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1. INTRODUCTION 

Fibrous composite structures which are subjected to monotonie 

or cyclic loading frequently develop internal matrix cracks which adversely 

affect overall stiffness and strength. This phenomenon has been widely 

observed in laminated plates, where individual layers are found to 

contain their ovm systems of cracks. Typical crack systems appear to 

consist of many parallel cracks on planes which are perpendicular to the 

midplane of the layer and parallel to the fiber direction. Experimental 

observations of such internal cracks have been made by Dvorak and 

Johnson [̂ ,2] in metal matrix B-At laminates, by Reifsnider et al., [3j , 

Bader et al., [AJ, and by several other authors in certain polymer 

matrix composites. Although the geometry of the crack system appears 

to be similar in both metal and polymer matrix laminates the response 

to loading is different. Polymer matrix composites start to crack 

at low strain levels, under both monotonie and cyclic loads. On the 

other hand metal matrix composites usually deform plastically and do 

not exhibit extensive matrix cracking under monotonie loads, but are 

quite susceptible to matrix fatigue cracking when cycled outside the 

shakedown range [ij. In addition to matrix cracking, all composite 

systems contain many other damage modes, such as fiber breaks, 

and delamination cracking between layers. However, these modes 

appear to be significant at relatively high loads which usually exceed 

allowable design magnitudes. 

Matrix cracking is present at low loads and should be 
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accounted for in structural design. 

Certain composite systems also permit crack growth 

in the matrix on planes which are perpendicular to the fiber axis. 

Specific examples of this type of cracking have been observed by 

White and Wright [ 5̂  and by Dvorak and Johnson [2] in zero-degree 

plies of laminated and unidirectional B-Al plates. In such 

composite systems the fibres remain undamaged while the cracks 

propagate in the soft matrix between the fibres. 

In this paper we are concerned with the development 

of constitutive equations for fibrous composites which contain a 

family of longitudinal slit cracks. The theory is also valid for transverse 

cracks but detailed study of such cracks is deferred to a subsequent 

paper. In general, we assume that the cracks and fibers 

have diameters of similar size and that there is mutual interaction. 

We also investigate the special case of small diameter 

fibers and large cracks. The overall elastic moduli and compliances 

of each cracked fibrous composite are obtained from a variant of the 

self-consistent method. 

The approach to the problem is quite similar to that which 

is often followed in the evaluation of overall moduli of fibrous composites 

without cracks. Therefore, it is expected that the results may be 

utilized in evaluation of macroscopic stiffness changes caused by 

crack systems in laminated plates. To a first approximation, one may 
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regard the properties of the infinite cracked medium of Figure la 

as identical to those of a cracked lamina, Figure lb. However, 

when the fiber diameter is much smaller than the crack length, the 

fibers and matrix in Figure la may be replaced by an effective 

homogeneous medium which in turn contains cracks of half-length a. 

Again, the stiffness of this cracked medium can be used to describe 

the properties of a cracked lamina. Figure Ic. 

We are not concerned here with a laminate analysis but 

note that the transition from the configuration of Figure la to that 

of Figures lb or Ic poses some unresolved problems. Nevertheless, 

we recall that in the evaluation of the elastic properties of 

monolayer laminates reinforced by large diameter fibers, such as 

boron, the transition between the fibre configurations shown in 

Figures la and lb is commonly accepted. These and other related 

topics will be dealt with in a subsequent paper on cracked 

laminates. 

We note that related work on the evaluation of overall 

moduli of cracked homogeneous solids has previously been reported by 

Bristow [b], Walsh [?], Budiansky and O'Connell [c], Hoenig [9] and 

Willis [10]. It is also appropriate to mention the work of 

Taya and Mura [ll] on the effect of penny-shaped fiber-end cracks 

on the overall stiffness of short fiber reinforced composites. 
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Finally we recall that the paper by Delameter et al [l̂  

describes the effect of the presence of a rectangular array of cracks 

on the response of an elastic solid. Since Delameter et al [l2j 

consider a solid whose statistics exhibit long-range order, it is 

difficult to compare their work with the more common approaches which 

involve homogeneous statistics without long-range order. 

