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Executive Summary 

The energy transition toward a carbon-neutral energy system presents complex challenges that require 

reliable system-level insights to guide investment and policy. Energy system models are essential tools 

in this context. They support planning by simulating interactions between technologies, markets, and 

policies under various future scenarios. Their strength lies in their ability to highlight structural system 

relationships and test the feasibility of different energy strategies. 

 

At the foundation of these models lie assumptions and simplifications that define the internal 

logic of an energy system model. Importantly, a distinction must be made between assumptions (e.g., 

cost or efficiency parameters) and simplifications (e.g., ignoring demand fluctuations or omitting battery 

interaction). While simplifications make models tractable and transparent, they also risk overlooking 

key real-world constraints. This is why testing the impact of these assumptions and simplifications is 

critical: doing so ensures that model outcomes are robust and that their conclusions remain meaningful 

in practical applications. 

 

Energy modelling simulates the operation and evolution of energy systems to support decision-

making and policy planning. It helps simplify complex systems, forecast scenarios, and evaluate the 

effects of different strategies. While models are never perfectly accurate, their usefulness depends on 

data quality, transparent assumptions, and iterative refinement. These assumptions directly shape 

model credibility and must be rigorously tested to avoid the risk of unvalidated assumptions becoming 

accepted truths that undermine decision-making. 

 

One such model is the Kramer and Koning Model (KKM), a stylised energy model developed 

to analyse the relationship between renewable electricity generation and hydrogen capacity. The KKM 

is appreciated for its simplicity and its capacity to clarify the fundamental relationship between 

renewable energy generation and electrolyser capacity - the r : e relationship. However, this simplicity 

raises the question of how sensitive its results are to added real-world complexities and how valid its 

outcomes remain. This study addresses that knowledge gap by investigating: "How Do Key Model 

Assumptions in the KKM Influence the Relationship Between Renewable Energy and Electrolysis 

Deployment?".  

 

To evaluate the validity of KKM outcomes, this study introduces the Electrolyser Battery 

Balancing Model (EBBM) - a more detailed cost optimisation model operating under the same logic as 

the KKM, but with extensive additional parameters. The EBBM simulates hourly interactions between 

renewable supply, demand, electrolysers, and batteries. Developed in collaboration with Gasunie, a 

key player in the Dutch gas infrastructure and hydrogen transition, the EBBM is specifically designed 

to test real-world factors and find the cost-optimum interplay between renewable, electrolysis, and 

battery capacity. It is well-suited to validate the simplified relationships modelled by the KKM. 

 

 

 

 

 



 
 

v 
 

Firstly, a systematic identification of assumptions in the KKM was made. These were 

categorised as either explicit or implicit. Implicit assumptions were further divided into (1) real-world 

system simplifications (e.g., omitting compressors, conversion losses), and (2) wider context 

simplifications (e.g., sector coupling, market conditions). Based on their role in the model and  feasibility 

for testing in the EBBM, a focused selection of assumptions was made, grouped into four categories: 

renewable energy, hydrogen, cost, and system simplifications. The eventual selection consisted of: 

 

• Generation Mix; 

• Electrolyser Efficiency; 

• Electrolyser Limitations; 

• Hydrogen Storage Cost; 

• Cost Ratio between Renewables and Electrolysers; 

• Neglect of Demand Fluctuations; 

• Battery Interaction Exclusion; 

• Demand Flexibility. 

 

Moving on with the selected set of assumptions and simplifications, a sensitivity analysis was first 

conducted by incrementally reintroducing high-certainty system simplifications to the KKM base case. 

This included adding demand fluctuations, battery interaction, electrolyser efficiency curves, hydrogen 

storage cost and electrolyser limitations to create a new, more realistic base case. This updated case 

was then used to test the impact of four key parameters: electrolyser efficiency, demand flexibility, solar 

share, and the cost ratio between renewables an electrolysers. In each case, a high and low value was 

tested. These variations were used to assess how much each assumption shifts the r : e relationship, 

battery sizing (r : b), and total system cost (c).  

 

Firstly, the incremental addition of complexities resulted in a flatter slope and lower overall 

system cost compared to the original KKM. Further results showed that parameters like solar share and 

cost ratio significantly affect infrastructure allocation between batteries and electrolysers, while demand 

flexibility and efficiency assumptions moderately shift total system cost and capacity sizing. The r : e 

relationship remained structurally linear in all cases but varied in slope and magnitude. Notably, the 

combination of battery interaction and electrolyser efficiency assumptions produced the largest cost 

savings, lowering total decarbonisation cost by several hundred euros per kW relative to the KKM. 

 

A robustness analysis followed, designed to assess whether model outcomes remain valid 

under extreme input conditions (edge cases). These edge cases were selected for the same 

assumptions as for the sensitivity analysis. The aim was to evaluate whether the KKM’s simplified 

relations hold up under stress. The results indicated that while the relationship itself remains 

observable, its quantitative implications (e.g., cost and deployment levels) vary substantially, 

suggesting that the relation needs to be interpreted as directional  rather than predictive. 

 

To further contextualise the findings, a comparative model analysis was conducted. This 

compared the r : e relationship in the KKM against other existing energy system models. A longlist was 

developed and refined to three studies: CE Delft, E-Bridge, and a NSWPH study. Extracted data 

confirmed that while each model uses different frameworks, a consistent structural trend in the r : e 

relation is present, supporting the underlying logic of the KKM, albeit under different boundary 

conditions.  
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Despite differences in geography, modelling scope, and sectoral integration, all three studies 

showed a similar acceleration in electrolyser deployment relative to renewable generation, particularly 

beyond 2040. This convergence across models suggests that the r : e relationship is a robust feature 

of future energy system dynamics, rather than an artefact of a specific model setup. It reinforces the 

validity of the KKM’s structural assumptions, even if absolute outcomes vary. As such, the r : e relation 

emerges as a valuable comparative indicator for system modellers and energy planners aiming to align 

infrastructure scaling with decarbonisation timelines. 

 

In the discussion, the findings reveal that while the KKM offers a robust conceptual tool, its 

practical outputs are assumption-sensitive.. Key limitations include the use of a single weather year to 

simulate renewable variability, a strictly unidimensional approach to parameter varying, and the degree 

of certainty with which a particular impact can be attributed to an assumption in another model. These 

issues are particularly important for policymakers or investors relying on model outputs for long-term 

infrastructure decisions. 

 

The conclusion confirms that the KKM captures a fundamental structural relationship between 

renewables and hydrogen capacity, which reappears when evaluating other models. However, the  

outputs of the KKM are highly dependent on assumption quality and scope, especially regarding solar 

share and the cost ratio between renewables and electrolysis. The research shows that integrating 

high-certainty simplifications and testing uncertain variables adds valuable depth. Therefore, the KKM 

proves useful for identifying strategic trends in the r : e relation. Future research should extend this 

work by incorporating power-to-heat, more detailed battery interaction, and policy scenarios to increase 

applicability in real-world system design. 
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1 Introduction  

1.1 Context 

In response to the growing urgency of climate change, the Paris Agreement was adopted during the 

COP21 in 2015, committing to global decarbonizing efforts with an overarching goal of limiting global 

average temperature increase to below 2°C (UNFCCC, n.d.). The success of this treaty not only 

depends on financial assistance, but is also largely contingent on the increased roll-out of renewable 

capacity, mainly by means of solar-PV and wind power (Resch et al., 2008). These sources of 

renewable electricity generation would in time phase out carbon emissions produced by fossil-fuelled 

energy generation (Yuan et al., 2022), thus assisting in the achievement of climate neutrality. 

 

Despite the benefits in enhancing energy security and lowering electricity prices (Cevik & 

Ninomiya, 2022), the widespread integration of renewables also brings new challenges. The variability 

and unpredictability of sunlight and wind results in inconsistent renewable energy production, leading 

to intermittency. This currently complicates the goal of complete decarbonization, since the intermittent 

periods will still have to be complemented by fossil fuels (Pommeret & Schubert, 2021). On the other 

hand, during periods where power generations exceeds power demand, curtailment of this surplus is 

necessary to prevent grid overload, leading to economic loss for renewable energy producers 

(Jacobsen & Schröder, 2012).  

 

Effective storage of this excess energy is a promising solution, capturing excess electricity and 

making it available during intermittent periods using a combination of batteries and hydrogen (Suberu 

et al., 2014). A key advantage is its capacity for long-term energy storage (Kharel & Shabani, 2018). 

Unlike batteries, which are optimal for short-term storage and intraday balancing due to their efficiency 

and rapid response (Hannan et al., 2021), hydrogen is uniquely suited for storing excess renewable 

energy over weeks or months. Although hydrogen has a lower round-trip efficiency compared to 

batteries, its long-term storage capability makes it a valuable complement to short-term energy 

balancing by batteries (Yousri et al., 2023).  

 

The method of producing hydrogen through electrolysis varies based on the source of 

electricity. Electrolysers can be powered by burning fossil fuels, but this process still results in CO₂ 

emissions. These emissions can be partially mitigated by capturing the carbon dioxide after 

combustion, a process known as blue hydrogen (Kheirinik et al., 2021). However, another method is 

generally considered more promising: green hydrogen. Green hydrogen is produced using electricity 

from renewable sources, such as solar PV and wind energy. When powered by these sources, the only 

by-product of the production process is water vapor, making green hydrogen the most sustainable 

option (Oliveira et al., 2021).  

 

Recognizing this potential, the Green Deal in 2020 allocated 100 billion euros within the EU to 

green hydrogen development (Energy and the Green Deal, 2022) with the aim to enhance grid 

balancing, sector coupling and energy storage. Since this investment, many initiatives have been 

started throughout Europe, to ensure that electrolysis can be gradually integrated into the energy 

system. With a look to the future, much hope is placed in this sizeable, promising task. 
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1.2 Problem Statement 

Hydrogen is playing a growing role in energy system planning, with major efforts underway to expand 

production and infrastructure, such as Gasunie's hydrogen backbone in the Netherlands (Gasunie, 

2025). Integrating renewables and electrolysis into the energy system, however, proves to be quite the 

conundrum. Despite ongoing efforts, the interplay between renewables and electrolysis deployment 

remains influenced by these varying assumptions such as cost projections, renewable supply and 

demand profiles (Kirchem & Schill, 2023 ; Dowling et al., 2020). Gaining clearer insight into how power 

demand interacts with these factors is essential for timely, cost-efficient infrastructure build-out. Better 

modelling of these dynamics supports more informed decisions and reduces the risk of over- or 

underinvestment, with the aim of ultimately supporting policy-driven decision-making to guide the 

integration of electrolysis (Bleischwitz & Bader, 2009). 

 

To incorporate this uncertainty effectively, energy system models are often simplified, stylized 

representations of reality (Fragkos et al., 2021). Policymakers rely on energy system models to inform 

long-term infrastructure and investment decisions under deep uncertainty. To ensure models are both 

informative and practical for this purpose, a balance must be struck between complexity and clarity. 

While extracting key trends is more valuable to policy  than a complex model (Mitchell, 2009), making 

sure that real-world complexities are captured correctly is essential to its credibility.  

 

An example of a highly stylized energy system models is the Kramer and Koning Model (KKM) 

(2024). This model was designed to assess high-level relationships and increase understanding of 

interplay between renewables and electrolysers, developed in collaboration with Gasunie, a key player 

in the Dutch gas infrastructure and hydrogen transition. Gasunie is actively involved in repurposing and 

expanding gas infrastructure to facilitate large-scale green hydrogen production, making models like 

the KKM highly relevant to their long-term planning efforts. In modelling the relation between renewable 

generation and electrolysis capacity, several simplifying assumptions had to be made as well. There is 

a pressing need to examine the validity of these assumptions in order to further substantiate model 

outputs and to provide more accurate and actionable insights for researchers, policymakers and 

industry professionals.  

 

1.3 Literature Review 

1.3.1 Energy System Modelling 

Energy modelling involves simulating the operation and growth of energy systems. Models are essential 

for breaking down complex energy systems, allowing stakeholders to understand how specific inputs 

impact outputs. They assist in forecasting future energy scenarios and evaluating the potential 

outcomes of various policy decisions, making them essential tools for designing the road to 

decarbonization (Hua & Paulos, 2023). An overall distinction can be made between capacity expansion 

models, meant to describe how an energy system changes over time, and production cost models, 

meant to depict how to meet electricity demand at the lowest operational cost. While models will never 

be fully accurate, they are indispensable for understanding and managing these complex systems. The 

accuracy of a model heavily depends on the quality of data and the assumptions made. Flawed 

assumptions or low-quality data can lead to misleading results (‘garbage in, garbage out’) and 

interpretation errors. The key is to use models transparently and iteratively, always being open to 

revision and improvement (Sterman, 2002). 
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At the foundation of energy system models lay the input values that simplify the complex 

systems these models aim to portray. These assumptions and simplifications (used interchangeably) 

do not only consider technical aspects, but also economic, environmental and policy contexts 

(Pellegrino & Musy, 2017). This multifaceted coverage, while also directly influencing the reliability of 

model outputs, makes that these assumptions essentially shape interdisciplinary credibility and 

applicability of these models. This makes it necessary to rigorously evaluate and sensitivity-test this 

influence. The “ossification of assumptions”, as Fournet (2015) calls it, where assumptions are 

eventually hardened into facts without validation, often negatively impacts decision-making and 

increases risk, which must be prevented to retain validity. 

 

1.3.2 Importance of Validation 

The European Environment Agency (2024) specifically mentions the grave importance of critically 

scrutinizing assumptions that influence policy-making regarding sustainability transitions. It highlights 

that policies often operate under various assumptions and, if these are weak or invalid, they can lead 

to inadequate decisions and eventually hinder policy objectives. Assessing future risks and thereby 

identifying mitigation measures and safeguarding strategies is of the utmost importance when reviewing 

important assumptions made. Basing energy policy decisions on uncertain or untested assumptions 

can lead to significant risks, including misallocation of resources, ineffective policies and other 

unintended consequences (UKERC, 2014).  

 

Literature outlines several methodologies for testing and validating assumptions. A key 

approach involves scenario analysis, where models are subjected to various hypothetical situations to 

assess their performance under different conditions (Paltsev, 2016). Sensitivity testing is also vital; by 

systematically varying input parameters, researchers can identify which assumptions significantly 

impact model outcomes (Nguyen & Reiter, 2015). Empirical validation, which compares model 

predictions against real-world data, serves as a benchmark for accuracy (Serletis, 2007), but is hard to 

do for hydrogen integration-based assumptions since no actual hydrogen flows are currently 

operational. Since energy system models are commonly used to assist decision-makers, and 

renewable technologies are decentralized and intermittent, effective integration requires thorough 

planning that accounts for non-technical constraints and flexibility options (Kachirayil et al., 2022). This 

highlights the importance of robustness over sensitivity, to produce reliable results under varying 

conditions. 

 

1.3.3 KKM and the Role of Assumptions and Simplifications 

To understand the impact of green hydrogen production on a decarbonizing power system, Kramer & 

Koning (2024) published “Fundamentals of Hydrogen Production and Use in a Decarbonising Power 

System”, a report introducing the KKM. This evaluates the deployment of electrolysers alongside 

renewable energy sources like wind and solar. The KKM explores how electrolysers can utilize surplus 

renewable energy to produce green hydrogen, which can then be stored and converted back to 

electricity during periods of low renewable generation. This provides useful insights into the role of 

hydrogen in balancing power systems increasingly dominated by renewables, especially wind. The 

KKM is a stylized, top-down model, using a load duration curve to represent the statistical distribution 

of renewable generation rather than a time-sequenced simulation. This abstraction enables broad, 

scenario-independent analysis of decarbonization pathways, but also limits the model's ability to 

capture the complexity of real-world energy systems. 
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King and Tunitsa (2008) use the definition of “an assertion about some characteristic of the 

future that underlies the current operations or plans of an organization”. A simplification on the other 

hand, can be seen as as “a choice among alternative ways of representing a system that focusses on 

reducing complexity” (Birta & Arbez, 2013).  While being aware of this distinction, both terms are used 

jointly and interchangeably in this paper.  

 

Explicit simplifications and assumptions in the KKM can be divided into four categories: 

renewables-, hydrogen-, cost- and system assumptions. Core simplifications in these categories 

include that demand fluctuations can be neglected, hydrogen can be stored and transported in large 

quantities at a modest cost and existing thermal generation can at little cost be converted from natural 

gas-firing to hydrogen-firing. Far from being merely boundary conditions, assumptions and 

simplifications are central to the model’s internal logic, shaping both its structure and outputs. These 

simplifications are necessary for the model to operate, but also come with several limitations, 

uncertainties and potential weaknesses. Their influence on model output must be made explicit to 

determine the reliability of the model and ensure that conclusions derived from the model remain 

applicable under more realistic system behaviour. 

 

1.3.4 Contrasting Assumptions 

Several models referenced in the KKM paper also explore energy system modelling regarding the 

interplay between renewables and electrolysis, with variating assumption. Dowling et al. (2020) for 

instance included batteries for short-term storage, which the KKM does not. Specifically for the 

Netherlands, Weimann et al (2021) assumes a cost-optimized deployment of renewables and economic 

incentives next to market dynamics, making economic influence on model outcomes more apparent. 

Also, sector- coupling isn’t taking into account as prominently by the KKM when compared to Brown et 

al. (2018). However, Brown’s research encapsulates the entire European power system, which 

accounts partly for this dissimilarity.  

 

When looking at the study done by Weitemeyer et al. (2014), several elements stand out. Since 

the model focuses on Germany specifically, it contains much more detail. Fundamentally, storage 

assumptions and demand functions are not generalized, but programmed in detail. Also, the low-cost 

retrofitting is not included in the model. While this can all be attributed to the model being developed 

for monitoring system behaviour under varying conditions - instead of high-level, generic insights like 

the KKM - they however are important distinctions nonetheless. Lastly, a study by Kirchem & Schill 

(2023) uses flexible electrolyser use and a variable mix for renewable energy generation, constrained 

with cost differences. Its modelling is also much more similar to Weitemeyer’s study, focusing on 

Germany specifically and explicitly using both tank and cavern storage possibilities for produced 

hydrogen. 

 

1.3.5 Key Takeaways 

Energy system models are essential decarbonization planning tools, enabling analysis of the effects of 

different inputs and assumptions on the development and operation of energy systems. All models rely 

on simplifications, yet their value relies entirely on transparent and high-quality assumptions. Poorly 

founded or outdated assumptions can lead to misguided conclusions, generating ineffective perverse 

decisions. For credibility, it is necessary to subject these assumptions to validation methods such as 

sensitivity testing and scenario analysis, proving robustness. 
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The KKM is a simplified, high-level model for hydrogen integration in renewable power systems. 

The model simulates a P2H2P system with assumptions such as flat demand, low-cost hydrogen 

storage and transportation at large scale and low-cost gas plant refitting. While these assumptions 

improve the model’s generalizability by decreasing model complexity, it might also limit its accuracy. 

Several other frameworks use more detailed representations, such as flexible application of 

electrolysers, alternating renewable blends, short-term storage and sector coupling. the use of 

contrasting assumptions exhibits the need for them to be subjected to scrutinization. 

 

1.4 Knowledge Gap and Research Objective 

The importance of assumptions made when predicting the workings of our future energy system can 

not be overlooked. Given the growing reliance on energy models for policymaking, it is essential to 

evaluate how assumptions shape model outcomes and whether they provide a solid foundation for real-

world decision-making. Addressing said gaps will provide a more comprehensive understanding of 

assumptions and the relationship between renewable energy and electrolysis deployment.  

 

Understanding how these assumptions are formulated, why they were selected and what their 

impact is on model performance are crucial. When this relation is made clear, the assumptions and the 

model itself can be confidently used and applied to real-world situations. Thus, this study entails an ex-

ante evaluation, aiming to systematically test the KKM’s assumptions and assess their impact on the 

relationship between renewable energy expansion and electrolysis deployment in decarbonizing power 

systems. This research will start off in a general manner, but will eventually narrow its focus to the 

North-Western part of Europe, specifically the NL/DE/DK/BE region, since this is the scope of interest 

for Gasunie and this is where the validity of the KKM is expected to be the highest. 

 

1.5 Main Research Question and Sub-Questions 

Considering the problem at hand, together with the identified knowledge gap and the objective of this 

research, this leads us to the main research question (RQ), which reads:  

 

1) RQ: "How Do Key Model Assumptions in the KKM Influence the Relationship Between 

Renewable Energy and Electrolysis Deployment?". 

 

To answer this research question, the crucial assumptions made in the KKM regarding renewable 

power generation, hydrogen production, and energy storage need to be identified in sub-question 1 

(SQ1). Next, in sub-question 2 (SQ2), analyses to evaluate the sensitivity and robustness of the KKM 

assumptions will be conducted by subjecting the assumptions and the model itself to sensitivity and 

robustness analysis. Lastly, in sub-question 3 (SQ3), a comparison will be drawn between the r : e 

relation in other models and the one found in the KKM. Leading to the following overview: 

 

2) SQ1: “What Are Key Assumptions in the KKM and Why Are they Made?”. 

3) SQ2: “How Sensitive and Robust Are KKM Model Outcomes to Variations in Key  

Assumptions?”. 

4) SQ3: “How Does the Renewable Generation-to-Electrolyser Build-Out Relation in the 

KKM Compare with Alternative Energy System Models?”. 
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1.5 Link to CoSEM and Societal Relevance 

This research connects directly to CoSEM through courses like ‘Design of Integrated Systems’ and 

‘Sociotechnology of Future Energy Systems’, which emphasize designing and managing complex 

socio-technical systems, especially in energy contexts (COSEM — TU Delft, n.d.). The project also 

aligns with key aspects of the programme, such as the integration of renewable energy technologies 

and their socio-economic impacts and the role of models in finding effective solutions. It’s societal 

relevance is apparent: since our future power system will become increasingly more complex due to 

the growing share of renewable energy, understanding how the introduction of large-scale electrolysis 

influences this system is crucial to its success.  

 

Understanding the relationship between renewable generation and electrolysis capacity is 

essential to ensuring that green hydrogen production can scale efficiently alongside variable renewable 

energy sources. This relationship directly informs how infrastructure should be sized and phased in to 

avoid overbuilding or underutilization, which in turn affects the affordability and reliability of the future 

energy system. It allows system planners to better align hydrogen production with supply variability, 

thereby maximizing renewable utilization. Ultimately, these insights support a more coordinated and 

cost-effective energy transition. 

 

This study aims to identify relevant assumptions, demonstrate their relations, compare their 

values and validate them. By doing so, the reliability of energy system model foundations can be 

assessed. These findings will eventually help policymakers make informed decisions on hydrogen 

investments and achieve net-zero emissions.  

 

1.6 Report Structure 

Following the introduction, the Methodology will entail a description of how this scrutinization will take 

place. According to said procedure, the main research question will be answered by independently 

discussing each of the sub-questions in separate chapters. Firstly, the model choice for the validation 

of the KKM will be introduced and substantiated. After, a system description will be provided in order 

to create a clear overview of the system that is being discussed. The relevant assumptions and 

simplifications will be selected, highlighted and substantiated in the Key Assumption Identification, after 

which the Sensitivity and Robustness Analysis will delve into the validation of KKM outputs. The 

sensitivity and robustness of the model outputs to variations in assumptions and simplifications will be 

examined in this section. Lastly, the Comparative Analysis will contrast the KKM assumptions and 

simplifications, together with the relation between renewables and electrolysers, against other energy 

system studies 

 

Results will be presented and discussed in each section. This will include a detailed 

presentation of the findings, highlighting the interconnections between assumptions and model 

performance. The results and other relevant topics will be critically discussed in the Discussion, 

identifying key insights and limitations. Finally, the Conclusion will address the primary research 

question and reflect on its broader implications. These deliverables will ensure the research contributes 

both to academic understanding and practical energy system design. Any figures, graphs or information 

that is being referenced to but is not directly included in the report, can be found in the Appendix. 
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2 Methodology  

In this chapter, the logic behind the KKM will be explained, to show what it models and how it functions. 

Subsequently, the Electrolyser Battery Balancing Model (EBBM) will be presented, which will be used 

in the validation of the KKM assumptions. Lastly, the research design will be introduced. The research 

methods used to answer both the sub-questions and eventually the research question will be disclosed. 

Additionally, the data requirements and the data analysis tools and sources will be discussed.  

 

2.1 Kramer and Koning Model (KKM) 

The KKM operates fundamentally on the principle of a load duration curve. This stylized mathematical 

model is primarily developed to provide high-level, generic insights into the relationships between 

variable renewable energy generation and electrolyser deployment for a decarbonizing power system. 

The model also analyses synergies between power system decarbonization and generation of 

hydrogen for export to other sectors. The KKM makes several assumptions and simplifications, as 

mentioned in the previous chapter. The model aims to provide a systematic exploration of the scale of 

renewable and electrolyser deployment necessary to achieve power system decarbonization, as 

determined by capital cost assumptions and the relative contribution of solar and wind capacity. It is 

also meant to highlight the cost synergies that can be achieved through the elimination of power-to-

hydrogen and hydrogen-to-power inefficiencies by co-producing hydrogen instead of stand-alone 

production of hydrogen.  

