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1 CHAPTER

Introduction

In this introductory chapter we explain the main challenges of control-
ling thermally induced wavefront aberrations in extreme ultraviolet

lithographic machines. We furthermore explain how this practical control
problem is related to some fundamental, open problems in estimation and
control of large-scale interconnected systems. Finally, we briefly explain
our solutions to these problems and we explain the organization of the
thesis.

1.1 Motivation

In systems and control and more generally in the applied mathematics field, fun-
damental theories and methods are usually developed by searching for solutions
of real-life problems. We can say that a developed theory or a method deserves to
be called ”fundamental” if its application is not only limited to the specific prob-
lem that initiated the research, and if it can be applied to much broader class of
real life problems. A typical example of a fundamental, numerical method that
was developed to solve a real-life problem, and that is used today to solve a large
variety of practical problems, is the celebrated method of least squares.1

Following this path, our research in the past 4.5 years was motivated by a real-life
engineering problem. The problem that we tried to solve was compensation of
thermally induced wavefront aberrations in the next generation of optical lithog-
raphy machines2. As we will explain in the sequel, the solution of this problem
required development of a completely novel approach to estimation and control

1One of the main motivations for the development of the least squares method was to calculate the
orbits of heavenly bodies. This method is used today in almost every field of science. Even in this
thesis, control and estimation problems are formulated either as basic least-squares problems or as
their constrained versions. The mathematicians that founded the method of least squares were C. F.
Gauss and A.-M. Legendre.

2This research is supported by the Dutch Ministry of the Economic Affairs and the Provinces of
Noord-Brabant and Limburg in the frame of the ”Pieken in de Delta” program.

1



2 Chapter 1: Introduction

of large-scale systems. The application of this novel approach goes beyond the
field of optical lithography, and the developed estimation and control methods
can be applied to a wide class of large-scale systems.

In the sequel we will explain in detail why the problem of controlling thermally
induced wavefront aberrations is so interesting from the systems and control per-
spective, and how this problem motivated us to develop numerical methods that
can be applied to a large variety of real-life problems. We first start with a brief
introduction to optical lithography.

1.2 A brief introduction to optical lithography

Almost every six months there is a new version of a smart phone or a computer
on the market. These new electronic devices have improved characteristics: they
have more memory, they are faster and they have better graphics than their older
versions. This technological progress is possible because of the continuous minia-
turization of electronic components. It has been observed that the number of tran-
sistors on integrated circuits doubles approximately every 18 months.3. This trend
is dictated by the chip manufacturers such as: Intel, Samsung Electronics, AMD
and others. To make Integrated Circuits (ICs) these companies are using optical
lithography machines. The world’s largest producers of optical lithography ma-
chines are ASML and Nikon.

The main components of an optical lithography machine (lithographic machine)
are illustrated in Fig 1.1. In lithographic machines, mask’s patterns that represent
an image of ICs, are optically projected (exposed) onto a light-sensitive photo-
resist on a semiconductor wafer.

Figure 1.1: The main components of a lithographic machine.

3The first observation about the rate at which number of transistors on integrated circuits doubles is
formulated by the Moore’s law. This law dates back to 1965, and it states that the number of transistors
on integrated circuits doubles each two years. Since then, it has been observed that, on average, the
number of transistors on integrated circuits doubles every 18 months
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The illumination system consists of a light source and optical elements (mirrors
and/or lenses). Its purpose is to deliver light to the mask and consequently, to the
Projection Optics Box (POB). Masks that are used in the current lithographic ma-
chines are transparent optical elements on which chip patterns have been formed
4. As the light passes through the transparent areas of the mask it diffracts. The
POB captures a portion of the diffracted light and it projects the mask image onto
the wafer. The projected image is typically four times smaller than the original
mask image (mask patterns). After the wafer has been exposed, it goes through
the series of chemical treatments that create one layer of the IC. Once this process
is finished, new material is deposited on the wafer and photoresist is added. After
this has been done, a new cycle of exposure and chemical treatments starts. Before
the chips are fully complete, this cycle can be repeated more than 30 times. For
more information about optical lithography see [1] and references therein.

In the early days of optical lithography visible light was used to transfer (print)
patterns from a mask to a wafer. Since then, light of shorter and shorter wave-
lengths has been used to transfer patterns on a wafer. The wavelength decreased
from blue (wavelength of 436 nm) to Ultra-Violet (UV, 365 nm) and from UV to
deep UV (248 nm) [1; 2]. In the current generation of optical lithography machines,
the wavelength of 193 nm is used to expose wafers [3]. This decrease of wave-
length is driven by the need to print smaller and smaller features. Namely, the
Rayleigh resolution equation states that the smallest printable feature (the Critical
Dimension (CD) or the resolution of a lithographic system) is proportional to the
wavelength λ of the used light [1]:

CD = k1
λ

NA
(1.1)

where k1 is a coefficient that depends on the imaging process and NA is the Nu-
merical Aperture of the projection system. From (1.1) we see that one of the ways
to reduce the CD is to decrease λ. This is why in the new generation of optical
lithography machines, 13.5 nm Extreme UltraViolet (EUV) light is used for wafer
exposure [4]. In this thesis the new generation of optical lithography machines
will be called the EUV Lithography (EUVL) machines. Because the EUV light is ab-
sorbed by most of refractive materials used in optics, refractive optical elements
(lenses and transmission masks) are not used in EUVL machines. Instead, reflec-
tive optical elements (mirrors and reflective masks) are used [5; 6]. Furthermore,
because air absorbs EUV radiation, the optics and stages have to operate under
vacuum conditions [4].
From (1.1) it also follows that the CD can be reduced by increasing NA or by
decreasing the k1 factor. In practice this is achieved by using resolution enhance-
ment techniques [1], such as phase shifting masks, off-axis illumination, optical
proximity correction or by using immersion lithography.

Apart from being able to print ICs with smaller dimensions, each new generation
of lithographic machines has higher productivity5. Usually this productivity is

4In the next generation of lithographic machines transparent masks will be replaced by the reflec-
tive masks.

5This productivity increase is driven by economical reasons.
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expressed by the number of wafers produced per hour and it is called the wafer
throughput. In the current optical lithography machines throughput numbers ex-
ceed 200 wafers per hour [7].

Due to the resolution enhancement techniques and increased throughput, the
power transmitted through the projection optics of lithography machines con-
stantly increases. The optical elements absorb a portion of the exposure energy.
The absorbed energy transforms into heat, which induces thermoelastic deforma-
tions of optical elements [7; 8; 9; 10; 11; 12; 13; 14; 15]. Furthermore, heating cre-
ates variation of refractive index of lenses in the POB. Consequently, the heating
process induces wavefront aberrations in lithographic machines. If not compen-
sated, wavefront aberrations can seriously compromise the resolution of a system
[7; 9; 10; 11; 12]. In this PhD thesis, wavefront aberrations induced by heating of
optical elements will be called the Thermally Induced Wavefront Aberrations (TIWA).
In EUVL machines degradation of resolution due to the thermoelastic deforma-
tion of optical elements is even more severe [16; 17; 18; 19]. This is mainly because
each optical component in the EUVL machine absorbs around 30% of EUV radia-
tion.
To better explain the problem of thermally induced wavefront aberrations in EUVL
machines, consider a segment of a mirror used in EUVL machines that is illus-
trated in Fig. 1.2. The incoming wavefront is undistorted (flat). The light beam
creates a non-uniform heat flux distribution over the mirror’s top surface. The
heat flux distribution induces a nonuniform temperature distribution and it cre-
ates thermoelastic deformations. Because the top surface of the mirror is de-
formed, the reflected wavefront is no longer flat. Instead, it becomes distorted
(aberrated). These wavefront distortions (wavefront aberrations) compromise the
resolution of the printed patterns.

Undistorted 
wavefront

Distorted 
wavefront

Figure 1.2: A segment of a mirror used in EUV lithography and thermally induced
wavefront aberrations.

Beside optical lithography machines, TIWA can limit performance of a large vari-
ety of high power optical systems6. For example, in gravitational wave interfer-

6High power optical systems are systems that use powerful lasers or systems in which highly fo-
cused beams pass through small sections of the optics.
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ometers high power lasers induce aberrations that can significantly decrease the
sensitivity of the instruments [20; 21; 22]. TIWA can also degrade the beam quality
of the lasers used in material processing [23; 24]. Furthermore, the performance
of optical systems used in military lasers [25] can be significantly degraded by
TIWA.

One of the possible solutions for compensation of TIWA in optical lithography
machines, as well as in other high power optical systems, is to use the Adaptive
Optics (AO) technique [2; 20; 26; 27; 28; 29; 30; 31]. Because the basic principles
of the AO technique are relatively unknown to the broader control community, in
the sequel we briefly explain this wavefront correction technique.

1.3 Basic principle of AO

AO is a well-established technique for correcting wavefront distortions in optical
systems. The basic principle of AO is to measure wavefront aberrations using a
WaveFront Sensor (WFS) and to compensate them by changing the geometry of
an active optical element in the system. Widely used active optical elements in
AO systems are Deformable Mirrors (DMs) and spatial light modulators.
Figure 1.3 is a simplified illustration of wavefront correction using a DM. The in-
coming wavefront, traveling from left to right, deviates from the flat wavefront.
In order correct the distorted wavefront, the mirror contains a depression. At the
moment when the distorted part of the wavefront reaches the bottom surface of
the depression, the distance between the flat region of the wavefront and the DM
is a. By the time the flat part of the wavefront reaches the mirror surface, the dis-
torted part is reflected and it has traveled a distance from right to left. Because the
depth of the mirror depression is two times smaller than the wavefront distortion,
the reflected wavefront is completely flat.

Figure 1.3: The basic principle of correcting distorted wavefront using a DM. This
schematic is taken from [32].

One of the first successful, non-military applications of AO was in astronomy
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[32; 33; 34] to compensate wavefront aberrations induced by atmospheric turbu-
lence. Nowadays, the AO technique is used in the fields of microscopy [35; 36],
ophthalmology [37], tomography [38], laser beam shaping [39], optical communi-
cation [40] and more recently in lithography [2; 26]. Some other applications of
AO can be found in [28; 41; 42; 43; 44; 45; 46].

The main components of an AO system are illustrated in Fig. 1.4(a).

(a)

(b)

Figure 1.4: (a) Basic principle of AO; (b) Feedback loop in the AO system.

The main goal of the AO system is to correct a distorted wavefront7 d. The light
coming from an object enters into the AO system through the system of lenses8.
The system of lenses directs the distorted wavefront d (or aberrated wavefront)
towards a DM. The DM corrects the wavefront aberrations. In Fig. 1.4(a), the cor-
rected wavefront is denoted by W . After wavefront correction, the beam splitter
splits the beam of light into two beams: the reflected beam that is directed to the
WFS and transmitted beam, that is directed to the Science Camera (SC). The SC

7From the control engineering perspective, the wavefront distortions or wavefront aberrations are
disturbances that need to be suppressed.

8In AO for astronomy, an object can be a star or a distant galaxy. On the other hand, in microscopy
an object can be a piece of human tissue. In astronomical AO, wavefront aberrations originate from
the atmospheric turbulence [33; 34]. However, in industrial, medical and military applications of AO,
wavefront aberrations can originate from various sources [47; 48; 49; 50].
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forms an image of the object9. The WFS measures aberrations of the corrected
wavefront and it sends its measurements to the Controller (C). On the basis of
these measurements, the controller calculates and sends the control signal to the
DM. Driven by the control signal, the optical surface of the DM deforms and it
corrects wavefront aberrations.

The feedback loop in the AO system is shown in Fig. 1.4(b). In this thesis, the
interconnection structure between the controller, the WFS and the DM that is il-
lustrated in Fig. 1.4 will be called the standard AO system. One of its main charac-
teristics is that the controller can receive WFS measurements at an arbitrary sam-
pling time instant. Unfortunately, in optical lithography wavefront aberrations
cannot be measured at an arbitrary time instant and consequently, the standard
AO systems cannot be used. This motivates us to develop new AO systems that
can overcome this limitation.

1.4 AO for (EUV) lithography

In the current generation of optical lithography machines, active optical elements
are used for correction of wavefront aberrations [7; 12]. Because the EUV light is
aborbed by refractive optical elements, in the new generation of optical lithogra-
phy machines DMs need to be used for wavefront correction [2; 26].

In the current generation of optical lithography machines, wavefront aberrations
are measured using wavefront sensors that are based on the lateral shearing in-
terferometry [3; 51]. The accuracy of these sensors is in the order of λ/400, where
λ is the exposure wavelength [51]. The possibility to use Hartmann sensors for
wavefront measurement in EUVL machines has been investigated in [52; 53]. Fur-
thermore, in [54; 55] measurement techniques based on Shack-Hartmann WFS (S-
H WFS) have been proposed for measurement of TIWA in high power optical
systems. A point diffraction interferometer and a lateral shearing interferometer
suitable for operation in the EUV range, are described in [56].

In optical lithography machines, wavefront aberrations are measured at the wafer
level (see Fig. 1.1). However, during the exposure process it is not possible to mea-
sure wavefront aberrations. Wavefront aberrations can be measured after each
exposed wafer. Furthermore, because the measurement time reduces the wafer
throughput, it should be as short as possible. One way to reduce the total mea-
surement time is to perform measurements only after exposure of a few initial
wafers.
This measurement scenario is illustrated in Fig. 1.5. During the initial measure-
ment time, after each exposed wafer, wavefront aberrations are measured (de-
noted by ’x’ in Fig. 1.5). The question mark in Fig. 1.5 indicates that after initial
measurements are taken, wavefront aberrations should not be measured anymore.
Instead, their future behavior should be predicted. A controller in an AO system
should use this prediction to compensate future wavefront aberrations.

9In some applications of the AO, such as optical lithography, the SC is not used.
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Figure 1.5: Measurement and prediction of wavefront aberrations in a litho-
graphic machine. On the basis of the initial wavefront measurements,
the future wavefront aberrations need to be predicted and compen-
sated.

It is obvious that TIWA in lithographic machines cannot be compensated using
the standard AO system illustrated in Fig. 1.4(a)-(b). The block diagram of an
AO system for compensation of TIWA in lithographic machines, is shown in Fig.
1.6. In contrast to the standard AO system that is illustrated in Fig. 1.4, the WFS
can measure aberrations only during the initial time period when the switch S
is closed. After the initial time period is finished, the switch S is opened, and
wavefront aberrations cannot be measured anymore. However, independently
from that, the controller should predict and compensate wavefront aberrations in
real-time.

Figure 1.6: The block diagram of the AO system for compensation of TIWA in
lithographic machines.

To anyone who has at least a basic understanding of control systems it should be clear that
the accurate prediction of TIWA cannot be performed only on the basis of the wavefront
measurements. For accurate prediction it is necessary to develop a model of TIWA. Fur-
thermore, this model should be in the form that suitable for real-time control applications.
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1.5 Model of TIWA for real-time prediction and con-
trol

The dynamical behavior of TIWA in optical lithography machines is mainly deter-
mined by the exposure conditions, such as: numerical aperture, source shape, reticle
and mask pattern diffraction, exposure dose, throughput and resist stack [7].
The model of TIWA describes how the exposure conditions influence the dynami-
cal behavior of the wavefront aberrations. The model of TIWA consists of the two
main parts [7] that are illustrated in Fig. 1.7.

Figure 1.7: The main parts of the TIWA model.

The first part that is denoted by ”Optical model” in Fig. 1.7, relates the Expo-
sure Conditions (EC) with the Heat Flux (HF) distribution (intensity distribution
or distribution of exposure energy) over the surfaces of optical elements in EUVL
machines. This relation is established by computing the full mask diffraction or-
ders which are then convoluted with the illumination source to obtain the diffrac-
tion pattern [7]. The computed diffraction pattern determines the HF distribution
on the optical elements. In this thesis, the EC will be called the inputs of the TIWA
model.
The second part, denoted by ”Thermoelastic model” in Fig. 1.7, consists of ther-
moelastic Partial Differential Equations (PDEs) that relate the HF distribution with
the temperature change and deformations of the optical elements [22; 57]. The de-
formations of optical elements determine the wavefront aberrations (W).

The model of TIWA can be obtained using two approaches. The first approach re-
lies on first principles modeling. For example, the TIWA model can be derived by
discretizing thermoelastic equations using the finite element method. The second
modeling approach is to identify the model directly from experimental data [58].
Experimental data can be collected during the testing and calibration of a litho-
graphic machine. However, during the imaging process the exposure conditions
usually differ from the ones used in machine calibration and testing. For example,
patterns of the masks used in machine testing can significantly differ from the pat-
terns of the masks used for wafer exposure. In mathematical terms this means that
during the exposure process, the inputs of the TIWA model are usually unknown
and they need to be determined. There are two ways to overcome this problem.
If the new exposure conditions can be modeled (in real-time) then the inputs of
the TIWA model can be updated. For example, if a new mask is projected and if
the model of its geometry is available, then it is possible to calculate new heat-flux
distributions on the optical elements [7]. However, this is a computationally chal-
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lenging problem that needs to be solved in real-time [1]. Another approach, that
we propose in Chapter 10, is to estimate unknown inputs of the TIWA model or to
directly estimate intensity distributions on optical elements from measurements
of wavefront aberrations.

In this thesis, we will be mainly concerned with the development of the thermoelastic
model that is suitable for real-time prediction and control of TIWA. The development of
the optical model is left for future research.

Generally speaking, the thermoelastic model has to meet the following require-
ments:

1. It has to accurately describe the dynamical behavior of wavefront aberrations.
As an illustration, in order to ensure a relatively good resolution of printed pat-
terns, wavefront aberrations in EUVL machines must be kept below 1 nm root-
mean-square error. This implies that the thermoelastic model should be able to
predict wavefront aberrations with a very high accuracy.

2. The thermoelastic model has to be in a form that is suitable for real-time pre-
diction, estimation and control of TIWA. In optics literature, several modeling ap-
proaches for thermoelastic deformations of optical elements have been proposed
[16; 17; 18; 22; 59]. In [22; 59] analytical solutions of the thermoelastic equations
have been developed using Dini’s series. However, the mathematical complexity
of the models developed in [22; 59] prevent us from using them for real-time pre-
diction and control of TIWA. Advanced simulators based on the Finite Element
(FE) modeling, have been used in [16; 17; 18] to study the impact of TIWA on the
resolution of EUVL systems. Although the results reported in these papers can
give us valuable information about dynamical behavior of TIWA, like for exam-
ple, dominant time constants, steady-state value of the wavefront aberrations and
etc., these papers do not address the problem of developing analytic models that
can be used for control.

By discretizing the thermoelastic equations using the Finite Difference (FD) or the
FE methods, large-scale state-space models can be obtained [60]. However, for ac-
curate prediction of TIWA, the FD or the FE discretization meshes (grids) should
consist of a large number of nodes. Consequently, discretized state-space models
will have an extremely large number of states. For example, the FE discretization
grids used in [16; 17; 18] have more than 100,000 nodes. Because each discretiza-
tion node carries information about the temperature and the displacement of an
optical element, the discretized FE state-space model can have more than 100,000
states.
Obviously, the design of estimators, predictors and controllers for such large-scale sys-
tems is a computationally challenging task. Furthermore, real-time implementation of the
designed control algorithms is equally challenging. The main computational bottlenecks
originate from cubical computational and quadratic memory complexity of estimation and
control techniques.

In principle, there are two approaches for overcoming the high computational
complexity of estimation and control algorithms.
The first approach is to reduce the computational complexity of control and esti-
mation techniques by exploiting the sparsity of system matrices. Namely, the FE
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or FD models of the thermoelastic equations are sparse. Furthermore, in a large
number of cases, system matrices of these state-space models can be transformed
into a banded form. This structure can be exploited to reduce the computational
complexity of control and estimation techniques [60]. However, in the most cases,
the system matrices of the designed estimators and controllers are dense. Conse-
quently, the real-time implementation of the designed estimators and controllers
might not be computationally feasible.

The second approach is to reduce the model dimensionality by using the model
reduction techniques [61]. The sparsity of system matrices can be also exploited
to reduce the computational complexity of the model reduction techniques [60].
In [62], computationally efficient model reduction techniques are employed to de-
velop low-order models of reticles used in the EUV lithography. Due to their low-
dimensionality, the developed models can be easily used for real-time prediction
of thermoelastic deformations. However, the states of the reduced order model do
not directly correspond to the physical states of the system10. That is, the structure
of the large-scale system is not preserved in the reduced order model. A solution
to this problem would be to develop structure preserving model reduction tech-
niques, in which the most important information about the spatial structure of
the system is preserved in the low-dimensional model. Some attempts to develop
structure preserving model reduction techniques for large-scale systems can be
found in [63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75].

By now it should be clear that the problem of compensating TIWA is closely re-
lated to the fundamental problems in control and estimation of large-scale sys-
tems. In the sequel, we will explain in detail how this engineering problem mo-
tivated us to search for solutions of several important problems in systems and
control.

1.6 Thermoelastic model and large scale interconnected
systems

Large-scale interconnected systems consist of a large number of local dynamical
subsystems that are interconnected in a spatial domain. The class of large-scale in-
terconnected systems is broad, and it includes: distributed and complex systems
[76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86; 87], compartmental systems [88; 89], multi-
dimensional systems [90; 91; 92; 93], biological processes and systems [94; 95] and
discretized PDEs [60; 96; 97].

Because our research is motivated by problems of predicting and controlling the
physical process described by the thermoelastic equations, in this thesis we will
focus on large-scale systems obtained from discretization of PDEs. As it will be
shown in Chapter 2, these systems can have relatively complex interconnection
patterns and this fact makes their state-space models suitable for representing a
large-variety of physical systems. Consequently, theoretical results obtained by study-
ing these systems can be used in a number of control applications such as system biology

10The states of the reduced order model are a linear combination of the states of the FE model.
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and control of network of dynamical systems [98; 99; 100; 101; 102; 103; 104].
For example, consider the heat equation defined on the 2D elliptical domain shown
in Fig.1.8(a). The heat equation is discretized using the FE method. The FE mesh
is composed of triangular elements and the time discretization is performed us-
ing the backward Euler method [105]. The resulting state space model is in the
descriptor form [60; 106; 107] (for more details see Chapter 2):

Mx(k) = Gx(k − 1) + c (1.2)

where M and G are state-space matrices, x(k) is the vector of temperatures at the
discretization nodes at the discrete time instant k and c is a constant vector. The
matrix M is a sparse banded matrix and its structure is illustrated in Fig. 1.8(b)
(the matrix G has a similar structure).

(a) (b)

(c)

Figure 1.8: (a) The triangular mesh defined on the 2D elliptical domain that is
used in the FE method; (b) The structure of the matrix M of the dis-
cretized state-space model (”nz” denotes the number of non-zero ele-
ments; (c) The FE mesh seen as an interconnection of local subsystems
Si

The FE state-space model (1.2) can be interpreted as a network of local dynam-
ical subsystems. Each node of a FE mesh or a group of neighboring nodes can
be seen as a local subsystem, which local state consists of the temperatures at the
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discretization nodes. For example, in Fig. 1.8(c) we illustrate local subsystems Si
defined by grouping the discretization nodes. The dynamics of each local subsys-
tem is influenced by the states (temperatures) of its neighboring local subsystems.
The strength of this dynamical interaction depends on the physical properties of
the material (mainly it depends on the thermal conductivity constant).

The network structure of state-space models obtained by discretizing PDEs, is
maybe best illustrated on an example of the 3D heat equation discretized using
the FD method. For example, consider a plate shown in Fig. 1.9(a). The plate is
heated by a heat flux acting on its top surface11.

(a)

(b) (c)

Figure 1.9: (a) The 3D spatial domain and uniform discretization mesh; (b) Inputs,
outputs and interconnections of a local subsystem Si,i; (c) Interconnec-
tion pattern of local subsystems obtained by discretization of the heat
equation on the 3D spatial domain.

11The plate can represent a segment of a mirror used in EUVL machines.
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Let L denote the spatial discretization step and let the discrete coordinates be de-
noted by (i, j, l), see Fig. 1.9(a). The temperature at the node x = iL, y = jL, z =
lL, and at the discrete time instant k, is denoted by Ti,j,l(k). This temperature
evolves in time according to the discretized 3D heat equation (for details see Chap-
ter 2).

By lifting the temperatures over the z direction, we define the local state: xi,j(k) =
[Ti,j,0(k), Ti,j,1(k), . . . , Ti,j,P (k)]T . With each local state xi,j(k) we associate a local
subsystem Si,j . A local input ui,j(k) of the local subsystem Si,j is a heat flux that is
acting on the top surface. A local output yi,j(k) is a temperature that is measured at
the top surface. That is, we assume that it is not possible to measure the full local
state xi,j(k). The local inputs, outputs and interconnections of the local subsystem
Si,i are illustrated in Fig. 1.9(b). The interconnection structure of local subsystems
is illustrated in Fig. 1.9(c). The local state-space model of the local subsystem Si,j has
the following form:

Si,j

 xi,j(k + 1) = Ai,jxi,j(k) + Ei+1,jxi+1,j(k) + Ei−1,jxi−1,j(k)
+Ei,j+1xi,j+1(k) + Ei,j−1xi,j−1(k) +Bi,jui,j(k)
yi,j(k) = Ci,jxi,j(k) + ni,j(k)

(1.3)

where Ai,j , Ei+1,j , Ei−1,j , Ei,j+1, Ei,j−1, Bi,j and Ci,j are the local system matrices
of appropriate dimensions and ni,j(k) is the local measurement noise. By lifting
the local subsystems Si,j , first over the x direction and then over the y direction,
we obtain the global state-space model:

S
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) + n(k)

(1.4)

where vector x(k) is the global state consisting of the local states xi,j(k). Similarly,
the vectors u(k), y(k), n(k), are the global input, the global output and the global
measurement noise, respectively. The matrix A is a sparse multi-banded matrix and
B and C are sparse, diagonal matrices. The sparsity patterns of these matrices are
illustrated in Fig.1.10.

Two classes of optimal control and estimation problems can be formulated for
large-scale interconnected systems. The first class of problems is to design con-
trollers or estimators without any a priori assumptions on the structure of their
matrices. In this thesis, these problems are called the unstructured control and esti-
mation problems.

In the second class of control and estimation problems, we are interested in de-
signing controllers and estimators that are described by (sparse) structured ma-
trices. In this thesis, these problems are called the distributed control and estimation
problems. For example, consider the problem of distributed estimation of the local
states of the global state-space model (1.4). In its most simplest form, this problem
consists of finding a structured gain matrix K̃, such that:

x̂ = K̃f(y,u) (1.5)

where x̂ is an estimate of the global state, f(·) is a known function of the global
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output and input vectors and K̃ is a sparse matrix which structure is illustrated in
Fig. 1.11.
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Figure 1.10: Structure of the matrices of the global state-space model (1.4): (a) seg-
ment of A; (b) B; (c) C (”nz” denotes the number of non-zero ele-
ments).

Figure 1.11: Physical interpretation of the sparsity structure of K̃.

The structure of the matrix K̃, illustrated in Fig. 1.11, implies that the state of a
local subsystems Si,j can be estimated from the inputs and outputs of the local
subsystems that are in its neighborhood. Because of this, the estimator (1.5) can
be implemented on a network of sensors and computing units that communicate
locally.
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For low dimensional state-space models, the unstructured control and estimation
problems have been studied extensively in the past and a large variety of control
and estimation methodologies have been proposed [108; 109; 110]. Some notable
examples are: the Linear Quadratic Regulator (LQR) and the Kalman filter. In this
thesis, these methods are called the classical model based control and estimation meth-
ods. These design methods heavily rely on numerical linear algebra algorithms
[111; 112]. Although these algorithms have many good sides, such as numerical
stability, they have one major drawback that makes them unsuitable for control
and estimation of large-scale systems. Namely, their computational complexity
scales at least cubically with the number of local subsystems N , and their mem-
ory complexity scales quadratically with N . Consequently, the classical model
based control and estimation methods are not computationally feasible for large-
scale interconnected systems.
In the literature two strategies have been used to decrease the computational com-
plexity of the classical estimation and control techniques.

The first strategy, proposed by Rice and Verhaegen in [80; 85; 113], is based on the
Sequentially Semi-Separable (SSS) matrix algebra [114; 115; 116]. The main idea of
this approach is to construct the SSS matrices from the state-space matrices, and
to use the linear computational complexity SSS algebra for designing optimal con-
trollers and estimators. Further applications of the SSS matrix algebra to control
and estimation problems can be found in [117; 118; 119; 120; 121; 122].

As it has been mentioned before, the second strategy is to exploit the sparsity of
system matrices to decrease the computational complexity of the classical model
based control and estimation methods. For example, methods summarized in
[60; 96; 123] are following this approach. However, estimation and control matri-
ces computed using these methods are dense. Consequently, the real time imple-
mentation of designed estimators and controllers might not be computationally
feasible.

Distributed control and estimation problems have also received significant at-
tention in the last few decades. In the case of infinite dimensional systems, a
large variety of distributed control and estimation methods have been proposed
[77; 78; 79; 84; 124; 125]. However, the real-time implementation of these dis-
tributed control and estimation methods always implies some form of discretiza-
tion or decomposition. Consequently, in order to implement these methods the
previously explained computational challenges need to be addressed.
Similarly, a large-variety of distributed control and estimation methods have been
proposed for finite-dimensional distributed (interconnected) systems, see [83; 126;
127; 128; 129; 130; 131; 132; 133] and references therein. However, the methods
proposed in the above cited papers are either restricted to special classes of large-
scale interconnected systems, or the computational and memory complexities of
these methods are very high.
For example, in [126; 127] the distributed control and identification methods are
proposed for the class of decomposable systems. A decomposable system is ba-
sically an interconnected system that is composed of a number of identical local
subsystems. In Chapter 2 we use the FD method to discretize the heat equation
with constant coefficients. We show that if the boundary conditions of the heat
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equation are ignored, then the discretized state-space model can be seen as a net-
work of identical, local subsystems. Consequently, this state-space model belongs
to the class of decomposable interconnected systems. However, if the boundary
conditions are taken into account or if the coefficients of the heat equation de-
pend on the spatial coordinates, then the derived state-space model cannot be
seen anymore as an interconnection of identical local subsystems. This shows that
the application of the methods proposed in [126; 127] is restricted to a relatively
narrow class of interconnected systems.

The problem of designing sparse feedback gains for distributed control of finite
dimensional interconnected systems has been studied in [134; 135]. In [135], the
feedback gain matrix is determined by solving constrained H2 optimal control
problem. In the method described in [135], the structure of the gain matrix is
fixed a priori and it is incorporated in the H2 optimal control problem as a con-
straint. The approach proposed in [134] consists of the two steps. In the first step,
the structure of the gain matrix is determined by minimizing a cost function that
is composed of the H2 cost function and a sparsity promoting penalty function.
In the second step, the determined structure of the gain matrix is used as a con-
straint in the H2 optimization problem. The methods proposed in [134; 135] have
two drawbacks. First of all, gain matrices are found by solving non-convex opti-
mization problems. This might imply that the derived gain matrices (determined
as the local minima of theH2 cost functions) do not guarantee a good performance
of the closed loop system. More importantly, because these design methods heav-
ily rely on optimization techniques, their computational and memory complexity
scale at least with O(N3) and O(N2), respectively. This is the main reason why
these methods are not suitable for distributed control of large-scale systems.
The approach presented in [136] determines the structured, H∞ feedback con-
trollers for interconnected systems, by using the `1 optimization framework. How-
ever, because this design methodology heavily relies on optimization techniques,
it is not computationally feasible for large-scale interconnected systems.

In [137], a computationally efficient method has been developed for inversion of
block banded matrices. Furthermore, it has been demonstrated that this method
can be used to decrease the computational complexity of the Kalman filter for
large-scale dynamical systems.
The problem of designing the distributed Kalman filter for large-scale systems,
has been studied in [138]. The approach presented in [138] is developed on the ba-
sis of the Distributed Iterate-Collapse Inversion (DICI) algorithm [139]. The DICI
algorithm combines the Jacobi algorithm for matrix inversion [140] and the theo-
retical framework for inversion of the block banded matrices proposed in [137].

As we will explain the sequel, first principles models of interconnected systems
can be very inaccurate. This often implies that models of interconnected systems
need to be identified from real data. However, the identification of large-scale
interconnected systems is still an open problem. Namely, most of the above sum-
marized estimation and control techniques are implicitly or explicitly exploiting
the structure of interconnected systems. From the identification point of view, this
implies that the interconnection structure of a system has to be preserved in the identified
state-space model. The Subspace Identification Methods (SIMs) [58] are not able to
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preserve the structure of the system in the identified model. On the other hand,
the Prediction Error Methods (PEMs) [141] are able to incorporate some structural
information about the system in the identified model, at the expense of using opti-
mization techniques. Furthermore, the PEMs and SIMs are not suitable for identi-
fication of large-scale system because the computational and memory complexity
of these methods scale with O(N3) and O(N2), respectively.

1.7 Scope and main contributions of the thesis

So far, we have explained the main problems in controlling TIWA in optical lithog-
raphy machines and we have placed this problem in a more general, theoretical
context of estimation and control of large-scale systems. Furthermore, we have
pointed out some open problems in estimation and control of large-scale inter-
connected systems. We have now prepared the ground to explain the scope and
the main contributions of this thesis.

Before developing predictive controllers for TIWA, it is first necessary to develop
the thermoelastic model. In this thesis, we combine two approaches for develop-
ing thermoelastic models that are suitable for real time estimation and control of
TIWA. The first approach is based on first principles models. Starting from the
thermoelastic equations, we are using the FE method to obtain a sparse, descrip-
tor state-space model that describes thermally induced deformations of optical
elements. As an alternative to the FE method, we are also using the FD method
to approximate the 3D heat equation describing temperature change in optical el-
ements.
However, the first principles models have some limitations. First of all, because
it is impossible to precisely know numerical values of model parameters and be-
cause it might not be possible to accurately model boundary conditions of the
thermoelastic equations, the first principles models can be inaccurate. Secondly,
some processes that affect the system’s dynamics (disturbances) cannot be mod-
eled a priori using first principles. To overcome the above explained drawbacks of
the first principles models, we have developed a system identification framework
for identifying large-scale, sparse, state-space models. The first principles approach
is still very useful because it can help us to understand the structure of the model that
we want to identify. For example, from discretization of the 3D heat equation, we
know that the system matrices of the state-space model that we want to identify,
are sparse, banded matrices. By exploiting this structure we are able to develop
computationally efficient identification algorithms.

This thesis can be divided into two parts. In the first part we present theoretical
framework on which basis we develop methods for identification and estimation
of large-scale, interconnected systems. For brevity of this thesis, we did not de-
velop predictive control algorithms for large-scale systems. The predictive control
algorithms can be easily developed using the theoretical framework presented in
Chapter 3. Because during the course of this thesis we were unable to test these
methods on a real EUV system, we have validated these methods using numerical
simulations.
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However, in a cooperation with researchers from Optics Research Group, Delft
University of Technology, we have built an experimental AO setup12. This ex-
perimental setup contains two DMs: one mirror is used to introduce wavefront
aberrations and another mirror is used for correction. This way, we were able to
simulate the AO system in a real EUV machine. Consequently, we were able to
demonstrate the proof of concept for predictive control of wavefront aberrations.
The predictive control method and its experimental validation is presented in the
second part of the thesis. Because it is only used to demonstrate the proof of con-
cept, the developed predictive controller is not based on the theoretical framework
for large scale systems, that is presented in the first part of the thesis. Generaliza-
tion of the predictive control framework for large-scale interconnected systems is
briefly explained in Chapter 10 (see Section 10.5).
Beside being used to demonstrate the proof of concept for predictive control of
wavefront aberrations, the experimental setup was used to develop and to test
new identification and control methods for AO systems. These methods together
with the predictive controller are not necessarily restricted to the AO systems for
optical lithography machines and they can be used in a large variety of AO appli-
cations.

One of the main focuses of this thesis is to develop linear computational complexity algo-
rithms for estimation and identification of the discretized heat equation and the discretized
thermoelastic equations. For simplicity, in the thermoelastic equations we assumed that
the Coefficient of Thermal Expansion (CTE) is constant. Consequently, the state-space
representation of the discretized thermoelastic equations is linear and accordingly, the al-
gorithms developed in this thesis mostly rely on the linear system theory. However, some
of the materials used to make EUV mirrors might have CTE that depends on the tem-
perature. In this case, the resulting state-space model has a linear state equation and a
nonlinear output equation (for details see Chapter 2, Remark 2.2).
At the first glance, one might come to a conclusion that the computationally efficient al-
gorithms presented in this thesis, are only applicable to linear state-space models and that
they cannot be used in the case when the CTE depends on the temperature. To show that
this conclusion is incorrect and that the presented algorithms can be generalized for the
above mentioned case, in Chapter 4, Section 4.3, we demonstrate that the Newton observer
for nonlinear systems can be implemented with linear computational complexity by using
the algorithms developed in this thesis. Using the same principle, computationally efficient
identification and control algorithms for nonlinear systems with an output nonlinearity,
can be developed.

Readers who are only interested in the AO applications, can skip the first part
of this thesis (Chapters 2-6) and they can focus on the second, experimental part
(Chapters 7-10). Similarly, researchers who are solely interested in numerical as-
pects of estimating and controlling large-scale systems can skip the second part.
However, we think that for engineers and scientists who are interested in develop-
ing real-time estimation and control algorithms for thermally induced wavefront
aberrations, both parts are relevant. In the first part they can find the building
blocks on which basis they can form computationally efficient algorithms, and

12A close collaboration has been established with the PhD student Alessandro Polo and his supervi-
sors: professor Silvania Pereira and professor H. Paul Urbach.
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in the second part they can get the main ideas of how these algorithms can be
adapted to the problem of controlling wavefront aberrations. These ideas are
briefly explained in Chapter 10 (see Section 10.5). In the sequel we provide a
detailed explanation of the main contributions of the thesis.

1.7.1 Main theoretical contributions of the thesis

In this thesis we consider large-scale interconnected systems described by sparse
banded or sparse multi-banded system matrices. As it has been already explained,
these types of state-space models originate from discretization of PDEs using the
FE or FD methods. Throughout this thesis, when we refer to large-scale systems we
mean large-scale interconnected systems with sparse banded or multi-banded state-space
matrices. Although we consider systems described by sparse (multi) banded state-
space matrices, the methods proposed in this thesis can be generalized to inter-
connected systems with a more general interconnection patterns (see Chapter 3.4
and the conclusions in Chapter 11).

The main contributions to the theory of large-scale interconnected systems are:

1. We propose a structure preserving lifting technique for state-space mod-
els of large-scale interconnected systems. The newly proposed lifting tech-
nique, first lifts the local state-space models (1.3) over the time domain and
then it lifts such lifted state-space models over the spatial domain. Con-
sequently, the structure preserving lifting technique ensures that the dis-
tributed (sparse banded or multi-banded) structure of the state-space matri-
ces of an interconnected system is preserved in the lifted state-space model.
In this thesis we use the structure preserving lifting technique to prove some
new, interesting properties of large-scale interconnected systems and to de-
velop distributed estimation and identification algorithms.
The importance of the new lifting technique mainly lies in the fact that the
classical lifting technique that is widely used in the SIMs [142; 143; 144; 145;
146], moving horizon estimation [147; 148; 149; 150], Iterative Learning Con-
trol (ILC) [151; 152; 153; 154; 155; 156; 157], Model Predictive Control (MPC
)[158; 159; 160], ”destroys” the distributed structure of the large-scale inter-
connected systems. Consequently, the classical lifting technique cannot be
the basis for the development of distributed control and estimation algo-
rithms.

2. The inverses of (finite-time) Gramians and lifted system matrices of large-
scale interconnected systems are off-diagonally decaying matrices.13 This
result is important because the off-diagonal decay of operators associated
with interconnected (distributed) systems has only been studied in
the infinite-dimensional case [84]. On the basis of the structure preserv-
ing lifting technique and using the theoretical framework presented in [161;

13Here, the off-diagonal decay does not necessarily mean the decay with respect to the main diago-
nal. We numerically show in Chapter 3.5 that inverses of multi banded matrices exhibit off-diagonal
decay with respect to diagonals below or above the main diagonal.
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162], we prove that inverses of lifted system matrices and (finite-time) Grami-
ans of large-scale interconnected systems, belong to a class of off-diagonally
decaying matrices.

3. The inverses of Gramians and lifted system matrices of large scale inter-
connected systems can be approximated by sparse (multi) banded ma-
trices with O(N) computational and O(N) memory complexity. This di-
rectly follows from the fact that the inverses of lifted system matrices are
off-diagonally decaying matrices. We have used two algorithms to perform
this structure preserving inversion: the Chebyshev method [161] and the
Newton iteration [163]. Using the spectral mapping theorem we have de-
rived an upper bound on the error introduced by the Chebyshev approxi-
mation method. The Chebyshev method and the Newton iteration are used
to develop computationally efficient identification and estimation methods
for large-scale systems.

4. The state estimate of a local subsystem can be computed as a linear com-
bination of the input-output data of local subsystems that are in its neigh-
borhood. We prove that the size of this neighborhood depends on the con-
dition number of the finite-time observability Gramian. In particular, if the
condition number is larger then the size of this neighborhood is larger and
vice-versa. Thus, for systems with well-conditioned observability matrices and
observability Gramians, to compute the local state estimate, a local system needs to
communicate only with its neighboring local subsystems. That is, there is no need
for ”all to all” communication between the local subsystems of a large-scale
system.

On the basis of these new theoretical results, we have developed:

1. Distributed and centralized Moving Horizon Estimation (MHE) methods for large
scale interconnected systems in the standard, state-space form. These methods are
developed using the structure preserving lifting technique and by using the
Chebyshev approximation method. The system matrices of the developed
estimators are sparse (multi) banded matrices. Consequently, the computa-
tional and memory complexity of the developed MHE methods scale with
O(N). Furthermore, the distributed MHE method estimates the local state
as a linear combination of the local input-output data. Thanks to this prop-
erty, the developed MHE method is much faster than the distributed esti-
mation methods that are based on the consensus-subgradient or diffusion
based algorithms [164; 165; 166; 167; 168]. We have studied how the errors
introduced by the Chebyshev approximation method influence the dynam-
ics of the estimation error.
Furthermore, using the Chebyshev method and the Newton iteration method,
we have developed computationally efficient MHE methods for large-scale
systems in the descriptor state-space form. These methods are used to esti-
mate the state of the discretized thermoelastic equations.

The direct consequence of the structure preserving lifting technique and the approx-
imation algorithms is that the MHE estimators inherit the structure of large-scale,
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interconnected systems. That is, the distributed MHE methods are derived with-
out any a priori assumptions on the structure of the estimator gain matrices and
without the need for formulating the distributed MHE problem as a non-convex
optimization problem.

Beside the MHE methods, a variety of control strategies are relying on the
lifted system representation. For example, the ILC and the MPC methods,
explicitly or implicitly, lift state-space models over the time domain and they
derive controllers by inverting the lifted system matrices14. Similarly to the
development of the distributed MHE method, the structure preserving lift-
ing technique and the approximation algorithms can be used to develop dis-
tributed ILC and MPC methods, that have sparse (multi) banded system
matrices.
All this implies that the framework proposed in this thesis can be used as the basis
for establishing distributed estimation and control methods that:

(a) Do not rely on non-convex optimization problems, and the structure of an
estimator (or a controller) directly follows from the structure of interconnected
systems.

(b) They are computationally feasible for systems with an extremely large number
of local subsystems.

2. A subspace identification algorithm for large scale interconnected systems. By ex-
ploiting the fact that the state of a local subsystem can be estimated only
from the local input-output data, the proposed subspace algorithm iden-
tifies state-space models of local subsystems in the decentralized manner.
The computational complexity of estimating a local state-space model de-
pends only on the dimension of the local state. Consequently, the developed
subspace identification algorithm is computationally feasible for large-scale
interconnected systems with a very large number of local subsystems. Even
more importantly, the proposed identification algorithm is able to identify
the global state-space model in which the interconnection structure of a sys-
tem is preserved. Due to its decentralized nature, the subspace identification
algorithm can be implemented on a network of local computing units and
sensors that communicate locally.

3. A parameter optimization algorithm for identification of large-scale interconnected
systems. The developed identification algorithm consists of two steps. In
the first step, impulse response parameters of local subsystems are esti-
mated in the decentralized manner. In the second identification step, the
estimated impulse response parameters and input-output data are used to
form a large-scale, separable least-squares problem. The local system matri-
ces are identified by solving this optimization problem withO(N) computa-
tional and O(N) memory complexity. The linear computational complexity
is achieved by approximating the inverses of lifted system matrices using
the Chebyshev approximation method and Newton iteration. The local sys-
tem matrices that are estimated using the proposed subspace identification

14For example, the lifted ILC algorithm inverts the impulse response matrix.
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algorithm, can be used as initial guesses of decision variables of the separa-
ble least-squares optimization problem.