The plan of this paper is as follows. In Section 2 

we give a brief account of the self-consistent model of a composite. 

Section 3 contains a detailed description of how the model may be 

applied to a fibrous composite containing a family of longitudinal slit 

cracks. Each crack is modelled as the limit of an elliptic cylinder 

when the aspect ratio tends to zero. We are thus led to a three phase 

model for cracked fibrous composites. As has already been discussed, 

there are situations in which the fiber diameter is much smaller 

than the crack length. Correspondingly we derive a two phase model 

in which the cracks are present in an effective medium. This two 

phase model is investigated in Section A wherein it is shown that the 

required equations reduce to a particularly simple form. The paper 

concludes with some detailed numerical results for selected systems. 
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2. GOVERNING EQUATIONS 

We follow an established pattern in the theory of composite 

materials and use a notation introduced by Hill \12]. Fourth order 

Cartesian tensors are denoted by upper case letters, e.g., L, A, and 

symmetric second order tensors are denoted by lower case bold face 

letters, e.g., o, j. The unit fourth order tensor is denoted by I 

and the inverse of a nonsingular fourth order tensor A is denoted by A 

In this paper we make extensive use of the solution of an 

inclusion problem for an elliptic cylinder in an anisotropic elastic 

medium. Consider a linear elastic solid in which the stress tensor o,, 

and linear strain tensor z_ are related through constitutive equations 

o - LE , E » Mo , 

LM - ML - I , 

where L and M are the stiffness and compliance tensors, respectively. 

Suppose that an infinite homogeneous solid contains an elliptic 

cylindrical inclusion 

2 2 
X X 

a b ' ' 

The elastic properties of the inclusion are identical to 

those of the surrounding medium. Equation (1), but the inclusion is 

subjected to a certain uniform transformation strain. It is known 

that the solution of this problem requires the determination of the 

(1) 
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tensor P whose components are given by [lAj, or [15 .Equations (9) 

and (10)*] : 

P « ^ 
ijkt 8TT 

^' ̂ ^^jk'^i^'^j^ikV'^i^jtV^j^itV ., ... 
2 2 ^ , 2 2 , ^'*' ' -̂"̂  

(aw, + b u~) 
0 i * 

where w^ = cos \j; , (D- = sin 4/ , and f., is the matrix inverse of 

L . ., .u).(i)„. 
i j k £ J £ 

It is often convenient to work with the tensor Q which is 

defined by 

Q - L - LPL . (̂ ) 

Consider now an elliptic cylinder, with stiffness L 

and compliance M , which is embedded in an infinite matrix whose 

stiffness and compliance tensors are, respectively, L and M. 

The matrix is loaded by uniform stress, "a, or subjected to uniform 

strain, T , at infinity. Let the stress and strain fields in the 

inclusion be o and c respectively, so that 
~r "T ' 

o = L E , E " M c»̂  •̂ r r-^ «-r r-r 

It is well known that the elastic field in the ellipsoidal inclusion 

is uniform [l7,18] and can be evaluated as 

+ Note that a factor A is missing from the right hand side of (10). 
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E^ - [l * P(L^-L)J"^ J , (5) 

o^ - [l + Q(M^-M)] ^ . (6) 

Turning now to the basic equations for composites, we note 

that in order that the concept of overall moduli be meaningful, it is 

essential to consider macroscopically uniform loading [l3,16j. In 

such circumstances the applied stress is equal to the average stress, £, 

and the phase average stresses, 'S and strains, E , are related to *̂  " ' «-r ^r* 

the overall averages through 

" Ë « = A 7 , ' Ö - B " Ö . (7) 
-r r— • .wr r~ 

Let c denote the volume concentration of the rth phase and let L and r "̂  r 

M respectively denote the stiffness and compliance of the rth phase. 

