

Delft University of Technology

Document Version
Final published version

Licence
CC BY

Citation (APA)
Kaseb, Z., Orfanoudakis, S., Vergara, P. P., & Palensky, P. (2026). Physics-informed neural network with adaptive
activation for power flow. International Journal of Electrical Power and Energy Systems, 174, Article 111525.
https://doi.org/10.1016/j.ijepes.2025.111525

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.1016/j.ijepes.2025.111525

Electrical Power and Energy Systems 174 (2026) 111525

A
0

Contents lists available at ScienceDirect

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Physics-informed neural network with adaptive activation for power flow
Zeynab Kaseb ∗, Stavros Orfanoudakis , Pedro P. Vergara , Peter Palensky
Department of Electrical Sustainable Energy, Delft University of Technology, The Netherlands

A R T I C L E I N F O

Keywords:
End-to-end algorithm
Deep learning
Multilayer perceptron
Load flow
Physics-aware neural network
Voltage calculation

 A B S T R A C T

We introduce a physics-informed neural network for power flow (PINN4PF) that effectively captures the
nonlinear dynamics of large-scale modern power systems. The proposed neural network (NN) architecture
consists of two important advancements in the training pipeline: (A) a double-head feed-forward NN that
aligns with power flow (PF), including an activation function that adjusts to the net active and reactive power
injections patterns, and (B) a physics-based loss function that partially incorporates power system topology
information through a novel hidden function. The effectiveness of the proposed architecture is illustrated
through 4-bus, 15-bus, 290-bus, and 2224-bus test systems and is evaluated against two baselines: a linear
regression model (LR) and a black-box NN (MLP). The comparison is based on (i) generalization ability, (ii)
robustness, (iii) impact of training dataset size on generalization ability, (iv) accuracy in approximating derived
PF quantities (specifically line current, line active power, and line reactive power), and (v) scalability. Results
demonstrate that PINN4PF outperforms both baselines across all test systems by up to two orders of magnitude,
not only in terms of direct criteria, e.g., generalization ability, but also in terms of derived physical quantities.
1. Introduction

Power flow (PF) analysis is a foundational computational method
for assessing and determining the steady-state operating conditions of
electrical power systems by computing voltage magnitudes and phase
angles at all buses. This analysis is crucial to ensure the reliability,
stability, and optimal performance of power systems. It also allows
operators to make informed decisions and mitigate potential issues,
such as voltage violations, overloads, and system instability [1,2].

PF analysis can be performed by solving nonlinear and non-convex
algebraic equations derived from the nodal balance of the net active
and reactive power injections per bus in power systems [3]. Exact
analytical solutions for these equations, which also involve impedance
parameters, load characteristics, and generator conditions in power
systems, are not possible. Therefore, iterative numerical methods, such
as Gauss–Seidel and Newton–Raphson (NR) methods, are convention-
ally employed to converge to a solution that satisfies the PF equations
within specified accuracy limits. Eventually, the solutions yield voltage
phasors across the entire power system and provide a comprehensive
understanding of the operational state [4].

Conventional iterative numerical methods, however, face compu-
tational challenges when applied to large-scale modern power sys-
tems [5]. These challenges include poor scalability, numerical instabil-
ity under heavily loaded or ill-conditioned scenarios, and convergence
failures [6]. Such methods also exhibit a considerable increase in com-
putation time with system size and often require accurate initialization,

∗ Corresponding author.
E-mail address: Z.Kaseb@tudelft.nl (Z. Kaseb).

which is not always feasible in practice. In addition, they struggle to
account for system uncertainties, such as inaccurate line profiles due
to weather conditions and aging, different types of loads, and missing
data on renewable energy resources [7]. Ineffective PF analysis under
these circumstances can lead to safety threats, including renewable
energy generation curtailment and blackouts, as well as difficulties in
accommodating distributed energy resources [8,9]. Addressing these
challenges necessitates developing new approaches for PF analysis that
are computationally efficient and numerically stable.

