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Microfibrillar buckling within fibers under compression
Theo Odijk
Faculty of Chemical Engineering and Materials Science, Delft University of Technology, P.O. Box 5045,
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~Received 13 November 1997; accepted 22 January 1998!

A tentative theory is presented of microfibrillar buckling within compressed fibers. A quantitative
harmonic analysis is given of the semiclassical buckling of a clamped stiff chain; the influence of
thermal undulations is incorporated in Euler buckling. A scaling analysis including entropy allows
one to understand semiclassical buckling. The buckling of a microfibril within a fibrous
environment is analyzed in two limits:~a! when the fiber is incompressible;~b! when the matrix is
assumed to be a fixed harmonic potential. In the latter case, a network of microfibrils may melt at
high enough compression before the usual buckling occurs. We also study the renormalization of the
confining potential by long-range elastic fields. A provisional comparison with experimental studies
on macroscopic failure is given. ©1998 American Institute of Physics.@S0021-9606~98!51416-X#
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I. INTRODUCTION

A complete theory of the compressive failure of liqui
crystalline fibers will have to settle several key issues. I
ally, the fibrillar morphology obtained by coagulation an
heat treatment would have to be predicteda priori. If not,
detailed information concerning the fibrillar structure wou
have to be gathered by various experimental techniqu1

Second, the fibrils are supposed to behave as separate en
within the surrounding fibrillar matrix; the fiber cannot b
regarded or modeled as a homogeneous elastic mediu
seems plausible that, upon deforming a fiber, an individ
fibril or microfibril may slide with respect to its confinin
environment, at least to some extent. The interaction
tween filament and environment may remain substan
nonetheless.2,3 Theoretically, then, a treatment combinin
fibrillar statistics and elasticity could be devised at the sin
fibril or microfibril level. One difficulty would be their non-
cylindrical form.1 Yet microfibrils are also thin enough4 to be
perturbed strongly by thermal motion. Moreover, since
microfibrils apparently play a predominant role in certa
cases of compressive failure of macroscopic fibers,4 a theory
of failure ought to have a basis in statistical mechanics.
nally, given the fact that fiber buckling is a nonlinear a
possibly dynamic phenomenon, the formulation of a qua
tative theory is a formidable undertaking by any standard

An obviously simplified approach to the physics of fib
compression emphasizing microfibrillar buckling is pr
sented here. It is analogous to ‘‘fiber crushing’’ discussed
the literature on composite materials.5 It is hoped that our
statistical theory will be of some qualitative use in gaini
insight into macroscopic failure. Fortunately, there seem
be some empirical grounds4 for the hypotheses employe
here. Since thermal motion may well be important, I need
investigate what I shall term the ‘‘semiclassical’’ buckling
a single microfibril encapsulated in an effectively elastic e
vironment. The ‘‘classical’’ case corresponds to a theo
based on the usual Euler buckling;6 the term ‘‘semiclassical’’
refers to the influence of thermal motion on elastic
6920021-9606/98/108(16)/6923/6/$15.00
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theory7,8 and alludes to semiclassical approximations sim
to those encountered in quantum mechanics at relativ
short de Broglie wavelengths. Furthermore, I give merely
analysis valid for weak undulations of the~cylindrical! mi-
crofibril; a full analysis should be nonlinear. The same mo
could be of use in problems involving the buckling
biofilaments within a complex cellular environment.9–11

Before discussing the compressional failure of a m
crofibril within a fiber, I need to describe the semiclassic
buckling of a single stiff chain for which no theory exists.12

An analytical theory is developed together with a scali
interpretation and this is juxtaposed against classical E
buckling.6

II. SEMICLASSICAL BUCKLING OF A STIFF CHAIN

A. Euler buckling

A stiff chain may be viewed as an ideally elastic rod
contour lengthl . Its configuration is completely characte
ized by the unit vectoru(s) tangential to the chain at contou
distances from one end. The Hamiltonian of the rod under
compressive forcef is

H5 1
2PkBTE

0

l

dsS ]u

]sD
2

1E
0

l

dsu–f ~1!

