t + &, b,)) must lie on the line L(z, b3). From this we obtain the
expression for b3, namely:

2 2
bs = (wL(t— ?”,bl),L(H ?n,bz)),v(t))
by — by (v(t — ), v(t + 3))
v(t=1),v(t+24))

by — b; cos(4E)
cos(%) 6

27 T
=b1<V(t—?),V(t)>+ <V(t—g),V(t)>

2n
=b cos(?)+

2 4
=bh cos(?ﬂ) - (b2 -b cos(?”))
=—-b; - by.

This shows that the lines L(f — %”, by),L(t+ 2?”, b,) and L(t, b3) intersect precisely when
b1+ by + b3 =0.

Definec: T — R as c(t) = a(t— %”) +a(t)+a(t+ %”), which is a continuous function.
Now, we note that, similar to a, we have c(t) < —c(t + ) for all ¢, so that f1T c(dt <
—Jre(t+mdt = - [y c(t)dt, and hence that [} c(t)dt < 0. We can thus find a #; such
that c(t;) < 0. If also 0 < —c(#; + 7) then we set tp := 1. If instead —c(f; + ) < 0, we
set fp := t; + m and obtain —c(% + 7) = —c(#;) = c(#; + 7) > 0. By the intermediate value
theorem, we then find a £y € T such that —c(ty + ) = 0. Then c(fy) < —c(ty + ) =0.

In both cases, we found #; € T with ¢(%y) < 0 < —c(#y + 7). Now, as moreover a(t) <
—a(t+m) forall ¢t € T, we can determine

27 T
by € la(ty - ?),—a(fo + g)],

b € [a(t +2—7T) —a(t _E)]
2 0 3 ) 0 3 »
bs € la(ty), —a(ty + m)]

such that b; + b, + b3 = 0. Indeed, this is possible as the sum of the left-endpoints of
the intervals equals c(#), whereas the sum of the right-endpoints of the intervals equals
—c(ty + ). We now set vy := v(fy — %”), Vo = V(fH + 2?”) and vs := v(#p) and let zy be the
unique intersection point of the lines L(#y — %”, b1), L(ty + 2?”, by) and L(ty, b3) . As zg lies
on each of the three lines, we obtain that a; := (zy,v;) = b; for i = 1,2, 3. By the choice of
the b;’s in the intervals, it (see (7.24)) now follows that the properties of the lemma are
fulfilled. The last line of the lemma follows from the fact that m} + m¥ = p(Q) + p(lw €
Q:(g(w),vi) = a;}).

The result for unbounded g follows by the following reduction to the case of bounded
functions. For j € Nlet Q; < Q be a measurable subset for which gyq; is bounded and

with Q; 1 Q. Denote u; := H(;Qj)u and gj := glo; € L™(Qj, ;). Applying the result of

the lemma to g;, we find zy ; and v; ; and a;,; = (2o,j,v;,;) with the stated properties.
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The sequence zp,; must be bounded. Indeed, otherwise there is an i € {1, 2,3} such that
for a subsequence of (a;,j) j=1 we have a; ; — +oco. However, this would contradict 1 <

pj({w €Q;: (gjlw),v;j) = a,-,j}). Thus, by boundedness of the sequences (zp, ;) j>1 and
(vi,j) j=1, we have for some strictly increasing sequence (ji) k=1 in N, that the limits zg :=
kli_’rgozo,j,C andv; := ;Cli,r&vi'fk exist. Setting a; := (zg,v;) we also have a; = kh_’r{.lo ai,j,. Using
(reversed) Fatou’s lemma, we now obtain for i = 1,2, 3 that
(o)
ullwea: @ vy=al)zp( ) Uwe: €w),vi;)=<a,l)
K=1k=K

= limsupu({w €Qj.: (gw),vij) < ai,jk})

k—o0

= limsuppjk({w €Qj,.: (gj ),V j,) < ai,jk})
k—o0

=

D=

In the same way u({w € Q{gw),v;) = a,-}) > % can be shown. The last line of the lemma

follows as before. This proves the lemma.
O

We are now fully equipped to prove Theorem 7.4.3.

Proof of Theorem 7.4.3. By identifying C with R?, we can apply Lemma 7.4.5, to obtain
zy and vy, v, v3 and a,, az, as which we will use to prove the result. Without loss of gen-
erality we can moreover assume that v;,v, and vs are orientated counter-clockwise. In
the proof, we distinguish cases, depending on n. We prove the result separately for the
cases: (1) for n even, or n = oo and (2) for »n odd.

(1) n is even, or n = co. First, suppose that n € N is even. Then, by the choice of
the point zy and of vi,v»,v3 (see Lemma 7.4.5) and the fact that n is even, we can for
j = 1,2,3 create partitions {I;,I]T} of Q,, such that ,un(I;.' = %Q”) = yn(lj‘) and such
that (g(w),v;) < a; whenever w € IJT and (g(w),v;) = a; whenever w € IJJF. If instead
n = oo then the same is true, because of the fact that u,, is atomless in that case. We can
now define the sets

Py=IinLnl;, Pi=I[nInIj,
Py=In;nI;, Py=Inl;nlIj,
Py=InLnIy, Py=Inljnli;,
Py=I'nnI, Py=I[nlnI;

that partition Q,,.

We show that g(P;r U P;) < {zg}. We have that v; + vz +v3 = 0 and therefore a; +
ax+az = 0. For w € If NI NI we have (g(w),v;) = a;,i =1,2,3, and Zf.’:l(g(w),vi) =
0. Hence, (g(w),v;) = a;,i = 1,2,3. But this means precisely that g(w) = zy. Similarly
g(P;) < {zo}. For benefit of the reader, we have visualized the partition sets in Fig. 7.2.
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g(3) g(13)

gP;) gPy)

gUu;) ' — g Vs

Figure 7.2: The partition sets are visualized for a universal example (any example is like this, except for shifting
z( and rotating the lines). The 3 lines intersect in a single point zy. For every line, the set Q, is partitioned in
two sets Il.+ and I}, so that g(I;’) and g(I;) lie only on one side of this line. The partition sets Pf are then such

that g(P]#) lies in one connected component (or its boundary). The sets g(PI) and g(P,) are not visualized.

For these we must have g(PZ UP;) < {zo}.

We have
Un(PY UP; UP; UPY) = pp(Iy) = pn(Iy) = up(Py UPy UPS UPY), (7.25)
pn(Py UP; UP; UPY) = py(Iy) = pn(ly) = pp(Py UP; UPS UP), (7.26)
pn(Py UP; UP; UP)) = p,(I3) = pn(l3) = pun(Py UP; UP; UP)), (7.27)

(7.25)+(7.26):

Un(P3) + tn(Py) = pn(P3) + n(Py),
(7.25)+(7.27):

Un(P3) + pn(Pf) = un(P3) + pn(Py),
(7.26)+(7.27):

Un(Py) +#n(PI) :Pn(Pr) +un(Py).

We thus obtain that ¢ := u, (P]JF) —Un (P]T) isindependent of j =1,2,3,4.
Let us assume that ¢ = 0 so that pn(P;.') > t. Choose Aj P;.’ with 1, (Aj) = . We
denote X; = (P} UP;)\ As and

Xy =Pi\A, XJP=Pr, X3 =Py \ Ay, X2P =P, Xo' = P\ A3, X3P = P;.
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First, suppose that n € N is even. Then A; = {a;1,...,a;}, j =1,2,3,4, I = tn. Fix
k=1,...,1. In each triple (ay k, ay,k, a3 ) there will be such i, j € {1,2,3} (see Fig. 7.2) so
that

2m
5 < Zglaix) 2o, gaj ) < .

Let {g} = {1,2,3}\{i, j}. Then {g(a;)} and {g(a; )}, and also {g(ag, )} and {g(as i)}
form pairs of (29, 2)-conjugate sets. We put XZZkJrZ’1 = {a; i} X22k+2,2 ={aj i XZZkJr?"1 =
{ag i}, X232 = {ay 1) and XJ™! = X = @ for m= 21 +4.

We assume now that = co. Let £; = {le, Y].z,...} be a maximal system of pairwise
disjoint measurable subsets of A;, j =1,2,3,4, such that ,uoo(Ylk) = yoo(YZk) = ,LLOO(Y3k) =
poo(Y4k) > 0 and the four (g(Ylk), g(sz), g(ng), g(Y4k)) is divided into two pairs of (z, 3)-
conjugate sets for k=1,2,....

Put Bj = Aj\Uk ij. Then oo (B1) = oo (B2) = oo (B3) = Hoo(B4) = ty. Suppose that
tp > 0. If the sets g(By), g(B2), g(B3) are located on three rays emanating from z, and
forming angles %” then g(B1), g(By) are (2o, 5)-conjugate sets as well as g(Bs), g(By). This
contradicts the maximality of the above set systems X ;. Thus we can assume there are
by € B;, by € Bj, i,j€11,2,3}, i # j, with Zg(b1), 20, 8(b2) > & and such that g(by), g(b2)
are essential values of g|p,up - Then there will be such neighborhoods V; and V; of the
points g(b;) and g(b»), respectively, that V1, V; are (zo, %)-Conjugate sets. Therefore there
exist sets Y1 < B;, Y < Bj so that (Y1) = floo(Y2) > 0 and g(Yy) < Vi, k =1,2. Hence,
g(11), g(Y2) are (2o, 3)-conjugate sets. Let {q} = {1,2,3}\ {i, j}. There exists Y3 < B, Y, <
Ba, Poo(Y3) = too(Ya) = oo (Y7). Tt is clear that g(Y3), g(Y4) are (zo, %)-conjugate sets. The
presence of sets Y1, Y, Y3, Y; contradicts the maximality of the above systems X ;.