 

 The authors assess the integration of green hydrogen production and electrolyser deployment 

within a progressively decarbonized power system, revealing that full decarbonization is cost-optimal 

when a significant portion of the power mix comes from wind energy (this is, in the base case for the 

Netherlands). They identify a critical threshold where electrolyser deployment becomes necessary, 

which occurs around 70% grid decarbonization for wind-dominated systems. The KKM evaluates 

optimal ratios for renewable and electrolyser capacities under varying degrees of grid decarbonization. 

The CR, reflecting relative costs between renewables and electrolysis, serves as a central sensitivity 

parameter in the model.  

 

Figure 1 and 2 illustrate the core mechanics of the KKM, which determines the cost-optimal 

trade-off between renewable generation and electrolyser capacity to achieve varying levels of power 

sector decarbonisation. The left plot shows the relationship between average renewable power 

generation (r) and electrolyser capacity (e) for different levels of decarbonisation (f), along with the fitted 

curves defined by e ∼ ε (r − ρ), where ε represents the marginal electrolyser requirement and ρ the 

renewables threshold. This relationship is central to the model’s logic and defines the cost-optimal 

system configuration for a given cost scenario.  

 

The right plot presents the marginal decarbonisation cost as a function of the level of 

decarbonisation (1 − f), showing how this cost increases sharply as full decarbonisation is approached. 

Together, these figures highlight the importance of system design parameters in shaping investment 

needs and reveal diminishing returns near the highest decarbonisation levels. 
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Figure 1: A cost-optimal deployment plot from the KKM report (2024), including renewables (r) and 
electrolysers (e) for a wind–solar mix in the Netherlands. The black lines indicating equal usable renewable 
energy (1 − f). Dots mark cost-optimal combinations for (r, e) in different cost scenarios, fitted by e ∼ ε (r − 
ρ). Stars indicate the cost optima for full decarbonisation. Figure 2: Total system cost for each level of 
decarbonisation three different cost ratio (CR) scenarios, as mentioned in the KKM report. 

2.2 Electrolyser Battery Balancing Model (EBBM) 

The EBBM is a time-sequential energy system model that builds on the core structure of the KKM, but 

extends it with multiple additional parameters and functionalities. It is designed to simulate the 

integration of battery storage next to renewable electricity and electrolysis in a combined onshore and 

offshore Dutch energy system. By optimising these three factors while taking into account several other, 

the model finds individual cost-optimal solutions for different levels of decarbonisation. Separate runs 

can be modified with several optional refinements, like demand side flexibility, grid capacity limitations, 

efficiency curves, minimum loads, all of which can easily be activated or deactivated. By plotting the r : 

e relation after said optimisations, similar trends can be produced compared to the KKM. Similar cost 

plots can also be generated, next to the relation between renewables and battery capacity (r : b), which 

is not included in the KKM but provides additional insights. Figures 3 and 4 serve as an example of the 

output from the EBBM, showing the r : e relation and a basic cost plot respectively of an exemplary 

dataset (Example 1). 

 

 

 
Figure 3: A representation of the r : e relation for the exemplary dataset Example 1 as produced by the EBBM, 
following a trend similar to the KKM Each datapoint represents an individual run where the combination of r 
and e is optimised. Figure 4: A representation of the total power system decarbonisation cost for different 
levels of decarbonisation, for exemplary dataset Example 1, as produced by the EBBM. Each datapoint 
represents an individual run, corresponding to Figure 3, with the cost of decarbonisat ion in €/W for different 
decarbonisation levels. 
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Operating at hourly resolution over a full year, the EBBM incorporates a realistic representation of how 

renewable energy is allocated within the system. At each time step, renewable power is first allocated 

to meet electricity demand. If generation exceeds demand, the surplus is used to run electrolysers and 

produce green hydrogen. By assigning costs of the assets, one can explore the cost effectiveness of 

different combinations of assets, either manually or automated. 

 

The model charges batteries in case of excess power production. In periods of renewable 

shortfall, the model discharges stored electricity from the battery to meet demand. If battery storage is 

insufficient, the model applies a backtracking mechanism: it retroactively reduces electrolyser power 

consumption from earlier hours in order to restore battery charge levels and resolve the shortfall. If no 

resolution is possible through these internal adjustments, backup generation is triggered.  

 

The model also allows for battery discharge to increase electrolyser throughput, provided this 

does not compromise future storage needs. These dynamic interactions enable the EBBM to construct 

detailed and internally consistent hourly profiles of power flows, hydrogen production, battery usage  

and curtailment for any given set of renewable generation, electrolysis and battery capacity. Scenario 

and sensitivity analyses are embedded within the model structure, facilitating exploration of alternative 

layouts and their associated impacts on performance and decarbonization pathways. For a more in-

depth description of all model functionalities and profiles, see Appendix A. 

 

2.3 Research Design 

 This section entails the precise research design, including all tools, data sources and requirements 

used to gather and structure information that answers each sub-question. The research design will 

utilize a mixed-methods research approach, using both qualitative and quantitative data collection and 

analysis to answer the research questions. A sequential design (Bryman, 2006) is used, as the answer 

and information related to each sub-question serves as input for the next. This method was chosen due 

to the combined strength of using both quantitative and qualitative methods of data analysis (Doyle et 

al., 2009), next to its increased generalizability and quality (Leech et al., 2009). 

 

2.3.1 Key Assumption Identification (SQ1) 

The first phase focuses on identifying, describing and evaluating key assumptions and simplifications 

made in the KKM, both those explicitly stated in the publication and those that are implied or not covered 

– inferred from omissions from the real-world system and wider context. The output of this phase will 

be a structured, categorized inventory of all assumptions, organized by theme (e.g., cost hydrogen 

related or cost related) and classified by source type (explicit or implicit). This structured overview 

serves not only to answer SQ1 but also to define a targeted testing scope for SQ2.  

 

Thereafter, the logic for each of these simplifications will be argued to substantiate them and 

illustrate their role in the model. This will be qualitative in nature and based on a document review of 

the KKM itself, relevant academic literature concerning the underlying assumptions, industry and 

government reports on recent developments and supplementary technical documentation provided by 

technical and subject matter experts. For these tasks, Scopus (Zhu & Liu, 2020) and Google Scholar 

(Martin-Martin et al., 2016) will be utilized. This narrative will eventually support a reasoned selection 

of highly relevant assumptions for in-depth analysis in subsequent phases, based on impact on model 

outcomes, validation capabilities and interest from Gasunie. 
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2.3.2 Sensitivity and Robustness Analysis (SQ2) 

In the second phase, the selected high-relevance simplifications from SQ1 will be tested using the 

Electrolyser Battery Balancing Model (EBBM), developed by Gasunie. It combines battery capacity next 

to electrolyser capacity and renewable for a more optimal and flexible balancing scheme. This model 

operates on hourly time-sequence data rather than stylized load duration curves and builds onto the 

KKM’s logic with an extension of the parameter selection, making it well-suited to reproduce and 

analyse the KKM results while enabling direct quantification of simplification impacts - a more detailed 

description can be found in chapter 3 or Appendix A. Each analysis done will be cost optimized based 

on the assumption (cost, efficiencies) and enabled functionality, resulting in a mix of renewables (r), 

batteries (b) and electrolysers (e).  

 

Analysis will be performed for five levels of decarbonisation, where f stands for the remaining firm 

fossil fuel-generated electricity in the system: 

 
(1) 80% grid decarbonization (1 − 𝑓 = 0.8), without hydrogen export to other sectors; 

(2) 90% grid decarbonization (1 − 𝑓 = 0.9), without hydrogen export to other sectors; 

(3) 100%  grid decarbonization (1 − 𝑓 = 1.0), without hydrogen export to other sectors; 

(4) 100% grid decarbonization, with an additional 10% hydrogen export to other sectors; 

(5) 100% grid decarbonization, with an additional 20% hydrogen export to other sectors. 

 
These analyses for five levels of decarbonisation, allow for trending the relationship between the build-

out of average renewable generation and electrolyser capacity alike the trend examined the KKM paper 

(Kramer & Koning, 2024). In addition, it will also allow for trending of the battery capacity and cost. 

 

The analysis is structured in three parts: simplification assessment and assumption sensitivity. 

First, simplifications will be evaluated by incrementally modifying them and tracking the corresponding 

changes in model outputs. The simplifications tested include battery interaction, electrolyser limitations, 

demand fluctuations, electrolyser efficiency curves and hydrogen storage cost - all of which are 

explicitly defined and varied in the scenario matrix. The system simplifications omitted in the KKM are 

incorporated first in the EBBM to establish a new base case, as they represent well-understood, high-

certainty components whose technical feasibility and empirical relevance are widely acknowledged. 

This will build up to reflect a more realistic and valid new base case for the subsequent parameter 

variations, thereby increasing the validity of the runs. A waterfall chart will be constructed to visually 

show the isolated and cumulative impact of each simplification on key metrics (Mahajan & Gokhale, 

2019). This chart, including plots of the cost-optimal r : e relation, can be found in chapter 6.  

 

Second, variations in parameter values will be tested through univariate sensitivity analysis. 

Univariate sensitivity analysis is well suited for this research, as it allows the isolated impact of individual 

assumptions on model outcomes to be assessed in a clear and systematic way, given the study’s focus 

on evaluating how specific simplifications influence key results (Jain et al., 2011). This includes varying 

the generation mix, electrolyser efficiency, the cost ratio of renewables to electrolysis (CR) and demand 

flexibility.  
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Third, the robustness analysis tests whether the model’s logic and conclusions hold when key 

assumptions are pushed to their extremes. This is done by applying best- and worst-case values (edge 

cases) to the same set of input variables as the sensitivity test. These variables are central to the 

model’s structure and influence its core outcomes. By systematically varying these parameters across 

plausible but extreme values, the analysis evaluates the internal consistency of the model and whether 

its pathways remain valid when assumptions are stressed (Micskei et al., 2012). This approach helps 

identify which assumptions are most impactful, and whether conclusions drawn under default settings 

remain credible under more extreme conditions. 

 

Each uncertain parameter will be varied across plausible low-mid-high ranges (determined by 

using the sources used in SQ1), after which the model will be optimized for each variation and for all 

five levels of decarbonisation. These variations are once again depicted in a scenario matrix. For all 

simulations, the outputs being tracked include total system cost per kWh/h decarbonized power (c), 

renewable installed capacity (r), electrolyser capacity (e) and battery capacity (b). In addition to these 

direct outputs, the relationship between renewable generation capacity and electrolyser deployment 

will be systematically tracked across all scenarios to assess how it deviates from the theoretical 

relationship identified in the KKM. For all runs, an optimisation gap (Voll et al., 2015) of 10% is asserted. 

A comprehensive overview of these cases, including plots for all runs, can be found in Appendix B.  

 

The research will require model access and scenario-specific input data, while Excel will be 

used to perform statistical sensitivity analyses, generating insights into the range and reliability of model 

outputs under different assumptions. Excel is a powerful tool for scenario analysis, sensitivity analysis 

and uncertainty testing due to its built-in functionalities for modelling complex relationships, while data 

tables provide robust frameworks for testing parameter sensitivity in model outcomes (Guerrero, 2019). 

Also, since the EBBM has been designed in Excel, it will facilitate a smooth analysis of the assumptions 

more easily. This will provide structured insight into both the role of model simplifications and the 

robustness of KKM outcomes under real-world uncertainty in assumption values, answering SQ2. 

 

2.3.3 Comparative Model Analysis (SQ3) 

The third phase assesses how the r : e from the KKM compare to those from other models and studies 

in the field. This will show the impact of assumptions made in different studies and how this translates 

to different r : e relations. A selection of recent academic and industry models will be analysed for their 

assumptions and core relationships. This selection will largely depend on the accessibility of input data 

and model structure required to extract the relevant relations. Apart from the KKM paper, the research 

will require access to other academic papers, technical reports and industry publications to gain 

knowledge on the background of the KKM and considerations surrounding the assumptions made. This 

phase will also rely on technical and economic literature to compare findings against standards used in 

other sources. 

 

In practice, this means that models already available within Gasunie, like the Pathway Study 

2.0 (2024) for example, are likely to form a substantial part of the comparison. These models offer a 

higher likelihood of being usable for reproducing the normalized renewable-electrolyser relationships, 

due to the level of transparency and control over assumptions they provide to this research, and in 

particular because of the availability of underlying data and the possibility of support from the model 

authors. Nonetheless, the analysis will not be limited to these models; other academic and industry 

models will also be considered where sufficient documentation or data access allows for meaningful 

inclusion in the comparative framework.  
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The key relationship under examination is the link between average renewable energy 

generation and electrolyser build-out, as modelled in the KKM with a focus on the Netherlands. For 

each selected study, the nature of this relationship will be extracted and plotted using the same 

normalized framework applied in the KKM (the cost-optimal electrolyser capacity against average 

renewable power). Comparing these plots will reveal the extent to which different assumptions, 

simplifications, or parameter uncertainties affect this result.  

 

Using several models to compare the r : e relationship ensures that the structural pattern found 

in the KKM is not model-specific, but reflects a broader consistency across independently developed 

frameworks. This cross-model agreement adds credibility to the relationship by showing that, despite 

differences in assumptions, similar trends emerge, thus reducing the risk of over-relying on any single 

model’s assumptions. 

 

2.3.4 Main Research Question  

The aforementioned sub-questions will allow for a reflection on the robustness of the renewables-

electrolyser relationship in the KKM: to what extent does this relationship hold across different models 

and under which conditions might it break down? This includes a consideration of what the presence 

of such a relationship does and does not imply. What are the broader implications of the renewables-

electrolyser relationship, and how can it be interpreted in the context of real-world system planning. 

Combining these findings with earlier results, the main research question will be answered. Any 

deviations will be discussed, with a focus on identifying which simplifications or uncertainties are likely 

responsible.  
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3 KKM Validation Using the EBBM 

The Kramer-Koning Model (KKM) and the Electrolyser Battery Balancing Model (EBBM) are both 

analytical frameworks aimed at optimizing renewable energy and electrolyser integration into 

decarbonized power systems. While sharing similar overarching objectives, each model is distinct in 

approach and analytical capabilities, influencing their application and validity in specific research 

contexts. This chapter contains a description of each model, outlining both model functionalities. 

Subsequently, the use of the EBBM in the KKM assumption and simplification validations will be 

substantiated, after which the EBBM optionality will be discussed to illustrate the model’s additional 

complexity compared to the KKM. Lastly, the limitations associated with the use of the EBBM will be 

examined. 

 

3.1 EBBM Use for KKM Validation 

The choice to utilize the EBBM for validating KKM assumptions stems from the fact that the KKM, as a 

stylized model, deliberately applies simplifications that are not uncertainties in themselves, but fixed 

structural assumptions made for analytical and practical clarity. While substantiated correctly and useful 

for deriving generic insights from the model, these core simplifications and other assumptions cannot 

be validated within the KKM framework without modifying the model structure itself. In contrast, the 

EBBM incorporates these omitted elements by design and enables univariate testing of their effects. 

 

The EBBM builds on the same core logic and structure as the KKM, but extends it with 

additional parameters and capabilities for greater detail. This means that it can reproduce the KKM’s 

results when entering the same inputs. However, instead of relying on a load duration curve abstraction, 

the EBBM is built on time-series data, allowing the model to simulate actual hourly system behaviour. 

This shift from abstraction to temporal simulation makes it possible to quantify the impact of each 

individual simplification with relatively high confidence, while also exploring the interaction effects when 

multiple assumptions are varied simultaneously. In doing so, the EBBM preserves the conceptual 

integrity of the KKM but enables a more nuanced understanding of how its simplifications influence 

outcomes - thereby serving as a robust validation tool. 

 

3.2 Key EBBM Input Variables 

The EBBM is an elaboration on the KKM, allowing for an analysis including multiple additional aspects. 

This results in the EBBM having a significantly higher amount of input and output variables. The relevant 

input variables in relation to the validation of the KKM simplifications are discussed below. An overview 

of all EBBM input variables and its functionalities, including descriptions of each input variable and 

visualisations of both the input and output interface of the model, can additionally be found in Appendix 

A. 
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3.2.1 Capacity Parameters 

The Average Renewable Energy Generation (r) represents the portion of renewable energy generation 

(r) relative to total system electrical energy demand (D) measured in (GWh/h)/(GWh/h), alternatively 

but indistinguishable to the commonly used TWh/y. This recurring unit emphasizes the time-sequence 

basis of the model. It is critical for analysing system decarbonization potential and determining the 

optimal relation to the electrolyser capacity (e), in GW of installed capacity. The Electrolyser Capacity 

(e) specifies the installed electrolyser power relative to the total system electrical energy demand (D), 

measured in (GW)/(GWh/h), and is instrumental in converting excess renewable energy into hydrogen. 

It is jointly assessed with r and Installed Battery Capacity (B, measured in GWh) to determine optimal 

utilisation of these assets. This is done by first optimising specified assets, after which an optimal ratio 

of assets is determined. 

 

The Degree of Carbonisation (Ug_H2-to-market-first (power+hydrogen)), as described in 

chapter 2.3.2, is expressed by Ug/D, where Ug refers to the total energy delivered to consumers (in 

GWh) and D refers to the total electrical power demand (also GWh). Ug between 0 - 1 hence refers to 

degree of decarbonization of the power grid, where values above 1 refer to a fully decarbonized power 

grid with additional hydrogen. This variable is actively varied in scenario analyses to simulate different 

decarbonization trajectories. Lastly, the generation mix can be altered by adjusting the Solar Share, 

representing the percentage of renewable generation provided by installed solar capacity. By 

structuring the model in this way, the EBBM is able to evaluate system performance under a broad 

range of conditions. It supports sensitivity testing and scenario analysis, making it a powerful tool to 

validate the stylized simplifications embedded in the KKM. 

 

3.2.2 Demand Parameters 

The EBBM incorporates a wide range of input parameters that allow it to simulate a hybrid energy 

system under different technological, operational and economic assumptions. At its core, the model is 

governed by key capacity parameters that define the scale of generation and storage. The parameter 

Demand Curve (Demand Curve?) allows for choosing a specified variable demand curve or a flattened 

demand curve, as applied in KKM.  

 

The parameter Demand Side Flexibility (Demand Side Flexibility) allows for the inclusion of 

flexible demand. The parameter is specified as a percentage of Demand (D). In case of shortage of 

direct supply of energy, the demand curve can be reduced by the specified percentage rather than rely 

on energy storage or back-up power generation. Note that the option temporarily reduces demand, it 

does not shift demand to other periods.  

 

3.2.3 Efficiency Parameters 

In terms of conversion efficiency, Electrolyser Efficiency (η_e) is set to 70% (at 100% load) in the base 

case and is consistent with KKM assumptions. It governs how effectively electrical power is converted 

to hydrogen. The model optionally applies a Hydrogen Efficiency Curve, a setting that either activates 

variable efficiency linked to operational conditions or is flattened to a constant. The electrolysis 

efficiency can cover all energy losses related conversion, e.g. for utilities, compression, power 

conversion, stack degradation as well as losses for hydrogen storage and transport. The electrolyser 

efficiency refers to the efficiency at maximum capacity. 
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3.2.4 Cost Parameters 

Similar to the KKM, the EBBM also integrates key economic inputs. Note that costs refer to an 

annualized cost of the assets, and needs to include investment costs, operational costs, lifetime, 

interest rates, return and investments considerations. The Renewables Cost (C_r) and the Electrolyser 

Cost (C_e) together define the cost ratio (CR) that shapes investment prioritization between renewable 

capacity and electrolysis. In the EBBM, the cost parameters are extended with cost of batteries (C_b) 

and the cost for hydrogen storage (C_storage).  

 

3.2.5 Electrolyser Limitation Parameters 

Electrolysers generally don’t operate well below a specified minimum load. Efficiency drops, and risk of 

crossover of hydrogen to oxygen increases, making it better to stop the electrolyser completely. 

Minimum Load Electrolysers allows for specifying the percentage below which individual electrolysers 

need to be placed on stand-by. At standby, the power consumption of electrolysers and utilities is 

generally small, but not zero. There can also be minor losses due to depressurization to consider. With 

large capacities of electrolysis installed, even a small percentage of power consumption - generally 

with inconvenient timing - may affect system wide considerations. The parameter Standby Losses 

accounts the percentage of power required during standby for electrolysers. 

 

Because it’s not desirable for electrolysers to stop-start with high frequency, a minimum 

standby period (in hours) can be defined. This feature will enforce that minimum power load is 

maintained during short periods below the threshold, either by interactions with batteries or if required 

by back-up power generation. A related parameter (which can also be switched on or off) is Flattening, 

Bridging & 2nd Iteration. This feature resolves some of the time series optimization challenges 

introduced by the minimum standby period feature. 

 

3.3 Limitations of the EBBM 

Like any model, also the EBBM has several limitations that must be acknowledged in the context of 

KKM assumption validation. First, the EBBM focuses more on operational feasibility and performance 

rather than full cost-optimization at a system level. While the same output can be generated, the EBBM 

is much more cumbersome when making these calculations. Also, the model uses hourly profiles, while 

variations within the hour may also be of relevance. The model considers a single reference year, 

whereas variations between the years will also be of relevance. 

 

Second, the EBBM is that it does not include infrastructure costs as a separate category, nor 

does it account for bottlenecks in onshore electricity and hydrogen networks. As a result, the model 

may overestimate the feasibility of certain system configurations by ignoring the investment and spatial 

constraints associated with grid reinforcement or pipeline development. This limits its applicability for 

infrastructure planning and may lead to overly optimistic outcomes. Noteworthy also is the lack of 

storage capacity incorporation, which indicates the model does not include storage cost. 
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Third, the EBBM assumes ideal electrolyser flexibility, allowing ramping from 0–100% without 

explicitly modelling degradation dynamics over time. This simplification may underrepresent the 

operational challenges faced by real electrolyser installations, particularly in high-cycling or part-load 

conditions. While standby losses and minimum load thresholds are included, other nuanced behaviours 

such as cold starts or equipment wear are generalized into static assumptions rather than dynamic 

degradation modelling. By acknowledging these limitations, the EBBM remains a suitable tool for 

validating key assumptions of the KKM, particularly those related to energy balancing and the systemic 

role of storage.  
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4 System Description 

This chapter provides a structured description of the energy system studied in this thesis. It begins with 

a high-level overview of the broader energy transition context and the challenges it introduces. From 

there, it zooms in on the emerging role of offshore electrolysis, highlighting its technical concept and 

relevance. A representation of this real-world system will be discussed in detail. Finally, the chapter 

introduces and explains the stylized system modeled in the KKM. The differences between this stylized 

system representation and the real-world will be highlighted and discussed. 

 

4.1 Broader Energy System Context 

The system described in the KKM is part of a larger, European energy system. In this much broader 

context, different factors are important to mention, to fully understand how the system is situated and 

what takes place outside of the KKM system boundaries.  

 

4.1.1 The European Energy System 

The European energy system is undergoing a transformation to decarbonize power generation and 

integrate increasing shares of renewable energy. Wind and solar power, now central to national energy 

strategies, bring significant variability that challenges the stability of existing power grids. This shift 

creates the need for new solutions for flexibility and long-term storage. Hydrogen, produced from 

renewable electricity and used as feedstock, is increasingly seen as a key enabler of such flexibility, 

particularly for seasonal balancing and possibly inter-sectoral energy transfer. 

 

4.1.2 Offshore Wind Development in Northwest Europe 

Offshore wind energy development in Northwestern Europe has become a cornerstone of the its 

decarbonization strategy, with the North Sea emerging as a key hub for large-scale deployment. 

Countries such as the Netherlands, Germany, Denmark, and Belgium have set ambitious targets for 

offshore wind capacity, aiming to collectively install at least 65 GW by 2030 and over 150 GW by 2050, 

as outlined in the 2022 Esbjerg Declaration. To accommodate this growth, the region is moving toward 

coordinated infrastructure planning, including the development of offshore energy hubs and 

interconnectors, which combine cross-border grid integration.  

 

These hubs aim to increase system efficiency and support more flexible power distribution 

across borders. However, this rapid expansion of offshore wind also introduces operational challenges 

like grid congestion and curtailment risks (especially during periods of high wind and low demand). 

Without adequate transmission capacity and flexibility options, these challenges may undermine the 

value of these offshore assets. This highlights the need for integrated system planning and system 

flexibility measures. 
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4.1.3 Offshore Electrolysis as a System Innovation 

Offshore electrolysis refers to the production of hydrogen directly at sea, typically nearby offshore wind 

farms. Instead of transmitting electricity to shore by HVDC cable, power generated offshore is converted 

to hydrogen via electrolysers mounted on platforms. This hydrogen can then be transported via subsea 

pipelines, avoiding onshore grid congestion and enabling scalable production aligned with North Sea 

wind development, while also being cheaper than power transmission over long distances. While still 

an emerging technology, pilot projects and feasibility studies show the growing interest in integrating 

offshore hydrogen into energy systems. Compared to onshore electrolysis, offshore systems typically 

involve higher upfront costs due to marine construction and harsher operating environments which are 

offset by savings on power infrastructure. 