@see Fig. 1~a!#. The bending force constant13 is here written
as the product of the persistence lengthP and the tempera-
ture T(kB5Boltzmann’s constant). The material deform
ation7 may be neglected at compressions right up to bu
ling. Even thoughH is purely elastic, it is anharmonic be
cause of the local constraint13 u2(s)51 for all s(0<s< l ).
Hence, a buckling theory for a rod restricted under vario
conditions ~e.g., clamped positions and angles at the t
ends! would appear to require a nonlinear analysis. Still, it
well known that Euler buckling may be evaluated exactly
dealing with the limit of solely weak undulations.

We turn to the harmonic approximationHh to Eq. ~1!
which is valid for weak fluctuations away from the rod limi
The compressive forcef points in thez direction of our Car-
3 © 1998 American Institute of Physics
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tesian coordinate system (r5x,y,z); the undulations are
weak so we writeu(s).(ux(s), uy(s),1)[(u(s),1) correct
to the linear order in the small anglesux(s) anduy(s) of the
vectoru(s) with respect tof

~ux~s!!1; uy~s!!1!,
~2!

Hh5 1
2PkBTE

0

l

dsS du

dsD
2

2 1
2 f E

0

l

dsu2.

I next discuss Euler buckling6 under restraints useful fo
the purposes at hand. Formally, we would let the tempera
go to zero; in practice we let the productPT remain constant
and let the ratiol /P become as minute as possible; for
macroscopic rod it is easy to attainl /P,10215 at room tem-
perature. A simple configuration not without experimen
interest9 is when the two ends of the rod or filament a
clamped at fixed orientations@u(o)50; u( l )50; see Fig.
1~b!#. The end positions defined within a plane perpendicu
to f are unconstrained. Note that within the harmonic a
proximation, the undulations in thex and y directions are
separable.

In the x direction, the Euler–Lagrange equation asso
ated with Eq.~2! is

PkBT
d2ux

ds2 1 f ux50. ~3!

One solution isux,150 but a second solution,

ux,25A sin ps/ l , ~4!

appears whenf attains the value given by

f c5
p2PkBT

l 2 . ~5!

The constantA cannot be specified at the harmonic lev
The critical forcef c signifies the compression under whic
the rod buckles since the state withux,150 becomes unstabl
wheneverf . f c . A fully nonlinear theory would yield a sec
ond solution whose form is similar to that of Eq.~4! with an
amplitudeA5O (1).

B. Semiclassical buckling

I now study the effect of ‘‘nonzero temperatures,’’ i.e
l /P is no longer vanishingly small. This applies to filamen

FIG. 1. ~a! An elastic rod in a certain configurationu(s) under compression;
~b! with ends orientationally fixed along the direction of the compress
force.
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of mesoscopic dimensions. We need to analyze the pro
ties of the appropriate partition or Green functionG of a
compressed wormlike chain; the elastic rod of the previo
section is now immersed in a heat bath of temperatureT.
Again we would like a rigorous theory taking into accou
the full nonlinearity of the Hamiltonian Eq.~1!. But it suf-
fices here to computeG within the harmonic approximation
based on Eq.~2!.

Let the filament first be constrained at its two ends
follows: u(0)5u1 and u( l )5u2 . Now if f were negative it
would be an extensional force. Then, Eq.~2! would be the
Hamiltonian of a wormlike chain in a strong tensile or nem
atic field with nematic coupling parameterG[2 f P/kBT
[b t

2. This Hamiltonian is equivalent to that of a quantu
harmonic oscillator as noted a long time ago.14 The appro-
priate Green function has been analyzed in detail,14

Gt~u1 ,u2 ; l !5
b t

2p sinh Nb t
exp2

b t

2 sinhNb t
@~u1

21u2
2!

3coshNb t22u1•u2# ~ f ,0! ~6!

with N[ l /P. Analytic continuation by inverting the sign o
the force immediately yields the partition function for a st
chain under compression,

Gc~u1 ,u2 ; l !5
bc

2p sin Nbc
exp2

bc

2 sin Nbc
@~u1

21u2
2!