The contradiction obtained in both cases shows f, = 0. Therefore the system
{X1}u{X,"" :1=m=<3,1<i=<2}canbe completed using=;, j = 1,2,3,4.

It remains to define T so that T, = Idy,, T(Xé”’l) = sz'z, T(Xé”’z) = sz'l for m =
1,2,... and such that T2 = Idg,. Then the inequality (7.15) follows from the Lemma 7.4.4.

The case that ¢ < 0 is similar, by changing the roles of P]JF and P]T.

(2). nisodd. We can for i = 1,2,3 instead build partitions {I;r,{w,-},ljf} of Q,, with
un(l;r) = pn(I;) and such that (g(w),v;) < a; whenever w € I; and (g(w),v;) = a; when-
ever w € I'* and (g(w;),v;) = a;. Indeed, such w; exist because [{w € Q, : (gw),v;) <
aill,llweQy,: (glw),v;) = a;}l = ”T“ and therefore {w € Q, : (g(w),vi) < a;iln{weQy,:
(g(w),v;) = a;} # @. Denote Yy = {w1, w2, ws}.

Now, suppose that z € g(Q;). Then we could have chosen w; = w; = w3 all equal and
such that g(w;) = zy. Then |Yp| = 1 and the sets {I l.+, I} are all partitions of Q; \ Yy similar
to (1), and we can build the corresponding automorphism T of Q, \ ¥y. This completes
the proof for that case by setting T'(w;) = w;.

We can thus assume that zy ¢ g(Q2,) so that in particular g(w;) # g(w;) for i # j and
| Yol = 3. Now suppose first that zg € Conv(g(Yp)). For all i € {1,2,3} we then have that
Yon I and Yo N I both consist of 1 element. Hence, u, (I \ Yo) = pp(I; \ Yp) and the
partitions {I; \ Yo, I; \ Yo} of Q, \ Yy satisfy the same properties as (1). We thus obtain
a measure preserving automorphism 7 of Q, \ ¥y with the same properties. Now we
can set T(w1) = w2, T(wy) = w3 and T (w3) = w1, so that £g(w;),zy, g(T (w;)) = %” This
finishes the proof by Lemma 7.4.4
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Now suppose that zg ¢ Conv(g(Yp)). Then it can be seen geometrically (for intuition
see Fig. 7.3), that there is a unique choice of (distinct) indices i1, i», i3 € {1, 2, 3} such that

iy} =Yonl, {oy}=YonI}. (7.28)

Now, suppose that w;, ¢ I;;. Then as w;;, # w;, we get w;, € Il.;. But then as w;, € {w;;} N
Il.; al Il-; we would get g(w;,) = zy by the same argument as why g(P4+ UP;) c{zo}in (1).
However, zy ¢ g(Q2,) by our assumption so this cannot be the case. We conclude that
we must have w;, € Il.:. By a same argument we find that we must have w;, € I; (Indeed,
otherwise w;, € I; sothatw;, € I;: r]Il.+2 N{w;,}, which would imply g(w;,) = zo, which gives
a contradiction). Furthermore, we claim that w;, € I}, *. Indeed, if w;, € I;, then we could
rearrange the indexes as ll i, 12 i3 and 13 =1i1,80 that we get {w; /} = {wlz} =Yyn I‘

Yoml and {wl b ={wy )= YonI t= Yoml *. This contradicts the uniqueness of the chorce

i1, 12, 13 satisfying (7.28). We conclude that indeed w;, € I *. By the same argument we
find w;, € I (Indeed, if w;, € I’r we could take the rearrangement 11 i3, 12 = i; and
3 =iy to obtaln{w:} ={wi} = ngI = Yonl and{w/} ={w;,} = ngI = YomI,,
which contradicts the uniqueness). For clarity we summarize the results:
wit=YoNnI, {wil=YoN I;;,
i, 0} =YoN I {00} =Y I},

We now obtain

palLy, O 1) + (I N 1) = (T @i D) = (1), (7.29)
_ - _ _. 1

HnTy O 1)+ Ty, 0 1) = pn (T, V) = pn(I3) = —, (7.30)

palL}, O 1) + Iy, N 1) = paly Mwi D) = (), (7.31)
_ 1

Hn T O 1)+ pn (I, 0 1) = pn (I i) = pn 1) = —. (7.32)

Hence, by (7.29) + (7.30) we obtain ,un(Il.J; N Il.+2) = % + y,,(Il.‘1 N Ii_z) and by summing up
(7.31) with (7.32) we obtain p, (I; N 1;) = 1 +Hn(1,-: NI;). We conclude the existences of
w4 € I;f NI andws € I; NI . Now, forthesets P, :=I' NI NI and P, :=I_ NI NI

1 2 2 i3 n 2 3 2 2 i3
we have that g(P; U P;) < {z} (same as in (1)), and hence Pj UP; = @ as zy ¢ g(Qy)
by assumption. This means that w4 ¢ Il.: and ws ¢ Il.‘l. Also, as w;; € Il.‘1 and w;, € Il.: we
get that wy # w;, and ws # w;;. As {Il.*, {w}, I7} are partitions of Q,, we conclude that
w4 € I;; n I;; NI and ws € I;; NI, NI Denote Y = {w), w2, w3, ws, w5}, SO that by the
above we have |Y7| = 5 and moreover:

Ylnli_lz{wingig}) Ylmli_zz{wilrwf)}r Ylnll‘gz{w4’w5}y

Ylﬂ]; 2{6()4,(1)5}, Ylmli;:{wigrw4}r Ylﬁlj3 Z{wilrwig}-

Now, as all these sets have size 2, we must have that

+ 2 - 2 _
Hn(li \1) :,un(li )— ; :,un(li )— ; :,un(ll' \ 7).
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Figure 7.3: The 5 points are depicted for an example.

This means that the partitions {I;"\ Y1, I; \ Y1} of Q,, \ Y; satisfy the same properties as

in (1). We can therefore find a transformation T of Q, \ Y; with the same properties. We

can now define T on Y; by setting T'(w;,) = wy, T(w4) = w;,, T(w},) = ws, T(ws) = wi,
21

and T(wy;) = w;;. Then Zg(w;),29,8(T(w;)) = 4 for all i. Appealing to Lemma 7.4.4

this impies |g(w) — g(T(w))| < ﬁ(lg(w) — 7ol + g (T (w) —z9)) for all w € Q, which shows
that (7.15) holds true. The inequality (7.16) follows from it. Furthermore, in each of
the considered cases it clear how to split Q; into the parts X, X», X3, X5 (note that by
construction we have T*(w) = w for some k € {1,2,3,5} for w € Q). We prove the final
statement.

Let n < oo and let (T},), (z,,;) be sequences such that 0 < A(g, Tiy, z2;) 1 A(g). Then

NG Ty 2m) "' 18(@) — 8(Tin ()] = 18(@) = 2| + |8 (T (@) =z = |8 (@) — Zp|
forany w € Q. Let wg € Q. Then
|g(wo) — Zm| < A(g, Ty, zm) ' Diam(g(Qp)) < A(g, T1, 21) ! Diam(g(Qy)).
Since Aut,, has cardinality | Aut,| = n! < co and since the set
{z€C: |g(wo) — 2l < A(g, Ty, 21) ' Diam(g(Q,))}
is compact, there exists an increasing sequence (my) in N and a zj € C such that

ZO:lilICank’ To=Tpm =Tmy=-=Tmp=....

Then A(g, Ty, z0) = A(g). O

7.5. COMMUTATOR ESTIMATES FOR NORMAL OPERATORS IN FI-
NITE FACTORS

The main result of this section, Theorem 7.5.6 below, establishes the commutator in-

equality (7.5) for normal element a € S(M), where M is a finite factor, and provides upper
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and lower bounds on the optimal constant Cy,. This yields a version of [BHS23, Theorem
1.1], suitable for normal elements. We consider the case of I,,-factors (n < co) in Theo-
rem 7.5.1) and the case of II; -factors in Theorem 7.5.4 and show that the commutator

inequality holds for the constant @ The proof for II; -factors requires two additional re-
sults, Theorem 7.5.2 and Lemma 7.5.3. Furthermore, in order to prove the upper bounds
in Theorem 7.5.6 we provide Proposition 7.5.5.

Theorem 7.5.1. Let M = B(AC) be an I,-factor for n € N. For an arbitrary normal operator
a € M there is a unitary u € U(M) and a z, € C such that

3
I[a,u]lz%(Ia—zolMHula—zolMlu*). (7.33)

Moreover, u can be chosen so that

° when n is even there are projections p1, p2 such thatpy + p2 =1y

° when n is odd there are projections py, p2, p3, ps Such that py + p2 + ps+ ps = 1y
so that

pilU = Uupy, ukpk =pr k=1,2,3,5.
If a € M is such that its spectrum o(a) lies on a straight line, then we can obtain true
equality:
lla, ull = la—zolp| + ula— zolprlu, for someu™ = ueU(M),z€C. (7.34)

We remark that when n = 1,2 every normal a € M satisfies this extra condition.