Since 

I c^ = 1 . 2 = [ c^o^ , 1=1 c J ^ , (8) 

it follows [13] that the overall stiffness L and compliance M are given by 

L ^ T c L A . M - J c M B . (9) 
^ r r r * ^ r r r ^^' 

Finally we recall that the self-consistent method furnishes 

estimates of the strain and stress concentration factors A , B through 
r* r ^ 

the solution of the auxiliary inclusion problem in which a typical fiber 

is embedded in the effective overall medium. In fact from (5), (6) and 

(7) we can read off the self-consistent estimates 
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A^ - [l + P(L^ - D ] , (10) 

B^ - [l + Q(M^ - M)] . (11) 

We emphasize that the P and Q tensors appearing in (10) and (11) depend 

upon the aspect ratio of the considered inclusion.and the stiffness 

of the effective medium L. 
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3. A FIBROUS COMPOSITE CONTAINING LONGITUDINAL CRACKS 

3.a. Three Phase System 

We are interested in the elastic response of a composite 

consisting of a continuous matrix reinforced by a family of parallel 

fibers in the x_ direction. Because of past loading, the composite 

also contains a homogeneous distribution of parallel slit cracks 

which are aligned in the direction of the fibers. Cartesian coordinate 

axes are chosen so that the x„-axis is the common normal to all 

crack planes, c.f, Figure la. We assume that such cracks can be 

modelled by taking the limit of the elliptic cylinder (2) as the 

aspect ratio 

6 = b/a (12) 

tends to zero. Thus we consider a mixture of three homogeneous phases. 

Let phase 1 refer to the fibers, phase 2 to the matrix, and phase 3 to 

another set of elliptical fibers. Ultimately we will choose phase 3 to 

consist of voids, and, in the limit 6-+-0, of cracks. 

As emphasized by Walsh [7j , the passage from a general 

two (or three) phase medium to a cracked solid must be achieved by 

first taking one component to be vacuous and then allowing the aspect 

ratio to vanish. The reverse procedure leads to erroneous results. 

Of course, if we had started with a solid containing voids, the double 

limit problem would not have arisen. 
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The overall stiffness and compliance tensors for the three-

phase medium follow from (9): 

L - c^LjA, • ̂ 2 ^ 2 * ̂ sSS * ^ ' *̂ l"l®l * '̂ 2"2®2 * *'3̂ 3̂ 3 ' ̂^̂ ^ 

Also, from (7) and (8) 

c.Aj + C2A2 + c A = I , c.B + C-B- •» c_B- « I . (lA) 

It is convenient to use (lA) to eliminate the concentration factors for 

the matrix (r=2) from (13), to give 

L - L^*c^{L^-L^)k^+c^iL^-L2)A^^ M - M2+c,(M,-M2)B,+C2(M2-M2)B2. (15) 

In this application of the self-consistent method we are 

interested in three-phase materials in which the two families of 

parallel fibers have different geometries. Correspondingly, we need 

to account for the different aspect ratios of the two families of 

fibers. 

Thus, let P. and Q be the P and Q tensors (3) and (A) 

for a cylindrical inclusion similar to a typical fiber (phase 1) 

but whose stiffness is L. Also, let P. and Q. be the P and Q 

tensors for an inclusion similar to a typical "fiber" of phase 3, 

but whose stiffness is L. Then, the estimates of 

the concentration factors for phases 1 and 3 are, from (10) and (11), 

-1 « r, . « ,w ...1-1 I, - [I + P,(L, - L)]"' . B, - [l • Q,(M, - M)]~^ , 

A^ - [l • P̂ (L3 - L)]~^ . B3 - £1 • Q^iH^ - M)]~^ . 

(16) 
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This overall stiffness and compliance tensors (15) are given by, 

L - L2 + c,(L,-L2)Il+P,(Lj-L)]''^ • C3(L3-L2)[l+P3(L2-L)]"\ (17) 

M « M2 4 Cj(Mj-M2)[l+Q,(M,-M)]"^ + C3(M3-M2) [l+Q3(M3-M)]"\ (18) 

with P L+Q M=I (r-1,3). 

