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Microfibrillar buckling within fibers under compression
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A tentative theory is presented of microfibrillar buckling within compressed fibers. A quantitative
harmonic analysis is given of the semiclassical buckling of a clamped stiff chain; the influence of
thermal undulations is incorporated in Euler buckling. A scaling analysis including entropy allows
one to understand semiclassical buckling. The buckling of a microfibril within a fibrous
environment is analyzed in two limitéa) when the fiber is incompressiblég) when the matrix is
assumed to be a fixed harmonic potential. In the latter case, a network of microfibrils may melt at
high enough compression before the usual buckling occurs. We also study the renormalization of the
confining potential by long-range elastic fields. A provisional comparison with experimental studies
on macroscopic failure is given. @998 American Institute of Physi¢§0021-960608)51416-X]

I. INTRODUCTION theory® and alludes to semiclassical approximations similar
to those encountered in quantum mechanics at relatively

A complete theory of the compressive failure of liquid- short de Broglie wavelengths. Furthermore, | give merely an
crystalline fibers will have to settle several key issues. Ideanalysis valid for weak undulations of tifeylindrical) mi-
ally, the fibrillar morphology obtained by coagulation and crofibril; a full analysis should be nonlinear. The same model
heat treatment would have to be predictegriori. If not, could be of use in problems involving the buckling of
detailed information concerning the fibrillar structure would biofilaments within a complex cellular environmént?
have to be gathered by various experimental technifues. Before discussing the compressional failure of a mi-
Second, the fibrils are supposed to behave as separate entit@sfibril within a fiber, | need to describe the semiclassical
within the surrounding fibrillar matrix; the fiber cannot be buckling of a single stiff chain for which no theory exists.
regarded or modeled as a homogeneous elastic medium. An analytical theory is developed together with a scaling
seems plausible that, upon deforming a fiber, an individuainterpretation and this is juxtaposed against classical Euler
fibril or microfibril may slide with respect to its confining buckling®
environment, at least to some extent. The interaction be-
tween filament and environment may remain substantiall. SEMICLASSICAL BUCKLING OF A STIFF CHAIN
nonetheles$? Theoretically, then, a treatment combining
fibrillar statistics and elasticity could be devised at the sing|
fibril or microfibril level. One difficulty would be their non- A stiff chain may be viewed as an ideally elastic rod of
cylindrical form? Yet microfibrils are also thin enoufjlo be  contour lengthl. Its configuration is completely character-
perturbed strongly by thermal motion. Moreover, since theézed by the unit vectou(s) tangential to the chain at contour
microfibrils apparently play a predominant role in certaindistances from one end. The Hamiltonian of the rod under a
cases of compressive failure of macroscopic fidergheory ~ compressive forcé is
of failure ought to have a basis in statistical mechanics. Fi- I au
nally, given the fact that fiber buckling is a nonlinear and . 7=3P kBTf ds(—
possibly dynamic phenomenon, the formulation of a quanti- o \d8
tative theory is a formidable undertaking by any standard. [see Fig. {a)]. The bending force constdftis here written

An obviously simplified approach to the physics of fiber as the product of the persistence lengttand the tempera-
compression emphasizing microfibrillar buckling is pre-ture T(kg=Boltzmann’s constant). The material deform-
sented here. It is analogous to “fiber crushing” discussed ination’ may be neglected at compressions right up to buck-
the literature on composite materidlét is hoped that our ling. Even though77 is purely elastic, it is anharmonic be-
statistical theory will be of some qualitative use in gainingcause of the local constratitu?(s)=1 for all s(0<s=<I).
insight into macroscopic failure. Fortunately, there seem tdHence, a buckling theory for a rod restricted under various
be some empirical grountigor the hypotheses employed conditions (e.g., clamped positions and angles at the two
here. Since thermal motion may well be important, | need taends would appear to require a nonlinear analysis. Still, it is
investigate what | shall term the “semiclassical” buckling of well known that Euler buckling may be evaluated exactly by
a single microfibril encapsulated in an effectively elastic en-dealing with the limit of solely weak undulations.
vironment. The “classical” case corresponds to a theory = We turn to the harmonic approximatio#, to Eq. (1)
based on the usual Euler bucklifithe term “semiclassical”  which is valid for weak fluctuations away from the rod limit.
refers to the influence of thermal motion on elasticity The compressive forcepoints in thez direction of our Car-

eA. Euler buckling

2 [
+J1)dsu-f (1)