Proof. Since a is a normal element on an n-dimensional Hilbert space, it follows from
the spectral mapping theorem that there is a unitary U : # — L?(Q,) such that a =
U*MgU, where M, is the multiplication operator on L2(Qy,) for some g € L®(Q2;,). Ap-
plying Theorem 7.4.3 to g, we find a transformation T and a zj € C such that

V3
lgoT—glZy(lg—zOngoT—zOl) (7.35)

together with the given partition of 2, consisting of the sets X;, X, (when 7 is even) or
X1, X5, X3, X5 (when n is odd) and that satisfy Tklxk =Idy,. Now let ur be the Koopman
operator on L?(Q),,) corresponding to T, i.e. urf = fo T. Denote u = U*urU. Then

lla, ull = lu(u” au— a)|
=|uau® - al
=U"lurMguy — Mg|U
= U*|Mgor — MglU
=U"Migor-giU
= Ap (U*IMg — 20lU + U* | Mgor — 20| U)
=An (U*IMg - 20|U + U" ur|Mg — z9luj.U).

=An(la—-zol + ula—zolu*)
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We now define the projections by setting p = U* yx, U which clearly satisfy the state-
ments.

If o (a) lies on a straight line, then there exist scalars a, f € C, |a| = 1, such that a; :=
a(a— Bly) € M is self-adjoint. It follows from Theorem 7.1.1 that there exist zyp € R and
u=u* € U(M) that

la, ull = |[a1, ul| = |a1—zo Ly |+ ulas —zo Ly lu = la—(B+z00” ) 1yl +ula—(B+z0a ) 1plue.
O

We need the following result, which for a diffuse semifinite von Neumann algebra
(M, 1) and a normal measurable a € S(M) establishes an injective *-homomorphism F
between S[0, 1] and S(M) which preserves measure and is such that a lies in the image
of F. Special cases of the result which follows for positive bounded elements of M and
positive elements of LY(M, 1) can be found in [DSZ15, Lemma 9] and in [CS94, Lemma
4.1] respectively.

Theorem 7.5.2. Let M be a diffuse (i.e. atomless) von Neumann algebra with a faithful
normal tracial state T, let a € S(M) be a normal operator. There exists such an injective
x-homomorphism F : S[0,1] — S(M) such that a € Im(F) and m(A) = 1(F(xa)) for any
measurable subset A c [0,1] (here m is the Lebesgue measure on [0,1]).

Proof. Let e be a spectral measure of the operator a defined on the o-algebra %(o(a))
of Borel subsets in o(a). Then 7(e(-)) yields a probability measure on %(c(a)). By the
spectral theorem (see [Rud91, Theorem 13.33]), we have

a= f Ade(A).
o(a)

Let Xy be a set of eigenvalues of a. It is clear that X, < o(a) is at most countable.
Indeed, if t € X, then e({t}) # 0 and Yrex, Tle{t}) = t(e(Xp)) = 1. Let t € Xo. Since
M is diffuse, it follows that in M there is a chain of projections fS’ 1s e({t}) such that
1(f1) = sfor s € Y; := [0,7(e({1}))]. Denote by f; the spectral measure on 98(Y;) given by
the equality

fir((s1,82)) = fsi —fstl-
We have 7(f;(A)) = m(A) for any A€ %B(Y;). Let us now set

X=(c@\Xo)u | | ve.
te Xy

On %B(X), we define a spectral measure g such that
8lao@\xy) = elBw@\x0)» &law,) = fi L€ Xo,
and a scalar measure

px(A) =t(e(An(o(@\ X)) + Y, pAnYy).
teXo
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It follows that (X, 2(X), ux) is a Lebesgue space with an atomless probability mea-
sure. Hence, it is isomorphic to the segment [0, 1] equipped with Lebesgue measure m,
see e.g. [Bog07, Theorem 9.5.1].

Alinear mapping F: S(X, 8(X), ux) — S(M) is defined by

F(yp) =fX(P(X)dg(X)

for any ¢ € S(X, B(X), ux) (see [DPS22, Definition 1.5.6]). We remark that F(y ) = g(A)
for measurable A ¢ X and that ux(A) = 1(F(y4)). Furthermore F(yaxp) = F(XanB) =
g(ANB) = g(A)g(B) = F(xa)F(xp) for measurable sets A, B < X. Therefore, as F is con-
tinuous with respect to the topologies of convergence in measure in S(X, 8(X), ux) and
S(M, 1) and since simple functions in S(X, 8(X), 1x) are dense with respect to the mea-
sure topology, it follows that F(¢py) = F(@)F(y) for all ¢, v € S(X, B(X), ux). Moreover,
F(p) = fxﬁdg(x) = F(¢p)* so we find that F is a *-homomorphism. Now, suppose
@ € S(X,B(X), ux) is such that F(p) = 0 and B < X is such that ¢(x) # 0 for a.e. x € B.
Then g(B) = F(xp) = F(%XB)F((p) =0, thus ux(B) = 7(g(B)) = 0. This shows that F is
injective.

Finally, let us define the function f by setting f(¢) = ¢ for t € B(o(a) \ Xp) or t € Y;.
Then f € S(X,#(X), ux) and F(f) = a. O

Lemma 7.5.3. Let M be a finite von Neumann algebra, let a, b € S(M) be normal opera-
tors, 20 €C, 0<a <mandleto(a), o(b) be (29, @)-conjugate sets. Then

a
l/|a—b|l/*Z(|(l—Z01M|+|b—Z(]1M|)COSE (7.36)

for some v e U(M).

Proof. Since o(a) and o (b) are (zp,a)-conjugate, the shifted sets o(a) — zp and o (b) — zg
are (0,a)-conjugate. We can then obtain a pair of lines as in Fig. 7.1, intersecting at the
origin with an angle a. By rotating the complex plane around the origin we can assure
that these lines are symmetric with respect to the real axis. This is to say that there exists
a function f(z) = c(z — zp) with |c| = 1 so that

a a a a
flo(a) ciz: -3 <Arg(z) < E}' flob)ciz: m— 5 <Arg(@)sm+ E}'
Let ay = f(a), by = f(b). We have
IallcosE <Ray, Ibllcosg <-Rb;.
2 2
Therefore
a a
(la=zolpl+1b- ZolMDCOSE = (a1l + |b1|)COSE =Ra; —-Rby =RN(a1 — by) <R(a1 — b1)+
(7.37)

By Proposition 7.2.1, we obtain

R(a1 — b))+ <vla;—b1lv* =vla-blv*. (7.38)

for some v € M with v* v = 1);. Since 1, is a finite projection it follows that vv* =1y,
i.e. v € U(M). Combining (7.37) and (7.38) establishes (7.36) O
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We now prove a version of Theorem 7.5.1 for II; -factors. Equation (7.39) below is
slightly different from (7.33) as it involves a second unitary w € U(M).

Theorem 7.5.4. Let M be a factor of type II,, a € S(M) be normal. Then there exists a
20 €C, u=u* e UM) and w € UM) so that

3
wl[a,u]lw*z%-(Ia—zolMHula—zolMlu). (7.39)
Ifo(a) lies on a straight line then
la, ull = a—zolp| + ula— zolplu. (7.40)

Proof. Let T be a faithful normal tracial state on M and let F: §[0,1] — S(M) be an injec-
tive *-homomorphism from Theorem 7.5.2 satisfying a € Im(F) . Let g = F~!(a).

It follows from Theorem 7.4.3 that there exists zy such that [0, 1] can be divided into
disjoint measurable parts {X;} U {sz'i :m=1,1<1i<2}sothat g(X1) < {zo}, ,u(XZm’l) =
'u(sz,z) and the sets g(sz’l), g(sz'z) are (2o, §)-conjugate for m = 1,2,... (where y is
the Lebesgue measure on [0, 1]).

Lete = F(xx,), pm = F()(XZm,l), Gm = F()(XZm,z), m=1,2,.... Then p;, ~ gm, m =

1,2,..., since 1(py) = u(XZm'l) = u(Xé"'z) = 17(gm). Besides e+ Y ;51 (Pm + Gm) = 1ar.
Hence, there exists such u = u* € U(M) that

ue=e, upym=qmu, m=1,2,....
Note also that p,, u = uqy, since u self-adjoint. It is clear that
lla, ulle=la—zolpm,ulle=0=(la—zolml+ula—zolylue.