1.7.2 Contributions to the adaptive optics field

1. We developed an Iterative Learning Control (ILC) algorithm for control-
ling the shape of deformable mirrors. The developed algorithm is tested
on an experimental AO setup consisting of a commercial Membrane DM
(MDM), Shack-Hartmann WFS (S-H WFS) and a real-time controller. The
developed algorithm can be used for accurate correction of both static and
slowly-varying wavefront aberrations in optical systems. We studied the
stability of the ILC method. Furthermore, we gave a physical interpretation
of the parameters of the ILC algorithm and we gave guidelines for its tun-
ing. The main advantage of the developed controller over the controllers
for MDMs proposed in the literature, is that it can accurately produce the
desired shape of a MDM in a small number of control iterations.

2. Using the subspace identification technique, we identified a low-dimensional,
dynamical model of a prototype of Thermally Actuated Deformable Mirror
(TADM). The prototype of TADM was manufactured to meet the require-
ments of AO systems for EUV lithography and it was designed by Eind-
hoven University of Technology15. Due to its low-dimensionality, the iden-
tified model can be easily used to design feed-forward or feedback model
based controllers for a large variety of AO systems. The experimental re-
sults showed that the identified model can accurately predict the dynamical
behavior of the TADM.
The main contribution of the proposed identification methodology can be
best explained by summarizing the commonly used approach for identify-
ing models of TADMs. Because the dynamical behavior of TADMs is de-
scribed by the thermoelastic equations16, it is challenging to develop dy-
namical models of these devices. Consequently, in the AO literature, see for
example [20; 169], steady-state models (influence functions) of these devices
are usually identified. Controllers developed on the basis of these mod-
els cannot achieve fast and accurate correction of wavefront aberrations. In
contrast to these approaches, the proposed method for identification of dy-
namical models of TADMs, can be used as the basis for the development of
high performance AO controllers.

3. We experimentally demonstrated the proof of concept for predictive com-
pensation of thermally induced wavefront aberrations in (EUV) optical lithog-
raphy machines. The experiments were performed on an experimental setup
consisting of the MDM and TADM. The TADM was used to generate wave-
front aberrations, while the MDM was used as a correction element. In this

15The mirror was designed by a PhD student S.K. Ravensbergen and his supervisors: professor
P.C.J.N. Rosielle and professor M. Steinbuch.

16In some cases, see for example [26], the thermoelastic equations need to be coupled with the bi-
harmonic plate equation.
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way, we simulated the AO system in a real EUVL system. Namely, the
aberrations created by the TADM represent the TIWA, whereas the MDM
represents an active optical element in a lithographic machine17. The pre-
dictive control algorithm was developed on the basis of the model of the
TADM (that was identified using the subspace identification technique). We
demonstrated that it is possible to predictively compensate wavefront aber-
rations by only using initial wavefront measurements. Furthermore, we
showed that it is possible to compensate wavefront aberrations even when
inputs of the prediction model are not known a priori (this case corresponds
to the scenario in a lithographic machine when the inputs of the TIWA model
are unknown or they are not modeled).
Apart from AO systems for optical lithographic machines, the proposed pre-
dictive controller can be used in other AO applications, such as compensa-
tion of wavefront aberrations induced by high-power lasers [20; 21; 22; 23;
24].

4. Using the developed MHE method for descriptor state-space models and
the discretized thermoelastic equations, we demonstrated that it is possible
to estimate the temperature distribution of an optical element from the mea-
surements of surface deformations. In principle, these results imply that the
state of the TIWA model can be estimated from wavefront measurements.
Furthermore, this estimation framework can be easily generalized for simul-
taneous state and input estimation of the TIWA model.

1.8 Organization of the thesis and journal papers

This thesis can be divided into the following two parts.

• Part I: Theoretical contributions.

– First, in Chapter 2 we start with the derivation of structured state-space
models that describe dynamics of thermoelastic deformations of mir-
rors used in optical systems. To explain the basic lifting and partition-
ing procedures for obtaining large-scale interconnected systems from
discretized PDEs, we first discretize the 2D heat equation using the FD
method. After that, we use the FD method to discretize the 3D heat
equation. The heat equation is defined on a rectangular prism (a plate),
that can be seen as a segment of a mirror used in optical systems. Fi-
nally, we discretize the thermoelastic equations using the FE method.
The discretized thermoelastic equations describe thermally induced de-
formations of circular mirrors used in optical systems. The models de-
veloped in this Chapter are used throughout this thesis to demonstrate

17Compared to AO systems for EUVL machines, in our experimental setup we reversed the role of
the TADM. In AO systems for EUVL machines, TADMs are used to correct TIWA. However, in our
experimental setup we used the TADM to induce wavefront aberrations. Namely, because of its slow
dynamics, TADM is ideal for reproducing dynamical behavior of TIWA.
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the main properties of large-scale systems and to demonstrate the per-
formance of the developed algorithms.

– In Chapter 3, we present the structure preserving lifting technique for
large-scale systems. Then, we prove that inverses of Gramians and
lifted system matrices belong to a class of off-diagonally decaying ma-
trices. Finally, we summarize two algorithms for structure preserving
inversion of sparse lifted system matrices: the Chebyshev approxima-
tion method and Newton iteration. We derive an upper bound on the
approximation errors introduced by the Chebyshev method. The ma-
terial presented in this chapter is partly presented in:

Moving horizon estimation for large-scale interconnected systems, A. Haber
and M. Verhaegen, IEEE Transactions on Automatic Control, Vol. 58, Issue
11, 2013.

– In Chapter 4, we present centralized and distributed MHE methods for
large-scale interconnected systems. Two types of MHE methods are de-
veloped. The first MHE method is developed for state-space models in
the standard form. The second MHE method is developed for descrip-
tor state-space models. The MHE method for state-space models in the
standard form is presented in:

Moving horizon estimation for large-scale interconnected systems, A. Haber
and M. Verhaegen, IEEE Transactions on Automatic Control, Vol. 58, Issue
11, 2013.

while the MHE method for descriptor state-space models is presented
in:

Moving horizon state estimation of thermoelastic deformations, A. Haber, I.
Maj, R. Mustata and M. Verhaegen, preprint submitted to Journal of Compu-
tational Physics.

– In Chapter 5, we present the subspace identification algorithm for large
scale systems. The method proposed in this chapter is presented in:

Subspace identification of large-scale interconnected systems, A. Haber and
M. Verhaegen, IEEE Transactions on Automatic Control, Note: Conditionally
accepted, 2013 (arXiv:1309.5105v1).

– In Chapter 6, we present the parameter optimization method for iden-
tification of large-scale interconnected systems. The method presented
in this chapter is based on the method proposed in:

Identification of large-scale systems described by sparse banded matrices, A.
Haber and M. Verhaegen, submitted to Automatica.

– In Chapter 7 we present numerical results of estimating the tempera-
ture distribution of a mirror used in optical systems. These results are
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presented in:

Moving horizon state estimation of thermoelastic deformations, A. Haber, I.
Maj, R. Mustata and M. Verhaegen, preprint submitted to Journal of Compu-
tational Physics.

• Part II: Control and identification methods for adaptive optics.

– In Chapter 8, we present the ILC algorithm for optimal wavefront cor-
rection. This algorithm is presented in:

Iterative learning control of a membrane deformable mirror for optimal wave-
front correction, A. Haber, A. Polo, C.S. Smith, S.F. Pereira, H.P. Urbach and
M. Verhaegen, Applied Optics, Vol. 52, Issue 11, 2013.

The computationally efficient implementation of the ILC method is pre-
sented in:

Linear computational complexity robust ILC for lifted systems, A. Haber, P.R.
Fraanje and M. Verhaegen, Automatica, Vol. 48, Issue 6, 2012.

Furthermore, the ILC algorithm is used to develop AO controllers in
the following papers:

Linear phase retrieval for real-time adaptive optics, A. Polo, A. Haber, S.F.
Pereira, M. Verhaegen and H.P. Urbach, Journal of the European Optical
Society-Rapid publications, Vol. 8, 2013.

An innovative and efficient method to control the shape of push-pull mem-
brane deformable mirror, A. Polo, A. Haber, S.F. Pereira, M. Verhaegen and
H.P. Urbach, Optics Express, Vol. 20, Issue 25, 2012.

– In Chapter 9, we present the identification method for the dynamical
model of TADM. This chapter is based on:

Identification of dynamical model of a thermally actuated deformable mirror,
A. Haber, A. Polo, S.K. Ravensbergen, H.P. Urbach and M. Verhaegen, Optics
Letters, Vol. 38, Issue 16, 2013.

– In Chapter 10, we present the proof of concept for predictive correction
of thermally induced wavefront aberrations. This chapter is based on:

Predictive control of thermally induced wavefront aberrations, A. Haber, A.
Polo, I. Maj, S.F. Pereira, H.P. Urbach and M. Verhaegen, Optics Express,
Vol. 21, Issue 18, 2013.

– In Chapter 11, we draw conclusions and we discuss the future research
directions.



2 CHAPTER

Modeling

In this chapter we derive large-scale, state-space models that describe
thermoelastic deformations of optical elements. We approximate the

heat equation and the thermoelastic equations using the finite difference
and finite element methods. The developed models are used in the re-
maining chapters to test and compare the performance of the developed
estimation and identification algorithms.

2.1 Introduction

A large variety of physical phenomena and processes are described by Partial Dif-
ferential Equations (PDEs). Some notable examples of physical processes that are
modeled by PDEs are: compressible and incompressible flows [170; 171; 172; 173;
174; 175; 176], aero-optical aberrations [177; 178], heating of optical elements, elas-
tic deformations of bodies under action of forces [179; 180] and electromagnetic
fields [181].

From the form of a PDE and from numerical values of its coefficients, we can
draw important conclusions about the stability and dynamical behavior of the
underlying system. However, in order to confirm these conclusions or to fully
understand the dynamical behavior of the system, a PDE needs to be discretized
and its discretized form needs to be simulated.

In the systems and control literature, there are two approaches for designing es-
timators and controllers for systems modeled by PDEs. In the first approach,
finite dimensional, approximate models of PDEs are obtained using discretiza-
tion techniques, such as Finite Difference (FD) or Finite Element (FE) methods
[97; 105; 182; 183]. After discretization of PDEs, the classical model based control
and estimation techniques are applied [108; 110]. In the literature, this approach
is referred to as the early lumping approach [184; 185; 186]. The main disadvantage
of the early lumping approach is that the discretized models are usually large di-
mensional and consequently, the high computational complexity of the classical

27
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estimation and control techniques becomes a serious problem. Furthermore, the
early lumping approach introduces approximation errors in the early stage of the
control design.

In the second approach, controllers or estimators are designed using models that
are described by PDEs. During the control design process, PDEs are not dis-
cretized. Instead, the designed controllers are discretized in the final, implemen-
tation step. In the literature, this approach is referred to as the late lumping approach
[184; 185; 186]. A large variety of control and estimation techniques are using this
approach [124; 187; 188; 189]. Unfortunately, there is no universal late lumping
approach. That is, there is no universal control and estimation strategy that can
handle any type of PDE. Particular methods are tailored for particular types of
PDEs and boundary conditions. Furthermore, the discretization and real time im-
plementation of the designed controllers, are usually computationally expensive
tasks.

In this thesis we will follow the early lumping approach. The FD and FE meth-
ods are used to develop structured state-space models of the heat equation and
thermoelastic equations. In this chapter we explain in detail how to order dis-
cretized PDEs and boundary conditions such that the system matrices of the de-
rived state-space models are sparse (multi) banded matrices. The models derived
in this chapter will be used throughout this thesis to test and to compare the de-
veloped identification and estimation algorithms.

We start with the FD approximation of the heat equation defined on the 2D do-
main (2D heat equation). Then, we extend the discretization method to the 3D
heat equation. Finally, we develop a FE state-space model describing thermoelas-
tic deformations of mirrors used optical systems. This state-space model will be
used in Chapter 7 to demonstrate the performance of the developed estimation
methods.

2.2 Finite difference state-space model of the 2D heat
equation

To explain the general idea of constructing structured state-space models of dis-
cretized PDEs, in this section we start with the Finite Difference (FD) approxima-
tion of the 2D heat equation. To make the story more interesting, discretization
procedure will be placed in the context of developing a simplified model of a
Thermally Actuated Deformable Mirror (TADM).

TADMs are an inexpensive option for accurate correction of slowly-varying wave-
front aberrations in optical systems [20; 190; 191]. In Fig. 2.1 a simplified cross
section of a TADM is illustrated. An array of heaters, denoted by an array of cir-
cles in Fig.2.1, heats the body of the mirror1. As the mirror body heats up, it starts
to deform. The deformations of the top mirror surface influence the distortions of
the reflected wavefront.

1In practice, an array of resistors can be used for generating the heat [21].
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(a)

(b)

Figure 2.1: (a) Cross section of the thermally actuated deformable mirror with an
array of heaters; (b) Interior region Ω and boundary domain Γ.

For the time being we will neglect the deformations and the heat diffusion in the
direction perpendicular to the mirror’s cross section. The temperature change of
the cross-section of the mirror is governed by the 2D heat equation:

∂T

∂t
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ ru, (x, y) ∈ Ω (2.1)

where t is time, x, y are spatial coordinates, T = T (x, y, t) is the temperature, u
is heat generated by an actuator, r is a scaling factor of an input, α is the ther-
mal diffusivity. For simplicity, the following boundary and initial conditions are
introduced:

T (x, y, t) = 0, (x, y) ∈ Γ, t ≥ 0 (2.2)
T (x, y, 0) = 0, (x, y) ∈ Ω (2.3)

For the discretization of the heat equation (2.1), we are using the FD method [97].
The FD method approximates the partial derivatives as follows:

∂2T

∂x2
≈ Ti+1,j(k)− 2Ti,j(k) + Ti−1,j(k)

L2
,
∂2T

∂y2
≈ Ti,j+1(k)− 2Ti,j(k) + Ti,j−1(k)

L2



30 Chapter 2: Modeling

∂T

∂t
≈ Ti,j(k + 1)− Ti,j(k)

h
(2.4)

where L is a spatial discretization step, h is a time discretization step, Ti,j(k) is the
temperature at a node (Li, Lj), i = 0, 1, . . . , N + 1, j = 0, 1, 2, 3, and at the time
instant kh, k ≥ 0. The uniform discretization mesh is illustrated in Fig. 2.2.

Figure 2.2: Mesh for finite difference discretization of the heat equation

For simplicity in (2.1), it is assumed that the input u does not change in the y
direction. That is, we assume that the input ui is acting at the nodes (i, 1) and
(i, 2), i = 1, . . . , N . Taking into account (2.4), the discretized heat equation takes
the following form:

Ti,j(k + 1) =a1Ti,j(k) + a2Ti+1,j(k) + a2Ti−1,j(k)

+ a2Ti,j+1(k) + a2Ti,j−1(k) + bui(k) (2.5)

where a1 = 1 − 4hαL2 , a2 = hα
L2 and b = rh. The discretized boundary conditions

are:

Ti,0(k) = Ti,3(k) = 0, i = 0, . . . , N + 1, ∀k ≥ 0

T0,j(k) = TN+1,j(k) = 0, j = 0, 1, 2, 3, ∀k ≥ 0

Taking these boundary conditions into account, from (2.5) we have:

• For i = 1, j = 1, 2:[
T1,1(k + 1)
T1,2(k + 1)

]
=

[
a1 a2

a2 a1

] [
T1,1(k)
T1,2(k)

]
+

[
a2 0
0 a2

] [
T2,1(k)
T2,2(k)

]
+

[
b
b

]
u1(k) (2.6)

• For 1 < i < N , j = 1, 2:[
Ti,1(k + 1)
Ti,2(k + 1)

]
=

[
a1 a2

a2 a1

] [
Ti,1(k)
Ti,2(k)

]
+

[
a2 0
0 a2

] [
Ti−1,1(k)
Ti−1,2(k)

]
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+

[
a2 0
0 a2

] [
Ti+1,1(k)
Ti+1,2(k)

]
+

[
b
b

]
ui(k) (2.7)

• For i = N , j = 1, 2:[
TN,1(k + 1)
TN,2(k + 1)

]
=

[
a1 a2

a2 a1

] [
TN,1(k)
TN,2(k)

]
+

[
a2 0
0 a2

] [
TN−1,1(k)
TN−1,2(k)

]
+

[
b
b

]
uN (k)

(2.8)

The local state xi(k) and the local system matrices A, E and B are defined as follows:

xi(k) =

[
Ti,1(k)
Ti,2(k)

]
, A =

[
a1 a2

a2 a1

]
, E =

[
a2 0
0 a2

]
, B =

[
b
b

]
(2.9)

We assume that we can measure the temperatures at the grid points (i, 2), i =
1, . . . , N . In practice this can be achieved using the sensing principle explained in
[192]. The local output equation is defined accordingly:

yi(k) = Cxi(k) + ni(k) (2.10)

where C =
[
1 0

]
and ni(k) is the local measurement noise. By lifting the local

states xi over the i direction, we obtain the global state-space model:

S
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) + n(k)

(2.11)

where the global system matrices A, B and C, and the global vectors x(k), u(k) and
n(k), are defined as follows:

A =


A E
E A E

. . .
E A E

E A

 , B =

B . . .
B

 , C =

C . . .
C

 ,

y(k) =

y1(k)
...

yN (k)

 ,x(k) =

x1(k)
...

xN (k)

 ,u(k) =

u1(k)
...

uN (k)

 (2.12)

The global system S, defined in (2.11), consists of the interconnection of N identical
local subsystems Si. The interconnection pattern of local subsystems is illustrated
in Fig. 2.3.
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Figure 2.3: The discretized 2D heat equation can be seen as an interconnection of local
subsystems Si, i = 1, . . . , N .

Because the thermal diffusivity is not depending on the spatial coordinates, the
global system (2.11) belongs to the class of decomposable systems [127]. If in the
2D heat equation (2.1), the thermal diffusivity constant α depends on the spatial
coordinates (x, y), then its discretized state-space model can be seen as an inter-
connection of nonidentical local subsystems. In this case the global system does
not belong anymore to the class of decomposable systems.

The procedure for obtaining the global state-space model (2.67) can be summarized as
follows. First, for each i = 1, . . . , N the discretized heat equation (2.5) is lifted over the j
direction. Then, starting from i = 1, such lifted equations are lifted over the i direction.
In the sequel we generalize this procedure for the 3D heat equation.

2.3 Finite difference state-space model of the 3D heat
equation

Consider a rectangular prism (plate) shown in Fig. 2.4.

Figure 2.4: A plate with a coordinate system attached to it.



2.3 Finite difference state-space model of the 3D heat equation 33

This plate can be seen as the part of a mirror used in the EUV lithography. On the
top surface of the plate, the intensity of the diffracted light acts as a heat source
that increases the temperature of the plate’s body. The plate can be mathematically
described by the following set of points:

Ω = {(x, y, z) | 0 ≤ x ≤ d1, 0 ≤ y ≤ d2, 0 ≤ z ≤ d3} (2.13)

The boundary surfaces of the plate are mathematically described as follows:

Γ1 = {(x, y, z) | 0 ≤ x ≤ d1, 0 ≤ y ≤ d2, z = d3}
Γ2 = {(x, y, z) | 0 ≤ x ≤ d1, 0 ≤ y ≤ d2, z = 0}
Γ3 = {(x, y, z) | x = d1, 0 ≤ y ≤ d2, 0 ≤ z ≤ d3}
Γ4 = {(x, y, z) | 0 ≤ x ≤ d1, y = d2, 0 ≤ z ≤ d3}
Γ5 = {(x, y, z) | x = 0, 0 ≤ y ≤ d2, 0 ≤ z ≤ d3}
Γ6 = {(x, y, z) | 0 ≤ x ≤ d1, y = 0, 0 ≤ z ≤ d3}

(2.14)

The plate’s temperatures are evolving according to the 3D heat equation:

∂T

∂t
= α

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
, (x, y, z) ∈ Ω, t ∈ [0,∞) (2.15)

The energy exchange between the plate and the surrounding air occurs through
the boundaries Γ1, . . . ,Γ6. More specifically, we assume that this energy exchange
occurs through convection and radiation. Furthermore, the heat flux is acting
on the top surface Γ1, and we assume that the initial temperature of the plate is
equal to the ambient temperature. These boundary and initial conditions can be
mathematically described as follows:

k1
∂T

∂n1
= k2u+ σε(T 4

0 − T 4) + h1(T0 − T ), (x, y, z) ∈ Γ1 (2.16)

k1
∂T

∂ni
= σε(T 4

0 − T 4) + h1(T0 − T ), (x, y, z) ∈ Γi, i = 2, . . . , 6 (2.17)

T (x, y, z, 0) = T0, (x, y, z) ∈ Ω (2.18)

where k1 is the thermal conductivity, ∂/∂ni denotes the normal derivative, σ is
the Stephan-Boltzmann constant, ε is the emissivity of the surface, T0 is the con-
stant ambient temperature, h1 is the heat transfer coefficient, k2 is the absorption
coefficient and u is the heat flux acting on the top surface Γ1.

The relative temperature is defined by:

T̃ = T − T0 (2.19)

Using (2.19), we can rewrite the heat equation (2.15) as follows:

∂T̃

∂t
= α

(
∂2T̃

∂x2
+
∂2T̃

∂y2
+
∂2T̃

∂z2

)
, (2.20)
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After linearizing boundary conditions (2.16)-(2.17) around the ambient tempera-
ture T0, we obtain:

k1
∂T̃

∂n1
= k2u− (k3 + h1)T̃ , (x, y, z) ∈ Γ1 (2.21)

k1
∂T̃

∂ni
= −(k3 + h1)T̃ , (x, y, z) ∈ Γi, i = 2, . . . , 6 (2.22)

T̃ (x, y, z, 0) = 0, (x, y, z) ∈ Ω (2.23)

where k3 = 4σεT 3
0 . Similarly to the discretization of the 2D heat equation, the

spatial discretization step is denoted by L and the time discretization step by h.
This means that we divide d1, d2 and d3 into N,M and P segments, respectively,
where the dimension of each segment is equal to L:

d1 = NL, d2 = ML, d3 = PL (2.24)

For convenience, we introduce the following notation:

T̃ (iL, jL, lL, kh) = T̃i,j,l(k), u(iL, jL, kh) = ui,j(k) (2.25)

where i = 0, 1, . . . , N , j = 0, 1, . . . ,M and l = 0, 1, . . . , P . The discretization mesh
is illustrated in Fig. 2.5.

Figure 2.5: The discretization grid for the 3D heat equation (2.20).

We assume that it is possible to measure the temperatures at the top boundary
surface Γ1. That is, we assume that at each discrete time instant k we are able to
measure the temperatures Ti,j,P , i = 0, 1, . . . , N ; j = 0, 1, . . . ,M . In reality this can
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be achieved by using thermo-couples or using a thermal camera [193].

The measurement vector is defined as follows:

yi,j(k) = T̃i,j,P (k) + ni,j(k) (2.26)

where ni,j(k) is the measurement noise.

2.3.1 Discretized heat equation

The FD approximations of the partial derivatives are defined by [97]:

∂T̃

∂t
≈ T̃i,j,l(k + 1)− T̃i,j,l(k)

h
(2.27)

∂2T̃

∂x2
≈ T̃i+1,j,l(k)− 2T̃i,j,l(k) + T̃i−1,j,l(k)

L2
(2.28)

∂2T̃

∂y2
≈ T̃i,j+1,l(k)− 2T̃i,j,l(k) + T̃i,j−1,l(k)

L2
(2.29)

∂2T̃

∂z2
≈ T̃i,j,l+1(k)− 2T̃i,j,l(k) + T̃i,j,l−1(k)

L2
(2.30)

Using (2.27)-(2.30) we obtain the discretized heat equation:

T̃i,j,l(k + 1) =k4T̃i,j,l(k) + k5T̃i+1,j,l(k) + k5T̃i−1,j,l(k) + k5T̃i,j+1,l(k) + k5T̃i,j−1,l(k)

+ k5T̃i,j,l+1(k) + k5T̃i,j,l−1(k) (2.31)

where k4 = 1− 6hα/L2 and k5 = hα/L2. To discretize the boundary condition on
the surface Γ1, the following approximation is introduced:

∂T̃

∂n1
≈ T̃i,j,P+1(k)− T̃i,j,P−1(k)

2L
(2.32)

From (2.21) and (2.32) we obtain:

Γ1 : T̃i,j,P+1(k) = T̃i,j,P−1(k)− k7T̃i,j,P (k) + k6ui,j(k) (2.33)

where k6 = 2Lk2/k1 and k7 = 2L(k3+h1)/k1. The remaining boundary conditions
are discretized using the similar procedure. The discretized boundary conditions
are:

Γ2 : T̃i,j,−1(k) = T̃i,j,1(k)− k7T̃i,j,0(k) (2.34)

Γ3 : T̃N+1,j,l(k) = T̃N−1,j,l(k)− k7T̃N,j,l(k) (2.35)

Γ4 : T̃i,M+1,l(k) = T̃i,M−1,l(k)− k7T̃i,M,l(k) (2.36)

Γ5 : T̃−1,j,l(k) = T̃1,j,l(k)− k7T̃0,j,l(k) (2.37)

Γ6 : T̃i,−1,l(k) = T̃i,1,l(k)− k7T̃i,0,l(k) (2.38)
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If we would write the discretized heat equation (2.31) for the mesh points belong-
ing to the boundary surfaces, we would observe that these equations contain tem-
peratures that are outside the domain Ω (body of the plate). We eliminate these
additional terms by substituting (2.33)-(2.38) in (2.31). To illustrate this, consider
the heat equation (2.31) written for the point (0, 0, 0):

T̃0,0,0(k + 1) = k4T̃0,0,0(k) + k5T̃−1,0,0(k) + k5T̃1,0,0(k)

+k5T̃0,1,0(k) + k5T̃0,−1,0(k) + k5T̃0,0,1(k) + k5T̃0,0,−1(k) (2.39)

The boundary conditions corresponding to (0, 0, 0) are:

T̃−1,0,0(k) = T̃1,0,0(k)− k7T̃0,0,0(k) (2.40)

T̃0,−1,0(k) = T̃0,1,0(k)− k7T̃0,0,0(k) (2.41)

T̃0,0,−1(k) = T̃0,0,1(k)− k7T̃0,0,0(k) (2.42)

By substituting these boundary conditions in the discretized heat equation (2.39),
we obtain:

T̃0,0,0(k + 1) = k8T̃0,0,0(k) + 2k5T̃1,0,0(k) + 2k5T̃0,1,0(k) + 2k5T̃0,0,1(k) (2.43)

where k8 = k4 − 3k5k7. Using the same principle we can eliminate additional
terms from the discretized equations formed for remaining boundary surfaces.

Lifting procedure

Here we will generalize the lifting procedure used to form the structured state-
space model of the discretized 2D heat equation. The local states of the discretized
2D heat equation are defined by lifting the temperatures over the j direction.
Then, these local states were lifted over the i direction to obtain the global state-
space model (2.11).

Using the same lifting principle,

1. We first lift the temperatures over the l direction (that is over the z domain, see Fig.
2.5). This way, we define the local state-vector xi,j(k) of the local subsystem Si,j :

xi,j(k) =


T̃i,j,0(k)

T̃i,j,1(k)
...

T̃i,j,P (k)

 (2.44)

2. Then, we lift these lifted vectors over the i direction.

3. Finally, we lift once more these ”double lifted” vectors over the j direction. This
way, we obtain the global state vector x(k).
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Once we have eliminated from the discretized heat equation all the temperatures
that are outside of the domain Ω, we can apply the above explained procedure to
obtain the global state-space model. Namely, for i = 0 and j = 0 we can write:

x0,0(k + 1) = Acx0,0(k) + Esx0,1(k) + Esx1,0(k) +Bu0,0(k) (2.45)

where the vector x0,0 is defined in (2.44) for (i, j) = (0, 0), the matrices Ac, Es and
B are defined in (2.56) and the vector u0,0(k) is an input vector acting at the node
(0,0,P) on the top surface Γ1. The equation (2.45) is a state equation of the local
subsystem S0,0. By grouping this state equation with the corresponding output
equation (2.26), we obtain the state-space model of the local subsystem S0,0:

S0,0

{
x0,0(k + 1) = Acx0,0(k) + Esx0,1(k) + Esx1,0(k) +Bu0,0(k)
y0,0(k) = Cx0,0(k) + n0,0(k)

(2.46)

where C =
[
0 0 . . . 1

]
(the C matrix ”tells us” that the temperature at the top

surface Γ1 is measured). Similarly, we define the state-space models of other local
subsystems:

Si,0

 xi,0(k + 1) = Asxi,0(k) + EIxi−1,0(k) + EIxi+1,0(k) + Esxi,1(k)
+Bui,0(k)
yi,0(k) = Cxi,0(k) + ni,0(k)

i = 1, . . . , N − 1 (2.47)

SN,0
{

xN,0(k + 1) = AcxN,0(k) + EsxN,1(k) + EsxN−1,0(k) +BuN,0(k)
yN,0(k) = CxN,0(k) + nN,0(k)

(2.48)

S0,j

{
x0,j(k + 1) = Asx0,j(k) + Esx1,j(k) + EIx0,j−1(k) + EIx0,j+1(k) +Bu0,j(k)
y0,j(k) = Cx0,j(k) + n0,j(k)

j = 1, . . . ,M − 1 (2.49)

Si,j

 xi,j(k + 1) = AIxi,j(k) + EIxi−1,j(k) + EIxi+1,j(k) + EIxi,j−1(k)
+EIxi,j+1(k) +Bui,j(k)
yi,j(k) = Cxi,j(k) + ni,j(k)

i = 1, . . . , N − 1, j = 1, . . . ,M − 1, (2.50)

SN,j

 xN,j(k + 1) = AsxN,j(k) + EsxN−1,j(k) + EIxN,j−1(k)
+EIxN,j+1(k) +BuN,j(k)
yN,j(k) = CxN,j(k) + nN,j(k)

j = 1, . . . ,M − 1, (2.51)
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S0,M

{
x0,M (k + 1) = Acx0,M (k) + Esx0,M−1(k) + Esx1,M (k) +Bu0,M (k)
y0,M (k) = Cx0,M (k) + n0,M (k)

(2.52)

Si,M

 xi,M (k + 1) = Asxi,M (k) + Esxi,M−1(k) + EIxi−1,M (k)
+EIxi+1,M (k) +Bui,M (k)
yi,M (k) = Cxi,M (k) + ni,M (k)

i = 1, . . . , N − 1 (2.53)

SN,M

 xN,M (k + 1) = AcxN,M (k) + EsxN,M−1(k) + EsxN−1,M (k)
+BuN,M (k)
yN,M (k) = CxN,M (k) + nN,M (k)

(2.54)

where

Ac =


k8 2k5

k5 k9 k5

. . .
k5 k9 k5

2k5 k8

 , As =


k9 2k5

k5 k11 k5

. . .
k5 k11 k5

2k5 k8

 , AI =


k11 2k5

k5 k4 k5

. . .
k5 k4 k5

2k5 k11

 ,
(2.55)

EI =


k5

k5

. . .
k5

k5

 , Es = 2EI , B =


0
0
...
0
k6

 (2.56)

and where k8 = k4 − 3k5k7, k9 = k4 − 2k5k7, k10 = k5k6 and k11 = k4 − k5k7.
The interconnections of the local subsystem Si,i are illustrated in Fig. 2.6.

Figure 2.6: Inputs, outputs and interconnections of the local subsystem Si,i.
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The interconnection pattern of the local subsystems (2.46)-(2.54) is illustrated in
Fig.2.7.

Figure 2.7: Interconnection pattern of local subsystems obtained by discretization
of the heat equation on the 3D spatial domain.

By lifting the local states xi,j(k) over the discretized x domain (the i direction) we
define the following vector:

xxj (k) =


x0,j(k)
x1,j(k)

...
xN,j(k)

 (2.57)

The following vectors are defined in the same manner:

uxj (k) =


u0,j(k)
u1,j(k)

...
uN,j(k)

 , yxj (k) =


y0,j(k)
y1,j(k)

...
yN,j(k)

 , nxj (k) =


n0,j(k)
n1,j(k)

...
nN,j(k)

 , (2.58)

The ”double lifted” state and output equations have the following form:

xx0(k + 1) = Axbx
x
0(k) + Exb xx1(k) +Bxux0(k)

yx0 (k) = Cxb xx0(k) + nx0(k) (2.59)

xxj (k + 1) = Axxxj (k) + Exxxj−1(k) + Exxxj+1(k) +Bxuxj (k)
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yxj (k) = Cxb xxj (k) + nxj (k)

j = 2, . . . ,M − 1 (2.60)

xxM (k + 1) = Axbx
x
M (k) + Exb xxM−1(k) +BxuxM (k)

yxM (k) = Cxb xxM (k) + nxM (k) (2.61)

where

Axb =


Ac Es
EI As EI

. . .
EI As EI
Es Ac

 , Ewb =


Es
EI

. . .
EI
Es

 , Bx =


B
B

. . .
B
B

 ,

Cx =


C
C

. . .
C
C

 , Ax =


Ac Es
EI AI EI

. . .
EI AI EI
Es As

 , Ex =


EI
EI

. . .
EI
EI


(2.62)

Finally, we lift the ”double lifted” vectors xxj (k) over the discretized y domain (the
j direction, see Fig. 2.5 ) and we define the global state vector:

x(k) =


xx0(k)
xx1(k)

...
xxM (k)

 (2.63)

The global input, output and measurement noise vectors are defined as follows:

u =


ux0(k)
ux1(k)

...
uxM (k)

 , y =


yx0 (k)
yx1 (k)

...
yxM (k)

 , n =


nx0(k)
nx1(k)

...
nxM (k)

 (2.64)

The global state-space model has the following form:

S
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) + n(k)

(2.65)
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A =


Axb Exb
Ex Ax Ex

. . .
Ex Ax Ex

Exb Axb

 , B =

 Bx

. . .
Bx

 , C =

 Cx

. . .
Cx


(2.66)

The sparsity patterns of the global system matrices A, B and C are illustrated in
Fig. 2.8. The matrix A is a sparse, multi-banded matrix, and B and C are diagonal
matrices.

0 20 40 60 80 100 120

20

40

60

80

100

nz = 1780

(a)

0 50 100

0

50

100

150

200

250

300

nz = 100

(b)

0 50 100 150 200 250 300

0

50

100

nz = 100

(c)

Figure 2.8: Structure of the system matrices of the global state-space model (1.4)
obtained using finite differences approximation of the heat equation:
(a) segment of A; (b) B; (c) C (”nz” denotes the number of non-zero
elements).

2.4 Finite element discretization of the thermoelastic
equations

In this section we present a Finite Element (FE) model that describes thermoelastic
deformations of a mirror used in optical systems. The developed model is in a
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descriptor state-space form [31, 55].

Consider a circular mirror illustrated in Fig. 2.9(a). A portion of the energy of the
incoming beam is absorbed by a thin coating on the top surface. The absorbed
energy heats up the mirror and it induces thermoelastic deformations [22; 57; 59].
Because the mirror surface is deformed, the reflected wavefront is distorted. These
wavefront distortions (aberrations) can significantly degrade the imaging quality
of an optical system.

Undistorted 
wavefront

Distorted 
wavefront

(a)

∂Ω1 ∂Ω4

∂Ω3

∂Ω2

Ω

(b)

(c)

Figure 2.9: (a) Heating of the mirror by the absorption of the exposure energy and
thermally induced wavefront aberrations; (b) Characteristics regions
used to define the boundary conditions of the thermoelastic equations;
(c) The FE mesh.

Without the loss of generality, we assume that the mirror is placed in a vacuum
environment with a constant ambient temperature (that is, there is no convection
between the mirror and the environment). Furthermore, it is assumed that mirror
heat loses are only due to thermal radiation.
For presentation clarity, in Fig.2.9(b) we have denoted the characteristic regions of
the mirror. The mirror is denoted by set of points Ω and its top surface is divided
into two regions: ∂Ω4 region, denoting an area that reflects the light beam, and
the remaining area of the top surface ∂Ω1. The side surface of the mirror and its
bottom surface are denoted by ∂Ω2 and ∂Ω3, respectively.
The dynamical behavior of thermally induced deformations is governed by the
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thermoelastic equations [57]:

κ∇2T = ρc
∂T

∂t
, (x, y, z) ∈ Ω (2.67)

c1∇2w + (c2 + c1)∇ (∇ ·w) + c3∇T = ρ
∂2w

∂t2
, (x, y, z) ∈ Ω (2.68)

where T is the temperature, w ∈ R3 is the displacement vector, ρ is the density, c is
the specific heat at constant deformation, κ is the thermal conductivity, (c1, c2) are
Lamé constants, c3 = −α(3c2 +2c1) and α is the Coefficient of Thermal Expansion
(CTE). We assume that the CTE does not depend on the temperature (see Remark
2.2). The boundary conditions are defined as follows:

−κ∂T
∂z

= 4σc4T
3
A (T − TA) , (x, y, z) ∈ ∂Ω1 (2.69)

−κ∂T
∂ξ

= 4σc4T
3
A (T − TA) , (x, y, z) ∈ ∂Ω2 (2.70)

−κ∂T
∂z

= −4σc4T
3
A (T − TA) , (x, y, z) ∈ ∂Ω3 (2.71)

−κ∂T
∂z

= 4σc4T
3
A (T − TA)− c4f, (x, y, z) ∈ ∂Ω4 (2.72)

where ∂/∂z and ∂/∂ξ are normal derivatives (ξ is the radial coordinate), σ is the
Stefan-Boltzmann constant, c4 is the emissivity, TA is a constant ambient temper-
ature, f is the intensity distribution (a thermal load or an input) over ∂Ω4 and c5
is the efficiency of conversion of light into the heat power. We assume that f is
static. For simplicity, the nonlinear radiation boundary conditions are linearized.
We assume that initial mirror temperatures are equal to ambient temperature.
Next, it is assumed that all six degrees of freedom of movement of the mirror are
fixed. Finally, we assume that there are no external mechanical forces acting on
the boundary surfaces.

The displacement vector w does not appear in the heat equation (2.67). Conse-
quently, the solution of the heat equation, denoted by T (x, y, z, t), can be found
independently from the elastic equation (2.68). Once the solution T (x, y, z, t) has
been determined, it can be used to solve the elastic equation. However, in this
thesis we will not directly solve the thermoelastic equations. Instead we will dis-
cretize them using the FE method.

For brevity, we will not explicitly derive the FE equations. The FE discretization of
the thermoelastic equations (2.67)-(2.72) has been extensively studied in literature,
see for example [194]. We have used COMSOL Multiphysics R© software to model
the mirror and to discretize the thermoelastic equations. The mesh that was used
for FE discretization is illustrated in Fig. 2.9(c). Using LiveLinkTM, the FE ma-
trices are exported from the COMSOL model to the MATLAB R© workspace. The
discretized elastic equation has the following form [194]:

M11s̈ +K11s +K12x = l1 (2.73)
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where x ∈ Rn is the vector of temperatures at discretization nodes and s ∈ Rm is
the vector of displacements at discretization nodes, l1 ∈ Rm is a constant vector,
and K11 ∈ Rm×m, K12 ∈ Rm×n and M11 ∈ Rm×m are the FE matrices.

The sparsity structure of the FE matrices is important for the development of
computationally efficient moving horizon estimation method in Chapter 4.2. The
structure of K11 and K12 is illustrated in Figs. 2.10(a)-(b) (the structure of M11 ∈
Rm×m is similar to the structure of K11). As we can see from these figures, the FE
matrices are sparse banded matrices.

The discretized heat equation has the following form:

D22ẋ +K22x = l2 (2.74)

where l2 ∈ Rn is a constant vector, D22 ∈ Rn×n and K22 ∈ Rn×n are the FE
matrices. The vector l2 takes into account the intensity distribution f .

The sparsity structure of the matrices D22 ∈ Rn×n and K22 ∈ Rn×n is illustrated
in Fig. 2.10(c)-(d).
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Figure 2.10: Sparsity pattern of the FE matrices; (a) K11 ; (b) K12; (c) D22; (d) K22,
”nz” stands for number of non-zero elements.



2.4 Finite element discretization of the thermoelastic equations 45

For studying the dynamical behavior of mirrors used in optics, it often justified
to neglect the dynamics of the elastic equation. In engineering language, the jus-
tification for this model simplification follows from the fact that for the types of
materials used to fabricate mirrors, there is a very short delay between the tem-
perature change and induced deformations. Much larger delay occurs between
the input f (intensity distribution acting on ∂Ω4) and the temperature change.
Mathematically speaking, the dynamics of the heat equation is much slower than
the dynamics of the elastic equation. On the basis of this physical insight, we
introduce the following assumption:

Assumption 2.1 The term s̈ in (2.73) can be neglected.

Taking into account Assumption 2.1, the discretized elastic equation takes the fol-
lowing form:

K11s +K12x = l1 (2.75)

We assume that the wavefront aberrations induced by the deformations of the
mirror’s surface are measured using a WaveFront Sensor (WFS). Several wave-
front sensing techniques have been developed for characterizing aberrations cre-
ated by the surface irregularities and by deformations of optical elements. For ex-
ample, in optical lithography machines interferometers are usually used to mea-
sure deformations of optical elements [51; 56]. In [52; 53] the possibility to use
Hartmann sensor for measurement of wavefront aberrations in optical lithogra-
phy machines has been investigated. In [54; 55], measurement techniques based
on Shack-Hartmann WFS (S-H WFS) have been proposed for the measurement
of thermally induced wavefront aberrations. From the measurements of wave-
front aberrations, the deformations of the top mirror surface can be retrieved. The
output equation has the following form:

y = W s + n (2.76)

where W ∈ Rr×m, y ∈ Rr is the vector of surface deformations and n ∈ Rr is the
measurement noise. To make the measurement scenario more realistic, we assume
that only surface deformations corresponding to the region that reflects the light
beam (that is, corresponding to ∂Ω4 ) can be reconstructed. Stated in engineering
language, from the total vector of displacements s the matrix W selects the dis-
placements belonging to the region ∂Ω4 on the top mirror surface. The sparsity
structure of W is illustrated in Fig. 2.11.

0 2000 4000 6000

0
500

1000

nz = 1284

Figure 2.11: The structure of the matrix W for m = 1284 and v = 6588.
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In reality, wavefront measurements are obtained at discrete time instants. Ac-
cordingly, time discretization of the FE equations needs to be performed. For the
time discretization we use the Euler backward method [97; 105]. Let h denote the
time discretization step and let k denote the discrete time instant (the total time
is t = kh, k = 0, 1, 2 . . .). The discretized elastic equation (2.75) has the following
form:

K11s(k) +K12x(k) = l1 (2.77)

From the last equation, we have:

s(k) = −K−1
11 K12x(k) +K−1

11 l1 (2.78)

Applying the backward Euler discretization method to (2.74) we obtain:

(D22 + hK22) x(k) = D22x(k − 1) + hl2 (2.79)

Substituting (2.78) in the discretized version of (2.76), we obtain:

y(k) = −WK−1
11 K12x(k) +WK−1

11 l1 + n(k) (2.80)

Combining (2.79) and (2.80), we arrive at the following state-space model:

Q22x(k) = D22x(k − 1) + c1 (2.81)
y(k) = Cx(k) + d1 + n(k) (2.82)

where the matrices Q22 ∈ Rn×n and C ∈ Rr×n and the vectors c1 ∈ Rn and
d1 ∈ Rr are defined as follows

Q22 = D22 + hK22, C = −WK−1
11 K12, c1 = hl2, d1 = WK−1

11 l1 (2.83)

The state-space model (2.81)-(2.82) is in the descriptor form [106; 107]. On the
basis of this model, in Chapter 4.2 a computationally efficient Moving Horizon
Estimation (MHE) method is developed. In Chapter 7, the MHE method is used to
estimate the mirror’s temperature distribution from the measurements of surface
deformations.

Remark 2.2 Mirrors used in high power optical systems, such as EUVL machines, can
be made of materials which have the CTE coefficient that (nonlinearly) depends on the
temperature [62]. State space models of these mirrors have a linear state equation and a
nonlinear output equation. That is, the state equation of these models is identical to (2.81),
whereas their output equation has the following form [62]:

y(k) = D1x(k) +D2p2 (x(k)) +D3p3 (x(k)) + n(k)

where D1 and D2 are constant matrices and p2(·) and p3(·) are nonlinear (polynomial)
functions of x(k). This nonlinearity might complicate the estimation of thermally induced
wavefront aberrations. One of the possible solutions is to approximate the nonlinear out-
put equation by a piecewise linear function and to use theoretical approaches proposed in
[195; 196] to develop control and estimation methods. Another possibility for estimating
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the state of the thermoelastic equations with temperature depending CTE, is to use the
Newton observer for nonlinear systems that is briefly explained in Chapter 4, Section 4.3.





3 CHAPTER

Structure preserving lifting technique
and inverses of Gramians and lifted

system matrices

In this chapter a new, structure preserving lifting technique for large-
scale interconnected systems is presented. This lifting technique en-

sures that the sparsity structure of the global system is preserved in its
lifted state-space model. Next, it is proved that inverses of lifted sys-
tem matrices and Gramians of interconnected systems belong to a class
of off-diagonally decaying matrices. Consequently, these inverses can be
approximated by sparse banded matrices. To compute the approximate
inverses the Chebyshev approximation method and the Newton iteration
are used. The accuracy of the Chebyshev approximation method is an-
alyzed and a new upper bound on the approximation errors is derived.
Several methods for decreasing the computational and memory complex-
ity of these approximation methods are presented.
The approximation framework presented in this Chapter is used through-
out the thesis to develop distributed and computationally efficient, cen-
tralized identification and estimation methods for large-scale intercon-
nected systems.