0021-9606/98/108(16)/6923/6/$15.00 6923 © 1998 American Institute of Physics

Downloaded 31 Jul 2007 to 130.161.132.53. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



6924 J. Chem. Phys., Vol. 108, No. 16, 22 April 1998 Theo Odijk

P v of mesoscopic dimensions. We need to analyze the proper-
-{ ties of the appropriate partition or Green functi@hof a
o = compressed wormlike chain; the elastic rod of the previous
u(s) section is now immersed in a heat bath of temperaiure
Again we would like a rigorous theory taking into account
@) the full nonlinearity of the Hamiltonian Ed1). But it suf-
fices here to comput& within the harmonic approximation
based on Eq(2).
<+ Let the filament first be constrained at its two ends as
-{ follows: #(0)= 6, and 6(1)=6#,. Now if f were negative it
(b) would be an extensional force. Then, Eg) would be the
FIG. 1. (a) An elastic rod in a certain configuratiarfs) under compression; Hz-amll.tonlan- of a Wormllke Cha,‘m in & strong tensile or nem-
(b) with ends orientationally fixed along the direction of the compressive@tiC_field with nematic coupling parametét=—fP/kgT
force. Eﬂf. This Hamiltonian is equivalent to that of a quantum
harmonic oscillator as noted a long time dgdlhe appro-

_ _ _ priate Green function has been analyzed in défail,
tesian coordinate systenr=<£x,y,z); the undulations are

-4

-~

weak so we writel(s)=(6,(s), 6y(s),1)=(é(s),1) correct _ B Bi P
to the linear order in the small anglég(s) and 6,(s) of the ~ Ct(61,02:1)= 5= NG, &P 2 sinhNg, [(61+6)
vectoru(s) with respect td

X coshNB,—26,-6,] (f<0) (6)

(0(s)<1; 0y(s)<1), )

L de2 | with N=I/P. Analytic continuation by inverting the sign of

Hn=1P kBTf ds(—) —1 f dsé?. the force immediately yields the partition function for a stiff
o \ds 0 chain under compression,

| next discuss Euler bucklifigunder restraints useful for B B
the purposes at hand. Formally, we would let the temperature  G.(6,,6,;|)= C exp— =— ¢
go to zero; in practice we let the produeT remain constant 2m sinNp; 2sinNp.
and let the' ratld{Ff become as minute as possible; for a X cosNB.—26,- 6,]. 7
macroscopic rod it is easy to attdifP <10~ 1° at room tem-
perature. A simple configuration not without experimental(Compressive coupling parameIEEEfP/kBTE,Bg; f>0.
interest is when the two ends of the rod or filament arelf the chain is clamped as in the previous sect{@fo)
clamped at fixed orientationg(0)=0; 6(1)=0; see Fig. =0; 6(1)=0], the free energy of the filament under com-
1(b)]. The end positions defined within a plane perpendiculapression is simply
to f are unconstrained. Note that within the harmonic ap-