For any m = 1,2,... o(apm) coincides with the set A, of essential values of the func-
tion glym1 and o(uaupm) = o(aqgm) coincides with the set By, of essential values of the
2

function gl m. (here the operators ap,, and uaup,, are considered as elements of the
2

algebra py,.4 pm). The sets Ay, and B, are (z, 3)-conjugate sets. It follows from the
Lemma 7.5.3 that

3
Umla—uaulvy,pm = vmla—uaulpy,v;, = % “(la—zolyl+ ula—zolyl)pm  (7.41)
for some v, € U(prmMpm).

Applying the automorphism u - u to (7.41), and noting that u|a — uaulu = |a— uaul,
we obtain

. V3
(uvmu)la—uaul(Uvn,u)” qm = > “(la—zolpm|+ ula—zolplt)) Gm. (7.42)
To complete the proof, it remains to define

(e 0]
w=e+ ) (Up+uvyu)
n=1
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which is a unitary (the series converges in the strong operator topology) (note here that
uvmueUlgmMagnm)). We observe that

wlla, ullw* pp = wlla, ullpp v, pn = wpplla, ullv, pn = vpla—uau|v, p, (7.43)

and similarly, wl|[a, ullw* q, = (uv,uw)|a— uaul(uv,w)* q, and wlla, ullw*e=|la, ulle =
0. Summing up the inequalities (7.41) and (7.42) in the measure topology we arrive at

wlla, ullw* = wlla,ullw*e+ Y wlla, ullw* (pp+qn)

n=1

I
18

vpla—uaulv,p, + (uvy,wla—uvaul(uv,w)* qn
® V3
= — a=zolyl+ula=zolmlu) (pn + dn)

= 7('“‘ZOIM| +ula—zolpylu)

which proves (7.39). Regarding the proof of equality (7.40), see the end of the proof of
the Theorem 7.5.1.
O

We have now established in Theorem 7.5.1 and Theorem 7.5.4 that for finite factors
the commutator estimate (7.5) holds with the constant ‘/7§ However, this may not be the
best constant for which, for all normal a € M, the inequality holds. We will now establish
upper bounds on the best possible constant and we will in particular show that ‘/7§ isin
fact the best possible constant when M is a II;-factor or a I;-factor (n < oo) with n =0
mod 3. To do this we need the following proposition, which is partly motivated by the
proof of [HW53, Theorem 1]. Here, for a given algebra A we denote by Mat,, (A) the set of
all n x n matrices with entries in A.

Proposition 7.5.5. Let N be a finite factor with a faithful normal tracial state T. Let
neN and put M = Mat, (C) ® N = Mat, (N). Letty; = %Trn ®T N be the tracial state on M.
Denote 5" < Mat,(C) for the group of permutation matrices and Diag,,(C) < Mat,(C)
for the set of diagonal matrices. If a € Diag,,(C) ® 1 then

sup lla-u*aul,= max |la-u*aul,
ueU (M) ueuN" o1y

(The isomorphism (identification) of Mat, (N) — Mat, (C) ® N is given by the mapping

(aij)?,j:l — Z?J:l €;j ® a;j wheree;; are matrix units of Mat, (C).)

Proof. Write a= Diag(ai)l'.’:1®1N with a; e Candlet u = (uij)?jzl eUM), u;j€N, i,j=
1,...,n. We note that

la—uau* |3 = tp((a—uau*)(a* — ua*w) = 2t p(lal®) — 2R (7 p(aua* u)).

We are interested in finding a unitary element u € M for which the scalar

* ok 1 — ok 1 — *
Rw) = —R(rulaua’u) = —— 3 REnlaiwjajuip) = -— 3 Rlaapowiju;)
i,j i,j
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attains its maximum. For convenience, let (d;;) € Mat, (C) be the matrix given by d;; =
—%%(aim, sothat R(u) =3.;;d;i;Tn(u;j u;‘j). Define the set

Wn={an(vij V;'kj))ij € Mat, (C) : v=(v;j) € UMat,(N))}.

We observe for w = (7 n(v;V; vf )),] €Wy, and every jsuchthatl < j<n,wehave} ; w,, =
TN (X vij ”) =1ny(pn) =1. Slmllarly, for 1 < i < n we have Yjwij=1N(; v,]v )=
Tn(1n) = 1. Furthermore, as v;; l*] =0 in N, it is clear that w;; = 0 for all i, j. Now
denote by &, the set of all elements x = (x;;) € Mat, (C) satisfying

Vj:zx,'jZI, Vi:zx,'jZI, Vi, j:xij=0
i J

so that #}, € %,,. Considering &, as a subset of [R”z, we see that &, defines a closed
convex polytope. By [HW53, Lemmal, the vertices of &, are the permutation matrices.
Hence the maximum of the linear form (x;;) — }.;;d;;x;j on &}, is attained for some
permutation matrix & = (i;;) € UP* . As @i € P < Mat, (N) we have that TN (Ujj LT;*J.) =
ii;j and so

R(n) = Zd,]TN(u,]u )—Zd”u,]—made,]xuz sup Zd,]w,]— sup R(w).
i ] weWy i ] ueU(M)

Thus, sup ey la—u*aullz < la- (@@ 1x)* a(@i® 1y) |2 and the claim follows. O

Combining Theorem 7.5.1 and Theorem 7.5.4, we estimate the maximal constant Cys
that satisfies the commutator estimate (7.5) for finite factors M in Theorem 7.5.6 below.
For the definitions of the constants A, and A,, we refer to (7.12) and (7.13) and for the
exact values of A;, we refer to Theorem 7.A.1.

Theorem 7.5.6. Let M be a finite factor with M # C. Then there is a constant C > 0 with
the property that:

(*) Foranynormal a € S(M) there exists a complex number zy € C and unitaries u, v, w €
U(M) such that

lla,ull = C(vla—zolpmlv™ + wla—zol plw™). (7.44)

Moreover, a maximal constant Cpy with this property exists and it satisfies A;, < Cpy < %7\”
when M is a I,-factor (1 < n < co), and Cys equals %\/§ when M is a I, -factor.

Proof. Combining Theorem 7.5.1 and Theorem 7.5.4 we obtain for any finite factor that
the constant C = ; 3 is admissable for (x). By Theorem 7.A.1 we have that A, = ;\/_
when n=3 or5 < n<oo. Let n <oo. To see that C = A, is admissible for all n» we note
that by Theorem 7.4.3 we have for g € S(Q;) that there exist zg € C, T € Aut,, such that
A(g, T, z9) = Ap(g) = Ay, which means

lgoT—gl=An(lg—zol +1goT — 2. (7.45)
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Repeating the proof of Theorem 7.5.1, replacing (7.35) with (7.45), we obtain that C =
A, is also an admissible constant for (x). We will later see that the maximal admissible
constant Cys actually exists. First we prove upper bounds on constants C satisfying (*)
for M. Let 7 be a tracial state on M.

Let Mbeal,-factorwith 1 < n < oco. Let g € S(Q2,) be the the function from Lemma 7.A.2
and let a = Diag(g(1),...g(n)) € M. Let zp € C, u, v, w € U(M) such that (x) is satisfied for
a with constant C. It follows from Proposition 7.5.5 (INV = C) that

Ila, ully < @, ull2 = la-u*aul, < max, la— ug aupllz < Diam(o (a)).
u()E%

Hence,
2Clla-zolmli = Cllvia—zolmlv”™ + wla—zolmlw® |1 < Ila, ulll <Diam(o(a).
Now, choosing g as in the assertion of Lemma 7.A.2 we obtain
1=Diam(o(a)) = 2Clla—z9lpmll1 22Cllg — 2oll1 = ZCK#.

Hence, C < %7\,,.

Let M be of type II;. Then M = Mat3(C) ® N for some II; -factor N. Let the function
g €S(Q3) be asin Lemma 7.A.2 and let a; = Diag(g(1), g(2),g(3)) e Mat3(C) and a = a; ®
1y € M. Let zp € C, u, v, w € U(M) be such that (*) holds for a with constant C. We have

Ila, ullly < lla,ullz = lla-u*aul < max la-ugaugl: (7.46)

upeuP @1y
= u;IEl;X llar — ug a1 uollz (7.47)
< Diam(o(ay)). (7.48)

Hence,

2Cllar —zolpmlli =2Clla—zolpmlia (7.49)
=Cllvia-zolplv* + wla—zolpylw* 1 (7.50)
< lla, ullly (7.51)
< Diam(o(a;)) < 1. (7.52)

It follows from Lemma 7.A.2 that

1 = Diam(o(a1)) = 2Cllg - zoll; = 2CA3 "

Hence, C < %7\3 = ‘/7§ For M a II;-factor, this shows that in fact Cy; exists and that
Cv=3V3.

We now show that the maximal constant C,; also exists when M is a I,-factor (1 <
n < o0). Let (C;);> be an increasing sequence of positive constants admissible for ()
and set C=supC; < 1A,,. Foranormal a € M there exists corresponding u; € U(M) and
zg,; € C such that the equation (7.45) holds with the constant C;. Now by

2llally = lIla, uilll = 2C;illa—zo,i1mll1 = 2C; (120, 1 — all1)
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we obtain |zg ;| < HC—C’ lall; < IEIC‘ llall,. Therefore, as the sequences (u;); and (zp ;); are

bounded and as M s finite-dimensional, we can assume these sequences converge in
norm to some u € U(M) and some zj € C (otherwise restrict to a subsequence). Now the
elements d; := |[a, u;l| - Ci(la—zo,; 1m| + ujla—zo i lMlu;.k) are all positive and converge
to d = |la,ull — C(la— zolp| + ula— zolplu*). As the cone of positive elements in M
is closed in the norm, we obtain d = 0. This shows that |[a, u]| = C(la — zo1p| + ula —
zolplu*) holds, and therefore C is admissible for (*) as well. Hence, the supremum of
all admissible constants (which is finite), is again admissible, and this shows that Cy,
exists. It now follows that A, < Cp; < %7\”

O

7.6. COMMUTATOR ESTIMATES FOR NORMAL OPERATORS IN IN-
FINITE FACTORS

We shall now obtain the commutator estimate (7.5) for normal elements in an infinite
factor. We show in Theorem 7.6.4 that for such factors the constant C in this estimate
can be chosen arbitrary close to 1. For infinite factors, this extends the result of [BHS23,
Theorem B.1] to normal elements. The proof of Theorem 7.6.4 extensively uses the ge-
ometry of projections. Before we start its proof, we state and prove three short technical
lemmas. We recall for projections p, g in a von Neumann algebra M we write p < q if
p=qgandp+#q.