3.1 Introduction

In a large variety of estimation and control problems, the observability (control-
lability) Gramians and the lifted system matrices need to be inverted. For ex-
ample, in the norm optimal Iterative Learning Control (ILC) [197; 198; 199], a
control action is derived by computing a regularized pseudo-inverse of the im-
pulse response matrix. On the other hand, the Moving Horizon Estimation (MHE)
method computes a state estimate by inverting the finite-time observability Gramian.
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of lifted system matrices

For the real-time implementation of control and estimation algorithms, these in-
verses need to be precomputed and stored in a controller memory1. However, the
inverses of lifted system matrices and Gramians are in the general case dense ma-
trices and consequently, n2 memory locations are needed to store them (n is the
number of states). All this implies that it might not be possible to implement the
above mentioned control and estimation algorithms for large-scale systems.

This problem is illustrated by the following example. Our experience with large-
scale computations in MATLAB, shows that on a standard desktop computer with
4 GB of Random Access Memory (RAM) it is not possible to perform basic oper-
ations on matrices which dimensions exceed 15,000. For example, the state-space
model of the discretized 2D heat equation (see Chapter 2) can easily have more
than 20,000 states. The system of 20,000 states corresponds to a small 2D grid
of 100x200 nodes. The system matrices of this state-space model are sparse, and
consequently, the finite-time observability Gramian is also sparse. Because the ob-
servability Gramian is a sparse matrix, it can be easily stored in a computer mem-
ory. However, the computer stops working when we try to invert this Gramian
using standard MATLAB functions. This is because the capacity of the RAM is too
small to perform this inversion2.

To overcome these challenges, in this Chapter we develop a computationally ef-
ficient, sparsity preserving framework for inversion of lifted system matrices and
Gramians. First, a structure preserving lifting technique for large-scale intercon-
nected systems is introduced. This lifting technique ensures that the sparsity
structure of the global system is preserved in its lifted state-space model. Then,
it is proved that the (pseudo) inverses of lifted system matrices and Gramians
are off-diagonally decaying matrices. Consequently, these inverses can be ap-
proximated by sparse banded matrices. To compute these approximate, sparse
inverses of lifted system matrices and Gramians, the Chebyshev approximation
method and the Newton iteration are used. The accuracy of the Chebyshev ap-
proximation method is analyzed and a new upper bound on the approximation
errors is derived. Several methods for decreasing the computational and memory
complexities of these approximation methods are presented.
The approximation framework presented in this Chapter is used throughout the
thesis to develop distributed and computationally efficient centralized identifica-
tion and estimation methods for large-scale interconnected systems.

This chapter is organized as follows. In Section 3.2 we present the structure pre-
serving lifting technique. In Section 3.3 we study Gramians of large-scale inter-
connected systems. In Section 3.4 we present approximation algorithms. Finally,
in Section 3.5 we present numerical results.

1 Control and estimation algorithms can be also implemented without explicitly computing the
inverses of lifted system matrices and Gramians. For example, a control action or a state estimate can
be computed using iterative methods for solving linear system of equations, such as the conjugate
gradient method [200]. However, because the computation time is limited by the sampling period of
the control system, for real-time implementations it is generally not advisable to use iterative methods.

2Authors are aware that beside MATLAB there are other computer programs that are more suit-
able for large-scale computations on desktop computers. Although these programs can handle larger
problems, they still cannot handle a system consisting of more than 100,000 states.
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3.2 Structure preserving lifting technique

For presentation clarity the structure preserving lifting technique will be explained
on the example of a large-scale system consisting of a string of local subsystems.
Consider the following state-space model:

S
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) + n(k)

(3.1)

where the system matrices have the following structure:

A =


A1,1 E1,2

E2,1 A2,2 E2,3

. . .
EN−1,N−2 AN−1,N−1 EN−1,N

EN,N−1 AN,N

 , B =

B1

. . .
BN



C =

C1

. . .
CN

 , y(k) =

y1(k)
...

yN (k)

 ,x(k) =

x1(k)
...

xN (k)

 , u(k) =

u1(k)
...

uN (k)


(3.2)

and similarly we define n(k). The system S is referred to as the global system,
with the global state x(k) ∈ RNn, the global output y(k) ∈ RNr, the global input
u(k) ∈ RNm and the global measurement noise n(k) ∈ RNr. The system matrices
A ∈ RNn×Nn, B ∈ RNn×Nm and C ∈ RNr×Nn are referred to as the global system
matrices. The global system S consists of the interconnection of N local subsystems
Si:

Si
{

xi(k + 1) = Ai,ixi(k) + Ei,i−1xi−1(k) + Ei,i+1xi+1(k) +Biui(k)
yi(k) = Cixi(k) + ni(k)

(3.3)

where xi(k) ∈ Rn is the local state of the local subsystem Si, xi−1(k) ∈ Rn and
xi+1(k) ∈ Rn are the local states of the neighboring local subsystems Si−1 and Si+1

respectively, yi(k) ∈ Rr is the local output, ui(k) ∈ Rm is the local input and ni(k) ∈
Rr is the local measurement noise. The interconnection structure of local subsystems
is illustrated in Fig. 3.1.

Figure 3.1: The interconnection structure of the local subsystems of the global sys-
tem (3.1).
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of lifted system matrices

The matrices in (3.3) are constant matrices and are referred to as the local system
matrices. Without loss of generality, we have assumed that all local subsystems
have identical local order n, where n � N , and that all local system matrices are
time-invariant. In (3.3), the index i is referred to as the spatial index. The spatial
index takes the values from the spatial domain Π = {1, . . . , N}.

Like it is explained in Chapter 2, the global state-space model (3.1) originates from
the finite-difference discretization of the 2D heat equation with spatially depen-
dent coefficients.

The first step in many classical control and estimation techniques, is to form the
so-called lifted data equations from the global state-space model (3.1). The lifted
data equations are formed by using the following strategy. Starting from k − p
and by lifting (3.1), p time steps we obtain:

x(k) = Apx(k − p) +Rp−1U
k−1
k−p (3.4)

Yk
k−p = Opx(k − p) + Γp−1U

k−1
k−p + Nk

k−p (3.5)

where

Uk−1
k−p =


u(k − p)

u(k − p+ 1)
...

u(k − 1)

 , Yk
k−p =


y(k − p)

y(k − p+ 1)
...

y(k)

 , Nk
k−p =


n(k − p)

n(k − p+ 1)
...

n(k)



Op =


C
CA

...
CAp

 , Rp−1 =
[
Ap−1B Ap−2B . . . B

]
,

Γp−1 =



0 0 . . . 0
CB 0 . . . 0

CAB CB
. . .

...
...

. . . 0
CAp−1B CAp−2B . . . CB

 (3.6)

In this this thesis, the matrix Op ∈ RN(p+1)r×Nn will be called the global observ-
ability matrix. The matrices Γp−1 ∈ RNn×Npm and Rp−1 ∈ RN(p+1)r×Npm will be
called the global impulse response and global controllability matrices, respectively. For
p = 2, the structure of these matrices is illustrated in Fig. 3.2. The lifting technique
used to define the lifted system matrices Op, Γp and Gp will be called the classical
lifting technique.
Throughout this thesis we assume that p � N . Because of this assumption all the lifted
system matrices are sparse. Without loss of generality, we assume that p ≥ n− 1.
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Figure 3.2: Sparsity structure of the lifted system matrices: (a) O3; (b) Γ2; (c) R2

(”nz” denotes the number of non-zero elements).

From Fig. 3.2 we can see that the sparsity patterns of the global system matrices
A, B and C are not preserved in the lifted system matrices. This is because the
classical lifting technique lifts the global inputs and the global outputs over the
time domain.

In contrast to this type of lifting, we propose a lifting technique that first lifts the local
outputs and inputs over the time domain and then, it lifts these lifted vectors over the
spatial domain Π. This lifting method ensures that the sparsity structure of the global
state-space model (3.1) is preserved in the lifted state-space model.

To mathematically formulate this lifting technique, the following notation is intro-
duced. The column vector Yki,k−p ∈ R(p+1)r is defined by lifting local output of Si
over the discrete-time interval [k − p, k]:

Yki,k−p = col(yi(k − p),yi(k − p+ 1), . . . ,yi(k)) (3.7)

where the notation col(z1, z2, . . . , zN ) denotes a column vector [zT1 zT2 . . . zTN ]T .
In the same manner we define the lifted input vector Uki,k−p ∈ R(p+1)m and the
lifted measurement noise vector N k

i,k−p ∈ R(p+1)r. Next, a column vector Ykk−p ∈
RN(p+1)r is defined as follows:

Ykk−p = col(Yk1,k−p, . . . ,YkN,k−p) (3.8)
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of lifted system matrices

In the same manner we define vectors Ukk−p ∈ RN(p+1)m and N k
k−p ∈ RN(p+1)r. It

can be easily proved that:

Ykk−p = PY Yk
k−p, N k

k−p = PY Nk
k−p, Uk−1

k−p = PUUk−1
k−p (3.9)

where PY and PU are permutation matrices. By multiplying the lifted equation
(3.5) from left with PY and keeping in mind that permutation matrices are orthog-
onal, we obtain:

Ykk−p = Opx(k − p) + Gp−1Uk−1
k−p +N k

k−p (3.10)

where the matrices Op ∈ RN(p+1)r×Nn and Gp−1 ∈ RN(p+1)r×Npm are defined as
follows:

Op = PYOp, Gp−1 = PY Γp−1P
T
U (3.11)

The equation (3.10) will be called the global data equation. On the other hand, using
the orthogonality of the permutation matrix PU from (3.4), we have:

x(k) = Apx(k − p) +Rp−1Uk−1
k−p (3.12)

where the matrixRp−1 ∈ RNn×Npm is defined as follows:

Rp−1 = Rp−1P
T
U (3.13)

The matrix Op is a sparse, block banded matrix, with the block bandwidth equal to p.
Similarly, the matrices Gp−1 and Rp−1 are sparse, block banded matrices with the block
bandwidth equal to p− 1.

In Fig. 3.3 we illustrate the sparsity patterns of Op and Rp−1, for p = 3 (compare
with the structure of the lifted system matrices presented in Fig. 3.2(a) and Fig.
3.2(c)).
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Figure 3.3: Sparsity patterns of lifted system matrices that are formed using the
structure preserving lifting technique: (a)O3; (b)R2 (”nz” denotes the
number of non-zero elements).
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Definition 3.1 Definition of the structured lifted system matrices

• The matrix Op, defined in (3.11), will be referred to as the structured observability
matrix.

• The matrix Gp−1, defined in (3.11), will be referred to as the structured impulse
response matrix.

• The matrix Rp−1, defined in (3.13), will be referred to as the structured controlla-
bility matrix.

In the sequel, the structure ofOp, Gp−1 andRp−1 is explained in more details. The
matrices Op and Gp−1 can be explicitly defined as follows:

Op =



O
(p)
1,1 . . . O

(p)
1,1+p 0 . . .

. . .
. . . 0 O

(p)
i,i−p . . . O

(p)
i,i . . . O

(p)
i,i+p 0 . . .

. . .
. . . 0 O

(p)
N,N−p . . . O

(p)
N,N


, (3.14)

Gp−1 =



G
(p)
1,1 . . . G

(p)
1,1+p−1 0 . . .

. . .
. . . 0 G

(p)
i,i−p+1 . . . G

(p)
i,i . . . G

(p)
i,i+p−1 0 . . .

. . .
. . . 0 G

(p)
N,N−p+1 . . . G

(p)
N,N


(3.15)

where the matrices O(p)
i,j ∈ R(p+1)r×n and G(p)

i,j ∈ R(p+1)r×(p+1)m are defined by:


0
...
0

T
(p)
i,i−p


︸ ︷︷ ︸
O

(p)
i,i−p

, . . . ,


0

T
(1)
i,i−1

...
T

(p)
i,i−1


︸ ︷︷ ︸
O

(p)
i,i−1

,


T

(0)
i,i

T
(1)
i,i
...

T
(p)
i,i


︸ ︷︷ ︸
O

(p)
i,i

,


0

T
(1)
i,i+1

...
T

(p)
i,i+1


︸ ︷︷ ︸
O

(p)
i,i+1

, . . . ,


0
...
0

T
(p)
i,i+p


︸ ︷︷ ︸
O

(p)
i,i+p

(3.16)
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G
(p)
i,i =



0 0 0 . . . 0

H
(0)
i,i 0 0 . . . 0

H
(1)
i,i H

(0)
i,i 0 . . . 0

. . . . . . . . .
...

...
. . . . . . . . .

...
H

(p−1)
i,i H

(p−2)
i,i . . . H

(1)
i,i H

(0)
i,i


, G

(p)
i,i−1 =


0 0 . . . 0
0 0 . . . 0

H
(1)
i,i−1 0 . . . 0
...

. . . . . .
...

H
(p−1)
i,i−1 . . . H

(1)
i,i−1 0

 ,

G
(p)
i,i+1 =


0 0 . . . 0
0 0 . . . 0

H
(1)
i,i+1 0 . . . 0
...

. . . . . .
...

H
(p−1)
i,i+1 . . . H

(1)
i,i+1 0

 , . . . , G
(p)
i,i−p+1 =


0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

H
(p−1)
i,i−p+1 0 . . . 0

 ,

G
(p)
i,i+p−1 =


0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

H
(p−1)
i,i+p−1 0 . . . 0


(3.17)

The block elements ofO(p)
i,j andG(p)

i,j are the matrices T (p)
i,j ∈ Rr×n andH(p)

i,j ∈ Rr×m
defined by:

T
(p)
i,j = CL

(p)
i,j , H

(p)
i,j = CL

(p)
i,j B (3.18)

and where the matrixL(p)
i,j ∈ Rn×n is (i, j) block ofAp (see Remark 3.1). The matrix

H
(p)
i,j will be referred to as the local impulse response parameter of the local subsystem
Si.

Remark 3.1 We have defined the matrices L(p)
i,j ∈ Rn×n by partitioning Ap as follows.

Namely, we have divided the rows and columns of Ap into N block rows and N block
columns, respectively, where each block row (block column) has n rows (columns). This
partitioning of Ap can be visualized as follows:

Ap =



L
(p)
1,1 . . . L

(p)
1,1+p 0 . . .

. . .
. . . 0 L

(p)
i,i−p . . . L

(p)
i,i . . . L

(p)
i,i+p 0 . . .

. . .
. . . 0 L

(p)
N,N−p . . . L

(p)
N,N



On the other hand, the matrixRp−1 in the equation (3.12) has the following struc-
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ture:

Rp−1 =



R
(p)
1,1 . . . R

(p)
1,1+p−1 0 . . .

. . .
. . . 0 R

(p)
i,i−p+1 . . . R

(p)
i,i . . . R

(p)
i,i+p−1 0 . . .

. . .
. . . 0 R

(p)
N,N−p+1 . . . R

(p)
N,N


(3.19)

R
(p)
i,i =

[
V

(p−1)
i,i V

(p−2)
i,i . . . V

(0)
i,i

]
R

(p)
i,i−1 =

[
V

(p−1)
i,i−1 V

(p−2)
i,i−1 . . . V

(1)
i,i−1 0

]
R

(p)
i,i+1 =

[
V

(p−1)
i,i+1 V

(p−2)
i,i+1 . . . V

(1)
i,i−1 0

]
...

R
(p)
i,i−p+1 =

[
V

(p−1)
i,i−p+1 0 . . . 0

]
,

R
(p)
i,i+p−1 =

[
V

(p−1)
i,i+p−1 0 . . . 0

]
V

(p)
i,j = L

(p)
i,j Bj

The i-th block row of the global data equation (3.10) has the following form:

Yki,k−p =

i+p∑
j=i−p

O
(p)
i,j xj(k − p) +

i+p−1∑
j=i−p+1

G
(p)
i,j U

k−1
j,k−p +N k−1

i,k−p (3.20)

where the matrices O(p)
i,j and G(p)

i,j are defined in (3.16) and (3.17), respectively.

The structure preserving lifting technique, that is introduced in this Chapter, can
be easily generalized for state-space models with sparse multi-banded system
matrices obtained by the finite-difference discretization of 3D Partial Differential
Equations (PDEs). Furthermore, the structure preserving lifting technique can be
generalized for descriptor state-space models, obtained by approximating PDEs
using the finite element method.

3.3 Gramians of large-scale interconnected systems

The finite time observability Gramian of the global system (3.1) is defined by [61; 201]:

W =

p∑
i=0

(
AT
)i
CTCAi (3.21)

It can be easily shown that:

W = OTp Op (3.22)
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where Op is the global observability matrix defined in (3.6). The finite time control-
lability Gramian of the global system (3.1) is defined as follows [61; 201]:

Q =

p−1∑
i=0

AiBBT
(
AT
)i

(3.23)

It can be easily shown that:

Q = Rp−1R
T
p−1 (3.24)

where Rp−1 is the global controllability matrix defined in (3.6). Because the per-
mutation matrices are orthogonal, from (3.11) and (3.22) we have:

W = OTp Op = OTp PY PTY Op = OTp Op (3.25)

That is, the finite-time observability Gramian is a sparse banded matrix with the block
bandwidth equal to 2p (see Remark 3.2). Consequently, the finite-time observability
Gramian is denoted as follows:

J2p =W = OTp Op (3.26)

where the subscript 2p denotes the block bandwidth of J2p. Similarly, from (3.13)
and (3.24) we have:

Q = Rp−1RTp−1 (3.27)

That is, the finite-time controllability Gramian is a sparse banded matrix with the block
bandwidth equal to 2(p-1).

Remark 3.2 If a sparse banded matrix X has a (block) bandwidth equal to b, then the
matrix X · X has a (block) bandwidth equal to 2b. Similarly, the (block) bandwidth of
X ·X ·X is 3b and etc.

3.4 Approximate sparse inverses of sparse matrices

The problem of computing sparse approximated inverses of sparse matrices orig-
inates from the problem of computing preconditioners for large-scale, sparse sys-
tems of linear equations [202]. For example, consider the problem of solving linear
system of equations:

Ax = y (3.28)

where A ∈ Rn×n is a large and sparse matrix. One of the standard methods for
solving sparse linear systems is the Conjugate Gradient (CG) method [112; 200].
Starting from an initial guess, the CG method iteratively approximates the true so-
lution of (3.28). By exploiting the sparsity ofA, one iteration of the CG method can
be computed efficiently. However, the convergence of the CG methods depends
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on the spectral properties of A. In particular, if the matrix A is well-conditioned,
then the CG method converges in a relatively small number of iterations.
In oder to improve the convergence rate of the CG method, the original system
(3.28) is transformed into the following form:

APz = y, x = Pz (3.29)

where P ∈ Rn×n is a preconditioner matrix. The matrix P should be constructed
such that it is sparse and such that the product AP is a relatively good approxi-
mation of the identity matrix. This way, the matrix AP is well conditioned, and
the CG method converges in a relatively small number of iterations.

There are several approaches for constructing sparse preconditioners [202]. The
most natural approach is to chose P as an approximate sparse inverse of A. One
of the first approaches that exploits this idea is presented in [203]. In the sequel
we briefly summarize this approach. In [203], preconditioner P is constructed as
the solution of the following optimization problem [203]:

min
P
‖AP − I‖2F (3.30)

where I is identify matrix. The cost function of (3.30) can be written in the follow-
ing form:

‖AP − I‖F =

n∑
i=1

‖Api − li‖22 (3.31)

where pi is the ith column of P and li is the ith column of the identity matrix
I . Because columns pi are independent, the optimization problem (3.30) can be
separated into n independent least-squares problems:

min
pi

‖Api − li‖22 , i = 1, . . . , n (3.32)

The main advantage of solving (3.32) instead of (3.30), is that the optimization
problems (3.32) can be solved in parallel. Furthermore, if the matrix P is sparse
then each of the columns pi has a small number of nonzero elements and conse-
quently, (3.32) can be transformed into n small least-squares problems that can be
solved in a computationally efficient manner.
However, the main challenge is how to determine a good sparsity pattern of the
approximate inverse P . In [203], this is achieved automatically, by starting with an
initial sparsity pattern of P (for example starting from a diagonal sparsity pattern)
and augmenting P progressively until certain threshold on the residual norm has
been satisfied or a prescribed maximum number of non-zero elements has been
reached. Since this approach adaptively computes the ”optimal” sparsity pattern
of P , in literature it is often referred to as the adaptive algorithm. Beside the adap-
tive algorithm presented in [203], there are also other algorithms for computing
sparse approximate inverse preconditioners, see for example [202; 204; 205; 206].

In [207] it has been demonstrated that for matrices originating from approximation of
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PDE problems, good a priori sparsity pattern of P can be obtained by computing and
sparsifying the powers of A. The advantage of this algorithm over the adaptive al-
gorithms is that no additional calculations are needed to find the optimal sparsity
pattern of P . That is, the structure of P in the optimization problem (3.31) is fixed
a priori.
A similar idea is used in [208] to chose a priori sparsity pattern of P . It has been
shown that by using the characteristic polynomial and by computing the Neu-
mann series of A or ATA a good a priori sparsity pattern of an approximate in-
verse can be obtained. Further discussion on how to chose the ”best” a priori
sparsity pattern of approximate inverse preconditioners is available in [209].
In this thesis we are not interested in developing new algorithms for computing
sparse approximate inverse preconditioners. However, the results of [207; 208] are
important because they imply that the approximate sparse inverses of sparse matrices can
be constructed by using matrix polynomials. This idea also has its roots in the graph
theory for predicting structure in sparse matrix computations [210].

In [161], the Chebyshev matrix polynomials have been used to compute approxi-
mate sparse inverses of sparse banded matrices. Furthermore, in [163] the Newton
iteration (also known as Newton-Schultz iteration) has been used for the compu-
tation of approximate inverses. In this thesis, we will use these two algorithms
to approximate inverses and pseudo-inverses of sparse matrices.We will develop a
rigorous analysis on the approximation accuracy of the Chebyshev matrix polynomials.
Furthermore, we will discuss the dropping strategy that helps us to additionally
”sparsify” approximate inverses.

Before we present these algorithms, we illustrate one remarkable property of inverses of
banded, positive definite matrices. In [161; 162] it has been proved that inverses of
banded, positive definite matrices belong to a class of off-diagonally decaying matrices.
Off-diagonal decaying matrices are characterized by a property that the absolute values of
the off-diagonal elements decay as they are further away from the main diagonal.

3.4.1 Off-diagonally decaying matrices

In this Section we prove that the inverse of the (regularized) finite-time observabil-
ity Gramian is an off-diagonally decaying matrix. Furthermore, we prove that the
rate of the off-diagonal decay depends on the condition number of the finite-time
observability Gramian. The theoretical results presented in this Section and in the
remainder of this Chapter can be straightforwardly generalized for the inverses of
the finite-time controllability Gramian and the impulse response matrix.

Consider the global state-space model (3.1)-(3.2). The matrix A is a block banded
matrix and the global system matrices C and B are block diagonal. Like it has
been illustrated in Fig. 3.2, the global observability matrix:

O3 =
[
CT (CA)

T (
CA2

)T (
CA3

)T ]T
is not a banded matrix. However, we have explained that there exists a permu-
tation matrix PY that transforms O3 into the structured observability matrix (for
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more details see beginning of this chapter):

O3 = PYO3 (3.33)

that is a sparse banded matrix (sparsity pattern of O3 is illustrated in Fig. 3.3(a)).
Because O3 is a banded matrix, the observability Gramian OT3 O3 is also a banded
matrix. The structure of OT3 O3 is illustrated in Fig. 3.4(a).

0 20 40

0

10

20

30

40

nz = 640

(a) (b)

(c)

Figure 3.4: Off-diagonal decay of the inverse of the observability Gramian OT3 O3

( ”nz” denotes the number of nonzero elements); (a) The sparsity
pattern of OT3 O3; (b) The surface plot of

(
OT3 O3

)−1 generated by a
MATLAB function surf(·); (c) The surface plot of absolute value of(
OT3 O3

)−1.

If we assume that O3 has a full column rank, then the matrix OT3 O3 is a symmet-
ric positive definite matrix. Consequently, its inverse is an off-diagonal decaying
matrix [162]. The surface plot of

(
OT3 O3

)−1 is shown in Fig. 3.4 (b). In Fig. 3.4(c)
we illustrate the surface plot of the absolute values of the elements of

(
OT3 O3

)−1.
From Fig.3.4(c) we see that the absolute values of the off-diagonal elements of(
OT3 O3

)−1 decay in an exponential manner as they are further away from the
main diagonal.

In [162] it has been shown that the off-diagonal decay rate of
(
OT3 O3

)−1 is faster
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if the condition number of OT3 O3 is smaller. Thus, inverses of well-conditioned
matrices have the fast off-diagonal decay rate. In the sequel, this is explained in
more details.
The observability index of the global system (3.1) is defined as follows.

Definition 3.2 The observability index3, of the observable global system (3.1), is the
smallest integer ν, such that the global observability matrix

Oν =
[
CT (CA)T . . . (CAν)T

]T
(3.34)

has rank equal to nN (that is, full column rank).

The following lemma tells us that if the global system is observable then the matrix
Op has full column rank.

Lemma 3.1 Assume that p ≥ ν, where ν is the observability index of the global system.
Then,

rank(Op) = nN (3.35)

Proof. We have shown that Op = PYOp, where PY is a permutation matrix. Be-
cause this permutation does not change the rank of Op, we have: rank (Op) =
rank (Op). Now, let p ≥ ν, where ν is the observability index of the global system.
This implies: rank(Op) = rank(Op) = nN . �

The regularized observability Gramian F2p ∈ RNn×Nn is defined by:

F2p = µI + J2p = µI +OTp Op (3.36)

where µ ≥ 0 is a regularization parameter.
The regularization parameter µ will play an important role in the algorithms that will be
developed in the subsequent chapters. We will show that with a proper selection of µ it
is possible to estimate the global state and moreover, to identify the global system with
the computational and memory complexities that scale linearly with the number of local
subsystems N .

In the next definition we define the class of matrices that are characterized by the
off-diagonally decaying property.

Definition 3.3 [161] We say that an nN × nN matrix Z = [zi,j ] is an exponentially
off-diagonally decaying matrix if there are constants c, λ ∈ R, c > 0 and λ ∈ (0, 1), such
that:

|zi,j | ≤ cλ|i−j|, 0 < λ < 1 (3.37)

3In the literature, see for example [211], the observability index is usually defined as the smallest
integer ν for which the matrix Oν =

[
CT (CA)T . . . (CAν−1)T

]T has rank equal to nN . For
convenience, in this chapter we slightly change this definition.
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for all i, j = 1, . . . , nN .

For the sequel, we introduce the following notation:

• The condition number of the matrix J2p will be denoted by χ.

• The condition number of the matrix F2p will be denoted by κ.

In the following theorem we prove that F−1
2p is an exponentially off-diagonally

decaying matrix and we will show how its decay rate depends on µ (similar results
hold for J−1

2p ).

Lemma 3.2 Assume that µ > 0 or p ≥ ν, where ν is the observability index of the global
system. Furthermore, let the maximal and minimal singular values of Op be denoted by
σ1 and σnN , respectively. Then,

1. F−1
2p is an exponentially off-diagonally decaying matrix, with the exponential off-

diagonal decay rate specified by:

λ =

(√
κ− 1√
κ+ 1

)1/θ

, c =
∥∥F−1

2p

∥∥
2

max

{
1,

(1 +
√
κ)2

2κ

}
(3.38)

where θ is the bandwidth4 of F2p (θ is proportional to the product pn) and

κ =
σ2

1 + µ

σ2
Nn + µ

= 1 +
σ2

1 − σ2
nN

σ2
Nn + µ

(3.39)

2. The parameters c and λ, defined in (3.38), are decreasing functions of µ.

Proof 1.) Because p ≥ n− 1, the matrix Op ∈ RN(p+1)r×Nn is square or ”tall“. The
Singular Value Decomposition (SVD) of Op is Op = UΣV T , where U and V are
unitary matrices and Σ is a matrix defined as follows:

Σ =
[
Σ1 0

]T (3.40)

where the matrix Σ1 is a diagonal matrix of singular values σ1, . . . , σnN , σ1 ≥ σ2 ≥
. . . ≥ σnN . The matrix F2p can now be expressed as follows:

F2p = V (Σ2
1 + µI)V T (3.41)

From (3.41) we have that the condition number of F2p is given by (3.39). Since
µ > 0 or p ≥ ν, the matrix F2p is a symmetric positive definite matrix. Because
of this, from Theorem 2.4 stated in [162]5, we have that F−1

2p is the exponentially

4The bandwidth θ is defined by θ = m/2, where m is a constant in Eq. (2.6) in [162].
5The results of Theorem 2.4 in [162] are valid for both finite and infinite matrices. Similar results

are stated in Proposition 2.2 of [162] and in [161].



64
Chapter 3: Structure preserving lifting technique and inverses

of lifted system matrices

off-diagonally decaying matrix with an exponential off-diagonal decay specified
by (3.38).

2.) From (3.39), we conclude that κ is a monotonically decreasing function of µ.
The partial derivative of λ with respect to κ is:

∂λ

∂κ
=

1

θ

(√
κ− 1√
κ+ 1

)(1−θ)/θ
1√

κ(
√
κ+ 1)2

(3.42)

Because κ ≥ 1, the sign of (3.42) is positive or equal to zero, which implies that
the function λ is an increasing function of κ. Because κ is a decreasing function
of µ, we conclude that λ is a decreasing function of µ. In order to analyze the
monotonicity of c, we first need to analyze the monotonicity when c =

∥∥F−1
2p

∥∥
2
.

Namely, it is easy to show that:∥∥F−1
2p

∥∥
2

=
1

σ2
Nn + µ

(3.43)

From (3.43), we conclude that c is a decreasing function of µ. Next, we analyze the
monotonicity of c when:

c =
∥∥F−1

2p

∥∥
2

(1 +
√
κ)2

2κ
(3.44)

Substituting (3.39) and (3.43) in (3.44), we obtain:

c =

(√
σ2

1 + µ+
√
σ2
Nn + µ

)2

2 (σ2
1 + µ) (σ2

Nn + µ)
(3.45)

The derivative of c with respect to µ is:

dc

dµ
=

(√
σ2

1 + µ+
√
σ2
Nn + µ

)2

×

×

(√
σ2

1 + µ
√
σ2
Nn + µ−

(
σ2

1 + σ2
Nn + 2µ

))
2 (σ2

1 + µ)
2

(σ2
Nn + µ)

2 (3.46)

Because √
σ2

1 + µ
√
σ2
Nn + µ−

(
σ2

1 + σ2
Nn + 2µ

)
≤ 0 (3.47)

we conclude that (3.46) is negative or equal to zero. This implies that the function
(3.45) is a decreasing function of µ. This completes the proof. �
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3.4.2 Chebyshev method for computing approximate inverses of
sparse matrices

We will first present the Chebyshev approximation method and then we will an-
alyze the approximation errors. The Chebyshev approximation method will be
explained on an example of approximating the inverse of regularized (finite-time)
observability Gramian F2p. This method can be straightforwardly generalized for
approximation of inverses of finite-time controllability Gramian and impulse re-
sponse matrix. Throughout the remainder of this Chapter we will assume that the
conditions of Lemma 3.2 are satisfied.

For the sequel, we will define the constants a and b as follows:

a = λmin(F2p), b = λmax(F2p) (3.48)

where λmin(.) and λmax(.) denote the maximal and the minimal eigenvalues. Due
to the fact that the matrix F2p is a symmetric positive-definite matrix we have:

a = σ2
Nn + µ, b = σ2

1 + µ (3.49)

where σ1 and σNn are maximal and minimal singular values of Op. From (3.39)
and (3.49) we have that the condition number of F2p is:

κ =
b

a
(3.50)

BecauseF2p is a sparse banded matrix, the constants a and b can be computed with
O(N) computational complexity using the ARPACK software package [212; 213]
or using MATLAB sparse matrix computations toolbox. The interval [a, b] is the
smallest interval on the real axis that contains the spectrum of F2p. In order to
approximate F−1

2p using the Chebyshev series approximation method, we define
an inverse function f(q):

f(q) = q−1 (3.51)

where q ∈ [a, b]. For the approximation purpose, the argument of the function
f(q) has to belong to an interval [−1, 1]. In order to achieve this we shift and scale
q as follows:

w =
2

b− a
q − a+ b

b− a
(3.52)

Because q ∈ [a, b], we have that w ∈ [−1, 1]. From (3.52) we have:

q =
1

2
((b− a)w + (a+ b)) (3.53)

By substituting (3.53) in (3.51) we define the function g(w)

g(w) = f(q(w)) =
2

(b− a)w + (a+ b)
(3.54)
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For convenience we express the function g(w) in the following form:

g(w) =
2

(a− b)(v − w)
(3.55)

where

v =
a+ b

a− b
=

1 + κ

1− κ
(3.56)

Because w ∈ [−1, 1], we can approximate g(w) using the Chebyshev series expan-
sion. Due to the fact that g(w) = f(q) the Chebyshev approximation of g(w) is at
the same time an approximation of f(q). We will first approximate the function

1
v−w . The approximation of g(w) is obtained by multiplying the approximation
of 1

v−w with the constant 2
a−b . The Chebyshev series approximation of 1

v−w is
defined as follows [214] :

gt(w) =
c0
2

+

t∑
k=1

ckTk(w) (3.57)

where ck ∈ R, k = 0, . . . , t and Tk(w) is a Chebsyhev polynomial of the first
kind. In [215] it has been shown that the coefficients ck of the function 1

v−w can be
computed explicitly (see Remark 3.3):

ck =
2

−
√
v2 − 1

1

hk
, h = v −

√
(v2 − 1), v /∈ [−1, 1] (3.58)

The Chebyshev polynomials Tk(w) are defined recursively as follows [214]:

T0(w) = 1, T1(w) = w,

Tk+1(w) = 2wTk(w)− Tk−1(w), k = 1, . . . , t (3.59)

Remark 3.3 The explicit formula for the coefficients of the Chebyshev series expansion of
the inverse function has been derived in [215] (see equation 10.). This formula has been
derived for a general case, when the argument of the inverse function is a complex poly-
nomial. Like it has been stated in [215], in order to define the parameter h and coefficient
ck, the branch of (v2 − 1)1/2 (where v is in a general case a complex number) should be
chosen such that |h| > 1. Because in our case v is negative and real, in order to ensure
that |h| > 1, in (3.58) we have taken a negative branch of (v2 − 1)1/2. This is why in
(3.58) the sign in front of (v2 − 1)1/2 differs from the sign of the corresponding quantity
in equation 10. of [215].

The polynomial gt(w), representing an approximation of g(w), is defined by:

gt(w) =
2

(a− b)
gt(w) = d0 + d1T1(w) + d2T2(w) + . . .+ dtTt(w) (3.60)
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where di ∈ R, i = 0, . . . , t. From (3.57) and (3.60) it follows that:

d0 =
1

(a− b)
c0, di =

2

(a− b)
ci, i = 1, . . . , t (3.61)

By substituting (3.52) in (3.60), we obtain:

ft(q) = gt(w(q)) = e0 + e1q + e2q
2 + . . .+ etq

t (3.62)

where ei ∈ R, i = 0, . . . , t. The polynomial ft(q) is an approximation of f(q) =
q−1. By substituting q with F2p and w with F∗2p in (3.51),(3.52), (3.53), (3.54) and
(3.60) we obtain:

f(F2p) = F−1
2p (3.63)

F∗2p =
2

b− a
F2p −

a+ b

b− a
I (3.64)

F2p = 0.5
(
(b− a)F∗2p + (a+ b)I

)
(3.65)

g(F∗2p) = 2
(
(b− a)F∗2p + (a+ b)I

)−1 (3.66)

gt(F∗2p) =

t∑
k=0

dkTk
(
F∗2p
)

(3.67)

Because ft(F2p) = gt(F∗2p), for the Chebyshev approximation of F−1
2p we can ei-

ther use ft(F2p) or gt(F∗2p). However, since ft(F2p) explicitly depends on F2p,
throughout the reminder of the chapter we will use this matrix polynomial as the
Chebyshev approximation of F−1

2p . Since the block bandwidth of ft(F2p) is equal
to 2tp, we will denote this matrix polynomial by E2tp ∈ RNn×Nn, that is:

F−1
2p ≈ E2tp,
E2tp = ft(F2p) = e0I + e1F2p + e2F2

2p + . . .+ etF t2p (3.68)

Because p � N , F2p is a sparse banded matrix. This means that for t � N the
computational complexity of computing E2tp is O(N). Furthermore, for t � N
the matrix E2tp can be stored using O(N) memory locations. So the key to the linear
complexity computation of E2tp is to choose t � N . However, intuitively it should
be clear that by decreasing t, the accuracy of the Chebyshev series approxima-
tion degrades. This is why in the following theorem we quantify the accuracy of
approximating F−1

2p by E2tp.

Theorem 3.4 Consider the matrix function F−1
2p and its Chebyshev series approximation

E2tp, defined in (3.68).Then,

1. The accuracy of the Chebyshev approximation is quantified by:∥∥F−1
2p − E2tp

∥∥
2
≤ l(µ, t) (3.69)

l(µ, t) =
1

a(µ)

(
1− 1√

κ(µ)

)
1

|h(µ)|t
(3.70)
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|h(µ)| =
√
κ(µ) + 1√
κ(µ)− 1

(3.71)

where κ(µ) is defined in (3.39) and a(µ) is defined in (3.49).

2. The function l(µ, t) is a decreasing function of µ and t.

Proof. 1.) Using the Chebyshev truncation theorem (see [216], page 47, Theorem
6) we have:

max
w∈[−1,1]

|gt(w)− g(w)| = max
w∈[−1,1]

| 2

a− b
gt(w)− 2

(a− b)
1

v − w
|

=
2

b− a
max

w∈[−1,1]
|gt(w)− 1

v − w
| ≤ 2

b− a

∞∑
k=t+1

|ck| (3.72)

where the coefficients ck are defined in (3.58). We can write:

∞∑
k=t+1

|ck| =
∞∑
k=0

|ck| −
t∑

k=0

|ck| (3.73)

Next, we have:

∞∑
k=0

|ck| =
2√

v2 − 1

(
1 +

1

|h|
+

1

|h|2
+ . . .

)
=

2√
v2 − 1

|h|
|h| − 1

(3.74)

Similarly, we have:

t∑
k=0

|ck| =
2√

v2 − 1

|h|t+1 − 1

|h|t(|h| − 1)
(3.75)

Substituting (3.74) and (3.75) in (3.73) we have:

∞∑
k=t+1

|ck| =
2√

v2 − 1

1

|h|t(|h| − 1)
(3.76)

It can be easily proved that:

√
v2 − 1 =

2
√
ab

b− a
(3.77)

|h| = (
√
a+
√
b)2

b− a
=

√
b+
√
a√

b−
√
a

=

√
κ+ 1√
κ− 1

(3.78)

|h| − 1 =
2a+ 2

√
ab

b− a
(3.79)
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From (3.76)-(3.79) we have:

2

b− a

∞∑
k=t+1

|ck| =
1

a

(
1− 1√

κ

)
1

|h|t
= l(µ, t) (3.80)

Because F2p is positive definite and because the polynomial ft(q) is real, we have
[162]: ∥∥F−1

2p − ft(F2p)
∥∥

2
= max
q∈σ(F2p)

|1
q
− ft(q)| (3.81)

where ft(q) is defined in (3.62) and σ(F2p) denotes the spectrum of F2p. Further,
because

F−1
2p = f(F2p) = g(F∗2p)

ft(F2p) = gt(F∗2p)
(3.82)

we have: ∥∥F−1
2p − ft(F2p)

∥∥
2

=
∥∥g(F∗2p)− gt(F∗2p)

∥∥
2

(3.83)

From (3.81) and (3.83) we have:∥∥g(F∗2p)− gt(F∗2p)
∥∥

2
= max
q∈σ(F2p)

|1
q
− ft(q)| (3.84)

As it has been explained before, when q ∈ σ(F2p), w takes the values from [−1, 1].
Because of this and because of the fact that g(w) = f(q) = 1

q and ft(q) = gt(w), we
have:

max
q∈σ(F2p)

|1
q
− ft(q)| ≤ max

w∈[−1,1]
|g(w)− gt(w)| (3.85)

From (3.83), (3.84) and (3.85) it can be concluded:∥∥F−1
2p − ft(F2p)

∥∥
2

=
∥∥g(F∗2p)− gt(F∗2p)

∥∥
2
≤ max
w∈[−1,1]

|g(w)− gt(w)| (3.86)

From (3.72), (3.80) and (3.86) we obtain (3.69).

2.) Because |h| > 1 it is obvious that the function l(µ, t) is a decreasing function of
t. Now in order to prove that the function l(µ, t) is a decreasing function of µ we
will represent it as follows:

l(µ, t) = l1(µ)l2(µ, t) (3.87)

l1(µ) =
1

a

(
1− 1√

κ

)
, l2(µ, t) =

1

|h|t
(3.88)

We have ∂l/∂µ = (∂l1/∂µ)l2 + l1(∂l2/∂µ) . Since l1 and l2 are positive functions,
l is a decreasing function ( ∂l∂µ ≤ 0) if both l1 and l2 are decreasing functions of µ
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(∂l1∂µ ≤ 0 and ∂l2
∂µ ≤ 0). It is easy to prove that dl1dµ < 0, which means the function l1

is a decreasing function of µ. On the other hand, we have:

l2 =
(
√
κ− 1)t

(
√
κ+ 1)t

(3.89)

Using the same arguments that were used in proof of Theorem 3.4, we can prove
that (3.89) is a decreasing function of µ. This completes the proof. �

On the basis of Theorem 3.4 we draw the following conclusions:

• Under the assumption that σ1 and σNn do not change significantly as N
increases, from Theorem 3.4, it follows that the accuracy of the Chebyshev
approximation is practically independent from N . This means that for ex-
tremely large N (for example in the order of 107), we can approximate F−1

2p

with a relatively good accuracy, using relatively small t (for example in the
order of 10 ).

• If J2p is well-conditioned (J2p is defined in (3.36)) and σNn is not close to
0, then for any µ we can always find t � N for which the accuracy of the
Chebyshev approximation of F−1

2p is relatively good. To show this, let µ = 0
and consider the parameter l defined in (3.70). From (3.39) we have that
κ = χ, where χ = σ2

1/σ
2
Nn is a condition number of the matrix J2p. In this

case, |h| becomes:

|h| =
√
χ+ 1
√
χ− 1

(3.90)

When χ → 1, we have that |h| → ∞, and 1/|h|t approaches 0 for any t. If
σNn is not close to 0, then a is not close to 0 and 1/a is not large. This implies
that when χ → 1 and σNn is not close to 0, the parameter l(µ, t) approaches
zero, for any t. If µ > 0 the accuracy is even better, since 1/|h|t and l(µ, t) are
decreasing functions of µ (see the proof of Theorem 3.4). That is, any positive
value of µ additionally increases accuracy of the Chebyshev approximation.

• If J2p is badly conditioned, then for t� N we can always find (not so large)
µ for which the accuracy of the Chebyshev series approximation of F−1

2p is
relatively good. To show this, let us assume that J2p is badly conditioned (χ
is large). If µ = 0, then |h|, given by (3.90), is close to 1 and 1/|h|t is close
to 1 for small t. This further implies that l(µ, t) is relatively large for small t.
However, l(µ, t) is a decreasing function of µ (see the proof of Theorem 3.4).
This means that we can always find (not so large) µ and t � N for which
l(µ, t) is small. This also follows from the results of Lemma 3.2.

Algorithm 3.1 O(N) computational complexity approximation of F−1
2p

For p� N , and for a given µ, the approximation E2tp of F−1
2p is calculated by performing

the following steps:

1. Compute the constants a and b, defined in (3.48) using the ARPACK package [212;
213] or MATLAB sparse matrix computations toolbox.
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2. Transform the matrix F2p into the matrix F∗2p using (3.64).

3. Choose t � N . Compute the coefficients {c0, c1, . . . , ct} using (3.58). Using
(3.61), compute the coefficients {d0, d1, . . . , dt}.