Deep learning approaches, and more specifically, neural networks
(NNs), are currently the most powerful set of numerical tools for
providing accurate approximations of nonlinear problems (e.g., [10–
12]). Several studies have demonstrated the superiority of deep learn-
ing approaches in PF analysis in terms of computational time by
orders of magnitude (e.g., [13–15]). At the same time, the accuracy
of the solutions is competitive compared to the conventional iterative
numerical methods (e.g., [16,17]). NNs, therefore, can address the
challenges mentioned above by leveraging the availability of massive
measurements and/or augmented data, learning complex input–output
relationships that are often difficult or even impossible for conventional
iterative numerical methods to comprehend, and achieving the accu-
racy required for real-world applications [18]. Nevertheless, NNs are
subject to overfitting, the lack of generalization, and scalability issues.
They are very unlikely to meet the physical constraints. Moreover, their
https://doi.org/10.1016/j.ijepes.2025.111525
Received 13 August 2025; Received in revised form 10 October 2025; Accepted 22
vailable online 11 January 2026
142-0615/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
 December 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/ijepes
https://www.elsevier.com/locate/ijepes
https://orcid.org/0000-0002-5142-2903
https://orcid.org/0000-0002-0767-9488
https://orcid.org/0000-0003-0852-0169
https://orcid.org/0000-0003-3183-4705
mailto:Z.Kaseb@tudelft.nl
https://doi.org/10.1016/j.ijepes.2025.111525
https://doi.org/10.1016/j.ijepes.2025.111525
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2025.111525&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
Table 1
List of literature on deep learning-based power flow (PF) and optimal power flow (OPF). Studies are grouped into: (i) pre-training;
(ii) training; (iii) post-training.
 Stage Study Application Input∗ Output∗ Approach
 Pre-training Lei et al. (2021) [22] OPF 𝑝𝑑 , 𝑞𝑑 𝑝𝑔 , 𝑞𝑔 , |𝑣𝑖|, 𝛿𝑖 Integrating measurement data into the

pre-trained NN

 Training Yang et al. (2020) [23] PF 𝑝𝑖, 𝑞𝑖 |𝑣𝑖|, 𝛿𝑖 Adding a penalty term of branch
flows to loss function

 Jeddi & Shafieezadeh
(2021) [25]

PF 𝛥𝑝𝑖, 𝛥𝑞𝑖, |𝑣𝑖|, 𝛿𝑖, 𝑙𝑖𝑗 |𝑣𝑖|, 𝛿𝑖 Using self-attention mechanism and
adding a penalty term of nodal voltage
to loss function

 Hu et al. (2021) [29] PF 𝑝𝑑 , 𝑞𝑑 , 𝑝𝑔 , |𝑣𝑔 | |𝑣𝑖|, 𝛿𝑖 Adding regularization terms based on
structure of AC PF equations and
topology of power system

 De Jongh et al. (2022)
[26]

PF 𝑝𝑖, 𝑞𝑖, |𝑣𝑖|, 𝛿𝑖,  𝑝𝑖, 𝑞𝑖, |𝑣𝑖|, 𝛿𝑖 Adding a penalty term of nodal active
and reactive power to loss function

 Kody et al. (2022) [28] PF |𝑣𝑖|, 𝛿𝑖 𝑝𝑖, 𝑞𝑖, 𝑠𝑖𝑗 Adding a physics-based term to NN
formulation

 Yang et al. (2023) [27] PF 𝑝𝑖, 𝑞𝑖, , A |𝑣𝑖|, 𝛿𝑖 Developing a topology-adaptive
graph NN and adding penalty terms
of equality constraints to loss function

 Lin et al. (2023) [30] PF 𝑝𝑑 , 𝑞𝑑 , 𝑝𝑔 , |𝑣𝑔 |, 𝑙𝑖𝑗 ,  𝑝𝑖, 𝑞𝑖, |𝑣𝑖|, 𝛿𝑖 Combining message passing graph
NNs and high-order graph
convolutional NNs