Lemma 7.6.1. Let M be an infinite factor and p be a infinite projection from M. If
P1,---, Pn € P(M) are pairwise commuting and p;,...,pn < p, thenpy V-V p, <p.

Proof. Let q1 = p1 and Gg41 = prridy—q1—...qx) fork=1,...,n—1. Then g;q; = 0 for
i#Zj,qe<pfork=1,...,nandpyv:---Vvp,=qg1+-+qy <p (see [BS12b, Lemma 2
@3nn. O

Lemma 7.6.2. Let M be a factor, a be a normal operator from S(M), p,q € P(M), q = p.
Suppose that one of the following conditions holds:

1. q is finite and there exists a sequence of finite projections (p,) in M such thatp, | p
and [a,pp] =0 forallneN;

2. q is an infinite projection and [a, p] = 0.
Then there exists a projection q, € M such that q, ~ q, [a, 1] = 0 and such that q, < p.

Proof. The proof follows along the lines of [BS12b, Lemma 3] and is therefore omitted.
O

Lemma 7.6.3. Let M be a von Neumann algebra, a,b € LS(M), a1, a2 >0, and
lal= a1y, a1>2az, asly =1b|.

Then there exists v € U(M) such that

2a
vla-blv* =1 -"2)al+|bl.
aq
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Proof. Leta, beLS(M), a;,a, > 0satisfy the assumption of the lemma. By Theorem 7.2.2,
we have that
lal < vla-blv* + w|blw*

for some v, w € M with v*v = w*w = 1. Then
vla-blv* =|al- wlblw® =|al-aww* =|al—axly

26(2 20!2
= |al+|bl-2az1ym = |al + |b| - —al = (1 - —)lal + |bl.
a1 a1

Since vla—-b|v* = (1 - %)Ial > (a1 —2a2) 1)y, it follows
0=QQp-vvHvla-blv* Ay —-vv") = (a1 —2a2)(1y —vv*) =0.
Therefore, we have 1), — vv* =0, i.e. ve % (M). O

Theorem 7.6.4. Let M be an infinite factor, and let a € S(M) be normal. Thereisa Ay € C
such that for any € > 0 there exist uz = u; € UM), we € U(M) so that

wella, ullw} = (1 —¢e)(|a— Aol pl+ ugla— Aolplug). (7.53)

Proof. Let e(-) be the spectral measure of a on C, in particular, e(X) = yx(a) for any
X € $B(C). Since a € S(M) there exists a R > 0 so that e(Xp) is a finite projection, where
Xr={A1€C: |A] > R}. Then Yp := C\ X is compact and it follows from Lemma 7.6.1 that
e(YR) ~ 1. A point A € C will be called a point of densification for a if e(V) ~ 1), for any
neighborhood V of a point A. Denote by A the set of all points of densification for a.

We claim that A # @. To see that the claim holds it is sufficient to show there exists
a system of nested sets B, = [a,, @, + 3—5) X [Bn, Brn + g—f), with e(By) ~ 1p. We put a; =
B1 = —R so that clearly Yg c By and therefore e(B;) ~ 1,;. Now suppose ay, B1,...,an, Bn
are already constructed so that e(By) ~ --- ~ e(B;,) ~ 1j;. We can divide the rectangle B,
into 4 smaller rectangles by
R

—).

5R
on+1’ 'B"+(l+1) on+l

2Vl+

5R 5R
B, = U[an+k l,an+(lc+1) x[Bn+1-
k,1=0

It follows from Lemma 7.6.1 that one of the sets from this union can be taken for B;, 4]
(which then defines & ,+1, Bn+1). This completes the induction. The point A := (sup,, a,)+
(sup,, Br)1 is a point of densification for a since any neighbourhood V of A contains a set
B, for some n. Therefore A # @.

We show that A is closed. Indeed, if A is a limit point of A and V is a neighborhood
of A, then V is also a neighborhood of some point from A. Hence e(V) ~ 1. This shows
A€ A. Thus A is closed. Obviously, A c Yg. Therefore, A is a nonempty compact subset
inC.

Let us consider three cases covering the full picture.

* 1. There is a point Ay € C such that e({Ao}) ~ 1p;. Then e(C\ {A¢}) < e({Ao}) and
therefore there is a v € M with v* v = e(C\ {A¢}) and vv* < e({Ag}). Let s put u =
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v+v*+(e({Agh) —vv*). Then u = u* € U(M). Since

(a—Aolmula—Aola)™ = (@a—Aolpm)u(ly —e({Ao))(@—Aolp)”
=(a-Aolm)v(Apm—vv*)(a—Aola)*
=(a—-Aolme({AoDula—Aolpy)* =0

and, similarly,
(@a—Aolap)*ul@a—Aolpy) =0

then
lla, ull =(a—Aolp) —ula—Aolaul = la— Aol yl+ ula—Aolylu
which shows the result for this case with w, = 1.

In the following two cases, the scalar 1y € C will be found and for a fixed number £ > 0
a sequence of pairs of projectors {(py, Gn)}n=1 of M will be constructed together with a
sequence (y,) of positive numbers converging to zero satisfying the following condi-
tions:

@. Pndm =0, pubPm =0nmPn> Gndm = Onmqn, la, pnl = la,qnl =0, p, ~ gy for all
n,m;

(ii). gn=e(Wy), pp<e(Vy) foralln=1;

(). VizoPnVVa=0gn =1pm — e({Ao}),
where V;, 1= {1:|1A = Aol > yp} and Wy, := {A: | = Aol < §yn}.

* 2. The set A has a limit point Ay. We can assume that € < % We inductively con-
struct the sequences of positive numbers (y,) (and hence the sets V;;, W), num-
bers (1) from A, and sets

Up={A: IA=A2ul <yns1} (7.54)

in such a way that U, € W,, n V,,41 and the set V4 \Uzzl(Uk U V) is a neigh-

borhood of the point A;,4. First, let 1; € A\ {A¢} and put y; = M Then V7 is
a neighborhood of the point 1;. Next, in the set W; there will be different points
A2, A3 from A\ {A}. Put y2 = 1 min{|A5 — Agl, 112 — A3], £y1 = |2 = Agl, 1A2 — Aol} and
note thaty, < %M,g Aol = %. Note also that the set V,\ (V3 uU;) is a neighborhood
of the point 13 and that U; € W n V,. We continue this process by induction. Let
these sequences be constructed for the indices 1,...,n. Then in the set W,, there
will be different points Az, A2y+1 from A\{Ag}. Puty,+1 = § min{|Az2n1-Aol, 142, —
A2n+1l, 5Yn = 120 = Aol [ A2 = Agl}. Then y iy < I and Viyiq \Up_,(UruVy)) isa
neighborhood of the point 15,1, and U,, € W, N V,,4;. Thus, the above sequences
are constructed. We remark that for n < m we have U, nU,, S W,, N V,,1.1 = @

Put p; =e(V1), g1 = e(U1); qn=e(Uy), pn=e(Vy \UZ;}(U/C u V) for n> 1. Then
we have by the construction that p, g1, p2, g2, ... are pairwise orthogonal and p,, ~
1y ~ gy for any n. Now since Vi, = (V, \UJZ] (U U Vi) UULZ] (Uk U Vi) and
U2, Vi =C\ {Ag} we find V ;20 pn V V2o gn = 1y — e({Ao}).
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° 3. The set A is finite and e({A}) < 1) for any A € A. We can by assumption write
A={Ag,..., Ay} for some m =0 (note A is non-empty). When |A|=1putr =1and
when [A] > 1 let r be the minimum distance between points in A. Consider the
sets V(1) = C\Ukmzo{/l: A=Akl <tiforO<t< g Itis clear that V() 1C\ Aat¢t|O.

We show that e(V(#)) <1y for0< < % Indeed, for any point z € V(#) \ Xg there
is a neighborhood U, of z with e(U,) < 1;. Now as the set V() \ Xg is compact we
canlet {Uy,,..., Uz} be afinite subcover for V(1) \ Xg. Then {Xg, U,,,..., U} is the
coverage of the set V(7). It follows from Lemma 7.6.1 that e(V(£)) < 1.