4. Compute E2tp = gt(F∗2p) using (3.67).

3.4.3 Newton iteration

The Newton iteration (also known as the Newton-Schulz iteration) for approxi-
mating F−1

2p is defined by [217; 218; 219]:

Xk+1 = Xk (2I −F2pXk) (3.91)

The initial guess for the iteration (3.91) is usually chosen as follows [220]:

X0 = αF2p (3.92)

where α is a sufficiently small number (see also Remark 3.5). There are several
possibilities to chose α. In this thesis, we chose α = 2/(a2 + b2) [220].
Let the matrix Ek be defined as follows:

Ek = I −F2pXk (3.93)

At the kth iteration, the residual can be computed by [218]:

εk = ‖Ek‖2 = ‖I −F2pXk‖2 (3.94)

On the basis of this residual a stopping criteria for the Newton iteration can be de-
fined. In general, the Newton iteration has a quadratic convergence rate. Namely,
the matrix Ek+1 can be expressed as follows:

Ek+1 =I −F2pXk+1 = I −F2pXk (2I −F2pXk)

= (I −F2pXk) (I −F2pXk) = EkEk (3.95)

which implies

εk+1 ≤ ε2k (3.96)

If ‖E0‖2 < 1, then from (3.96) it can be concluded that the Newton iteration has a
quadratic convergence rate. An estimate of the number of operations to achieve
the accuracy

∥∥F−1
2p −Xk

∥∥
2
/
∥∥F−1

2p

∥∥
2
≤ ψ is given by [218]:

log2

(
κ2 + 1

)
+ log2 ln

1

ψ
(3.97)

where κ is the condition number of F2p. Similarly to the Chebyshev approxi-
mation method, the number of operations of the Newton iteration to achieve the
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accuracy ψ depends on the condition number of F2p. If κ is smaller than the num-
ber of oeprations is smaller and vice-versa. Thus, if F2p is well-conditioned, then
its inverse can be approximated in a computationally efficient manner.

Remark 3.5 The Newton iteration and Chebyshev approximation method can be ele-
gantly combined to obtain very fast inversion algorithms. Namely, the initial guess for
the Newton iteration can be obtained by computing the approximate inverse using Cheby-
shev approximation method.

3.4.4 The dropping strategies

Because p � N , the matrix F2p is a sparse banded matrix. This implies that for
relatively small i the Chebyshev matrix polynomials Ti(F2p) are sparse, banded
matrices. However, the bandwidth of Ti+1(F2p) is larger than the bandwidth of
Ti(F2p) (see Remark 3.2). This means that for a large approximation order t, the
fill-in (the number of non-zero elements of a matrix) of an approximate inverse
will increase significantly. Consequently, both computation and memory com-
plexity of computing E2tp will significantly increase.

One way to overcome this problem is to use the dropping strategies [217; 221]. There
are two types of dropping strategies. The first one is the truncation strategy [217;
221]. The truncation strategy restricts the bandwidth of the Chebyshev matrix
polynomials by setting to zero all the elements that are outside some prescribed
bandwidth. This truncation operator, denoted by L, can be defined entry-wise by:

(L (Y ))i,j =

{
Yi,j , |i− j| ≤ β

0 , |i− j| > β
(3.98)

where Y = [Yi,j ] is an arbitrary matrix, (L (Y ))i,j is an (i, j) element of L (Y ) and
β is the prescribed truncation bandwidth. Applying the truncation operator to the
Chebyshev matrix polynomials, we obtain:

T0 = I, T1 = L
(
F∗2p
)
,

Tk+1 = L
(
2F∗2pTk

)
− Tk−1, k ≥ 1 (3.99)

This way, we can significantly speed up the computation of an approximate in-
verse using the Chebyshev approximation method. Furthermore, we need less
memory locations to store the approximate inverse.
The truncation bandwidth β can be determined using the results of Lemma 3.2.
Namely, using (3.38) we can calculate the parameters λ and c. These parameters
tell us how fast is the off-diagonal decay of F−1

2p . Consequently, we can determine
the bandwidth outside which the elements of F−1

2p can be neglected.

The truncation strategy can be also used to decrease the computational complexity
the Newton iteration. Applying the truncation operator to the Newton iteration,
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we define the truncated iteration:

X0 = L (αF2p)

Xk+1 = L (Xk (2I −F2pXk)) , k = 1, 2, . . . (3.100)

In [217] it has been proved that the Newton iteration is robust with respect to the
errors introduced by the truncation operator.

The second dropping strategy sparsifies matrices by replacing small elements
with zeros. The sparsification operator, denoted by B, can be defined entry-wise
by:

(B (Y ))i,j =

{
Yi,j , |Yi,j | ≥ φ

0 , |Yi,j | < φ
(3.101)

where φ is the sparsification tolerance. Applying the sparsification operator to
the Chebyshev method and Newton iteration, we can obtain iterations that are
similar to iterations (3.99) and (3.100). The fastest approximation algorithms can
be obtained by combining the truncation and sparsification strategies.

In chapters 4, 6 and 7 we will use the Chebyshev approximation method and
Newton iteration to approximate inverses of banded matrices. Furthermore, in
these chapters we will demonstrate significant computational savings that can be
obtained by using the dropping strategies.

In this chapter we proved that inverses of sparse, banded matrices can be approximated by
sparse banded matrices. However, as we mentioned previously, the Chebyshev approxima-
tion method and Newton iteration can be applied to much broader class of sparse matrices.
In the sequel this will be illustrated with numerical examples. Namely, we show that the
finite-time observability Gramian of the global state-space model (2.65)-(2.66) (the dis-
cretized 3D heat equation) is a sparse multi-banded matrix. Furthermore, we show that
its inverse can be approximated by a sparse multi-banded matrix.

3.5 Approximation of inverses of multi-banded ma-
trices

Consider the state-space model (2.65)-(2.66) that is obtained by discretizing the
3D heat equation (2.15) using the finite difference method. The parameters of the
model are: L = 0.01, h = 5, N = 29, M = 29, and P = 3. We assume that the
plate is made of the BK7 material. We use the lifting window p = 4. The sparsity
pattern of the structured observability matrix is shown in Fig. 3.5.
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(a) (b)

Figure 3.5: (a) Structured observability matrix of the state-space model (2.65)-
(2.66); (b) A segment of the structured observability matrix.

In Fig. 3.6, the sparsity patterns of the structured controllability and impulse re-
sponse matrices are illustrated.

(a) (b)

Figure 3.6: Sparsity patterns of the structured controllability and impulse re-
sponse matrices of the state-space model (2.65)-(2.66) (a) Structured
controllability matrix; (b) Structured impulse response matrix.

From Figs. 3.5 and 3.6 we clearly see that the lifted system matrices inherit the
multi-banded structure of the global system matrix A (see Fig. 3.7(a)). The matrix
A has a smaller number of nonzero elements than the lifted system matrices. This
is because the lifted system matrices are constructed using the powers Ai, i =
1, . . . , p. The sparsity patterns of the matrixA and its powers are illustrated in Fig.
3.7.
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(a) (b)

(c) (d)

Figure 3.7: Sparsity patterns of the powers of the system matrix A of the state-
space model (2.65)-(2.66) (a) A; (b) A2; (c) A3; (d) A4.

The sparsity pattern of the finite-time observability Gramian, J8 = OT4 O4, is illus-
trated in Fig. 3.8.

(a) (b)

Figure 3.8: (a) Finite-time observability Gramian; (b) A segment of the finite-time
observability Gramian.

The condition number of J8 is χ = 1.3245 × 107. Its minimal and maximal sin-
gular values are respectively: 2.6116 × 10−7 and 3.46. Let the inverse of J8 be
denoted by D. The absolute values of the elements of an arbitrary row of D are
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shown in Fig. 3.9(a). This figure suggests that D can be approximated by a sparse
multi-banded matrix. The first 80 Chebyshev coefficients ci (defined in (3.58)) are
shown in Fig. 3.9(b). From Fig. 3.9(b) we see that the Chebyshev coefficients are
slowly decaying. This is a numerical confirmation of the results of Theorem 3.4.
Namely, because the condition number of J8 is large and the minimal singular
value is small, the approximation order t that gives relatively good approxima-
tion accuracy is relatively large. This is why the Chebyshev coefficients in Fig.
3.9(b) are slowly decaying.
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Figure 3.9: (a) The absolute values of the elements of an arbitrary row of D; (b)
The Chebyshev coefficients ci.

We chose a regularization parameter µ = 0.001 and we compute a regularized,
finite-time observability Gramian F8 = J8 + µI . The condition number of F8

is κ = 3.78 × 103. Its minimal and maximal singular values are respectively:
9.2× 10−4 and 3.46. The absolute elements of an arbitrary row of F−1

8 are shown
in Fig. 3.10(a). The Chebyshev coefficients are shown in Fig. 3.10(b).
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Figure 3.10: (a) The absolute values of the elements of an arbitrary row of F−1
8 ; (b)

The Chebyshev coefficients ci.

The decay rate of the Chebyshev coefficients, calculated for the matrix F8, is faster
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than the decay rate of the coefficients calculated for J8. This is because the condi-
tion number of F8 is smaller than the condition number of J8.

Next, we approximate F−1
8 . The approximation error is measured by computing

e =
∥∥F−1

8 − E
∥∥

2
, where the matrix E is computed using the Chebyshev approxi-

mation method that is combined with the dropping strategies. More precisely, the
approximation E is computed using the truncated iteration (3.99). Once the matrix
E is computed, the sparsification operator is applied to E (that is, the sparsifica-
tion operator is not used during the Chebyshev iteration). The sparsity patterns
of the matrix F8 and its approximate inverses, calculated for several values of the
truncation bandwidth β and the sparsification tolerance φ, are shown in Fig. 3.11

(a) (b) (c)

Figure 3.11: The sparsity patterns of F8 and its approximate inverse E . (a) F8; (b)
E , β = 800, φ = 0.00001, e=0.0099 ; (c) E , β = 800, φ = 0.00005,
e=0.0103.

Finally, we approximate F−1
8 using the Newton iteration. Here we will be mainly

interested how the truncation operator influence the convergence rate of the New-
ton iteration. In chapters 4, 6 and 7 we will illustrate the computational complexity
of the Newton iteration. The convergence of the approximation error εk = ‖Ek‖2
(defined in (3.94)), for several values of the truncation bandwidth β, is shown in
Fig 3.12.
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Figure 3.12: The convergence of the Newton iteration for several values of the
truncation bandwidth β.
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From Fig. 3.12 we see that the Newton iteration is robust with respect to the errors
introduced by the truncation operator. We see that as the truncation bandwidth
β decreases, the steady-state error increases. Furthermore, we see that the errors
introduced by the truncation operator do not affect so much the convergence rate
of the Newton iteration.



4 CHAPTER

Moving horizon estimation
algorithms

Using the approximation methods summarized in Chapter 3, in this
Chapter we develop Moving Horizon Estimation (MHE) methods

for large-scale interconnected systems. First, we develop a linear com-
putational complexity MHE method and a distributed MHE method for
the state-space models in the standard form. The distributed method es-
timates the local state using only local input-output data. Furthermore,
the distributed MHE method has a simple analytic form and it does not
rely on consensus algorithms. Secondly, we develop a MHE method for
large-scale systems in the descriptor state-space form.

4.1 Moving horizon estimation algorithms for
state-space models in the standard form

The Moving Horizon Estimation (MHE) strategy determines the state of a dy-
namical system as the solution of an optimization problem that consists of input-
output data over a moving time horizon [147; 148; 222; 223; 224]. Despite the fact
that moving horizon state estimation of linear, low-dimensional systems has been
extensively studied in literature, see for example [147; 148; 222; 223; 224], mov-
ing horizon state estimation of large-scale interconnected systems is still an open
problem. Namely, there are two main problems that hinder the application of
moving horizon estimation techniques for large-scale interconnected systems.

First of all, the design of the parameters (matrices) of the MHE methods proposed
in [147; 148; 222; 223; 224] is a computationally challenging problem. Namely, in
order to design the parameters of the above mentioned MHE methods, we need
to perform sequences of basic matrix operations (+−,×,−1) on lifted system ma-
trices of a large-scale interconnected system. Furthermore, we need to compute

79
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the spectral norm or the spectral radius of the matrices that result from these ba-
sic matrix operations. In the case of interconnected systems that are described by
sparse system matrices, we can exploit the sparsity of the lifted system matrices
to compute their inverses with O(N2) complexity [112], where N is the number of
local subsystems. However, the problem lies in the fact that these inverse matri-
ces are dense [60]. Namely, after we have inverted all matrices, the sparsity of the
design problem is lost, and computational cost of the subsequent computations is
larger than O(N2). Furthermore, for large N we cannot store dense matrices in a
computer memory because we need O(N2) memory locations.

Secondly, the MHE methods proposed in [147; 148; 222; 223; 224], assume that
the input-output data of all local subsystems are transmitted to one centralized
computing unit, where calculations are performed. In the cases in which a large-
number of local sensors collect measurement data of local subsystems, the trans-
mission of all sensor data to one centralized computing unit requires a large amount
of energy and communication [164; 225; 226]. In such situations, moving horizon
state estimation should be performed in the decentralized/distributed manner on
a network of local computing units and sensors that communicate locally.

In [131], the decentralized version of the MHE method (originally proposed in
[148]) is developed. However, this decentralized MHE method requires “all-to-
all” communication between the local computing units. In the case of a large
number of sensors and local computing units, ”all-to-all” communication might
not be possible because it requires a large amount of energy and communication.
Furthermore, in order to perform the stability analysis and to design the param-
eters of this decentralized MHE method, we need to compute the spectral norm
or the spectral radius of large-dimensional, dense matrices. This problem has not
been addressed in [131]. For all these reasons, the decentralized MHE method,
proposed in [131], is restricted to the class of interconnected systems with a small
or medium number of local subsystems.

In this section we present computationally efficient centralized and distributed
moving horizon MHE methods for large-scale interconnected systems, that are
described by sparse banded or sparse multi-banded system matrices. Like we
have shown in Chapter 2, interconnected systems, with sparse (multi) banded
system matrices originate from discretization of PDEs [60]. Both of the proposed
MHE methods are developed by approximating a solution of the MHE problem
using the Chebyshev approximation method. By exploiting the sparsity of this
approximate solution we derive a centralized MHE method, which computational
complexity and memory storage requirements scale linearly with the number of
local subsystems of an interconnected system. Furthermore, on the basis of the
approximate solution of the MHE problem, we develop a novel, distributed MHE
method. This distributed MHE method estimates the state of a local subsystem
using only local input-output data. In contrast to the existing distributed algo-
rithms for the state estimation of large-scale systems, the proposed distributed
MHE method is not relying on the consensus algorithms and has a simple ana-
lytic form. We have studied the stability of the proposed MHE methods and we
have performed numerical simulations that confirm our theoretical results.

The proposed distributed MHE method can also be seen as a distributed param-
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eter estimation or distributed optimization method. Unlike existing algorithms
for distributed parameter estimation [164; 165] or for distributed optimization
[166; 167; 168], that compute an estimate iteratively (using consensus-subgradient
or diffusion based algorithms), the proposed distributed MHE method determines
an estimate at the fixed time instant in a closed form. Namely, the proposed MHE
method estimates a state of a local subsystem by computing a linear combination
of the local input-output data of local subsystems that are in its neighborhood.

The remainder of this section is organized as follows: In Section 4.1.1 we present
a problem formulation. In Section 4.1.2 we present the centralized MHE method.
In Section 4.1.3 we present the distributed MHE method and in Section 4.1.4 we
present simulation results. The conclusion is drawn in Section 4.1.5.

4.1.1 Problem formulation

For the sake of presentation clarity, we assume that the interconnected system
whose state we want to estimate consists of a string of local subsystems [77; 78; 79].
The MHE strategies proposed in this thesis can be generalized for interconnected
systems with a more general interconnection topologies (see Remark 4.4). The
MHE strategy will be derived for the global system (3.1) that is not affected by the
input vector:

S
{

x(k + 1) = Ax(k)
y(k) = Cx(k) + n(k)

(4.1)

where the system matrices have the following structure:

A =


A1,1 E1,2

E2,1 A2,2 E2,3

. . .
EN−1,N−2 AN−1,N−1 EN−1,N

EN,N−1 AN,N

 ,

C =

C1

. . .
CN

 , y(k) =

y1(k)
...

yN (k)

 ,x(k) =

x1(k)
...

xN (k)

 (4.2)

Like it has been explained in Chapter 3, the global system S consists of the inter-
connection of N local subsystems Si:

Si
{

xi(k + 1) = Ai,ixi(k) + Ei,i−1xi−1(k) + Ei,i+1xi+1(k)
yi(k) = Cixi(k) + ni(k)

(4.3)

The interconnection structure of local subsystems is illustrated in Fig.4.1.
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Figure 4.1: The interconnection structure of the local subsystems of the global sys-
tem (4.1).

In this chapter we adopt the MHE problem formulation of [148]. The state estima-
tion horizon will be denoted by a non-negative integer p, where p � N . Without
the loss of generality we assume that p ≥ n − 1. For k − p ≥ 0, we introduce the
following notation.

• x̂i(k−p|k), . . . , x̂i(k|k) denote the estimates of the local states xi(k−p), . . . ,xi(k),
respectively, made at a time instant k. The estimates x̂i(k − p|k), . . . , x̂i(k|k)
will be called the local moving horizon estimates and they should satisfy:

x̂i(j + 1|k) = Ai,ix̂i(j|k) + Ei,i−1x̂i−1(j|k) + Ei,i+1x̂i+1(j|k)

j = k − p, . . . , k − 1 (4.4)

• The global moving horizon estimates are denoted by x̂(k − p|k), . . . , x̂(k|k). We
have x̂(k − j|k) = col(x̂1(k − j|k), . . . , x̂N (k − j|k)), j = 0, 1, . . . , p. The
global moving horizon estimates x̂(k − p + 1|k), . . . , x̂(k|k), are determined
from x̂(k − p|k) by propagating the equation:

x̂(j + 1|k) = Ax̂(j|k), j = k − p, . . . , k − 1 (4.5)

• The local moving horizon estimate x̂i(k−p|k−1) is at the same time a predic-
tion of the local state xi(k− p) made at the time instant k− 1. Consequently,
x̂i(k − p|k − 1) will be called the local prediction and similarly to (4.4) it is
determined by:

x̂i(k − p|k − 1) = Ai,ix̂i(k − p− 1|k − 1)

+ Ei,i−1x̂i−1(k − p− 1|k − 1) + Ei,i+1x̂i+1(k − p− 1|k − 1) (4.6)

• The vector x̂(k − p|k − 1) = col(x̂1(k − p|k − 1), . . . , x̂N (k − p|k − 1)) will
be called the global prediction and similarly to (4.5) it is determined by x̂(k −
p|k − 1) = Ax̂(k − p − 1|k − 1). The initial value of the global prediction
x̂(0|p− 1) is given a priori.

• A local lifted output vector Yki,k−p ∈ R(p+1)r is defined in (3.7). In the same
manner we define the lifted measurement noise vector N k

i,k−p ∈ R(p+1)r.
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• A global lifted output vector Ykk−p ∈ RN(p+1)r is defined in (3.8). In the same
manner we define N k

k−p ∈ RN(p+1)r.

With each local subsystem Si, we associate the local cost function:

Jki (x̂i−p(k − p|k), . . . , x̂i+p(k − p|k)) =

µ ‖x̂i(k − p|k)− x̂i(k − p|k − 1)‖22 +

k∑
j=k−p

‖yi(j)− Cix̂i(j|k)‖22 (4.7)

where µ ≥ 0. The local cost function (4.7) consists of two parts. The first term
on the right-hand side of (4.7) penalizes the difference between the local MHE
estimate and the local prediction. The second term in (4.7) penalizes the difference
between the measured local outputs and the local outputs computed on the basis
of the local moving horizon estimates. By increasing µ we put more emphasis
on the model and less emphasize on the data, and vice-versa. Because p � N
the local cost function (4.7) depends only on the few local states. The global cost
function is defined as the sum of the local cost functions:

Jk(x̂(k − p|k)) =

N∑
i=1

Jki (4.8)

The global moving horizon estimate is determined by solving the following opti-
mization problem:

min
x̂(k−p|k)

Jk(x̂(k − p|k)) (4.9)

Problem Description 4.1 The centralized MHE problem

Let the vector Ykk−p and the global prediction x̂(k − p|k − 1) be given at a time instant
k ≥ p. Then, at each time instant k approximate the solution x̂(k − p|k) of the opti-
mization problem (4.9) with O(N) computational complexity and O(N) memory storage
requirements.

In Section 4.1.2 we derive an approximate solution of the centralized MHE prob-
lem.

Remark 4.1 Once x̂(k − p|k) has been computed, the global moving horizon estimates
x̂(k − p + 1|k), . . . , x̂(k|k) are computed by propagating the equation (4.5). The global
moving horizon estimate x̂(k − p + 1|k) is at the same time a global prediction of the
estimate for the time instant k + 1.

In order to state the distributed MHE algorithm, we first define the architecture
of the computational network. We assume that for each local subsystem Si there
exists a local computing unit, denoted by Ti, that at each time instant k ≥ pmemo-
rizes Yki,k−p and that computes and memorizes the local moving horizon estimates
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x̂i(k − p|k), . . . , x̂i(k|k). At each time instant k, the local computing unit Ti is able
to transfer these memorized quantities to other local computing units in its neigh-
borhood.

Definition 4.1 The set of computing units:

Rs(Ti) = {Ti−s, . . . , Ti−1, Ti+1, . . . , Ti+s} (4.10)

where s� N , is called the neighborhood of the local computing unit Ti.

A local computing unit, associated with a local subsystem, is illustrated in Fig.
4.2. Everything is now prepared to state the distributed MHE problem.

Problem Description 4.2 The distributed MHE problem

Let the parameter s be selected by the user. Let us assume that at each time instant k ≥ p,
each local computing unit Ti receives x̂j(k−p|k−1) and Ykj,k−p from every local comput-
ing unit Tj that belongs to Rs(Ti) (this communication is illustrated in Fig. 4.3). Using
this data and using x̂i(k − p|k − 1) and Yki,k−p, local computing unit Ti should approx-
imate the local moving horizon estimate x̂i(k − p|k), that is a component of the solution
x̂(k − p|k) of the optimization problem (4.9).

In Section 4.1.3 we derive an approximate solution of the Distributed MHE prob-
lem.

Remark 4.2 Once all local moving horizon estimates x̂1(k − p|k), . . . , x̂N (k − p|k) are
computed by the corresponding local computing units, the local computing unit Ti ex-
changes the moving horizon estimates with local computing units Ti−1 and Ti+1 in order
to compute x̂i(k − p+ 1|k), . . . , x̂i(k|k) using equation (4.4).

Figure 4.2: The local computing unit Ti associated with the local subsystem Si.
The dashed lines indicate that the local computing unit can communi-
cate with other local computing units.
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Figure 4.3: The communication that is necessary to compute the local MHE esti-
mate x̂i(k − p|k) using the distributed MHE method.

4.1.2 Approximate sparse solution of the centralized MHE prob-
lem

In the first part of this section we present an exact solution of the centralized MHE
problem (Problem 4.1). In the second part, using the Chebyshev approximation
method, we develop its approximate, sparse solution. By exploiting its sparsity
we implement this solution with O(N) complexity. Finally, we study stability of
the approximate MHE solution and we give some guidelines for its tuning.

Exact solution of the centralized MHE problem

Starting from a time instant k − p and by lifting the output equation of the local
subsystem Si (4.3), p time steps, we obtain the local data equation (for more details
see Chapter 3):

Yki,k−p =

i+p∑
j=i−p

O
(p)
i,j xj(k − p) +N k

i,k−p (4.11)

where Yki,k−p is defined in (3.7) and the matrices O(p)
i,j , j = i − p, . . . , i + p, are

defined in (3.16). By lifting (4.11) from i = 1 to i = N we obtain the global data
equation:

Ykk−p = Opx(k − p) +N k
k−p (4.12)

where Ykk−p is defined in (3.8) and the matrix Op is defined in (3.14).

Using (3.16), (3.18) and (4.4), we express the local cost function (4.7) in the follow-
ing form:

Jki (x̂i−p(k − p|k), . . . , x̂i+p(k − p|k)) =

µ||x̂i(k − p|k)− x̂i(k − p|k − 1)||22 + ||Yki,k−p −
i+p∑
j=i−p

O
(p)
i,j x̂j(k − p|k)||22 (4.13)
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By summing the local costs (4.13), for i = 1, . . . , N , the global cost function be-
comes:

Jk(x̂(k − p|k)) =µ ‖x̂(k − p|k)− x̂(k − p|k − 1)‖22
+
∥∥Ykk−p −Opx̂(k − p|k)

∥∥2

2
(4.14)

Everything is prepared to state the solution of the optimization problem (4.9).

Theorem 4.3 Suppose that µ > 0 or p ≥ ν, where ν is the observability index of the
global system. Then, the solution of the centralized MHE problem is given by:

x̂(k − p|k) = F−1
2p (µx̂(k − p|k − 1) +OTp Ykk−p) (4.15)

where the matrix F2p is defined in (3.36).

Proof. Since p ≥ ν, from Lemma 3.1 we have that rank(Op) = nN . This implies
that F2p is positive definite. On the other hand, if µ > 0, then independently from
the value of p we have that F2p is positive definite. Since F2p is positive definite,
by minimizing the cost function (4.14) with respect to x̂(k− p|k), we obtain (4.15).
�

Linear computational-complexity centralized MHE

Throughout the remainder of the section we assume that the conditions of Lemma
3.2 are satisfied. From Lemma 3.2 it follows that if F2p is well-conditioned, then
the off-diagonal decay rate of F−1

2p is rapid (the constants c and λ are small). The
importance of this result lies in the fact that off-diagonally decaying matrices with
a rapid decay rate can be approximated by sparse banded matrices. In Chapter,
3 we have presented the Chebyshev method for approximating F−1

2p . The Cheby-
shev approximation of F−1

2p is denoted by E2tp, see (3.68).

By substituting F−1
2p with E2tp in (4.15), we define an approximate solution of

the MHE problem:

x̆(k − p|k) = E2tp(µx̆(k − p|k − 1) +OTp Ykk−p) (4.16)

The prediction x̆(k − p|k − 1), made at the time instant k − 1, corresponding to
(4.16), is given by:

x̆(k − p|k − 1) = Ax̆(k − p− 1|k − 1) (4.17)

Because t � N and p � N , all matrices in (4.16) are sparse banded matrices, and
consequently (4.16) can be computed with O(N) computational complexity. The
equations (4.16) and (4.17) constitute the linear computational complexity MHE method.
The fundamental question that needs to be answered here is: “How the approxima-
tion errors affect the stability and the performance of the MHE method?’
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Remark 4.4 The MHE methods proposed in this thesis can be used for the state estima-
tion of large-scale interconnected systems which system matrices have sparse banded or
sparse multi-banded structure. Namely, if we would apply the lifting technique, that has
been introduced in Chapter 3, to sparse multi-banded system matrices, the resulting ma-
trix Op and the matrix F2p would inherit the sparse multi-banded structure. In [221], it
has been shown that the Chebyshev approximation method can be generalized for approx-
imating inverses of sparse multi-banded system matrices. State-space models, described
by sparse (multi) banded system matrices, are important because they originate from dis-
cretization of 3D PDEs [60; 200; 227; 228].

Stability and performance analysis

We define the estimation error as follows:

ĕ(k − p) = x(k − p)− x̆(k − p|k) (4.18)

In order to simplify the stability analysis of the MHE method, we introduce the
following assumption.

Assumption 4.5 The matrix E2tp is positive definite.

The justification for this assumption follows from the following facts. First of all,
for p ≥ ν or µ > 0 the matrix F2p is positive definite and invertible. Because
F2p is positive definite, so is its inverse F−1

2p . In Theorem 3.4 we have proved
that the accuracy of the Chebyshev approximation can be made arbitrarily small.
Because of this, if E2tp is an accurate approximation of the matrix F−1

2p , then it is
reasonable to assume that E2tp is positive definite. We are now prepared to analyze
the stability of the MHE method.

Theorem 4.6 Suppose that ‖A‖2 < 1. Then the system[
ĕ(k − p)

x(k − p+ 1)

]
=

[
µE2tpA I − E2tpF2p

0 A

] [
ĕ(k − p− 1)

x(k − p)

]
+

[
−E2tpOTpN k

k−p
0

]
(4.19)

is asymptotically stable for any (non-negative) value of µ.

Proof In order to analyze the stability of the approximate MHE method, we define
the following matrix:

∆ = F−1
2p − E2tp (4.20)

Due to Assumption 4.5, the matrix E2tp is invertible. From (4.16) and (4.18) we
have:

ĕ(k − p) = E2tp
(
E−1

2tpx(k − p)− µx̆(k − p|k − 1)−OTp Ykk−p
)

(4.21)
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Using the matrix inversion lemma (see [58], page 19, Lemma 2.2), from (4.20) we
obtain:

E−1
2tp = F2p + ∆l (4.22)

∆l = F2p∆(I −F2p∆)−1F2p (4.23)

Taking into account (4.22) we can express (4.21) as follows:

ĕ(k − p) = E2tp
(
F2px(k − p)− µx̆(k − p|k − 1)−OTp Ykk−p

)
+ E2tp∆lx(k − p) (4.24)

From (4.22) we have: E2tp∆l = I − E2tpF2p. Taking this transformation into ac-
count, we can write (4.24) as follows:

ĕ(k − p) = E2tp
(
F2px(k − p)− µx̆(k − p|k − 1)−OTp Ykk−p

)
+ (I − E2tpF2p)x(k − p) (4.25)

Multiplying (4.12) from left by OTp and adding to the both sides of the resulting
equation µx(k − p), we obtain:

(OTp Op + µI)︸ ︷︷ ︸
F2p

x(k − p) = OTp Ykk−p −OTpN k
k−p + µx(k − p) (4.26)

Combining the state equation of the global system (4.1) with (4.26), we have:

F2px(k − p) = OTp Ykk−p −OTpN k
k−p + µAx(k − p− 1) (4.27)

Substituting (4.17) and (4.27) in (4.25), and keeping in mind that ĕ(k − p − 1) =
x(k− p− 1)− x̆(k− p− 1|k− 1) we obtain the first equation of (4.19). The second
equation of (4.19) is a state equation of the global system (4.1). In order to analyse
stability of (4.19) we first determine an upper-bound on ‖E2tp‖2. From (3.57) we
have:

2

b− a
|gt(w)|

≤ 2

b− a

(
|c0

2
|+ |c1||T1(w)|+ |c2||T2(w)|+ . . .+ |ct||Tt(w)|

)
<

2

b− a
(|c0

2
|+

∞∑
i=1

|ci||Ti(w)|) (4.28)

It is well known, see [214], that maxw∈[−1,1] |Tk(w)| = 1, ∀k. Due to this, from
(4.28) we have:

2

b− a
max

w∈[−1,1]
|gt(w)| < 2

b− a
(|c0

2
|+

∞∑
i=1

|ci|) (4.29)
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Similarly to (3.76), we have:

2

b− a
(|c0

2
|+

∞∑
i=1

|ci|) =
2

(b− a)
√
v2 − 1

(
|h|+ 1

|h| − 1

)
(4.30)

Using (3.77) and (3.78) we obtain:

2

(b− a)
√
v2 − 1

(
|h|+ 1

|h| − 1

)
=

1

a
=

1

µ+ σ2
Nn

(4.31)

From (4.28)-(4.31) we obtain:

2

b− a
max

w∈[−1,1]
|gt(w)| < 1

µ+ σ2
Nn

(4.32)

In order to complete the proof, we will recall the Spectral mapping theorem [229;
230]. The spectral mapping theorem says that for every matrix M and every poly-
nomial pt(x), the spectrum of pt(M) is pt(σ(M)) (where σ(M) denotes the spec-
trum of M ). Applying the spectral mapping theorem to F2p and ft(q), defined
in (3.62), we conclude that the spectrum of ft(F2p) is ft(σ(F2p)). The matrix E2tp
is equal to ft(F2p). Because E2tp is symmetric positive definite (at least for suffi-
ciently large t), we have that its eigenvalues are equal to its singular values. Using
the spectral mapping theorem we conclude:

‖E2tp‖2 = max
q∈σ(F2p)

|ft(q)| (4.33)

It is easy to see that:

max
q∈σ(F2p)

|ft(q)| ≤ max
w∈[−1,1]

|gt(w)| ≤ 2

b− a
max

w∈[−1,1]
|gt(w)| (4.34)

where gt(w) is defined in (3.60). From (4.32), (4.33) and (4.34), we have:

‖E2tp‖2 <
1

µ+ σ2
Nn

(4.35)

Because ‖A‖2 < 1 (this is the main assumption of the theorem), from (4.19) we see
that the system is asymptotically stable if ρ(µE2tpA) < 1, where ρ(.) denotes the
matrix spectral radius. We have:

ρ(µE2tpA) ≤ ‖µE2tpA‖2 ≤ µ ‖E2tp‖2 ‖A‖2 (4.36)

From (4.35) and (4.36) we have:

‖µE2tpA‖2 <
µ

µ+ σ2
Nn

‖A‖2 (4.37)

It should be observed that µ
µ+σ2

Nn
< 1 for any µ. Since ‖A‖2 < 1, then we see that

for any value of µ, the right-hand side of (4.37) is smaller than 1. This means that
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if ‖A‖2 < 1 then for any value of µ the augmented system (4.19) is asymptotically
stable. This completes the proof. �

It should be noted that the results of Theorem 4.6 are consistent with the results of
[148], see Remark 1 in [148].

Remark 4.7 The effect of the Chebyshev approximation errors on the total estimation er-
ror is represented by the term (I − E2tpF2p) x(k − p) in (4.19). As t→∞, we have that
E2tp → F−1

2p and consequently (I − E2tpF2p)→ 0. If (I − E2tpF2p) = 0, then the stabil-
ity analysis of the MHE method is equivalent to the stability analysis presented in [148].
Furthermore, it should be observed that if there is no measurement noise, then the esti-
mation error will converge to zero (this also holds for expectation of the estimation error,
if the measurement noise is zero-mean). That is, the errors introduced by the Chebyshev
approximation do not introduce bias. However, it can be easily shown that if an input is
affecting the state equation of the global state-space model, then the combination of this
input and Chebyshev approximation errors will produce bias of the estimation error.

Corollary 4.8 Suppose that ‖A‖2 < 1. Furthermore, suppose that E
[
N k
k−p

]
= 0, for

all k, where E [.] denotes the expectation operator. Then,

‖E [ĕ(k − p+m− 1)]‖2 < b1 ‖E [ĕ(k − p− 1)]‖2 + b2 ‖x(k − p− 1)‖2 (4.38)

where

b1 =
µ

µ+ σ2
Nn

‖A‖m2 , b2 = κ

(
1− 1√

κ

)
1

|h|t
‖A‖2

1− ‖A‖m2
1− ‖A‖2

(4.39)

and where the parameters κ and |h| are defined in (3.39) and (3.71), respectively.

Proof From (4.19) we have:

E [ĕ(k − p+m− 1)] = M1E [ĕ(k − p− 1)] +M2E [x(k − p− 1)] (4.40)

M1 = (µE2tpA)
m
, M2 =

m∑
i=1

(µE2tpA)
m−i

(I − E2tpF2p)A
i (4.41)

From (4.40) we have:

‖E [ĕ(k − p+m− 1)]‖2 ≤ ‖M1‖2 ‖E [ĕ(k − p− 1)]‖2
+ ‖M2‖2 ‖x(k − p− 1)‖2 (4.42)

From the proof of Theorem 4.6 we have: ‖E2tp‖2 <
1

µ+σ2
Nn

and µ ‖E2tp‖2 <
µ

µ+σ2
Nn

<

1. This implies:

‖M1‖2 ≤ µ
m ‖E2tp‖m2 ‖A‖

m
2 <

(
µ

µ+ σ2
Nn

)m
‖A‖m2 < b1 (4.43)
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On the other hand

‖M2‖2 ≤
m∑
i=1

‖µE2tpA‖m−i2 ‖I − E2tpF2p‖2 ‖A‖
i
2 (4.44)

Because ‖A‖2 < 1 and ‖µE2tp‖2 < 1, we have:

‖µE2tpA‖m−i2 ≤ ‖µE2tp‖m−i2 ‖A‖m−i2 < ‖µE2tp‖2 ‖A‖2 < 1 (4.45)

From (4.44) and (4.45) we have:

‖M2‖2 <
m∑
i=1

‖I − E2tpF2p‖2 ‖A‖
i
2 (4.46)

It is easy to prove that

m∑
i=1

‖I − E2tpF2p‖2 ‖A‖
i
2 = ‖I − E2tpF2p‖2 ‖A‖2

1− ‖A‖m2
1− ‖A‖2

(4.47)

Next, we will prove that:

‖I − E2tpF2p‖2 ≤ κ(1− 1√
κ

)
1

|h|t
(4.48)

First of all, it can be easily verified that the matrix I −E2tpF2p is symmetric. Using
the spectral mapping theorem (see proof of Theorem 4.6) we have:

‖I − E2tpF2p‖2 = max
q∈σ(F2p)

|1− ft(q)q|

≤ max
w∈[−1,1]

∣∣∣∣1− gt(w)
1

2
((b− a)w + (a+ b))

∣∣∣∣ (4.49)

We can write gt(w) as follows:

gt(w) = g(w)− zt+1(w),

zt+1(w) =
2

a− b

∞∑
t+1

ckTk(w) (4.50)

On the other hand

g(w)
1

2
((b− a)w + (a+ b)) = 1 (4.51)

Using (4.50) and (4.51), we have:

max
w∈[−1,1]

∣∣∣∣1− gt(w)
1

2
((b− a)w + (a+ b))

∣∣∣∣
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= max
w∈[−1,1]

∣∣∣∣zt+1(w)
1

2
((b− a)w + (a+ b))

∣∣∣∣ ≤ b max
w∈[−1,1]

|zt+1(w)| (4.52)

On the other hand

max
w
|zt+1(w)| ≤ 2

b− a
max

w∈[−1,1]

∞∑
t+1

|ck||Tk(w)| ≤ 2

b− a

∞∑
t+1

|ck| (4.53)

From the proof of Theorem 3.4 (see (3.80)), we have:

2

b− a

∞∑
t+1

|ck| = l(µ, t) =
1

a

(
1− 1√

κ

)
1

|h|t
(4.54)

From (4.52)-(4.54) we have:

b max
w∈[−1,1]

|zt+1(w)| ≤ b

a

(
1− 1√

κ

)
1

|h|t
,
b

a

(
1− 1√

κ

)
1

|h|t
= κ

(
1− 1√

κ

)
1

|h|t
(4.55)

From (4.49)-(4.55) we obtain (4.48). From (4.46), (4.47) and (4.48), we obtain:

‖M2‖2 < κ(1− 1√
κ

)
1

|h|t
‖A‖2

1− ‖A‖m2
1− ‖A‖2

= b2 (4.56)

From (4.42), (4.43) and (4.56), we obtain:

‖E [ĕ(k − p+m− 1)]‖2 < b1 ‖E [ĕ(k − p− 1)]‖2
+ b2 ‖x(k − p− 1)‖2 (4.57)

This completes the proof. �

Some guidelines for selecting µ and t

In the sequel we will give some guidelines for selecting µ and t. These guide-
lines are valid for the noise-free case or for the case when E

[
N k
k−p

]
= 0, for all

k. Furthermore, these guidelines mainly address the computational issues of the
developed MHE method. Additional guidelines for tuning the MHE method, that
also take the effect of the measurement noise and disturbances into account, can
be found in [148; 231].

We have proved that if E2tp is positive definite and if ‖A‖2 < 1, then any µ guaran-
tees asymptotic stability of the approximate MHE method (stability of the system
(4.19)). However, from Corollary 4.8 we see that µ influences convergence of the
estimation error. Using the same arguments that are used in the proof of Lemma
3.2 and Theorem 3.4, it can be proved that b1 is an increasing function of µ and that
b2 is a decreasing function of t and µ. Furthermore, we have that when µ→ 0, then
b1 → 0.
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Since b2 is a decreasing function of t, by increasing t we decrease the effect of the
Chebyshev approximation errors on the total estimation error (see also Remark
4.7). However, for computational reasons we need to keep t� N .

As we have explained in Chapter 3, ifJ2p is well-conditioned, κ is close to 1 and |h|
is relatively large. Consequently, independently from µwe can always find t� N
for which the accuracy of the Chebyshev approximation is good and for which
b2 is relatively small. If b2 is relatively small, then the parameter b1 dominantly
describes the behavior of the estimation error. In this case, by decreasing µ we
can decrease b1, and consequently we can increase the convergence speed of the
estimation error. However, by decreasing µ we increase b2 and for very small µ
and t, the parameter b2 might become much larger than b1. If b2 is much larger
than b1, then b2 dominantly describes the behavior of the estimation error. This is
illustrated in Fig. 4.6, in Numerical experiments section.

If the matrix J2p is badly conditioned, then in order to ensure that for t � N the
accuracy of the Chebyshev approximation is good, we need to select a sufficiently
large µ. This value of µ can be found by choosing t � N and by plotting the
function l(µ, t) or b2, for different values of µ. From this plot we can select µ
for which l(µ, t) or b2 are small. However, by increasing µ we increase b1. This
suggests that if J2p is badly conditioned, then the convergence of the approximate
MHE method is generally slower than in the case of well-conditioned J2p. The
degradation of the convergence speed (performance) is the price that we need to pay in
order to have a computationally efficient MHE method. In the extreme case, when µ is
much larger than σ2

Nn, we have that b1 ≈ ‖A‖m2 .

4.1.3 Distributed MHE method

On the basis of the approximate solution of the centralized MHE problem, in this
section we derive an approximate solution of the distributed MHE problem (Prob-
lem 4.2 in Section 4.1.1). Because E2tp is a sparse banded matrix, the ith block row
of (4.16) (corresponding to x̆i) can be written as follows:

x̆i(k − p|k) = µ

j=i+2tp∑
j=i−2tp

P 1
i,jx̆j(k − p|k − 1) +

j=i+(2t+1)p∑
j=i−(2t+1)p

P 2
i,jYkj,k−p (4.58)

where P li,j , l = 1, 2 are block elements of E2tp and E2tpOTp respectively. From (4.17),
we can express the local prediction x̆i(k − p|k − 1) as follows:

x̆i(k − p|k − 1) = Ai,ix̆i(k − p− 1|k − 1)

+ Ei,i−1x̆i−1(k − p− 1|k − 1) + Ei,i+1x̆i+1(k − p− 1|k − 1) (4.59)

The equations (4.58) and (4.59) constitute the distributed MHE method. From
(4.58) we see that in order to compute x̆i(k − p|k) the local computing unit Ti
needs to receive local predictions and local output data from its neighbooring
local computing units. That is, the parameter s (see the distributed MHE problem
4.2) should be chosen to be equal to (2t + 1)p. From here we see that the amount



94 Chapter 4: Moving horizon estimation algorithms

of communication that is necessary to compute x̆i(k − p|k) is proportional to the
block bandwidth of E2tp or equivalently, proportional to tp.

Like it has been proved in Chapter 3, if the matrix J2p is well-conditioned, then
for any value of µ we can find t� N for which the accuracy of the Chebyshev ap-
proximation is good. That is, if the matrix J2p is well-conditioned, then we need small
amount of communication to compute (4.58). If the matrix J2p is badly conditioned,
then we can always determine the parameter µ such that there exists t � N for
which the accuracy of the Chebyshev approximation is relatively good.

In order to minimize the communication between the local computing units, the
parameter t should be minimized. How to select very small t without jeopardizing
the accuracy of the Chebyshev approximation? From Theorem 3.4 and Corollary 4.8, it
follows that this can be achieved by increasing the parameter µ. In the case of well-
conditioned J2p, this value of µ is not large at all. In the case of badly conditioned
J2p, we need to select sufficiently large µ. However, by increasing µ we increase
b1. This means that there exists a trade-off between the amount of communication between
the local computing units and the convergence speed of the approximate MHE method.

4.1.4 Numerical experiments

Numerical experiments are performed in MATLAB on a standard desktop per-
sonal computer. The data generating model is a global state-space model that
consists of N = 200 identical local subsystems. The local system matrices of each
local subsystem are

A =

[
0.7864 0.0534
0.0534 0.7864

]
, E =

[
0.0534 0

0 0.0534

]
, C =

[
1 0

]
(4.60)

This model is obtained using the finite difference approximation of the 2D heat
equation (see Chapter 2). Heat diffusivity constant and discretization constants
are: α = 0.6, h = 5 and L = 5.3. Using the local system matrices (4.60), we
construct the global system matrices {A,B,C} and we use the global state-space
model to generate the sequence of the output data. For each local subsystem we
assume that the signal to noise ratio of the noise corrupted output is 20[db]. We
choose p = 2. First, we numerically illustrate the results of Lemma 3.2. The pa-
rameters c and λ, defined in (3.38), for different values of µ are given in Table
4.1.

µ 0 0.01 0.1 1
λ 0.96 0.94 0.89 0.72
c 65.95 39.7 6.6 0.99

Table 4.1: The parameters c and λ for different values of µ

From Table 4.1 it follows that the parameters c and λ decrease as we increase µ.
The exponential off-diagonal decay ofF−1

2 , for µ = 0, 0.1, 1, is shown in Fig. 4.4(a).
Furthermore, from Fig. 4.4(a), it follows that the off-diagonal decay ofF−1

2 is more
rapid as we increase µ.
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(a) (b)

Figure 4.4: a) The exponential off-diagonal decay of the elements of the 33rd row
of F−1

2 . The elements are denoted by z33,j ; b) The Chebyshev approx-
imation error for different orders t.