3cosNbc22u1•u2#. ~7!

~Compressive coupling parameterGc[ f P/kBT[bc
2; f .0.!

If the chain is clamped as in the previous section@u(o)
50; u( l )50#, the free energy of the filament under com
pression is simply

F52kBT ln Gc~o,o; l !

5kBT~ ln sin Nbc1 ln 2p2 ln bc!. ~8!

The distribution of the angleu at contour positionm is
Gaussian,

P~u,m![
Gc~o,u;m!Gc~u,o; l 2m!

Gc~o,o; l !

5
bc sin~bcl /P!

2p sin~bcm/P!sin~bc~ l 2m!/P!
exp2

bcu
2

2

3@cotg~bcm/P!1cotg~bc~ l 2m!/P#. ~9!

The second moment is given by

^u2~m!&5
2 sin~bcm/P!sin~bc~ l 2m!/P!

bc sin~bcl /P!
. ~10!

In particular, the mean-square undulation at the midpoin

^u2~ 1
2l !&5bc

21 tg~bcl /2P!. ~11!

At this juncture we have to exercise caution in interpr
ing Eqs.~7!–~11!. At zero compression~f→0 orbc→0!, the
second moment at the midpoint reduces to

e
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^u2~ 1
2l !&5

l

2P
~ l !P!. ~12!

This is what one expects on the basis of the usual Gaus
statistics for the undulations of a short wormlike chain.
the compressive force is enhanced, the undulations incr
gradually@Eq. ~11!#. However, a strong increase in the flu
tuations is predicted to occur asbc approachespP/ l . In
order to understand this effect, we Taylor expand the tg te

^u2~ 1
2l !&.S kBT

f P D 1/2F 2

p2~ l 2f /PkBT!1/2G . ~13!

At a certain compressionf 1 , the undulations become s

marked that̂ u2( 1
2l )&5O (1),

f 15 f cS 12
c1l

P D . ~14!

Here, f c is the classical compression given by Eq.~5!. In
deriving Eq. ~14!, Eq. ~13! has been extended to its out
limit of validity where anharmonic terms in the context
Eq. ~2! start to exert themselves. Accordingly, we cann
ascertain the exact value of the numerical constantc1 which
is of order unity nevertheless.

The meaning of Eq.~14! is as follows, The semiclassica
variant of thefirst classical solutionu150 is the distribution
given by Eq.~9!. At large enough compressions there exi
a semiclassical variant of thesecondclassical solution with
u2(s) approximated by Eq.~4! and withA5O (1). Thelatter
variant has not been computed here. It would entail a d
cult nonlinear analysis similar to those developed in ot
cases.8,15 Now, at a compressionf 1 the two distributions
would be indistinguishable since the respective amplitude
the undulations are the same. Buckling must therefore oc
at a somewhat lower compressionf s ,

f s5 f cS 12
csl

P D , ~15!

wherecs.c1 but we insist oncs5O (1) in view of the struc-
ture of Eq.~13!. For macroscopic rods we obviously rega
the classical limit. Note that Eq.~15! predicts the obviation
of the buckling transition for long enough chainsl
*P/cs).

It has been shown that a relevant scale for semiclass
buckling is the persistence lengthP. The precise condition
for the onset or absence of a buckling transition will have
be determined by a complete anharmonic theory. It stand
reason that a family of expressions like Eq.~15! exists de-
pending on the various clamping conditions on the ends
the semiflexible filament. Experimentally, it would be inte
esting to monitor the strong increase in undulations near
buckling transition with the help of scattering or microsco
techniques.

C. Scaling picture

For small contour lengths (l , 1
2P), the semiclassica

limit is close to classical Euler buckling. It is reasonable th
globally deformed configurations for compressed worms
similar in form to those described by Eq.~4! ~but note that
Downloaded 31 Jul 2007 to 130.161.132.53. Redistribution subject to AIP
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we are now focusing on thermally induced deviations fro
the solution of thefirst kind and the amplitudeA!1!. Thus,
the chain may be regarded essentially as a single fluctua
sigmoidal curve of root-mean-square amplitudec

[^u2( 1
2l )&

1/2. This bend in turn behaves more or less as t
connected rods confined within their two respective coni
sections so that the free energy of entropic confinem
should be given by

Fconf.2kBT ln c2. ~16!