There are now two possible cases:
3.1. All projections e(V(?)), t > 0, are finite. In this case, put y; = %

3.2. Thereis a 0 < fy < 5 so that the projection e(V () is infinite. In this case put
Y1 = fo.

Sety, = zﬁl' n>1 (and hence V,,, W,, are defined as well); We set p; := e(V(y;) U
(A\{Ao})) = e(V1). It follows from Lemma 7.6.1 that p; < 17 and p := e(W)) ~ 1.
If we put g = p1, then for p, g the conditions Lemma 7.6.2 are met: condition (ii) is
met if g is an infinite projection, and condition (i) is met in case 3.1 if g is an finite
projection (in this case, the set W) is covered by the system V(¢), ¢ > 0). There-
fore, there is a projection g; < e(W;) such that g; ~ p; and [a, g1] = 0. Now, sup-
pose the projections p1, qi,..., Pn, Gn < 1p are constructed. We build projections
Pn+1, Gn+1- We put ppi1 = e(V(yp+1))- (Al = X7, (Pr+ qk)). Then ppiq < 1y since
Pn+1 < e(V(yn+1)). Furthermore, since e(W,) ~ 1y and p1,q1,..., Pn, Gn < 1 we
find e(Wy,) - (1 — Zzzl(pk + qx)) ~ 1. Again using Lemma 7.6.2, we find such a
projection gn+1 ~ pn+1 that gpe1 < e(Wy) - Iy — X7, (pr + qx) and [a, Gn1]1 =0
(two cases are considered again: p,. is a infinite projection; p;+ is a finite pro-
jection and the condition 3.1 is met). As p,+1 + Zzzl(pk +qi) = e(V(yp+1)) and
p1 = e(A\ {Ap}) we conclude Zi"zl(pk + gx) = 1y — e({Ap}). Therefore, the projec-
tions p1, g1, p2, G2, ... satisty the conditions (i)-(iii).

In the cases (2) and (3) we can now find partial isometries v,, € M so that v, v, = pn, vnv;,
qn, forn=1,2,.... We put u, = e({Ao}) + X5, (v +v;,). Then u, = u? € UM), uce({Ao}) =
e({Ao}) and u, py, = qnu. for all n. We have

&
la=Aolmlpn=Ynbn, |a_/101M|5/n557nqm Vn. (7.55)

Therefore

€ £
lugaue — Aolylpn = uela—Aolplgne < > Ynllednlie = ZYnPn, Vn. (7.56)

Since [a, p,] = [usaue, pyl =0 then

la—ucauelpy =(a—Aoln) pn — (Ugate — Aolag) pal. (7.57)

It follows from Lemma 7.6.3 that

wyla—ugaug|ppwy, = (1 —¢e)la— Aol yl+|uzau, — Aolyl)py
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for some wy, € U(p,Mpp).
Therefore

wyla—ugzaug|w,pn = (1—e)(la—Aolpl+ |usave — Aol ) po. (7.58)

Applying the automorphism u; - u, to (7.58), and noting that u.|a — u-au.lu, = |a—
Us aug|, we obtain

(e wne)|la— ugaue| (U wntte)* g = (1 —€)(la— oLyl + lueaue — Aoy gn.  (7.59)

Recall that S(M) = M if M has type I or III. In this case, we denote by ¢ the strong operator
topology in M. If the factor M is of type II then S(M) = S(M, ) for any faithful semifinite
normal trace 7 on M. In this case we let ¢ stand for the measure topology ?; (this topology
is defined in the preliminaries, the need to use this topology is due to the fact that a can
be an unbounded operator).

To complete the proof, it remains to set

we = e({Ao}) + Y (Wy + us wytte)
n=1
(the series converges in the strong operator topology) and sum up the inequalities (7.58)
and (7.59) in the topology t. O

7.7. ESTIMATES FOR INNER DERIVATIONS ASSOCIATED TO NOR-

MAL ELEMENTS
In this section we apply the operator estimates from Theorem 7.5.1 and Theorem 7.5.6
to extend the result of [BHS23, Theorem 1.1] and estimate the norm of inner derivations
84: M — LY (M, 1) in the case when M a finite factor with faithful normal trace 7 and
a€ LY (M, 1) is normal.

We establish some notation first. Let M be a von Neumann algebra with predual M,,.
The Banach space M, can be embedded into its double dual (M,)** = M*. In this way
we identify M, with the space of ultraweakly continuous linear functionals on M. The
predual M, is a Banach M-bimodule with the bimodule actions given by:

(a-w)(x) =w(xa), (w-a)(x)=w(ax), a,xe M, w € M,. (7.60)

If there is a faithful normal semifinite trace T on M, then the Banach M-bimodule M, is
isomorphic to LY(M, 1) (see e.g. [Tak03a, Chapter IX, Lemma 2.12 and Theorem 2.13]).
A linear operator 6 : M — M, is called a derivation if

O(xy)=06(x)y+x6(y)
for all x, y € M. For each a € M, a derivation §,: M — M, can be defined by the equality
04x)=a,x]=ax—-xa

(using the M-bimodule structure as defined in (7.60)). Such derivations are called inner.
In fact it holds true that any derivation 4 : M — M, is inner. Moreover, there exists a € M,
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so that 6 =0, and |lallp, < 161l m—m, see [Haa83, Theorem 4.1] and [BGM 12, Corollary
C]. We are interested in describing the norm of the derivations 8, : M — M, for a € M,.
Is it true that a distance formula similar to (7.1) holds true? This question has been fully
settled in [BHS23, Theorem 3.1] for infinite factors. Moreover, in [BHS23] the following
theorem was proved:

Theorem 7.7.1 (Theorem 1.1 in [BHS23]). If M is a von Neumann algebra with a faithful
normal finite trace T and a = a* € L'(M, 1), then there exists c, = ¢}, € L' (M, 1) N Z(S(M))
such that

16allpr—r, ) =2lla—cqall; = zze?(lsl(r}/m la-zl; (7.61)
where Z(S(M)) stands for the center of the algebra of all measurable operators affiliated
with M

We focus on the case that M is finite. For brevity, we will denote the norm |||l ;. 1 M,1)
by || lleo,1- For general a € LY (M, 1) we do not know the relationship between 6,1 and
inf{lla—zll, : z € Z(S(M)). In Theorem 7.7.3, we shall give upper and lower estimates of
this relation in the case when M is a finite factor and a is a normal operator. We will
see a substantial difference with the case of inner derivations associated to self-adjoint
elements. First we state Theorem 7.7.2 which is related and is used in the proof of Theo-
rem 7.7.3. Recall that when n =0 ( mod 3) or 1 = oo we have 2A,, = v/3 = A,, and that in
addition,

lim K,l = \/§,

n—oo

and
2An=\/§f0rn=3, orn=5.

For convenience, we define for a finite factor M the value

M) n Misal,-factor (7.62)
n = .
oo Misall;-factor

Theorem 7.7.2. Let M be a finite factor with a faithful tracial state t. Assume M # C.
Then

1. For every derivation §,: M — L' (M, 1) with a € M normal, there is a normal b€ M
suchthatb, =06y and |0pllco,1 = 2A 00 1Dl .

2. There exists a normal a € M for which the derivation §,: M — L'(M, ) is non-zero
and such that for every b€ M with 6, =6}, we have [0pllco,1 < Anop lIDll1.

Proof. (1) Let a € M be normal. By Theorem 7.5.6 there exist u, w € U(M), zg € C satis-
fying the commutator estimate (7.44), hence [04llco1 = 1641 = 2Apnlla— 2ol
This shows the result since b:= a— z1)sisnormaland 6 =6, = .

(2) Let M be a finite factor. When M is a I,;-factor, we set m := n and we can write
M = Mat,,(N), with N = C. When M is a II;-factor we set m = 3 and we can write
M = Mat,,(N) for some II;-factor N. We now let g € L*(Q,,) be non-constant and
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let a be the diagonal matrix a = Diag(g(1),...,g(m)) ® 1y € Mat,,(C) ® N = M. Then
04:M — L1(M,7) is anon-zero derivation. To estimate ||§ ;0,1 We recall that the Russo-
Dye Theorem, [RD66, Theorem 1], asserts for a unital C*-algebra that the closed unit
ball equals the closed convex hull of all the unitaries. Now, for x € Conv(U(M)) we can
write x = Y5, cju; with K € N, u; € U(M) and ¢; = 0 with ¥ ¥ ¢; = 1. Then clearly
1640 = Zﬁlcill%(ui)lh < maxj<i<k 16 (@)l = sup ey 16211 By continuity
of 6, this inequality holds for all x in the closed convex hull as well. By the Russo-Dye
Theorem this shows that

I0alooi= sup [6a@)li= _sup 16400l = sup ISzl (7.63)
xeM, %<1 x€Conv(U(M)) uetn

Using this and Proposition 7.5.5 we find
I6allco = sup 64wl
ueU(M)

sup  lu*la,ulll
ueU(Mat,, (N))

sup  llu"au-all
ueU(Mat,, (N))

IA

sup lu*au—all,
ueU(Mat,, (N))

sup |lu"au-aly
ueu o1y
sup [lgoT—gll.