The error of approximating F−1
2 by E4t (p = 2 and µ = 0.1), for different orders t,

is illustrated in Fig. 4.4(b). Fig. 4.4(b) shows that the Chebyshev approximation
error decreases as t increases. Next, we illustrate how the estimation error (4.18)
depends on t. We choose µ = 0.1 and plot the estimation error for different orders
t = 2, 4, 7. The results are presented in Fig. 4.5(a). As it is predicted by Corollary
4.8, the convergence rate of the MHE method increases as t is increased.

Next, we illustrate the linear computational complexity of approximating the ma-
trix F−1

2p for different number of local subsystems N . We fix the order of approxi-
mation (3.68) to t = 7 and choose µ = 0.1. The computational times are presented
in Fig. 4.5(b). From 4.5.b, we can clearly see that the proposed MHE method has
the linear computational complexity.

(a) (b)

Figure 4.5: a) Convergence of the estimation error for different t. b) Computa-
tional times in seconds of approximating F−1

2p by the matrix E2tp, for
different numbers of local subsystems N .

In Fig. 4.6 we illustrate how the convergence rate of the estimation error depends
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on µ. In Fig. 4.6(a), t is relatively small (t = 4). We see that by increasing µ, the
estimation error converges more rapidly. This is because b2 is much larger than b1
and consequently, b2 dominantly describes the behavior of the estimation error (b2
is a decreasing function of µ). On the other hand, in Fig. 4.6(b), t is relatively large
(t = 15). We see that when µ increases, the convergence rate of the estimation
error decreases. In this case b1 is larger than b2, and consequently b1 dominantly
describes the behavior of the estimation error (b1 is an increasing function of µ).

(a) (b)

Figure 4.6: Convergence of the estimation error for: a) t = 4 b) t = 15

4.1.5 Conclusion

In this Section we presented a linear computational complexity MHE method
for large-scale interconnected systems. Furthermore, we presented a novel, dis-
tributed MHE method, that computes the estimates of the local states using local
input-output data. The proposed distributed algorithm is not relying on consen-
sus algorithms and has a simple analytic form. We performed numerical simula-
tions that confirm our theoretical results.

4.2 Moving horizon estimation for descriptor systems

In Chapter 2, we used the finite element method to approximate the thermoelastic
system of PDEs (2.67)-(2.68). As a result, we obtained the descriptor state-space
model (2.81)-(2.82):

Q22x(k) = D22x(k − 1) + c1 (4.61)
y(k) = Cx(k) + d1 + n(k) (4.62)

where

Q22 = D22 + hK22, c1 = hl2, C = −WK−1
11 K12, d1 = WK−1

11 l1 (4.63)
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By inverting the matrix Q22, the descriptor state-space model (4.61)-(4.62) can be
transformed into the standard state-space form. However, Q−1

22 is a dense matrix
and consequently, system matrices of the resulting state-space model are dense.
That is, the sparsity of the model is ”destroyed” (like it was explained previously,
this fact makes the estimation problem computationally infeasible). This is the
main reason why in this section we keep the state-space model in its original,
sparse, descriptor form.
Because we do not want to invertQ22, the problem of estimating the state of (4.61)-
(4.62) in a moving horizon manner, is very similar to the MHE problems for sin-
gular descriptor systems1. The MHE method for singular descriptor systems has
been proposed in [232]. However, this MHE method is computationally feasible
only for low-dimensional descriptor systems.

Using the approximation framework developed in Chapter 3, in this section we
develop a computationally efficient MHE method for descriptor systems. For pre-
sentation clarity, we will first formulate the state estimation problem as a least-
squares problem.

4.2.1 Least-squares state estimation

The state sequence vector xkk−p is defined as follows:

xkk−p = col (x(k − p),x(k − p+ 1), . . . ,x(k)) (4.64)

The system (4.61)-(4.62) can be written compactly:[
Q22

C

]
︸ ︷︷ ︸
R

x(k) +

[
−D22

0

]
︸ ︷︷ ︸

V

x(k − 1) +

[
0

n(k)

]
︸ ︷︷ ︸

ñ(k)

=

[
c1

y(k)− d1

]
︸ ︷︷ ︸

g(k)

(4.65)

From (4.62) and (4.65) we have:

Γxkk−p + ekk−p = qkk−p (4.66)

where

Γ =

p+1 blocks︷ ︸︸ ︷

C 0 0 . . . . . . 0
V R 0 . . . . . . 0
0 V R 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 V R 0
0 . . . 0 0 V R


, qkk−p =



y(k − p)− d1

g(k − p+ 1)
g(k − p+ 2)

...
g(k − 1)

g(k)


, ekk−p =


n(k − p)

ñ(k − p+ 1)
...

ñ(k − 1)
ñ(k)


(4.67)

1Singular descriptor systems are characterized by the property that the matrix Q22 in (4.61) is not
invertible.
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The state sequence xkk−p can be estimated by solving the following least-squares
problem:

min
xk
k−p

∥∥qkk−p − Γxkk−p
∥∥2

2
(4.68)

We assume that p is selected such that the matrix Γ is tall. Furthermore, we assume
that Γ has full column tank. Under these assumptions the solution of (4.68) is:

x̂kk−p = Γ†qkk−p (4.69)

where Γ† =
(
ΓTΓ

)−1
ΓT is a pseudo-inverse of Γ. The sparsity pattern of ΓTΓ is

illustrated in Fig. 4.7. Although this matrix is a sparse banded matrix, its inverse(
ΓTΓ

)−1 is a dense matrix. Consequently, it might not be possible to compute this
inverse and to store it in a computer memory.

Figure 4.7: Sparsity pattern of the matrix ΓTΓ for an arbitrary p.

4.2.2 Moving horizon estimation

Similarly to the MHE problem formulation presented in Section 4.1, the vector
x̂(k − p|k) will denote an estimate of x(k − p) computed at the time instant k.
However, for reasons that will become apparent later, the prediction of x(k − p)
made at the time instant k − 1 will be denoted by x(k − p|k − 1).

The MHE method described in Section 4.1 at the time step k − 1 computes the
prediction of x(k − p) by using x̂(k − p − 1|k − 1) and by propagating the state
equation. However, in the case of the descriptor state-space model (4.61)-(4.62),
it might not be possible to compute the prediction using this strategy. In order to
compute the prediction, we need to solve the following equation:

Q22x(k − p|k − 1) = D22x̂(k − p− 1|k − 1) + c1 (4.70)

where the unknown variable is x(k−p|k−1). The linear system of equations (4.70)
can be solved using the Conjugate Gradient (CG) method. However, in practice
the linear system needs to be solved in the prescribed, short time interval (mainly
determined by the sampling period of the system). Because the CG method is an
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iterative method that does not explicitly compute Q−1
22 , it is not suitable for real-

time implementation of the MHE method. Another option for solving (4.70) is to
use the approximation strategy presented in Chapter 3 to compute an approxi-
mate, sparse inverse of Q−1

22 . However, at the prediction step it is not advisable to
introduce approximation errors because they can cause divergence2.

In practice we are mainly interested in the MHE estimate. The prediction is only
an intermediate quantity that is used to compute the estimate. The above ex-
plained arguments motivate us to develop the MHE strategy that does not rely on
the explicit computation of the state prediction.
Basically, the new MHE method at the time instant k estimates the state sequence
xkk−p from the output data (in contrast to the MHE method presented in Section
4.1 that only directly estimates x(k − p) from the input-output data).

At the time instant k ≥ p, the MHE cost function is defined by:

Jk (x̂(k − p|k), . . . , x̂(k|k)) =

k∑
i=k−p

µ ‖Q22x(i|k − 1)−Q22x̂(i|k)‖22︸ ︷︷ ︸
Part I

+

k−1∑
i=k−p

‖g(i+ 1)−Rx̂(i+ 1|k)− V x̂(i|k)‖22 + ‖(y(k − p)− d1)− Cx̂(k − p|k)‖22︸ ︷︷ ︸
Part II

(4.71)

where µ ≥ 0 is a penalization parameter. The MHE cost function consists of the
two parts. The first part penalize the difference between the prediction of the
states made at the time instant k − 1 and the MHE estimates that we want to
determine. The second part is equivalent to the cost function of the least-squares
problem (4.68). By increasing µ we put more emphasis on the model and less
emphasis on the available data, and vice-versa. For i = k− p, . . . , k the prediction
vectors x(i|k − 1) should satisfy:

Q22x(i|k − 1) = D22x̂(i− 1|k − 1) + c1 (4.72)

That is, the prediction x(i|k − 1) is not computed explicitly. Instead, the product
Q22x(i|k − 1) is computed using x̂(i− 1|k − 1), i = k − p, . . . , k.

For convenience and with a slight abuse of the notation, the MHE estimates x̂(k−
p|k), . . . , x̂(k|k) will be grouped into the following vector:

x̂ (k − p : k|k) = col (x̂(k − p|k), x̂(k − p+ 1|k), . . . , x̂(k|k)) (4.73)

It can be easily proved that the cost function (4.71) can be transformed into the
following form:

Jk (x̂ (k − p : k|k)) = (q3 − Γ3x̂ (k − p : k|k))
T
W (q3 − Γ3x̂ (k − p : k|k)) (4.74)

2In the approximate MHE method presented in Section 4.1 approximation errors are only intro-
duced at the estimation step, but not in the prediction step.
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where

q3 =


qkk−p

Q22x(k − p|k − 1)
...

Q22x(k|k − 1)

 , Γ3 =

[
Γ
Q

]
, W =

[
I 0
0 µI

]

Q =

Q22

. . .
Q22

 , I =

I . . .
I

 (4.75)

where Γ and qkk−p are defined in (4.67). The MHE estimate is determined by solv-
ing the following optimization problem:

min
x̂(k−p:k|k)

Jk (x̂(k − p : k|k)) (4.76)

Assuming that the matrix Γ has a full column rank, the solution of (4.76) is given
as follows:

x̂(k − p : k|k) = M−1ΓT3 Wq3 (4.77)

where

M = ΓT3 WΓ3 = ΓTΓ + µQTQ (4.78)

The sparsity pattern of M is illustrated in Fig. 4.8.

Figure 4.8: Sparsity pattern of the matrix M

In order to compute the estimate (4.77) it is necessary to invert the sparse banded
matrix M . The matrix M is a symmetric positive definite matrix. If this matrix
is well-conditioned, its inverse can be approximated by a sparse banded matrix,
with the linear computational and memory complexity.

In the next proposition, we derive an upper bound on the condition number of M
and we prove that this upper bound is a decreasing function of µ. This implies
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that we can always find µ for which the off-diagonal decay of M−1 is rapid and
consequently, the matrix M−1 can be approximated by a sparse banded matrix
with linear computational complexity.

Proposition 4.9 Consider the matrix M defined in (4.78). Let the condition number of
M be denoted by ω (M). Then,

• The condition number of M is bounded by:

ω (M) ≤ γ (µ) , (4.79)

γ (µ) =
σmax

(
ΓTΓ

)
+ µσmax

(
QTQ

)
σmin (ΓTΓ) + µσmin (QTQ)

(4.80)

where σmax(X) and σmin(X) denote maximal and minimal singular values of an
arbitrary matrix X .

• The upper bound γ (µ) is a decreasing function of µ.

Proof The condition number of M is defined by:

ω (M) =
σmax (M)

σmin (M)
(4.81)

Because M is a symmetric, positive definite matrix, its singular values are equal
to its eigenvalues. This implies:

ω (M) =
λmax (M)

λmin (M)
(4.82)

where λmax(M) and λmin(M) denote maximal and minimal eigenvalues of M .
On the other hand, using Weyl’s inequalities [112], we have:

λmin
(
ΓTΓ

)
+ µλmin

(
QTQ

)
≤ λmin (M) (4.83)

λmax (M) ≤ λmax
(
ΓTΓ

)
+ µλmax

(
QTQ

)
(4.84)

From (4.82),(4.83) and (4.84), we have:

ω (M) ≤
λmax

(
ΓTΓ

)
+ µλmax

(
QTQ

)
λmin (ΓTΓ) + µλmin (QTQ)

(4.85)

Furthermore, the matrices ΓTΓ are QTQ are also symmetric positive definite and
consequently, their singular values are equal to their eigenvalues. Taking these
facts into account, we have:

λmin
(
ΓTΓ

)
+ µλmin

(
QTQ

)
= σmin

(
ΓTΓ

)
+ µσmin

(
QTQ

)
(4.86)

λmax
(
ΓTΓ

)
+ µλmax

(
QTQ

)
= σmax

(
ΓTΓ

)
+ µσmax

(
QTQ

)
(4.87)

From (4.85), (4.86), and (4.87) we obtain (4.79). It is obvious that the upper bound
γ (µ) is a decreasing function of µ. �
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In Chapter 7, we will use the developed MHE method to estimate the state (the
temperature distribution) of the descriptor state-space model (4.61)-(4.62) that de-
scribes the dynamics of thermoelastic deformations of mirrors used in optical sys-
tems.

4.3 On the structure of the Newton observer
for large-scale interconnected systems

Like it has been mentioned in Chapter 2, (see Remark 2.2), mirrors used in EUV
lithographic machines can be made of materials that have Coefficient of Thermal
Expansion (CTE) that depends on the temperature. As it has been shown in [233],
in the case of materials with the temperature dependent CTE, the dynamical be-
havior of thermally induced wavefront aberrations is described by a linear state
equation (the heat equation) and a nonlinear output equation.

Using the approximation framework presented in Chapter 3, in Section 4.1 of this
chapter we have developed computationally efficient MHE algorithms for linear
state-space models. In this section we will show that the approximation frame-
work proposed in Chapter 3 can be used to develop a computationally efficient
estimation algorithm for large-scale systems with a linear state equation and non-
linear output equation. The estimation algorithm is based on the Newton observer
that has been proposed in [234; 235]. This algorithm can be used for state estima-
tion of the thermoelastic equations that have the temperature depending CTE.

Without loss of generality, we will consider a state-space model obtained by dis-
cretizing the 1D heat equation. The 1D discretization domain is shown in Fig.
4.9.

Figure 4.9: The discretization domain for the 1D heat equation. The temperatures
at the discretization points are denoted by xi, i = 1, . . . , N .

For simplicity we will assume zero boundary and initial conditions. The dis-
cretized heat equation has the following form:

xi(k + 1) = axi(k) + exi−1(k) + exi+1(k) (4.88)

where a ∈ R and e ∈ R are constants that depend on the material properties and
on the discretization steps (see Chapter 2 for more details). From Fig. 4.9 we see
that the discretized heat equation (4.88) can be interpreted as a state equation of a
local subsystem Si. The local output equation is nonlinear and it has the following
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form:

yi(k) = bx2
i (k) + cxi(k) (4.89)

where b ∈ R and c ∈ R are constants. The local output yi(k) is the tempera-
ture induced relative deformation at the ith discretization point. The local output
equation (4.89) is nonlinear because we assumed that the CTE depends on the
temperature3. The global system has the following form:

x(k + 1) = Ax(k) (4.90)
y(k) = h (x(k)) (4.91)

where

A =


a e
e a e

. . .
e a e

e a

 , x(k) =


x1(k)
x2(k)

...
xN (k)

 , y(k) =


y1(k)
y2(k)

...
yN (k)



h (x(k)) =


bx2

1(k) + cx1(k)
bx2

2(k) + cx2(k)
...

bx2
N (k) + cxN (k)

 (4.92)

For simplicity, we write the global system (4.90)-(4.91) in a compact form:

x(k + 1) = g (x(k)) (4.93)
y(k) = h (x(k)) (4.94)

where g (x(k)) = Ax(k). By lifting the global system (4.93)-(4.94), p time steps, we
obtain:

Y k+p
k = H (x(k)) (4.95)

where

H (x(k)) =



h (x(k))
h ◦ g (x(k))

h ◦ g ◦ g (x(k))
...

h ◦ g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
p-1 times

(x(k))


, Y k+p

k =

 y(k)
...

y(k + p)

 (4.96)

3For simplicity we assumed quadratic output nonlinearity. The estimation framework presented in
this section can handle other types of differentiable, output nonlinearities.
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where g ◦ g denotes function composition. That is,

g ◦ g (x(k)) = g (g (x(k))) = g (x(k + 1)) = Ax(k + 1) = A2x(k)

Similarly, h ◦ g (x(k)) stands for:

h ◦ g (x(k)) = h (g (x(k))) = h (x(k + 1))

If the output equation (4.91) is linear than the lifted equation (4.95) is very similar
to the equation (3.5) (when the inputs are not affecting the state dynamics). The
main idea of the Newton observer [234; 235] is to estimate x(k) by solving the
system of nonlinear equations:

Y k+p
k −H (x(k)) = 0 (4.97)

using Newton’s method. The solution is calculated iteratively :

γi+1 = γi +

[
∂H

∂x(k)

(
γi
)]† (

Y k+p
k −H

(
γi
))

(4.98)

where γi is the solution at the ith iteration and ∂H
∂x(k) is the Jacobian matrix (for

more details see [234]). Because the matrixA is sparse banded matrix, the Jacobian
is a sparse, structured matrix. Consequently, using the approximation framework
presented in Chapter 3, the pseudo-inverse of the Jacobian matrix can be approx-
imated by a sparse structured matrix. To show this, we define the functions Fi as
follows:

F1 (x(k)) = h (x(k)) , F2 (x(k)) = h ◦ g (x(k)) , F3 (x(k)) = h ◦ g ◦ g (x(k)) , . . .
(4.99)

The function H (x(k)) can be written as follows:

H (x(k)) =


F1 (x(k))
F2 (x(k))

...
Fp+1 (x(k))

 (4.100)

The Jacobian is defined as follows:

∂H

∂x(k)
=


∂F1

∂x1(k) . . . ∂F1

∂xN (k)
∂F2

∂x1(k) . . . ∂F2

∂xN (k)

...
...

∂Fp+1

∂x1(k) . . .
∂Fp+1

∂xN (k)

 (4.101)
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It is easy to prove:

∂F1

∂x1(k)
=


2bx1(k) + c

0
0
...
0

 ,
∂F1

∂x2(k)
=


0

2bx2(k) + c
0
...
0

 , . . . (4.102)

Now, because the matrix Al has bandwidth equal to l and because x(k + l) =

Alx(k), we have:

xi(k + l) = fi,l(xi−l(k), xi−l+1(k), . . . , xi+l(k)) (4.103)

where fi,l is a function of local states xi−l(k), xi−l+1(k), . . . , xi+l(k). From (4.103)
we have:

∂xi(k + l)

∂xj(k)
= 0, j = 1, . . . , i− l − 1, i+ l + 1, . . . , N (4.104)

Using (4.104) we obtain:

∂F2

∂x1(k)
=



(2bx1(k + 1) + c) ∂x1(k+1)
∂x1(k)

(2bx2(k + 1) + c) ∂x2(k+1)
∂x1(k)

0
0
...
0


,

∂F2

∂x2(k)
=



(2bx1(k + 1) + c) ∂x1(k+1)
∂x2(k)

(2bx2(k + 1) + c) ∂x2(k+1)
∂x2(k)

(2bx3(k + 1) + c) ∂x3(k+1)
∂x2(k)

0
...
0


,

∂F2

∂x3(k)
=



0

(2bx2(k + 1) + c) ∂x2(k+1)
∂x3(k)

(2bx3(k + 1) + c) ∂x3(k+1)
∂x3(k)

(2bx4(k + 1) + c) ∂x4(k+1)
∂x3(k)

0
...
0


, . . . (4.105)

Using the same principle it can be proved that each of ∂F3

∂xi(k) is a sparse vector with
no more than 5 nonzero elements and etc. From (4.102) we see that the matrix:[

∂F1

∂x1(k) . . . ∂F1

∂xN (k)

]
that is the first block row of the Jacobian (4.101), is a diagonal matrix. From (4.105)
we have that the matrix [

∂F2

∂x1(k) . . . ∂F2

∂xN (k)

]
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that is a second block row of the Jacobian, is a sparse, banded matrix, with the
bandwidth equal to 1. Similarly, the third block row of the Jacobian is a sparse,
banded matrix with the bandwidth equal to 2 and etc. That is, the Jacobian matrix
has the sparsity structure of the observability matrix of the global system:

x(k + 1) = Ax(k)

y(k) = Cx(k)

where the matrix A is defined in (4.92) and C is a diagonal matrix. This sparsity
structure is very similar to the sparsity structure of the observability matrix shown
in Fig. 3.2(a).

The structure preserving lifting technique can be used to permute the rows of the
equation (4.97). Starting from this equation, a permuted version of (4.98) can be
obtained. The Jacobian matrix that corresponds to the permuted version of the
equation (4.97) is a sparse, banded matrix (its sparsity pattern is very similar to
the sparsity pattern of the matrix shown in Fig. 3.3(a)). This Jacobian can be ob-
tained by directly permuting the rows of (4.101). If the permuted Jacobian is well-
conditioned, then its pseudo-inverse can be approximated by a sparse banded
matrix. If it is not, then the regularization technique can be used to decrease the
condition number of the transformed Jacobian. All this implies that one iteration
of Newton’s observer, that is defined by (4.98), can be implemented with O(N)
complexity.

In this section we have shown that the approximation framework presented in
Chapter 3 can be used to develop computationally efficient state estimators for
interconnected systems with output nonlinearities. In principle, this shows that the
developed approximation methods can be used for efficient state estimation of the thermoe-
lastic equations that have the temperature depending CTE.



5 CHAPTER

Subspace identification of large-scale
interconnected systems

In this chapter we propose a decentralized subspace algorithm for iden-
tifying large-scale, interconnected systems that are described by sparse

banded or multi-banded system matrices. First, we prove that the state of
a local subsystem can be approximated by a linear combination of inputs
and outputs of the local subsystems that are in its neighborhood. Further-
more, we prove that for interconnected systems with well-conditioned
observability matrices (or observability Gramians), the size of this neigh-
borhood is relatively small (compared to the total number of local sub-
systems). On the basis of these results, we develop a subspace identifica-
tion algorithm that identifies the state-space model of a local subsystem
from the local input-output data. Consequently, the proposed algorithm
is computationally feasible for interconnected systems with a large num-
ber of local subsystems. We numerically illustrate the effectiveness of the
new identification algorithm.

5.1 Introduction

The problem of controlling large-scale interconnected systems has received a sig-
nificant attention in the last few decades, see for example [76; 77; 78; 80; 236] and
references therein. Unfortunately, the classical identification techniques, like the
Subspace Identification Methods (SIMs) [58; 237] or the Prediction Error Methods
(PEMs) [141], are not suitable for identification of large-scale interconnected sys-
tems because their computational and memory complexities scale withO(N3) and
O(N2), respectively, whereN is the number of local subsystems. Furthermore, the
SIMs identify the state-space representation of an interconnected system, in which
the interconnection structure is destroyed by unknown similarity transformation
[58]. However, for efficient distributed controller synthesis we need a structured

107
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state-space model of an interconnected system [76; 77; 78; 80; 236]. From an identi-
fication point of view, this means that the interconnection structure of a large-scale system
has to be preserved in the identified model.

On the other hand, the SIMs and the PEMs are centralized identification methods
that assume that input-output data of all local subsystems can be collected and
processed in one computing unit. In the cases in which a large number of local
sensors collect measurement data of local subsystems, the transfer of sensor mea-
surements to one centralized computing requires a large amount of energy and
communication [225; 226]. In such situations, identification should be performed
in a decentralized/distributed manner on a network of local computing units that
communicate locally.

In [238; 239; 240], identification strategies for ARX models of interconnected sys-
tems have been proposed. However, these methods cannot be used for the identi-
fication of state-space models of interconnected systems. Subspace identification
algorithms for large-scale systems have been proposed in [127; 241]. Unfortu-
nately, these algorithms are restricted to interconnected systems with identical
local subsystems and they are computationally infeasible in the case of a large
number of local subsystems.

In this chapter we propose a decentralized subspace algorithm for identifying
large-scale, interconnected systems that have sparse banded or multi-banded sys-
tem matrices. First, we prove that the state of a local subsystem can be approxi-
mated by a linear combination of inputs and outputs of the local subsystems that
are in its neighborhood. Furthermore, we prove that for interconnected systems
with well-conditioned observability matrices (or observability Gramians), the size
of this neighborhood is relatively small (compared to the total number of local
subsystems). On the basis of these results, we develop a subspace identification
algorithm that identifies the state-space model of a local subsystem from the lo-
cal input-output data. Consequently, the proposed algorithm is computationally
feasible for interconnected systems with a large number of local subsystems. We
numerically illustrate the effectiveness of the new identification algorithm.

The problem of identifying graph topologies of interconnected systems has been
studied in [242; 243; 244; 245; 246]. For simplicity, in this chapter we assume that
the graph topology, of an interconnected system that we want to identify, is known
a priori. Integration of the proposed identification algorithm with the above men-
tioned graph topology identification algorithms is left for further research.

The chapter is organized as follows. In Section 5.2 we present the problem for-
mulation. In Section 5.3, we postulate the main theorems that we use in Section
5.4 to develop the identification algorithm. In Section 5.5 we present the results of
numerical simulations and in Section 5.6 we draw conclusions.

5.2 Problem formulation

For simplicity, the novel identification algorithm will be explained on the exam-
ple of the global system (3.1). The identification algorithm can be generalized
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to large-scale interconnected systems with more general interconnection patterns
(see Remark 5.6). For presentation clarity, we rewrite the global state-space model
(3.1):

S
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) + n(k)

(5.1)

where

A =



A1,1 E1,2

E2,1 A2,2 E2,3

. . .
Ei,i−1 Ai,i Ei,i+1

. . .
EN−1,N−2 AN−1,N−1 EN−1,N

EN,N−1 AN,N



B = diag(B1, . . . , BN )
C = diag(C1, . . . , CN )
y(k) = col(y1(k), . . . ,yN (k))
x(k) = col(x1(k), . . . ,xN (k))
u(k) = col(u1(k), . . . ,uN (k))
n(k) = col(n1(k), . . . ,nN (k))

(5.2)

where B = diag(B1, . . . , BN ) stands for a block diagonal matrix with the matrices
B1, . . . , BN on the main diagonal. Like it is explained in Chapter 3, the global
system S is an interconnection of N local subsystems Si:

Si
{

xi(k + 1) = Ai,ixi(k) + Ei,i−1xi−1(k) + Ei,i+1xi+1(k) +Biui(k)
yi(k) = Cixi(k) + ni(k)

(5.3)

The set of local subsystems:

Vh(Si) = {Si−h, . . . ,Si+h} (5.4)

will be referred to as the neighborhood of Si. The subscript h quantifies the size
of Vh(Si). In order to formulate the identification problem, the concept of the
structure preserving similarity transformation is introduced.

Definition 5.1 The structure preserving similarity transformation
Q = diag(Q1, . . . , QN ), transforms the global state-space model (5.1)-(5.2) into the fol-
lowing state-space model:

Ŝ
{

x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k) + n(k)
(5.5)

where Â has block bandwidth equal to 1 (the same sparsity pattern like A), B̂ and Ĉ are
block diagonal, and x(k) = Qx̂(k), Â = Q−1AQ, B̂ = Q−1B and Ĉ = CQ.

Problem Description 5.1 Identification problem

Consider the global system (5.1) that consists of the interconnection of N local subsys-
tems (5.3). Then, using the sequence of the global input-output data {y(k),u(k)},
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1. Estimate the order of the local subsystems n.

2. Identify the global state-space model (5.1) up to a structure preserving similarity
transformation.

5.3 Main theorems

Using the results of Chapter 3, we postulate an approximate state-space model
of Si in which the local states xi−1 and xi+1 are replaced by the local inputs and
outputs. This approximate state-space model is used in Section 5.4 to develop the
identification algorithm.

Theorem 5.1 Let p ≥ ν, where ν is the observability index of the global system. Then,

x(k) =ApD
(
OTp Ykk−p −OTp Gp−1Uk−1

k−p −O
T
pN k

k−p

)
+Rp−1Uk−1

k−p (5.6)

where D = J−1
2p , D ∈ RNn×Nn, is the inverse of the finite-time observability Gramian

J2p = OTp Op.

Proof. From the global data equation (3.10), we have:

Opx(k − p) = Ykk−p − Gp−1Uk−1
k−p −N

k
k−p (5.7)

Because p ≥ ν, from Lemma 3.1 we have: rank(Op) = Nn. This implies that J2p

is positive definite and invertible. Because of this, from (5.7) we have:

x(k − p) = D
(
OTp Ykk−p −OTp Gp−1Uk−1

k−p −O
T
pN k

k−p

)
(5.8)

Substituting (5.8) in (3.12) we arrive at (5.6). �

In the following theorem, we prove that D is an exponentially off-diagonally de-
caying matrix.

Theorem 5.2 Let p ≥ ν, where ν is the observability index of the global system. Then, D
is an exponentially off-diagonally decaying matrix with:

λ =

(√
χ− 1
√
χ+ 1

)1/θ

, c = ‖D‖2 max

{
1,

(1 +
√
χ)2

2χ

}
(5.9)

where θ is the bandwidth1 of J2p (θ is proportional to the product pn) and χ is the condi-
tion number of J2p (See Chapter 3).

Proof. Similar to the proof of Lemma 3.2 �

1The bandwidth θ is defined by θ = m/2, where m is a constant in Eq. (2.6) in [162].
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It should be clear that if the structured observability matrixOp is well conditioned,
then the finite-time observability Gramian J2p is also well-conditioned. We intro-
duce the following assumption:

Assumption 5.3 The finite-time observability Gramian J2p is well-conditioned.

As we will prove later, this assumption ensures that the local state of Si can be
approximated by a linear combination of input and output data that are in a rela-
tively small neighborhood of Si.

For small λ the off-diagonal decay of D is rapid. From (5.9) it follows that λ de-
pends on the condition number χ and on the parameter pn (the bandwidth of
J2p). Since J2p is well-conditioned (see Assumption 5.3), p � N and n � N ,
the parameter λ is small and consequently, the off-diagonal decay of D is rapid.
The importance of this result lies in the fact that off-diagonally decaying matrices,
with a rapid off-diagonal decay, can be approximated by sparse banded matrices.
In that sense we introduce the following definition (see also Remark 5.5):

Definition 5.2 [161] Let D = [di,j ]. The matrix D̆ = [d̆i,j ] with its elements defined by:

d̆i,j =

{
di,j if |i− j| ≤ s,

0 if |i− j| > s, (5.10)

is a banded approximation of D.

In the following proposition we give an upper bound on the approximation accu-
racy.

Proposition 5.4 Consider the exponentially off-diagonally decaying matrixD ∈ RnN×nN

and its banded approximation D̆ ∈ RnN×nN . Then,∥∥∥D − D̆∥∥∥
1
< ck1, k1 = 2λs+1 1− λNn−s

1− λ
(5.11)

and the constants c and λ are defined in (5.9). Moreover, the parameter k1 is an increasing
function of χ.

Proof Let D = [di,j ] and D̆ = [d̆i,j ]. Then,

∥∥∥D − D̆∥∥∥
1

= max
1≤j≤Nn

nN∑
i=1

|di,j − d̆i,j | < 2

nN∑
k=s+1

cλk = 2c

(
Nn∑
k=0

λk −
s∑

k=0

λk

)
= ck1

By checking the sign of ∂k1
∂χ , it can be easily proved that k1 is an increasing func-

tion of χ. �

Let us assume that the bandwidth of D̆ is chosen such that s = nt, where t is a
positive integer. Similarly to the partitioning of Ap (see Remark 3.1), we partition
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D̆ into N2 blocks, where each block is of dimension n× n. After this partitioning,
D̆ has the block bandwidth equal to t and in the spirit of the notation that is used
in this chapter to denote block banded matrices, we will denote this matrix by D̆t.
In the sequel, D̆t will be referred to as the block banded approximation of D.

From Proposition 5.4 we see that the accuracy of approximating D by D̆ increases
as s increases or equivalently as t increases. Furthermore, we see that the approxi-
mation accuracy is better when χ is smaller. BecauseJ2p is well-conditioned, there
exists s � N or equivalently t � N for which the accuracy of approximating D
by D̆t is relatively good [161]. In the sequel it is assumed that t� N .

By substituting D with D̆t in (5.6), we define an approximation x̆(k) of the global
state:

x̆(k) =ApD̆t
(
OTp Ykk−p −OTp Gp−1Uk−1

k−p −O
T
pN k

k−p

)
+Rp−1Uk−1

k−p (5.12)

For the sequel we will partition x̆(k) as follows: x̆(k) = col(x̆1(k), . . . , x̆N (k)),
where x̆i(k) ∈ Rn, ∀i ∈ Π. From (5.12) we have that x̆i(k) is a linear combination
of the local lifted inputs, local lifted outputs and local lifted measurement noises
of the local subsystems belonging to the neighborhoods V3p+t−1 (Si), V2p+t (Si)
and V2p+t (Si), respectively2. Because t � N , these neighborhoods are small. By
substituting in (5.3) the local states xi−1(k) and xi+1(k) with their approximations,
x̆i−1(k) and x̆i+1(k), we obtain the approximate, local state-space model:

xi(k + 1) ≈ Ai,ixi(k) + Q̆iΩ̆i + B̆
(3)
i N̆

(1)
i

yi(k) = Cixi(k) + ni(k)
(5.13)

Q̆i =
[
B̆

(1)
i B̆

(2)
i

]
, Ω̆i =

[
Y̆

(1)
i

Ŭ
(2)
i

]
,

Y̆
(1)
i = col

(
Yki−1−2p−t,k−p, . . . ,Yki+1+2p+t,k−p

)
,

Ŭ
(2)
i = col

(
Uk−1
i−3p−t,k−p, . . . ,U

k−1
i+3p+t,k−p

)
,

N̆
(1)
i = col

(
N k
i−1−2p−t,k−p, . . . ,N k

i+1+2p+t,k−p
)

(5.14)

Remark 5.5 In Chapter 3 we have explicitly computed approximations of off-diagonally
decaying matrices using the Chebyshev method or the Newton iteration. In this Chapter
we are approximating the off-diagonally decaying matrixD by truncating its elements that
are outside the prescribed bandwidth s. In practice, this approximation cannot be explicitly
computed for large-scale systems, simply because to do so, we would first need to directly
invert the finite-time observability Gramian J2p. The sole purpose of this approximation
is to justify the existence of the state-space model (5.13).

2This follows from the fact that the matrix Ap is a sparse block banded matrix with the block band-
width equal to p. Each block of Ap is an n× n matrix, see Chapter 3.
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5.4 Identification algorithm

The main idea of the identification algorithm can be described as follows. First,
we use the approximate state-space model (5.13) to estimate the state sequence
of the local subsystem Si. This identification step is repeated for all local sub-
systems. Because t � N , the input Ω̆i of the state-space model (5.13) contains
input-output data of local subsystems that are in a relatively small neighborhood
of Si. Consequently, using the SIMs [58] the state sequence of (5.13) can be effi-
ciently estimated. Furthermore, the computational complexity of estimating the
state of (5.13) is independent from the total number of local subsystems N . How-
ever, because we do not know the global system in advance, we do not know the
precise value of t that determines the form of the input Ω̆i. As it will be explained
in Section 5.4.1, this problem can be solved by choosing several values of t and by
computing the Variance Accounted For (VAF) [58] of the identified models.
Let the estimated state sequence of the approximate state-space model (5.13) be
denoted by {x̂i(k)}. The state sequence {x̂i(k)} is approximately related to the
“true” state sequence of the local subsystem Si via the following transformation:

xi(k) ≈ Qix̂i(k) (5.15)

whereQi is a square, invertible matrix. We will denote the estimated state-sequences
of the local subsystems Si−1 and Si+1, that are estimated on the basis of (5.13), by
{x̂i−1(k)} and {x̂i+1(k)}, respectively. The state sequences {x̂i−1(k)} and {x̂i+1(k)}
are approximately related to the ”true” state-sequences of the local subsystems
Si−1 and Si+1 via:

xi−1(k) ≈ Qi−1x̂i−1(k), xi+1(k) ≈ Qi+1x̂i+1(k) (5.16)

where Qi−1 and Qi+1 are invertible matrices. By substituting (5.15) and (5.16) in
(3.3), and transforming such state-space model, we obtain:

Ŝi



x̂i(k + 1) ≈ Q−1
i Ai,iQi︸ ︷︷ ︸
Âi,i

x̂i(k) +Q−1
i Ei,i−1Qi−1︸ ︷︷ ︸

Êi,i−1

x̂i−1(k) +Q−1
i Ei,i+1Qi+1︸ ︷︷ ︸

Êi,i+1

x̂i+1(k)

+Q−1
i Bi︸ ︷︷ ︸
B̂i

ui(k)

yi(k) ≈ CiQi︸ ︷︷ ︸
Ĉi

x̂i(k) + ni(k)

(5.17)

From (5.17) we see that once the local state sequences are estimated, the local
system matrices {Âi,i, Êi,i−1, Êi,i+1, B̂i, Ĉi} can be estimated by solving a least-
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squares problem formed on the basis of:

[
x̂i(k + 1) yi(k)

]
≈
[
Âi,i Êi,i−1 Êi,i+1 B̂i Ĉi

]︸ ︷︷ ︸
matrices to be estimated


x̂i(k) 0

x̂i−1(k) 0
x̂i+1(k) 0
ui(k) 0

0 x̂i(k)

+
[
0 ni(k)

]
(5.18)

We can estimate the local system matrices of other local subsystems in a similar
manner. Using the estimates of the local system matrices we can form the esti-
mates {Â, B̂, Ĉ}. Next, from (5.17) we have:

Âi,i ≈ Q−1
i Ai,iQi , Êi,i−1 ≈ Q−1

i Ei,i−1Qi−1, Êi,i+1 ≈ Q−1
i Ei,i+1Qi+1,

B̂i ≈ Q−1
i Bi, Ĉi ≈ CiQi

(5.19)

Since (5.17) and (5.19) hold for all i ∈ Π, we conclude that x(k) ≈ Qx̂(k), Â ≈
Q−1AQ, B̂ ≈ Q−1B, and Ĉ ≈ CQ, where Q = diag(Q1, . . . , QN ) is a structure
preserving similarity transformation (see Definition 5.1). This shows that the iden-
tified model is (approximately) similar to the global state-space model (3.1). We
are now ready to formally state the identification algorithm.

Algorithm 5.1 Identification of the global state-space model (5.1)

For i = 1, . . . , N perform steps 1 and 2:
1. Choose the parameters p and t and form the input vector Ω̆i of the state space model
(5.13).
2. Estimate the local state sequence {xi(k)} of state space model (5.13) using the SIM.
After the steps 1 and 2 are completed, the state sequences {x̂i(k)}, i = 1, . . . , N , are
available. For i = 1, . . . , N , perform the following steps:
3. On the basis of (5.18) form a least-squares problem, and estimate the local system ma-
trices
{Âi,i, Êi,i−1, Êi,i+1, B̂i, Ĉi}.
4. Using the estimates {Âi,i, Êi,i−1, Êi,i+1, B̂i, Ĉi}, i = 1, . . . , N , form the global sys-
tem matrices {Â, B̂, Ĉ}

5.4.1 Comments on the identification algorithm

The theory presented in this thesis predicts that for systems with well-conditioned,
finite-time observability Gramians (or equivalently, for systems with well-conditioned
structured observability matrices), there should exist relatively small t for which
the matrix D can be approximated by the sparse banded matrix Dt, with a rel-
atively good accuracy. The parameter t needs to be selected in the first step of
Algorithm 5.1. This problem can be solved by choosing any t � N and by com-
puting the VAF of the identified model. If the VAF value is not high enough, then
a new value of t needs to be chosen and identification procedure needs to be re-
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peated (usually the new value should be larger than the previous one). This has to
be repeated until a relatively high value of VAF of the identified model is reached.
By searching for ”best“ choice of t, we are actually determining the off-diagonal
decaying properties of D directly from the input-output data.
As we show the next section, the form of the input Ω̆i can cause ill-conditioning of
the data matrices used in the SIM. This is because Ω̆i consists of the delayed inputs
and outputs of the local subsystems. Some of the outputs might be depending on
the past local inputs and the local outputs. This problem can be resolved either
by regularizing the data matrices used in the SIM or by eliminating certain out-
puts and inputs from Ω̆i. In this thesis, we do not analyze the consistency of the
identification algorithm. The consistency analysis left for future research.

Remark 5.6 Algorithm 5.1 can be generalized for global systems described by sparse,
multi-banded, state-space matrices. Like we have shown in Chapter 2, this class of inter-
connected systems arises in discretization of 3D PDEs using the finite difference method
(for more details see for example [200; 228]). Using the lifting technique presented in
Chapter 3, it can be easily shown that the finite-time observability Gramian J2p of this
class of systems, is a sparse, multi-banded matrix. In Chapter 3, Section 3.5, it has been
shown that inverses of sparse multi-banded matrices can be approximated by sparse multi-
banded matrices3. That is, the inverse of J2p can be approximated by a sparse multi-
banded matrix. From the identification point of view, this implies that the state of a local
subsystem can be identified using the local input-output data of local subsystems that are
in its 2D neighborhood.

5.5 Numerical experiments

The data generating model, is a global state-space model that consists of N = 500
identical local subsystems. The local system matrices of each local subsystem are
given by:

A =

[
0.5728 0.1068
0.1068 0.5728

]
, E =

[
0.1068 0

0 0.1068

]
, B =

[
0.2136
0.1068

]
, C =

[
1 0

]
(5.20)

This model has been obtained using the finite difference approximation of the
2D heat equation (see Chapter 2). The local inputs are zero mean normally dis-
tributed random signals. The local inputs are mutually independent. We corrupt
the outputs of local subsystems by a white noise (signal to noise ratio of each local
output is 25 [dB]). In total we perform 100 identification experiments for different
realizations of inputs and corresponding outputs of the local subsystems.

For identification of the local state of (5.13), we have used the SIM method sum-
marized in [248]. This SIM is a modified version of the SIM presented in [249].
(we have also tested Predictor Based Subspace IDentification (PBSID) method

3For more details on computing sparse approximate inverses of sparse matrices, see for example
[161; 205; 207; 221; 247] and references therein).
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[250], and we have obtained similar identification results). The SIM presented
in [248] has been applied with the past and future windows equal to 15 and 10,
respectively. Because all local subsystems have identical local system matrices
(5.20), to identify the global state-space model we only need to perform three
identification experiments. Namely, on the basis of (5.13) we first estimate the
state sequence of the local subsystem S2. Using the same methodology, we esti-
mate the state sequence of the local subsystem S1. In the final identification step,
we use the state-space model (5.18) (we set i = 1 in (5.18)) and the sequences
{x1(k)},{x2(k)} and {y1(k),u1(k)} to form a least-squares problem. By solving
this least-squares problem we estimate the local system matrices {Â, Ê, B̂, Ĉ}. On
the basis of {Â, Ê, B̂, Ĉ}we form {A,B,C} and we compute the VAF of the iden-
tified model.

In Fig. 5.1(a), we illustrate how the off-diagonal decay of D depends on p and χ.

(a) (b)

Figure 5.1: (a) The norm of the block elements Z50,j ∈ R2×2 of the 50th block
row of D = [Z50,j ]. (b) The singular values of the data matrix used to
determine the order and to estimate the state-sequence of S2. The data
matrix is formed on the basis of the input 3 in (5.21).

Results presented in Fig. 5.1(a) confirm that for well-conditioned J2p, the off-
diagonal decay of D is rapid. This figure also suggests that the accuracy of ap-
proximating D by D̆t is relatively good for t = 1. To illustrate how the quality of
the identified model depends on the selection of the input vector of the state-space
model (5.13) we have estimated the state-sequence of S2 for 5 different forms of
inputs:

1. Ω̆2 = u2(k)

2. Ω̆2 = col(y1(k),y2(k),y3(k),u2(k))

3. Ω̆2 = col(Yk1,k−1, . . . ,Yk3,k−1,u2(k),u1(k − 1), . . . ,u3(k − 1))

4. Ω̆2 = col(y1(k − 1), . . . ,y6(k − 1),u2(k),u1(k − 1), . . . ,u6(k − 1))

5. Ω̆2 = col(Yk1,k−1, . . . ,Yk6,k−1,u2(k),u1(k − 1), . . . ,u6(k − 1))

(5.21)

In the case of inputs 3, 4 and 5, data matrices used to estimate the Markov pa-
rameters (impulse response parameters) of the state-space model (5.13) are ill-
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conditioned. This ill-conditioning is caused by the fact that the local outputs, that
are the elements of Ω̆2, are a linear combination of the delayed outputs and inputs.
We have used regularization to improve condition number of the data matrix used
in the identification of the Markov parameters of S2 (regularization parameter was
0.05). The order selection is performed by examining the singular values of the
data matrix that is formed on the basis of {Ω̆2,y2(k)}. For each input in (5.21), we
form the data matrix and we select the local order n = 2. For illustration, in Fig.
5.1(b) we present the singular values of the data matrix formed on the basis of the
input 3 (similar behavior of singular values can be observed for inputs 2, 4 and 5,
while in the case of input 1 the state order could not be uniquely determined).

