
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Managing Code Clones Using Dynamic
Change Tracking and Resolution

Michiel de Wit, Andy Zaidman, Arie van Deursen

Report TUD-SERG-2009-019

SERG



TUD-SERG-2009-019

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Paper accepted for publication in the proceedings of the 25th International Conference on Software
Maintenance (ICSM 2009)

c© copyright 2009, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Managing Code Clones Using Dynamic Change Tracking and Resolution?

Michiel de Wit, Andy Zaidman, Arie van Deursen

Delft University of Technology
The Netherlands

mail@michieldewit.nl, {a.e.zaidman, arie.vandeursen}@tudelft.nl

Abstract

Code cloning is widely recognized as a threat to the
maintainability of source code. As such, many clone detec-
tion and removal strategies have been proposed. However,
some clones can often not be removed easily so other strate-
gies, based on clone management need to be developed. In
this paper we describe a clone management strategy based
on dynamically inferring clone relations by monitoring clip-
board activity. We introduce CLONEBOARD, our Eclipse
plug-in implementation that is able to track live changes to
clones and offers several resolution strategies for inconsis-
tently modified clones. We perform a user study with seven
subjects to assess the adequacy, usability and effectiveness
of CLONEBOARD, the results of which show that develop-
ers actually see the added value of such a tool but have strict
requirements with respect to its usability.

1 Introduction

Copying source code is a common practice among soft-
ware developers [18] and is often performed [3] for all sorts
of reasons [17]. Duplicated pieces of source code are typ-
ically referred to as ‘clones’, which Basit and Jarzabek de-
fine as: “code fragments of considerable length and sig-
nificant similarity” [5]. This definition implies that non-
identical, but sufficiently similar pieces of code should also
be considered clones. To better capture the differences be-
tween identical and very similar clones, various researchers
have proposed clone classification schemes, e.g., [7, 4].

Although no clone is the same, it is generally true that
clones have a negative impact on the maintainability of the
software [17, 21]. A recent experiment by Lozano and Wer-
melinger [24] shows that cloning often increases the main-
tenance effort. The following list gives an impression of the
sorts of problems that cloning may lead to:

?This work is described in more detail in the MSc thesis of Michiel de
Wit [11].

• Being a form of redundancy [15], there is a ten-
dency towards code growth, causing longer compila-
tion times.
• By copying and pasting existing code, bugs can easily

be propagated [18].
• Code may become so heavily duplicated, that develop-

ers might start to consider it an idiom [17] and will no
longer doubt its correctness.

On the other hand, Kapser and Godfrey [17] show that
cloning has its benefits as well, e.g., often developers dupli-
cate existing code as a starting point to develop new code
more quickly. This technique is dubbed ‘forking’. Krinke
meanwhile shows that cloned code tends to be more stable
than other code as clones are less likely to be edited once
they have been created [22].

Studies have shown that software corpora tend to contain
large amounts of code clones, ranging from 7% to 23% [20].
As such, the research community has invested a lot of effort
into detecting clones [6, 16] and removing clones through
refactoring [13, 8]. Kim et al. on the other hand suggest that
about 50% of clones found in source bases cannot be refac-
tored [19], which opens the door for code clone manage-
ment, i.e., supporting developers in containing code clones
and helping them update and maintain cloned fragments.

In this context, Mann [25] suggest to gather clone in-
formation while code is written rather than in retrospective
as is currently common [21]. Mann proposes to replace
the typical copy and paste operations supported by most
development environments with well-defined cloning op-
erations so that the developer’s duplication intentions can
be better modeled. These new operations add meaning to
copied fragments, stating whether the copied fragments are
meant to remain identical, are subject to minor changes or
are copied for other reasons.

This research operationalizes Mann’s concept, imple-
ments these concepts in an Eclipse plug-in called CLONE-
BOARD and addresses the following research questions:
RQ1 Are developers willing to alter existing copy and

SERG De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution

TUD-SERG-2009-019 1



paste habits to help contain code clones?
RQ2 In what ways can the relations established by using

Mann’s operations be used to enforce consistent edit-
ing of clones?

RQ3 Will CLONEBOARD help reduce problems related to
cloning?

The structure of this paper is as follows: Section 2 in-
troduces the conceptual design of the new copy and paste
operators. Section 3 explains our experimental setup, while
Section 4 presents the results, which are in turn discussed
in Section 5. We go over the threats to validity in Section 6.
Section 7 presents related work and Section 8 concludes.

2 Conceptual design of Mann’s copy & paste
operations

Given the extensive use of copy-paste operations and the
risks associated with introducing inconsistencies in these
cloned fragments, we know that there is a need to help pre-
vent these inconsistencies from being introduced. This un-
derstanding is further reinforced by observations from a sur-
vey by LaToza et al.: 59% of developers feel that finding all
instances of duplicated code is a serious problem [23].

In this context, Mann proposes to rethink current edi-
tor programs and to implement techniques that help keep
redundant code consistent [25]. As it is generally quite
hard to differentiate between code duplication that is due
to semantic redundancy and duplication that is inherent to
the language’s grammar, it is necessary to actively include
the developer in the process of guarding code consistency.
Mann’s solution is to replace the cut, copy, and paste oper-
ations with a new set of operations that correspond directly
to the intended semantics behind their use. With these op-
erations, the user can specify semantic relationships among
copied objects, and the editor program can use that informa-
tion to help in the long-term support of those relationships,
thus avoiding inconsistencies [25].