 

 The deployment of offshore electrolysis presents several technical and logistical challenges. 

Platform design must account for space constraints and offshore safety standards, while maintenance 

is more complex and costly than on land. Compression and pipeline transport systems must also be 

integrated into larger storage or transmission networks. In response to these challenges, offshore 

backbones are being explored. These involve centralized offshore facilities that cluster generation from 

multiple wind farms and connect to broader regional hydrogen infrastructure. As the offshore wind build-

out accelerates in the North Sea, offshore electrolysis is increasingly seen as a promising innovation. 

 

4.1.4 Grid Integration 

Grid integration encompasses how renewable electricity is dispatched and how electrolysis interacts 

with wider energy demand. In a real-world scenario, this includes grid congestion management, priority 

dispatch, frequency balancing and market participation amongst others. Offshore electrolysis is ideally 

built to absorb surplus renewable energy and reduce curtailment. In practice, determining “surplus” 

energy requires real-time grid monitoring. Transmission system operators play a central role and the 

electrolysis plant must interface with national or regional balancing markets. Interconnections between 

different countries can also play a big role in interactions with transnational grids.  

 

Offshore wind farms close to shore are typically connected using high-voltage alternating 

current (HVAC) substations, while wind farms located farther offshore rely on high-voltage direct current 

(HVDC) transmission stations to efficiently transport electricity to land. This electrical integration is 

critical in linking offshore generation to electrolysis and the wider power system. Electrolysers can also 

support the grid by providing flexibility services such as load shifting, when equipped with smart control 

systems and strategically sited within the transmission network. Infrastructure limits, such as grid 

bottlenecks, often constrain deployment more than technology readiness. 

 

4.1.5 Real-World Complexity to Stylized Representation 

While the broader European energy context is defined by technological complexity, spatial constraints, 

and infrastructure interdependencies, the KKM deliberately abstracts from this complexity. Instead, it 

adopts a stylized and simplified representation to isolate the structural relationship between renewable 

generation and electrolysis capacity. By omitting several real-world factors, the KKM creates a 

transparent modelling environment focused on interactions between renewable generation and 

hydrogen production. This narrowed scope helps to identify fundamental trends in system behaviour 

that might otherwise be obscured in fully detailed system models. 
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4.2 System Scope and Boundaries 

While understanding the broader context of the system, it is important to define the scope and the 

boundaries that exist in the KKM. This described by means of the geographic scope, chronological 

scope and the sectoral scope of the system. 

 

4.2.1 Geographic Scope 

The geographic scope of the KKM is centred on the Netherlands, with wider applicability to the 

Northwest European region. The model's base case uses input data and assumptions that reflect Dutch 

conditions, such as the renewable energy mix, cost parameters and performance metrics derived from 

national feasibility studies. For example, the assumed 80% wind and 20% solar energy mix corresponds 

to Dutch energy projections and offshore electrolysis parameters are based on Dutch technical studies. 

While spatial details like infrastructure locations, distances and national grid layouts are not specified, 

the model is designed to provide insights that are transferable to neighbouring countries with similar 

energy system dynamics, including Germany, Belgium and Denmark.  

 

These countries, like the Netherlands, are investing heavily in offshore wind and hydrogen 

integration, making the KKM’s stylized framework a relevant tool for analysing system behaviour across 

this interconnected regional context. It can -in principle- also be applied to other countries; the base 

case parameters of the model will have to be adjusted for these countries, since the renewables mix 

will vary greatly from the target countries of this research and assumptions need to be review for the 

specific region. 

 

4.2.2 Temporal Scope 

The KKM uses a long-term, static modelling approach with a time horizon set around the year 2040. 

Rather than simulating system behaviour over time or capturing short-term operational dynamics, the 

model represents a scenario that reflects a decarbonized power system under future conditions. It does 

not provide chronological insights, such as hourly dispatch or seasonal variability, but instead treats all 

variables as average annual values. While this static approach provides a clearer oversight and reduces 

complexity, it also limits the model’s ability to capture temporal aspects such as weighted-average-cost 

of capital (WACC), cost & revenue phasing, OPEX, infrastructure development, changing energy 

landscape, nor any other aspect considering analyses over multiple years.   As a result, the KKM offers 

high-level insights into optimal system design but does not provide guidance on the transition itself or 

short-term operational challenges. 

 

4.2.3 Sectoral Scope 

The KKM operates within a strictly energy-focused framework, modelling only the electricity sector and 

excluding interactions with other sectors such as industry, transport, or heating for instance (except for 

additional scenario’s of hydrogen export for the Netherlands specifically). Its primary objective is to 

explore the role of hydrogen as a long-term flexibility option within a decarbonizing power system, 

particularly under high shares of variable renewable energy. As such, the model accounts for limited 

sector coupling strategies, as it includes an additional scenario using hydrogen in industrial processes, 

but doesn’t discuss options such as using hydrogen powered vehicles or district heating. Consequently, 

while the KKM provides valuable insights into power sector decarbonization, its findings should primarily 

be interpreted within the boundaries of this sector-specific perspective. 
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4.3 Real-World System Components 

The outlined system concerns the environment around offshore wind, onshore electrolysis and 

centralised offshore hydrogen production platforms. This is comprised of the entire production chain 

including renewable generation, hydrogen production, transportation, storage and use - including all 

infrastructure. For Dutch context specifically, offshore system integration is especially valuable due to 

the relatively large amount of offshore wind available. A system representation can be found in Figure 

5, visualising all these components together in a real-world system. 

 

4.3.1 Renewable Energy Supply 

Renewable electricity is generated from a mix of onshore wind, offshore wind and solar PV. These 

sources are geographically and technologically distinct, each with unique generation profiles and 

infrastructure requirements. Offshore wind offers higher capacity factors (often around 45–55%), while 

onshore wind performs slightly lower (typically around 25–35%). Solar PV, although more spatially 

flexible, has lower capacity factors in northern regions (around 10–15%) (Lits, 2022). The relative share 

of each source in the system influences the intermittency and sizing of electrolysers. In a scenario with 

perfect incentives, only a surplus of generated electricity is available for electrolysis. However, in reality, 

this may change due to optimal balancing. 

 

4.3.2 Power Transmission 

Power transmission plays a critical role in integrated electrolysis systems, particularly in offshore 

configurations. Electricity generated by offshore wind farms is typically transported in the form of AC 

output via high-voltage transmission lines to a high-voltage direct current (HVDC) transmission station, 

or lead directly to an offshore electrolysis platform. From here it is converted into DC power and 

transported to shore and integrated in the grid. The inclusion of offshore HVDC substations allows for 

bidirectional power flow, enabling coordination between offshore and onshore assets. Power that goes 

to an offshore platform directly is converted on site, where the power is used directly for the electrolyser. 

There is no need for this construction in onshore electrolysis, since the power used onshore is already 

converted. Efficient and reliable transmission is essential not only to optimize electrolyser utilization but 

also to balance supply with demand and minimize curtailment in the renewable energy system. 

 

4.3.3 Power Conversion and Electrolysis 

Offshore electrolysis platforms enable the direct conversion of renewable electricity into hydrogen, 

using electricity generated by nearby offshore wind farms. Power is routed through an integrated 

converter and distribution system that prepares the electrical input for electrolysis. . Some systems also 

include voltage regulation to match the electrolyser's requirements (Singh et al., 2008), which includes 

voltage adaptation and basic current conditioning. Once conditioned, the electricity feeds electrolysers, 

where electrolysis happens by splitting water into separate hydrogen and oxygen components. 

Efficiency varies by technology and operational conditions such as temperature and load variability also 

affect performance. These factors influence system efficiency, cost and optimal deployment timelines.  
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4.3.4 Water Treatment, Cooling and Utilities 

Electrolysis systems, whether offshore or onshore, require additional infrastructure that contributes to 

overall energy consumption and system design complexity. For offshore electrolysis, seawater must 

first undergo desalination to meet the purity standards required by electrolyser stacks, typically via 

reverse osmosis or multi-stage distillation processes (Delpisheh et al., 2020). In onshore systems, 

conventional water treatment is still necessary to remove impurities from freshwater sources, albeit at 

lower energy cost compared to desalination. Both system types also require continuous cooling to 

manage the heat produced during electrolysis, typically through water-based or air-based cooling loops, 

(Keshavarzzadeh et al., 2019). Lastly, essential utilities such as process control, ventilation and safety 

systems contribute to the baseline energy use. These operational energy demands can impact overall 

efficiency. 

 

4.3.5 Hydrogen Transport and Compression 

After production, hydrogen must have sufficient pressure for transportation via pipeline to shore or other 

destinations. When capacity is low, sufficient pressure from the electrolysis process is available to limit 

compression scope to onshore compression. At some point in time, this may also involve compression 

units, typically placed on offshore platforms when regarding offshore electrolysis, before directing 

hydrogen through pipelines. The required pressure level offshore depends on transport distance, 

capacity and destination (Makridis, 2016), and of foreseen to be anywhere between 22 and 100 bar. 

Subsea pipelines used for offshore hydrogen transport require robust materials and corrosion 

management and may span hundreds of kilometres. Costs and energy consumption associated with 

this step are relevant and scale with distance and capacity. Realistically, such infrastructure has 

substantial capital and permitting requirements, often overlooked in stylized models. Gasunie is 

exploring ways to transport hydrogen from offshore to onshore in the most cost effective way. This 

explorations includes the conversion of existing pipelines used for gas to accommodate hydrogen 

transport. 

 

4.3.6 Hydrogen Storage 

Once transported to shore or nearby hubs, hydrogen is stored before further use. In real-world 

applications, storage methods vary: pressurized tanks, liquid hydrogen tanks or geological storage (e.g. 

salt caverns or depleted gas fields) are expected to be used most commonly (Mehr et al., 2024). 

Storage plays an important role in matching variable production to flexible demand for seasonal 

fluctuations, and especially for shorter time fluctuations, to smoothen out production profiles. Natural 

occurring storage capacity is limited for a lot of countries, requiring infrastructure investment, safety 

precautions and regulatory approvals for these locations to be developed (Fetisov et al., 2023). It also 

involves energy losses during compression and reconversion, typically 2% for caverns (Hystock, n.d.). 

Storage technology choices significantly impact system flexibility and economic viability, since onshore 

storage in hydrogen tanks is much more expensive due to the construction costs associated with it. 

 

4.3.7 Hydrogen-to-Power Conversion 

Stored hydrogen can be reconverted to electricity using gas  fired turbines, either built or retrofitted from 

existing natural gas infrastructure. In real systems, this retrofit involves burner redesign, material 

upgrades and safety adaptations due to hydrogen’s combustion properties (Cappelletti & Martelli, 

2017). Hydrogen turbines currently under development aim to increase hydrogen shares in power 

generation. This reconversion pathway offers strategic grid flexibility during periods of low renewable 

generation, but suffers major efficiency losses of around 50–60% (Zare et al., 2022), which means that 

only a fraction of initially produced electricity is recovered.  
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Moreover, in addition to conversion infrastructure, a significant amount of new-build generation 

capacity (backup power in particular) is required to meet peak demand. Given the expected increase 

in electricity consumption, this includes not only retrofits but also entirely new hydrogen-ready capacity. 

This round-trip inefficiency is a key consideration in energy system design. 

 

 

Figure 5: System representation of a real-world integrated electrolysis system. 

 

4.4 Energy Flows and Conversion 

In the system most power flow directly from the renewable source to the end user. Excess energy flows 

from wind and solar toward electrolysers, generating a current that first passes through an AC/DC 

conversion stage to ensure compatibility with the direct current required for electrolysis. Prior to this, 

electricity transmitted at high voltage is stepped down to lower voltage levels through HVDC converter 

stations to enable safe and efficient integration with local infrastructure and downstream components. 

This voltage transformation is a necessary step for connecting offshore generation to electrolysis and 

grid systems. Once converted, this electrical energy is used to split water into hydrogen, which is then 

compressed and transported via pipelines to a storage facility.  

 

During periods of high energy demand or power shortages, the stored hydrogen is reconverted 

into electricity using H2P gas turbines, which burn pre-mixed hydrogen and after which the electricity 

is fed into the grid. Each stage of this process entails efficiency losses: for instance, with electrolysis 

operating at 70% efficiency and hydrogen-to-power conversion at 50% (as used in the KKM) the total 

round-trip efficiency amounts to roughly 35%. The efficiency of the P2H2P power generation is low, 

resulting is an incentive to minimize the gas-to-power route, first and foremost by system integration 

enabling direct use of electricity whenever possible. Also other means to store electrical energy, like 

batteries, play a significant role in reducing the overall contribution of the gas-to-power. A gas-to-power 

system with large capacity and low number of running hours is foreseen. 
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4.5 KKM Stylized System 

The KKM system representation differs from a real-world system on several levels. A system 

description of the KKM and relevant omittances will be discussed in this section to highlight these 

differences. 

 

4.5.1 Stylized System Description 

The system presented in the KKM is a stylized representation of a real-world, hydrogen-integrated 

energy system, adaptable to the national context by allowing country-specific renewable capacities. It 

distinguishes between onshore wind, offshore wind and solar energy - though it does not specify 

whether solar is deployed onshore or offshore. The model assumes that surplus electricity from these 

sources is routed to electrolysers, where hydrogen is produced via electrolysis and transported by 

subsea pipelines to storage. Since the location of electrolysis is not specified, and can thus be both on- 

and offshore, this research doesn’t explicitly focuses on either one. During periods of electricity shortfall, 

stored hydrogen is transported to retrofitted gas turbines for reconversion to electricity. The transport 

is assumed to occur via pipelines, either subsea or underground, depending on the location of the 

storage.  

 

Various storage options are acknowledged, though no specific type is chosen and storage 

capacity is assumed to be unlimited. Likewise, pipeline transport costs are considered negligible. Exact 

placement of components such as wind turbines, solar panels, electrolysers, storage units and gas 

turbines are not specified in the model. In Figure 6, a representation of this stylized system can be 

found. 

 

 
Figure 6: System representation of the stylized KKM model. 

 

4.5.2 Omittances 

While this setup serves the model’s aim of prioritising cost dynamics and deployment strategies at a 

high level, it omits several important system components that would be essential in a real-world 

implementation. For example, the model does not include compressors that would be required to 

pressurize hydrogen before storage or transport.  
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Critical subsystems, such as power cables to transport current from renewables to electrolysers 

and AC/DC converters required to match renewable electricity formats with electrolyser input 

requirements, are likewise not addressed. These omissions are intentional and align with the high-level 

purpose of the KKM, which is to provide strategic insights into the cost dynamics and deployment timing 

of electrolysis technologies, rather than to offer a detailed technical model of physical infrastructure like 

transport and storage. Further discussion on the importance of these omittances will be provided during 

the Key Assumption Identification in chapter 5. 
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5 Key Assumption Identification 

In this section, key assumptions will be derived from the KKM. This entails registering all simplifications 

and assumptions explicitly made in the KKM, as well as implicit assumptions inferred from model 

formulations and parameter choices. This will be compared to Gasunie internal documentation, 

highlighting factors that are deemed important to consider.  A comprehensive oversight is then created 

by then categorizing them and assessing their relevance, answering SQ1, after which a distinction can 

be made between less relevant assumptions and more relevant assumptions worth pursuing. The most 

relevant assumptions will eventually be scrutinized in chapter 6. 

 

5.1 Explicit Simplifications 

Firstly, several simplifications and assumptions are explicitly specified in the KKM paper. This is to 

disclose which conscious choices have been made when developing the model. Secondly, some 

simplifications can be inferred from the stylized system used in the KKM. Organizing these will be done 

based on the four categories proposed in the Literature Review: renewables-, hydrogen-, cost- and 

system simplifications. For each assumption or simplification a description, its purpose and implications 

will briefly be discussed. An overview of all identified assumptions and simplifications can be found in 

Table 1. 

 
Table 1: Identified KKM modelling assumptions, arranged by category and source type. 

 

Modelling Assumption Category Source Type

1 Cost Reduction Headroom Cost Explicit

2 Electrolyser Cost Cost Explicit

3 Electrolyser Efficiency Renewables Explicit

4 Exclusion of Electrolyser Limitations Renewables Implicit

5 Exclusion of OPEX Cost Implicit

6 Generation Mix Renewables Explicit

7 Hydrogen Source Hydrogen Explicit

8 Hydrogen Storage Capacity Hydrogen Explicit

9 Hydrogen Storage Cost Cost Explicit

10 Hydrogen Transport Hydrogen Explicit

11 Neglect of Alternative Decarbonization Renewables Explicit

12 Neglect of Conversion Losses System Implicit

13 Neglect of Demand Flexibility System Implicit

14 Neglect of Demand Fluctuations System Explicit

15 Neglect of Transmission and Transportation Losses System Implicit

16 Omission of Compressors System Implicit

17 Omission of Gas Mixing Installations System Implicit

18 Renewables Cost Cost Explicit

19 Battery Interaction Exclusion System Explicit

20 Turbine Retrofitting Cost Cost Explicit
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5.1.1 Explicit Renewables-related Assumptions and Simplifications 

 

• Generation Mix 

The KKM assumes a fixed renewable energy mix consisting of 80% wind (12% onshore, 68% offshore) 

and 20% solar, chosen to reflect Dutch energy projections for 2040 as a base case. It’s indicated that 

this data corresponds to the Global Ambition scenario of North Sea Wind Power Hub programme (Haan 

et al., 2023), simultaneously matching the ‘Global Ambition’ scenario of the Ten-Year Network 

Development Plan by ENTSO-E (Haan et al., 2023). The assumption of power generation mix is crucial, 

because electrolyser utilization is lower when producing hydrogen with solar electricity than for wind 

electricity (Janssen et al., 2021), which makes the cost for solar-based hydrogen production much more 

sensitive to electrolyser cost. However, the larger part in the energy mix base case scenario remains 

wind energy. This is relevant because the main focus of this research is on the Netherlands, Germany, 

Denmark and Belgium, which are countries with favourable (offshore) wind conditions. 

 

That said, the assumed mix may underrepresent the increasing share of solar energy in the 

Dutch system. Current figures from CBS indicate a national split of around 40% solar and 60% wind 

(CBS, 2024), while future scenarios such as II3050 (Netbeheer Nederland, 2023) show solar reaching 

35–40% of total renewable generation by 2040–2050. This raises the question of whether the base 

case remains realistic under evolving national planning trajectories.  

 

It is indicated that, to test the generalizability of the model, the energy generation mix has been 

varied during model testing. If more solar is included in the electricity mix, the starting point of 

electrolyser deployment can be pushed further than for wind-dominated generation, but this comes at 

the expense of a higher electrolyser to renewables build-out ratio. The average renewable production, 

electrolyser capacity and investment cost required for full power system decarbonisation are strongly 

dependent on the share of solar energy generation. In wind dominated areas, electrolyser deployment 

starts later on, next to the build-out ratio being lower. It is found that, throughout all the cost scenarios 

run, the cost optimum of the amount of solar generation lies between 20% and 25% - thus making 20% 

suitable as a base case for the model. However, this optimum also depends on the relative cost of solar 

and wind generation. 

 

• Electrolyser Efficiency 

For both P2H and H2P, fixed efficiencies are assumed in the model, namely 70% and 50% respectively. 

This provides a standard baseline for energy losses in the (re)conversion of hydrogen to electricity and 

vice versa. When considering electrolysers, a distinction is made between three dominant types: 

Alkaline Electrolysis Cells (AEC), Proton Exchange Membrane (PEM) electrolysers and Solid Oxide 

Electrolysis Cells (SOEC) (Sebbahi et al, 2022). AEC electrolysers usually operate at an efficiency level 

of 65-75% (Stolten & Emonts, 2016). PEM electrolyser efficiency sits at about 80% and is expected to 

increase even further (Wang et al., 2022), which is significantly higher than alkaline electrolysers. SOEC 

electrolysers are set to outperform both alkaline and PEM electrolysers, operating at a theoretical 

efficiency as high as 90% (HELMETH, n.d.), when using residual heat as a thermal activation source 

(Tao & Virkar, 2011).  
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While SOEC electrolysers may seem the most fitting based on performance, this the most 

expensive type of electrolyser and less commercially available. PEM electrolysers are still more 

expensive than alkaline electrolysers, but can possibly be cheaper if hydrogen production is large 

enough. AEC electrolysers are the most mature and widely available type, while also being the 

cheapest due to use of less expensive resources (Krishnan et al, 2023). However, its also the least 

efficient type. These considerations substantiate the use of a fixed 70% P2H electrolyser efficiency, in 

the likely scenario that AEC electrolysers will be deployed. This might change to a mixed-use case, 

depending on the introduction of PEM or SOEC electrolysers, increasing overall efficiency. 

 

Considering H2P, aeroderivative gas turbines will likely be used (Zhou et al., 2024), as 

suggested in the paper by mentioning that existing peak generation capacity could combust hydrogen 

instead of, or together with, natural gas. This can be attributed to fuel cells and CCGT installations 

being too expensive for the low operating hours that are expected (Hermans et al., 2018). OCGT 

installation are financially more attractive, but lack in efficiency (NSWPH, 2024). However, current 

efficiencies of the aeroderivative gas turbines is estimated to be around 46%, which is somewhat lower 

than the assumed 50% in the KKM. This also includes minor losses due to compression and storage, 

next to cooling, desalination, start-stop and other operational-related losses. A round-trip efficiency of 

35% might thus also to result in a different value.  

 

These simplifications make it easier to perform P2H2P calculations due to their fixed rate, 

instead of using efficiency curves. However, there is some leeway in these values that might be worth 

exploring. Also, not taking into account electrolyser limitations proves to be an element subjectable to 

scrutiny, since these might significantly impact investment needs in electrolyser capacity. 

 

• Neglect of Alternative Decarbonization 

The analysis relies on minimizing the total investment cost in electrolyser capacity and variable 

renewable power generation. This cost optimization assumes that no extra hydropower will be 

deployed, since cost of firm generation is not taken into account, thus avoiding location-specific 

complexity. Decarbonization by means of nuclear power and carbon capture and storage is also 

excluded. A distinction can be made here between pre-combustion and post-combustion CCS: the 

former, which produces blue hydrogen by extracting CO₂ from natural gas before combustion (Kheirinik 

et al., 2021), is more compatible with renewable build-out and could be integrated into a 

decarbonization pathways, like the ones suggested in the KKM.  

 

Post-combustion CCS, which captures CO₂ after combustion, is considered less attractive due 

to its higher capital and operating costs and its generally lower carbon avoidance per unit of electricity 

generated (Chao et al., 2020). This decision might impact the flexibility in countries where this 

expansion is still possible, but is applicable to the majority of countries in the targeted area, as well as 

within the scope of this research paper. By making this simplification, the model fixes the amount of 

firm power that needs to be decarbonized, which streamlines calculations. 
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5.1.2 Explicit Hydrogen-related Assumptions and Simplifications 

 

• Hydrogen Transport Cost 

The KKM assumes that hydrogen can be transported in large quantities at modest cost, omitting  

transportation costs from the model. While not elaborating extensively on this parameter choice, it is 

inferred to be related to both economic and geographical arguments for low-cost storage. Low storage 

costs, combined with the widespread availability of storage locations, are used to support this 

simplification. Additionally, in offshore energy systems, transporting hydrogen via subsea pipelines is 

significantly cheaper than transmitting electricity to shore using long high-voltage direct current (HVDC) 

cables (Rogeau et al., 2023). This economic advantage of hydrogen transport (which are usually 

implicitly included in electrolyser costs) further reinforces the model’s assumption that hydrogen can be 

transported cost-efficiently. It is worth noting that electricity grid infrastructure costs are also not 

included in the model, which are significantly higher than those for gas infrastructure. The underlying 

assumption appears to be that infrastructure costs are relatively insensitive to variation in the analysis. 

 

 Other sources also support this statement to some degree. Firstly, studies indicate that for 

distances up to approximately 2,500 kilometres, transporting hydrogen via pipelines is more cost-

effective than alternative methods, with costs ranging between €0.09 and €0.17 per kilogram (Hydrogen 

Council et al., 2020). Secondly, the potential for repurposing existing natural gas pipelines for hydrogen 

transport presents a cost-saving opportunity, as retrofitting is generally less expensive than 

constructing new pipelines (EU Science Hub, 2021). Additionally, the scalability of pipeline 

infrastructure allows for the efficient transport of large hydrogen volumes, further reducing per-unit costs 

(Ma et al., 2023).  