We emphasize that the self-consistent method does not give 

direct estimates of A_ or B-. On the contrary, these factors must be 

found from (lA) . Thus the relationship between average matrix stress and 

the overall stress is written as 

~ 2 ' ^2^' 'T ^^"'̂ î r'̂ sV^ • ^̂^̂  

Likewise, the average matrix strain is obtained from 

E- = M„o, - -i M-(I-c.B -C-BjLê . (20) 
"2 2~2 ^̂ 0 2 1 1 3 3 . ~ 

Alternatively, in terms of strain concentration factors, 

J2 ' ^2^ ' ~ ^̂ "'̂ î i'̂ â̂ ŝ I ' 2̂1) 

^2 - hl2 - I^ h(^-^lV=3V«5 • "̂̂  
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3.b. Three Phase System with Cracks 

We now show how the preceding theory is modified 

when we , consider • unidirectional fiber reinforced composites 

containing aligned slit cracks, see Figure la. First, 

suppose that phase 3 consists of voids, so let M -»̂  «», L, -̂  0. 

From (13) we now have 

where, according to (16) 

A3 - [l-P3l-]''̂  - Qj^L . (2A) 

Hence, A. in (21) now reduces to 
2 

A2 - -^ (1"^1^1 " '̂ 3̂ 3̂ !-̂  • ^̂ ^̂  

and the overall stiffness for the composite with voids becomes, from 

(17), 

-1 , 
L - L2 + c,(Lj-L2)[l+P,(L,-L)] -C3L2Q3 L . (26) 

Similarly,from (18) 

M - M2 + Cj(Mj-M2)[l+Qj(M,-M)]"^+C3Q3^ . (27) 

In addition, the concentration factors for the average matrix 

stresses and strains are now given by 

52 • -r <^-^l^l>£ » <28) 

^2 " F" "2^^'''l^l^l'I » ^̂ ^̂  
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as can easily be established from (19) and (20). Alternatively, the 

average stresses and strains in the matrix can be found from (21) and 

(22) providing that A is taken from (2A). 

In order to make the transition from elliptic voids to 

slit cracks we recall that a and b are respectively the half-length 

and thickness of the elliptic voids (2). Let n be the number of voids 

per unit area of the x,x„-plane. Then the volume fraction of 

voids is 

or, according to (12), 

c- = Ttabn , 

2 , 
c * Tra n6 

2 
where 6 = AHa is the crack density parameter. Thus B is just the 

average number of cracks of length 2a in a square of side 2a. 

For example, in the crack patterns of Figures lb and Ic, B measures 

the distance between regularly spaced cracks in terms of the crack 

length or ply thickness 2a. When 6 « 1 the distance between cracks 

is 2a, as 8 decreases the distance between cracks increases, and 

when 8 « 0 the cracks are no longer present. We note that experimental 

data [1-A] indicate the appropriate range for the crack density 

parameter is 0 < 3 < !• 

(30) 

We now turn our attention to equations (26) and (27) which, after 
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a substitution for c_ from (30), contain the term 6Q-. . The limit 

of this term for 6-• 0 has already been considered by Eshelby [l7j , 

and more generally by Laws [l5J. It turns out that while Q_ becomes 

singular as 6-»0, the product 6Q- remains finite: 

In fact, for the material considered here the explicit form of A has been 

given by Laws [is]. We can now rewrite (26) and (27) for cracks using 

(31). The resulting expressions for overall stiffness and compliance 

of the cracked fibrous medium are 

L = L2 + c,(L,-L2)[l+P,(L^-L)]''^ - ltTT6L2A , (32) 

M •= M2 + c,(M^-M2)[l+Qj(Mj-M)]~^ + HTTBA . (33) 

The matrix stress and strain concentration factor tensors are still 

given by (28) and (29), together with (16). 