Next, there is a bending energyFb and a compression
energyFcomp which are estimated from Eq.~2!,

Fb.Pl21c2kBT, ~17!

Fcomp.2 f lc2. ~18!

Upon minimizing the total free energy, the sum of Eq
~16!–~18!, with respect toc, we get

c25^u2~ 1
2l !&.

1

~P/ l !2~ f l /kBT!
. ~19!

It is easy to check that this form is basically equivalent to E
~11! if we take into due consideration the uncertainty in t
numerical coefficients. We have therefore established
the confinement entropy indeed arises in the way anticipa
above. Equation~16! may be used to formulate convenie
qualitative anlayses in the semiclassical limit in those ca
when it would be tedious to set up precise statistical theor
As usual, numerical coefficients are often disregarded wit
scaling approximations.

III. BUCKLING OF MICROFIBRILS WITHIN FIBERS

We investigate two extremes that are readily analyz
Within scaling theory, the type of clamping—positional
orientational—need not be specified for it merely affects
values of the numerical coefficients.

A. Incompressible limit

Suppose the typical spacingD between a test microfibri
and its surrounding environment of fibrillar material is i
variant because the fiber itself is considered incompress
in the two directions transverse to the compressive force.
fibers are unyielding beyond a distanceD. For instance, the
fiber could be clamped within a metal cylinder. The defle
tion length16 of the microfibril is given in terms of its persis
tence lengthP,

l05D2/3P1/3. ~20!

It represents the distance the microfibril wanders before c
ing into contact with the fibrillar matrix again. The undula
tions are caused by thermal motion. The deflection lengt
independent of the compressive force under these circ
stances. For a close-packed fiber whereD is typically only
0.1 nm wide, the deflection length is often much smaller th
the lengthl of the microfibril. Hence, we focus on the im
portant regime of strong undulations (l @l0) and we neglect
end effects.

We next add to Eq.~2! a harmonic confining potential o
the form,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Uext5
kBT

2B3 E
0

l

ds~x21y2!, ~21!

which simulates the environment surrounding the microfib
Here,x5x(s) andy5y(s) denote the transverse position
point s on the microfibrillar contour. The variableB of di-
mension length is to be regarded as adjustable becaus
compressibility of the fiber must be imposed at the end of
computation. A harmonic potential like Eq.~21! has been
used in previous investigations of the buckling of fibro
composites in the purely classical limit.5,17 The statistical
mechanics of the total HamiltonianHh1Uext, but with f
,0, has been discussed recently in polymer physics.18 None-
theless, I wish to analyze microfibrillar buckling in a qua
tative way only in view of the approximations inherent in t
model.

A fast way of deriving results is to note that a ful
harmonic Hamiltonian implies a Gaussian distributionD of
infinitesimal segments belonging to the microfibril,

D;exp2~x21y2!/d2. ~22!

Here, the widthd is momentarily assumed to be a variation
parameter. The deflection lengthl(d)5d2/3P1/3 would im-
ply a typical anglec.d/l of a deflection segment with
respect to the director. The total free energy of the m
crofibril is then estimated to be

F tot /kBT.
l

l
2

f ld2

kBTl2 1
d2l

B3 , ~23!

wheref is the compressive force on the microfibril. The fir
term is the confinement free energy which must be exten
and proportional to the microfibrillar length.14,16 Minimizing
F tot with respect tod, we obtain

d2

B3 .
1

l
1

f d2

kBTl2 . ~24!

Now in view of the incompressibility constraint,d must be
set equal toD. This imposes the following value on the ha
monic parameterB,

B3.
D2l0

l 1
f D2

kBTl0

. ~25!