 

However, this refitting technology has not been widely applied yet. The Netherlands is set to 

be the first country to use widescale gas pipeline refitting to accommodate hydrogen transport, joining 

the German Kernnetz in the attempt to create a hydrogen backbone spanning the two countries 

(Directie Financieringen, 2024). which means that its potential success is not certain to be generalizable 

to other countries. Also, even though this option for hydrogen transport is significantly cheaper than 

others, refitting pipelines is nevertheless very costly. So while transportation costs might eventually be 

low and scalability increases this advantage, there is a long way to go before the infrastructure is mature 

enough to facilitate this cost benefit, including many financial commitments that will drive up investment 

costs.  

 

Depending on electrolyser pressure levels, hydrogen compression consumes 5–10% of its 

energy content in electricity (Paschenko, 2024) and adds both capital and operational costs, especially 

when high pressures or offshore infrastructure are involved. While often omitted in stylized models like 

the KKM, accounting for compression improves accuracy in system cost and efficiency assessments. 

This raises the question of whether this simplification is fully justified. 
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• Hydrogen Storage Cost 

The KKM assumes a relatively low cost for hydrogen storage, which is substantiated extensively in the 

paper. This is based on the premise that underground storage in salt or rock caverns is available and 

economically favourable. This assumption is substantiated by recent studies cited in the model, which 

estimate life-cycle costs of $0.14–0.21/kg for hydrogen storage in salt caverns and $0.25–0.35/kg for 

lined rock caverns, based on a 500-ton facility operating at a daily throughput of 500 tons (Mehr et al., 

2024).  However, in practice, not all produced hydrogen will need to be stored. Estimates suggest this 

may be closer to half, since not all storage capacity will undergo the same number of annual cycles, 

meaning that both throughput and cycling frequency should be factored into storage cost assessments. 

 

Additional literature places the broader cost range for underground storage between €0.25 and 

€1.58/kg. This supports the model’s position that hydrogen storage costs are considerably lower than 

green hydrogen production costs, making them less influential on the total system economics. The 

assumption allows the model to concentrate on long-duration energy storage through hydrogen, without 

significant economic constraints. As a result, the model can focus on optimizing generation and 

conversion infrastructure without having to account for the real-world complexities of flexible storage 

costs.  

 

However, aboveground or alternative storage solutions often result in significantly higher cost. 

For instance, Andersson & Grönkvist (2019) and Papadias & Ahluwalia (2021) both highlight that 

aboveground storage options such as pressurized tanks or liquid hydrogen can exceed €2/kg in certain 

scenarios. Hydrogen storage costs also depend on how much of the storage capacity is actively used. 

A distinction exists between the total installed capacity and the amount of hydrogen stored over time. 

When storage is regularly filled and emptied, the cost per kilogram of hydrogen stored can be relatively 

low (as demonstrated by Mehr et al. (2024). In cases where storage is only partially used or cycled 

infrequently, the cost per unit of useful hydrogen increases substantially.  

 

This relationship means that real-world storage costs can vary widely depending on utilization, 

while low cost assumptions are most valid under high-use conditions. As such, while the assumption 

may be reasonable for countries like the Netherlands or Germany where underground options are 

feasible and already in place for natural gas, it reduces the model’s validity in regions without such 

geological conditions. This simplification, may undervalue the cost challenges in deploying hydrogen 

storage infrastructure in diverse geographic contexts. 

 

• Hydrogen Storage Capacity 

The KKM assumes unlimited hydrogen storage. This means that any excess hydrogen produced during 

periods of high renewable generation (like in summer or during windy periods) can be stored without 

physical constraint and then used later when renewable generation is low (like in winter). Several 

storage option are presented, including salt caverns (Ozarslan, 2012), aquifers, hard rock caverns and 

depleted oil and gas fields (Mehr et al., 2024). Salt caverns are the cheapest and most available option 

in Europe, with Germany and Denmark having a considerable amount of salt cavern storage 

possibilities, both on- and offshore (Caglayan et al., 2020). This allows the model to compensate energy 

supply and demand over long periods of time, especially across seasons, without having to account for 

the limits of actual hydrogen storage infrastructure. The model can thus function without factoring in 

complexities regarding sizing, siting or financing or hydrogen storage and purely focus on optimizing 

deployment of renewables and electrolysers.  
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This however inevitably underestimates system cost, especially for areas with low to no natural 

underground storage possibilities. This might also shift the optimal deployment towards a higher 

installed renewable capacity to compensate for lost hydrogen storage flexibility, which would increase  

the total costs. Especially in the scope of this research, the Netherlands and Belgium don’t appear to 

share this potential as substantially, most likely having to turn to other, more costly storage methods, 

either below or aboveground (Papadias & Ahluwaria, 2021 ; Andersson & Grönkvist, 2019). 

Additionally, a lower amount of cycles contributes to higher storage costs, artificially creating an 

economic maximum storage capacity (Bünger, 2016).  

 

It is indicated that the KKM enjoys less validity in regions with few storage options, thus 

signifying the importance of this assumption for the NL/DE/DK/BE region. However, gas storage is 

essential regardless of electrolyser capacity, mainly to accommodate fluctuations from renewable 

electricity rather than hydrogen production. Its capacity is only loosely linked to electrolysis, so 

excluding it has less impact than one might expect. 

 

• Hydrogen Source  

The paper assumes that hydrogen used in H2P is always produced from P2H, never using externally 

sourced hydrogen. This simplifies the overview of the source of all hydrogen, by ensuring that all use 

is directly tied to surplus renewable electricity. This constrains the model to internal energy flows and 

excludes the possibility of importing hydrogen, which might otherwise provide additional flexibility or 

cheaper balancing options. As a result, the model may slightly overestimate the required renewable 

and electrolyser capacity for full decarbonization, since it does not consider scenarios where cheaper 

available external hydrogen could supplement energy needs. 

 

5.1.3 Explicit Cost-related Assumptions and Simplifications 

 

• Turbine Retrofitting Cost 

The KKM assumes that existing thermal generation can at little cost be converted from natural gas-

firing to hydrogen-firing (or a combination of both). This is justified by the fact that retrofitting cost is a 

small fraction of the investment cost of new peak generation capacity. This assumption is based on 

technical literature and industry developments, such as the work on high-hydrogen combustors like 

those used in OPRA's OP16 gas turbine (Bouten et al., 2021). Although technical challenges such as 

flame stability, NOx emissions and material compatibility exist (Hwang et al., 2023), the model 

anticipates that these can be addressed at a low price through continued innovation. New thermal 

capacity is needed anyway in addition to these retrofitted turbines. 

 

This simplification allows the model to treat hydrogen-to-power conversion infrastructure as 

economically viable, thereby emphasizing the cost of electrolysers and renewable generation as the 

primary cost drivers. While the assumption is optimistic, it is arguably justifiable for a stylized model like 

the KKM, which seeks to provide a high-level perspective of decarbonization dynamics rather than 

detailed engineering constraints. Although, it can be said that regardless of electrolysis build-out, 

additional back-up power generation is a necessary means. 
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• Cost Reduction Headroom 

Headroom for cost reduction is generally assumed to be greater for electrolysers than for wind or solar. 

This means that electrolysers are expected to become cheaper faster than wind or solar power 

systems. Since the cost ratio (CR) is defined as the cost of renewable power relative to the cost of 

electrolysis, a bigger drop in electrolyser costs compared to renewable costs will make this ratio 

increase over time. So, as electrolysers become more affordable, CR rises, which influences the 

model’s optimal deployment and suggests a future where hydrogen production becomes more 

economically attractive relative to building more renewables. In the model, it directly influences the 

values chosen for cost of electrolysis in the different scenarios, correctly covering the full range of 

possibilities for both now and the future, as stated in the paper. While a reference case of 3 is 

maintained, the realistic cost ratio nudges more towards a 2 (Hofrichter et al., 2023). 

 

• Electrolyser Cost 

The KKM assumes specific costs for electrolysers. For the current scenario, it adopts a cost of 

approximately €2250/kW, based on recent Dutch project estimates and high-end Lazard figures (ISPT, 

2022; Krishnan et al., 2023; Lazard, 2023), while a reference value of €1500/kW is used for nearer-

term deployment. For future scenarios, the cost is set at €750/kW, representing a 67% reduction, 

aligned with low-end estimates from Lazard and 2030 projections from ISPT for advanced systems 

(ISPT, 2022). These cost assumptions directly influence the model’s CR, a metric that balances 

renewable generation costs against electrolyser investment, ultimately shaping deployment timing and 

system configuration. Additionally, the KKM assumes a uniform electrolyser cost across all countries, 

enabling a comparative analysis. While the reasoning behind these values is sound, the value selection 

can be seen as somewhat optimistic, as indicated by Kramer & Koning in the paper. 

 

Several sources suggest both lower and higher capital cost estimates depending on 

technology maturity, regional supply chains and project scale. For instance, IRENA (2020) identifies a 

higher potential for cost reduction, with variability influenced by electrolyser type and deployment 

setting. Moreover, a study by Buttler & Spliethoff (2018) suggests significant regional differentiation, 

while Vartiainen et al. (2019) point to rapidly evolving market dynamics that can lead to divergences 

from static assumptions. These discrepancies point to the importance of the balance between 

facilitating model clarity and capturing nuanced cost dynamics.  

 

• Renewables Cost 

In the KKM, the cost of renewable electricity is assumed to be 70 €/MWh for the Dutch case, averaged 

across onshore wind, offshore wind and solar photovoltaics. This value is chosen to reflect the 

Netherlands’ specific generation profile, which has favourable offshore wind conditions and relatively 

poor solar performance. The value is substantiated using information from Lazard’s 2023 Levelized 

Cost of Energy (LCOE) report, which provides broad cost ranges for solar PV (24–96 $/MWh), onshore 

wind (24–75 $/MWh) and offshore wind (72–140 $/MWh) which uses an average CAPEX of ~4500 

€/kWa, where kWa is a kW of average generation. 

 

This cost input plays a central role in the KKM, as it directly influences the CR, which is a key 

determinant in the model’s optimization of the system design. A higher assumed renewable cost leads 

to a lower CR, which in turn affects the extent and timing of electrolyser deployment. Additionally, the 

model assumes that the cost of renewable electricity does not vary between countries, which simplifies 

cross-country comparisons and allows the model to isolate the effects of the renewable capacity mix 

when assessing national decarbonization. 
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However, recent developments challenge these assumptions. Offshore wind auction prices in 

Northern Europe have shown a clear downward trend; for example, Germany’s 2024 offshore wind 

auction concluded with significant capacity awarded at historically low price levels (Ember, 2025). 

Similarly, solar PV costs in Southern Europe continue to decline, showing a cost reductions of over 

10% yearly for utility-scale solar projects (SolarPower Europe, 2024).  

 

Additional benchmarking by BloombergNEF (2025) reports global average LCOEs of 

approximately 38 $/MWh for onshore wind, 39 $/MWh for solar PV and 81 $/MWh for offshore wind. 

The IEA’s Global Energy Review (2025) corroborates this, placing solar and onshore wind between 

38–45 $/MWh and offshore wind slightly higher. These more recent estimates suggest that the 

70 €/MWh assumption used in the KKM may be conservative. 

 

5.1.4 Explicit System Simplifications 

 

• Neglect of Demand Fluctuations 

A system-wide simplification utilised by the model is the neglect of demand fluctuations. It is stated that 

renewable generation varies much more than electricity demand, thus justifying ignoring of daily or 

weekly demand patterns. Since the model focuses on year-round balancing and cost-optimal 

deployment, a flat demand profile is a reasonable and justifiable simplification for understanding how 

much renewable and electrolyser capacity is needed.  

 

However, the correlation between demand and renewable generation does exist. A positive 

correlation reduces the need for electrolysis, lowering system costs, while a negative correlation 

increases electrolyser capacity requirements and raises overall costs. Hydrogen is considered a long-

term flexibility option in the model, which justifies the exclusion of short-term dynamics and the 

complexity of short-term load balancing from its scope. Still, peak demand remains a critical factor in 

determining total generation capacity, making demand fluctuations relevant. 

 

However, this assumption can be challenged in light of recent research emphasizing the 

growing role of demand-side flexibility in highly renewable systems.. Research from IEA (2023) and 

Eurelectric (2025) highlights the integration of demand response as a key enabler of efficient renewable 

integration, even at medium timescales. While the KKM’s abstraction is justified for modelling long-term 

trends, excluding demand-side flexibility may limit its ability to reflect emerging system behaviours and 

overestimate infrastructure needs.. 

 

• Battery Interaction Exclusion 

In the model, short-term demand-side fluctuations and battery interactions are excluded. This 

simplification implicitly assigns the role of managing all types of variability, both short-term (hourly or 

daily) and long-term (seasonal), exclusively to hydrogen storage. Consequently, the required capacities 

for electrolysers and renewable energy generation are likely overestimated, as the model overlooks the 

contribution of potentially cheaper, short-term flexibility solutions, such as battery storage.  

Batteries, for instance, offer economic advantages in managing short-term variations in demand, 

reducing the overall reliance on hydrogen. Therefore, this simplification may result in overstated system 

costs and underestimated system efficiency.  
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This has however been addressed in a supplementary discussion, added in the Appendix of 

the KKM paper. In this variation of the KKM, the model examines how adding battery storage affects 

system performance. Batteries are used to absorb excess renewable electricity that would otherwise 

go to electrolysis, allowing stored power to cover future shortages more efficiently. Two operational 

strategies are tested: one with abrupt reductions in electrolyser output before battery use, another with 

a more gradual adjustment to optimize battery charging. The model identifies an optimal battery size 

where additional investment becomes cost-effective, balancing trade-offs between curtailment, 

electrolyser use and storage. This variation shows that short-term battery storage can complement 

hydrogen in enhancing system flexibility and reducing overall costs. However, this variation only 

addresses the Netherlands, omitting other countries, which limits its applicability.  

5.2 Implicit Simplifications 

As mentioned in the System Description, there are some identifiable differences when looking at the 

differences between the real-world system and the KKM system. Not only are several simplifications 

and assumptions specifically mentioned in the KKM report, but some elements that have been omitted 

in the model are worth examining as well. This is in regard to specific real-world elements that have no 

part in the model, next to several factors part of the wider context the system is placed in. These 

inferable simplifications will be discussed in this section. 

 

5.2.1 Real-world System Simplifications 

As discussed in chapter 4, several real-world components are deliberately omitted from the KKM to 

reduce model complexity and maintain focus on high-level system behaviour. The exclusion of these 

elements introduce limitations that must be acknowledged. First, the model does not account for utility-

scale transmission and transport losses, including the power required for hydrogen compression and 

water treatment, as well as the efficiency losses during transport via pipelines and HVDC cables. These 

losses, though individually insignificant, can cumulatively affect the overall efficiency, particularly in 

offshore systems with long transport distances (Yang et al., 2023). Additionally, OPEX are not included 

in the cost structure, meaning that maintenance and replacement costs not reflected in the system’s 

economic outcomes (Hill et al., 2024).However, if this is neglected for all assets and OPEX  is 

proportional to CAPEX, this will not impact model outcomes.  

 

Furthermore, the model assumes ideal electrolyser performance, excluding limitations such as 

minimum load constraints, start-up and shutdown losses, standby energy consumption and stack 

degradation over time (Arsad et al., 2023). These factors can significantly impact the sizing, utilization 

rate, and lifetime cost of electrolysers, especially under fluctuating power input conditions. Similarly, 

the system omits AC/DC conversion losses, which are necessary when interfacing AC output from 

renewables with DC input requirements of electrolysers. Ignoring these conversion steps and their 

associated losses can lead to a slight overestimation of available energy for hydrogen production. 

 

Compressors, which are essential for pressurizing hydrogen before storage or transport, are 

similarly omitted, along with their cost, efficiency, and operational constraints. These simplifications 

collectively lead to more optimistic hydrogen system performance and economics. While the omission 

of these real-world system components should be taken into account when interpreting the model’s 

applicability to operational or infrastructure planning contexts, it is justifiable in the context of providing 

high-level insights on the build-out ratio between electrolysers and renewables. 
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5.2.2 Wider Context Simplifications 

The KKM simplifies several broader contextual simplifications are of influence on real-world energy 

system planning, while outside the core techno-economic modelling framework. First, the model does 

not include any representation of market conditions, such as price volatility, capacity markets or 

balancing services. This excludes economic impulses that would typically influence the operation and 

profitability of electrolysers and storage systems. Likewise, subsidies, taxes or policy incentives are not 

accounted for. These factors often determine investment viability and deployment speed, especially in 

early-stage development. Similarly, complexities around supply-demand matching are ignored, instead 

of stemming from dynamic industrial, transport or export conditions.  

 

The model also ignores spatial limitations and assumes a perfectly flexible and available 

infrastructure network. Grid constraints, such as congestion and bottlenecks, are not represented, 

despite being a significant real-world barrier to renewable integration. Similarly, infrastructure build-out 

time is not modelled, meaning that long permitting and construction timelines for pipelines, electrolysers 

and storage facilities are effectively ignored. Asset availability, such as downtime due to maintenance 

or weather-induced curtailments is likewise excluded, assuming ideal and uninterrupted operation. 

 

Furthermore, the KKM, in its original form, adopts a power-sector-only scope, without sector 

coupling. In integrated energy systems, such coupling can shift optimal hydrogen use and create 

synergies that are not reflected in the current environment. This has however been separately added 

in supplementary material. In line with this, the model also omits commercial and market design 

considerations, such as dynamic electricity prices, using fixed cost assumptions instead. This excludes 

opportunities for demand response and flexible electrolyser operation in response to market signals. 

Demand flexibility is likewise not included in the model, while this flexibility can reduce system balancing 

needs and lower curtailment, making it a valuable tool in renewable energy systems. The KKM assumes 

a fixed demand profile instead, which simplifies the model but limits its ability to capture the full range 

of balancing options. 

 

Lastly, while infrastructure costs are included in the form of capital expenses for key 

technologies, the model does not account for cost differentiation due to geographic or project-specific 

factors, nor does it include cross-border energy flows or interconnectors. By limiting its scope to a 

single, abstract system, the model cannot assess trade effects or transmission constraints, which are 

increasingly important in the European context. Acknowledging these omissions is essential for 

interpreting the model’s results in light of real-world deployment conditions. 

 

5.3 Assumption Selection for further Analysis 

Following the description of all assumptions and simplifications made in the KKM, a selection for further 

analysis is to be made. The selection is guided primarily by the research question, which investigates 

why key model assumptions are made and how they shape the relationship between renewable energy 

deployment and electrolysis integration. The characteristics of an assumption and their direct 

importance for the model (if applicable) also contributes to this. Secondary, the ability of the EBBM to 

test the sensitivity and robustness of said assumptions and simplifications is an important factor to take 

into account as well. Tertiary, the relevance of further scrutinization for Gasunie is taken into account.  
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The selection process reflects the model’s simplified nature and scope, acknowledging that not all 

assumptions carry equal weight in shaping system behaviour. For example, some assumptions have 

limited impact on long-term system design, while others directly influence the model’s outputs. Next to 

the aforementioned criteria, the selection of assumptions for scrutiny in this analysis is based on their 

centrality to the KKM’s structure. Several assumptions, such as the generation mix, electrolyser 

efficiency, and the costs of renewables and electrolysers. are foundational to the KKM, directly shaping 

key variables like the average renewable generation and total cost. Others, like hydrogen storage costs, 

the neglect of demand fluctuations, battery interaction exclusion, and demand flexibility, represent 

broader system simplifications. Taking this process into consideration, focusing on both the goal of the 

model and the aim of this research, the sensitivity and robustness analysis will be conducted for the 

following simplifications: 

 

• Generation Mix; 

• Electrolyser Efficiency; 

• Electrolyser Limitations; 

• Hydrogen Storage Cost; 

• Renewables Cost and Electrolyser Cost (thus effectively analysing the CR); 

• Neglect of Demand Fluctuations; 

• Battery Interaction Exclusion; 

• Demand Flexibility. 

 

Taken together, the selected assumptions reflect both characteristic modelling choices of the 

KKM and key parameters where a more detailed approach may yield significantly different insights. 

Scrutinizing these assumptions aligns with both the goal of the KKM and the aim and framing of the 

research questions, particularly SQ2, which focuses on understanding the sensitivity and robustness 

of model outcomes. Assumptions excluded from the analysis are either outside the scope of this 

research or expected to have marginal impact on key deployment dynamics. 
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6 Sensitivity and Robustness Analysis  

In this chapter is used to answer SQ2, which reads: “How Sensitive and Robust Are KKM Model 

Outcomes to Variations in Key Assumptions?”. It is of great importance to validate these assumption 

by testing their sensitivity and robustness, in order to evaluate their influence on the model output. After 

the presentation of the experimental design, the assumptions and simplifications will be validated 

accordingly. First, several system simplifications will be modified together to create a new base case. 

From this point, the sensitivity and robustness of key assumptions will be tested by varying associated 

parameters during model runs. Figures presented in the results can be found enlarged in Appendix B. 

 

6.1 Experimental Design 

The experimental design serves as the structured approach through which the impact of key model 

simplifications and parameter uncertainties is systematically evaluated. It outlines the sequence of 

analyses conducted using the EBBM. By organizing the design into the incorporation of high-certainty 

system simplification and univariate sensitivity analysis, the design enables a transparent and 

replicable assessment of how structural assumptions and input variations influence system outcomes 

under different levels of grid decarbonisation. 

 

6.1.1 Scenario Setup 

The experiment is organized around five scenarios, each representing a different level of grid 

decarbonisation. These scenarios vary in the extent of renewable energy integration and hydrogen 

export, allowing for systematic exploration of the model’s behaviour under a broad spectrum of future 

energy system configurations. The levels of decarbonisation include 80%, 90%, and 100% 

decarbonised electricity supply, with the addition of 10% and 20% hydrogen exports to other sectors.  

 

These scenarios, denoted by values of 1 − 𝑓 (i.e. degrees of decarbonised fossil back-up 

generation, represented by ‘f’), serve as a structural backbone for both the simplification assessment 

and the sensitivity analyses. Each scenario is characterized by fixed assumptions regarding grid 

composition, demand profiles, and policy constraints, which together form the contextual framework for 

analysing the effect of model structure and input parameters on performance metrics such as system 

cost, component capacity, and deployment patterns. A brief description of these scenarios is provided 

in Table 2, together with what they represent in terms of system behaviour. 

 
Table 2: Levels of decarbonisation scenario overview. 

 

Scenario Name
Electrical Power System 

Decarbonisation
Excess Hydrogen Export

1 - f = 0.8 80% None

1 - f = 0.9 90% None

1- f = 1.0 100% None

10 % Excess 100% 10%

20% Excess 100% 20%
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6.1.2 High-Certainty System Simplifications 

The experimental process begins by incorporating high-certainty system simplifications omitted from 

the KKM to construct a more realistic base case for further analysis. This step allows for isolating the 

impact of each assumption and enables a sequential build-up of system complexity. The approach 

ensures that both individual and cumulative effects of key components are understood before 

introducing additional uncertainties through parameter variation. In constructing this new base case, 

the simplifications tested include: 

 

• Demand Fluctuations; 

• Battery Interaction; 

• Electrolyser Efficiency Curves;  

• Electrolyser Limitations; 

• Costs for Hydrogen Storage Capacity.  

 

These aspects, although omitted or stylized in the original KKM, are introduced incrementally in the 

EBBM and chosen based on their technical certainty and empirical relevance. The changes are made 

one at a time, with model outputs being carefully tracked for each alteration. An overview of these 

changes can be found in Table 3. The key metrics assessed include system cost per unit of energy 

delivered, renewable capacity, electrolyser deployment and battery capacity. The system cost per unit 

of energy delivered will in scenarios of 80%, 90% and 100% decarbonisation regard the power used 

for decarbonisation, while this also entails 10% or 20% excess production and export of energy in the 

other two scenarios (as seen in Table 2). The result is a progressively more accurate representation of 

the energy system, which then serves as the definitive base case for the subsequent sensitivity 

analysis.  

 

6.1.3 Sensitivity Testing 

Following the definition of the new base case, the experimental design proceeds with a sensitivity 

analysis to assess the sensitivity of the model outcomes to changes in input assumptions. The focus 

here is on univariate sensitivity analysis, which evaluates the effect of altering one parameter at a time 

while holding all others constant (Jain et al., 2011). This approach is particularly suitable for the goals 

of this research, which seeks to prove the impact of individual assumptions in shaping key system 

outputs. The sensitivity analysis tests variations in:  

 

• Demand flexibility; 

• Electrolyser efficiency; 

• Renewable generation mix; 

• Cost of renewables, electrolysis (CR) and batteries. 

 

Each parameter is varied across a plausible low-mid-high range discussed in the following sections, 

after which the model is re-optimized for all five levels of grid decarbonisation. For each variation, the 

outputs tracked are total system cost, renewable capacity, electrolyser capacity, and battery capacity. 