[(6+65)

proximation, the undulations in the andy directions are F=—kgT In G¢(0,0;1)
separable. =kgT(In sinNB.+In27—1In B,). 8
In the x direction, the Euler—Lagrange equation associ- T Pe 7= Ao ®
ated with Eq.(2) is The distribution of the angled at contour positionm is
d2e Gaussian,
PkeT —— +f6,=0. 3
°ds o g Se(0: M Ce( 801 —m)
One solution isg, ;=0 but a second solution, (6,m)= G.(0,0;l)
Oy o= A sin ms/l, (4 B Sin(B.l/P) Beb?
= . : ex
appears wherf attains the value given by 27 Sin(Bom/P)sin( Bo(1—m)/P) &P 2
_ 7PkgT X[ cotg B.m/P)+cotg B.(I—m)/P].  (9)

fc__lz_' (5)
The second moment is given by
The constantA cannot be specified at the harmonic level. _ _
The critical forcef, signifies the compression under which 2 sin(Bcm/P)sin(Bc(l —m)/P)
Be sin(Bcl/P)

the rod buckles since the state with; =0 becomes unstable
wheneverf >f.. A fully nonlinear theory would yield a sec- ) ) o

ond solution whose form is similar to that of E@) with an  In particular, the mean-square undulation at the midpoint is
amplitudeA=7(1).
(0(2))= B " 19(Bcl 12P). (1

At this juncture we have to exercise caution in interpret-
| now study the effect of “nonzero temperatures,” i.e., ing Eqs.(7)—(11). At zero compressioff —0 or 8,— 0), the
[/P is no longer vanishingly small. This applies to filamentssecond moment at the midpoint reduces to

(6% (m))= (10

B. Semiclassical buckling
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- I we are now focusing on thermally induced deviations from
(0°(z))=55 (I<P). (12)  the solution of thdirst kind and the amplitud&<1). Thus,

o _ _the chain may be regarded essentially as a single fluctuating
This is what one expeCtS on the basis of the usual GaUSS|%moida| curve of root_mean_square amp||tud¢

statistics for the undulations of a short wormlike chain. As_ 62(11))Y2. This bend in turn behaves more or less as two

the compressive force is enhanced, thg undulat]ons INCr€asBnnected rods confined within their two respective conical
gradually[Eq. (11)]. However, a strong increase in the fluc- sections so that the free energy of entropic confinement
tuations is predicted to occur g%. approachesrP/l. In should be given by

order to understand this effect, we Taylor expand the tg term

keT 1/2) 2 Feon=—kgT In ‘pz- (16)
<92(%|)>2<ﬁ) T (1% /PkgT) 2’ (13 Next, there is a bending enerdy, and a compression
8 energyF .,mp Which are estimated from E@2),
At a certain compressioffi;, the undulations become so E o Pl-l2kT 1
marked that 62(31))= (1), b= keT, 17)
¢yl Fomg= — fl 4. (18)
fi=fc 1_F : (14) Upon minimizing the total free energy, the sum of Egs.

16)—(18), with respect toy, we get
Here, f. is the classical compression given by E&). In (16-(18) P o g

deriving Eq.(14), Eq. (13) has been extended to its outer PP= ()~
limit of validity where anharmonic terms in the context of 2 (P/1)—(fl/kgT) "
Eq. (2) start to exert themselves. Accordingly, we cannot
ascertain the exact value of the numerical constanwhich

is of order unity nevertheless.

(19

Itis easy to check that this form is basically equivalent to Eq.
(11) if we take into due consideration the uncertainty in the
. ; : : numerical coefficients. We have therefore established that
The meaning of Eq.14) is as follows, The semiclassical : ; . . s

the confinement entropy indeed arises in the way anticipated

variant of thefirst classical solutior®;, =0 is the distribution : !
. . . __above. Equatior{16) may be used to formulate convenient
given by Eq.(9). At large enough compressions there exists

2 semiclassical variant of theecondelassical solution with qualitative anlayses in the semiclassical limit in those cases

0,(s) approximated by Eq4) and withA= (1). Thelatter when it would be_ tedious Fo_set up precise sFatlst|caI theqne_s.
; : ... As usual, numerical coefficients are often disregarded within
variant has not been computed here. It would entail a diffi- ~__ S
. T . scaling approximations.
cult nonlinear analysis similar to those developed in other
case$® Now, at a compressioffi; the two distributions
would be indistinguishable since the respective amplitudes ofl- BUCKLING OF MICROFIBRILS WITHIN FIBERS

the undulations are the same. Buckling must therefore occur /e investigate two extremes that are readily analyzed.