T:Qm—Qm
permutation

The last step follows from the fact that, for u € %} ® 1y, we have u*au = Diag(g o
T(1),...,80T(n)) ® 1y for some permutation T. By Lemma 7.A.2 we can fix a g so that
Diam(g(Q,)=1< A infoec lg—zll; (note that such g is non-constant). Take any b € M
with 6, = 6. Then a — b lies in the center of M, so a — b = zy1); for some zy € C. Hence,
1Bl = lla—zolmll1 = 1§ — zoll1 s0 that [|§lle,1 < Diam(g(Qsn)) < Ay [Ibll1. The result now
follows. Indeed, when M is a I,,-factor, we obtained [|6]lc0,1 < 7\,,( m bl and when M is
a IT; -factor we obtained [|6]loo,1 < A3llDl1 = AcollBll1 = Anap I bll1 . O

The following theorem shows that for (most) finite factors the distance formula from
(7.61) does not hold for arbitrary normal a € LY (M, 1), which shows a crucial difference
with the classical result of Stampfli and its generalisations describing the norm of deriva-
tions 6, : M — M, as for these derivations the distance formula (7.1) holds for all a € M.
While the distance formula does not hold true, we are able to obtain constant bounds on
the ratio 1alloon . In the case of II; -factors and I,;-factors (1 < n < oo) with n =0

mingec la-zlylh .
mod 3 these constants can not be improved.

Theorem 7.7.3. Let M be a finite factor with a faithful tracial statet and let a € L' (M, 1)\
Z(M) be normal and measurable. Then the derivation  ,: M — L' (M, 1) satisfies:

”651“00,1
mingec lla—zlplh —

2Anm = (7.64)
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Moreover, when M # C there exist non-zero derivations 6 5,0}, corresponding to normal
a,be M suchthat||6alloo, < Anovy minzec la—zlplh and|i6plloo, = 2minzec |b—z1pmll-
We remark that

1. When n(M) ¢ {1,2,4} then the distance formula of (7.61) does not extend to arbi-
trary normal measurable a € L' (M, 1), since Ay < 2 in these cases.

2. When M is a I, -factor or a I,-factor with n =0 mod 3 then the constant bounds
given in (7.64) can not be improved as in these cases 2\ vy = V3 = Anar).-

Proof. Let a € L'(M, 1)\ Z(M) be normal and measurable. By Theorem 7.5.6 there exist
u,w e U(M), zp € C satisfying (7.44) so that |64llco1 = 16,11 = 2An0nlla—zolmli,
from which the first inequality follows. The second inequality follows from the fact that
1620 =l(a—zlp)x—x(a—zlp)ll1 < 2lla— zlpl1 |l x|l holds for any x € M, z€ C.

For the next statement, we note by (7.61) that |6 lloo,1 = 2infzec |6 — 21011 holds for
any self-adjoint b € M, and that when M # C we can choose b so that moreover b ¢ Z(M),
ensuring that 6} is non-zero. Moreover, by Theorem 7.7.2(2) we obtain a normal a € M
such that d, is a non-zero derivation with [[04llco,1 < 1~\n(M) la— z1plly for every z € C
since 04 = 04-z1,,- Thus [[64lleo,1 = /~\n(M) mingec [la — z1 1 (it is clear the minimum
exists). The last two remarks follow directly. O

We point out that Theorem 7.7.3 in particular shows the statement of (7.8) that for a
finite factor M and normal measurable a € L' (M, au) we have

V3minlla-zlyli < 184l <2minlla— 21yl
zeC zeC

Indeed, for normal a € L' (M, 7) \ Z(M) this follows by (7.64) and (7.14) while for a € Z(M)
this is trivial.

Secondly, we remark that this actually yields an estimate on the L!-diameter of the
unitary orbit ©(a) := {uau™ : u € U(M)} of a. Indeed, as we already showed in (7.63), we
obtain by the Russo-Dye Theorem [RD66, Theorem 1] that [0 41l0,1 = SUp ueU(M) 164()]l1.
Therefore

Diamyi(y; )@ (@) = sup lla—uau®|y= sup [64(w)l1=10allco,1-
ueU(M) ueU(M)

7.A. APPENDIX: CALCULATING CONSTANTS

We prove two technical results concerning the constants A, and A,,. In Theorem 7.A.1
we will for n # 4 determine the exact value of A, with the help of Theorem 7.4.3. In
Lemma 7.A.2 we prove a property of the constants A,, that we used in Theorem 7.7.2.

Theorem 7.A.1. We have that A\ = A, =1, ‘/75 sMN<landA, = \/Tg foranyn ¢ {1,2,4}.
Moreover, for n # 4 thereisa g € L°(Q,), T € Aut,, z € C such that that A(g, T, z) = A(g) =
Ap.

Proof. If n =1 then A(g,Id, g(1)) =1 for all g € S(Q2;;) since we agreed to count g =1.
Hence, A; =1. If n =2 then A(g, T, w) =1 for all g € S(Q2;,) where T(1) = 2. Hence,
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Ay = 1. It follows from Theorem 7.4.3 that A, = ‘/7§ for all n = 3. It only remains to show

that this is in fact an equality whenever n = 3 or n = 5, which we shall do now. For the

, . A;
given values of n, we can find a partition {A;, Az, A} of Q, such that { < 5:((92)) <%

2mij
for j = 1,2,3. Now, denote w; := es for Jj =1,2,3 and construct the function g =

Z?zl W;jxa; € Loo(Qp). We will show that A(g) < ‘/7§

Suppose A(g) > ‘/7§ Then there exists T € Auty, zg € C and A > ‘/7§ so that
18(T(w)) - gw)| = AIg(T (W) — 20l + |18 (w) — z0) a.e..
We note that for k # [ we have
lwi — wy| = V3.

Denote By j = Ax N T‘I(Aj) so that By ; € Ay and T(Bg,j) € Aj. Moreover, since
{A1, Az, As} is a partition of Q,, we have for [ = 1,2,3 that

A;j=Bj UB;,UB3 T '(A) =B UBy;UB3. (7.65)
We note that if 1, (B, j U Bj,x) > 0 we must by the assumption have that
lwi — wjl = Alwg — 2ol + [wj — 2ol).

This is to say that zg lies within the ellipse with foci wy and w; and eccentricity A.
Now suppose i, (B k) > 0 for some k. Then zg = wy and for [, j # k we have

lw;—wj| < V3 <21 <2AV3 = Mwp — wil +wj — wil) = Alw; — zol + |w;j — 2ol)
and hence 1, (B; ;) = 0. However, (7.65) then implies for j # k that
Hn(Aj) = pn(Bj1) + Hn(Bj2) + tn(Bj3) = tn(Bjk).
Therefore, using this and (7.65) we obtain

245 (A) = pn(AR) + (Un(Buk) + pn(Bak) + tn(Bs i)

=pn(AD) +| Y. pnBri) |+ tnBrk)
1<I<3
l#k

=pn(AD) +| Y. pn(AD |+ pnBri)
e
= Un(Br, k) + in(Ar) + pp(A2) + 5, (As3)

= Un(Qp) + 1y (B k) > pn(Qp).

Kn(Ag) 1

Hence @ 2 which is a contradiction with the choice of the partition.
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We conclude that p, (B ) = 0 for k =1,2,3. Now suppose that forsome1<1,j <3
with [ # j we have u,(B;;j U Bj;) = 0. Let k € {1,2,3} such that k # [, j. Then we ob-
tain p, (A7) = pn(Brp) + pn(Bj 1) + pn(Bi,1) = Un(By,) and py(Aj) = up(By,j) + pa(Bj ) +
tn(Bg,j) = pn(By, ;). We thus have

2pn(Ak) = pn(Ag) + n(Bi,1) + pn (B, j) + (B k)
= un(Ar) + pn(Ap +,Un(Aj) = un(Qp)

and thus % = % This contradicts the choice of the partition sets.

Hence, p,(B;j UBj ) >0 for all /, j with I # j. This means that the point zj lies in
all three ellipses (i.e. for [ # j the point zj has to lie inside the ellipse with foci w; and
w; and eccentricity 1). We obtain that for A = ‘/75 the only point in the intersection of

the three ellipses is 0, and that for A > ‘/7§ the intersection is empty (see Fig. 7.4). Hence,

Ag) < ‘/7§ Therefore A,, = ‘/75

| >
@

Figure 7.4: The image of the simple function g consists of the three points wy, w2 and ws. The three ellipses

with foci w; and w; (for [ and j different) and eccentricity A = ‘/75 are drawn. The only point that lies in all
three the ellipses is the point zg := 0.

O

Lemma 7.A.2. Let1 < n < oco. Then thereis a g € L°(Q,;) with Diam(g(Q,)) = 1 and so
that Ay, = Sup 4 m.

Proof. The result for n = 2 follows directly by taking g = yq;.
Thus, suppose n = 3. We can build a partition {A;, A2, A3} of Q, so that:

e If n=3k, keN, or n=o0, then u, (A;) = u,(Az) = un(As) = %
e Ifn=3k+1, keN, then u,(A) = pp(A2) = £, 1, (43) = £L.

« Ifn=3k+2, keN, then u,(A) = up(A2) = &L, 1, (43) = £.

n
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For convenience let us denote
a=pun(A1) = pun(Az), b= pup(A3), wpy=e = ,k=0,1,2.
Define gy € L*°(Q, 1y) by

80=XA W1+ YA, W2+ X A3 Wo.

Since p, (A1) = un(Ay), it is clear that the minimum of C 3 z — | gy — zl|; is attained for
real-valued z, and moreover that —% < z < 1. When n =4, it is clear from the triangle

inequality that the minimum is attained at the point f) = 1 and we have ||gy — fll; = \/Tg

Now assume 7 # 4 so that the ratio % satisfies % < /3 (the ratio % is maximal for n =7 in

3
which case we have % =4= % </3). Hence v3a— b > 0. We have for t € [—%, 1] that
7

8o — tllh = 2alwy — t]+ b(1 - 1).