Special attention is given to how the relationship between renewable generation and electrolyser 

deployment deviates from the stylized trend identified in the KKM. Results are compiled into tables and 

visualised using comparative plots, enabling clear interpretation of trends across scenarios and 

assumption ranges. A full overview of results can be found in Appendix B1 and B2. 
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6.1.4 Robustness Analysis 

In addition to the sensitivity analysis, a robustness analysis is performed to evaluate whether the 

model’s outcomes holds under extreme assumptions. This analysis is conducted in a similar fashion to 

the sensitivity tests and focuses on the same set of variables: electrolyser efficiency, demand flexibility, 

solar share in the renewable mix, and the CR. However, the robustness analysis applies edge cases, 

which are values that lie outside the sensitivity bounds but remain technically or economically plausible. 

These edge cases are used to stress-test the model and uncover whether key relationships remain 

consistent. For each variation, all other parameters are held constant according to the new base case 

created in the testing. The results are evaluated based on the stability of the r : e relationship, and are 

presented to assess the resilience of the model's conclusions. The full set of results can be found in 

Appendix B3 and B4. 

 

6.2 Transition to New Base Case 

This section involves the incorporation of the high-certainty system simplification which were omitted 

from the KKM, but included in the EBBM. The original KKM system parameters will first be discussed 

briefly, after which the need for a new base case will be argumentized. The parameter sweep discusses 

which variables will be used to create the new base case and their role within model context. Their 

variation will be discussed, as well as the substantiation as to why. Lastly, the interim results after 

incorporating these system simplifications will be shown and interpreted.  

 

6.2.1 KKM Parameters 

The KKM is designed as a stylized model and operates on simplified assumptions to enable theoretical 

insights into the relationship between renewable generation and hydrogen production. As indicated in 

the KKM paper, the model starts from a minimal configuration as seen in Table 3: it excludes battery 

interaction, omits demand fluctuations and electrolyser limitations, assumes a constant electrolyser 

efficiency and neglects hydrogen storage cost. It also assumes an electrolyser efficiency of 70%, 

neglects demand-side flexibility, uses a solar capacity of 20% and a CR of 3. To reproduce the results 

of the KKM model with the EBBM model, these parameters are hence disabled in EBBM. While this 

abstraction provides oversight in exploring high-level system trends and maintains a certain degree of 

simplicity, it also limits the model’s ability to reflect real-world dynamics. 

 
Table 3: Input values for the KKM base case. 

 

 

To bridge this gap, a new base case is needed; one that incorporates a series of high-certainty 

system simplifications omitted from the KKM but supported in the more detailed EBBM. These features 

(demand fluctuations, battery interaction, electrolyser efficiency curves and hydrogen storage cost) are 

empirically grounded and technically feasible, as discussed in detail in SQ1, making their inclusion both 

meaningful and necessary. Integrating them allows for a more realistic representation of system 

behaviour and enhances the credibility of subsequent sensitivity analyses. 

 

 

Demand 

Fluctuations

Battery 

Interaction

Electrolyser 

Efficiency Curve

Electrolyser 

Limitations

Hydrogen 

Storage Cost

Electrolyser 

Efficiency

Demand 

Flexibility

Solar 

Share CR

KKM False False False False False 70% 0% 20% 3
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6.2.2 Parameter Selection 

 

• Demand Fluctuations 

The first variable considered is demand fluctuation. In contrast to highly variable renewable generation, 

electricity demand typically exhibits lower temporal variability (as discussed in the KKM report). 

However, neglecting even modest fluctuations can oversimplify dispatch patterns and distort capacity 

planning. In variation A, in addition to battery interaction, stylized flat demand is replaced with an hourly 

demand profile. Although the overall system impact is expected to be smaller compared to generation-

side variability, this adjustment contributes to greater time scale detail and realism. 

 

• Battery Interaction  

The inclusion of battery interaction marks a second and significant change from the assumptions made 

in the KKM, where batteries are entirely excluded and hydrogen serves as the sole storage option. On 

the contrary, this simplification lays at the base of the EBBM, providing a highly suitable opportunity to 

better reflect the role of short-term storage in systems with high shares of variable renewables. The 

EBBM allows for automatically optimizing battery capacity based on an indicative input value, allowing 

for an internal determination of battery sizing. This shift introduces a more dynamic balancing 

mechanism into the model, and reveals how the presence, performance and cost of batteries influences 

the cost-optimal deployment of hydrogen and renewables. This will be done in variation B. 

. 

• Electrolyser Efficiency Curve 

The third refinement in variation C involves replacing fixed electrolyser efficiency with a variable 

efficiency curve, together with the aforementioned incorporations. Electrolyser performance is known 

to vary with load, typically decreasing under a certain minimal load or after an optimum load (as seen 

in Figure 7). Although this was not mentioned in the KKM, it is easily incorporated into the EBBM, which 

supports load-dependent efficiency modelling. Introducing an electrolyser efficiency curve provides a 

more realistic representation of how electrolysers perform under dynamic operating conditions, 

particularly relevant in systems with variable renewable inputs. This change enables the model to 

capture efficiency-related trade-offs in both cost and capacity planning. It can also be linked to the 

Electrolyser Efficiency (η_e), which is varied in the sensitivity analysis. 

 

 

 
Figure 7: The electrolyser efficiency curve used in the EBBM, with η_e in red. 
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• Hydrogen Storage Cost 

The model imposes hydrogen storage costs in variation D, including all other high-certainty system 

simplifications. The original assumption of unconstrained storage allows for ideal seasonal balancing 

but is not technically or economically realistic. Hydrogen storage cost  is comprised of two components, 

reflecting an annual capacity cost of 0.79 EUR/kg (Yousefi et al., 2023) and a per-cycle cost of 0.50 

EUR/kg/cycle for cavern-based storage, assuming approximately 10 full cycles per year (Bünger, 2016 

; Kruck & Crotogino, 2013). For all scenarios, including those with grid decarbonisation levels below 

100% (f < 1.0), the full storage requirement is maintained. 

 

In addition, several assumptions are applied. Short-duration storage in pipelines is excluded, 

which reduces the buffering potential and increases pressure on cavern storage capacity. The hydrogen 

demand profile is kept flat, which limits potential demand-side balancing. Furthermore, hydrogen import 

and export is disabled, meaning no balancing occurs via international pipelines or shipping. Lastly, 

long-duration storage is assumed to include both seasonal and short-term hydrogen, implying that all 

hydrogen ends up in cavern storage even if used for daily balancing. These constraints result in a more 

restrictive but realistic modelling of hydrogen storage, offering a sharper view of its economic impact 

and system integration challenges when capacity is limited. These parameters are central to sensitivity 

analyses that explore cost-driven deployment pathways. 

 

• Electrolyser Limitations 

Electrolyser limitations are included in variation E due to their high technical certainty and operational 

relevance. In real-world conditions, electrolysers perform poorly below a minimum load threshold, 

prompting shutdown to avoid efficiency losses and safety risks. To reflect this, a minimum load of 20% 

of rated capacity is applied, with standby losses set at 1%. These ensure that the model does not 

underestimate residual energy consumption during low-output periods. To avoid excessive cycling, a 

minimum standby period of 6 hours is enforced, preventing electrolysers from restarting too frequently. 

Additionally, the Flattening, Bridging & 2nd Iteration feature is activated to stabilize system behaviour 

in the presence of these time-series constraints. Collectively, these inputs are depicted with a True or 

False value. Variation E will also function as the new base case for further variations, since all high-

certainty system simplifications have been incorporated conclusively. 

 

• Solar Share 

Finally, a 30% solar share is used in the new base case for the sensitivity analysis to align with the 

calibration settings of the EBBM model, which is optimized for this ratio and thus less prone to numerical 

instability or runtime errors. In addition to improving model robustness, this adjustment reflects updated 

expectations for the Dutch electricity mix. Current national projections, such as those in the II3050 

(2023) scenarios, anticipate a significantly higher solar share than the 20% assumed in the KKM. 

Including 30% solar therefore brings the base case closer to realistic planning trajectories while 

ensuring technical consistency within the EBBM framework.  

 

Notably, no separate waterfall step is included to isolate the effect of changing the solar share 

from 20% to 30%. This is a deliberate design choice: isolating this variable alone, while not applying 

the same treatment to other model-wide parameters, would introduce an unbalanced focus. Moreover, 

given that the adjustment is tied to the calibration of the EBBM and not a targeted system design choice, 

its individual effect is neither proportional nor analytically critical in the context of the analysis. The 

waterfall in Table 4 shows variations A-E, which include variation for each scenario. 
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Table 4: Waterfall chart for the construction of the new base case. Each variation is carried out for all five 
scenarios of (1 - f). Variation E functions as the new base case for further variations. 

 

 

6.2.3 Interim Results  

Before discussing the sensitivity analysis that builds on the new base case, the interim results stemming 

from the incorporation of all system simplifications are shortly presented. For all runs, average 

renewable generation (r), electrolyser installed capacity (e), battery installed capacity (b) and cost per 

kWh/h delivered (c) are measured and compared. The cost is comprised of renewables, battery, 

electrolyser and hydrogen storage cost. An overview per scenario for each variation can be found in 

Appendix B1. 

 
Figure 8:The r : e relation plotted for variations A-E, including the KKM as a reference. Each variation 

consist of five datapoints, each on a different level of decarbonisation. 

• Results of the r : e Relation for Variations A-E 

In Figure 8, the plots of the r : e relation can be seen. The black line, representing the KKM, functions 

as the original base case here and stands with both the highest average renewable generation and 

electrolyser capacity. Adding more complexity with each variation, the slope progressively flattens, 

meaning less renewable capacity and smaller electrolyser capacity are needed for the same 

decarbonization target.  

Demand 

Fluctuations

Battery 

Interaction

Electrolyser 

Efficiency Curve

Hydrogen 

Storage Cost

Electrolyser 

Limitations

Solar 

Share

KKM False False False False False 20%
A True False False False False 30%
B True True False False False 30%
C True True True False False 30%
D True True True True False 30%
E True True True True True 30%

Inputs

Variable

Variation
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The KKM and variation A (blue) are the only runs that start at higher e value. This can be 

attributed to the lack of batteries in the energy mix, which causes the need for the demand to be met 

by solely electrolysis and renewables. Integrating demand fluctuations in the demand profile (variation 

A) lowers the need for buffering with hydrogen, which causes both the e and r values to drop slightly. 

 

The inclusion of battery interaction in variation B (orange) and the electrolyser efficiency curve 

in variation C (green) cause these values to drop even more drastically. Introducing batteries as a 

balancing option reduces the need for higher electrolyser capacity and renewable generation, 

explaining this value. reduction values in B and C seem stay quite consistently similar for all 

decarbonisation levels. 

 

Lastly, variations D (cyan) and E (purple) introduce hydrogen storage cost and electrolyser 

limitations. A sudden hydrogen storage cost increases total cost, which makes it less attractive to install 

high amounts of electrolyser capacity, bringing down renewables with it. This goes for variation E as 

well, apart from the fact that the electrolyser limitations create the need for a slightly higher installed 

electrolyser capacity. Variation E also serves as the revised base case for subsequent model runs (F–

M), as it incorporates all key simplifications from the earlier variations. 

 

 
Figure 9: The r : b relation plotted for variations B-E. The KKM and variation A (demand fluctuations) are 
not present, as battery interaction is not included in either. Each variation consist of five datapoints, each 

on a different level of decarbonisation. 

• Results of the r : b Relation for Variations A-E 

Firstly, it can be seen that the KKM and variation A have been omitted from Figure 9. This is due to the 

lack of battery interaction, causing a non-existent r : b relation. In examining the other curves, a clear 

hierarchy emerges in how each added complexity drives battery build-out. Variation D yields the highest 

battery capacity across all levels of renewable generation. This corresponds with model settings that 

include a cost for hydrogen storage. Directly beneath it, variation E also inflates batteries, as minimum-

load constraints and standby losses force more frequent hydrogen cycling that batteries must absorb. 
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In the middle, very close to variation B, sits variation C, for both of which a non-flat electrolyser 

efficiency curve modestly raises battery needs: part-load inefficiencies release extra variability onto the 

storage system while recycling curtailed renewable power into electrolyser operation alleviates the 

pressure on batteries. In sum, any variation that charges for hydrogen storage (D, E) inflates battery 

sizing, while those that empower batteries drive it down, showing the competing roles of long- versus 

short-duration storage. 

 

 
Figure 10: The total power system decarbonisation cost in €/kW for each level of decarbonisation, 

 for variations A-E. Each variation consist of five datapoints, each on a different level of decarbonisation. 

• Results of Total Power System Decarbonisation Cost for Variations A-E 

In Figure 10, the total system decarbonisation cost curves for variations A–E reveal how each layer 

shifts the total investment required. System decaThe original KKM baseline incurs the highest cost at 

every decarbonisation level, reflecting its omission of all operational refinements. Introducing demand 

flexibility in variation A trims a share off that baseline by allowing renewables and electrolysers to 

shoulder more of the balancing burden, but it remains the second–most expensive variation.  

 

Enabling battery interaction in variation B and incorporating a part-load electrolyser efficiency 

curve in variation C deliver the greatest savings, since no hydrogen storage cost has been added yet; 

these two variations track nearly identically because both improvements reduce reliance on oversized 

plant and storage. Adding hydrogen-storage cost in variation D increases cost again, as the system 

reverts to greater short-duration storage. Finally, incorporating electrolyser limitations (and additional 

costs) in variation E yields a mid-range cost that sits slightly higher than D. 

 

Across all scenarios, costs climb steeply as decarbonisation deepens from 80 % to 100 %, 

then plateau slowly, highlighting that the final steps toward full decarbonisation are the most capital-
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intensive, but also where smart design choices can yield significant savings. Careful inclusion of 

operational elements can reduce total system cost by several hundred euros per kW.  

6.3 Sensitivity Analysis 

The sensitivity analysis examines how responsive the system is to variations in specific input 

parameters  For each KKM assumption (renewable generation mix, electrolyser efficiency, demand 

flexibility and cost ratio) corresponding parameters in the EBBM are systematically and univariately 

varied, as can be seen in Table 5. The resulting effects are used to assess whether each simplification 

in the original model remains valid or introduces significant deviations.  

 

6.3.1 Parameter Selection 

 

• Electrolyser Efficiency 

Electrolyser efficiency was treated as a static parameter in the KKM, with a single fixed value used 

across all scenarios. While this approach simplifies modelling, it neglects the fact that real-world 

electrolysers exhibit efficiency variation depending on not only operating conditions, but also the type 

of electrolyser technology. The EBBM enables the integration of a load-dependent efficiency curve, 

allowing for a more detailed representation of electrolyser performance. In this sweep, the electrolyser 

efficiency at name plate capacity (100% power) is varied as well, across a +-10% range from the 

reference scenario of 70% to test sensitivity: a low efficiency scenario (60%) and a high efficiency 

scenario (80%), substantiated by the findings in chapter 5.1.2. Implemented in variation F, this allows 

for assessing how efficiency assumptions affect the cost-effectiveness of electrolyser deployment. 

 

• Demand Flexibility 

The KKM assumes a fixed and inelastic electricity demand, reflecting a worst-case assumption in terms 

of system adaptability. However, real-world systems increasingly incorporate flexible demand 

technologies (e.g. demand response, industrial load shifting), which can reduce the need for expensive 

storage. A report from Publieke Zaken et al. (2025) sets this at an expected maximum of 1.9 GW out 

of a total demand of around 29 GW, thus representing a value of 6,5%. Costs for this flexibility however 

are also quite significant, standing at an estimated 3.499 €/MWh.  

 

The EBBM allows for configurable demand flexibility, introducing a controllable margin of variation 

around the base demand profile. In variation G , flexibility is varied in two levels compared to the 0% in 

the base case and the 6.5% mentioned: low flexibility (5%) and high flexibility (10%) of the total hourly 

demand. This sweep examines how allowing demand to shift within defined bounds can reduce 

curtailment, improve resource use and lower system costs. While the EBBM automatically (and without 

cost) lowers the demand in situations where demand exceeds supply, it doesn’t apply demand shifting, 

which is enabled in this sweep. 

 

• Solar Share 

In the KKM, renewable generation is often represented using an abstracted or balanced mix. This can 

mask key considerations such as the daily variability of solar or the complementarity between solar and 

wind output. The EBBM allows specification of the renewable mix, enabling an exploration of its 

influence on storage requirements, curtailment, and cost-optimal component sizing. In variation H, the 

percentage of r being generated by solar capacity is tested across a range of +-10%, compared to the 

30% in the base case: 20% solar (low solar) and 40% solar (high solar). They constitute a lower value 



 
 

45 
 

(like the one used in the KKM) next to a value that is more in line with future projections of solar capacity 

in Northwestern Europe, specifically the Netherlands (Netbeheer Nederland, 2023). These variations 

help quantify how the generation profile shapes system design. 

• Cost Ratio between Renewables and Electrolysis (CR) 

The ratio of renewables to electrolyser cost is a key driver in determining the cost-optimal energy 

system configuration. In the KKM, CR is assumed fixed, which limits the model’s ability to reflect 

ongoing cost dynamics in technology development. The EBBM supports direct modification of cost 

assumptions, allowing for targeted analysis of this relationship. In variation I, the CR is varied across 

three plausible levels based on the KKM paper: low CR (2), baseline CR (3), and high CR (6), which 

constitutes an r : e cost (in €/kW) of 4500:2250, 4500:1500 and 4500:750 respectively. This sweep is 

used to evaluate how sensitive the balance between overbuilding renewables and sizing electrolysers 

is to relative cost assumptions. 

 
Table 5: Variations used in the sensitivity analysis, with variation E functioning as the base case. 

Each variation is carried out for all five scenarios of (1 - f). 

 

 

6.3.2 Sensitivity Analysis Results  

For all runs, the renewable installed capacity (r), electrolyser installed capacity (e), battery installed 

capacity (b) and cost per kWh/h delivered (c) are measured and compared. An overview of the output 

of the sensitivity analysis for each variation can be found in Appendix B1. 

 

 
Figure 11 and 12: The r : e relation plotted for variations F (electrolyser efficiency) and G (demand 

flexibility). Each variation consist of five datapoints, each on a different level of decarbonisation. 

Electrolyser 

Efficiency

Demand 

Flexibility

Solar 

Share CR

Base case (E) 70% 0.00% 30% 3

F1 60% 0.00% 30% 3

F2 80% 0.00% 30% 3

G1 70% 5.00% 30% 3

G2 70% 10.00% 30% 3

H1 70% 0.00% 20% 3

H2 70% 0.00% 40% 3

I1 70% 0.00% 30% 2

I2 70% 0.00% 30% 6

Inputs
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Figure 13 and 14: The r : b relation plotted for variations F (electrolyser efficiency) and G (demand 

flexibility). Each variation consist of five datapoints, each on a different level of decarbonisation. 

 

 
Figure 15 and 16: The total power system decarbonisation cost in €/kW for each level of decarbonisation, 

for variations F (electrolyser efficiency) and G (demand flexibility).  

• Results Variation F: Electrolyser Efficiency  

Variation F1 results in a slightly higher r compared to the base case. Initially, the required e is lower, 

but it increases beyond the base case once excess hydrogen production sets in. Accordingly, the r : e 

curve starts below the base case, then converges and eventually surpasses it. Battery deployment in 

F1 is substantially higher, particularly at higher levels of renewable penetration, as shown in the r : b 

curve. The total system cost is also elevated, with a notably steeper rise between 90 % and 100 % 

decarbonisation. In contrast, variation F2 shows both a slightly higher r and a slightly increased e, 

resulting from the 10 % improvement in electrolyser efficiency. Battery capacity requirements decrease 

in this case, with the r : b curve consistently falling below the base case. This reduction in battery 

dependency leads to lower total decarbonisation costs, particularly at full decarbonisation. The relevant 

trends are illustrated in Figures 11, 13, and 15. 

 

• Results Variation G: Demand Flexibility 

Figures 12, 14, and 15 show that variation G, which introduces increased demand-side flexibility, results 

in lower values for both r and e relative to the base case. In G1, a modest increase in flexibility leads 

to slightly reduced e across most levels of renewable availability. G2, which applies a 10 % flexibility 

increase, shows a more pronounced reduction in both r and e, indicating greater system efficiency. The 

r : b plot reveals that battery capacity in G1 closely follows the base case, while G2 exhibits a noticeable 

decline in battery requirements, especially at higher levels of r. In terms of total system cost, both G1 

and G2 outperform the base case, with G2 achieving the lowest decarbonisation costs across the entire 
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range. Although the shape of the cost curves for G1 and G2 remains similar to that of the base case, 

they consistently lie below it, highlighting the cost-saving potential of enhanced demand-side flexibility. 

 
Figure 17 and 18: The r : e relation plotted for variations H (solar share) and I (cost ratio). Each variation 

consist of five datapoints, each on a different level of decarbonisation. 

 
Figure 19 and 20: The r : b relation plotted for variations H (solar share) and I (cost ratio). Each variation 

consist of five datapoints, each on a different level of decarbonisation. 

 

Figure 21 and 22: The total power system decarbonisation cost in €/kWh for each level of decarbonisation, 
for variations H (solar share) and I (cost ratio).  

• Results Variation H: Solar Share 

In variation H, a higher solar share results in a steeper r : e curve compared to the base case, while a 

lower solar share leads to a more gradual increase in electrolyser capacity. The r : b relation shows a 

stronger sensitivity to the solar share: battery capacity is higher across all r values when the solar share 

increases, and lower when the solar share is reduced. In the cost plot, total decarbonisation costs 

increase slightly in the high-solar case, particularly at higher decarbonisation levels, while the low-solar 

scenario remains close to the base case. The general shape of the cost curves remains consistent 

across all cases, with a steep increase between 0.8 and 1.0 decarbonisation followed by a plateau. 

These results can be observed in Figures 17, 19 and 21. 
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• Results Variation I: Cost Ratio (CR) 

In variation I, reducing electrolyser costs results in a flatter r : e curve, with electrolysers being deployed 

earlier and at higher capacity. Increasing electrolyser costs causes a steeper r : e curve, delaying 

deployment to higher levels of renewable availability. The r : b curve shows that battery capacity 

decreases when electrolysers are cheaper, while higher electrolyser costs lead to increased battery 

deployment, especially at higher r values. In the cost plot, the lower-cost scenario results in slightly 

reduced system decarbonisation costs across all levels, while the higher-cost scenario leads to a 

steeper rise in cost between 0.9 and 1.0 decarbonisation. The cost curve shape remains similar across 

all cases. Figures  18, 20 and 22 contain the results for variation I.

6.4 Robustness Analysis 

For the robustness analysis, edge cases will be used for the electrolyser efficiency, demand flexibility, 

solar share and the CR. These edge cases, meaning worst-case and best-case, are set by examining 

literature to determine plausible input values. By conducting a said stress test, the model output can be 

observed and whether this output holds under these extreme conditions. First, edge cases will be 

determined and substantiated for each parameter, after which the results will be presented. An overview 

of the robustness edge cases can be found in Table 6, while the numerical output is presented in 

Appendix B3. 

 

6.4.1 Edge Case Selection 

 

• Electrolyser Efficiency 

To test the robustness of the model’s conclusions under extreme performance assumptions, two edge 

cases for electrolyser efficiency are defined beyond the 60–80% range used in the sensitivity analysis. 

A worst-case efficiency of 55% reflects scenarios where electrolysers operate under degraded 

conditions, such as ageing stacks or technological underperformance. In contrast, a best-case 

efficiency of 85% simulates highly advanced PEM electrolyser technologies operating at or near optimal 

conditions. These extremes test whether the model’s cost and capacity outcomes remain stable when 

hydrogen conversion becomes significantly more or less efficient than in baseline or sensitivity 

scenarios. 

 

• Demand Flexibility 

The base case assumes 0% flexibility, reflecting a fully inflexible demand profile, consistent with the 

KKM's original assumption. While moderate flexibility levels of 5% and 10% are explored through 

sensitivity analysis, the robustness analysis tests a more extreme upper bound of 20% flexibility, 

simulating a highly responsive system with advanced demand-side management capabilities. This 

edge case illustrates how strongly model outcomes depend on system adaptability and reveals whether 

the conclusions drawn from a rigid demand structure hold under more dynamic conditions. 

 

• Solar Share 

While the sensitivity analysis tested shares between 20% and 40%, the robustness analysis extends 

this range. A low solar share of 10% represents a wind-dominated system with more constant 

generation profiles and fewer daily fluctuations. In contrast, a high solar share of 50% reflects a solar-

dominated future with strong diurnal variation and seasonal mismatches. These values test whether 
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the system remains operable and cost-efficient under dramatically different generation patterns than 

those explored in the main analysis. 

• Cost Ratio between Renewables and Electrolysis (CR) 

The cost ratio between renewable energy and electrolysis capacity (CR) fundamentally shapes the 

trade-off between renewable overbuild and hydrogen infrastructure. The sensitivity analysis included 

values from CR = 2 to CR = 6. In the robustness analysis, this range is expanded to test CR = 1, 

representing high electrolysis cost, and CR = 8 representing the opposite. These edge cases allow 

assessment of how the model responds when cost structures are shifted. 

 
Table 6: Variations used in the sensitivity analysis, with variation E functioning as the base case. 