2.1 Copy and Paste Scenarios

Mann describes five typical scenarios involving the clip-
board, he furthermore associates a risk for introducing in-
consistencies to each of the five scenarios (see Table 1) [25].
Additionally, these five scenarios help to get a better impres-
sion of the reasons developers have for using the clipboard
during their programming work.

2.2 Mann’s Replacement Operators

Mann proposes to counter the risks associated with the
aforementioned five copy and paste scenarios (see Table 1),
by introducing four operations that are to replace the stan-
dard cut, copy and paste operations [25]:

Move A code fragment can be moved, similar to the cut
and paste command sequence, but removing the code
fragment from the clipboard.

Copy-identical A code fragment is duplicated and kept
synchronous with the original fragment automatically.

Copy-and-change Duplication, but with the constraint that
the user must change the fragment after duplication.

Copy-once This operator copies a fragment, without
adding further constraints. As such, this operator em-
ulates the original copy and paste commands.

Mann suggests that the relations established by these op-
erations should be maintained by the development environ-
ment automatically. In practice, this means that the copy-
identical and the copy-and-change operations need extra at-
tention, whereas the other two operations basically emulate
conventional clipboard use.

2.3 CloneBoard

We implemented the copy and paste replacement oper-
ators in an Eclipse plug-in called CLONEBOARD which is
available for download1. For our implementation, we in-
terpreted the Mann operations rather flexibly, as we did not
actually replace the copy and paste operations, but rather
queried the user every time we needed to infer one of
Mann’s newly proposed operations. This has the benefit
that the developers do not need to get used to new shortcuts
or menu options.

In practice, this means that when the developer uses
the copy and paste commands to introduce a new clone,
CLONEBOARD registers the clone relation. When the de-
veloper tries to one of the clones in a clone relation, the
clone change resolution window pops up (see Figure 1),
querying the user as to which change resolution he wants
to perform on the particular clone instance and/or the whole
clone relation. The resolution strategies that the user can
choose from are:
• Parameterize clone, i.e., introduce a parameter-token

in the cloning relation.
• Unmark clone’s tail, i.e., remove tokens from the

cloning relation at the end of the fragment.
• Unmark clone’s head, i.e., remove tokens from the

cloning relation at the start of the fragment.
• Postpone resolution
• Unmark clone, i.e., remove the clone instance from the

clone relation.
• Apply changes to all clones
• Ignore changes

Through a set of simple heuristics the resolution strategies
are ordered such that the strategy deemed most suitable for
the current clone is listed first. Some example heuristics are:

1CLONEBOARD homepage at: http://swerl.tudelft.nl/
bin/view/Main/CloneBoard

De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution SERG

2 TUD-SERG-2009-019



Scenario Description Risk of
inconsistencies

Cut to delete Developers may use the clipboard functionality to delete a specific code fragment, with
the assurance that the removed code can be easily restored.

Low

Cut/paste to move The intended use of the cut and paste command sequence is to move code. Low
Copy/paste to duplicate Code is placed on the clipboard to be replicated at one or more locations later on. Medium to high
Copy/paste to create template When larger code fragments are duplicated, they are probably not meant to be copied

literally, but rather serve as a template for similar code that needs to be written [17].
High

Copy/paste without logical connection Other reasons may exist for duplicating code, e.g., when programming languages con-
tain a lot of structure elements, chances are that a developer will copy/paste these.

Medium

Table 1. Five common copy and paste scenarios and their intrinsic risks.

Figure 1. Part of the CLONEBOARD user inter-
face.

Figure 2. The CloneBar.
(1) in order to parameterize clones, the number of changed
tokens should be low, (2) for unmarking the clone’s tail, the
last tokens of the fragment should be changed, (3) postpon-
ing is done when changes are being made to comments.

Once a clone relation has been established, CLONE-
BOARD indicates the presence of clones through the
CloneBar (Figure 2 – e.g., a red marker in the left column
indicates an inconsistent clone) and the CloneView, a hier-
archical overview of clones in the current project.

3 Experimental setup

In our experiment we want to verify whether CLONE-
BOARD is able to change the software development habits
of its users. Specifically, we are interested in the opinion of
developers regarding the adequacy, usability and effective-

ness of CLONEBOARD. For this, we let seven experimental
subject work with CLONEBOARD during a number of pro-
gramming assignments. We employ a one-group pretest-
posttest pre-experimental design [9]. This type of experi-
ment is called pre-experimental to indicate that it does not
meet the scientific standards of experimental design [2], yet
it allows to report on facts of real user-behavior, even those
observed in under-controlled, limited-sample experiences.

3.1 One-group pretest-posttest

In a one-group pretest-posttest pre-experimental design,
only one group is tested. Instead of having a control group
like in a controlled experiment, the experimental group is
subjected to an extra test before the experiment is con-
ducted. This test serves as a baseline to which the mea-
surements gathered after the experiment can be compared.
During pretesting and posttesting, the subjects are measured
in terms of the dependent variables. Usually, the same ques-
tionnaire is used both before and after varying the indepen-
dent variable (i.e., introducing the tool). By using the same
questions, the pretest and posttest results can be compared
easier.

For our questionnaires we employ close-end matrix
questions in which respondents can rate a number of state-
ments on a 1 to 5 scale, ranging from ‘strongly disagree’ to
‘strongly agree’ (the so-called Likert scale).

Pretest design For the pretest2, a total number of five
themes were chosen. Each theme relates to a different as-
pect of the experiment. Most themes are intended to deter-
mine possible external variables that might influence the de-
pendent variables, other than the independent variable that
is being examined (i.e., the use of CLONEBOARD).