at a somewhat lower compressibg, Within scaling theory, the type of clamping—positional or
cdl orientational—need not be specified for it merely affects the
fs:fc( 1- 3) (15  values of the numerical coefficients.

wherec.>c, but we insist orc,= (1) in view of the struc- A Incompressible limit

ture of Eq.(13). For macroscopic rods we obviously regain Suppose the typical spacirdgbetween a test microfibril
the classical limit. Note that Eq15) predicts the obviation and its surrounding environment of fibrillar material is in-
of the buckling transition for long enough chaind ( variant because the fiber itself is considered incompressible
=Pl/cy). in the two directions transverse to the compressive force. The
It has been shown that a relevant scale for semiclassicdibers are unyielding beyond a distante For instance, the
buckling is the persistence lengkh The precise condition fiber could be clamped within a metal cylinder. The deflec-
for the onset or absence of a buckling transition will have totion lengtt® of the microfibril is given in terms of its persis-
be determined by a complete anharmonic theory. It stands t@nce lengthP,
reason that a family of expressions like E5) exists de- o= A203p3 20
pending on the various clamping conditions on the ends of 0 ’
the semiflexible filament. Experimentally, it would be inter- It represents the distance the microfibril wanders before com-
esting to monitor the strong increase in undulations near thiang into contact with the fibrillar matrix again. The undula-
buckling transition with the help of scattering or microscopytions are caused by thermal motion. The deflection length is
techniques. independent of the compressive force under these circum-
stances. For a close-packed fiber whArés typically only
0.1 nm wide, the deflection length is often much smaller than
the lengthl of the microfibril. Hence, we focus on the im-
For small contour lengthsl € 3P), the semiclassical portant regime of strong undulations\,) and we neglect
limit is close to classical Euler buckling. It is reasonable thatend effects.
globally deformed configurations for compressed worms are  We next add to Eq(2) a harmonic confining potential of
similar in form to those described by E@) (but note that the form,

C. Scaling picture
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kgT (! _ In the ideal case, the coefficiem, is the second derivative
Uex=5g3 | ds(x™+y”), (21)  of v, scaled byk T, with respect to the transverse vector.

0
_ _ _ _ ~ However, a deformation of the microfibril induces a long-
which simulates the environment surrounding the mlCI’OfIbI’ILrange elastic field in the surrounding material; the coefficient

Here,x=x(s) andy=y(s) denote the transverse position of , may have to be renormalizddee the Appendix for de-
point s on the microfibrillar contour. The variabl of di-  tajls).

mension length is to be regarded as adjustable because in- As remarked above, the length of the microfibril will

compressibility of the fiber must be imposed at the end of theften be greater than its deflection lengthwhen the fiber is

computation. A harmonic potential like E¢21) has been in the initial, unstressed state. Following the procedure above
used in previous investigations of the buckling of fibrousfor computing undulations, we get

composites in the purely classical limit’ The statistical
mechanics of the total Hamiltonia#},+ Uy, but with f
<0, has been discussed recently in polymer phy<$it¢one-
theless, | wish to analyze microfibrillar buckling in a quali-
tative way only in view of the approximations inherent in the

| fld?
Ftot/kBTzX—kBTz+wod2I (N=dZ3P13).  (27)

Minimization of this expression with respect tbyields

model. fd2

A fast way of deriving results is to note that a fully Wod?=\"1 1+ K TA)' (28
harmonic Hamiltonian implies a Gaussian distributi@nof B
infinitesimal segments belonging to the microfibril, Initially, at zero compressionf&0), the undulatory ampli-