 Liu et al. (2024) [31] PF 𝑝𝑑 , 𝑞𝑑 , 𝑙𝑖𝑗 𝑣𝑖 Using a physics-inspired structure
integrating physical laws of PF

 Nellikkath &
Chatzivasileiadis (2021)
[32]

OPF 𝑝𝑑 𝑝𝑔 Adding a penalty term of active
power generation and consumption to
loss function

 Nellikkath &
Chatzivasileiadis (2022)
[33]

OPF 𝑝𝑑 , 𝑞𝑑 𝑝𝑔 , 𝑞𝑔 Adding a penalty term of active and
reactive power generation and voltage
magnitude to loss function

 Hu & Zhang (2023) [34] OPF 𝑝𝑑 , 𝑞𝑑 |𝑣𝑖|, 𝛿𝑖 Developing an activation function
and a modified loss function to satisfy
physical constraints

 Wu et al. (2024) [35] OPF 𝑝𝑖, |𝑣𝑖| |𝑣𝑖|, 𝛿𝑖 Using a model-agnostic meta-learning
algorithm and enforcing PF equations
as constraints in loss function

 Post-training Donti et al. (2021) [24] OPF 𝑝𝑑 , 𝑞𝑑 , |𝑣𝑟| 𝑝𝑔 , |𝑣𝑟,𝑔 | Implementing completion idea (hard
constraints)

 Pan et al. (2022) [36] OPF 𝑝𝑑 , 𝑞𝑑 𝑝𝑔 , 𝑞𝑔 , |𝑣𝑖|, 𝛿𝑖 Implementing completion idea (hard
constraints)

 Li et al. (2023) [37] OPF 𝑝𝑑 𝑝𝑔 , 𝛿𝑖 Filtering generated values to ensure
feasibility by comparing with actual
values

∗𝑝𝑖=nodal active power, 𝑞𝑖=nodal reactive power, 𝑠𝑖𝑗=line apparent power, |𝑣|=voltage magnitude, 𝛿=voltage angle, =graph topology, 𝑙𝑖𝑗=line physical properties, 𝐴=Adjacency
matrix, 𝑝𝑔=generator active power, 𝑞𝑔=generator reactive power, 𝑝𝑑=load active power, 𝑞𝑑=load reactive power.
performance relies heavily on the training dataset size and quality. In
contrast, not enough data is always available due to privacy reasons
and the presence of missing data, among others [19].

Several studies in the literature have investigated the impact of
various modifications on the efficacy of deep learning approaches for
PF analysis (e.g., [20,21]). These modifications are categorized into
three main stages: (i) pre-training (e.g., [22]); (ii) training (e.g., [23]);
and (iii) post-training (e.g., [24]), as outlined in Table 1. A majority of
these studies have primarily focused on the training stage. Table 1 also
highlights instances where topology information, such as line physical
properties (e.g., [25]) and graph topology (e.g., [26]), has been inte-
grated into the training stage. The literature review also indicates the
utilization of different prior knowledge for deep learning approaches
for PF analysis and optimal power flow (OPF), including equality and
inequality constraints (e.g., [27]) and PF equations (e.g., [28]). Among
the three presented stages, this work focuses on the training stage.

Measurement data has been used in [22] to enhance deep learning
approaches for OPF. While this modification has demonstrated im-
provements in accuracy, its applicability is confined to the pre-training
stage. Physical properties have been used on a few occasions in the past
to enhance deep learning approaches for PF analysis (e.g., [25,38]),
where the focus was mainly on the training stage. However, the high
dependency on the physical properties of power systems affects the
efficiency of this modification, certainly because physical properties
are not always reliable due to different reasons, including aging and
2
environmental conditions. In addition, integrating all the physical prop-
erties makes training processes computationally very expensive. The
completion idea and filtering technique have also been employed in a
few studies (e.g., [37]), where the focus is mainly on the post-training
stage. Yet, similar to pre-training stage modifications, this approach has
limitations as it is detached from the training stage.