1. Personal background: age, education level and current
professional occupation.

2. Development experience: statements related to pro-
gramming experience and experience with RoboCode,
the case for our experiment (see Section 3.2).

3. Attitude towards code quality: statements related to
code quality in order to gauge each developer’s stand-
point towards code quality.

2The pre- and posttest design are shown in detail in [11].

SERG De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution

TUD-SERG-2009-019 3



Statement.
With a clone management tool, one should be able to see what parts of
code have been cloned at any time. Such a tool should give a developer
the opportunity to inspect cloning on a per file basis. Furthermore, the
tool should alert a developer whenever he is changing a cloned frag-
ment, offering several resolution strategies to cope with the changes.
Among such strategies should be the options to update all clone in-
stances.
Questions.
a. Such a tool would significantly help to reduce clone related bugs
b. Interference by such a tool would primarily be inconvenient
c. A clone management tool will save me a lot of time
d. I dont see the added value of such a tool
e. I expect to be making use of this tool quite extensively
f. The tool will not be able to solve real problems

Figure 3. Question 5 of the pretest.

4. Attitude towards cloning: a number of statements that
gauge each subject’s familiarity with the concept of
cloning were added.

5. Expectations of a code clone management tool (after
introducing such a tool very abstractly – see Figure 3).

Posttest design After the subjects have completed their
assignments, they have to fill out a second questionnaire
serving as a posttest, of which the primary intent is to
measure whether the subjects’ expectations with regard
to a clone management system have been fulfilled and if
CLONEBOARD is found to be a useful example of such a
tool.

In the posttest, a number of different issues are ad-
dressed. First of all, a number of checks are performed to
verify that the experiment went well:

I Assignments experience: were the assignments too
hard, was there time pressure?

II Development style: we verify whether the subjects fol-
lowed the coding habits that the subjects indicated in
question 3 of the pretest.

We also make inquiries to assess each subject’s experi-
ences with the CLONEBOARD user interface. These ques-
tions are intended to measure to what extent the subject no-
ticed the presence of CLONEBOARD and actively used it.

III UI experience: some general questions on the subject’s
interaction with CLONEBOARD.

IV Resolution window experience: statements relating
specifically to the clone change resolution window.

To get an impression of the subject’s perception of the
change resolutions, we pose the following questions:

V Resolution frequency: the subjects are asked to indi-
cate how many times they used each of the seven res-
olutions: never, once, 2–5 times, 6–10 times, or more
than 10 times. Given the relatively short time given for
the assignments and existing figures about developer
copy and paste usage [18], this scale seems to be fair.

VI Resolution value: the usefulness of each of the resolu-
tions on a Likert scale is asked for. If a resolution is

never used, the participants are asked to indicate how
useful they think the resolution would be.

The seventh question of the questionnaire addresses the
dependent variable. Subjects were given the same seven
statements as used in question 5 of the pretest (see Figure 3),
only changed to feature the name of the clone management
tool. Next, we can compare the answers for this question
to those given in the pretest, to see to what extent CLONE-
BOARD meets the subjects’ expectations.

To further measure the participants’ perception of the
CLONEBOARD user interface and to see to what extent
problems in the usability of the tool hindered its use, we
added an extra series of Likert-scale statements.

As a means to assert that problems with the case, the exe-
cution of the experiment, its documentation or the question-
naires did not have a negative effect on its validity, subjects
were asked to rate a final series of statements. Instead of a
Likert scale, a scale from 1 to 9 is used to enable partici-
pants to give a more fine-grained answer.

We also left enough space for participants to write down
some comments or suggestions they might have.

3.2 RoboCode

To test its influence on the dependent variables, subjects
will have to be exposed to CLONEBOARD, preferably in a
way that maximizes generalizability of the final results. We
do this by simulating a development task in an environment
that includes CLONEBOARD. However, simulating a devel-
opment task is not easy. For this experiment, we picked
an existing software system as a case and give subjects a
number of programming assignments that involve modify-
ing existing source code. For this approach to be success-
ful, a number of important conditions have to be met: (1) it
should involve a realistic, sufficiently complex case, (2) the
case should be interesting to get test subjects involved, (3)
participants should be equally familiar with the case, and
(4) the case should be relatively easy to learn.

After careful consideration, RoboCode3 was selected as
the case for our experiment. RoboCode is an artificial in-
telligent (AI) programming puzzle. RoboCode implements
a simulation framework in which several artificially intelli-
gent agents are confronted to each other to find the one with
the best logic. Each of the agents represents a robot, that is
put into an arena with other robots in a struggle for victory.

3.3 Programming assignments

We created a basic robot implementation in RoboCode,
as an example for the programmers. We then designed
five programming assignments, for which we attempted to

3See http://robocode.sourceforge.net/

De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution SERG

4 TUD-SERG-2009-019



include tasks that would provoke code cloning. Specif-
ically, we reused a number of motives for cloning de-
scribed in literature, e.g., reuse of complicated control struc-
tures [18, 17] and the lack of language support for sec-
ondary concerns [26].

In the first two assignments, the subjects were asked to
implement logging functionality. These assignments both
help participants to get to know the software better and are
likely to give rise to code cloning. The third assignment
requires the developers to implement a series of variations
on an already implemented target selection algorithm. The
variations were designed not to be too large, making them
excellent candidates for code duplication. Finally, the fifth
assignment more or less gives participants carte blanche to
extend and alter the robot code as they see fit. The final list
of assignments used in the experiment is detailed in [11].