Using the same procedure we estimate the local order n and we estimate the state
sequence of S1. Next, we estimate the local system matrices {Â, Ê, B̂, Ĉ}. Using
these local estimates we form {Â, B̂, Ĉ} and we compute the VAF of the global
model. Average values of VAF of S2 are presented in Table 5.1.

input 1 2 3 4 5
VAF (without regularization) 40 % 99.7 % 5 % 30 % 20 %

VAF (with regularization) - 99.6 % 97.7 % 99.2 % 98.5 %

Table 5.1: Average VAF of S2 for different inputs (5.21).

From Table 5.1 it can be concluded that the best VAF is obtained in the case of
input 2. This input is formed for t = 1 and by eliminating the delayed inputs and
outputs that cause ill-conditioning. In Fig. 5.2(a), we present the VAF values for
the output of S1, when the input 2. is used for the identification (similar results are
obtained for other local subsystems). The eigenvalues of Â (when input 2 is used
to perform the identification) are given in Fig. 5.3. Next, assuming that the local
outputs are not corrupted by the noise, we have performed identification using
the input 2 (with regularization). The results are given in Fig. 5.2(b).



118 Chapter 5: Subspace identification of large-scale interconnected systems

(a) (b)

Figure 5.2: (a) Distribution of the VAF of S1. The identification of the state-
sequence of S2 is performed using input 2, defined in (5.21). (b) Eigen-
values of the estimated matrix Â and Ê, when the input 2, defined
in (5.21), is used for identification. The outputs are not corrupted by
noise.

As it can be seen from Fig. 5.2(b), in the noise-free scenario we are able to obtain
a relatively good identification results. Some of the eigenvalues are biased. This
is because we are using an approximate state-space model (5.13) to estimate the
local states.

(a) (b)

Figure 5.3: (a) and (b) The distribution of the eigenvalues of Â for 100 identifica-
tion experiments (with outputs corrupted by noise). The circle with
the big ”X“ corresponds to the eigenvalue of A. The identification of
the state-sequence of S2 is performed using input 2, defined in (5.21).

5.6 Conclusion

In this chapter we have proposed a decentralized subspace identification algo-
rithm for identifying state-space models of large-scale interconnected systems. In
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order to develop this novel identification algorithm, we have proved that the state
of the local subsystem can be approximated by a linear combination of the inputs
and outputs of the local subsystems that are in its neighborhood. The size of this
neighborhood depends on the condition number of the finite-time observability
Gramian of the global system. For systems with well-conditioned Gramians, the
size of this neighborhood is small. Consequently, we are able to estimate the states
and the system matrices of the local subsystems in the computationally efficient
manner. We have performed numerical simulations that confirm the effectiveness
of the proposed algorithm.





6 CHAPTER

Parameter optimization method for
identification of large-scale

interconnected systems

We propose a computationally efficient, parameter optimization
method for identification of large-scale, interconnected systems

described by sparse banded or multi-banded state-space matrices. The
identification method consists of two steps. In the first step, impulse
response parameters of local subsystems are estimated. In the second
step, using the estimated impulse response parameters, the identification
problem is formulated as a large-scale, structured, separable least-squares
problem. We solve this optimization problem in a computationally ef-
ficient manner by approximating inverses of lifted system matrices by
sparse banded matrices. In the case of interconnected systems with iden-
tical local subsystems, the computational and memory complexities of the
proposed identification algorithm scale with O(N), where N is the num-
ber of local subsystems. In the case of nonidentical local subsystems, the
computational complexity of the identification algorithm is O(N2). Nu-
merical results illustrate the effectiveness of the proposed identification
method.

6.1 Introduction

In Chapter 5 we have explained the main problems of identifying large-scale in-
terconnected systems. In this chapter we will present parameter optimization
method for identification of large-scale interconnected systems. First, we briefly
explain the need for such an identification method.

A widely used identification approach for low-dimensional systems consists of
two steps. In the first identification step, the model of a system is identified using
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the Subspace Identification Method (SIM). In the second step, the identified sys-
tem matrices are used as initial guesses for the Prediction Error Method (PEM).
Practice shows that this identification approach results in a relatively good qual-
ity of the identified model [58].

In Chapter 5, we have developed the decentralized SIM for the identification of
large-scale interconnected systems. Now, the main question is: ”Using the theory
presented in Chapter 3, can we develop a computationally efficient, parameter optimization
method for improving the quality of the model that is identified using the decentralized
SIM?”

In this Chapter we propose such an algorithm. The identification algorithm con-
sists of two steps. In the first step, the impulse response parameters of local sub-
systems are identified by solving low-dimensional, last-squares problems. Using
the structure preserving lifting technique, the identified local impulse response
parameters are used to form an estimate of the global structured impulse re-
sponse matrix. In the second identification step, the input-output data of local
subsystems and the estimate of the global impulse response matrix are used to
form a large-scale, nonlinear, structured optimization problem. By approximat-
ing inverse functions of lifted system matrices by sparse (multi) banded matrices,
we solve this optimization problem, and we identify the state-space model of an
interconnected system. In the case of interconnected systems with identical local
subsystem the computational complexity of the proposed identification algorithm
is O(N). In the case of nonidentical local subsystems, the computational com-
plexity of the identification algorithm is O(N2). Numerical results illustrate the
effectiveness of the proposed identification method.

The chapter is organized as follows. In Section 6.2, the problem formulation is
presented. In Section 6.3, the identification algorithm is presented. The numerical
simulations are performed in Section 6.4 and conclusions are drawn in Section 6.5.

6.2 Problem formulation

For the sake of presentation clarity, we will present a new identification method
assuming that the local subsystems of an interconnected system are identical and
that they are connected in a string. The identification algorithm proposed in
this chapter can be generalized for large-scale interconnected systems with sparse
banded or sparse multi-banded matrices. We consider an interconnected system
obtained by finite difference approximation of the 2D heat equation (see Chapter
2):

S
{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) + n(k)

(6.1)
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where the system matrices have the following structure:

A =


A E
E A E

. . .
E A E

E A

 , B =

B . . .
B

 , C =

C . . .
C

 ,

y(k) =

y1(k)
...

yN (k)

 ,x(k) =

x1(k)
...

xN (k)

 ,u(k) =

u1(k)
...

uN (k)

 (6.2)

and similarly we define n(k). The global system S consists of interconnection of
N identical local subsystems Si:

Si
{

xi(k + 1) = Axi(k) + Exi−1(k) + Exi+1(k) +Bui(k)
yi(k) = Cxi(k) + ni(k)

(6.3)

For simplicity, we introduce the following assumption:

Assumption 6.1

• Measurement noises ni(k) of all local subsystems (3.3), are white Gaussian and
independent from each other.

• The global system (6.1) is asymptotically stable.

In order to formulate the identification problem, we introduce the concept of the
structure preserving similarity transformation.

Definition 6.1 A structure preserving similarity transformation is a non-singular ma-
trix T ∈ RnN×nN , that by a transformation x(k) = T x̂(k), transforms the global state-
space model (6.1)-(6.2) into:

Ŝ
{

x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k) + n(k)
(6.4)

where

Â =


Â Ê

Ê Â Ê
. . .

Ê Â Ê

Ê Â

 , B̂ =

B̂ . . .
B̂

 , Ĉ =

Ĉ . . .
Ĉ

 , (6.5)

Problem Description 6.1 Identification problem
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Consider the global system (6.1)-(6.2), and assume that the order n of the local system
Si is known a priori (see Remark 6.1). From the set of the global input-output data
{y(k),u(k)}, identify the global state-space model (6.1)-(6.2) up to a structure preserving
similarity transformation. The identification should be performed with O(N) complexity
and O(N) memory requirements (see Remark 6.2).

Remark 6.1 For simplicity we have assumed that the order of the local subsystems n is
known a priori. The order selection algorithms, that are used in the prediction error and
output error identification methods [58; 141], can be easily incorporated in the identifica-
tion algorithms proposed in this paper. Other option is to estimate the order of the local
subsystems using the decentralized SIM proposed in Chapter 5.

Remark 6.2 It can be easily shown that by exploiting the sparsity of the global state-
space model (6.1), the computational complexity of the PEM and the output error methods
[58; 141] can be reduced to O(N3). However, O(N3) computational complexity is still
high, keeping in mind that the number of local subsystems N is very large.

6.3 Identification algorithm

The identification algorithm consists of the two steps. In the first step, the struc-
tured impulse response matrix Gp−1 (see Chapter 3) is identified by identifying
the local impulse response parameters. In the second identification step, using
the identified local impulse response parameters and the global data equation
(3.10), a large-scale optimization problem is formed. The local system matrices
are identified by solving this optimization problem in a computationally efficient
manner.

6.3.1 Identification of local impulse response parameters

The theoretical framework developed in Chapter 3, can be straightforwardly ap-
plied to the global system (6.2) composed of identical local subsystems (6.3). Fur-
thermore, the same notation can be used to denote the lifted system matrices.

From the output equation of the local subsystem (6.3) it follows:

yi(k) =

l∑
j=−l

T
(l)
i,i+jxi+j(k − l)

+

l−1∑
g=−l+1

l−1−|g|∑
s=0

H
(l−1−s)
i,i+g ui+g(k − l + s) + ni(k) (6.6)

where the matrices T (l)
i,i+j and H(l−1−s)

i,i+g are defined in (3.18). The matrix H(l−1−s)
i,i+g

is called the local impulse response parameter of Si.
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We assume that the parameter l in (6.6) is chosen such that1 l > p and l� N .
Because by Assumption 6.1 the global system is asymptotically stable, for suffi-
ciently large l the effect of initial local states in (6.6) can be neglected:

yi(k) ≈
l−1∑

g=−l+1

l−1−|g|∑
s=0

H
(l−1−s)
i,i+g ui+g(k − l + s) + ni(k) (6.7)

Furthermore, since the local subsystems are identical, for l ≥ 2 and i = l −
1, . . . , N − l + 2, we have:

H
(f)
i,i+s = H

(f)
i,i−s, s = 0, . . . , l − 1, f = s, . . . , l − 1 (6.8)

On the basis of (6.7) and (6.8), a low-dimensional least-square problem can be
formed and the local impulse response parameters of Si can be estimated.

Because local subsystems are identical, we have that the local impulse response
parameters of Si are at the same time impulse response parameters of the local
subsystems Sj , j ∈ {l− 1, . . . , N − l+ 2} (this property does not hold for noniden-
tical local subsystems, see Remark 6.2).
To complete the estimation, we need to estimate the impulse response parameters
of the remaining local subsystems: Sj , j = 1, . . . , l−2, N− l+3, . . . , N . This can be
achieved by forming equations similar to (6.7) for j = 1, . . . , l−2, N− l+3, . . . , N ,
and by solving corresponding low-dimensional least-squares problems.

Since by assumption the local measurement noise of each local subsystem is a
white noise (see Assumption 6.1), the consistency analysis of the linear regression
problem, that is formed on the basis of (6.7) and (6.8), is simple and it has been
extensively studied in the literature [141]. What needs to be emphasized here
is that the estimates of the local impulse response parameters are biased. These
estimates are biased because the local initial states are neglected in (6.7). The bias
can be significantly reduced by choosing larger values of l.

Once we have estimated local impulse parameters of all local subsystems, using
(3.15) and (3.17) we can form an estimate of the structured impulse response ma-
trix Gp−1. Since l > p, to form an estimate of Gp−1 we only need local impulse
response parameters that correspond to the lifting window p. The local impulse
response parameters corresponding to p+ 1, . . . , l are not used for identification.

Remark 6.2 In the case of nonidentical local subsystems, the impulse response parame-
ters of all local subsystems are different. In this case, the impulse response parameters of
all local subsystems have to be estimated separately.

6.3.2 The global nonlinear optimization problem

Let an estimate of Gp−1 be denoted by Ĝp−1. In the global data equation (3.10), we
can substitute the unknown matrix Gp−1 by its estimate Ĝp−1. On the basis of this

1In practice, the parameter l should be selected to be much larger than p. For example in numerical
experiments section we chose l = 10 and p = 2.
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substitution, we define:

D̂kk−p = Ykk−p − Ĝp−1Uk−1
k−p (6.9)

Since p < l, the effect of the initial state in the global data equation (3.10) cannot
be neglected. This means that from (3.10) and (6.9) we have:

D̂kk−p ≈ Opx(k − p) +N k
k−p (6.10)

From (6.10) it can be concluded that the global system (3.1) can be identified by decom-
posing the vector D̂kk−p into the product of a banded matrix and the global state vector.
To the best of our knowledge, a computationally efficient algorithm for performing this
structured decomposition has not been developed yet.

To perform this decomposition, and consequently to identify the local subsystems,
we will introduce a parametrization of the local system matrices. Throughout the
remainder of this chapter, the parametrized local system matrices will be denoted
by A(α), E(α) and C(α), where α is a parametrization vector. We assume that
α is an element of an open set Ω. For simplicity, we assume that the local system
matrices are fully parameterized by α. This means that Ω ⊂ Rn(2n+r).
As it will be explained later, the estimate of the matrix B, denoted by B̂, will be
determined using the estimates of A, E and C. The family of the global systems,
that are defined by the local system matricesA(α), E(α), C(α) and by a matrix B̂,
is denoted by S(α). Using this parameterization and using (3.14), (3.16) and (3.18),
we form the matrix Op(α). The local system matrices are identified by solving the
global optimization problem:

min
α,x(k−p)

{∥∥∥D̂kk−p −Op(α)x(k − p)
∥∥∥2

2
+ µ ‖x(k − p)‖22

}
(6.11)

where µ ≥ 0 is a regularization parameter. As it will be explained later, the param-
eter µ will play crucial role in establishing computationally efficient identification
algorithm. For convenience, we will write the optimization problem (6.11) in the
following form:

min
α,x(k−p)

‖V − Z(α)x(k − p)‖22 (6.12)

where

V =

[
D̂kk−p

0

]
Z(α) =

[
Op(α)√
µI

]
(6.13)

In this thesis we are mainly focused on the computational aspects of solving the
optimization problem (6.12). The global optimization problem is nonlinear and
possibly non-convex. We do not analyze the bias and the variance of the solution
of (6.12). This analysis is left for future research.

Remark 6.3 In order to formulate the global optimization problem (6.11), for the case of
interconnected systems with nonidentical local subsystems, the local system matrices of
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all local subsystems need to be parameterized. Since we are considering interconnected
systems described by sparse block banded matrices, in the case of nonidentical local sub-
systems the parameterization vector α will have cN elements, where c is a constant and
c� N .

6.3.3 The Separable-Least Squares form of the global optimiza-
tion problem (6.11)

Using the the Separable Least Squares (SLS) technique [251], we can eliminate the
global state from the global optimization problem (6.11). This way, we signifi-
cantly reduce the number of its optimization variables.

Theorem 6.4 Consider the optimization problem (6.12) and let ν be the observability
index of the global system (6.1). Assume that any of the following two conditions are
fulfilled:

1. The observability index of S(α) is equal to ν, ∀α ∈ Ω, and the parameter p satisfies:
p ≥ ν

2. The parameter µ satisfies: µ > 0.

Let α̂ be a local minimizer of

min
α

∥∥(I −Z(α)Z†(α)
)
V
∥∥2

2
(6.14)

and let

x̂(k − p) = Z†(α̂)V (6.15)

where † denotes the pseudo-inverse. Then α̂ and x̂(k − p) are the local minimizers of
(6.12), or equivalently of (6.11).

Proof. If the condition condition 1. is fulfilled, then from Lemma 3.1 we have that:
rank(Op(α)) = nN , ∀α ∈ Ω. This implies that: rank(Z(α)) = nN , ∀α ∈ Ω. On the
other hand, if µ > 0, then independently from p we have that rank(Z(α)) = nN .
Because Z(α) has full column rank ∀α ∈ Ω, the conditions of Theorem 2.1, pre-
sented in [251], are fulfilled. This theorem states that the optimization problem
(6.12) can be transformed into (6.14) using the following two steps. First, the op-
timization problem (6.12) is formally solved with respect to x(k − p) (assuming
that α is constant). This formal solution is given by x(k− p) = Z†(α)V . Secondly,
this solution is substituted back in (6.12) to obtain (6.14). To summarize, since
rank(Z(α)) = nN , from Theorem 2.1 presented in [251], it follows that the pair
(α̂, x̂(k − p)) is the local minimizer of (6.12), or equivalently of (6.11). �

Since we do not know the model of the global system is advance, we do not know
the observability index of the global system ν. This means that for a chosen value
of p we cannot check the condition (1) of Theorem 6.4. However, by choosing
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µ > 0, we can ensure that the condition (2) of Theorem 6.4 is satisfied, and that we
can solve (6.14), instead of (6.12).

The advantage of solving (6.14) instead of (6.11) is evident. Instead of solving the
optimization problem (6.11) involving n(2n + r) + Nn parameters (where N is
much larger than n and r), we solve the optimization problem (6.14) involving
only n(2n+ r) parameters (see Remark 6.3). At a first glance, the disadvantage is
that the sparsity of the original optimization problem (6.11) is destroyed by trans-
forming it using the SLS strategy. That is, although Op(α) and Z(α) are sparse
block banded matrices, the matrices O†p(α) and Z†(α) are fully populated for an
arbitrary value of α. However, using the methods summarized in Chapter 3, we
can approximate these pseudo-inverses in a computationally efficient manner.
To the best of our knowledge, the solution of the optimization problem (6.14) can-
not be expressed in the analytic form. Consequently, the solution must be found
using iterative numerical methods. A large variety of iterative methods for solv-
ing nonlinear optimization problems have been developed in the past, see for ex-
ample [252]. In this thesis we use the steepest descent method. Other methods,
like for example Gauss-Newton method, can also be used to solve (6.14). In order
to solve (6.14) using the steepest descent method, we will parameterize matrices
J2p ∈ RNn×Nn and F2p ∈ RNn×Nn, defined in (3.26) and (3.36), respectively. The
parametrized matrices are denoted by:

J2p(α) = OTp (α)Op(α), F2p(α) = µI + J2p(α) (6.16)

In order to compute the Jacobian matrix of the optimization problem (6.14), we
define [251]:

PZ(α) = Z(α)Z†(α), P⊥Z (α) = I − PZ(α), r(α) = P⊥Z (α)V (6.17)

Let αh be the hth element of α (h = 1, . . . , n(2n + r)). Then, we can write the hth

block column of the Jacobian J , associated with the cost (6.14), as follows [251]:

Jh(α) = −∂r(α)

∂αh
= Lh(α)V

Lh(α) =

(
P⊥Z (α)

∂Z(α)

∂αh
Z†(α) + (P⊥Z (α)

∂Z(α)

∂αh
Z†(α))T

)
(6.18)

It can be easily shown that:

Z†(α) = F−1
2p (α)

[
OTp (α)

√
µI
]

(6.19)

Z(α)Z†(α) =

[
OpF−1

2p (α)OTp (α)
√
µOp(α)F−1

2p√
µF−1

2p (α)OTp (α) µF−1
2p (α)

]
(6.20)

∂Z(α)

∂αh
=

[
∂Op(α)
∂αh

0

]
(6.21)

The matrix ∂Op(α)
∂αh

is a block banded matrix, with the block bandwidth equal to

p. The elements of ∂Op(α)
∂αh

can be computed recursively. Namely, because Ap =
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AAp−1 and using the product rule for differentiation, it can be easily shown that:

∂L
(p)
i,j

∂αh
=
∂A

∂αh
L

(p−1)
i,j +A

∂L
(p−1)
i,j

∂αh
+
∂E

∂αh
L

(p−1)
i−1,j + E

∂L
(p−1)
i−1,j

∂αh

+
∂E

∂αh
L

(p−1)
i+1,j + E

∂L
(p−1)
i+1,j

∂αh
(6.22)

Using this recursion we can easily compute any element of ∂Op(α)
∂αh

. The basic
steepest descent method, for solving the optimization problem (6.14), consists of
the following iteration:

α(k+1) = α(k) − aJT (α(k))
(
I −Z(α(k))Z†(α(k))

)
V (6.23)

where a > 0 is a positive constant. Throughout the remainder of the chapter, the
converged value of α(k) will be denoted by α̂.
Once we have obtained α̂, we can determine the matrix B̂ using two strategies.
For example, from the identified local system matrices C(α̂), A(α̂), E(α̂) and
from the estimated impulse response parameters, we can determine B̂ by solving
a linear system of equations. Other strategy is to use (6.15) to determine the global
state:

x̂(k − p+ s) = Z†(α̂)V (6.24)

for s = k, k + 1. From these global state estimates, we can extract the estimates
of the local states. Then, on the basis of the local state-space models (6.3) we can
form a linear regression problem in which the local states are substituted by the
estimates of the local states, and the local system matrices A,C,E are substituted
by C(α̂), A(α̂), E(α̂) . By solving this linear regression problem we can estimate
B̂.

From (6.17)-(6.24), we see that the main computational bottleneck of one iteration of the
steepest descent method is the inversion of F−1

2p . Namely, although F2p(α) is a sparse
block banded matrix, its inverseF−1

2p (α) is a dense matrix. Since we needN2 loca-
tions to store a dense matrix in a computer memory, for largeN the matrixF−1

2p (α)
cannot be memorized. Because the matrix F2p(α) is a sparse banded matrix, we
can compute its inverse with O(N2) complexity [112]. However, since F−1

2p (α) is
fully populated, the sparsity of the optimization problem is lost and the compu-
tational cost of the subsequent operations, that involve F−1

2p (α), are either O(N2)

or O(N3). The above explained computational problems are illustrated in Figure
6.1 in numerical experiments section.
However, in Chapter 3 we have developed computationally, sparsity preserving
methods for approximating F−1

2p (α). By using these methods we can compute
one iteration the steepest descent method (6.23) with O(N) complexity and O(N)
memory requirements. The identification algorithm that is based on the approxi-
mation of F−1

2p using the Chebyshev method or Newton iteration is summarized
below.
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Algorithm 6.1 Identification of the global state-space model (6.1)

1. Chose the parameter l and estimate the local impulse response parameters of all lo-
cal subsystems Sj .
2. Choose p < l, and from the elements of the estimated local impulse response matrices
(that correspond to p) and using (3.17) and (3.15), form an estimate of the global impulse
response matrix Ĝp−1. Using Ĝp−1 and using the input-output data, form the vector D̂kk−p
defined in (6.9).
3. Select an initial value of α and parameter µ (see Section 6.3.4) and solve the optimiza-
tion problem (6.14). In each iteration of the steepest descent method (6.23) approximate
the matrix F−1

2p (αk) using the Chebyshev approximation method or the Newton iteration.
4. Use the sparse approximation ofF−1

2p (αk) and (6.19) to approximateZ†(α̂) by a sparse
matrix and estimate the global state x̂(k − p) using (6.15). Estimate the local matrix B.

6.3.4 Some guidelines for selecting the parameter µ and initial
guess α(0)

The following conclusions about the influence of the parameter µ on the identifi-
cation algorithm can be easily drawn:

1. From the cost function of the optimization problem (6.11), it follows that by
increasing µ we put more emphasis on the penalization of the global state-
vector, and less emphasis on the penalization of the part of the cost function
that involves input-output data. This indicates that for very large µ we only
minimize the initial state, while we do not minimize the part of the cost
function that involves the vector of parameters α. That is, very large µ has
a negative effect on the identification quality.

2. The vector V , defined in (6.13), contains the vector D̂kk−p, which is defined
in (6.9). The vector D̂kk−p contains the errors of estimating the structured
impulse response matrix Ĝp−1 and measurement errors. Since µ is a regular-
ization parameter of F2p, from (6.18) it follows that by selecting sufficiently
large µ we can make the steepest descent method to be less sensitive to the
errors that are present in D̂kk−p.

On the other hand, the parameter µ has an important role in establishing the com-
putationally efficient method for approximating F−1

2p . In summary (see Chapter
3), with the parameter µ we can influence the condition number of F2p, and con-
sequently, we can ensure that its inverse can be approximated with O(N) com-
plexity. Moreover, if the matrix J2p is well-conditioned, then F−1

2p can be approxi-
mated with a relatively good accuracy and O(N) complexity, by a sparse banded
matrix. If the matrix J2p is ill-conditioned, then to approximate F−1

2p with a good
accuracy and O(N) complexity, we need to choose an appropriate value of the
parameter µ. If the approximation is performed using the Chebyshev method,
this value should be chosen on the basis of Theorem 3.4 (choosing µ such that the
upper bound (3.69) is small).
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Before we start the steepest descent optimization algorithm we have to choose an
initial guess α(0) of the optimization variable α, and we have to choose µ. In Nu-
merical experiments section, we select α(0) by drawing samples from the normal
distribution. Another option is to form α(0) from the elements of the local system
matrices that are identified using the decentralized SIM proposed in Chapter 3.

Let us suppose that we have computed the condition number of J2p(α
(0)), and

on the basis of this condition number we have chosen the parameter µ such that
the matrix F2p(α

(0)) is well-conditioned. In each iteration k of the steepest de-
scent method (6.23), α(k) changes. This means that in each iteration, the condition
numbers of J2p(α

(k)) and F2p(α
(k)) change. It is possible that during conver-

gence of the steepest descent method, αk becomes such that for selected µ the
matrix F2p(α

(k)) becomes badly conditioned. In this case, a sparse banded matrix
is no longer a good approximation of F2p(α

(k)) and consequently, the Jacobian
matrix contains significant numerical errors. These errors might slow down the
convergence of the steepest descent method, or more extremely, they might cause
divergence (this situation is illustrated in Fig. 8.3(b)). This problem can be re-
solved using any of the following two strategies:

1. The first strategy is to select sufficiently large µ before we start the steepest
descent method, and to keep this value constant during the optimization.
Large µwill ensure that the condition number of F2p

(
α(k)

)
does not change

significantly with the change of α(k). However, as we illustrate in Numeri-
cal experiments section (see Fig. 8.3(a)), by increasing µ we slow down the
convergence of the steepest descent method. Furthermore, large µ might
have a negative impact of the identification quality.

2. The second strategy is to compute the condition number of J2p(α
k) in each

iteration of the steepest descent method. Then, on the basis of this condition
number, we can select µ such that F2p

(
α(k)

)
is well-conditioned. This way,

in each iteration of the steepest descent µ is adaptively changed.

6.4 Numerical experiments

Numerical experiments are performed in MATLAB on a standard desktop per-
sonal computer. The data generating model, is a global state-space model de-
scribed by:

A =

[
0.1440 0.089
0.089 0.1440

]
, E =

[
0.0890 0

0 0.0890

]
,

B =

[
3.5600
1.7800

]
, C =

[
1 0.5

] (6.25)

The model (6.25) has been obtained using the finite-differences approximation of
the heat equation (see Chapter 2). The local inputs are zero mean normally dis-
tributed random signals. Furthermore, the local inputs are mutually independent.
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In order to make the identification problem more challenging, we corrupt the out-
puts of the local subsystems by a white noise (the signal to noise ratios of the
outputs of the local subsystems are equal to 25 [dB]). In total we perform 100
identification experiments for different realizations of inputs and corresponding
outputs of the local subsystems. For the identification we choose p = 2, l = 10.
In each of 100 identification experiments, each element of α(0) is generated by
drawing samples from a zero mean normal distribution, with variance equal to
0.1. Similar identification results are obtained when α(0) is formed from the ele-
ments of local system matrices identified using the decentralized SIM presented
in Chapter 5.

First, we illustrate the O(N) complexity of Algorithm 6.1. We vary the number of
local subsystems N , and measure the time that is necessary to compute one itera-
tion of the steepest descent method. We compare the computational times of the
following three approaches. In the first approach, that we call the direct implementa-
tion, the steepest descent method is implemented using MATLAB’s sparse matrix
computations toolbox. In the second and in the third approach, we implement the
steepest descent method by approximating F−1

2p (α(k)) using the Chebyshev ap-
proximation method and Newton iteration, respectively. In these two approaches
all matrix multiplications and additions were performed using MATLAB’s sparse
matrix computations toolbox. For computing E2tp(α(k)), using the Chebyshev ap-
proximation method, we chose: t = 10 and µ = 0.3. In the Newton iteration,
we use the dropping strategy to restrict the block bandwidth of the approximate
inverse (β = 200). The results are presented in Fig. 6.1.
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Figure 6.1: Computational complexity of the steepest descent method. In the di-
rect implementation all matrix operations were performed using the
MATLAB’s sparse matrix computations toolbox.

From Fig. 6.1 it can be observed that using the direct implementation, we can-
not identify interconnected systems with more than 800 local subsystems. This
is because the direct implementation consumes all computer’s RAM memory.
Namely, the direct implementation computes dense matrix F−1

2p (α(k)). The ma-
trix F−1

2p (α(k)), together with dense matrices that are obtained by multiplying
F−1

2p (α(k)) with Op(α(k)) or OTp (α(k)) (see Section 6.11), need to be stored in the
RAM memory. In order to perform this, we need O(N2) memory locations. On
the other hand, the Chebyshev approximation method or the Newton iteration ap-
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proximate F−1
2p (α(k)) by a sparse banded matrix. Consequently all the matrices in

(6.17)-(6.21) are sparse. Because of this, the sparsity of the steepest descent method
is preserved. Furthermore, as it can be observed from Fig. 6.1, the approaches
based on the Chebyshev approximation method and on Newton iteration have
linear computational complexity.

Next, we show how µ influences the convergence of the steepest descent method.
We construct the global system that consists of N = 200 local subsystems. The
steepest descent method is implemented using the Chebyshev approximation method.
The results are given in Fig.6.2(a). As it has been expected, larger values of µ slow
down the convergence of the steepest descent method. In Fig.6.2(b), we illustrate
the effect of the Chebyshev approximation errors on the convergence of the steep-
est descent method. The Chebyshev approximation of F−1

2p is calculated for t = 5
and t = 10. For t = 5 the approximation error is 0.1, whereas for t = 10 this error
is 0.005. As it can be observed from Fig. 6.2(b), in the case of t = 5 the steepest de-
scent method diverges, whereas in the case of t = 10 it monotonically converges.
This is because the Chebyshev approximation errors are larger for t = 5 than for
t = 10. In the case of t = 5, the accumulation of the errors in each iteration of
the steepest descent method is significant and after certain number of iterations,
the steepest descent method diverges. This problem can be resolved by improv-
ing the accuracy of the Chebyshev approximation. For that purpose we increase
t to 10. However, by increasing t, we increase the computational complexity of
the Chebyshev approximation. From Theorem 3.4 it follows that the divergence
problem can also be resolved by increasing µ. However, as it can be observed from
Fig. 6.2(a), by increasing µ we slow down the convergence of the steepest descent
method.

(a) (b)

Figure 6.2: Convergence of the steepest descent method; a) influence of the pa-
rameter µ b) The divergence of the steepest descent method

Finally, we illustrate the quality of the identified model. For the approximation
purpose, we chose µ = 0.3 and t = 10. The distribution of the eigenvalues of
the identified local matrix A is presented in Fig. 6.3. After we have identified the
local system matrices, we reconstructed the global state-space model. Using the
reconstructed global state-space model, we calculate the Variance Accounted For
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interconnected systems

(VAF) [58]. The distribution of the VAF of an arbitrary local subsystem, for 100
identification experiments is presented in Fig. 6.4.

(a) (b)

Figure 6.3: Distribution of the eigenvalues of the local matrix A for 100 identifica-
tion experiments. The circled cross denotes the ”true” eigenvalue.

Figure 6.4: The distribution of the VAF for 100 identification experiments.

As it can be observed from Figs. 6.3 and 6.4, the identified models have relatively
good quality.

6.5 Conclusion

In this Chapter we have developed a computationally efficient algorithm for iden-
tifying interconnected systems that are described by sparse banded or sparse multi-
banded system matrices. The computational efficiency is achieved by approximat-
ing inverses of lifted system matrices by sparse banded matrices. We numerically
demonstrate that it is possible to identify a global state-space model obtained by
finite difference discretization of the 2D heat equation with O(N) computational
complexity and O(N) memory requirements.
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State estimation of the discretized
thermoelastic model

In this chapter we use the moving horizon estimation algorithm and the
discretized thermoelastic equations to estimate the temperature distri-

bution of the circular mirror illustrated in Fig. 2.8. We show that temper-
atures can be estimated with linear computational complexity and with
relatively good accuracy. Furthermore, we illustrate the trade-off between
the accuracy and computational efficiency of the estimation framework
developed in this thesis.

7.1 Introduction

To make this thesis more accessible to engineers and scientists with various back-
grounds, we first explain why state estimation is important for the development
of predictive algorithms for thermally induced wavefront aberrations.

To fully predict the dynamical behavior of a system, that is, to predict the system’s
future state trajectory, we need to know the system’s model, the system’s inputs
and the system’s initial state.
For example, a simple way to predict the future state trajectory of the discretized
2D heat equation (2.11) is to start from an initial state x(0) and by using the input
sequence u(0),u(1), . . ., to recursively compute the states x(1),x(2), . . .. Once the
state trajectory is known, the output sequence y(0),y(1), . . ., can be predicted.
If the initial state x(0) is zero, then we only need the input sequence and the model
to predict the state trajectory. However, in practice systems are rarely initially at
rest.

Consider the discretized thermoelastic system (2.81)-(2.82) that describes dynam-
ical behavior of thermally induced deformations of the mirror illustrated in Fig.
2.8. The states of this system are mirror temperatures, the input is the heat flux
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distribution (intensity distribution) on the top surface and the outputs are surface
deformations. If we want to predict the output, then we need to know the initial
temperature distribution and the input. If initially the mirror is in the thermal
equilibrium then the initial state can be assumed to be zero. However, in optical
lithography this is rarely the case. Namely, mirrors in EUV machines need tens
of minutes to completely cool down. Because of the demand to continuously ex-
pose wafers, mirrors are always under thermal load and consequently, they do
not have enough time to cool down.

All this implies that prediction of thermoelastic deformations can rarely be done
in a completely feed-forward manner1. That is, we need to have some initial mea-
surements of thermoelastic deformations from which we can estimate the initial
state of the system (the initial temperature distribution). To perform this task we
need to have a computationally efficient estimation strategy.

In this chapter we estimate the states of the discretized thermoelastic system (2.81)-
(2.82) using the MHE strategy developed in Chapter 4.2. Furthermore, we show
that using the approximation framework presented in Chapter 3, this estimation
can be done with complexity that scales linearly with the state dimension. Due
to this, the developed estimation framework is suitable for real time implemen-
tation. We also illustrate the trade-off between the accuracy and computational
efficiency of the developed estimation framework.

We assume that the mirror is made of BK7 with a thin aluminum coating on its
top surface. The mirror’s dimensions and its material properties can be found
in [253]. Authors are aware that for high power optical systems, such as EUV lithog-
raphy machines, mirrors made of materials with a low Coefficient of Thermal Expansion
(CTE) are more suitable. However, we have chosen this mirror because real measurements
of its thermoelastic deformations are reported in [253]. Consequently, by comparing
our simulations results with the experimental data presented in [253], the model
based on thermoelastic equations can be validated. The modeling and estimation
strategies proposed in this chapter can be adapted such that they can be used for
state estimation of mirrors made of various materials (for example, mirrors made
of materials with a low CTE, such as Zerodur)

This chapter is organized as follows. In Section 7.2 the thermoelastic model is
validated. In Section 7.3 least squares estimation results are presented. In Section
7.4 moving horizon estimation results are presented. Finally, in Section 7.5 the
conclusions are drawn.

7.2 Validation

The mirror’s dimensions and its material properties are summarized in Table 7.1.

1In feed-forward approach, prediction is performed without any measurements.
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Parameter Symbol Units Value
Density ρ

[
kg ·m−3

]
2.51× 103

Specific heat c
[

J · kg−1 · K−1
]

858

Thermal conductivity κ
[

W ·m−1 · K−1
]

1.114

CTE α
[

K−1
]

7.10× 10−6

Young’s modulus E [ GPa ] 82
Poisson ratio ν [ − ] 0.206
Diameter of the mirror φ [ m ] 0.0245
Thickness of the mirror δ [ m ] 0.0065

Table 7.1: Material properties of BK7 and dimensions of the mirror. The data is
taken from [253].

In order to assess the accuracy of the FE thermoelastic model (2.81)-(2.82), we
compare the deformations predicted by the model with the experimental results
reported in [253]. The thermoelastic deformations were simulated assuming the
beam diameter of 250×10−6 [m] (the diameter of region Ω4 in Fig. 2.9) and assum-
ing the laser power of 100× 10−3 [W]. The ambient temperature TA = 293.15 and
the emissivity of the aluminum coating c4 = 0.4 were assumed. The comparison
results are shown in Fig. 7.1.
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Figure 7.1: Comparison between the vertical surface deformations predicted by
the model (2.81)-(2.82) and experimental data reported in [253]. The
mirror geometry is illustrated in Fig. 2.9

As it can be seen from Fig. 7.1, the FE model obtained using
COMSOL Multiphysics R© software can relatively accurately predict the thermoe-
lastic deformations of the mirror surface. The discrepancy between simulated
deformations and experimental results partly originate from linearization of radi-
ation boundary conditions. The linear boundary conditions imply that the heat
losses due to radiation are underestimated. Furthermore, the errors partly orig-
inate from the noise of a sensor used in [253] to measure the displacements (the
thermoelastic model is simulated without the measurement noise).
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7.3 Least squares state estimation

Estimation is performed on a desktop personal computer with 12 GB of RAM.
First, we show estimation results obtained by solving the least squares problem
(4.68). The data generating model has 500 states, 150 outputs and 150 inputs (di-
mension of the vector c1 in (2.81)). The intensity distribution on the top surface is
a Gaussian function. The measurement data (surface deformations) are corrupted
by a white Gaussian noise with signal to noise ratio of 35 dB. The initial states are
equal to the ambient temperature (assumed to be 297.15K).

The estimates of the top surface temperatures are shown in Fig 7.2(b) (the top sur-
face is defined by ∂Ω1 ∪ ∂Ω4, see Fig. 2.9(b)). For comparison, in Fig. 7.2(a) we
show the simulated temperatures of the same surface. In Fig. 7.2(c), the absolute
errors between the simulated and the estimated temperatures are presented. In
Fig. 7.3 we show the estimates of the middle surface temperatures (the surface
parallel to the top surface). Finally, in Fig. 7.4, we show the estimated tempera-
tures of the surface that passes through the center of the mirror and that is per-
pendicular to the top surface (the diameter cross section of the mirror).

(a) (b) (c)

Figure 7.2: Least squares estimates of the top surface temperatures at an arbitrary
time instant. (a) Simulated temperatures; (b) Estimated temperatures;
(c) Relative error between simulated and estimated temperatures.

(a) (b) (c)

Figure 7.3: Least squares estimates of the middle surface temperatures. (a) Simu-
lated temperatures; (b) Estimated temperatures; (c) Relative error be-
tween simulated and estimated temperatures.
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(a) (b) (c)

Figure 7.4: Least squares estimates of the temperatures of the diameter cross sec-
tion of the mirror. (a) Simulated temperatures; (b) Estimated temper-
atures; (c) Relative error between simulated and estimated tempera-
tures.

From Figs. 7.2-7.4 it follows that the mirror temperatures can be estimated with a
maximal absolute error that is around 2K. These estimation errors partly originate
from the amplification of the measurement noise. The amplification of the mea-
surement noise is created by the ill-conditioning of the matrix Γ, defined in (4.67).
The singular values of Γ are illustrated in Fig. 7.5.
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Figure 7.5: Singular values of the matrix Γ defined in (4.67)

From Fig. 7.5, it can be concluded the condition number of Γ is in the order of 106,
which implies that the condition number of ΓTΓ is in order of 1012 (to compute
the least squares estimate the matrix ΓTΓ is inverted). One of the ways to solve
this problem and to improve the estimation quality is to employ regularization
techniques [254; 255]. The MHE method is implicitly regularizing the pseudo-
inverse of Γ. Furthermore, from Fig. 7.5 it can be concluded that some parts of the
state sequence are poorly observable.
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7.4 Moving horizon state estimation

First we will present the estimation results when the inverse of M (matrix M is
defined in (4.78)) is computed exactly. The data generating model has 243 states
(temperatures), 81 inputs and 81 outputs. We used the past window equal to
p = 60.

We quantify the estimation quality by computing the estimation error:

e(k − p) = x(k − p)− x̂(k − p|k) (7.1)

Noise-free estimation results are presented in Fig. 7.6(a). These estimation results
indicate that for larger values of µ the convergence of the estimation error is slower
and vice-versa. This is expected, because for larger µ we put more emphasis on
state predictions that are computed on the basis of the model (the first part of
the MHE cost function (4.71)), and less emphasis on the measurement data (the
second part of the MHE cost function).
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Figure 7.6: Estimation error of the MHE method for several values of µ. (a) Noise
free scenario; (b) Measurements corrupted by noise.
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In Fig. 7.6(b) we present estimation results in the case of measurement noise.
Figure 7.6(b) indicates that for larger values of µ the negative effect of the mea-
surement noise on the estimation quality can be decreased. This is partly because
for larger values of µ the condition number of M is smaller (see Proposition 4.9),
and consequently, the estimation results are less-sensitive to measurement noise.
However, for larger µ we have slower convergence of the MHE method. This in-
dicates that there exists a trade-off between the convergence speed and the noise
suppression of the proposed MHE method. The theoretical analysis of the effect of
the parameter µ on the performance of the MHE method is left for future research.

In Fig. 7.7 we show the estimates of middle surface temperatures at the time
instant k = 170. For estimation we have used µ = 10.

(a) (b) (c)

Figure 7.7: Estimates of middle surface temperatures. (a) Simulated temperatures;
(b) Estimated temperatures; (c) Absolute error.

Figure 7.7 confirms that the MHE method is able to more accurately estimate the
temperatures than the basic least squares method.

Next, we compute moving horizon estimates by approximating the inverse of M
using the Newton iteration and the Chebyshev approximation method. At the
same time, we are using the truncation strategy, explained in Section 3.4.4, to re-
strict the bandwidth of approximate inverses. We also show how the approxima-
tion errors influence the estimation accuracy.
Throughout the rest of this Chapter, the approximate inverse ofM will be denoted
by M̃ . The final approximation accuracy is measured by computing:

ε =
∥∥∥I −MM̃

∥∥∥
2

(7.2)

If M̃ is a good approximation of M−1, then MM̃ is approximately equal to the
identity matrix I and consequently, ε is very small.
In Figs. 7.8-7.10 we show the estimates computed using the equation obtained by
substituting the matrix M−1 by M̃ in the equation (4.77). These figures show the
estimates of the middle surface temperatures. From Figs. 7.8-7.10 we can see how
the truncation bandwidth β of the truncation strategy influences the estimation
quality. Similar estimation results are obtained using the Chebyshev approxima-
tion method.
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(a) (b) (c)

Figure 7.8: The moving horizon estimates computed using M̃ , β = 1500, ε = 10−4.
(a) Simulated states; (b) Estimated states; (c) Absolute error.

(a) (b) (c)

Figure 7.9: The moving horizon estimates computed using M̃ , β = 1000, ε = 10−3.
(a) Simulated states; (b) Estimated states; (c) Absolute error.

(a) (b) (c)

Figure 7.10: The moving horizon estimates computed using M̃ , β = 500, ε = 5 ·
10−3. (a) Simulated states; (b) Estimated states; (c) Absolute error.

From Figs. 7.8-7.10 we conclude that as the truncation bandwidth β decreases, the
estimation accuracy gets worse. This is expected because for smaller β the param-
eter ε, quantifying the error of the approximate inverse, is larger. On the other
hand, for smaller β, the computational complexity of computing M̃ decreases.
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That is, there is a trade-off between the accuracy and the computational complex-
ity of the developed estimation method.
Next, we show how the approximation errors influence the convergence of the
MHE method. The results are shown in Fig. 7.11. From Fig. 7.11 it follows
that small approximation errors do not destabilize the convergence of the MHE
method. For smaller β the steady-state approximation error is larger.
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Figure 7.11: Influence of the approximation errors on the convergence of the MHE
method.

7.4.1 Computational and memory complexity of the approxima-
tion methods

First, we illustrate the computational complexity of the Newton method for com-
puting the approximate inverse M̃ . The initial guess was computed by X0 = αM ,
where α = 2/(a2 +b2) and a and b are minimal and maximal singular values ofM .
This initial guess is refined by computing 10 iterations of the Newton algorithm
with a relatively small truncation bandwidth: β = 400. The Newton iteration was
started again with this refined initial guess, and it is stopped when the accuracy of
ε = 10−3 is reached. The computational and memory complexity of the Newton
iteration are illustrated in Fig. 7.12. For comparison we also show the complex-
ity of computing the ”true inverse” of M using built-in MATLAB functions for
performing operations on sparse matrices. Throughout the rest of Chapter, the
computational approach that is completely based on the built-in MATLAB func-
tions will be called ”the direct approach”.

As it can be seen from Fig. 7.12, the Newton method outperforms the direct ap-
proach both in terms of computational and memory complexity. Furthermore, we
have observed that for matrix dimensions larger than 3 × 104 the direct imple-
mentation consumes all computer’s RAM memory. In contrast, using the Newton
method, we were easily able to invert matrices which dimensions exceed 3× 104.
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Figure 7.12: Newton iteration: (a) Computational complexity; (b) Memory com-
plexity.