Each variation is carried out for all five scenarios of (1 - f). 

 

 

6.4.2 Robustness Analysis Results 

For all runs, the renewable installed capacity (r), electrolyser installed capacity (e), battery installed 

capacity (b) and cost per kWh/h delivered (c) are measured and compared. An overview of the output 

of the robustness analysis for each variation can be found in Appendix B3. 

 

 
Figure 23 and 24: The r : e relation plotted for variations H (solar share) and I (cost ratio). Each variation 

consist of five datapoints, each on a different level of decarbonisation. 

 

Electrolyser 

Efficiency

Demand 

Flexibility

Solar 

Share CR

Base case (E) 70% 0.00% 30% 3

J1 55% 0.00% 30% 3

J2 85% 0.00% 30% 3

K 70% 20.00% 30% 3

L1 70% 0.00% 10% 3

L2 70% 0.00% 50% 3

M1 70% 0.00% 30% 1

M2 70% 0.00% 30% 8

Inputs
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Figure 25 and 26: The r : b relation plotted for variations H (solar share) and I (cost ratio). Each variation 

consist of five datapoints, each on a different level of decarbonisation. 

 

 

Figure 27 and 28: The total power system decarbonisation cost in €/kWh for each level of decarbonisation, 
for variations H (solar share) and I (cost ratio). 

• Results Variation J: Electrolyser Efficiency Edge Cases 

Figures 23, 25, and 27 present the results for variation J, which explores the impact of electrolyser 

efficiency ranging from 55 % (J1) to 85 % (J2). In the r : e plot (Figure 23), both J1 and J2 exhibit an 

almost linear relationship, with J1 showing the lowest electrolyser capacity and J2 slightly exceeding 

the base case across most values of r. The r : b relation, shown in Figure 25, reveal that J1 stays below 

the base case throughout the entire range of r, while J2 tracks just under the base case for most of the 

trajectory. In terms of cost (Figure 27), J1 leads to the highest decarbonisation costs, while J2 

consistently achieves the lowest cost outcomes. In all three figures, the base case sits between the two 

variations, reflecting the expected cost and capacity effects of changing electrolyser efficiency. 

 

• Results Variation K: Demand Flexibility Edge Case 

Variation K is shown in Figures 24, 26, and 28, where a 20% increase in demand-side flexibility is 

applied. Figure 24 displays a consistent reduction in e compared to the base case for all levels of r.  

Battery capacity is also lower than the base case across the entire r range, with the difference becoming 

more pronounced at higher r values. In Figure 28, the total decarbonisation cost under the K variation 

is slightly lower than the base case for all levels of decarbonisation, with both curves maintaining a 

similar shape. 
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Figure 23 and 24: The r : e relation plotted for variations H (solar share) and I (cost ratio). Each variation 

consist of five datapoints, each on a different level of decarbonisation. 

 

 
Figure 25 and 26: The r : b relation plotted for variations H (solar share) and I (cost ratio). Each variation 

consist of five datapoints, each on a different level of decarbonisation. 

 

 

Figure 27 and 28: The total power system decarbonisation cost in €/kWh for each level of decarbonisation, 
for variations H (solar share) and I (cost ratio), compared to the base case (variation E).

• Results Variation L: Solar Share Edge Cases 

Figures 29, 31, and 33 show the impact of solar share variations on system design. In the r : e plot 

(Figure 29), L1 results in higher electrolyser capacity across all r levels, while L2 yields lower e values 

than the base case. Battery capacity under L1 (Figure 31) starts below the base case but rises steeply 

at higher r levels; L2 remains consistently above the base case. Figure 33 shows that L1 has the highest 

system cost, the base case sits in the middle, and L2 maintains slightly lower costs throughout. These 

results indicate that higher solar shares can reduce electrolyser needs but increase storage 

requirements. 
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• Results Variation M: Cost Ratio Edge Cases 

Figures 30, 32, and 34 illustrate the results for cost ratio variations between renewable and electrolyser 

technologies. In Figure 30, M1 (CR=1) results in lower electrolyser capacities than the base case, 

especially at higher r levels, while M2 (CR=8) shows consistently higher e values. The M2 curve 

remains above the base case across all r levels, while the M1 curve flattens at higher renewable 

availability. Figure 32 shows battery capacity rising steadily in M1 across the r range, remaining well 

above the base case. M2 exhibits the lowest battery capacity values across all renewable generation 

levels. In Figure 34, decarbonisation costs are highest under M1 and lowest under M2, with the base 

case occupying an intermediate position. Cost increases with higher levels of decarbonisation across 

all scenarios. 
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7 Comparative Model Analysis 

This chapter aims to compare different modelling approaches and efforts to that of the KKM. This is 

done in order to answer SQ3, which reads: “How Does the Renewable Generation-to-Electrolyser Build-

Out Relation in the KKM Compare with Alternative Energy System Models?”. To achieve this, a 

selection of different models and studies is made. For this selection, the relationship between the 

buildout of renewables and electrolysis will be extracted, next to other possible relevant overlapping 

aspects. These relations will then be compared to the KKM, after which notable consistencies and 

deviations will be highlighted, after which they will be discussed and analysed.  

 

7.1 Alternative Model Selection 

This section outlines the process through which alternative models were selected for comparative 

analysis against the KKM. The objective of this selection is to identify studies and models that allow for 

meaningful comparison of key assumptions and results, particularly the relationship between renewable 

energy deployment and electrolyser build-out. This forms the foundation for the comparative framework 

applied in the remainder of the chapter. The data from and studies executed while using these models 

will be used, while the models themselves will not be run due to inaccessibility. 

 

The selection process followed a structured logic. A longlist of 28 suitable models (as found in 

Appendix C1) conveying key common themes was constructed, consisting of a few elements from 

different sources. First of all, publications similar to the KKM were gathered from a meta-study for the 

HyNOS (2025). These studies all formed relatable cases to the KKM, according to this meta-study. 

Second, the five relevant papers mentioned in the introduction of the KKM paper (and listed in the 

Literature Review) were added to the longlist. Lastly, two separate scenario studies were added to the 

longlist, due to their comprehensiveness and overlap with the KKM: the TYNDP by ENSO-E/ENTSOG 

(2024) and the Il3050 by Netbeheer Nederland (2023). Focusing solely on studies as recent or more 

recent than the KKM (so 2024 or later), due to the relevance of assumptions and values, this eventually 

led to 9 studies being used for further inspection (found in Table 7). 

  

7.1.1 Selection Criteria 

To guide the eventual selection of the most relevant models, a set of selection criteria was applied. The 

first criterion was data accessibility, reflecting the need to extract or reconstruct the renewable-

electrolyser relationship from the model outputs. This required not only publicly available results, but 

also some degree of openness regarding assumptions, input parameters and methodological detail. 

This included models with downloadable datasets, accessible documentation, or the possibility of 

author support. 

 

The second criterion was geographic relevance. Preference was given to models that focus 

on or include Northwestern Europe, with particular interest in models that disaggregate national results, 

especially for the Netherlands. This ensures that the comparative insights remain consistent with the 

geographic scope and framing of the KKM.  

 

 



 
 

54 
 

The third criterion was model completeness in overlapping aspects. While the central 

relationship under analysis concerns renewable and electrolyser deployment, many of the assumptions 

underlying this link are only meaningful if captured within the model’s scope. Models incorporating 

similar assumptions were therefore prioritised, provided these features were sufficiently documented. 

 

7.1.2 Multi-Criteria Analysis 

Based on these criteria, a multi-criteria analysis (MCA) was conducted to evaluate and rank models 

from the initial longlist. Each model was scored qualitatively across the three dimensions above. This 

was done on a scale of 1-3, 3 meaning well-suited, 2 meaning somewhat suitable, and 1 meaning the 

not suitable. This allowed for the identification of a subset of studies, of which three models were 

selected as most relevant to the research goals. An overview of the MCA can be found in Table 7. 

These three models form the analytical core of the comparative assessment that follows. Each will be 

introduced in further detail in the following subchapters, including an overview of its structure, 

assumptions and the form in which the key renewable-electrolyser relationship can be extracted. 

 
Table 7: Multi-criteria analysis of selected models for the comparative analysis. 

 

 

 

Nr. Model Name Author(s)

Criterion 1: 

Data 

Accessibility

Criterion 2: 

Geographic 

Relevance

Criterion 3: 

Model 

Overlap

Total 

Score

2.

System Integration 

Analysis for 

Programme VAWOZ

CE Delft 

(2024)
3 3 3 9

4.

Infrastructure and 

Financing of the 

North Sea

Energy and 

Climate Policy 

and Innovation 

Council  (2024)

1 3 2 6

5.

Key Insights from the 

North Sea Integration 

Model

Fluxys (2024) 2 3 2 7

6.

Offshore Power and 

Hydrogen Networks 

for Europe’s North 

Sea

Glaum et al. 

(2024)
1 3 3 7

7.
Global Offshore Wind 

Report

Global Wind 

Energy Council 

(2024)

3 2 1 6

8.
Floating Offshore 

Wind Outlook
IRENA (2024) 2 2 2 6

9. Pathway 2.0 Study
NSWPH 

(2024)
3 3 3 9

6

3.
E-Bridge 

(2024)
3 2 3 8

Assessment for 

Connection 

Concepts for DE 

Far Out NS

1.
More Wind at Sea for 

Climate Neutrality

Agora Energie-

wende (2024)
1 3 2
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Resulting from Table 7, the three studies with the highest score are the following: 

 

• System Integration Analysis for Programme VAWOZ by CE Delft (2024); 

• Assessment for Connection Concepts for DE Far Out NS by E-Bridge (2024); 

• Pathway Study 2.0 by NSWPH (2024). 

 

These studies will be used in the comparative analysis, to review their overlap and differences with the 

output and assumptions of the KKM. 

 

7.1.3 Model 1: System Integration Analysis for Programme VAWOZ (CE Delft) 

The CE Delft (2024) study comprises a scenario study for assessing offshore wind integration into the 

Dutch energy system, with a primary focus on 2031–2050. It evaluates cost-optimal system 

configurations by balancing electric landing points and hydrogen conversion pathways for offshore wind 

capacity, accounting for both technical and spatial system constraints. The study uses scenario data 

directly from the II3050 study (2023). It investigates six total scenarios, reflecting differences in 

industrial activity, energy import/export dynamics, electrification and infrastructure availability. Each 

scenario determines the most cost- and energy-efficient balance between electric and hydrogen landing 

strategies, using hourly time-step simulations. 

 

The Energy Transition Model (Energy Transition Model, 2025), or ETM, is used to analyse 

these scenarios. The ETM is an open-source simulation model developed by Quintel, widely used in 

the Netherlands for long-term energy planning. It provides representations of the Dutch energy system 

including electricity, heating, hydrogen, and industrial sectors, based on thousands of adjustable 

parameters and real-world data. The ETM offers a detailed insight into decarbonisation pathways and 

offers far more parameter than the KKM, while making it more accessible to study multiple years. 

However, both are suitable to study renewables-to-hydrogen dynamics. 

 

Among the various scenarios, the comparison specifically focuses on the “International Trade” 

(INT) variant, a description of which can be found in Appendix C2. This scenario assumes that the 

Netherlands acts as a highly interconnected energy-trading hub, characterized by high levels of 

international energy exchange, relatively low domestic energy production costs and significant 

hydrogen imports. As a result, INT represents a highly suitable scenario to compare with the r : e 

relationship from the KKM. Key insights from the INT scenario show that while electrification remains 

important, a significant portion of offshore wind is economically routed through hydrogen conversion. 

The model identifies scenario-specific trade-offs between direct electrification, electrolysis, and 

curtailment, depending on infrastructure constraints and hydrogen value chains. 

 

The CE Delft and KKM study overlap in their prioritization of offshore wind, similar electrolyser 

efficiency assumptions, and shared goal of determining a cost-optimal r : e ratio. Important assumptions 

include a generation mix with heavy offshore wind dominance with a lower solar input and electrolyser 

efficiencies around 70%. Unlike KKM, CE Delft explicitly incorporates demand variability, battery 

storage, spatially limited infrastructure and sector coupling, enabling realistic assessments of hourly 

system balancing. 
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7.1.4 Model 2: Assessment of Connection Concepts for DE Far Out NS (E-Bridge) 

The E-Bridge (2024) study, commissioned by a consortium including various German transmission 

system operators, provides an analysis focused on integrating large-scale renewable energy, 

specifically wind in the North Sea and solar power, into the German energy system. This study aims to 

assess the techno-economic impacts of hydrogen production through electrolysis, highlighting its 

implications on infrastructure requirements and energy system stability. 

 

Utilizing scenario-based modelling, the E-Bridge study examines multiple pathways reflecting 

different policy and technology assumptions. Of particular interest for comparison with the KKM is the 

“Molecule Energy Transition” (MET) scenario, as described in Appendix C3, which represents a vision 

of Germany's energy future from 2030-2045. The MET scenario for Germany is specifically based on 

the BMWK Langfristszenarien T-45 H2 scenario (Langfristszenarien, n.d.), and assumes increasing 

renewable deployment combined with extensive electrolyser integration to produce green hydrogen. 

 

Although the E-Bridge study concentrates on Germany rather than the Netherlands, it remains 

highly relevant for comparison with the KKM due to the interconnected nature of Northwestern Europe's 

energy infrastructure, as well as the weather similar profiles. Both Germany and the Netherlands share 

similar ambitions for offshore wind exploitation, electrolyser deployment, and grid integration, making 

comparative insights particularly valuable. 

 

The scenarios were modelled using the European Electricity Market Model (The European 

Electricity Market Model, n.d.), or EMMA, a tool designed for detailed techno-economic analysis of 

electricity markets across Europe. EMMA provides hourly resolution, simulating market dynamics 

including generation dispatch, grid constraints, and market prices. It integrates various generation 

technologies, storage solutions, and demand-side flexibility measures, offering realistic insights into 

system operations. EMMA's capability to assess the operational dynamics and economic viability of 

renewable and hydrogen infrastructure aligns closely with the aim of the KKM.  

 

Overall, the MET scenario from the E-Bridge study offers valuable complementary perspectives 

to the stylized assumptions of the KKM, especially regarding the integration of electrolysis in renewable-

dominated systems on a larger scale. Its emphasis on realistic technical constraints and alignment with 

European decarbonisation objectives makes it particularly suitable for comparative analysis within this 

research. 

 

7.1.5 Model 3: Pathway Study 2.0 (NSWPH) 

The third selected model is the Pathway Study 2.0, commissioned by the North Sea Wind Power Hub 

(NSWPH) consortium. This study is particularly well-suited for comparison to the KKM due to its 

relevance to the Dutch and broader Northwestern European context, its high degree of system detail, 

its modelling of electrolysis as part of a broader offshore integration strategy and the accessibility of 

both input assumptions and scenario outcomes (NSWPH, 2025).  

 

The Pathway 2.0 study evaluates long-term system configurations that support the integration 

of large-scale offshore wind into the European energy system, focusing in particular on cross-border 

grids and the optimisation of both electricity and hydrogen infrastructure. It does so through a scenario-

based modelling approach built on several techno-economic input parameters, hourly time resolution 

and spatially explicit assumptions. This makes it one of the few publicly available studies that captures 

both the buildout of renewables and the deployment of electrolysis capacity across Europe. 
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It extracts scenario data directly from the ENTSO-E’s (2024) TYNDP study, resulting in the 

Pathway Study 2.0 baseline scenario being based on the Distributed Energy (DE) scenario of the 

TYNDP (found in Appendix C4). This baseline scenario of the Pathway Study 2.0, called ‘DE Free 

Offshore’, envisions a strongly decentralised European energy system with offshore wind at its core. 

The result is a techno-economically optimised vision of Europe’s future energy infrastructure, 

particularly suited for analysing large-scale hydrogen production from renewables. 

 

A key reason for selecting this model is also practical accessibility. Given Gasunie’s 

involvement in the NSWPH initiative, the study offers a relatively high degree of transparency into 

underlying assumptions and scenario design. This allows for greater control over the interpretation of 

results and, where necessary, correspondence with the authors to clarify modelling choices. This 

makes it uniquely suitable for extracting comparable indicators. The model provides sufficient data to 

extract renewable input levels and electrolyser capacities with their operational profiles, which are 

necessary to reconstruct the r : e relationship. 

 

In terms of model overlap and additionality, the Pathway Study 2.0 is especially valuable for 

its integration of both hydrogen and electricity infrastructure, including spatial siting of electrolysers and 

considerations of hydrogen storage and transport. It includes reporting on the share of renewable 

electricity converted to hydrogen and the full-load hours of electrolyser operation, which are useful to 

understanding how the r : e relationship evolves across decarbonisation pathways. Unlike the KKM, 

the model includes hydrogen imports, sectoral coupling, and explicit infrastructure constraints, all of 

which influence the r : e curve. This needs to be taken into account when comparing the r : e 

relationship. 

 

As a scenario-based planning tool, the Pathway Study 2.0 does not internally optimise the 

timing of hydrogen deployment, which limits direct comparison with the KKM’s cost-driven tipping point 

logic. Nonetheless, given its transparency, geographic relevance and modelling scope, the NSWPH 

Pathway Study 2.0 serves as an important model in this comparative analysis. Its findings offer a 

comprehensive point of comparison to the stylised results of the KKM. 

7.2 Model Comparison 

In the following section, the relationship between renewable build-out and electrolyser deployment is 

examined for each selected model. For every case, the structure of this relationship is described, with 

attention given to any thresholds, tipping points or proportionalities. Where relevant, underlying 

operational assumptions are discussed to contextualize how these relationships are formed and 

interpreted.  

 

7.2.1 Extraction of r : e Relation 

For the r : e relation, the average renewable generation and electrolyser capacity is determined over 

the course of several datapoints (Table 8). For the CE Delft and the NSWPH study, results are found 

documented for years 2030, 2040 and 2050, while the E-Bridge study documented  years 2035, 2040 

and 2045. Firstly, the power demand in TWh is converted to GW to determine the average power 

demand for each year. This is then compensated for import and export numbers used in each study. 

Subsequently, the renewable generation by solar PV, onshore wind and offshore wind is extracted for 

each of these years, utilizing full load hours or a capacity factor (as mentioned in the studies) to learn 

the average generation in GW. Lastly, the peak total electrolyser capacity is determined. 
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 After gathering the critical datapoints, the r : e relation for each of the studies was determined. 

By dividing average renewable generation and peak electrolyser capacity by the average demand, a 

datapoint in the r : e space could be determined and plotted for each year within each study. The result 

of this plot will be discussed in the next section. 

 
Table 8: Extracted information on power demand, renewable generation and electrolysis capacity from 

each of the selected alternative models. Processing this data led to the values for the r : e relation 

in these studies. 

 

 

7.2.2 KKM Relation Comparison 

Figure 35 presents a comparison of r on the x-axis and e on the y-axis. Each line represents the 

progression of system build-out over time according to a specific study, with markers at key reference 

years or decarbonisation levels (for the KKM and variation E). This allows for a direct comparison of 

how much e is deployed for a given level of r. The KKM remains the benchmark, with other model 

outputs overlaid to explore how different system assumptions and modelling approaches influence this 

relationship. 

 

 
Figure 35: A plot containing the extracted r : e relations from the selected alternative models (the CE Delft, 

NSWPH and E-Bridge study), compared to the relation found in the KKM and variation E. 

2030 2040 2050 2035 2040 2045 2030 2040 2050

Power Demand (TWh) 170 190 220 758 880 1002 187 222 253

Net Export (GW avg) 1.0 1.0 2.1 -4.1 -9.4 -12.2 4.0 0.5 -1.8

Solar Generation 

(GW avg) 4.9 7.9 11.6 82.4 91.1 102.2 6.3 9.0 12.8

Onshore Wind Generation (GW 

avg) 2.8 3.3 3.7 38.1 49.1 59.9 2.6 3.9 4.3

Offshore Wind Generation (GW 

avg) 11.8 21.1 24.9 20.4 23.8 27.3 14.4 18.5 21.8

Electrolysis Capacity 

(GW avg) 6.0 15.0 18.0 21.1 30.2 39.8 6.0 16.0 26.0

Average Power Demand 

(GW) 20.4 22.7 27.2 23.0 37.0 50.0 25.3 25.7 27.1

Total Average 

Renewable Generation (GW) 19.5 32.3 40.1 141.0 164.0 189.3 23.3 31.4 38.9

Peak Electrolysis 6.0 15.0 18.0 23.0 37.0 50.0 6.0 16.0 26.0

r 0.9574 1.4213 1.4774 0.9655 1.1319 1.2424 0.9203 1.2205 1.4393

e 0.2946 0.6602 0.6624 0.2790 0.4063 0.4893 0.2371 0.6216 0.9608

NSWPH

INT MET DE Free Offshore

CE Delft E-Bridge

Scenario / Year

Parameter
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The renewable generation-to-electrolyser build-out relationship observed in the KKM aligns well with 

results from the three alternative models. A key finding is the consistency in the early stages of the r : 

e trajectory across all models. Around 2030 and 2035, scenarios from CE Delft, NSWPH, and E-Bridge 

lie within a narrow band. This suggests that in the short term, models with different structures and 

geographic scopes still converge on similar outcomes for the balance between renewable generation 

and electrolyser deployment. The onset of the slope differs slightly between models; the KKM exhibits 

a sharp tipping point once a renewable threshold is passed, together with the Pathway Study 2.0 and 

vairation E. The CE Delft and E-Bridge study show a more gradual onset, consistent with their inclusion 

of infrastructure constraints and sector coupling. 

 

From 2040 onward, differences in slope become more apparent. In both CE Delft and E-Bridge, 

deployment accelerates significantly, mirroring the steep slope found in the KKM. This occurs despite 

differences in country context (Netherlands vs. Germany) and reference year (CE Delft 2050 vs. E-

Bridge 2045). The limited distance between the final two datapoints in CE Delft is due to only a modest 

increase in power demand and electrolyser capacity between 2040 and 2050. The Pathway Study 2.0 

follows a similar trajectory. Its 2050 datapoint aligns closely with the KKM’s 100% decarbonisation point, 

and when compared to variation E, it shows a nearly parallel progression toward full decarbonisation, 

reinforcing the structural similarity across models.  

 

The implication is that, regardless of the modelling approach, achieving net-zero by 2050 will 

likely require a similar r : e ratio once certain system thresholds are crossed. This strengthens 

confidence in using these trajectories as input for long-term infrastructure planning and policy design. 

 

7.2.3 Broader Model Dialogue 

By placing the KKM results in dialogue with other models, this comparison highlights both the strength 

and limitations of simplified system models. The KKM proves valuable in identifying structural 

relationships and tipping points in the r : e trajectory, particularly due to its cost-driven formulation and 

analytical transparency. However, its simplified representation of infrastructure, storage, and sector 

coupling makes it less equipped to capture the impact of real-world constraints. In contrast, the CE 

Delft, E-Bridge, and NSWPH studies offer more detailed and geographically grounded system 

representations, which allow for a more nuanced understanding of how system design and constraints 

shape the evolution of hydrogen deployment pathways. 

 

Critically, these models do not just validate the KKM’s structural insights, but they also expand 

the issue. For example, CE Delft’s alignment with national planning scenarios (II3050), E-Bridge’s 

integration of market dynamics and German policy, and NSWPH’s pan-European scope and public 

accessibility each provide distinct yet complementary perspectives. Together, they help uncover trade-

offs between the pacing of offshore wind and hydrogen infrastructure and the extent to which 

electrification and hydrogen can act as substitutes or complements.  

 

The fact that a consistent r : e trajectory emerges across such diverse modelling approaches 

reinforces the robustness of the underlying relationship, while differences in slope or threshold highlight 

the role of modelled assumptions in shaping outcomes. Thus, incorporating multiple models into this 

analysis does not merely offer triangulation; it sharpens insight into how resilient certain system trends 

are. This broader comparative approach supports more robust long-term energy planning and allows 

both researchers and policymakers to make more informed decisions on hydrogen investment timing, 

infrastructure coordination, and system flexibility strategies. 
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8 Discussion 

This chapter will discuss the key findings for each sub-question, as well as the generalizability of these 

findings. It will  also go over the limitations that need to be taken into account when reflecting on this 

research paper, followed by a disclaimer on the use of AI in this thesis. 

 

8.1 Discussion of Results 

8.1.1 Sensitivity and Robustness Results Interpretation 

This section entails the interpretation of results from chapter 6, will be divided in the results from the 

new base case creation, the sensitivity testing and the robustness analysis. 

 

• Implications of the New Base Case 

The progressive flattening of the r : e slope across variations A to E suggests that increasing model 

complexity reduces the need for high renewable and electrolyser capacity to reach a given 

decarbonisation target. The absence of battery interaction in the original KKM and variation A forces 

all surplus balancing into electrolysis, increasing both r and e. When demand fluctuations are introduced 

in variation A, this slightly lowers the need for hydrogen buffering, resulting in a modest reduction in 

both variables. The inclusion of battery interaction (variation B) and the introduction of an electrolyser 

efficiency curve (variation C) further reduce reliance on electrolysis and renewable overcapacity. These 

effects are consistently visible in both the r : e and r : b relationships, and are reflected in lower total 

system costs.  