3.4 Pilot

To test run the experiment and locate any problems in
its design, a pilot study with one subject was performed
prior to the actual experiment. The pilot pointed us towards
a number of issues, in particular, we made the program-
ming assignments a little bit easier so that they would fit a
two-hour experiment. Furthermore, some bugs in CLONE-
BOARD were discovered and fixed.

4 Results

In this section we discuss the data obtained from the
pretest and the posttest. We defer the analysis of the results
to Section 5.

4.1 Subject Profile

The seven volunteers that participated in our experiment
were recruited within the computer science faculty, and as
such they all had either an MSc degree, PhD degree or were
very close to one. Furthermore, all participants were male
and had ages between 22 and 29. Three out of the seven vol-
unteers were working (part-time) as a software developer.

Most subjects consider themselves averagely experi-
enced (average score 3.4) and rather proficient (average
score 3.9) Java developers. For most, Eclipse is their ‘na-
tive’ development environment. None of the subjects had
prior knowledge of RoboCode.

The subjects’ attitude towards code quality is fairly con-
sistent (cf. the radar diagram in Figure 4a; each branch rep-
resents a single question; the colored surface indicates the
range of the answers given; the bold line shows the aver-
age) as writing clean code is valued about equally as writing
functional code (question 3a in Figure 4a). Most respon-
dents agree that bugs are often the result of programmer

18- 18-24 25

4

1

MSc Student PhD Student

0

1

2

3

4

5
3a

3b

3c

3d

3e

3f

(a) Attitude towards
code quality

0

1

2

3

4

5
4a

4b

4c

4d

4e

4f

(b) Attitude towards
cloning

Figure 4. Subject profile.

0

1

2

3

4

5
Ia

Ib

IcId

Ie

(a) Assignments experi-
ence

2d

0

1

2

3

4

5
IIa

IIb

IIc

IId

(b) Development style

0

1

2

3

4

5
IIIa

IIIb

IIIcIIId

IIIe

(c) UI experience

Figure 5. Subjects’ experiences with CLONE-
BOARD and the assignments.

sloppiness (3b, average score 3.7). All developers endorse
a focus on writing good quality code (3c, average score
4.0). Regarding commenting behavior, the subjects indi-
cated that they generally keep a fair balance between the
amount of code and comments they write, with a slight bias
towards code (3d, average 2.3). With only one subject rating
the statement lower than 3, respondents seemed to believe
that better tools can actually prevent bugs (3e, average 3.6).
Only few use Eclipse’s code refactoring facilities often (3f,
average 2.1).

With the exception of one respondent, all subjects were
very familiar with the concept of cloning (4a in Figure 4b)
and agree that copy and pasting is not the best reuse strat-
egy, neither in general (4c), nor when it comes to crosscut-
ting concerns (4d). Copy and paste habits seem to differ:
some indicate to copy and paste a lot while programming,
whereas others are more reluctant copiers (4b, average 3.1).
Most respondents have come across inconsistent clones, but
none did so very often (4e, average 3.1). Apart from two
subjects, all agreed that cloning can lead to bugs (4f, aver-
age 3.6).

4.2 Working with CloneBoard

The first three questions of the posttest questionnaire
(Figure 5) are used to get a basic impression of the
subject’s experiences with the assignments and CLONE-
BOARD. These questions help to assert that the assignments
were adequate to provoke the desired kind of behavior. The
results (cf. Figure 5) show that the participants generally did
not find the assignments too hard (Ia, average 2.6). None
of the subjects experienced time pressure and actually even
tended towards the inverse (Ib). The respondents reported

SERG De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution

TUD-SERG-2009-019 5



0

1

2

3

4

5
IVa

IVb

IVc

IVd

IVe

IVf

IVg

IVh

(a) Resolution experi-
ence

0

1

2

3

4

5
Va

Vb

Vc

VdVe

Vf

Vg

(b) Resolution fre-
quency

0

1

2

3

4

5
VIa

VIb

VIc

VIdVIe

VIf

VIg

(c) Resolution value

Figure 6. Subjects’ experiences with the clone
change resolutions.

that they found the assignments interesting to do (Ic and Id).
With the exception of one, all subjects were satisfied with
the level of a priori information provided (Ie, average 2.1).

Concerning development style, the respondents all gave
rather different answers. Although all subjects confirmed
that their programming work reflected their usual habits
(IIa), some reported to have focused on functional code
more than others (IIb) and the reported degree of comments
written varies greatly (IIc). Most participants indicated not
to have copied and pasted more than they would normally
do, some reported to have copied slightly less (IId).

When asked about the subjects’ general experiences with
CLONEBOARD, nearly all respondents reported to have
encountered CLONEBOARD during their assignments, al-
though not all indicate they did so often (IIIa). Interesting to
note is that the respondents seem to identify the change res-
olution window with CLONEBOARD, as all of them replied
the same to both statements IIIa and IIIb, the latter of which
asks about encounters with the resolution window.

Quite a few subjects reported to have often quickly dis-
missed the resolution window by canceling it (IIIc, average
3.4, median 4).4 Both the CloneView (IIId) and CloneBar
(IIIe) were not rated very high: with the exception of one
respondent, all indicated to find little use for these two nav-
igational elements.