Among various methods, modified loss functions have been widely
used and shown significant promise in enhancing the performance and
reliability of NNs for PF analysis (e.g., [29]) and OPF (e.g., [34]).
Physics-based loss functions have shown significant promise in enhanc-
ing the performance and reliability of NNs for PF and OPF. However,
most existing contributions (e.g., [35]) rely on the full integration of
system topology data and physical parameters into the learning process.
Although this strategy improves physical consistency, it significantly
increases computational complexity, thereby limiting scalability. In
addition, it often assumes complete and accurate system information,
which can be unrealistic in practice due to measurement noise and
topology uncertainties. Consequently, developing a physics-based loss
function that retains the benefits of physical consistency while reducing
dependency on full system topology data and computational overhead
remains an open research challenge in the field.

Therefore, this study introduces a novel hidden function derived
from the power balance equations, which partially encodes line char-
acteristics into a modified loss function as prior physical knowledge. In
contrast to existing approaches that require full system topology data

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
and complete line parameters, the proposed approach reduces depen-
dency on such information while preserving physical interpretability.
Building upon this concept, we propose an end-to-end deep learning ar-
chitecture, hereafter called physics-informed neural network for power
flow (PINN4PF). The focus is on the training stage and extends the
existing body of knowledge on physics-informed NNs for PF analysis
(e.g., [23,29]). PINN4PF learns the mapping from net active (𝑝) and
reactive (𝑞) power injections to complex bus voltages. An adaptive
activation function is also employed to enhance the representational
flexibility of the NN. The effectiveness of PINN4PF is demonstrated on
4-bus [39], 15-bus [40], 290-bus [41], and 2224-bus [42] test systems.
The main contributions are:

1. A double-head feed-forward NN architecture for PF analysis,
where the two heads predict the real (𝜇) and imaginary (𝜔)
parts of the complex bus voltages. Each head employs a mod-
ified ReLU activation function with a trainable slope, enabling
adaptive nonlinear feature learning through backpropagation.

2. A physics-based loss function that incorporates a hidden function
encoding partial topology data through the diagonal elements
of the admittance matrix. This design enforces physical con-
sistency while significantly reducing the need for full topology
data and lowering computational cost relative to prior fully
physics-informed learning approaches.

2. Power flow analysis

PF analysis aims to specify the state variables of power systems,
i.e., [𝛿 𝑣]𝑇 , where 𝛿 and 𝑣 denote the voltage phase angle and mag-
nitude, respectively. It is a representation of Kirchhoff’s laws and is
formulated in rectangular coordinates [29] as:

𝑝𝑖 =
𝑛
∑

𝑗=1
𝑔𝑖𝑗 (𝜇𝑖𝜇𝑗 + 𝜔𝑖𝜔𝑗) + 𝑏𝑖𝑗 (𝜔𝑖𝜇𝑗 − 𝜇𝑖𝜔𝑗), (1a)

𝑞𝑖 =
𝑛
∑

𝑗=1
𝑔𝑖𝑗 (𝜔𝑖𝜇𝑗 − 𝜇𝑖𝜔𝑗) − 𝑏𝑖𝑗 (𝜇𝑖𝜇𝑗 + 𝜔𝑖𝜔𝑗), (1b)

where 𝑖 and 𝑗 are the indices of the buses, 𝑛 the total number of
buses in the power system, 𝑝𝑖 and 𝑞𝑖 the net active and reactive power
injections at bus 𝑖, 𝑔𝑖𝑗 and 𝑏𝑖𝑗 the real and imaginary components of the
admittance 𝑦𝑖𝑗 between buses 𝑖 and 𝑗, 𝜇𝑖 = 𝑣𝑖𝑐𝑜𝑠𝛿𝑖 and 𝜔𝑖 = 𝑣𝑖𝑠𝑖𝑛𝛿𝑖 the
real and imaginary components of the voltage phasor at bus 𝑖.