T~exp— (X2+y2)/d2. 22) tude is given by

8/3p1/3__ — (2/3p1i3 .
Here, the widthd is momentarily assumed to be a variational Wodg PP=1 (Ao=dp "P™<l). (29)

: _ A2/3p1/3 H
parameter. The deflection lengif{d) =d“*P™* would im-  gincew, is constant, exerting a compressive force on the

ply a typical angley=d/\ of a deflection segment with finer will gradually enhance the undulations according to Eq.
respect to the director. The total free energy of the mi-og)

crofibril is then estimated to be Let us next suppose microfibrils of the same type con-

| fIld2 d4 stitute the overwhelming majority of filaments within the
Fiot/lkeT=—— 17—+ =37, (23)  fibrous material. The microfibrils need not be monodisperse
N kgTA° B X ;
with regard to contour length. The fiber may then be roughly
wheref is the compressive force on the microfibril. The first envisaged as a positionally ordered system of microfibrils. At
term is the confinement free energy which must be extensivhigh enough compressions, this may well melt into a less-
and proportional to the microfibrillar lengt*® Minimizing  ordered state, the melting transition being given by a Linde-

F ot With respect tad, we obtain mann criteriof®
> 1 . fd? ” d
E—X W (24 §=C|. (30

Now in view of the incompressibility constraind, must be  The average distance between the microfibrilsRisand
set equal ta\. This imposes the following value on the har- C,=0.15 is a constant. According to Eq&8) and (30), the

monic parameteB, microfibrillar network could melt at a certaifi,,, clearly
A2N, implying compressive failure of the macroscopic fiber.
8= Az (25 We need to bear in mind that Lindemann melting may be
[+ — pre-empted as ultimately the deflection length could become
kgTho as large a$ while f<f,. Equation(28) will break down at

As we exert a greater compressive force on the fiber, th@ characteristic compressidp,

;eﬁe_:ctlve harmonic potential conf|n|r_19 a _rmcroﬂbnl a_lso has Wol2=f,/kgT  (\,=dZ*P13=]). (31)

0 increase so as to render the fiber incompressible as a

whole. Very little happens with regard to the undulations,  Forf>f,, we enter a new regime described by semiclas-

though this analysis is of methodological interest. Muchsical buckling. Then, the microfibril may be viewed as a

more goes on when we consider the opposite extreme.  gingle fluctuating bend of typical widthxg(l)+y2(31))2
=yl. The total free energy is the sum of a bending energy,
energy of compression, entropy, and harmonic energy,

B. Fixed harmonic potential

Py? fyAl ) -
We now postulate a fixed potential,per unit length of Fro/keT= | kgT In g wol Ty (32
microfibril, exerted on it by the fibrillar background. This is
approximated by a harmonic well Minimization of F,; with respect toy leads to
fl
Uh/kBTzéwof ds(x®+y?). (26) PP wol3+ P17 1— o)=L (33
B
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:(’ long* (D=10 nm, =100 nm.The compressive yield would
be o=f./D? with . given by Eq.(35). This would imply a
transverse scald of about 0.1 nm which seems entirely
)\ reasonable for a densely packed fiber. Ideal buckling ex-
pressed by Eqg5) and(14) certainly has nothing to do with
the failure of the fiber for in that case<1 MPa if the per-
$>‘o sistence length is estimated as*10n. It is remarked that
_? the deflection lengthN=A%3PY*=4 nm) is much smaller
_f than the microfibrillar length although Lindemann melting
would not occur. Under the experimental conditions, the un-
0} (ii) (iii) dulatory amplituded as predicted in Eq(28) is simply too
FIQ. 2._ A microfibril confined V\_/ithin a fiber and under a compressive force Smallrl{ conclusion, we have formulated a mesoscopic theory
f. (i) Initial state f=0); undulations are present with a deflection lenggh . _ . . .
[see Eq.(29)]; (i) undulations are gradually forced out by a compressive of microfibrillar buckling at the harmonic level. The precise
force;d and\ are given by Eq(28). Melting of a microfibrillar lattice may ~ range of validity of such mesoscopic analyses remains to be
occur if a Lindemann criteriofiEq. (30) is med; (iii) only one undulaton  seen of course. In a related problem—the melting of close-
remains at high_ enough compresgioh?(,). Angular d(_eviat_ior}s are given packed hexagonal DNA crystals under zero stress—
by Eq. (33). Ultimately, compressive failure of the microfibril occurs at a . . .
critical force expressed by EG34). undulation theor$f agrees well with experimeRt.Computer
simulations of fibers modeled at the atomic level seem a long
way off. For the sake of consistency, the quenched state
This expresses the angular deviation as a function of thwould have to be simulated priori and this is probably
compressive forcé quite difficult to achieve.
Next, we know thatwyl4>P since Wod|4)\|>l, and
moreoverP>>| in any event. Equatiof83) reduces to a very APPENDIX