4.3 Resolutions

During the experiment, all subjects were confronted with
the clone change resolution window, that would pop up after
a clone had been changed inconsistently. Figure 6 provides
an overview of the subjects’ experiences with the clone res-
olutions. To most subjects it was clear most of the times
why the window appeared (IVa, average 3.9). The window
clearly did not always show at convenient moments (IVb,
average 2.7). For some, the before and after views of the
changed clone fragment were not sufficiently clear (IVc, av-
erage 2.9), probably because they were too small at times,
as commented by one of the respondents.

4One respondent denied cancelling the window, but rather indicated
that he had confirmed it blindly, most of the time. His original rating to
IIIc was changed from 1 to 5, as canceling and blindly confirming can be
considered the same in the context of the question.

Resolution Usage Value
Apply changes to all clones Almost never Very useful
Ignore changes Fairly often Useful
Parameterize clone Quite often Very useful
Postpone resolution Quite often Fairly useful
Unmark clone Quite often Useful
Unmark clone’s head Fairly often Not so very useful
Unmark clone’s tail Fairly often Not so very useful

Table 2. The experimental subjects’ opinions
about the 7 clone change resolutions.

0

1

2

3

4

5
5a

5b

5c

5d

5e

5f

(a) Expectations

0

1

2

3

4

5
VIIa

VIIb

VIIc

VIId

VIIe

VIIf

(b) Perception

0

1

2

3

4

5
VIIIa

VIIIb

VIIIcVIIId

VIIIe

(c) UI problems

Figure 7. Subjects’ evaluation of CLONEBOARD
as a clone management tool.
Most of the developers more or less agreed that the win-

dow showed sufficient information (IVd, average 3.4) and
that the order of the resolutions was quite logical (IVe, av-
erage 3.7). The Remember resolution option of the window
was not valued well (IVf ), but it was clear to most partici-
pants why the option was not always available (IVg, aver-
age 3.6).5 Some of the participants missed change resolu-
tions (IVg), most notably more advanced parameterization
and refactoring operations.

The respondents were asked how often they used each
of the resolutions and how they valued each of them (V
and VI). Table 2 summarizes the results, showing the most
useful resolutions according to the test subjects. Strikingly,
none of the subjects actually used the Apply changes to all
clones resolution, yet it is valued highest of all. One partic-
ipant comments about this, stating that the case did provoke
cloning, but gave little reason to update clones.

4.4 Tool Evaluation

The most important questions of the experiment are
question 5 of the pretest and question VII of the posttest.
In these questions, CLONEBOARD is compared to the ex-
pectations the respondents had of a hypothetical clone man-
agement tool with CLONEBOARD’s functionality. These
questions, together with posttest question VIII measure the
dependent variables of the experiment.

In Figure 7 the radar charts show some differences be-
tween the participants’ original expectations and their per-
ception of CLONEBOARD. These differences can be ob-
served better in Figure 8, in which the averages of the rat-
ings are shown. Although participants are still not very con-
vinced a clone management tool would save them time (5c

5Two of the respondents actually did not rate these statements as they
had not noticed the option at all.

De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution SERG

6 TUD-SERG-2009-019



3.7

3.0
3.3

2.3

2.7

1.9

2.9

3.6
3.3

2.1
2.4 2.6

1

2

3

4

5

Reduces clone 
bugs

Primarily 
inconvenient

Will save a lot of 
time

No added value Will use it 
extensively

Does not solve 
real problems

Expected (average) Perceived (average)

Figure 8. Expectations for and perceptions of
CLONEBOARD.

and VIIc), CLONEBOARD apparently offers slightly more
added value than the respondents expected (5d and VIId).

The test subjects seem to be somewhat disappointed with
CLONEBOARD, in the sense that they had expected that it
would help reduce clone related bugs better (5a and VIIa).
This outcome might be slightly colored by two of the sub-
jects, who changed their opinions rather radically. The
higher than average medians of the ratings illustrate this
fact. Furthermore, the respondents do not seem so very
convinced anymore that CLONEBOARD as a clone man-
agement tool might solve any real problems (5f and VIIf ).
This insight is shared rather broadly among the test subjects.
Only one respondent indicates that CLONEBOARD is more
likely to solve problems than he had expected.

Also, there is a rather large difference between the ex-
pected and perceived inconvenience of CLONEBOARD (5b
and VIIb). Whereas participants were rather mild about this
in the pretest, after using CLONEBOARD, their attitude has
changed significantly. This perceived inconvenience proba-
bly let them to indicate a lower chance of actually using the
tool in practice (5e and VIIe).

CLONEBOARD’s user-interface elements do not seem to
be the reason of the subjects’ disappointment. In general,
participants found the UI easy to use (VIIIa, average 4.0)
and are fairly neutral when it comes to assessing their abil-
ity to get used to CLONEBOARD as part of their IDE (VI-
IIb). The respondents reported some errors (VIIIc, average
2.4), but these apparently did not hinder CLONEBOARD’s
functionality significantly (VIIId, average 1.9).

When asked whether CLONEBOARD would need a bet-
ter user-interface, opinions seem to differ. Some are more
negative than others, but on average, subjects remain fairly
neutral (VIIIe, average 2.9).

5 Discussion

The purpose of the conducted experiment was to in-
vestigate three variables relating to CLONEBOARD: ade-
quacy, usability and effectiveness. In the quesionnaires of
the pretest and posttest, specific questions were asked to
measure these variables. We will now analyze the results of
these questions to determine to what extent CLONEBOARD
is adequate in managing code clones.