In the applications of the theory presented here we are 

concerned with matrices and fibers which are, at worst, 

transversely isotropic with respect to the fiber axis. Furthermore 

the geometry of the crack systems. Figure 1, is sufficiently simple 

to ensure that the overall composite is orthotropic. The components 

of A for such systems have been found explicitly by Laws [15J . It 

turns out that there are essentially three non-zero components of the 

A tensor. With the usual notation for the components of L, 

L « Si ' I'l?!'* * I'ftS ®'*̂ '» ^^ "'̂ y ̂ ® shown [l5j that 
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. anh2>^M*°2> 
1212 " 2 • 

A(L,,L22-LJ2) 

hl̂ °m> 
A~-~- " =— • (3A) 

'^11^22 ^12 

A "" "̂ ^̂ ;:s? 
where o . , a- are the root s of 

h l H 6 ° ' - (hl^22-^12-2Li2H6^° * ^ 2 ^ 6 ' °' 

We note that the components of the P. tensor in (32) for 

the cylindrical fiber in an orthotropic effective medium are best 

evaluated by numerical integration of (3). 

For a given concentration of fibers and given crack density, 

equations (32) or (33) provide a set of scalar equations for the 

overall moduli of the cracked composite. While it is possible, but 

tedious, to write down the component forms of these equations, it is 

much easier to solve (32) or (33) by using the tensor or matrix forms. 
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3.C. Two Phase System with Cracks 

When the fiber diameters are very small compared with the 

crack length or ply thickness 2a, Figure Ic, it is physically reasonable 

to consider the possibility of modelling the effect of cracks in a 

fiber reinforced material by considering the fibers and matrix as a 

single-phase effective medium which contains cracks. To do so, we 

regard the fibrous composite as a new phase 2. Phase 1 is no longer 

present, while cracks retain their designation as phase 3. Thus, from 

(32) and (33) 

L •= L2 - '-i-nSL AL , (35) 

M - M2 + kTiBA , (36) 

where L2. ^2 now refer to the effective (uncracked) fibrous composite. 

We shall refer to two different models of the fibrous 

composite with cracks: The model specified by (32) and (33) will be 

designated the three-phase model, whereas the model given by (35) 

and (36) will be called the two-phase model. In either case the 

formal theory is complete once the components of A have been specified. 

For the two phase model it is possible to give compact 

equations for the overall components of the compliances. To do so, we 

first recast the non-zero components of A in terms of the compliances 

M,,. With the usual notation 
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"ll22 • "l2* ^^2231 ' ̂ 25' ^^3131 " ^55' 

and so on, it may be shown that 

.2 
M„„M__—M, 

s7 
. 22'''33 "23 , \ ^ J, 

^22 " ''ill! ^ KZ ^°1 * °2^ • 

\ A ' ^̂ 2̂323 = ^^A^5^^ ' ^''^ 

2 i 2 i 
. . . , . ^23^ ^ " l l ^ 3 3 ' ^ 3 ^ . , 

^ 6 6 ' ' ' ^ 2 1 2 ' :: ^°1 * °2^ » 

(M22M33-M23) (Mn"33""l3^ , i i, 

"33 

where a. and a^ are the roots of 

(«22«33-"23>°' - ^«33«66*2(M^2«33 " «13«23>^° 

* ^ 1 ^ 3 3 - «13 ' ° • ^''^ 

It now follows from (36) and (37) that six compliances are unaffected 

by the introduction of cracks: 

M = M^2) ^ (2) . (2) 
11 11 • 33 33 • "55 55 • 

M = M ( 2 ) (2) (2) 
"12 "12 ' "13 ' ̂ 3 • "23 "23 ' 

(39) 

(2) 
where M are the components of the compliance M of the uncracked fibrous 

composite. The only components of M_ which are altered are to be found from 
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^22 • "22^ * >iT6A22 . 

"AA - "if * ''^^^A • "̂"̂̂  

«66 - ""11^ * ̂ ^^^6 • 

From (37) , (39) and (A0)„ we may show that the overall transverse 

shear compliance M,, is given by the positive root of the quadratic 
A4 

equation: 

A particularly simple solution may be obtained for a dilute 

concentration of aligned slit cracks in an isotropic matrix. From 

(38) it follows that 

°1 - °2 

Next, l e t E and v be Young's modulus and Po i s son ' s r a t i o for the m m 

matrix. Then, from (37) and (A7), we have 

"22 * Ê^ ^̂  * *5^^^ ~ ^m^̂  ' 
m 

2(1 + V ) 
M^̂  = ^ - ^ (1 + km , (A2) 

m 

2(1 + V ) 
M,, = =-^- {1 + kn&a - V ) } . 