As we exert a greater compressive force on the fiber,
effective harmonic potential confining a microfibril also h
to increase so as to render the fiber incompressible a
whole. Very little happens with regard to the undulation
though this analysis is of methodological interest. Mu
more goes on when we consider the opposite extreme.

B. Fixed harmonic potential

We now postulate a fixed potential,v per unit length of
microfibril, exerted on it by the fibrillar background. This
approximated by a harmonic well

Uh /kBT5 1
2w0E ds~x21y2!. ~26!
Downloaded 31 Jul 2007 to 130.161.132.53. Redistribution subject to AIP
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In the ideal case, the coefficientw0 is the second derivative
of v, scaled byk

B
T, with respect to the transverse vecto

However, a deformation of the microfibril induces a lon
range elastic field in the surrounding material; the coeffici
w0 may have to be renormalized~see the Appendix for de
tails!.

As remarked above, the length of the microfibril w
often be greater than its deflection lengthl0 when the fiber is
in the initial, unstressed state. Following the procedure ab
for computing undulations, we get

F tot /kBT.
l

l
2

f ld2

kBTl2 1w0d2l ~l5d2/3P1/3!. ~27!

Minimization of this expression with respect tod yields

w0d2.l21S 11
f d2

kBTl D . ~28!

Initially, at zero compression (f 50), the undulatory ampli-
tude is given by

w0d0
8/3P1/3.1 ~l05d0

2/3P1/3! l !. ~29!

Since w0 is constant, exerting a compressive force on
fiber will gradually enhance the undulations according to E
~28!.

Let us next suppose microfibrils of the same type co
stitute the overwhelming majority of filaments within th
fibrous material. The microfibrils need not be monodispe
with regard to contour length. The fiber may then be roug
envisaged as a positionally ordered system of microfibrils.
high enough compressions, this may well melt into a le
ordered state, the melting transition being given by a Lin
mann criterion18

d

R
5cl . ~30!

The average distance between the microfibrils isR and
Cl.0.15 is a constant. According to Eqs.~28! and ~30!, the
microfibrillar network could melt at a certainf m , clearly
implying compressive failure of the macroscopic fiber.

We need to bear in mind that Lindemann melting may
pre-empted as ultimately the deflection length could beco
as large asl while f , f m . Equation~28! will break down at
a characteristic compressionf l ,

w0l 2. f l /kBT ~l l5dl
2/3P1/35 l !. ~31!

For f . f l , we enter a new regime described by semicl
sical buckling. Then, the microfibril may be viewed as

single fluctuating bend of typical width (x2( 1
2l )1y2( 1

2l ))
1/2

.c l . The total free energy is the sum of a bending ener
energy of compression, entropy, and harmonic energy,

F tot /kBT.
Pc2

l
2

f c2l

kBT
2 ln c21w0l 3c2. ~32!

Minimization of F tot with respect toc leads to

c2S w0l 31Pl212
f l

kBTD.1. ~33!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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This expresses the angular deviation as a function of
compressive forcef

Next, we know thatw0l 4@P since w0dl
4l l@1, and

moreoverP@ l in any event. Equation~33! reduces to a very
simple classical limit for microfibrillar failure,

f c.w0l 2kBT. ~34!

The sequence of events described by Eqs.~28!–~34! is illus-
trated in Fig. 2. We do not know the coefficients in Eqs.~31!
and ~34! within a limited scaling theory. Whether or no
there is a regimef l, f , f c , remains to be seen. Yet a m
crofibril of length l does buckle as the compression reac
the limit defined by Eq.~34!; undulations have been force
out of the state the microfibril was in originally. If the fibe
can be approximated as a network of basically monodisp
microfibrils, Eq.~34! would also express the onset of ma
roscopic failure.

There is one case wherew0 may be readily estimated
Let the fiber be a compact network of microfibrils of leng
l . The microfibrils are held together by junctures at th
ends and their interaction is hard-core. The energy scale
microfibril is then pinned by the thermal energy so thatv
.kBT/ l . If D is a scale characterizing allowable transve
undulations, we havev9.kBT/ lD2. The critical force is then
given by

f c.
lkBT

D2 . ~35!