5.1 Adequacy

To find out whether CLONEBOARD as a tool is suffi-
ciently adequate for developers to use as a clone manage-
ment solution in their daily work, we posed three pairs of
statements in pretest question 5 and posttest question VII:
5c & VIIc CLONEBOARD will help me save a lot of time.
5d & VIId I do not see the added value of CLONEBOARD.
5e & VIIe I expect that I would be making use of CLONE-

BOARD quite extensively.
VIIIb I will be able to get used to using CLONEBOARD in

everyday coding.
The results of the experiment show that the respondents

do see added value for a tool like CLONEBOARD, actually
even more than they initially expected. Although the differ-
ence is small, it does show that CLONEBOARD lives up to
the respondents expectations with regard to its potential to
add value to the development process. Actually, one respon-
dent was heavily disappointed: he had great expectations,
but apparently perceived the opposite.

Before the experiment, the test subjects were not con-
vinced of a clone management tool’s ability to save them
time, and this opinion did not greatly change. Some were
more optimistic than others, but apparently CLONEBOARD
either is not able to save developers time or the experiment
was too short to accurately assess time savings.

Reflection. Considering these results and the fact that
respondents were not overly optimistic about their ability
to get used to CLONEBOARD in their daily practice, it
seems fair to doubt CLONEBOARD’s adequacy. Although
it clearly does add value, its adequacy as a tool has not been
shown. A longitudinal study would be required to draw
more precise conclusions.

5.2 Usability

While CLONEBOARD was reported to be easy to use,
nearly all respondents claimed that they found CLONE-
BOARD slightly too obtrusive. The answers to statement
VIIIa clearly illustrate this (Figure 7). Only half of the re-
spondents is convinced that CLONEBOARD would need a
better user interface to be useful (statement VIIIf ).

The clone change resolution window seems to be the
main cause for irritation. Some of the respondents reported
to have mainly dismissed the resolution window by pressing
the cancel button or hitting escape (IIIc). The window did
not always pop up at convenient moments (IVb). Comments
given by some of the respondents learned that improving
the timing will probably not help, as it is just the concept of
a pop-up window that annoys developers: a less obtrusive
query mode (e.g., a warning icon or message in a sidebar)
would probably lead to less disturbance.

SERG De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution

TUD-SERG-2009-019 7



About the resolution window itself, respondents were
quite positive; it shows sufficient information to make its
purpose clear (IVa and IVd) and the presentation order of the
resolutions was found logical by most respondents (IVe).

Other parts of the CLONEBOARD user interface (i.e., the
CloneView and CloneBar) were not found to be especially
useful (IIId and IIIe). The size of the case probably did not
require the use of these controls to navigate the clone model.

Reflection. In short, the experimental subjects found
CLONEBOARD to be usable, but too obtrusive.

5.3 Effectiveness

To get an impression of CLONEBOARD’s effectiveness
subjects were asked the following question: will CLONE-
BOARD solve problems (5f and VIIf )? In the pretest, the
respondents were quite optimistic about this. Two hours
later, however, the subjects were less so.

A similar decline of optimism is shown by the answers
subjects gave when asked about CLONEBOARD’s potential
to reduce clone related bugs. Expectations about this were
rather high (5a), but were less so after the experiment.

Reflection. So, is CLONEBOARD effective? The ex-
perimental subjects remained rather neutral about CLONE-
BOARD’s effectiveness, suggesting that a more elaborate
evaluation, e.g., using a controlled experiment, will be re-
quired for a conclusive answer.

5.4 Usefulness of the Resolution Mechanism

Although the primary objective of the experiment was to
assess CLONEBOARD’s value as a clone management tool,
the questionnaire results that relate to the resolution strate-
gies used were such that they justify further analysis.

It was interesting to see that the change resolutions that
were used least were valued the most (cf. Table 2). Most
notably, the Apply changes to all clones (cf. Section 2.3)
resolution was applied only three times, but rated highest.
Quite in contrast with this, another highly valued resolu-
tion, Parameterize clone, was actually used very often. The
other resolution strategies were valued less, indicating that
the primary interest of developers in a clone management
tool is to be able to keep similar code fragments in sync and
patch them whenever a bug requires so.

Reflection. This observation adds to the impression that
a clone management tool should primarily guard and en-
force clone integrity, but should not bother developers with
the details of what exactly defines a clone and what parts
should be included. The experimental subjects showed to
be quite willing to define parameterized clones, but often
escaped the hassle of other administrative tasks by dismiss-

ing CLONEBOARD’s queries or removing clone markers al-
together to prevent being disturbed.

6 Threats to Validity

In this section we discuss the validity of the observations
resulting from the experiment. We consider two types of va-
lidity: internal validity, in which we touch upon cause-effect
inferences made during the analysis, and external validity,
which relates to the results’ generalizability.

6.1 Internal Validity

Analysis of the experiment’s outcomes relies on the as-
sumption that the only factor influencing the dependent
variables is CLONEBOARD itself. However, several factors
relating to the subjects and the circumstances may have in-
terfered. First of all, some subjects may have felt (emo-
tional) pressure to answer positively. In response, we at-
tempted to make clear to all subjects that they did not have
to please anybody, as only sincere answers were of value.

The assignments may have induced certain types of be-
havior with the subjects, e.g., paying more attention to
cloning. Control questions have been added to the posttest
to test for these effects. From the subjects’ answers we ob-
served that the selected case and assignments were found
suitable.

The duration of the experiment may have influenced the
validity of the results, as well. A duration of two hours
was considered somewhat short by some of the participants,
especially as it is hard to appreciate long-term benefits of
clone management software in such a short time. To counter
this effect, participants were deliberately asked to try and
consider how the software would work for them in practice.