66 E m 

The remaining components of the compliance tensor of the cracked 

material are equal to those of the matrix. 
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The two phase model was proposed two decades ago by 

Bristow [&] in an attempt to quantify the behaviour of annealed and 

heavily cold-worked metals containing microcracks. In more recent 

years the two phase model has been the subject of deeper investigations 

by Budiansky and O'Connell [8] and Hoenig [9] amongst others. it is 

gratifying to note that (36) agrees with a corresponding equation (2.14) 

in Hoenig's paper [9]. Likewise, if we were to allow for nonalignment 

of the cracks, (36) would reduce to the scalar equations derived by 

Budiansky and O'Connell [8] for randomly oriented cracks in an isotropic 

matrix. Furthermore, equations (42) imply Bristow's [6] results for 

dilute distributions of cracks. 
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A. NUMERICAL EVALUATION OF L 

The numerical evaluation of L is achieved by the 

following iterative method. First, we rewrite (32) as 

L - F(6,Cj,L) , 

where 

F(6,Cj,L) 

| - l r , ,. , V r , ^ ,. , ^ 1 - 1 . [1 + 1'.^BL2A] ^ L 2 + Cj(Lj-L2)[l + Pj(L^-L)]"^} 

The iteration commences with 

L " > . L , . 

and successive iterates are obtained from 

L('^*^> = i(S^^> . s<^)^). (k >, 1) , 

where 

S"" . F(B.Cj.L<''>) 

This iteration scheme is repeated until a particular convergence criterion 

is satisfied. In the results that follow we used the criterion 

I I L ^ » ^ ^ ! ) -L^^^^ll 
— < e II L ^ ' ^ II 

-3 
where e is a suitable error bound - say 10 
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It is probably obvious from material symmetry considerations that 

the resulting L for the cracked medium has nine Independent coefficients, 

in contrast to the five moduli which appear in the stiffness tensor 

of the uncracked fibrous composite. This is indeed borne out in the 

numerical solution of (32). 

It is, perhaps, important to emphasize that the present approach 

does not distinguish between cracks opening or closing. We expect our 

results only to be valid when the cracks are open - and note that the 

quantification of this statement is nontrivial except when the applied 

normal strains are all positive. 
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5. RESULTS FOR SELECTED MATERIAL SYSTEMS 

To illustrate the effect of matrix cracking on the properties of 

typical composite systems, we present results of numerical solutions of 

Equations (32) and (35). The material systems considered are a graphite-

epoxy composite, and a boron-aluminum composite. The elastic properties 

of the fibers and matrices were taken as: 

VS 0054 Gr/Ep: 

Unit 33 ^31 ^̂ 31 11 12 Symmetry 

3 
Fiber 10 ksi 100.00 2.20 1.10 0.38 Transversely 

0.00A95 isotropic 

10^ MPa 689.5 15.2 7.6 2.6 

3 
Matrix 10 ksi 0.50 0.19 0.50 0.19 Isotropic 

0.20980 

10^ MPa 3.A 1.3 3.A 1.3 

B/A£: 

Unit E G Symmetry 

Fiber 

Matrix 

10^ ksi 

10-̂  MPa 

10"̂  ksi 

10^ MPa 

58.00 

399.9 

10.50 

72.A 

23.97 

165.3 

3.95 

27.2 

Isotropic 

Isotropic 
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Interpretation of results should be facilitated by an explicit 

display of the overall stiffness. Hence we rewrite (1) for the cracked 

medium In matrix form: 

C -= L E 

'22 

33 

23 

'13 

12 

L 
n 

SYM. 

'12 ^13 

'22 ^23 

^33 

0 

0 

0 

4̂4 

0 

0 

0 

0 

'55 

0 

0 

0 

0 

0 

6̂6 

n 
•22 

'33 

2c 

2c 

23 

2E 

13 

12 

(A3) 

Figures 2a to 2i show the results obtained for the graphite/ 

epoxy system. Calculations were made for three different volume fractions 

c,=c of the fiber, both with the two-phase and three-phase model. This was 

done to highlight the differences in results obtained from the two models. 