 

In contrast, variations that reintroduce hydrogen storage cost are hydrogen storage (D) and 

electrolyser operational limitations (E). In variations D and E, the surplus of storage is shifted back 

toward short-duration battery storage and lead to slightly higher overall costs. Variation D demonstrates 

a clear trade-off: when long-duration hydrogen storage becomes too costly, the system compensates 

by increasing battery  deployment. Variation E, while incorporating performance constraints, results in 

only a modest rise in e when compared to D, due to the savings introduced in earlier steps. Altogether, 

this sequential analysis shows how operational constraints and flexibility options redistribute generation 

capacity across different components. It also reveals how the original KKM formulation, while 

conceptually valuable, overstates infrastructure needs when such complexities are excluded.  

 

• Implications of Sensitivity Testing 

In variation F, changes in electrolyser efficiency notably influence the division between battery 

deployment and electrolysis. Higher efficiency lowers battery demand and boosts electrolysis use, while 

lower efficiency does the opposite. In variation G, demand-side flexibility is introduced as a substitute 

for both battery and electrolyser capacity. When flexibility increases, the system absorbs more 

renewable energy through demand shifting, reducing the need for physical storage infrastructure. While 

battery capacity for G1 and G2  follows a similar or lower trend to the base case, the cost plot shows 

that total decarbonisation cost get lower as the amount of demand flexibility increases. However, this 

can be readily explained by the fact that the model does not account for the costs of demand flexibility. 

 

 



 
 

61 
 

Variation H indicates that a generation profile with a high solar share creates short-term 

surpluses that increase the system’s reliance on battery storage rather than hydrogen conversion. This 

leads to higher battery deployment across renewable generation levels. In contrast, a lower solar share 

produces a more stable generation pattern, reducing short-term balancing needs and shifting more 

surplus into hydrogen production. This change in balancing strategy is reflected in the cost plot, where 

the high solar share scenario results in slightly higher system costs, particularly at higher 

decarbonisation levels. 

 

Variation I demonstrates the role of the cost ratio between renewable generation and hydrogen 

production. When electrolyser costs are reduced, the system economically favours earlier and more 

extensive hydrogen deployment, reducing the need for battery storage. Conversely, when electrolysis 

becomes more expensive, the system shifts toward battery deployment to manage surplus electricity. 

This reveals that cost ratios play a major role in shaping the balance between short- and long-duration 

storage technologies. 

 

• Implications of Robustness Analysis 

The robustness analysis of variations J and K reveals that the KKM’s outcomes are moderately 

sensitive to assumptions about electrolyser efficiency and demand flexibility. Variation J shows that 

changes in electrolyser efficiency affect both the magnitude of capacity deployment and total system 

cost, though the structural r : e relationship remain consistent. This suggests that while the model 

retains internal coherence under different efficiency assumptions, results related to cost and sizing 

should be interpreted with awareness of this sensitivity.  

 

In variation K, the introduction of demand flexibility leads to systematic reductions in both storage 

requirements and decarbonisation costs (again, not taking into account costs that come with demand 

flexibility). This indicates that the exclusion of flexibility in the original model scope may underestimate 

the potential efficiency of future energy systems. Overall, these findings support the importance of 

testing input assumptions to evaluate the resilience of model outputs under plausible parameter 

variation. 

 

The outcomes of variations L and M underscore how sensitive the model’s infrastructure 

requirements are to changes in solar share and cost ratio assumptions, with direct implications for the 

robustness of the KKM. The divergence between L1 and L2 suggests that the balance between 

electrolyser and battery deployment is strongly influenced by the generation profile of renewables. This 

highlights the importance of properly characterising solar-wind mixes in stylised models to avoid over- 

or underestimating storage needs.  

 

Similarly, the results from variation M confirm that the cost ratio between renewables and 

electrolysers plays a crucial role. The substantial variation in system costs and capacity outcomes 

across the tested edge cases demonstrates that, while the structural r : e relationship is preserved, its 

magnitude and economic implications can shift considerably. These findings support the need for 

careful parameter selection and scenario testing when applying simplified models like the KKM to inform 

planning or policy. 
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• Key Takeaways 

Taken together, the sensitivity results suggest that while the r : e relationships are structurally robust, 

their slope, timing and contributions shift depending on which system parameter is varied. Across all 

variations, the steep rise in system cost between 80% and 100% decarbonisation and the plateau that 

follows, remains a consistent pattern. This reinforces the idea that the most capital-intensive shifts occur 

as full decarbonisation is approached. These findings are therefore best interpreted as directional rather 

than predictive. They remain conditioned on the stylised structure of the KKM and should be reassessed 

under models with higher granularity.  

 

8.1.2 Comparative Results Interpretation 

These findings suggest that the logic driving electrolyser deployment is consistent across different 

models, despite their varying assumptions, structures and levels of detail. Across all models, a 

consistent trend emerges: modest electrolyser capacity is observed in the early 2030s, followed by a 

seemingly linear build-out into later stages. While the KKM expresses this relationship as a function of 

decarbonisation level, the alternative models present it through fixed-year datapoints, allowing for 

temporal comparison. Across all models, a consistent trend emerges: modest electrolyser capacity is 

observed in the early 2030s, followed by a seemingly linear build-out into the 2040s and beyond. 

 

The scale and timing of deployment diverge most clearly after 2040. CE Delft and E-Bridge 

both exhibit flatter r : e slopes when compared with the steep slope of the KKM and variation E, showing 

electrolyser build-out happens on a lower pace compared to other models. However, it implies a shared 

system behaviour: electrolysis becomes increasingly attractive as marginal renewable costs fall and 

curtailment pressures rise. Notably, these similarities occur despite differences in geography, modelling 

framework or reference year. The Pathway Study 2.0’s 2050 datapoint closely aligns with the KKM’s 

full decarbonisation point. Though based on a different modelling framework and including 

infrastructure constraints, imports and sector coupling, Pathway 2.0 independently identifies a trend to 

variation E. This convergence suggests that the KKM’s stylised results can capture real-world system 

dynamics with surprising accuracy. 

 

Where deviations do occur, they may largely be attributable to differences in model structure 

and granularity in terms of assumptions and simplifications. The KKM is an abstract optimisation model 

with internal thresholds, while the alternative models are more detailed and scenario-based. Altogether, 

the comparison confirms that while the KKM is highly stylised, it successfully captures essential system 

dynamics related to electrolyser deployment, while highlighting the additional detail that other models 

provide. 

 

8.2 Generalisability 

The findings of this thesis offer a degree of generalisability, particularly at the conceptual level. The 

core insight derived from the KKM, the relation e ∼ ε (r − ρ), is supported across a diverse set of 

comparator models. Despite differences in geographic focus, modelling complexity and temporal 

scope, these models all exhibit a steep increase in electrolyser capacity once basic electricity demand 

is met and renewable overcapacity begins to emerge. This convergence suggests that the r : e 

relationship observed in the KKM reflects a more fundamental dynamic rather than a by-product of 

simplification. 
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However, the practical generalisability of these results is limited by several factors. The 

sensitivity results reflect how the KKM behaves under change, but may not generalise to other models. 

They are conditioned on the base case of the KKM, while in more detailed models the same parameter 

shifts could lead to very different outcomes. Additionally, the KKM does not include infrastructure siting, 

sector coupling, or import dynamics, all of which can meaningfully influence hydrogen deployment in 

real systems. Therefore, while the logic of the KKM appears structurally robust, its quantitative 

outcomes should be interpreted with caution when applied beyond the context studied here. The 

underlying r : e relationship shows conceptual strength, but it requires further validation under more 

complex and detailed modelling conditions. If it continues to hold in such contexts, the relationship 

could support policy making by informing decarbonisation strategies and guiding the integration of 

electrolysis into broader sustainability goals. 

 

8.3 Limitations 

This section outlines the limitations of the thesis, reflecting on each sub-question and how these 

constraints may have influenced the results. 

 

8.3.1 Limitations of Assumption Identification  

The identification of key assumptions within this thesis is subject to several limitations, particularly 

related to subjectivity and the reliance on inferred model behaviour. The process of selecting and 

classifying assumptions inevitably involved a degree of interpretation. This introduces a risk of 

subjectivity, as the perceived importance of an assumption was partially influenced by the researcher’s 

framing, familiarity and the ability to explore that assumption further using the EBBM. As a result, the 

analysis may have been exposed to unconscious biased toward assumptions that were easier to 

investigate. 

 

Moreover, many assumptions had to be inferred based on the system description and wider 

context, rather than being explicitly defined in the KKM’s paper. This reliance on inference increases 

the potential for misinterpretation, creating a possibility that some inferred assumptions were incorrectly 

assessed in their scope or impact. Also, any process of assumption identification necessarily involves 

making a selection, where it is decided which assumptions to include for further analysis and which to 

exclude. This act of selection is itself a limitation, as it implies that certain modelling choices may have 

been overlooked, even if they play a less important role in the model. The final assumption set therefore 

reflects a selection shaped by practical considerations and scope constraints, rather than a 

comprehensive inventory of all model assumptions. 

 

8.3.2 Limitations of Sensitivity and Robustness Analysis  

A key limitation of the sensitivity and robustness analysis lies in the way parameter variations were 

implemented. Most parameters were varied individually, using discrete steps (of ±10% for instance), 

while all other variables were held constant. This unidimensional approach limits the ability to observe 

interactive effects between parameters. As a result, the analysis may miss important behaviours that 

only emerge when parameters shift simultaneously. Additionally, the broad step size used in the 

variations means that smaller inflection points in system behaviour may not have been captured. 
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Another important constraint stems from the underlying dataset used to represent system 

variability. The entire analysis is based on a single weather year, which simplifies model inputs but 

introduces uncertainty, particularly around short-term balancing needs. This is especially relevant for 

battery deployment, which is sensitive to intra-day and inter-day fluctuations in solar and wind 

availability. Relying on a single deterministic weather profile limits the ability to generalisable insights 

about the r : b relationship. In real-world applications, variability between years could significantly shift 

the required capacity or use of storage and hydrogen systems. 

 

Finally, the results include a margin of error in the calculated ratios of electrolysis and battery 

capacity, stemming from the optimisation method used to derive the ideal deployment curves. In 

optimisation models like the KKM, results are typically approximate rather than strictly optimal. Solvers 

often operate within a predefined optimality margin, meaning the model output may fall within a few 

percentage points of the theoretical optimum. These small deviations are methodologically valid and 

reflect trade-offs in model solvability and computational efficiency, making it possible to determine if a 

certain relations are consequent instead of calculating precise values.  

 

Nonetheless, they introduce a degree of imprecision in the ideal benchmark curves, which 

should be acknowledged when interpreting the robustness of these ratios. This technical uncertainty, 

though moderate, further limits the precision with which robustness conclusions can be drawn. Taken 

together, these factors suggest that while the sensitivity analysis provides valuable insights on the 

changing relations between renewables, electrolyser capacity, battery capacity and system 

decarbonisation cost, the result should be regarded as directional insights rather than exact or 

definitive.  

 

8.3.3 Limitations of Model Comparison 

The comparative model analysis conducted in this thesis is subject to several important limitations, 

primarily related to the diversity, availability, and interpretability of the models used for comparison. The 

selection of alternative studies was constrained both by data access and geographic relevance. Only a 

few studies were available with sufficient transparency to be meaningfully compared to the KKM.  

 

One of the most fundamental constraints is the difficulty in identifying with certainty the 

influence of specific assumptions in the alternative models. Because each study starts from a different 

methodological structure, ranging from optimisation to scenario-based modelling, it is often only 

possible to suggest the impact of certain parameters rather than to isolate their direct effects. This 

structural variation undermines the ability to attribute deviations in the r : e relationship to a particular 

input or design choice with confidence. 

 

Additionally, a second limitation concerns data availability and transparency. Most of the 

alternative models used in the analysis only provide basic or aggregated outputs for only a small 

number of datapoints, often without sufficient documentation on how these values were derived. The 

underlying assumptions are frequently not published in their entirety, limiting reproducibility and making 

it difficult to normalise and compare datapoints. The distinction between scenarios also means that the 

comparative framework included just a single scenario with the best context fit from each model for 

comparison, omitting scenario variations or internal sensitivities. 
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There was also a contrast in the level of detail among the selected models. While the KKM 

functions as a stylised optimisation model, the alternative studies are scenario-based with detailed 

elements like sector coupling and infrastructure planning. These methodological differences create 

challenges when trying to align their normalised outputs. Furthermore, the models represent single 

target years, while the KKM expresses results across decarbonisation levels. This discrepancy 

complicates direct comparisons, especially in terms of timing and scale. 

 

Taken together, these limitations imply that the comparative analysis should be viewed as a 

qualitative exploration of how insights from the KKM manifest in different modelling contexts, rather 

than a quantitative model validation. While consistent patterns were observed, they should be 

interpreted with caution given the underlying differences in data resolution, assumptions and model 

design. 

 

8.4 Use of AI 

While preparing this work, ChatGPT was used for reviewing logical flow, spelling and grammar of the 

work. It was also used to rephrase passages for coherence purposes. After using this tool, the content 

was reviewed and edited as needed, taking full responsibility for the content of this research paper. 

Also, the tools Consensus and Perplexity were at times used as additional support for finding academic 

research regarding specific topics. The suggested papers were only consulted and referenced after 

careful review, taking full responsibility in the event of possible contribution to this research. Lastly, the 

tool Turboscribe was used to transcribe meeting recordings, which were deleted after the useful 

information was retrieved. 

 

8.5 Personal Reflections 

Writing my thesis was a humbling yet valuable experience. While I began the process feeling confident 

about my understanding of the energy transition and hydrogen systems, diving deeper into the subject 

made it abundantly clear how much I still had to learn. The technical details, especially those 

surrounding integrated electrolyser systems and system optimization, constantly challenged me to 

expand my knowledge and revisit what I thought I knew. Through the inevitable highs and lows of such 

an intensive project, sticking closely to my planning and not hesitating to ask for help proved crucial in 

maintaining focus and steady progress. Especially when the EBBM needed some adjusting at first, the 

supervision experience really helped me maintain control and focus on the relevant aspects of the 

research, eventually strengthening my resilience. 

 

Regular sparring sessions with peers helped me contextualize my progress and exposed 

common pitfalls in the thesis process, which I could then avoid or help myself out of. A major contributor 

to the quality of the final product was the continuous cycle of feedback and revision. I made a deliberate 

effort to incorporate feedback at every stage, with a special mention to the and insightful comments 

from professor Koning, which sharpened the depth of my work. Overall, the thesis journey not only 

advanced my academic capabilities but also strengthened my resilience and understanding of both 

energy system modelling and the future of hydrogen. 
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9 Conclusion  

Based on the key findings in each sub-question and the issues explored in the Discussion, a 

comprehensive conclusion can be drawn considering the assumptions and simplifications made in the 

KKM and their influence on the relation between renewable generation and electrolysis capacity. This 

conclusion will be presented in the following chapter, combining the insights from all chapters to 

subsequently answer the main research question. Lastly, possible topics for future research will be 

suggested, together with a comprehensive overview of the contributions made by this research paper. 

9.1 Answer to Research Questions 

It has been established that models are based on assumptions and simplifications. With energy system 

models this is no different, since the assumptions and simplifications made support the internal logic 

and influence model output. Validating these assumptions would thus prove essential to confirm the 

robustness of the model output and identify possible sensitivities. Scrutinization increases reliability and 

applicability, allowing the model to be used in further research or more practical applications to further 

experiment test relations.  

 

This brings us to the purpose of this study, namely testing the validity of the relation found 

between renewable generation and the build-out of electrolysis capacity in the KKM. Given the 

ambitious climate goals of European nations, discovering a relation that could help plan the deployment 

alongside an increasing amount of renewable generation can prove to be very valuable. This way, long-

term infrastructure planning can be thought out while optimising the cost for power system 

decarbonisation. However, since the KKM represents a highly stylized system, the aforementioned 

scrutinization of underlying assumptions and simplifications is essential to test the robustness of the 

model’s outcome, determining whether or not the relation can play a role in designing future 

decarbonisation pathways. 

 

9.1.1 Answer to Sub-Question 1 

To begin the analysis, it was necessary to first identify the assumptions and simplifications that required 

closer scrutiny. This led to an examination of the explicit and implicit assumptions built into the KKM. 

While explicit assumptions and simplifications could be directly retrieved from the original model 

documentation, several implicit omissions or simplifications had to be inferred. By comparing the 

model’s system description to that of a real-world energy system and analysing the broader system 

context, a comprehensive longlist of both explicit and implicit assumptions and simplifications was 

compiled. 

 

Three criteria guided the selection of the final assumption set: the importance of each 

assumption to model behaviour, its relevance to the main research question, and the EBBM’s ability to 

facilitate testing of that assumption. The resulting set consisted of the following elements: Generation 

Mix, Electrolyser Efficiency, Electrolyser Limitations, Hydrogen Storage Cost, Cost Ratio, Neglect of 

Demand Fluctuations, Battery Interaction Exclusion, and Demand Flexibility. This assumption set 

formed the basis for the sensitivity and robustness testing in SQ2 and also served as the answer to 

SQ1, which asked: "What Are Key Assumptions in the KKM and Why Are They Made?". 
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9.1.2 Answer to Sub-Question 2 

Scrutinising the selected set of assumptions and simplifications served as a tool to validate the model 

output of the KKM. First, a new base case was created by incrementally adding high-certainty 

simplifications enabled by the EBBM, resulting in a more realistic model formulation with added 

complexity relative to the original KKM. These high-certainty system simplifications consisted of 

electrolyser limitations, hydrogen storage cost, neglect of demand fluctuations, battery interaction 

exclusion, and the electrolyser efficiency curve. A key result of introducing these previously omitted 

simplifications is that the r : e curve flattened significantly, while the cost curve was reduced 

substantially. This demonstrates that added complexity can significantly reduce the required renewable 

generation and electrolyser capacity to reach certain decarbonisation levels, while also lowering the 

associated system cost. The omission of demand flexibility costs and limitations, however, deserves 

careful attention, as incorporating these constraints could significantly alter the model’s outcomes. 

 

Subsequently, the remaining assumptions in the key set were tested through multiple 

univariate sensitivity runs. By analysing the decarbonisation cost, the r : e relation, and the r : b relation, 

the effects of variations in electrolyser efficiency, demand flexibility, solar share, and cost ratio were 

assessed. Electrolyser efficiency and demand flexibility had a minimal impact on the r : e relation, 

slightly increasing both r and e across all decarbonisation levels.  

 

Battery capacity, however, diverged to compensate: higher electrolyser efficiency led to 

reduced battery deployment, while lower efficiency increased battery demand. Demand flexibility 

reduced battery capacity in both tested scenarios, due to the ability to shift load. The cost plots showed 

a consistent decrease in system cost across all variations, except in the case of reduced electrolyser 

efficiency. While the direction of these outcomes was anticipated, demand flexibility in particular was 

shown to have a positive effect on decarbonisation cost. 

 

Moreover, variations in solar share and CR had a more pronounced impact on the r : e relation. 

A lower solar share created a much steeper r : e curve, with electrolysis build-out occurring earlier and 

at higher levels. In contrast, a higher solar share produced a curve similar to the base case but with a 

delayed onset. This is due to increased generation variability, which raised battery capacity needs - 

opposing the trend observed with lower solar shares. Interestingly, both variations led to an increase in 

system cost.  

 

Finally, the CR between electrolysis and renewable generation had a strong influence across 

all model outputs. Substantial divergences appeared in the r : e, r : b, and cost plots. A lower CR 

resulted in higher electrolysis capacity, lower battery capacity, and lower total system cost. A higher 

CR caused the system to prioritise battery storage over hydrogen production, increasing battery 

capacity while reducing electrolyser deployment, ultimately leading to the highest cost outcome of all 

variations. While CR clearly influences the ratio between electrolysis and battery deployment, its overall 

impact remains limited, even across a relatively wide CR range. Even when exposed to edge cases in 

the robustness analysis, similar trends were observed as during the sensitivity analysis, showing that 

even under extreme conditions the r : e relation holds.  
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Answering SQ2, which reads: “How Sensitive and Robust Are KKM Model Outcomes to 

Variations in Key Assumptions?”: the curve found in the KKM flattens slightly when adding high-

certainty system simplifications, lowering cost and introducing battery interaction as a balancing 

mechanism. The model outcomes seem to be most sensitive to changes in solar share and the cost 

ratio on all fronts, while being affected by electrolyser efficiency and demand flexibility primarily in total 

decarbonisation cost. Battery interaction functions as a compensating measure for the model when 

electrolyser capacity is deemed disadvantageous due to higher prices or unfavourable conditions for 

electrolysis.  

 

Notably, while the EBBM itself is not inherently linear, the proportional relationships observed 

in r : e emerged from independently optimized solutions under varying constraint structures.  Combined 

with the r : e and cost relationships holding when exposed to edge cases of each variation, this shows 

that the conceptual relation found in the KKM is structurally robust, even when introducing complexities 

or applying extreme values. 

 

9.1.3 Answer to Sub-Question 3 

The comparative model analysis conducted in this thesis demonstrates the substantial diversity and 

complexity found within energy system modelling. This resulted in models covering a broad range of 

studies, employing distinct methodologies, datasets, assumptions and geographic contexts. Data was 

systematically extracted, normalised, and plotted the r : e relationship from three selected alternative 

models: the Pathway Study 2.0, the CE Delft study and the E-Bridge study. These models formed the 

base for answering the third and final sub-question SQ3: “How Does the Renewable Generation-to-

Electrolyser Build-Out Relation in the KKM Compare with Alternative Energy System Models?”. 

 

Despite significant methodological and geographic differences all models revealed a similar 

fundamental relationship. Particularly, the Pathway Study 2.0 exhibited a pronounced alignment with 

the KKM’s behaviour, validating the conceptual logic of rapid electrolyser deployment once renewable 

capacity surpasses certain thresholds. While the CE Delft and E-Bridge studies showed somewhat 

flatter slopes, which may be causes by additional constraints such as spatial siting, infrastructure 

limitations, and international trade dynamics, they still broadly supported the conceptual trend outlined 

by the KKM. Consequently, although the specific quantitative outcomes varied due to different datasets, 

methodological and regional differences, the comparative analysis consistently supported the 

robustness and general applicability of the KKM’s conceptual framework across varying contexts. 

 

9.1.4 Key Assumption Influence on the r : e Relation 

The key model assumptions identified within the KKM significantly influence the renewable energy-to-

electrolysis build-out relationship, primarily through altering the slope, timing, and cost-effectiveness of 

electrolyser deployment. Explicitly scrutinised assumptions such as electrolyser efficiency, demand 

flexibility, solar share, hydrogen storage cost, and battery interaction, each demonstrate distinct 

impacts on the system dynamics.  

 

For instance, introducing battery storage substantially lowers electrolyser capacity 

requirements, indicating batteries serve as effective short-term balancing alternatives. Changes in 

electrolyser efficiency and demand flexibility primarily affect total decarbonisation cost rather than the 

fundamental shape of the r : e relationship. Conversely, variations in the solar share and cost ratios 

between renewables and electrolysers profoundly impact the timing and extent of electrolyser 

deployment and the optimal balance between short-term and long-term storage solutions.  



 
 

69 
 

Moreover, the sequential introduction of high-certainty system complexities demonstrated how 

increased model realism systematically redistributes infrastructure requirements, leading to a flattened 

renewable-to-electrolyser relationship relative to the original KKM. 

 

Importantly, comparative analysis with other models, notably the Pathway Study 2.0, affirmed 

that despite differences in methodologies and assumptions, the essential conceptual relationship 

proposed by the KKM remains robust and broadly applicable. Hence, explicitly addressing the main 

research question "How Do Key Model Assumptions in the KKM Influence the Relationship 

Between Renewable Energy and Electrolysis Deployment?", it can be concluded that key 

assumptions in the KKM significantly impact this relationship through changes in both the level of 

deployment and the system’s characteristics. The fundamental proportional relationship between 

renewable energy generation and electrolyser deployment remains structurally sound and consistently 

observable across varied scenarios and contexts. 

 

9.1.5 General Implications  

The structural consistency of the r : e relationship across all compared models provides a robust basis 

for long-term hydrogen infrastructure planning. This indicates that, regardless of modelling approach, 

renewable generation and electrolyser capacity will need to scale in tandem beyond a critical system 

threshold. However, differences in the pace and steepness of this build-out highlight the importance 

of modelling operational constraints, flexibility measures, and spatial realities. While simplified models 

like the KKM are valuable for identifying system-level tipping points and high-level trends, they should 

be complemented by more detailed models when informing investment phasing, infrastructure 

coordination, or sector integration. 