6.2 External Validity

Generalizability of the experiment’s results depends
mainly on three major aspects: representativeness of the
subjects, suitability of the selected case and the degree of
similarity the programming assignments bear to real-world
development tasks.

Although all subjects were academics, their backgrounds
were sufficiently different to assume they represent average
developers. Some of the subjects had significant commer-
cial development experience, whereas others had a more
theoretical background.

A clear disadvantage of selecting a case that is easily
comprehensible, is that the case is probably also not so very
complex. Real-life systems are likely to be more complex
than RoboCode. CLONEBOARD might prove to be more
useful in a more complex system. However, all participants

De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution SERG

8 TUD-SERG-2009-019



were asked to what extent they expected the tool to be of
use in their daily practice.

One of the subjects remarked that the programming as-
signments were more focused on inducing clone creation
than on clone modification. Given the rather limited time
frame, it is hard to simulate the effect of modifying clones
other developers created. This shortcoming may have had
a significant influence on the outcomes of the experiment.
That is why we see a longitudinal study as the next neces-
sary step in this line of research.

7 Related work

Code clone research has traditionally focused on clone
detectors [6, 16]. It is only more recently that effective ways
to actually manage code cloning have been researched [1].
This section gives a brief overview of some recent advances
in the area of clone management.

Toomim et al. investigate the concept of Linked
Editing to simultaneously update clone fragments [27].
CLONEBOARD includes some of Toomim et al. ’s ideas,
e.g., cascading a change to one clone to the rest of the clone
set. Toomim et al. ’s experiment showed that linked editing
can save a lot of time when compared to the more traditional
approach of functional abstraction to refactor redundant du-
plicates.

Jablonski and Hou have developed a framework that cap-
tures copy and paste activity and uses this information to dy-
namically track clones [14]. Their software, dubbed CnP,
automatically links identifiers, so that rename operations
can be guaranteed to be performed consistently. In essence,
this approach is very similar to CLONEBOARD’s. The main
difference is in the way changes are handled: whereas CnP
only assists in rename operations, CLONEBOARD tries to
approach changes in a broader sense.

Duala-Ekoko and Robillard bring several clone manage-
ment techniques together in a tool called CloneTracker [12].
This Eclipse plug-in maintains a model of all clones in a
source base. The data for this model is gathered using a
third-party clone detector. The way in which CloneTracker
visualizes clones and allows navigation is similar to the
techniques employed by CLONEBOARD. When it comes
to handling clone changes, however, CloneTracker rather
resorts to using linked editing, whereas CLONEBOARD in-
troduces the concept of automatic change resolutions.

Two tools that are very similar to CLONEBOARD in
terms of technology are Clonescape by Chiu and Hirtle [10]
and CPC by Weckerle [28]. Both tools are Eclipse plug-ins
that monitor clipboard activity to infer clone relations, sim-
ilar to the way CLONEBOARD does. Clonescape, however,
focuses more on providing clone navigation tools, while
CPC was implemented to be a framework for others to base
clone management technology on. The main difference in

functionality between CLONEBOARD and CPC being that
CPC only notifies users of possible clone inconsistencies,
not offering resolutions for clone management. The CPC
tool was tested by some developers and the most important
conclusion of that user study was that the tool improved
awareness of the cloning situation within a software system.

8 Conclusion

In this paper, we have introduced CLONEBOARD, an
Eclipse plug-in that dynamically tracks code clones by
monitoring the clipboard activity. CLONEBOARD features
clone change resolutions, which assist the developers with
managing their code clones, e.g., by applying changes made
to a particular clone to all clones in the clone set or by pa-
rameterizing a clone relation. In order to assess the use-
fulness of CLONEBOARD we have conducted a pretest-
posttest experiment involving seven developers, in which
we presented the developers a questionnaire before and af-
ter a two-hour programming assignment in an environment
in which they were faced with CLONEBOARD.

Our results show that developers actually see the added
value of code clone management tools, but have strict re-
quirements with respect to their usability. We will now go
over the research questions that we have stated in Section 1:
RQ1 Are developers willing to alter existing copy and

paste habits to help contain code clones? Apart from
the fact that CLONEBOARD did not always intervene
at convenient moments, respondents were optimistic
about the concept of clone change resolutions. It was
also clear to most that automated support for managing
clones can save them time.

RQ2 In what ways can the relations established by using
Mann’s operations be used to enforce consistent edit-
ing of clones? The clone change resolutions imple-
mented in CLONEBOARD allow to forward changes
made in one clone to all other instances. The respon-
dents highly appreciated this feature.

RQ3 Will CLONEBOARD help reduce cloning related
problems? The respondents made it clear that CLONE-
BOARD would only be of limited use to them, mainly
because they are expecting more advanced resolution
strategies. In essence, this does not answer our ques-
tion of whether Mann’s operations help in reducing
cloning related problems.

Contributions. Over the course of this research we have
made the following contributions:
• The freely downloadable CLONEBOARD Eclipse plug-

in, which features dynamic clone tracking by means of
monitoring clipboard activity.
• A series of clone change resolutions, which go beyond

removal and refactoring of code clones, and which of-

SERG De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution

TUD-SERG-2009-019 9



fer hints at the best way of dealing with a clone through
the order in which they are presented.
• A user study with seven developers to assess the ade-

quacy, usability and effectiveness of CLONEBOARD.