IV. CONCLUDING REMARKS

We tentatively compare the predictions derived abo
with experiment, on the assumption that microfibrillar buc
ling expressed by Eq.~35! indeed reflects the onset of com
pressive failure at the macrolevel. The compressive stren
of liquid-crystalline polyaramide~PBT! fibers4 is about 0.3
GPa, valid presumably at room temperature@stronger pol-
yaramide~PPT! fibers have been manufactured recently19#.
The PBT microfibrils in the as-spun state as evidenced
electron micrographs, appear to be 10 nm wide and 100

FIG. 2. A microfibril confined within a fiber and under a compressive fo
f. ~i! Initial state (f50); undulations are present with a deflection lengthl0

@see Eq.~29!#; ~ii ! undulations are gradually forced out by a compress
force;d andl are given by Eq.~28!. Melting of a microfibrillar lattice may
occur if a Lindemann criterion@Eq. ~30! is met#; ~iii ! only one undulation
remains at high enough compressions (f > f l). Angular deviations are given
by Eq. ~33!. Ultimately, compressive failure of the microfibril occurs at
critical force expressed by Eq.~34!.
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e

s

se

r
er

e

e
-

th

in
m

long4 ~D510 nm, l 5100 nm!.The compressive yield would
bes. f c /D2 with f c given by Eq.~35!. This would imply a
transverse scaleD of about 0.1 nm which seems entire
reasonable for a densely packed fiber. Ideal buckling
pressed by Eqs.~5! and~14! certainly has nothing to do with
the failure of the fiber for in that cases,1 MPa if the per-
sistence length is estimated as 104 nm. It is remarked that
the deflection length (l5D2/3P1/354 nm) is much smaller
than the microfibrillar lengthl although Lindemann melting
would not occur. Under the experimental conditions, the
dulatory amplituded as predicted in Eq.~28! is simply too
small.

In conclusion, we have formulated a mesoscopic the
of microfibrillar buckling at the harmonic level. The precis
range of validity of such mesoscopic analyses remains to
seen of course. In a related problem—the melting of clo
packed hexagonal DNA crystals under zero stres
undulation theory20 agrees well with experiment.21 Computer
simulations of fibers modeled at the atomic level seem a l
way off. For the sake of consistency, the quenched s
would have to be simulateda priori and this is probably
quite difficult to achieve.

APPENDIX

The coefficientw0 may need to be renormalized by th
elastic fluctuations of the effective medium surrounding
test microfibril. Let us consider the material to be isotropic
a rough zeroth-order approximation. Its behavior is suppo
to be rubberlike so its Poisson’s ratio is close to half. T
vectore(r ) signifying the displacement of the material fro
equilibrium satisfies a Laplace equation6

De~r !.0. ~A1!

We focus on the elastic energy of the test microfibril toget
with that of the deformed surroundings,

Uel5
1
2w0kBTE

0

l

ds~u~s!2e@r ~s!# !21 1
2KkBTE dr ~“

•e!2. ~A2!

This states that the medium responds elastically to a de
mation of the microfibril. In view of Eq.~A1!, the response
has a long range. A detailed statistical model would
needed to compute the bulk modulusK.

At this stage it is well to note that Eqs.~A1! and~A2! are
precisely isomorphous to those pertaining to a test chain
closed within a nematic matrix as discussed by de Genne22

Thus we simply quote his end result for the renormaliz
coefficientw. For a chain, or a microfibril of radiusa5 1

2D
in our case, deformed at a wave vectorq, the originalw0 is
transformed into a renormalizedw,

w215w0
211w1

21, ~A3!

w152pK/2 ln qa. ~A4!

The meaning of Eq.~A3! is that the deformed chain and it
response by the surrounding medium work in series w
regard to the compliancesw0

21 andw1
21. In case the undu-

lations are strong, we obviously haveq.2p/l, whereasq
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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.2p/l in the semiclassical regime. Hence it is possible
estimatew1 and then usew instead ofw0 in the body of the
paper. In this way, we need not worry further about the lo
range of the elastic response.
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