Then
1

+3
[wy — £

dII —tli=2a
dr 8o 1=

As & ||g0 — t||; is negative when evaluated at -3 L and positive when evaluated at 1 (as
v3a-b > 0), the minimum of llgo—tlly must be assumed atapoint ty € [—— 1] satisfying

1
blwy — tol = 2a(ty + 5)

Then . 3 .
P (fo+=)? + =) =4a®(ty+ =)
(o 2) 4) a“(to 2)
and
(o + ) _3p* 3P
0 T 44a?-b%)  4Qa-b)
since 2a + b = 1. Therefore
3 3b? 3 3a?
(o + ) +-=

1 12a-b) 1 @2a-b

and

lgo —tollh = 2alfy — wi| + b(1 - 1p)

L B, 3L
2a-b 2vV2a-b 2
_\/§v2a—b+3b
2 2
_V3-6b  3b

+—=.
2 2
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1

e For n =3k or n=oowe have y,(A3) = 3 and find ||go — foll; = 1.

e For n=3k+1 (n#4)we have u,(A3) = 3’2111 and find

. 8k—3 1 3k+3
Som ol =5\ 31 "2 3k+1"

* For n=3k+2 we have y,(A3) = ﬁ and find

. 8k+6 1 3k
Som =5\ 32 "2 3k+2°

Now, take g = \/ngo so that Diam(g(Q2,)) = 1. Then

V3 V3
sup

=sup = =Ap.
zec l1g—2zllh  zec 18 —zl1 180 — tollx
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SAMENVATTING

Dit proefschrift bestudeert het vakgebied van operatoralgebra’s, niet-commutatieve func-
tionaalanalyse en rigiditeitstheorie. We bestuderen structuureigenschappen van zowel
C"-algebra’s als von Neumann-algebra’s, met een focus op de laatste. Deze wiskundige
structuren werden geintroduceerd door von Neumann in [Neu30] wegens de noodzaak
voor een niet-commutatief framewerk om kwantumsystemen te beschrijven. De theorie
werd verder ontwikkeld door Murray en von Neumann in meerdere artikelen: [MN36],
[MN37], [Neu39], [Neu40], [MN43], [Neu43] en [Neu49]. Tegenwoordig vormt de studie
van deze operatoralgebra’s zijn eigen deelgebied in de wiskunde. Over de jaren heen
is geprobeerd om von Neumann-algebra’s te classificeren. Er zijn veel structuureigen-
schappen van von Neumannalgebra’s geintroduceerd en bestudeerd. In dit proefschrift
bestuderen we zulke eigenschappen, waaronder: afwezigheid van Cartan-deelalgebra’s,
priemheid, de (zwakke-*) CCAP, de Akemann-Ostrand eigenschap en sterke soliditeit.
Verder bestuderen we operatorafschattingen voor commutatoren.

Voor een discrete groep G bestuderen we de groep-von Neumann-algebra £ (G). Het
doel is connecties te leggen tussen de groep G en zijn von Neumann-algebra £ (G). We
bestuderen rigiditeitstheorie, wat zich bezighoudt met de vraag welke informatie van de
groep G kan worden afgeleid uit zijn von Neumann-algebra £ (G). We zijn in het bijzon-
der geintreseerd in Coxetergroepen. Zo'n groep # kan worden gezien als een abstracte
reflectiegroep. Voor een Coxetergroep # zullen we niet alleen £ (#) bestuderen, maar
ook de q-deformaties: Aq(#') genaamd Hecke-von Neumann-algebras. De focus is op
Coxetergroepen die rechthoekig zijn. Deze Coxetergroepen kunnen op natuurlijke wijze
worden geschreven als graafproduct # = *,r#, van de groepen #;, = Z/2Z. De con-
structie van graafproducten van groepen was geintroduceerd door Green in [Gre90] als
een generalisatie van zowel directe sommen G; @ G; als vrije producten G; * G,. Later
zijn graafproducten ook gedefinieerd in de setting van C-algebra’s en von Neumann-
algebra’s in [Mlo04] en [CF17]. Hier generaliseren graafproducten zowel tensorproduc-
ten als vrije producten. Deze begrippen van graafproducten komen overeen met die voor
groepen aangezien £ (*,1rG,) = *,7.£(G,). In het geval van rechthoekige Coxetergroe-
pen geldt eenzelfde ontbinding ook voor Hecke-von Neumann-algebra’s.

Dit proefschrift bestaat uit 7 hoofdstukken, waaronder de inleiding (Hoofdstuk 1) en
de technische achtergrond (Hoofdstuk 2). In Hoofdstuk 3 voeren we berekeningen uit in
graafproducten die we nodig hebben in latere hoofdstukken. In Hoofdstuk 4 is de stu-
die gericht op (rechthoekige) Coxetergroepen, hun groep-von Neumann-algebra's £ (#)
en Hecke-von Neumann-algebra’s A4 (#'). We bestuderen wanneer deze von Neumann-
algebra’s sterk solide zijn en wanneer ze de Akemann-Ostrand eigenschap (AO)* bezit-
ten. Sterke soliditeit is een sterkere versie van Ozawa’s eigenschap soliditeit [0za04]
en kan worden gezien als een sterke onontbindbaarheidseigenschap. Deze eigenschap
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impliceert namelijk dat de von Neumann-algebra niet ontbindt als een tensorproduct
M = M;®M, (priemheid) noch als een groep-maatruimte M = L>°(0,1) x G (afwezigheid
van Cartan). Met behulp van kwantum Markov halfgroepen en de niet-commutatieve
Riesz-transformatie bewijzen we nieuwe sterke soliditeitsresultaten.

In Hoofdstuk 5 bestuderen we sterke soliditeit voor algemene graafproducten van
von Neumann-algebra’s. We gebruiken Popa’s intertwining-by-bimodule theorie om voor
graafproducten een volledige karakterisering van sterke soliditeit te krijgen. In het bij-
zonder voltooit dit de karakterisering voor rechthoekige Hecke-algebra’s. Voor recht-
hoekige Coxetergroepen geeft dit een simpele karakterisering wanneer de groep-von
Neumann-algebra sterk solide is. We bestuderen ook andere aspecten van graafproduc-
ten. We geven voldoende voorwaarde voor een (gereduceerd) graafproduct om nucleair
te zijn. Verder karakteriseren we volledig priemheid en vrijproduct-onontbindbaarheid
voor graafproducten. We bestuderen ook rigiditeitstheorie voor graafproducten. Het
doel is om de graaf I' en de von Neumann-algebra’s (M,) yer terug te halen uit de von
Neumann-algebra Mr. We introduceren in dit proefschrift een klasse 6yerex Van von
Neumann-algebra’s en een klasse van grafen die we rigide noemen. We laten zien dat uit
het graafproduct Mr = *,r(M,,7,) we de rigide graaf I' en de von Neumann algebra’s
(M) yer kunnen terughalen (op amplificaties na). In het bijzonder verkrijgen we hier-
mee unieke priemfactorisaties en unieke vrijproduct-ontbindingen voor nieuwe klassen
van von Neumann-algebra’s. We laten ook zien dat, zonder sterke voorwaarden op de
von Neumann-algebra’s M, het mogelijk is om (op een constante na) de radius van de
graaf I af te leiden uit het graafproduct Mr.

In Hoofdstuk 6 bestuderen we benaderingseigenschappen van graafproducten. Voor
een groep G stellen benaderingseigenschappen dat we de constante functie 1 puntge-
wijs kunnen benaderen met goede functies my : G — C. Eensgelijks, voor een operator-
algebra M, stelt een benaderingseigenschap dat we de identiteitsafbeelding Id s punts-
gewijs kunnen benaderen met goede afbeeldingen 0;. : M — M. Voor het gereduceerde
graafproduct van C-algebra’s bestuderen we de CCAP. Op eenzelfde wijze bestuderen
we voor graafproducten van von Neumann-algebra’s de zwakke-* CCAP. Deze benade-
ringseigenschappen vormen de operatoralgebraische tegenhanger van zwakke amena-
biliteit met constante 1. We bestuderen stabiliteit van deze eigenschappen onder graaf-
producten en breiden resultaten uit van [Rec17] en [RX06].

In Hoofdstuk 7 wijken we af van het hoofdonderwerp van dit proefschrift en bestu-
deren we commutatorafschattingen. We breiden de operatorafschattingen van [BS12b],
[BS12a] en [BHS23] voor zelf-geadjungeerde operatoren uit naar normale operatoren.
Voor een normaal element a in een factor M laten we zien dat er een unitair u € M be-
staat, waarvoor we een goede operatorafschatting krijgen voor de commutator [a, u] :=
au— ua. Voor eindige factoren geeft dit een afschatting op de L!-norm van de vorm

ﬁrgeig la— 21l s < M@ wlll 1 a0y

We gebruiken dit resultaat om scherpe afschattingen te krijgen op de norm [|6 41l yy— 11 (a1,1)
van de derivatie 5,: M — L' (M, 1) gegeven door 0,4(x) = [a, x].
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