Finally, we illustrate the complexity of computing the moving horizon estimate
(4.77) on the basis of the approximate, sparse inverse M̃ . The approximate in-
verse is computed using the Newton method. For comparison, we illustrate the
complexity of computing the moving horizon estimate using the direct approach.
The results are shown in Fig. 7.13. As we can see from this figure, the moving
horizon estimate can be computed with linear computational complexity using
the proposed approximation framework. This is because the approximate inverse
M̃ is a sparse banded matrix and consequently, the computational complexity of
vector-matrix multiplications scales linearly with the size of the problem. On the
other hand, the ”true” inverse of M is a dense matrix, which implies quadratic
computational complexity of vector-matrix multiplications. Because of its linear
computational complexity, the developed MHE method is suitable for real-time
applications.
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Figure 7.13: Time for computing the moving horizon estimate using the precom-
puted approximate inverse M̃ .
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7.5 Conclusion

In this chapter we have demonstrated that the MHE method, developed in Sec-
tion 4.2, is able to relatively accurately reconstruct the temperature distribution of
the mirror shown in Fig. 2.8. Furthermore, we have shown that using the struc-
ture preserving, approximate inversion framework developed in Chapter 3, the
estimation can be performed with linear computational and memory complexity.
Consequently, the proposed estimation framework can be used for real time es-
timation of the state of thermally induced wavefront aberrations in high power
optical systems.





8 CHAPTER

Iterative learning control for optimal
wavefront correction

In this chapter, we present an Iterative Learning Control (ILC) algorithm
for controlling the shape of a membrane Deformable Mirror (DM). We

furthermore give a physical interpretation of the design parameters of the
ILC algorithm. On the basis of this insight, we derive a simple tuning
procedure for the ILC algorithm that in practice guarantees stable and fast
convergence of the membrane to the desired shape. In order to demon-
strate the performance of the new algorithm we have built an experimen-
tal setup that consists of a commercial membrane DM, a wavefront sensor
and a real-time controller. The experimental results show that by using
the new ILC algorithm we are able to achieve a relatively small error be-
tween the real and desired shape of the DM while at the same time we
are able to control the saturation of the actuators. Moreover, we show
that the ILC algorithm outperforms other control algorithms available in
literature.

8.1 Introduction

The main components of an Adaptive Optics (AO) system are WaveFront Sensor
(WFS), an active optical element like a DM or a spatial light modulator and a con-
trol algorithm. There are different types of DMs. Most widely used are segmented,
microelectromechanical systems (MEMS), bimorph piezoelectric and membrane
deformable mirrors. Membrane deformable mirrors are relatively cheap, they
have low hysteresis and they have low power consumption. However, the re-
sponse of membrane mirrors is nonlinear and the coupling between control chan-
nels is relatively strong [256].

In literature various modeling and control strategies for membrane DMs have
been proposed [256; 257; 258]. The control strategy presented in [256] is based
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on the steepest-descent optimization algorithm. The control strategy presented
in [258] is derived by inverting an influence function (matrix) of a DM. In [257],
the problem of controlling a membrane DM is formulated as a non-negative least
squares problem. However, the tuning of the parameters of the above mentioned
control strategies is performed empirically, by trial and error. Because of this,
these control methods might not guarantee optimal performance of an AO system.
This non-optimality manifests itself in a slow convergence of the wavefront error
and in a significant steady-state wavefront error. The non-optimality of the above
mentioned control strategies also originates from a somewhat heuristic method
used to identify a DM model (an influence matrix). Namely, in the above cited
papers, the ith column of an influence matrix is a measurement of a membrane
response when the step voltage is applied to the ith channel. Although simple, this
identification method directly incorporates measurement errors into a DM model.
Furthermore, this method does not take into account the ”cross-talk” between
the channels of a DM. Another drawback of the above cited control strategies is
that they do not properly address the problem of saturation of the actuators of
a DM. The saturation of the actuators is an undesired phenomena. On the one
hand, it creates a strong mechanical stress on the membrane of a DM and thus
it reduces its lifetime. On the other hand, saturation might prevent undamped
control algorithms to converge.

In order to boost the performance of AO systems, in this chapter we present an
iterative learning control (ILC) algorithm for controlling the shape of a membrane
DM. The presented ILC algorithm is based on the linearized model of the DM, that
is identified from the experimental data. We furthermore give a physical interpre-
tation of the design parameters of the ILC algorithm. On the basis of this insight,
we derive a simple tuning procedure for the ILC algorithm that in practice guar-
antees stable and fast convergence of the membrane to the desired shape. In order
to demonstrate the performance of the new algorithm we have built an experi-
mental setup that consists of a commercial membrane DM, a wavefront sensor
and a real-time controller. The experimental results show that by using this new
ILC algorithm we are able to achieve a relatively small error between the real and
desired shape of the DM while at the same time we are able to control the satu-
ration of the actuators. Moreover, we show that the ILC algorithm outperforms
other control algorithms available in the literature. We also present a simple and
effective statistical identification procedure for a linearized model of the DM. Us-
ing this model, and only one initial measurement of the DM shape, we can apply
the ILC algorithm off-line. After the ILC algorithm has converged, we apply a
“learned input” to a DM. Because it uses only one measurement, this is a fast
method for generating the desired shape.

In [259], a method has been proposed for alignment of optical components in optical
lithography systems. With minor modifications, the ILC method presented in this Chapter
can be also used for precise alignment of optical components in lithography machines.

The benefits of the ILC algorithm for correcting wavefront aberrations were first
demonstrated in [260]. However, in [260] the ILC algorithm only penalizes the
differences between the voltages of two consecutive control iterations. Although
this approach enables us to control the convergence rate of the ILC algorithm, in
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some situations the steady-state voltages can still saturate. Furthermore, because
the convergence and stability of the ILC algorithm have not been studied in [260],
the tuning of the parameters of the ILC algorithm have to be performed on-line
on a real setup which can be time consuming. In contrast to [260], in this chapter
we penalize the values of the voltages for the next control iteration which enable
us to directly control the voltage saturation. Beside this, we perform the stability
and convergence analysis of the ILC algorithm and we propose a simple tuning
procedure which can be performed off-line.

This chapter is organized as follows. In Section 8.2, we describe an experimental
setup. In Section 8.3, we present the ILC algorithm. In section 8.4, we present an
identification procedure for a model of the DM. In Section 8.5, we present experi-
mental results and in Section 8.6, we draw conclusions.

8.2 Experimental setup

In this section we describe the optical test bench (AO system) that we use to val-
idate the ILC algorithm for controlling the shape of the DM. The sketch of the
experimental setup is shown in Fig. 8.1.

Figure 8.1: Simplified sketch of the experimental setup.

We use coherent light from a semiconductor laser working at λ = 638nm. The
light from the laser is then coupled with a single mode fiber. The other end of the
fiber is placed in the focal point of the spherical lens L1 (focal length f1=100mm,
diameter φ1=1”). The resulting collimated beam is folded by 90◦ by the beam



150 Chapter 8: Iterative learning control for optimal wavefront correction

splitter (BS). The central part (9 mm in diameter) of the beam illuminates the clear
aperture (φ=11mm) of the deformable mirror (DM) uniformly. The DM is a com-
mercial membrane mirror with 48 actuators, produced by Adaptica Srl. The speci-
fication of this mirror can be found in [261]. The reflected light goes again through
the BS in a relay system consisting of the lens L2 (focal length f2=250mm, diam-
eter φ2=2”) and L3 (focal length f3=100mm, diameter φ3=2”). The purpose of the
optical system L2-L3 is twofold. The first purpose is to optically conjugate the
surface of the DM with the Shack-Hartmann WaveFront Sensor (S-H WFS, Thor-
labs WFS S300-14AR, 1.3 Mpixel, λ/50 rms accuracy). The optical system L2-L3
also has the function to decrease the beam diameter by a factor M = f3/f2 that is
needed for the S-H WFS. The controller, that is implemented on a standard Per-
sonal Computer (PC), receives measurements from the S-H WFS and on the basis
of these measurements sends a control signal to the DM. This feedback loop is
established using a LabView interface. The control algorithm is implemented in
MATLAB.

The wavefront is sampled with the maximal sampling rate of the S-H WFS, which
is 15 Hz. The time constant of the membrane DM is in order of few milliseconds
[262]. Because the sampling period of the S-H WFS is much larger than a time
constant of the DM, we are not able to observe the transient response of the DM
using the S-H WFS. Consequently, in Section 8.3 we model the DM as a static
system. The control sampling rate is 1 Hz. Because the sampling rate of the S-
H WFS is larger than the control sampling rate, in some degree we are able to
reduce the effect of the measurement noise on the AO system. This is performed as
follows. In between two consecutive control iterations, we take five measurement
samples of the wavefront and we average these samples. This averaged wavefront
is then used in the next control iteration.

8.3 Iterative learning control for membrane DM

In this section we present an Iterative Learning Control (ILC) algorithm for con-
trolling the shape of a membrane DM. We study its stability and convergence rate.
As a result of this study, we give a physical interpretation of the parameters of the
ILC algorithm. This physical interpretation gives us guidelines for its (optimal)
tuning.

In this chapter, the wavefront that is produced by the DM will be represented
using the Zernike polynomials basis expansion (the Malacra notation is used in
this Chapter [263]) :

Φ(x, y) ≈
36∑
i=1

αiZi(x, y) (8.1)

where Φ(x, y) is the spatial distribution of the wavefront, αi is the ith coefficient
of the Zernike polynomials expansion and Zi(x, y) is the ith Zernike polynomial.
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The steady-state model of the DM is given by [257; 258]:

W = FV (8.2)

where W ∈ R36, W =
[
α1 α2 . . . α36

]T is the wavefront (membrane shape
of the DM) expressed as Zernike coefficients, F ∈ R36×48 is the influence matrix,
and the vector V ∈ R48 is given as follows:

V =
[
u2

1 u2
2 . . . u2

48

]T (8.3)

where ui is the control voltage applied to the ith channel of the DM. As it can
be seen from (8.2)-(8.3), the model of the DM is a nonlinear (quadratic) function
of the applied voltages. In contrast to [257; 258], in this chapter we propose a
control algorithm that is based on the linearized model of the DM. We identify a
linear model of the DM, directly from experimental data, using the identification
procedure explained in Section 8.4. By neglecting higher-order terms of the Tay-
lor expansion, a linearized model of the DM around the working point A can be
written as (see Fig. 8.2):

w = Mu (8.4)

u = U−UA, w = W −WA (8.5)

where U =
[
u1 u2 . . . u48

]T is the vector of (total) voltages, UA is the vector
of working point voltages, u is the vector of relative voltages, WA is the wavefront
(membrane shape of the DM) produced by UA, W is the wavefront produced by
U, w is the relative wavefront and M is the influence matrix of the linear model.
In this thesis the working point voltages are chosen as follows:

UA =
[
uA uA . . . uA

]T (8.6)

where uA is equal to 50% of the maximal voltages. It should be stressed that
the model (8.4)-(8.5) depends on the working point voltages UA. From Fig. 8.2,
we can conclude that for different working point voltages, we obtain a different
linear model of the DM. Furthermore, if U is ”close” to UA, then the linear model
accurately describes the behavior of the DM. On the other hand, if U is ”far away”
from UA, then the linear model is less accurate. However, as we experimentally
demonstrate in Section 5, the ILC algorithm can effectively handle these model
uncertainties. For more details about robustness of the ILC algorithm with respect
to model uncertainties, see [199; 264] and references therein.
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Figure 8.2: Linear and nonlinear model of the DM.

Let the control iteration be denoted by k (the control sampling rate is 1Hz). Fur-
ther, let the wavefront (membrane shape of the DM), at the control iteration k,
be denoted by Wk. Similarly, we denote the relative membrane shape by wk =
Wk −WA. From (8.4)-(8.5) it follows:

wk = Muk (8.7)

where uk = Uk −UA is the vector of relative voltages at the control iteration k,
and Uk is vector of (total) voltages at control iteration k. The wavefront that is
sensed by the S-H WFS, is the combination of the wavefront produced by actuat-
ing the DM and static wavefront aberrations initially present in the AO system.
These static wavefront aberrations come from non-flatness of the DM (when the
voltages are not applied to DM) and from imperfections and misalignments of the
optical components. Because the wavefront Wk corresponds to the membrane
shape, this wavefront is obtained by subtracting all static wavefront aberrations
from the wavefront measured by S-H WFS. As we explain in Section 8.5.1, the ILC
algorithm can be easily modified such that it takes into account static wavefront
aberrations of the AO system.

For simplicity, we did not include the measurement noise in equation (8.7). In
reality the measured wavefront is corrupted by the measurement noise of the S-H
WFS. As we have explained in Section 8.2, the effect of the noise is reduced by
averaging the wavefront between the two consecutive control iterations. More-
over, by adjusting the parameters of the ILC algorithm we are able to additionally
increase noise immunity of the AO system.

The goal of the ILC algorithm is to produce a wavefront of the desired shape. Let
such a wavefront be denoted by Wd. The relative desired wavefront is denoted
by wd and it is defined as: wd = Wd −WA. The wavefront error ek at the control
iteration k is defined as follows:

ek = wd −wk = wd −Muk (8.8)
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The error at the time instant k + 1 is given by:

ek+1 = wd −Muk+1 (8.9)

From (8.8) and (8.9) we have:

ek+1 = ek −M∆uk (8.10)

where

∆uk = uk+1 − uk (8.11)

For a given uk and ek, the optimal ILC law [199] is obtained by solving the fol-
lowing optimization problem:

min
uk+1

{eTk+1Qeek+1 + uTk+1Quuk+1 + ∆uTkQ∆u∆uk} (8.12)

where Qe, Qu, and Q∆u are the weighting matrices. The first term in (8.12) penal-
izes the wavefront error at the control iteration k + 1. The second term penalizes
the voltages for the control iteration k+1. Finally, the last term of the cost function
(8.12) penalizes the difference between the voltages between the two consecutive
control iterations, k and k+1. We chose the weighting matrices of the cost function
(8.12) as follows:

Qe = I, Qu = γI, Q∆u = βI (8.13)

where β and γ are positive real numbers. By solving (8.12) for the selection of the
weighting matrices (8.13) we obtain the control law in the following form [199]:

uk+1 = Q(uk + Lek) (8.14)

where

Q =
(
MTM + γI + βI

)−1 (
MTM + βI

)
(8.15)

L =
(
MTM + βI

)−1
MT (8.16)

At the initial iteration k = 0, the vector of relative voltages u0 needs to be ini-
tialized. We choose u0 = 0, which corresponds to the vector of total voltages
U = UA.

The experimental tuning of the parameters β and γ of the ILC control algorithm
(8.14)-(8.16) might be time consuming and it might not guarantee optimal perfor-
mance of the AO system. In order to simplify the tunning of the ILC algorithm, in
the sequel we derive stability and monotonic convergence conditions for the ILC
algorithm. Furthermore, we show how the steady-state tracking error and inputs
depend on the parameters β and γ. Based on these insights we give application
oriented guidelines for the selection of β and γ.
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8.3.1 Stability and convergence rate of the ILC algorithm

By substituting (8.8) in (8.14), we obtain:

uk+1 = Q(I − LM)uk +QLwd (8.17)

The stability and convergence rate of the ILC algorithm is primarily determined
by the spectral properties of the matrix Q(I−LM). In order to perform the stabil-
ity and convergence rate analysis, we introduce the Singular Value Decomposition
(SVD) [112] of the full rank influence matrix M :

M = E1

[
Σ 0

]
ET2 (8.18)

where E1 ∈ R36×36 and E2 ∈ R48×48 are unitary matrices, and the matrix Σ ∈
R36×36 is a diagonal matrix of singular values: Σ = diag(σ1, σ2, . . . , σ36), where
σ1 ≥ σ2 ≥ . . . ≥ σ36 > 0 are singular values. From (8.15) and (8.16) we have:

Q(I − LM) =
[
MTM + (γ + β) I

]−1
β (8.19)

Using the SVD (8.18), we can write (8.19) as follows:

Q(I − LM) = E2

[[
Σ2 + (γ + β) I

]−1
β 0

0 β
γ+β I

]
ET2 (8.20)

The ILC algorithm is stable if ‖Q(I − LM)‖2 < 1, where ‖·‖2 denotes the 2-norm.
From (8.20) we conclude:

‖Q(I − LM)‖2 =
β

γ + β
(8.21)

and consequently, we conclude that the ILC algorithm is stable if

β

γ + β
< 1 (8.22)

Because by definition β > 0 and γ > 0, from (8.22) we see that the ILC algorithm
is always stable. However, a stable ILC algorithm does not necessarily imply a
fast convergence of the control voltages. Due to this, in the sequel we study a
convergence rate of the ILC algorithm.

We say that the ILC algorithm is monotonically convergent, if

‖u∞ − uk+1‖2 ≤ ν ‖u∞ − uk‖2 (8.23)

where u∞ = limk→∞ uk and 0 ≤ ν < 1 is the convergence rate of the ILC algo-
rithm. The smaller ν is, the faster is the convergence of the ILC algorithm and
vice-versa. From (8.17) we have:

u∞ = Q(I − LM)u∞ +QLwd (8.24)
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Because γ > 0, we have ‖Q(I − LM)‖2 < 1. This implies that the matrix I −
Q (I − LM) is invertible, and by solving (8.24) for u∞ we obtain:

u∞ = [I −Q (I − LM)]
−1
QLwd (8.25)

By substituting (8.15) and (8.16) in (8.25) we obtain:

u∞ =
(
MTM + γI

)−1
MTwd (8.26)

Equation (8.26) gives the value of the steady-state relative voltage vector. This
equation helps us to estimate the steady state voltages for the desired wavefront
wd, for the influence matrix M and for a chosen parameter γ. Next we will show
how the convergence rate of the ILC algorithm depends on the parameters β and
γ. From (8.25) we have:

QLwd = [I −Q (I − LM)] u∞ (8.27)

Further we have:

u∞ − uk+1 = u∞ −Q(I − LM)uk −QLwd (8.28)

Substituting (8.27) in (8.28), we obtain:

u∞ − uk+1 = Q(I − LM) (u∞ − uk) (8.29)

From the last expression, we obtain:

‖u∞ − uk+1‖2 ≤ ‖Q(I − LM)‖2 ‖(u∞ − uk)‖2 (8.30)

From (8.20) we have ‖Q(I − LM)‖2 = β
β+γ . This implies that the convergence rate

of the ILC algorithm is given by:

ν =
β

β + γ
(8.31)

From the last equation we can observe that by increasing γ the convergence rate
ν decreases. That is, by increasing γ we have a faster convergence of the ILC
algorithm (since smaller ν gives faster convergence of the ILC algorithm). In the
sequel, we will show that by increasing γ we decrease the steady-state relative
voltages. This way, we can prevent actuator saturation. However, as we show in
the sequel, the increase of γ has a negative effect on the steady-state tracking error.
From (8.8) we obtain:

e∞ = wd −Mu∞ (8.32)

By substituting (8.26) in (8.32) we obtain:

e∞ =
[
I −M

(
MTM + γI

)−1
MT

]
wd (8.33)
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The equation (8.33) can help us to estimate the steady-state wavefront error for
a desired wavefront, for the influence matrix M and for the chosen value of the
parameter γ. As we prove in Appendix section, the steady-state relative input and
the wavefront error are bounded as follows:

‖u∞‖2 ≤
1

2
√
γ
‖wd‖2 (8.34)

‖e∞‖2 ≤
γ

γ + σ2
36

‖wd‖2 (8.35)

From the analysis presented in this section, we are able to give a physical inter-
pretation of the design parameters β and γ, and to draw the following guidelines
for the tuning of the ILC algorithm.

8.3.2 Physical interpretation of the parameters of the ILC algo-
rithm and guidlines for its tuning

• From (8.34) we know that by increasing γ we decrease the upper bound on
the steady-state voltages. This physically means that by increasing γ we can
prevent the steady state voltages to saturate. At the same time, we know
that by increasing γ the ILC algorithm converges more rapidly.

• On the other hand, from (8.35) we see that by increasing γ the upper bound
on the steady state wavefront error increases. This physically means that by
increasing γ we degrade the accuracy of the wavefront correction/generation.

• From (8.35) we can deduce that when γ → 0, e∞ → 0. However, this will
never be achieved in practice since this condition only holds when there are
no model uncertainties (due to linearization, we always have model uncer-
tainties). Furthermore there is always measurement noise in the system.

• From (8.26) and (8.33) we see that the parameter β does not influence the
steady-state input and the steady-state wavefront error. However, from
(8.31) we have that by increasing β the convergence rate of the ILC algo-
rithm is slower and vice-versa. The parameter β can also be used to regu-
larize badly conditioned matrices M and consequently to improve the noise
immunity of the system [199; 265].

In this section, we have derived the ILC algorithm by assuming that at each con-
trol iteration k we are able to measure wk. That is, we have assumed that the
ILC algorithm is applied on-line. However, in Section 8.5.3. we will experimen-
tally show that with only one initial measurement of the membrane shape, and by
learning the control input off-line using the ILC algorithm, we are able to achieve
a relatively good performance of the AO system. Although the accuracy of the
wavefront generation using this off-line method is slightly worse than the on-line
method, the off-line method can produce a relatively small wavefront error in only
one control iteration.
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8.4 Identification of the influence function

In order to identify the linearized model of the DM around the working point A
(see Fig. 8.2), we introduce the following matrices:

P =
[
u1 u2 . . . uN

]
, D =

[
w1 w2 . . . wN

]
(8.36)

In (8.36), ui ∈ R48, i = 1, . . . , N , is a vector of random relative voltages varying
between 0% and ±30% (30% of relative voltages correspond to 80% of total volt-
ages, since the working point A is chosen at 50% of total voltages) and wi is the
membrane shape produced by ui. The influence matrix M is identified by solving
the following least-squares optimization problem:

min
M
‖D −MP‖2F (8.37)

where ‖ •‖F denotes the Frobenius norm [58] and N is a relatively large-number
(in our case N = 200). The random voltages ensure that P has full row rank, so
the solution of the optimization problem (8.37) is then given by M = DP †, where
P † = PT (PPT )−1 denotes the matrix pseudo-inverse.
The random voltages ensure that the mirror is persistently excited and that the
cross-coupling between the channels is captured by the identified model. In order
to determine wk and consequently to define D, we need to know WA. That is, we
need to know the membrane shape produced by the working point voltages. In
theory, the wavefront WA can be obtain by subtracting all static wavefront aberra-
tions (originating from the experimental setup when the voltages are not applied
to the DM) from the total measured wavefront. However, by applying the vector
of working point voltages UA at different time instants k, and by subtracting all
static wavefront aberrations from the measured wavefront, we will observe dif-
ferent WA

k . This is due to the measurement noise of the S-H WFS. We solve this
problem using the following strategy from [58]: we apply UA 30 times to DM.
Each time we measure the corresponding wavefront and subtract all static wave-
front aberrations. After that, we determine WA by averaging wavefronts from
these N = 30 measurements (assuming that the effect of the hysteresis of the DM
is not significant).

In Section 8.5.3 we will compare the dynamical behavior of the AO system with
the dynamical behavior of the model of the AO system that is based on the iden-
tified influence function M .

8.5 Experimental results

In the first part of this section we present experimental results that illustrate the
influence of β and γ on the dynamical behavior of the AO system. In the second
part we illustrate the ability of the AO system to generate/compensate some typ-
ical Zernike polynomial wavefront aberrations. In the third part we compare the
identified model of the DM with experimental results. Furthermore, we show that
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by taking one initial wavefront measurement and by applying the ILC algorithm
off-line, we are able to achieve a good performance of the AO system. Finally, in
the fourth part we compare the ILC algorithm with other control algorithms.

8.5.1 Dynamical behavior

In Fig. 8.3 we present experimental convergence rates of the wavefront error and
voltages for different values of β and γ. In this experiment, our goal is to make
the wavefront sensed by S-H WFS to be equal to a flat wavefront. In this case,
the desired total wavefront (desired membrane shape) for the ILC algorithm is:
Wd = −d, where d is the measurement of all static wavefront aberrations in the
AO system when the voltages are not applied to the DM. From Fig. 8.3 we see
that by increasing γ we decrease the norm of the steady-state voltages. That is,
by adjusting γ we can prevent actuator saturation. However, by increasing γ we
increase the steady-state wavefront error, that is, we degrade the accuracy of the
wavefront correction. We can also see that the convergence speed of the ILC algo-
rithm decreases as β increases. These experimental results confirm the theoretical
conclusions that we drew in section 8.3.

(a) (b)

(c) (d)

Figure 8.3: Analysis of the convergence of the wavefront from an arbitrary to a
flat wavefront, for different values of β and γ. (a) Convergence of the
norm of the tracking error for different γ; (b) Convergence of the norm
of the total voltages for different γ; (c) Convergence of the norm of the
tracking error for different β; (d) Convergence of the norm of the total
voltages for different β.
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8.5.2 Performance of the AO system

To demonstrate the performance of the AO system, we have generated several
wavefronts described by different Zernike modes. The details of the desired wave-
fronts are listed in Table 8.1.

Desired aberration Zernike Index P-V [λ] RMS [λ]
Astigmatism α4 0.34 0.1

Defocus α5 0.45 0.1
Trefoil α6 0.45 0.08
Coma α7 0.45 0.08

Table 8.1: desired wavefront details

The results of the wavefronts convergence are given in Fig. 8.4-8.8. We used the
following parameters of the ILC algorithm:β = 0.0005 and γ = 0.0001. From these
figures it can be concluded that the ILC algorithm guarantees relatively good
wavefront generation performance with a final RMS wavefront error of about
0.01λ for all the considered cases.

Figures 8.4-8.8. (a) Convergence of the norm of the wavefront error ‖ek‖2; (b)
Convergence of the total voltages ‖Uk‖2; (c) Converged voltages of each channel
of the DM; (d) Converged wavefront.

(a) (b)

(c) (d)

Figure 8.4: Flat wavefront generation.
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(a) (b)

(c) (d)

Figure 8.5: Astigmatism generation.

(a) (b)

(c) (d)

Figure 8.6: Defocus generation.
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(a) (b)

(c) (d)

Figure 8.7: Trefoil generation.

(a) (b)

(c) (d)

Figure 8.8: Coma generation.
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8.5.3 Comparison between the model and the experimental setup

Using the identified influence function M as a model of the DM, we have sim-
ulated the dynamical behavior of the AO system. We assume that the desired
wavefront is a flat wavefront. We compare such a simulated behavior with the
experimental results. The comparison is presented in Fig.8.9.

(a) (b)

Figure 8.9: Comparison of the model with the experimental results. (a) Conver-
gence of the norm of the wavefront error ‖ek‖2; (b) Convergence of the
norm of the total voltages ‖Uk‖2 .

As it can be observed from Fig. 8.9, the identified model of the influence func-
tion gives a relatively good prediction of the dynamical behavior of the real AO
system. This motivates us to perform the following experiment. For a desired
wavefront equal to the flat wavefront and for one initial measurement of wave-
front aberrations, we run the iterative learning control algorithm off-line. That
is, we run it without taking any additional measurements except the initial one.
After the ILC algorithm has converged, we apply the converged voltages to the
DM. The converged wavefront (steady-state wavefront) is shown in Fig. 8.10. As
a comparison, we show the converged wavefront in the case when the ILC algo-
rithm was applied on-line.

(a) (b)

Figure 8.10: Comparison of the off-line with the on-line application of the ILC al-
gorithm. (a) Converged wavefront when the ILC algorithm is applied
off-line; (b) Converged wavefront when the ILC algorithm is applied
on-line.
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The RMS value of the steady state wavefront error for the case when the ILC algo-
rithm is applied off-line is 0.015λ. On the other hand, the RMS value of the steady
state wavefront error when the ILC algorithm is performed on-line is 0.011λ.
These results show us that using the identified model and the ILC algorithm, we
can generate/correct wavefront aberrations with only one initial measurement.

8.5.4 Comparison of ILC with other control algorithms

As a final demonstration of the advantages of the ILC algorithm, we compare it
with the Non-Negative Least Squares (NNLS) control algorithm of [257]. Fur-
thermore, we compare the proposed ILC algorithm with the Steepest Descent ILC
algorithm [199]:

uk+1 = uk + αMTek (8.38)

where α = 0.3 is a step size. In this case the desired wavefront Wd is astigmatism
of 0.1λ RMS. The results are presented in Fig. 8.11. In order to distinguish the
proposed ILC algorithm from other algorithms, in this subsection we call it the
optimal ILC algorithm. We have used β = γ = 0.0001.

Figure 8.11: Comparison of different control algorithms

As it can be observed from Fig. 8.11, the optimal ILC algorithm outperforms other
two control algorithms. First of all, the optimal ILC algorithm converges in only
5 control iterations, while the NNLS converges after 10 iterations and the steepest
descent ILC algorithm does not converge in 20 iterations. Next, the optimal ILC
algorithm reaches the smallest value of the steady-state tracking error.

8.6 Conclusion

In this Chapter we have proposed an Iterative Learning Control (ILC) algorithm
for controlling the shape of a membrane DM. We have studied the stability and
convergence rate of the novel algorithm and on the basis of this study we have
given a physical interpretation of the controller parameters. This interpretation
enabled us to derive a simple tuning procedure that in practice guarantees fast
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and stable convergence of the wavefront error. The experimental results show
that by using the ILC algorithm we are able to achieve a relatively small value of
the residual wavefront, while at the same time we are able to effectively control the
saturation of voltages. Furthermore, the experimental results show that the ILC
algorithm produces a small residual wavefront when it is applied off-line with
only one initial measurement.

8.6.1 Appendix

In this appendix we give a proof of (8.34) and (8.35). Using (8.18) we can express
(8.26) and (8.33) as follows:

u∞ = E2KE
T
1 wd (8.39)

e∞ = E1SE
T
1 wd (8.40)

where

K =

[
Σ(Σ2 + γI)−1

0

]
, S = I − Σ2

(
Σ2 + γI

)−1
(8.41)

From (8.39), (8.40) and (8.41) we have:

‖u∞‖2 ≤
∥∥E2KE

T
1

∥∥
2
‖wd‖2 (8.42)

‖e∞‖2 ≤
∥∥E1SE

T
1

∥∥
2
‖wd‖2 (8.43)

From (8.41) we see that the singular values of E2KE
T
1 have the following form:

σi
σ2
i + γ

(8.44)

where σi is the ith singular value of M . The 2-norm of E2KE
T
1 is equal to its

maximal singular value. Consider the function f(x) = x
x2+γ , where x is a real

number. The maximum of f(x) is equal to 1/(2
√
γ) and it is achieved for x =

√
γ.

When x = σi, f(σi) is equal to (8.44). From the above analysis, we have:

max
σi

σi
σ2
i + γ

≤ 1

2
√
γ

(8.45)

When a singular value σi is equal to
√
γ, then

∥∥E2KE
T
1

∥∥
2

= 1
2
√
γ . From (8.42)-

(8.45) we obtain (8.34). From (8.41) we see that the singular values of E1SE
T
1 are

given by:

γ

σ2
i + γ

(8.46)
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From (8.46) we see that the maximal singular value of E1SE
T
1 (that is the 2-norm)

is given by: ∥∥E1SE
T
2

∥∥
2

=
γ

σ2
36 + γ

(8.47)

where σ36 is the minimal singular value of M . Using (8.43) and (8.47) we obtain
(8.35). This completes the proof.





9 CHAPTER

Identification of a dynamical model
of a thermally actuated deformable

mirror

Using the subspace identification technique, in this Chapter we iden-
tify a finite-dimensional, dynamical model of a recently developed

prototype of a thermally actuated deformable mirror. The main advan-
tage of the identified model, over the models that are described by partial
differential equations, is its low complexity and low dimensionality. Con-
sequently, the identified model can be easily used for high performance
feedback or feed-forward control. The experimental results show a good
agreement between the response of the model and the measured response
of the thermally actuated deformable mirror.
The model identified in this Chapter is used in Chapter 10 to develop the
predictive controller for the compensation of thermally induced wave-
front aberrations.

9.1 Introduction

In a large variety of Adaptive Optics (AO) applications [2; 20; 21; 169; 190; 266;
267; 268; 269], slowly-varying or static wavefront aberrations must be corrected
accurately. Thermally Actuated Deformable Mirrors (TADMs) are suitable for
these AO applications because they have a high position resolution with high
reproducibility [26]. Furthermore, they are less expensive than other types of De-
formable Mirrors (DMs), such as membrane or piezoelectric DMs [21; 169].

In [20], a TADM has been used to correct static wavefront aberrations. In the
above cited paper, a static (steady-state) model of the TADM has been identified,
and on the basis of this model, a control action for the TADM has been derived as
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the solution of a constrained least-squares problem. However, this control strat-
egy requires that the time between two consecutive control iterations is approxi-
mately equal to the settling time (or the rise time) of a TADM. Consequently, this
wavefront correction strategy is relatively slow and its performance might be ad-
ditionally degraded in the case of time-varying wavefront aberrations.

To achieve fast correction of both static and time-varying wavefront aberrations,
the time between control iterations has to be significantly smaller than the settling
time of a TADM. In such cases, a dynamical model of a TADM has to be developed
to accurately correct wavefront aberrations [245; 270]. Once this dynamical model
has been obtained, model based control strategies [271; 272] can be employed to
maximize the performance of the wavefront correction. Apart from the control
perspective, a dynamical model of the TADM is important because it can be used
to simulate the dynamical behavior of the AO system before the real system has
been built.

A dynamical model of a TADM has to meet two requirements. First, it has to
accurately capture the dynamics of TADM. Second, to be used for control, it has
to be relatively simple [260; 273] and preferably low dimensional. However, the
dynamics of TADMs are governed by the thermoelastic Partial Differential Equa-
tions (PDEs) [57]. Furthermore, in the case of the TADMs that have been proposed
in [2; 169], the thermoelastic equations have to be coupled with the biharmonic
plate equation [180]. The dynamical model that is based on these PDEs is infinite-
dimensional and as such is too complex to be used for control. To apply model
based control strategies of [271; 272], a more compact, finite dimensional model
needs to be developed. One way to develop such a model, would be to discretize
thermoelastic PDEs and corresponding boundary conditions using the Finite Ele-
ment Method (FEM) [274]. However, the FEM can be applied only if all physical
parameters of the TADM are known. Furthermore, the finite element model is
usually high dimensional and thus is still relatively complex to be used for con-
trol.

In this Chapter, we follow another way of model building that is based on system
identification techniques [58]. Accordingly, from experimental data we identify a
low-order, state-space model of a recently developed prototype of a TADM. This
device was developed by Eindhoven University of Technology [2; 26]. We have
identified the dynamical model of the TADM using the subspace identification
technique [58; 250]. Due to its low-dimensionality, the identified model can be
easily used to design feed-forward or feedback model based controllers. As it will
be shown later, the experimental results show a good match between the response
of the identified state-space model and the response of the TADM. The model
identified in this Chapter is used in Chapter 10 to develop the predictive controller
for thermally induced wavefront aberrations.

This Chapter is organized as follows. In Section 9.2, on the basis of the experi-
mental results we define the model of the TADM. In Section 9.3 we present the
identification results. Finally, in Section 9.4 we present conclusions.
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9.2 Model definition

The sketch of the TADM is shown in Fig. 9.1. The mirror B and the backplate
A, are connected with 19 thermo-mechanical actuators C. The mirror diameter is
30 [mm] and the 19 actuators are placed inside of a circle with a diameter of 25
[mm]. The actuators consist of aluminum rods with heating coils warped around
them. When applying a voltage to an actuator it heats up and it elongates. As it
elongates, it exerts a mechanical force that deforms the mirror and a supporting
back plate A. To identify the model of the TADM, we built an experimental setup
where the surface of the TADM is illuminated by coherent light coming from a
semiconductor laser of wavelength λ = 638 [nm]. The wavefront reflected by
TADM is measured by a Shack-Hartmann Wavefront Sensor (S-H WFS) (Thorlabs
WFS S300-14AR, 1.3 Mpixel, λ/50 rms accuracy). The mirror and the S-H WFS are
optically conjugate through a relay system consisting of two spherical lenses.
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Figure 9.1: Sketch of the thermally actuated DM

In general, the sampling period should be 5-10 times shorter than the rise time of
the TADM [58]. Our experimental results show that the rise time of the TADM
is approximately 20 [s], which is in agreement with the results reported in [2].
Consequently, we chose a control and measurement sampling period of 2 [s] [58].
In this chapter, k will denote a discrete time instant corresponding to this sam-
pling period. The wavefront that is produced by the TADM, at the time instant
k, and that is sensed by the S-H WFS, is represented using a Zernike polynomial
expansion (Noll [263]):

Φ(x, y, k) =

36∑
i=1

αi(k)Zi(x, y)

where Φ(x, y, k) is the wavefront, αi(k) is the ith coefficient of the Zernike poly-
nomial expansion and Zi(x, y) is the ith Zernike polynomial. All static wavefront
aberrations that originate from the initial non-flatness of the TADM and from im-
perfections and misalignments of the optical components in the system, are sub-
tracted from the measured wavefront.
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The model of the TADM is identified using the following procedure [58]. First, we
determined which Zernike coefficients were excited when we randomly actuated
the TADM. It helped us to define the outputs of the model. Next, we investigated
the linearity of the TADM. On the basis of this analysis, we postulated a state-
space model of the TADM. In the final step, we identified the state-space model
and assessed its quality.

To constrain the outputs of the model, we randomly actuated all 19 actuators over
a certain time period and recorded the amplitude of all 36 measured Zernike coef-
ficients. By analyzing this measurement data, we concluded that during the ran-
dom actuation of the TADM, the first 10 Zernike coefficients were excited while
others did not show a significant contribution to the measured wavefront. There-
fore the output of the model should consists of the first 10 Zernike coefficients:
y(k) =

[
α2(k) α3(k) . . . α10(k)

]T (where we neglect the first coefficient, i.e.,
piston). The voltage applied to the ith actuator (input of the model) will be de-
noted by vi (varies between 0% and 100% of the maximum voltage).

To analyze the step response, we applied the step functions of different magni-
tudes to the actuators and measure each response. Figure 9.2 shows the measured
responses of the third actuator.

(a) (b)

Figure 9.2: Step response of the TADM when the step functions are applied to the
third actuator: (a) The RMS ‖y(k)‖2; (b) Steady-state value of the RMS
‖y(∞)‖2

From Fig. 9.2(b) we see that the steady-state deformation of the TADM is a quadratic
function of inputs. This is an experimental confirmation that the heat generated at
the actuator is a quadratic function of the applied voltages [2]. As we show later,
this nonlinearity can be eliminated from the model, by defining new inputs that
are squares of the voltages applied to the actuators. Next, we tested the super-
position principle between several actuators. The result of the superposition test
between actuators 2 and 4 is shown in Fig. 9.3. We applied a 40% voltage step to
actuator 2 and we measured the response (v2 in Fig.9.3). Next, we applied a 40%
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voltage step to actuator 4 and we measured the response. Finally, we actuated
actuators 2 and 4 together (v2&v4 in Fig.9.3) and measured the response.

(a) (b)

Figure 9.3: Test of the superposition principle: (a) 5th Zernike coefficient (b) The
RMS of the total measured wavefront

The experimental results shown in Figs. 9.2 and 9.3, indicate that the TADM can
be modeled as a linear state-space model in which the inputs are squares of the
voltages:

x(k + 1) = Ax(k) +Bu(k) (9.1)
y(k) = Cx(k) + e(k) (9.2)

where x(k) ∈ Rn is the state, n is the system order,
u(k) =

[
(v1(k))

2
(v2(k))

2
. . . (v19(k))

2
]

is the input vector of the squared
voltages, A ∈ Rn×n, B ∈ Rn×19 and C ∈ R9×n are the system matrices and
e(k) ∈ R9 is a S-H WFS measurement noise.

The identification problem of the state-space model (9.1)-(9.2), can be formulated
as follows. From the sequence of the input-output data: {y(k),u(k)}, k = 0, 1, . . . , N ,
estimate the system order n and identify the system matricesA,B andC up to a similarity
transformation.

The length N of the data sequence {y(k),u(k)} should be chosen such that the
total measurement time is at least ten times longer than the time constant (or
roughly the rise time) of the TADM [58]. In general, the larger the length of the
data sequence, the better the quality of the identified model. We chose N = 450.
The estimates of A, B and C will be denoted by Â, B̂ and Ĉ, respectively. To
identify the state-space model we used the predictor based subspace identifica-
tion method [245; 250]. Similar identification results can be obtained using other
subspace identification techniques [58].

We use the following strategy to assess the quality of the identified model. First,
we generated an input sequence that is different from the input sequence that was
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used for identification. Let such an input sequence be denoted by {u2(k)}. Then,
using this input we actuated the TADM and generated the output data sequence
{y2(k)}. From this input-output data, we estimate the initial state of (9.1)-(9.2)
using the following methodology. By substituting the system matrices with their
estimates, from (9.1)-(9.2) we obtain:

y
2

= Ôx(0) + D̂u2 + e2 (9.3)

where

y
2

=


y2(0)
y2(1)

...
y2(M)

 ,u2 =


u2(0)
u2(1)

...
u2(M)

 , e2 =


e2(0)
e2(1)

...
e2(M)

 , Ô =


Ĉ

ĈÂ
...

ĈÂM



D̂ =


0 0 0 . . . 0

ĈB̂ 0 0 . . . 0

ĈÂB̂ ĈB̂ 0 . . . 0
...

. . . . . .
ĈÂM−1B̂ ĈÂM−2B̂ . . . ĈB̂ 0

 (9.4)

and where M should be chosen such that the matrix Ô has full column rank. The
initial state x(0) is estimated by solving:

min
x(0)

∥∥∥z− Ôx(0)
∥∥∥2

2
(9.5)

where z = y
2
− D̂u2. The solution of (9.5) is x̂(0) = Ô†z, where Ô† = (ÔT Ô)−1ÔT

denotes the matrix pseudo-inverse. Starting from x̂(0) and using {u2(k)}, we
simulate the identified state-space model (9.1)-(9.2) (the system matrices are sub-
stituted by their estimates). This way, we generate the predicted output sequence
{ŷ2(k)}. The quality of the identified model is assessed by comparing the pre-
dicted output sequence with the measured one. This quality is expressed using
the Variance Accounted For (VAF) [58]:

V AF = max

{
0,

(
1−

1
L

∑L
k=0 ‖y2(k)− ŷ2(k)‖22
1
L

∑L
k=0 ‖y2(k)‖22

)
× 100%

}
(9.6)

where L is the length of the data sequence. If VAF is equal to 100% it means a
perfect match between the output that is predicted by the model and the TADM’s
actual response.

9.3 Identification results

As a first validation, we identified the state-space model when only the central
actuator 3 is active (see Fig. 9.1). The input used for identification and the corre-
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sponding output are given in Fig.9.5(a). The order of the state-space model (9.1)-
(9.2) is estimated from the singular values and VAF plots given in Fig. 9.4. By
identifying the gaps between the singular values that are shown in Fig. 9.4(a), we
concluded that a relatively good state order estimate is n = 4 [58]. Figure 9.4(b)
also confirms this conclusion, where we see that the value of the VAF for n = 4
is 93%. On the basis of the identified state-space model, we calculated the trans-
fer function from v2

3 to α3. Figure 9.5(b) shows a Bode plot [271] of this transfer
function. In Figs. 9.5(c) and 9.5(d), we compared the dynamical response of the
TADM and the output of the identified state-space model. As it can be seen from
these figures, the identified model of the 4th order is able to predict the behavior
of the DM with a relatively good accuracy.

Next, we identified the state-space model when all 19 actuators are active (the
inputs used for identification were similar to the one that is shown in 9.5(a)). The
order selection is performed on the basis of the singular values and VAF plots that
are shown in Figures 9.6(a) and 9.6(b). From these figures we concluded that a
relatively good state order estimate is n = 40. The value of VAF corresponding
to this state order estimate is roughly 90%. The prediction performance of the
identified state-space model (for n = 40) is illustrated in Fig. 9.6(c) and Fig. 9.6(d).
As can be observed from these figures, the state-space model (9.1)-(9.2) of the 40th

order can predict relatively well the dynamic response of the TADM.

(a) (b)

Figure 9.4: (a) The singular values of the data matrix used in the identification;
(b) The VAF values for different order n of the state-space model (9.1)-
(9.2).
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(a) (b)

(c) (d)

Figure 9.5: Identification results when only actuator 3 is active: (a) The input used
for identification and the rms of the output; (b) Bode plot of the trans-
fer function from v2

3 to α3; (c) and (d) Prediction and measurements of
Zernike coefficients.
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(a) (b)

(c) (d)

Figure 9.6: Identification results when all 19 actuators are active: (a) Singular val-
ues of the data matrix used for identification; (b) VAF for different
model orders n; (c) and (d) the prediction performance of the iden-
tified model.

9.4 Conclusion

We have used the subspace identification technique to identify a low order dy-
namical model of a prototype of a thermally actuated deformable mirror (TADM).
We have demonstrated that the identified state-space model of the 40th order
can accurately describe the dynamical behavior of the mirror (90% match). This
contrasts to other modeling approaches that describe dynamics of TADMs us-
ing partial differential equations. Furthermore, the order of the identified model
can be additionally decreased using model reduction techniques [245]. The pro-
posed identification procedure is general and it can be used to identify dynamical
models of other types of TADMs (for example, the types of TADMs proposed in
[20; 21; 169]). Due to its low-dimensionality, the identified model can be used to
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develop efficient and simple model based controllers.