Future work. Our most important avenue for future work
is to extend the current study with a longitudinal study in
order to properly assess the value and effectiveness of clone
management solutions in general and CLONEBOARD in
particular. Such a study would involve studying the cloning-
related habits of several CLONEBOARD-users over a period
of weeks or even months. We also plan to extend our reso-
lution strategies with more advanced options and make the
resolution window less obtrusive, e.g., by implementing it
as a warning message.

Acknowledgments. Our thanks go out to the volunteers
for our experiment and to Cathal Boogerd and Bas Cornelis-
sen for proofreading this paper. This research was spon-
sored by the NWO Jacquard Reconstructor project and by
the NIRICT Centre of excellence for Dependable ICT Sys-
tems CeDICT.

References

[1] L. Aversano, L. Cerulo, and M. Di Penta. How clones are
maintained: An empirical study. In Conf. Softw. Main-
tenance and Reengineering (CSMR), pages 81–90. IEEE,
2007.

[2] E. Babbie. The practice of social research. Wadsworth Bel-
mont, 11th edition, 2007.

[3] B. Baker. On finding duplication and near-duplication in
large software systems. In Proc. Working Conference on
Reverse Engineering (WCRE), pages 86–95. IEEE, 1995.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering op-
portunities. In Proc. of the Int’l Symposium on Software
Metrics (METRICS), page 292. IEEE, 1999.

[5] H. A. Basit and S. Jarzabek. Efficient token based clone de-
tection with flexible tokenization. In Proc. of the the joint
meeting of the European Software Engineering Conference
and the symposium on the Foundations of Software Engi-
neering (ESEC/FSE), pages 513–516. ACM, 2007.

[6] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Int’l Conf. on
Software Maintenance (ICSM), pages 368–377. IEEE, 1998.

[7] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and evaluation of clone detection tools. Trans-
actions on Software Engineering, 33(9):577–591, 2007.

[8] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwé. On the use of clone detection for identifying
crosscutting concern code. Transactions on Software Engi-
neering, 31(10):804–818, 2005.

[9] D. Campbell, J. Stanley, and N. Gage. Experimental and
quasi-experimental designs for research. Rand McNally
Chicago, 1963.

[10] A. Chiu and D. Hirtle. Beyond clone detection. Technical
report, University of Waterloo, 2007.

[11] M. de Wit. Managing clones using dynamic change track-
ing and resolution. Master’s thesis, Software Engineering
Research Group, Delft University of Technology, 2009.

[12] E. Duala-Ekoko and M. Robillard. Clonetracker: Tool sup-
port for code clone management. In Proc. Int’l Conf. on
Software Engineering (ICSE), pages 843–846. ACM, 2008.

[13] R. Fanta and V. Rajlich. Removing clones from the code.
Journal of Software Maintenance, 11(4):223–243, 1999.

[14] P. Jablonski and D. Hou. CReN: a tool for tracking copy-
and-paste code clones and renaming identifiers consistently
in the IDE. In Proc. of the OOPSLA workshop on Eclipse
technology eXchange, pages 16–20. ACM, 2007.

[15] J. H. Johnson. Identifying redundancy in source code using
fingerprints. In Proceedings of the conference of the Centre
for Advanced Studies on Collaborative research (CASCON),
pages 171–183. IBM Press, 1993.

[16] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. Transactions on Software Engineering,
28(7):654–670, 2002.

[17] C. Kapser and M. Godfrey. “Cloning Considered Harmful”
considered harmful. In Proc. Working Conference on Re-
verse Engineering (WCRE), pages 19–28. IEEE, 2006.

[18] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethno-
graphic study of copy and paste programming practices in
OOPL. In Proc. of the Int’l Symposium on Empirical Soft-
ware Engineering (ISESE), pages 83–92. IEEE, 2004.

[19] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empir-
ical study of code clone genealogies. SIGSOFT Softw. Eng.
Notes, 30(5):187–196, 2005.

[20] R. Komondoor and S. Horwitz. Using slicing to identify du-
plication in source code. In Proc. of the Int’l Symposium on
Static Analysis (SAS), pages 40–56. Springer-Verlag, 2001.

[21] R. Koschke. Identifying and removing software clones. In
Software Evolution, chapter 2, pages 15–36. Springer, 2008.

[22] J. Krinke. Is cloned code more stable than non-cloned code?
In Proc. of the Int’l Working Conf. on Source Code Analysis
and Manipulation (SCAM), pages 57–66. IEEE, Sept. 2008.

[23] T. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In Int’l Conf.
Softw. Engineering (ICSE), pages 492–501. ACM, 2006.

[24] A. Lozano and M. Wermelinger. Assessing the effect of
clones on changeability. In Proc. Int’l Conference on Soft-
ware Maintenance (ICSM), pages 227–236. IEEE, 2008.

[25] Z. Mann. Three public enemies: cut, copy, and paste. Com-
puter, 39(7):31–35, 2006.

[26] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees
of separation: multi-dimensional separation of concerns. In
Int’l Conf. Software Engineering (ICSE), pages 107–119.
ACM, 1999.

[27] M. Toomim, A. Begel, and S. L. Graham. Managing dupli-
cated code with linked editing. In Proc. of the Symposium on
Visual Languages - Human Centric Computing (VLHCC),
pages 173–180. IEEE, 2004.

[28] V. Weckerle. Cpc an eclipse framework for automated clone
life cycle tracking and update anomaly detection. Master’s
thesis, Freie Universität Berlin, January 2008.

De Wit et al. – Managing Code Clones Using Dynamic Change Tracking and Resolution SERG

10 TUD-SERG-2009-019





TUD-SERG-2009-019
ISSN 1872-5392 SERG