simple classical limit for microfibrillar failure, The coefficientw, may need to be renormalized by the

fc:WOIZkBT- (34) elastic fluctuations of the effective medium surrounding the
test microfibril. Let us consider the material to be isotropic in
a rough zeroth-order approximation. Its behavior is supposed
to be rubberlike so its Poisson’s ratio is close to half. The
vector e(r) signifying the displacement of the material from
Sequilibrium satisfies a Laplace equafion

-

The sequence of events described by EB8)—(34) is illus-
trated in Fig. 2. We do not know the coefficients in E(&L)
and (34) within a limited scaling theory. Whether or not
there is a regimd,;<f<f., remains to be seen. Yet a mi-
crofibril of lengthl does buckle as the compression reache
the limit defined by Eq(34); undulations have been forced Ae(r)=0. (A1)
out of the state the microfibril was in originally. If the fiber \y¢ focus on the elastic energy of the test microfibril together
can be approximated as a network of basically monodispersgiin that of the deformed surroundings,
microfibrils, Eq.(34) would also express the onset of mac- |
roscopic failure. 1 21

There is one case wheme, may be readily estimated. Uar= EWOKBTfodS(u(S)_e[r(S)D +5KkBTf dr(v
Let the fiber be a compact network of microfibrils of length )
I. The microfibrils are held together by junctures at their -€)". (A2)
ends and their interaction is hard-core. The energy scale petis states that the medium responds elastically to a defor-
microfibril is then pinned by the thermal energy so that mation of the microfibril. In view of Eq(A1l), the response
=kgT/l. If A is a scale characterizing allowable transversenas a long range. A detailed statistical model would be
undulations, we have”"=kgT/IA2. The critical force is then needed to compute the bulk modulkis

given by At this stage it is well to note that Eq&A1) and(A2) are
IkgT precisely isomorphous to those pertaining to a test chain en-
fo= AT (35 closed within a nematic matrix as discussed by de Geffes.

Thus we simply quote his end result for the renormalized

coefficientw. For a chain, or a microfibril of radiua= D

IV. CONCLUDING REMARKS in our case, deformed at a wave vectprthe originalwy is
We tentatively compare the predictions derived abovéransformed into a renormalizeu,

with experiment, on the assumption that microfibrillar buck- 11,1

ling expressed by EJ35) indeed reflects the onset of com- =Wo " tWy T, (A3)

pressive failure at the macrolevel. The compressive strength w,=2mK/—In qa. (A4)

of liquid-crystalline polyaramidéPBT) fibers' is about 0.3

GPa, valid presumably at room temperatlisconger pol- The meaning of Eq(A3) is that the deformed chain and its

yaramide(PPT) fibers have been manufactured recefiily —response by the surrounding medium work in series with

The PBT microfibrils in the as-spun state as evidenced imegard to the compliances, ! andw; *. In case the undu-

electron micrographs, appear to be 10 nm wide and 100 nriations are strong, we obviously hage=2=/\, whereas

w
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