The drawback of the proposed identification approach is that the structure of the real system
is not preserved in the identified model. That is, the states of the identified model do not
correspond directly to the physical states (temperatures) of the TADM.



10 CHAPTER

Predictive control of thermally
induced wavefront aberrations

In this chapter we experimentally demonstrate the proof of concept for
predictive control of thermally induced wavefront aberrations in high-

power optical systems. On the basis of the model of thermally induced
wavefront aberrations and using only past wavefront measurements, the
proposed adaptive optics controller is able to predict and to compensate
the future aberrations. Furthermore, the proposed controller is able to
correct wavefront aberrations even when some parameters of the predic-
tion model are unknown. The proposed control strategy can be used in
high power optical systems, such as optical lithography machines, where
the predictive correction of thermally induced wavefront aberrations is a
crucial issue.

10.1 Introduction

In high power optical systems almost each element absorbs a portion of the beam’s
energy. The absorbed energy creates thermoelastic deformations and variation of
refractive index of optical elements [22; 269; 275]. Consequently, it induces wave-
front aberrations in the system. In this thesis, the aberrations caused by heating of
optical elements are called the Thermally Induced Wavefront Aberrations (TIWA).

TIWA can limit the performance of a large variety of high power optical systems.
For example, in gravitational wave interferometers high power lasers induce aber-
rations that can significantly decrease the sensitivity of the instruments [20; 21; 22].
TIWA can also degrade the beam quality of the lasers used in material processing
[23; 24]. Furthermore, due to a constant demand for higher productivity and less
production costs, the power transmitted through the projection optics of lithogra-
phy machines constantly increases. Consequently, the energy absorbed by projec-
tion optics induces wavefront aberrations that can compromise the resolution of
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the system [7; 9; 10; 11; 12]. In the next generation of optical lithography machines,
that will use Extreme UltraViolet (EUV) sources, degradation of resolution due to
the heating of optical elements will become even more severe [16; 17; 18].

Several types of active optical devices and Adaptive Optics (AO) concepts have
been proposed for compensation of thermally induced aberrations in gravitational
wave detectors [20; 21; 253; 269; 276]. In optical lithography machines, active opti-
cal elements have been introduced for correction of wavefront aberrations [7; 12].
Furthermore, one of the possible methods for correction of TIWA in the next gen-
eration of lithographic machines (EUV lithographic - EUVL machines), is to use
Deformable Mirrors (DMs) and AO techniques [2; 26; 277]. However, correction
of TIWA in lithographic machines might not be possible using the standard AO
techniques [33; 34]. This is because the standard AO techniques require that a
WaveFront Sensor (WFS) and a DM are connected using a real-time feedback. This
condition is not fulfilled in lithography machines because wavefront aberrations
can be measured only before and after the exposure of certain number of wafers
[7]. Furthermore, because the measurement time decreases the wafer throughput,
the total measurement time should be as small as possible. Ideally, the wavefront
should be measured only at the beginning of the exposure process and when ex-
posure conditions change. Obviously, the classical feedback control algorithms,
on which most of the AO techniques rely upon, cannot be applied in this scenario.
Hence, a new type of adaptive optics control algorithms needs to be developed. These al-
gorithms should be able to predict the future behavior of the wavefront aberrations and to
compensate them using only past measurement data.

In this Chapter we experimentally demonstrate the proof of concept for predictive
control of thermally induced aberrations. On the basis of the model of TIWA
and using only past wavefront measurements, the proposed controller is able to
predict and to compensate the future wavefront aberrations. Furthermore, the
proposed AO controller is able to correct wavefront aberrations even when some
parameters of the prediction model are unknown. Beside optical lithography, the
proposed predictive controller can be used in other high power optical systems
where it is not possible to establish a real-time feedback between the controller
and the wavefront sensor.

This Chapter is organized as follows. In Section 10.2, we present a problem formu-
lation and we describe an AO experimental setup. In Section 10.3 and in Section
10.4, we develop the predictive control algorithm and present the experimental
results, respectively. In Section 10.6, the conclusions are drawn.

10.2 Problem description and experimental setup

Optical lithography is a technology that uses electromagnetic radiation to project
mask patterns onto a photo-resist on a semiconductor wafer. The main compo-
nents of a lithographic machine are: source, illumination optics, reticle stage (with
a mask), projection optics and the wafer stage [1].

Because it is not possible to establish a real-time feedback between a wavefront
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sensor and a controller, the correction of TIWA in a lithography machine should
be done in a predictive manner. Namely, the controller should be able to anticipate
the future wavefront aberrations and to correct them. Obviously, the anticipation
of the future wavefront aberrations must be done on the basis of the model of the
TIWA. Furthermore, in order to do accurate prediction, the controller also needs
to use past wavefront measurements (the main reason why the controller needs
past wavefront measurements for prediction will be explained in Section 10.3).

The model of TIWA describes how exposure conditions influence the dynamical
behavior of the wavefront aberrations. The exposure conditions that dominantly
influence the wavefront aberrations are numerical aperture, source shape, reticle
and mask pattern diffraction, exposure dose, throughput and resist stack [7]. In
this thesis these exposure conditions will be called the inputs of the TIWA model. The
TIWA model consists of two main parts [7]. The first part relates the inputs with
the distribution of exposure energy (intensity distribution) over the surfaces of the
optical elements. This relation is established by computing the full mask diffrac-
tion orders which are then convoluted with the illumination source to obtain the
diffraction pattern [7]. The computed diffraction pattern determines the intensity
distribution on the optical elements. The second part consists of thermoelastic
Partial Differential Equations (PDEs), that relate the intensity distribution with
the temperature change and deformations of the optical elements [22; 57].

The model of TIWA can be obtained using two approaches. The first approach re-
lies on first principles modeling (for example, deriving the model by discretizing
the thermoelastic equations using the finite element method). The second model-
ing approach is to identify the model directly from experimental data. During the
testing and calibration of a lithographic machine, wavefront measurements can
be collected and they can be used to estimate the model using system identifica-
tion techniques [58]. However, during the exposure of the wafers, the exposure
conditions are usually different than the ones that were used in machine calibra-
tion and testing (for example, a mask that is used during the exposure is usually
different from the mask that was used during calibration). In mathematical terms,
this means that the inputs of the TIWA model are different from the inputs that
were used in model estimation. There are two ways to overcome this problem. If
the new exposure conditions are precisely known then the model can be updated.
For example, if the mask is changed, then the intensity distribution on optical
elements changes. This new intensity distribution can be calculated using the
knowledge of the mask’s geometry [7]. However, this is a computationally chal-
lenging problem that needs to be solved in real-time [1]. Another approach, that
we propose in this thesis, is to estimate unknown inputs or to estimate intensity
distribution on optical elements from the measurements of wavefront aberrations.

To demonstrate the proof of concept of predictive wavefront correction, we built
an experimental AO system that is illustrated in Figure 10.1.
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collimator
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MDM
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Figure 10.1: Experimental setup consisting of two DMs that was used to demon-
strate the performance of the predictive control algorithm.

The AO system consists of two DMs. The first DM is a commercial Membrane
DM (MDM) produced by Adaptica Srl [261]. The MDM has 48 actuators and it
is used as a wavefront correction mirror. This mirror corresponds to an active
optical element in a lithographic machine that is used for wavefront correction.
The second mirror is a prototype of a Thermally Actuated DM (TADM) that was
developed by Eindhoven University of Technology [2; 26]. The TADM consists
of the two cylindrical plates that are connected by 19 actuators. The actuators
consist of aluminum rods with heating coils warped around them. When voltage
is applied to an actuator it heats up and elongates. As it elongates, it exerts a
mechanical force that deforms the mirror and a supporting back plate (for more
details see [26]). The TADM is used to simulate the effect of TIWA in a lithographic
machine. Accordingly, its inputs (voltages applied to actuators) serve as exposure
conditions that determine the wavefront aberrations.

The light of a semiconductor laser, working at the wavelength of λ = 638 [nm], is
first collimated and then reflected by the TADM. The reflected light goes through
the Beam Splitter (BS) and is again reflected by the MDM. The wavefront, at the
surface of the MDM, is measured by a Shack-Hartmann Wavefront Sensor (S-H
WFS) (Thorlabs WFS S300-14AR, 1.3 Mpixel, λ/50 rms accuracy). The MDM is
optically conjugate to the S-H WFS (this is achieved using a relay system consist-
ing of two spherical lenses).

A predictive controller is implemented on a standard Personal Computer (PC).
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The PC sends two signals. One signal, that is calculated by the predictive con-
troller, is sent to MDM. At the same time, another actuation signal is sent to TADM
to introduce dynamical wavefront aberrations in the system. The predictive con-
troller and the controller for TADM are implemented in MATLAB. The predictive
controller cannot influence the signal that is sent to TADM. The PC receives mea-
surements from the S-H WFS. However, only at certain discrete time instants, the
predictive controller is able to receive wavefront measurements. In order to indi-
cate this, the line connecting the WFS and PC is dashed. This way, we simulate
the situation in a real lithographic machine, where the wavefront aberrations can
be measured only before and after the exposure process. All the connections in
the system are established using LabVIEW environment.

In the AO system, the control sampling period is 2 s. This value is chosen on
the basis of the step response analysis of the TADM (previously characterized in
Chapter 9). The measured wavefront at the discrete time instant1 k, is represented
using a Zernike polynomial expansion (Noll [263]):

Φ(x, y, k) =

36∑
i=1

αi(k)Zi(x, y) (10.1)

where Φ(x, y, k) is the wavefront, αi(k) is the ith Zernike expansion coefficient
and Zi(x, y) is the ith Zernike polynomial. In Chapter 9, it has been experimen-
tally demonstrated that TADM can produce variation of essentially the first 9
Zernike coefficients (omitting the piston). We therefore focus on correction of
these 9 Zernike coefficients that will be grouped in a vector (see also Remark 10.1):

yT (k) =
[
α2(k) . . . α10(k)

]T (10.2)

The state-space model of the TADM has been identified in Chapter 9 and has the
following form:

x(k + 1) = Ax(k) +Bv (10.3)
yT (k) = Cx(k) (10.4)

where x(k) ∈ R6 is a state vector, v ∈ R is an input, and A ∈ R6×6, B ∈ R6×1 and
C ∈ R9×6 are the identified system matrices.
The input of the TADM is v = r2

3 , where r3 is a voltage applied to the 3rd actuator
of the TADM. For simplicity, we actuate only one channel of the TADM (the gen-
eralization for all 19 actuators of the TADM is straightforward).
In Chapter 9 it has been demonstrated that the state-space model of the 4th order
(the dimension of the state x(k)) is able to relatively accurately predict the dynam-
ical behavior of the TADM. However, in order to achieve even better prediction
accuracy, in this Chapter we are using the identified model of the 6th order.

From the prediction point of view, the model of the TADM (10.3)-(10.4) represents
the model of TIWA in a lithographic machine. Conceptually, the input v of the
state-space model (10.3)-(10.4) represents the exposure conditions that are inputs

1The total time between k and k + 1 is equal to the sampling period.
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of the wavefront aberrations model (another modeling option is to consider v as
an intensity distribution on optical elements, however, we will not develop this
idea in this thesis). This input will be called the disturbance input. We assumed that
the disturbance input is time independent because in a real system, exposure con-
ditions do not change during the exposure of a relatively large number of wafers.
Because during exposure the light source is turned on and off with high tem-
poral frequency, the intensity distribution on optical elements oscillates in time.
However, it can be easily shown that the dynamical response of the thermoelastic
system of PDEs to a high frequency intensity distribution can be approximated
by response to a static intensity distribution. That is, from the modeling point of
view high frequency intensity distribution can be approximated by a static inten-
sity distribution.
When however the exposure conditions change, the intensity distribution also
changes. In the AO setup, this can be simulated by changing the magnitude of the
voltage v that is applied to the TADM.
Physically speaking, the state vector x(k) corresponds to temperatures of the op-
tical elements in a lithography machine. That is, it corresponds to the states of the
TIWA model.

The model of the MDM has the following form [257; 258]:

yM (k) = Mu(k), u(k) =
[
q2
1(k) q2

2(k) . . . q2
48(k)

]T (10.5)

where qi(k) is a voltage applied to the ith actuator of the MDM, yM (k) ∈ R9 is a
shape of the MDM described by the 9 Zernike coefficients and M is the influence
matrix (see also Remark 10.1). The vector u(k) ∈ R48 will be called the control input.
We identified M using the identification procedure explained in [260; 273]. The
total wavefront y(k), that is measured by the S-H WFS, is a sum of the wavefronts
produced by the two DMs:

y(k) = yT (k) + yM (k) (10.6)

In reality the total wavefront y(k) is corrupted by a S-H WFS measurement noise.
However, for simplicity in (10.6) we neglect the effect of the S-H WFS measure-
ment noise. Combining (10.3), (10.5) and (10.6), we arrive at the model of the
experimental setup:

x(k + 1) = Ax(k) +Bv (10.7)
y(k) = Cx(k) +Mu(k) (10.8)

In order to define the prediction problem, we need to define the past and the
future horizons. At the discrete time instant k, the past horizon is the set of discrete-
time instants {k − p, k − p + 1, . . . , k − 1, k} and the future horizon is the set {k +
1, k+ 2, . . . , k+ f}, for some appropriately chosen values of p and f . The past and
the future horizons are illustrated in Figure 10.2.
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Figure 10.2: Past, present and future.

Next we define the following vectors:

vp =


v
v
...
v


︸︷︷︸

p entries of v

, up =


u(k − p)

u(k − p+ 1)
...

u(k)

 , yp =


y(k − p)

y(k − p+ 1)
...

y(k)

 (10.9)

The vectors vp ∈ Rp, up ∈ R48(p+1) and yp ∈ R9(p+1) will be called the past distur-
bance input, the past control input and the past wavefront measurement, respectively.
Similarly, we define the following vectors:

vf =


v
v
...
v


︸︷︷︸

f entries of v

,uf =


u(k + 1)
u(k + 2)

...
u(k + f)

 , yf =


y(k + 1)
y(k + 2)

...
y(k + f)

 (10.10)

The vectors vf ∈ Rf , uf ∈ R48f and yf ∈ R9f will be called the future disturbance
input, the future control input and the future wavefront, respectively. We assumed
that the same disturbance input v is an element of both vp and vf because in a
lithography machine the exposure conditions do not change for several hours.
The first predictive control problem is formulated as follows:

Predictive control problem 1. Using the past wavefront measurements, past con-
trol inputs, past and future disturbance input, and the model (10.7)-(10.8), at the
time instant k find the future control input that will correct future wavefront aber-
rations.

In the second predictive control problem, we will be interested in correction of



184 Chapter 10: Predictive control of thermally induced wavefront aberrations

wavefront aberrations when the disturbance input is not known a priori. This
case corresponds to the scenario when exposure conditions in a lithographic ma-
chine are either not modeled or they are not known a priori.

Predictive control problem 2. Using the past wavefront measurement, past control
input, and the model (10.7)-(10.8), at the time instant k estimate the disturbance
input v and find the future control input that will correct future wavefront aber-
rations

10.3 Predictive control strategies

We solve the predictive control problems by deriving an output predictor from
the state-space model (10.7)-(10.8) [58]. Similar predictive control strategy can be
found in [278]. From (10.7)-(10.8) we have:

Opx(k − p) = yp − Ipvp −Dpup (10.11)

where yp, vp and up are defined in (10.9) and

Op =


C
CA

...
CAp

 , Ip =


0 0 . . . . . .
CB 0 . . . . . .
CAB CB 0 . . .

...
. . .

CAp−1B CAp−2B . . . CB

 ,

Dp =



M 0 0 . . . 0
0 M 0 . . . 0

0 0 M
. . .

...
...

. . . . . . 0
0 . . . . . . 0 M


︸ ︷︷ ︸

p+1 blocks

(10.12)

where Op ∈ R9(p+1)×6, Ip ∈ R9(p+1)×p and Dp ∈ R9(p+1)×48(p+1). In (10.12), the
matricesA,B,C andM are the system matrices of the model (10.7)-(10.8). In order
to ensure that equation (10.11) can be uniquely solved for x(k− p), the length p of
the past horizon has to be larger than the observability index [279] of the system
(10.7)-(10.8). That is, p has to be large enough such that Op has full column rank.
Assuming that this is the case, from (10.11) we have:

x(k − p) = O†p
(
yp − Ipvp −Dpup

)
(10.13)

where O†p denotes the pseudo-inverse of Op. From (10.3) we have:

x(k) = Apx(k − p) +Rp−1vp (10.14)
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where Rp−1 =
[
Ap−1B Ap−2B . . . AB B

]
. Substituting (10.13) in (10.14),

we obtain:

x(k) = ApO†pyp −ApO
†
pDpup +

(
Rp−1 −ApO

†
pIp

)
vp (10.15)

Similarly to (10.11), we have:

yf = Of−1Ax(k) + Ifvf +Df−1uf (10.16)

where

Of−1 =


C
CA

...
CAf−1

 , If =


CB 0 . . . . . .
CAB CB 0 . . .

...
. . . . . .

CAf−1B CAf−2B . . . CB

 ,

Df−1 =



M 0 0 . . . 0
0 M 0 . . . 0

0 0 M
. . .

...
...

. . . . . . 0
0 . . . . . . 0 M


︸ ︷︷ ︸

f blocks

(10.17)

Substituting (10.15) in (10.16), we obtain:

yf =Of−1A
p+1O†pyp −Of−1A

p+1O†pDpup −Of−1A
p+1O†pIpvp︸ ︷︷ ︸

The effect of the initial state x(k−p)

+Of−1ARp−1vp + Ifvf +Df−1uf (10.18)

The equation (10.18) tells us how the future wavefront depends on the past wave-
front, past and future disturbance inputs and past and future control inputs. This
equation will be called the prediction equation. The first three therms in the predic-
tion equation originate from the initial state x(k − p) in the system (10.7)-(10.8).
That is, in the general case, the prediction cannot be done only on the basis of the
model but the past wavefront measurements have to be taken into account. In the
special case when x(k − p) = 0 (that is, when initially the system is in the ther-
mal equilibrium), the prediction equation can be simplified by neglecting the first
three terms. In this special case, we do not need any past wavefront measurements
to do the prediction.

The observability index of the identified model (10.7)-(10.8) is 2. That is, in theory,
we only need 2 measurements samples of the past wavefront to predict the future
behavior. However, in practice, the past measurements are corrupted by the S-H
WFS measurement noise. The negative effect of the measurement noise on the
prediction performance, can be minimized by selecting larger p. For convenience
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we will write the prediction equation as follows:

yf = s +Df−1uf (10.19)

where

s =Of−1A
p+1O†pyp −Of−1A

p+1O†pDpup +Of−1A
(
Rp−1 −ApO

†
pIp

)
vp + Ifvf

(10.20)

Solution of the prediction problem 1.

The first prediction problem will be solved using two approaches. In the first
approach the future control input is determined by solving the following uncon-
strained least-squares problem:

min
uf

{yTf yf + uTfWuf} (10.21)

where the weighting matrix W ∈ R48f×48f is defined as follows:

W = γQQT , Q =



I −I 0 . . .
0 I −I 0 . . .

. . . . . . . . .
. . . . . . . . .
. . . 0 I −I

. . . 0 I


(10.22)

In (10.22), I ∈ R48×48 is an identity matrix and γ is a positive regularization pa-
rameter. The entries of the matrix W penalize the weighted 2-norm of the dif-
ference between two consecutive elements of uf . This way, we can control the
convergence speed of the predictive control algorithm. The weighting matrix can
also take another form, that penalizes the energy of the future input or that im-
proves the conditioning of the optimization problem, for details see for example
[273]. The solution of (10.21) is:

ûf = −
(
DT
f−1Df−1 +W

)−1
DT
f−1s (10.23)

The vector ûf will be referred to as the unconstrained predictive control input. As it
will be demonstrated experimentally (see Section 10.4), some of the elements of
ûf can be negative. Since the elements of ûf are squares of the control voltages,
negative entries of this vector are not feasible and we set them to zero. The con-
sequence of this is a slower convergence of the predictive controller and increase
of the control error (the predictive controller is suboptimal). In order to overcome
this problem, we add ”hard” constraints to the cost function (10.21):
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min
uf

{yTf yf + uTfWuf}

subject to a1 � uf � a2 (10.24)

where a1 ∈ R48f is the vector of zeros, and a2 ∈ R48f is a vector of ones. In
(10.24), � denotes element-wise less-than-equal mathematical symbol. With the
condition uf � a2, we prevent saturation of the MDM. The solution of (10.24)
will be referred to as the constrained predictive control input. Because the solution of
(10.24) cannot be found in the closed form, we have determined it using MATLAB
function lsqlin( ).

Solution of the prediction problem 2.

To solve the second prediction problem we need to estimate unknown disturbance
input v from the past wavefront measurements. From (10.11) we have:

b = Lw, w =

[
x(k − p)

v

]
(10.25)

where b = yp −Dpup, L =
[
Op Ipq

]
, q =

[
1 1 . . . 1

]T︸ ︷︷ ︸
p entries

The unknown vector w consists of the initial state x(k − p) and the disturbance
input. In reality the the past output vector yp is corrupted by a measurement
noise. That is, the vector b is only approximately equal to Lw. We want determine
w such that the difference b − Lw is as small as possible. This can be done by
solving the following least-squares problem:

min
w
{(b− Lw)

T
(b− Lw)} (10.26)

Assuming that L has full column rank. The solution of (10.26) is: ŵ = L†b. By
estimating w we have at the same time estimated the initial state and the distur-
bance input v. By substituting v in (10.21) or (10.24), we can easily compute the
future control input.

Remark 10.1 The predictive control algorithms are developed to correct for the first 9
Zernike coefficients that are produced by the TADM. On the other hand, the MDM can
produce variation of more than 9 Zernike coefficients. This implies that when the predictive
control inputs are applied to the MDM, the first 9 Zernike coefficients are corrected, while
the higher order (higher than 9) Zernike coefficients are also changed. The variation of the
higher order coefficient is not explicitly controlled by the predictive algorithms. However,
we observed that when the predictive control inputs are applied to the MDM, the variation
of the higher order coefficients is not significant. This is mainly because of the physical
limits of the MDM. Due to this fact and for simplicity of presentation, in this chapter
we assumed that the outputs of the MDM and TADM consist only of the first 9 Zernike
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coefficients.
The developed predictive control algorithms can be straightforwardly generalized such
that they at the same time control the lower order Zernike modes, produced by the TADM
and the higher order modes. This can be done by modifying the output equation of the
state-space model (10.7)-(10.8), as follows:

y1(k) =

[
C
01

]
x(k) +M1u(k) (10.27)

where y1(k) ∈ RQ1 is a vector of the first Q1 Zernike coefficients that can be produced by
the MDM, 01 ∈ R(Q1−9)×6 and M1 ∈ RQ1×48 is a full influence matrix of the MDM.

10.4 Experimental results

In this section we present the experimental results of validating the predictive con-
trol strategy on the AO setup described in Section 10.2. To create nonzero initial
states in the system, and thus to make the prediction problem more challenging,
before each experiment the disturbance input of 15% of the maximal voltage value
is applied for 30 [s]. In order to clearly distinguish the controlled and uncontrolled
wavefronts, we do not control the MDM during the past horizons. That is, in the
prediction equation (10.18), the past control input up is zero.

In Fig. 10.3(a) we show the performance of the unconstrained predictive control
strategy. The performance of the predictive controller was quantified by comput-
ing the 2-norm of the measured Zernike coefficients (denoted by ‖y(k)‖2 in all the
figures). We assume that the disturbance input is known a priori. Two experi-
ments were performed. In both experiments, the disturbance input equal to the
35% of the maximal voltage value was applied to the TADM. In the first experi-
ment, the MDM was not controlled. The uncontrolled wavefront is represented by
a red dashed-dotted line in Fig 10.3(a). The wavefront ‖y(k)‖2 starts from a value
of 0.02 λ. This is because of the non-zero initial state in the system that was cre-
ated by applying a 15% disturbance input before the beginning of the experiment.
In about 20 discrete time samples (or 40 s in total), the wavefront approximately
reaches its steady state ‖y(∞)‖2 ≈ 0.09λ
In the second experiment, the unconstrained predictive control input was calcu-
lated using (10.23) and it was applied to the MDM. This was done at two time
instants k = 19 and k = 86. The controlled wavefront is represented by a thick
black line in Fig. 10.3(a). The future and past horizons were: p = 17 and f = 30.
That is, 17 past measurements of the wavefront were taken, and the wavefront is
predicted and controlled for 30 times instants in the future.
The elements of the unconstrained predictive control input, at an arbitrary time
instant, are illustrated in Fig. 10.5(b). Some of the elements of the calculated pre-
dictive control input were negative and they were set to zero (marked by stars in
Fig.10.5(b) ).
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(a) (b)

Figure 10.3: Performance of the predictive control strategy (a) Unconstrained con-
troller; (b) Constrained controller

In Fig. 10.3(b) we show the performance of the constrained predictive control
strategy. The predictive controller was calculated by solving (10.24). Similarly
to the test of unconstrained predictive control strategy, two experiments were
performed (the future and past horizons were the same like in the case of the
unconstrained predictive control). From Fig. 10.3, it can be observed that both
controllers are able to accurately correct wavefront aberrations (‖y(k)‖2 is below
0.015λ). By comparing Figs. 10.3(a) and 10.3(b), it can be observed that the con-
strained predictive controller corrects wavefront aberrations faster than the un-
constrained one. Moreover, we have observed the constrained predictive con-
troller achieves a smaller value of ‖y(k)‖2 than the unconstrained predictive con-
troller (this is difficult to see from Fig. 10.3). All this is because some of the ele-
ments of the unconstrained predictive control input were set to zero. That is, we
sacrificed a part of the performance of the unconstrained controller to get physi-
cally realizable voltages.

In Fig. 10.4 we show how the convergence rate of the unconstrained predictive
controller depends on the weighting parameter γ.

Figure 10.4: Convergence rate of the unconstrained predictive control strategy for
different values of γ.

In Fig. 10.5(a), we show how the convergence rate of an arbitrary voltage of un-
constrained predictive control input depends on γ. From Figs. 10.4 and 10.5(a),
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we see that when γ is increased, the convergence of the predictive controller gets
slower. This is because larger γ implies stronger penalization of the difference
between two consecutive future control inputs. Similar results were observed for
the case of the constrained controller (for brevity, we omit these results).

(a) (b)

Figure 10.5: (a) Convergence of an arbitrary channel of the unconstrained predic-
tive control input; (b) Calculated unconstrained control input. Nega-
tive values of the channels are set to zero.

Finally, in Fig. 10.6 we show the performance of the constrained predictive con-
troller when unknown disturbance input is estimated (denoted by ”estimated d.
input”).

Figure 10.6: The performance of the predictive controller when unknown distur-
bance input is estimated.

For comparison in Fig. 10.6, we also show the performance of the constrained
predictive controller when the disturbance input is known a priori (denoted by
”real d. input”). The unknown disturbance input is estimated by solving the
least-squares problem (10.26), and the estimate is substituted in (10.24) to derive
the constrained predictive control input. It can be observed that the controller
that is based on the estimated disturbance input has a slightly worse performance
than the controller that is based on the ”real” disturbance input (difference of
0.01λ between the converged future wavefronts). This is because the estimate
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of the disturbance input is affected by the errors originating from the S-H WFS
measurement noise and the model uncertainties of the state-space model (10.3)-
(10.4). These model uncertainties originate from the stochastic nature of the heat
convection that occurs between the actuators of the TADM and the surrounding
air [169]. We observed that the estimation accuracy of the disturbance input v can
be improved by increasing the length of the past horizon p. This is because more
measurement data decrease the negative effect of the noise on the least-squares
estimate.

10.5 Some comments on the generalization of the pre-
dictive control law for large-scale interconnected
systems

In this section we will briefly explain how the theoretical framework presented in
Chapter 3 can be used to develop distributed and centralized predictive control
algorithms for large-scale interconnected systems. These control algorithms can
be used for correction of TIWA in optical lithography machines.

To illustrate the main idea, let us assume that the disturbance model (10.3)-(10.4) is
replaced by the global state-space model (2.65) (the discretized 3D heat equation).
The global matrix A of this state-space model is a sparse multi-banded matrix and
the matrices B and C are block diagonal. Using the structure preserving lifting
technique proposed in Chapter 3 and following the derivation presented in Sec-
tion 10.3, we can obtain a structured version of the prediction equation (10.18). If
p � N and f � N then in the structured prediction equation all matrices except
the pseudo-inverse of the structured observability matrix will be multi-banded
or block diagonal matrices. Using the approximation framework proposed in
Chapter 3, the pseudo-inverse of the structured observability matrix can be ap-
proximated by a sparse multi-banded matrix. This way we can derive a sparse
prediction equation. On the other hand, using the the approximation algorithms
presented in Chapter 3, we can approximate the matrix

(
DT
f−1Df−1 +W

)−1
of

the unconstrained predictive control input (10.23) by a sparse, multi banded ma-
trix.
That is, the approximation framework proposed in Chapter 3 can be used to de-
velop distributed (unconstrained) predictive control algorithms for large-scale in-
terconnected systems. Moreover, the developed predictive controllers can be im-
plemented in the centralized manner with complexity that scales linearly with the
number of local subsystems.

The problem of solving the constrained prediction problem (10.24) for large-scale
interconnected systems is more challenging. The main difficulty is that the solu-
tion of the optimization problem (10.24) cannot be found in the closed form. There
are several iterative methods for solving this optimization problem. One of them
is the interior point method [280]. In each iteration of the interior point method, a
linearized system of equations needs to be solved. Because the global system ma-
trices and matrices in the structured prediction equation are sparse multi-banded
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matrices, the linearized system is also sparse. Using the approximation frame-
work presented in Chapter 3, the inverse of the main matrix of the linearized
system can be approximated by a sparse matrix. In this way, iterative predictive
control algorithms can be developed.
However, this strategy introduces approximation errors in each iteration of the
interior point method. The analysis of the effect of the approximation errors on
the convergence of the interior point method might be difficult.

10.6 Conclusion

In this Chapter we have experimentally demonstrated the proof of concept for the
predictive correction of TIWA. The experimental results show that the predictive
controller is able to correct wavefront aberrations using a relatively small num-
ber of past wavefront measurements. Furthermore, we have demonstrated that
the predictive controller is able to correct wavefront aberrations even when the
inputs of the wavefront prediction model are not known a priori. The proposed
controller can be used in optical lithography as well as in other high-power op-
tical systems where it is not possible to establish real-time feedback between a
wavefront sensor and a controller.
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Conclusions and recommendations

In this final chapter we present general conclusion about the algorithms
and experimental results presented in this thesis. We also discuss some

future research directions.

11.1 Conclusion about the theoretical part of the the-
sis

In this thesis we developed computationally efficient methods for estimation and
identification of large-scale interconnected systems described by sparse banded or
multi-banded state-space matrices. These systems originate from finite difference
or finite element approximations of partial differential equations.

We proved that inverses of lifted system matrices and inverse of the finite-time ob-
servability (controllability) Gramian of interconnected systems, are off-diagonally
decaying matrices. Furthermore, we demonstrated that these inverses can be ap-
proximated by sparse (multi) banded matrices with O(N) computational com-
plexity andO(N) memory complexity. On the basis of these results we developed:

1. The computationally efficient centralized and distributed Moving Horizon Esti-
mation (MHE) methods for large-scale interconnected systems. The distributed
MHE method estimates the state of a local subsystem using only local input-
output data. In contrast to the distributed estimation algorithms available in
the literature, the developed distributed MHE method is not relying on the
consensus algorithms and it has a simple, analytic form (closed-form).

The computational complexity of the centralized MHE method scales lin-
early with the number of local subsystems. Consequently, it can be used
for state estimation of interconnected systems that consist of an extremely
large number of local subsystems. We also developed the computationally
efficient MHE method for large-scale, descriptor state-space models.

193
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2. The decentralized subspace identification method for large scale interconnected sys-
tems. First, we proved that the state of a local subsystem can be approxi-
mated by a linear combination of inputs and outputs of the local subsys-
tems that are in its neighborhood. Furthermore, we proved that for inter-
connected systems with well-conditioned, finite-time observability Grami-
ans (or observability matrices), the size of this neighborhood is relatively
small (compared to the total number of local subsystems). On the basis of
these results, we developed a subspace identification algorithm that identi-
fies the state-space model of a local subsystem from the local input-output
data. Consequently, the proposed algorithm is computationally feasible for
interconnected systems that have a large number of local subsystems.

3. The parameter optimization method for identification of large-scale interconnected
systems. This method can be used for identification of structured state-space
models of interconnected systems. The computational and memory com-
plexity of the proposed method scale linearly with the number of local sub-
systems. The initial estimate for this method can be obtained using the de-
veloped subspace identification method.

The above summarized methods were developed for large-scale systems that can
be described by linear state-space models. Like we showed in Chapter 2.4, the dis-
cretized thermoelastic equations can be transformed into a linear state-space form,
if the Coefficient of Thermal Expansion (CTE) is constant. If the CTE is depending
on the temperature, then the state-space representation of the thermoelastic equa-
tions has a linear state equation and a nonlinear output equation (for details see
Chapter 2, Remark 2.2).
In Chapter 4, Section 4.3, we showed that the approximation algorithms that are
presented in Chapter 3, can be used to implement the Newton observer1 with
linear computational complexity. The computationally efficient Newton observer
can be used for state estimation of thermoelastic equations with temperature de-
pending CTE. Furthermore, the approximation framework presented in Chapter
3 can be used to develop computationally efficient identification and control algo-
rithms for certain classes of nonlinear, large-scale systems.
Another option for estimating the state of thermoelastic equations with the tem-
perature depending CTE, is to approximate the nonlinear output equation by a
piecewise linear function. With some modifications, the MHE methods proposed
in Chapter 4 can be applied to such approximate state-space models.

11.2 Recommendations for future theoretical research

• For presentation clarity, in this thesis we restricted our attention to large-
scale systems described by sparse banded or multi-banded system matrices.
The methods presented in this thesis exploit the fact that inverses of sparse,
banded matrices can be approximated by sparse, banded matrices. On the

1The Newton observer is a state estimation method for nonlinear systems that was developed
mainly by P. E. Moraal and J. W. Grizzle, see for example [234; 235].
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other hand, in [202; 203; 204; 205; 207; 208] it has been shown that sparse ap-
proximate inverses can be computed for a large class of sparse matrices. This
implies that the approximation algorithms presented in [202; 203; 204; 205;
207; 208], can be used to generalize the methods proposed in this thesis to
interconnected systems with more general interconnection patterns. How-
ever, this generalization requires a graph theoretic approach to estimation
and control problems for large-scale systems.

• The theory and methods developed in this thesis naturally give rise to the
following questions. Does the solution of the algebraic Riccati equation for
finite-dimensional, large-scale interconnected systems, exhibit some form of
off-diagonal decay? This question is closely related with the following ques-
tion. Can the solution of the algebraic Riccati equation for large-scale sys-
tems, be approximated in a computationally efficient manner by a sparse,
structured matrix? Undoubtedly, the solution of this problem would have a sig-
nificant impact in the field of systems and control. Namely, if the solution of the
algebraic Riccati equation can be approximated by a sparse matrix, then it it possible
to design distributed Linear Quadratic Gaussian (LQG) controllers for large-scale
interconnected systems, which performance is very close to the centralized LQG
controllers. We think that the approximation methodology proposed in this thesis,
can be a starting point for solving these fundamental problems.

• In this thesis we used the dropping strategies to speed up the computations
of approximate inverses (see Chapter 3.4.4). However, we did not analyze
how the dropping strategies influence the convergence of the Newton itera-
tion and the Chebyshev method. Furthermore, we did not analyze the errors
introduced by the dropping strategies. These problems are left for future re-
search.

• The problem of identifying graph topologies (interconnection patterns) of
interconnected systems has been studied in [242; 243; 244; 245; 246]. For
simplicity, in thesis we assumed that the graph topologies, of interconnected
systems that we want to identify, are known a priori. Can the graph topol-
ogy identification techniques be combined with the identification methods
proposed in this thesis?

11.3 Conclusion about the experimental part of the the-
sis

Apart from the contributions to systems and control theory, in this thesis we de-
veloped and experimentally verified several new Adaptive Optics (AO) control
algorithms.

1. We showed that the norm optimal Iterative Learning Control (ILC) algo-
rithm can be used for accurate control of the shape of a membrane deformable
mirror. Furthermore, we analyzed how the parameters of the ILC algorithm
influence the wavefront correction performance.
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2. Using the subspace identification technique, we identified a low order, dy-
namical model of a prototype of a thermally actuated deformable mirror.
The identified model can be used for high performance correction of static
or slowly-varying wavefront aberrations in high-power optical systems.

3. Finally, we demonstrated the proof of principle for predictive control of ther-
mally induced wavefront aberrations in high-power optical systems. We
demonstrated that on the basis of the model of Thermally Induced Wave-
front Aberrations (TIWA) and using past wavefront measurements, it is pos-
sible to predictively correct wavefront aberrations. The experimental results
give a good first indication that the developed predictive controller can be
implemented in optical lithography machines.

11.4 Recommendations for future research on control
of thermally induced wavefront aberrations

To verify the proposed strategy for predictive control of TIWA on a real litho-
graphic machine, a complete model of TIWA needs to be developed.
Namely, in this thesis we developed the second part of the TIWA model, that
relates the heat flux distribution on the mirror surface with thermoelastic defor-
mations (see the beginning of Section 1.5). The first part, that relates exposure
conditions with the heat flux distribution, needs to be developed. Furthermore,
the mask and possibly optical elements in the illumination system, also absorb
a portion of the light. Consequently, heating of these optical elements induces
wavefront aberrations. To obtain an accurate model of thermally induced wave-
front aberrations, thermoelastic deformation of these optical elements also needs
to be modeled.
While developing a complete model of thermally induced wavefront aberrations, a special
attention needs to be paid to the structure of the model. Like we demonstrated in this
thesis, by exploiting the sparsity structure of the thermoelastic equations, we were able to
develop the linear computational complexity estimation algorithms. Because of the need
for real-time control of wavefront aberrations, similar philosophy should be adopted while
developing the optical model of the complete TIWA model.
Finally, future research should be focused on the generalization of the developed
methods for the case when the CTE in thermoelastic equations depends on the
temperature (the temperature depending CTE gives rise to an output nonlinear-
ity). In Chapter 4.3 we showed that the approximation algorithms presented in
Chapter 3, can be used to implement the Newton observer for nonlinear systems
with linear computational complexity. Similar approach should be followed in
the development of computationally efficient predictive control algorithms for the
case when the CTE depends on the temperature2.

2In Chapter 10.5, we briefly explained how the approximation algorithms can be used to develop
computationally efficient predictive control algorithms for large-scale linear systems.
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Summary

Estimation and control of large-scale systems with an application to adaptive
optics for EUV lithography

Aleksandar Haber

To predictively control Thermally Induced Wavefront Aberrations (TIWA) in
Extreme UltraViolet (EUV) lithographic machines, accurate models of aberra-

tions need to be developed. However, the predictive control of TIWA is a challeng-
ing problem mainly because the dynamical behavior of wavefront aberrations is
described by thermoelastic partial differential equations. By discretizing the ther-
moelastic equations using the finite difference or finite element methods, large-
scale state-space models can be obtained. These state-space models can be seen as
large-scale networks of local subsystems. Consequently, the problem of correcting
wavefront aberrations in the EUV lithography can be placed in a much more gen-
eral context of identifying, estimating and controlling large-scale interconnected
(distributed) systems. However, currently used estimation and control algorithms
are not computationally feasible for large-scale systems. For this reason, this thesis
focuses on the development of computationally efficient identification, estimation
and control algorithms for large-scale interconnected systems.

In this thesis we prove that the inverses of Gramians of large-scale systems de-
scribed by sparse (multi) banded state-space matrices, belong to a class of off-
diagonally decaying matrices. Consequently, these inverses can be approximated
by sparse banded matrices with O(N) complexity, where N is the number of local
subsystems. To compute the approximate inverses, the Chebyshev approximation
method and the Newton iteration are used. The accuracy of the Chebyshev ap-
proximation method is analyzed and a new upper bound on the approximation
errors is derived. Several methods for decreasing the computational and memory
complexity of the approximation methods are presented.

Using these theoretical results, we develop novel estimation and identification al-
gorithms for large-scale interconnected systems. The computational and memory
complexity of these methods scale withO(N). This is the main advantage over the
traditional estimation and identification methods, which complexity is O(N3).

Furthermore, in this thesis we present novel, Adaptive Optics (AO) algorithms for
compensating wavefront aberrations. First of all, we develop an experimental AO
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system that consist of two Deformable Mirrors (DMs). One mirror is used to in-
troduce wavefront aberrations, while another one is used as a correction element.
This way, we simulate the AO system in a real EUV lithographic machine. Us-
ing this experimental setup, we demonstrate the proof of concept for predictive
control of TIWA. Next, we develop a new algorithm for identifying dynamical
models of thermally actuated DMs. Finally, we develop and experimentally test
an Iterative Learning Control (ILC) algorithm for high performance correction of
wavefront aberrations. The ILC algorithm can be used in a real EUV lithographic
machine for precise alignment of optical elements and for suppression of static
wavefront aberrations.



Samenvatting

Het schatten en reguleren van grootschalige systemen, met een toepassing in
EUV lithografie

Aleksandar Haber

Om warmte-ge induceerde golffront aberraties (WGGA) in extreem ultraviolet
(EUV) op een voorspellende wijze te kunnen reguleren zijn accurate model-

len voor deze abberaties nodig. Echter, het voorspellend reguleren van WGGA is
een uitdagend probleem, met name doordat de dynamica van de aberraties be-
schreven worden door zogenaamde thermo-elastische parti ele differentiaal ver-
gelijkingen. Desalniettemin kunnen grootschalige state-space modellen gecon-
strueerd worden d.m.v. het discretizeren van de thermo-elastische vergelijkingen
met behulp van eindige-elementen- en eindige-differentiemethodes. De resulte-
rende state-space modellen kunnen gezien worden als grootschalige netwerken
van lokale subsystemen. Een gevolg hiervan is dat het probleem van het corrige-
ren voor golffront aberraties in EUV lithografie in een ruimere context geplaatst
kan worden, nl. die van het identificeren, schatten, en reguleren van grootscha-
lige, aaneengesloten (gedistribueerde) systemen. Huidige schattings- en regulatie
algoritmes zijn vanuit een rekentechnisch oogpunt te langzaam om toegepast te
worden op grootschalige systemen. In dit proefschrift wordt derhalve nieuwe, ef-
fici entere algoritmes ge introduceerd voor de grootschalige, aaneengesloten sys-
temen.

In dit proefschrift wordt vervolgens bewezen dat de inversen van de Gramianen
van grootschalige systemen beschreven door schaars-gestrookte state-space ma-
trices, onderdeel uitmaken van een klasse van matrices waarvan de niet-diagonale
elementen vervallen met orde N . Hierdoor kunnen de inversen benaderd wor-
den door schaars-gestrookte matrices van O(N) complexiteit, waarbij N het aan-
tal lokale subsystemen. Deze benaderde matrices worden uitgerekend met de
Chebyshev benadering en de methode van Newton. De nauwkeurigheid van de
Chebyshev benadering is geanalyseerd, waarbij een nieuwe bovengrens voor de
benaderingsfout is afgeleid. Daarnaast zijn er verschillende methodes ontwikkeld
om de benodigde rekentijd en het geheugengebruik in de computer te reduceren.

Met de bovengenoemde theoretische resultaten worden in dit proefschrift nieuwe
schattings- en identificatie algoritmes voor grootschalige aaneengesloten syste-
men afgeleid. De complexiteit voor de benodige rekentijd en het geheugenge-
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bruik schaalt met O(N), wat in schril contrast staat met traditionele schattings- en
identificatiemethodes, welke schalen met O(N3).

Daarnaast worden er nieuwe, adaptieve optica (AO) algoritmes beschreven met
als doel om golffront aberraties te compenseren. Hiertoe hebben we allereerst
een experimenteel AO systeem ontwikkeld dat bestaat uit twee vervormbare spie-
gels. Eén spiegel heeft als doel om golffront aberraties te cre eren, terwijl de an-
dere gebruikt wordt als een correctie element. Op deze manier simuleren we een
AO systeem in een echte EUV machine. Met deze experimentele opbouw to-
nen we het ”proof-of-concept”voor voorspellende regulatie van WGGA. Verder
is er een nieuw algoritme ontwikkeld voor het identificeren van dynamische sys-
temen van warmte-aangedreven vervormbare spiegels. Tot slot hebben we een
iteratief-lerend regulatie algoritme voor nauwkeurige en snelle correctie van golf-
front aberraties bedacht, en experimenteel getest. Dit algoritme kan gebruikt wor-
den in echte EUV litografie machines voor het nauwkeurig uitlijnen van optische
elementen en voor onderdrukking van statische golffront aberraties.
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