Since the diameter of graphite fibers is usually of the order of ly, there 

are many fibers in each ply of a laminated structure, and therefore, 

the cracks will be much larger than the fiber diameter. Accordingly, 

the two-phase model of Figure Ic will be more appropriate for this system. 

Figures 3a to 3i show the results obtained for the boron/aluminum 

system. Again, three values of c =c- were selected. In contrast to the 
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graphite fiber, the boron filament is usually of large diameter, 150lJ or 

so, and only one layer of fibers is present in a typical ply. The crack 

length is then comparable to the fiber diameter, and the three-phase model 

is the appropriate one for this composite system. Again, results for 

both models are presented. 

It is seen that the presence of cracks has a very similar effect 

on the individual coefficients of L.. in both material systems. However, 

specific L.. components change in different ways. For both systems, L .. , 

L -, L , L , and L reduce quite rapidly with increasing B . On the 
12 13 2 ^ 2 3 

other hand, L is essentially constant in graphite-epoxy, but decreases 

slowly in boron-aluminum. Finally, the shear stiffnesses for both systems 

decrease rather slowly. 

It is of interest to discuss the results in terms of the 

respective Young's moduli and Poisson's ratios. .Thus we write the inverse 

of equation (43) in the form 

'11 

33 

2e 
23 

2e 

2e 

13 

12 

12 13 

^11 

^'21 

' 2 2 

^31 

S3 

0 

hi 
1 

hi 
V32 

^ 3 

0 

hi 
^23 

hi 

1 

^ 3 

0 
"AA 

0 

0 

1 

5̂5 

0 

0 

0 

0 

0 

0 

1 

66_ 

"~ 1 

" 1 1 

^ 0 0 

" 3 3 

° 2 3 

° 1 3 

hl\ 

Recall that the distance between cracks is equal to lalB, where 2a is 

crack length or ply thickness. Figures lb, c. 



25. 

First, it is significant that E , E , v v , v , and v 

are virtually independent of the crack density parameter B. Correspondingly, 

the choice of the two or three phase model is irrelevant. Second, the 

moduli E~^, V , and v exhibit significant dependence on B, as is 

displayed in Figure A and 5. Moreover, the difference between the two and 

three phase models is again minimal for c ^ O.A. As far as the shear 

moduli L,, and L ^ are concerned, the predictions of the two and three phase 
A4 55 

models are different, c.f.. Figure 2g, 2h, 3g, 3h. Also, L,, and L^. depend 
A4 60 

Strongly on B, whereas L does not. 

Finally we note that the cracks cause a much larger absolute 

reduction of many overall stiffness coefficients In the metal matrix 

system than they do in the polymer system. This Is to be expected on 

the basis of matrix and fiber properties shown above. The epoxy matrix 

has a very low stiffness even in the undamaged state, and the fiber has a 

low transverse modulus. The overall stiffnesses of the Gr/Ep system 

(except for L .) shown In Figure 3 are one order of magnitude smaller than 

those of the B/A£ system in Figure 2. Therefore, the Gr/Ep composite 

properties leave only limited room for reduction by matrix cracking. 
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CAPTIONS 

Figure la. A three-phase medium with aligned fibers and longitudinal 
slit cracks in a continuous matrix. 

Figure lb. A filament monolayer with longitudinal slit cracks, 

Figure Ic. A lamina containing small diameter fibers and longitudinal 
slit cracks. 

Figure 2. Stiffness changes caused by a system of longitudinal 
slit cracks in a Gr/Ep composite. 

Figure 3. Stiffness changes caused by a system of longitudinal 
slit cracks in a B/A£ composite. 

Figure A. Young's modulus and Poisson's ratios of the Gr/Ep 
system, which change with crack density parameter 6. 

Figure 5. Young's modulus and Poisson's ratios of the B/A£ system 
which change with crack density parameter B-
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Figure 3. Stiffness changes caused by a system of longitudinal slit cracks in a 

B/Ai, composite. 
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system which change with crack 
density parameter 6. 
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