 

The analysis also shows that decarbonising the final shares of electricity is costly, but that 

additional hydrogen production beyond this point adds relatively little marginal cost, supporting a 

phased strategy where hydrogen is layered onto an already decarbonised grid. This aligns with the 

broader hydrogen system perspective described by Kramer & Koning (2024), who stress that the 

feasibility and value of hydrogen production depend not only on electrolysis technology but also on 

the system context in which it is embedded. Their work underscores the importance of aligning 

infrastructure deployment with system-wide dynamics, a point that is operationalised in this thesis 

through the r : e framework. 

 

Finally, operational refinements such as battery interaction, demand flexibility, and 

electrolyser behaviour significantly reduce system cost, suggesting they should be prioritised both in 

future model development and in real-world design decisions. 

9.2 Future Research 

Building on the findings of this thesis, several directions for further research are recommended to 

deepen and broaden understanding of the r : e relationship. First, the KKM could be extended from its 

current static framework into a time-resolved version. This would allow for the simulation of year-by-

year developments in renewable capacity, hydrogen demand, and infrastructure roll-out, enabling a 

more realistic assessment of investment phasing and the timing of tipping points.  

 

Second, further work is needed to incorporate infrastructure constraints explicitly into the 

modelling framework. While the KKM abstracts from siting, grid limitations and network expansion, 
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these factors are critical in determining where and how electrolysers can be deployed at scale. This 

would allow for more realistic interpretation of the slope and timing of hydrogen build-out. Similarly, 

sector coupling (especially through power-to-heat technologies) could be added to capture the 

competition and synergy between hydrogen, electrification and heat demand in the decarbonisation 

process. 

 

In addition to these structural extensions, the role of energy storage by batteries deserves 

further detailed investigation. The KKM currently excludes batteries, yet they play a critical role in 

balancing short-term variability in renewable supply. Future research could explore the r : b relationship 

and how this interacts with hydrogen deployment. The inclusion of batteries could alter the r : e curve 

by reducing curtailment and shifting the timing of when surplus electricity is diverted to electrolysis. 

Testing the impact of a varying battery price would also be a very insightful addition. This effect would 

be especially important to test under multiple weather year simulations, both as isolated simulations 

and as sequential time series, to evaluate system robustness and battery interaction across different 

conditions. Such research would support a more nuanced understanding of the trade-offs between 

electricity storage and hydrogen conversion. 

 

Finally, policy scenario analysis could enhance the practical relevance of the r : e relationship. 

Future studies could test how policy instruments such as curtailment pricing or infrastructure subsidies 

influence the cost-optimal timing and scale of electrolysis deployment. These policy interventions may 

shift model behaviour, and their inclusion would allow for a more realistic exploration of how strategic 

incentives influence system development. Together, these research directions would significantly 

advance the conceptual foundation laid in this thesis, helping to bridge the gap between stylised 

relations and the operational, spatial and political realities of the real-world energy transition. 
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Appendix  

A. Electrolyser Battery Balancing Model 

A1. Model Functionality Description 

The section below gives a description of the EBBM’s functionalities, as found in Peping (2025).  

 

The EBBM model simulates the interaction between renewable energy generation, electricity demand, 

electrolysers, and batteries on an hourly basis over a full year. Renewable power generation is used to 

meet hourly electricity demand directly. Any surplus renewable energy, after satisfying direct demand, 

is allocated to the operation of electrolysers for hydrogen production. If the electrolyser capacity is fully 

utilized and excess energy remains, this surplus is directed to battery charging. 

 

When direct power supply cannot meet electricity demand, the model draws on battery storage. 

If the battery’s state of charge (SOC) is insufficient, the system pre-emptively reduces the electrolyser 

load in prior hours to prioritize battery charging ahead of an expected shortage. This strategy allows 

the system to anticipate and respond to future shortfalls. If both the battery and reduced electrolyser 

operation are unable to meet demand, backup power from a gas-fired plant is used. 

 

Conversely, when electricity demand is fully met by renewable generation, and the 

electrolysers are not operating at full capacity, the battery may discharge to increase electrolyser power 

input—provided this does not compromise battery availability for future demand shortages. Whether 

this reverse discharge strategy is applied depends on expected curtailment and the battery’s ability to 

recharge later. This approach prioritizes maximizing hydrogen production when feasible. 

 

To further optimize energy system performance, the model identifies the optimal timing and 

intensity of battery use in relation to electrolyser operation. Specifically, it compares the battery SOC 

curve with the electrolyser input curve to determine key inflection points. The model seeks to maximize 

electrolyser operation during hours when battery discharge can most effectively supplement insufficient 

renewable input. This is achieved by aligning peaks in battery availability with dips in renewable supply 

to the electrolysers, ensuring that hydrogen production continues even when direct renewable input 

temporarily drops. In this way, the battery discharge is not applied uniformly, but strategically, to 

maintain electrolyser throughput while preserving battery charge for critical demand moments. 

 

The model also includes operational profiles for batteries and electrolysers. Battery operations 

are tracked through state-of-charge curves and charging/discharging rates. Electrolyser performance 

is recorded via production profiles and energy input curves. These outputs enable a detailed 

understanding of system behaviour and energy flow dynamics, including power generation, direct 

consumption, battery storage use, and hydrogen production. 

 

Shortages are tracked across all hours. When they occur, the model follows a hierarchy: direct 

supply first, then battery discharge, followed by electrolyser load reduction, and finally backup power 

usage. In moments of surplus, the model follows the reverse order—first meeting demand, then 

charging the battery, and lastly increasing electrolyser output. 
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The final output includes cumulative energy data: direct power supplied, curtailed energy, 

battery charging and discharging, electrolyser load, and hydrogen production. Additionally, a 

normalized demand and supply profile is generated, allowing evaluation of energy balance throughout 

the year and identifying critical bottlenecks, surpluses, and backup energy needs. This forms the basis 

for assessing system decarbonization performance and identifying strategic roles for batteries and 

electrolysers in balancing intermittent renewable supply. 

 

A2. Overview and Description of EBBM Input Variables 

 
Appendix A2: Overview of input variables for the EBBM. 

 

 
Appendix A2: Dashboard with input values and constants used in the EBBM. 
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Appendix A2: Description of EBBM input variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Variable Description

Average Renewable Energy Generation (r)

Represents the portion of renewable energy 

generation relative to total system energy demand, 

measured in GWh/h. 

Electrolyser Capacity (e)

Defines the proportion of installed 

electrolyser capacity, measured in GW. 

Average Demand (D) Average total system energy consumption

Demand Curve (Demand curve?)

Determines if demand is flat or follows 

typical patterns

Installed Battery Capacity (B)

Available battery storage capacity in the 

system, measured in GWh

Battery Cost (c_b) Investment cost per unit of battery storage capacity.

Renewables Cost (c_r) Investment cost per unit of renewable capacity.

Electrolyzer Cost (c_e) Investment cost per unit of electrolyser capacity.

Cost of Firm Energy (c_f) Investment cost per unit of non-renewable capacity.

Battery Efficiency (η_b) Round-trip efficiency of battery storage

Electrolyzer Efficiency (η_e) Efficiency of converting electricity to hydrogen.

Hydrogen to Power Efficiency (η_p) Efficiency of converting hydrogen to electricity.

Minimum Load Electrolysers

Specifies the lowest safe operational capacity 

for electrolyzers.

Standby Losses

Energy needed to maintain electrolyzers in readiness 

during standby.

Cold Standby Losses Energy losses during cold standby conditions.

Minimum Standby Period

Minimum idle duration to avoid degradation from 

frequent cycling.

Flattening, Bridging & 2nd Iteration Model-specific operational adjustment process.

Hydrogen Efficiency Curve

Indicates if hydrogen conversion efficiency is 

constant or variable.

Power Transport Limit of Energy in Offshore Hub(s)

Applies transmission limits for offshore-to-shore power; 

offshore electrolysis capacity fills gap.

Energy in Offshore Hub(s)

Energy directly used offshore, bypassing 

shore-based demand.

Demand Flexibility

Ability of system demand to dynamically adjust, 

reducing storage needs.

Ideal Electrolyser Utilisation (e/e_ideal) Target operational utilization rate for electrolyzers.

Power Successfully Allocated to Demand (Ug/Ug target) Effectiveness of renewable power matched to demand.

Ideal Battery Utilisation (b/b_ideal) Benchmark for optimal battery use.

Offshore Hubs (Hubs) Number of offshore renewable generation hubs included.

Power Transmission Converted to 

Power-to-Gas Capacity (HVDC -> PtG capacity)

Limits on transmission converted into hydrogen 

production capacity.

Degree of Carbonisation (Ug_H2-to-market-first (power + hydrogen)) Prioritization of hydrogen and electricity delivery to market.
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A3. Example Profiles 

 

 
Appendix A3: Example of battery production profile, as produced by the EBBM. 

 
Appendix A3: Example of electrolyser production profile, as produced by the EBBM. 
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Appendix A3: A chronological time-series plot, as produced by the EBBM. 

 

 



 
 

84 
 

B. Sensitivity and Robustness Analysis 

B1. Overview of Runs and Output of the Sensitivity Analysis 
 
 

 
Appendix B1: Overview of runs and output for variations A-E from the waterfall chart. 

 

 
 

Demand Fluctuations Battery Interaction Electrolyser Efficiency Curve Hydrogen Storage Cost Electrolyser Limitations
Renewable  

Capacity (R)

Electrolyser

 Capacity (E)

Battery  

Capacity (B)

Cost per kWh/h 

Decarbonisation (C)

KKM 0.8 False False False False False 1.0097 0.2075 0.0 6068

0.9 False False False False False 1.1937 0.5799 0.0 6939

1 False False False False False 1.4166 0.9572 0.0 7812

10% Excess False False False False False 1.5288 1.1707 0.0 7853

20% Excess False False False False False 1.6638 1.3653 0.0 7910

A 0.8 True False False False False 0.9667 0.1591 0.0 5736

0.9 True False False False False 1.1706 0.4882 0.0 6667

1 True False False False False 1.4069 0.8420 0.0 7594

10% Excess True False False False False 1.5220 1.0568 0.0 7667

20% Excess True False False False False 1.5907 1.2096 0.0 7767

B 0.8 True True False False False 0.9042 0.0212 75.9 5454

0.9 True True False False False 1.0676 0.2711 110.7 6215

1 True True False False False 1.2690 0.5688 130.1 7014

10% Excess True True False False False 1.3736 0.7584 134.7 7079

20% Excess True True False False False 1.4798 0.9064 160.8 7148

C 0.8 True True True False False 0.8988 0.0329 77.4 5452

0.9 True True True False False 1.0667 0.2733 110.3 6213

1 True True True False False 1.2665 0.5753 128.3 7006

10% Excess True True True False False 1.3691 0.7662 133.1 7065

20% Excess True True True False False 1.4750 0.9139 158.0 7131

D 0.8 True True True True False 0.9083 0.0001 82.2 5777

0.9 True True True True False 1.1021 0.2216 127.5 6367

1 True True True True False 1.2626 0.5213 156.9 7235

10% Excess True True True True False 1.3680 0.6590 183.0 7271

20% Excess True True True True False 1.4834 0.8187 191.8 7333

E 0.8 True True True True True 0.9099 0.0001 78.6 5773

0.9 True True True True True 1.0836 0.2508 114.8 6541

1 True True True True True 1.2818 0.5480 144.9 7328

10% Excess True True True True True 1.3831 0.6903 177.2 7375

20% Excess True True True True True 1.5048 0.8474 184.0 7430

Inputs Outputs
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Appendix B1: Overview of runs and output for variations F and G of the sensitivity analysis.. 

 

 
 
 
 
 
 
 
 
 

Demand 

Fluctuations

Battery 

Interaction

Electrolyser 

Efficiency Curve

Hydrogen 

Storage Cost

Electrolyser 

Limitations

Electrolyser

Efficiency

Demand

Flexibility
Solar Share CR

Renewable  

Capacity (R)

Electrolyser

 Capacity (E)

Battery  

Capacity (B)

Cost per kWh/h 

Decarbonisation (C)

Base case (E) 0.8 True True True True True 70% 0% 30% 3 0.9099 0.0001 78.6 5773

0.9 True True True True True 70% 0% 30% 3 1.0836 0.2508 114.8 6541

1 True True True True True 70% 0% 30% 3 1.2818 0.5480 144.9 7328

10% Excess True True True True True 70% 0% 30% 3 1.3831 0.6903 177.2 7375

20% Excess True True True True True 70% 0% 30% 3 1.5048 0.8474 184.0 7430

F1 0.8 True True True True True 60% 0% 30% 3 0.9192 0.0001 73.5 5770

0.9 True True True True True 60% 0% 30% 3 1.0897 0.2286 139.7 6617

1 True True True True True 60% 0% 30% 3 1.2977 0.5342 193.5 7525

10% Excess True True True True True 60% 0% 30% 3 1.4226 0.7120 205.6 7631

20% Excess True True True True True 60% 0% 30% 3 1.5527 0.9149 216.1 7777

F2 0.8 True True True True True 80% 0% 30% 3 0.9128 0.0001 73.7 5770

0.9 True True True True True 80% 0% 30% 3 1.0714 0.2569 104.5 6466

1 True True True True True 80% 0% 30% 3 1.2547 0.5312 130.5 7148

10% Excess True True True True True 80% 0% 30% 3 1.4466 0.7545 142.9 7152

20% Excess True True True True True 80% 0% 30% 3 1.5593 0.9364 157.7 7169

G1 0.8 True True True True True 70% 5% 30% 3 0.8695 0.0001 65.7 5634

0.9 True True True True True 70% 5% 30% 3 1.0521 0.2167 104.0 6401

1 True True True True True 70% 5% 30% 3 1.2432 0.5163 141.4 7207

10% Excess True True True True True 70% 5% 30% 3 1.3507 0.6618 165.0 7269

20% Excess True True True True True 70% 5% 30% 3 1.4626 0.8332 182.0 7357

G2 0.8 True True True True True 70% 10% 30% 3 0.8655 0.0001 55.4 5494

0.9 True True True True True 70% 10% 30% 3 1.0158 0.1768 98 6246

1 True True True True True 70% 10% 30% 3 1.2666 0.5341 121.9 7067

10% Excess True True True True True 70% 10% 30% 3 1.3661 0.6882 136.4 7175

20% Excess True True True True True 70% 10% 30% 3 1.4358 0.8087 168.3 7269

OutputsInputs
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Appendix B1: Overview of runs and output for variations H and I of the sensitivity analysis.

Demand 

Fluctuations

Battery 

Interaction

Electrolyser 

Efficiency Curve

Hydrogen 

Storage Cost

Electrolyser 

Limitations

Electrolyser

Efficiency

Demand

Flexibility
Solar Share CR

Renewable  

Capacity (R)

Electrolyser

 Capacity (E)

Battery  

Capacity (B)

Cost per kWh/h 

Decarbonisation (C)

Base case (E) 0.8 True True True True True 70% 0% 30% 3 0.9588 0.0001 75.3 5997

0.9 True True True True True 70% 0% 30% 3 1.1208 0.3643 103.9 6784

1 True True True True True 70% 0% 30% 3 1.3514 0.8713 157.5 7575

10% Excess True True True True True 70% 0% 30% 3 1.4550 1.0581 171.9 7769

20% Excess True True True True True 70% 0% 30% 3 1.5692 1.2641 210.0 7846

H1 0.8 True True True True True 70% 0% 20% 3 0.9503 0.0001 93.4 5829

0.9 True True True True True 70% 0% 20% 3 1.0822 0.0941 135.2 6617

1 True True True True True 70% 0% 20% 3 1.3414 0.4173 176.8 7499

10% Excess True True True True True 70% 0% 20% 3 1.4480 0.5994 194.0 7568

20% Excess True True True True True 70% 0% 20% 3 1.5669 0.7454 210.4 7666

H2 0.8 True True True True True 70% 0% 40% 3 0.9161 0.0001 87.1 5774

0.9 True True True True True 70% 0% 40% 3 1.0489 0.1023 165.4 6821

1 True True True True True 70% 0% 40% 3 1.3382 0.4394 202.6 7917

10% Excess True True True True True 70% 0% 40% 3 1.4819 0.5790 201.1 8066

20% Excess True True True True True 70% 0% 40% 3 1.6083 0.7483 210.1 8208

I1 0.8 True True True True True 70% 0% 30% 2 0.8997 0.1023 53.2 5740

0.9 True True True True True 70% 0% 30% 2 1.1092 0.3892 64.5 6420

1 True True True True True 70% 0% 30% 2 1.3352 0.7183 76.6 7084

10% Excess True True True True True 70% 0% 30% 2 1.4573 0.8893 83.5 7077

20% Excess True True True True True 70% 0% 30% 2 1.5935 1.0964 84.3 7087

I2 0.8 True True True True True 70% 0% 30% 6 0.8997 0.1023 53.2 5740

0.9 True True True True True 70% 0% 30% 6 1.1092 0.3892 64.5 6420

1 True True True True True 70% 0% 30% 6 1.3352 0.7183 76.6 7084

10% Excess True True True True True 70% 0% 30% 6 1.4573 0.8893 83.5 7077

20% Excess True True True True True 70% 0% 30% 6 1.5935 1.0964 84.3 7087

Inputs Outputs
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B2. Plots of Sensitivity Analysis Runs 

 

 
Appendix B2: r : e plot for variation F (electrolyser efficiency). 

 
Appendix B2: r : e plot for variation G (demand flexibility). 
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Appendix B2:  r : e plot for variation H (solar share). 

 

 
Appendix B2:  r : e plot for variation I (cost ratio). 
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Appendix B2: r : b plot for variation F (electrolyser efficiency). 

 

 
Appendix B2: r : b plot for variation G (demand flexibility). 



 
 

90 
 

 

 

 
Appendix B2: r : b plot for variation H (solar share). 

 

 
Appendix B2: r : b plot for variation I (cost ratio). 
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Appendix B2: Total power system decarbonisation cost for variation F (electrolyser efficiency). 

 

 

 
Appendix B2: Total power system decarbonisation cost for variation G (demand flexibility). 
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Appendix B2: Total power system decarbonisation cost for variation H (solar share). 

 

 

 
Appendix B2: Total power system decarbonisation cost for variation I (cost ratio). 
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B3. Overview of Runs and Output of the Robustness Analysis  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Demand 

Fluctuations

Battery 

Interaction

Electrolyser 

Efficiency Curve

Hydrogen 

Storage Cost

Electrolyser 

Limitations

Renewable  

Capacity (R)

Electrolyser

 Capacity (E)

Battery  

Capacity (B)

Cost per kWh/h 

Decarbonisation (C)

J1 0.8 True True True True True 0.9025 0.0001 88.3 5767

0.9 True True True True True 1.1170 0.2337 114.0 6694

1 True True True True True 1.2777 0.5519 129.0 7728

10% Excess True True True True True 1.4510 0.7713 134.7 7896

20% Excess True True True True True 1.5609 0.9319 157.5 8139

J2 0.8 True True True True True 0.9040 0.0001 86.3 5767

0.9 True True True True True 1.1119 0.2212 124.7 6393

1 True True True True True 1.3496 0.5632 140.7 6974

10% Excess True True True True True 1.4486 0.7654 139.9 6936

20% Excess True True True True True 1.5601 0.9326 158.8 6916

K 0.8 True True True True True 0.9766 0.0001 48.7 5586

0.9 True True True True True 0.9654 0.0483 81.9 6386

1 True True True True True 1.1517 0.3881 121.1 7024

10% Excess True True True True True 1.2956 0.5739 139.0 7117

20% Excess True True True True True 1.3761 0.7284 153.4 7077

Inputs Outputs
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B4. Plots of Robustness Analysis Runs 

 

 
Appendix B4: r : e plot for variation J (electrolyser efficiency edge cases). 

 
Appendix B4: r : e plot for variation K (demand flexibility edge case). 
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Appendix B4: r : e plot for variation L (solar share edge cases). 

 
Appendix B4: r : e plot for variation M (cost ratio edge cases). 
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Appendix B4: r : b plot for variation J (electrolyser efficiency edge cases). 

 

 
Appendix B4: r : b plot for variation K (demand flexibility edge cases). 
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Appendix B4: r : b plot for variation L (solar share edge cases). 

 

 
Appendix B4: r : b plot for variation M (cost ratio edge cases). 
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Appendix B4: Total power system decarbonisation cost for variation J (electrolyser efficiency edge cases). 

 
 
 

 
Appendix B4: Total power system decarbonisation cost for variation K (demand flexibility edge cases). 
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Appendix B4: Total power system decarbonisation cost for variation L (solar share edge cases). 

 
 
 

 
Appendix B4: Total power system decarbonisation cost for variation M (cost ratio edge cases). 
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C. Comparative Model Analysis 

C1. MCA Longlist 

 

 

C2. INT Scenario Description from the CE-Delft Study 

“In this scenario, the Netherlands aims to develop its own economy by fully engaging with global energy 

and raw materials supply chains. The country acts as a 'multinational', strategically leveraging 

international energy and resource markets. Consequently, it seeks the lowest-cost options on the global 

market, with international free trade playing a key role. The market is supported through general 

incentives, subsidies, and carbon pricing — which also encourages Dutch companies to contribute to 

the sustainability of the supply chain. 

 

Hydrogen and other climate-neutral energy carriers are imported from countries where they 

can be produced relatively cost-effectively. The Netherlands becomes a transit hub for hydrogen. In the 

built environment, the focus is on individual transition pathways, with less reliance on green gas and 

greater use of hybrid heating systems in combination with hydrogen. 

 

The industrial sector decarbonizes through electrification and the use of hydrogen (also as a 

feedstock). As a result of global trade flows, some energy-intensive industries relocate abroad. Instead, 

the Netherlands imports more semi-finished products, which are further processed domestically. In 

addition, the country invests in the domestic production of green hydrogen, directly linked to offshore 

wind. (Netbeheer Nederland, 2023)” 

 

 

 

 

 

 

 

 

Nr. Name study Author and year
1 Assessment for Connection Concepts for DE Far Out NS E-Bridge (2024)
2 Floating Offshore Wind Outlook IRENA (2024)
3 Global Offshore Wind Report Global Wind Energy Council (2024)
4 Infrastructure and Financing of the North Sea Energy and Climate Policy and Innovation Council (2024)
5 Integral Infrastructure 3050 Netbeheer Nederland (2023)

6
Integration of Renewable Energy Sources in future 
power systems: the role of storage Weitemeyer et al. (2014)

7 Key Insights from the North Sea Integration Model Fluxys (2024)
8 More Wind at Sea for Climate Neutrality Agora Energiewende (2024)
9 Offshore Power and Hydrogen Networks for Europe's North Sea Glaum et al. (2024)

10
Optimal hydrogen production in a wind-dominated zero-emission
 energy system Weimann et al. (2021)

11 Pathway 2.0 Study North Sea Wind Power Hub (2024)
12 Power sector effects of green hydrogen production in Germany Kirchem & Schill (2023)

13
Role of Long-Duration Energy Storage in  Variable Renewable 
Electricity Systems Dowling et al. (2020)

14
Synergies of sector coupling and transmission reinforcement
 in a cost optimised, highly renewable European energy system Brown et al. (2018)

15 System Integration Analysis for Programme VAWOZ CE-Delft (2024)
16 Ten Year Network Development Plan ENTSO-E & ENTSOG (2022)
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C3. MET Scenario Description from the E-Bridge Study 
 

“The scenario "Molecule-based energy transition" (MET) achieves the decarbonization until 2045 in line 

with the German policy targets by a strong(er) use of green gases (in comparison to CN). In line with 

the forecast of this transition scenario, a decisive share of current CH4 demand within the industry- and 

heating sector get substituted. Yet, the increased use of H2, especially in industry beyond material 

utilisation but also in some regions in the heating sector (e.g., heating networks) and in some parts of 

the heavy-duty transport sector leads to an overall higher level of hydrogen utilisation.  

 

This development is also driven since limitations in acceptance of RES extension and a 

stronger push from society in the direction of (green-)gas applications for diversification, whole system 

efficiency, and cost reasons. The scenario has consequently a higher level of energy (hydrogen) import 

in the long run but therefore can manage to decrease the final onshore RES extension level (while 

maintaining it at a high level). A coal phase-out is reached latest by 2038.” 
 

C4. DE Free Offshore Scenario Description from the NSWPH Study 

The DE Free Offshore scenario expands on the Distributed Energy storyline by optimally scaling 

renewable and hydrogen infrastructure out to 2050. It endogenously determines offshore wind capacity, 

electrolysers, power and hydrogen transmission networks, and storage solutions to meet predefined 

annual electricity and hydrogen demand targets for 2030, 2040, and 2050. A modular, hub‐and‐spoke 

design is central to this scenario: multiple offshore hubs capture large-scale wind potential in the North 

Sea, convert surplus electricity into hydrogen near these sites, and transport both electricity and 

hydrogen via optimized HVDC and pipeline networks to shore. This layout enhances system integration 

by using electrolysers as flexible demand, improving offshore infrastructure utilization compared to 

more centralized alternatives 
 
 
 

 

 

 

 
 