There are three types of buses in power systems: (i) reference bus,
(ii) load bus (pq bus), and (iii) generation bus (pv bus). 𝑣𝑖 and 𝛿𝑖 are
known, while 𝑝𝑖 and 𝑞𝑖 are unknown for the reference bus. For load
buses, 𝑝𝑖 and 𝑞𝑖 are known, while 𝑣𝑖 and 𝛿𝑖 are unknown. 𝑣𝑖 and 𝑝𝑖 are
known for generation buses, while 𝑞𝑖 and 𝛿𝑖 are unknown.

This study considers cases with one reference bus and load buses
for simplicity. It should also be noted that while a voltage magnitude
of 1.0 p.u. and a phase angle of 0 degrees are assumed in this study,
PINN4PF is flexible to accommodate different reference bus settings.

For a power system consisting of a reference bus and load buses, a
set of PF equations with the same number of equations and unknowns
is achieved [43]:

𝑝𝑑𝑖 − 𝑝𝑖 = 0, (2a)

𝑞𝑑𝑖 − 𝑞𝑖 = 0, (2b)

where 𝑝𝑖 and 𝑞𝑖 are defined by (1a) and (1b), respectively, and 𝑝𝑑𝑖
and 𝑞𝑑𝑖 are the net active and reactive power injections at bus 𝑖,
respectively. (2) is conventionally solved iteratively to specify [𝛿 𝑣]𝑇
until a convergence criterion is met, i.e., the mismatch between 𝑝𝑖 and
𝑝𝑑 and also 𝑞 and 𝑞𝑑 is small enough.
𝑖 𝑖 𝑖

3
3. Deep learning approaches for power flow analysis

Deep learning approaches for PF analysis refers to developing NNs
to approximate the state variables of power systems based on given
historical system operation data, hereafter called dataset. The dataset
includes input features 𝑥⃗ and output labels 𝑦. For a power system
with a reference bus and load buses, the input features are known
variables, i.e., the net active and reactive power injections at load buses
𝑥⃗ = {(𝑝𝑑𝑖 , 𝑞

𝑑
𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}. The output labels are unknown variables,

i.e., the real and imaginary components of complex voltages at load
buses 𝑦 = {(𝜇𝑖, 𝜔⃗𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}. The dimension of 𝑥⃗ and 𝑦 is
therefore 𝑛 × 2, where 𝑛 is the number of load buses. Note that the
voltage magnitude and phase angle are known for the reference bus
𝑖 = 0, and the net active and reactive power injections are unknown.
Having voltages at all load buses approximated, the net active and
reactive power injections at the reference bus can be calculated.

The training of NNs is an iterative process and involves four steps.
In the first iteration, the set of trainable parameters of the NN, i.e., the
weight matrices and bias vectors 𝜃 = {(𝑊𝑘, 𝑏𝑘) ∶ 𝑘 = 1, 2,… , 𝑚}, are
initialized in the update step, where 𝑚 is the number of hidden layers.
NN is developed in the forward step. Detailed information about this
step is provided in Section 4.1. The deviations of the approximated
output obtained by the NN ̂⃗𝑦 from the output labels 𝑦 are computed
in the loss step. Finally, the gradient of the deviations is calculated
with respect to 𝜃 in the backward step. For the next iteration, 𝜃 is fine-
tuned in the update step to reduce the deviations. The process continues
until the maximum number of epochs is reached. In practice, the four
steps can be individually and jointly modified to improve the overall
performance of NNs. For example, this can be achieved by enhancing
the NN architecture in the forward step or by adding a physical penalty
term to the loss function in the loss step.

4. Proposed architecture: PINN4PF

The proposed PINN4PF includes two key modeling innovations in
the forward and loss steps, respectively, denoted as A and B in Fig. 1.
These components together form a double-head architecture enhanced
with an adaptive activation function and a physics-based loss function.
Note that classical PF solvers, e.g., the NR method, and PINN4PF can
be interchangeably used to specify the state of the power system. The
following subsections provide a detailed description of the scientific
modeling and mathematical formulation of PINN4PF.

4.1. Forward pass

A double-head feed-forward NN 𝑓 (⋅) ∈ {(𝑓0, 𝑓1, 𝑓2)} is developed
to approximate ̂⃗𝑦 = {(̂⃗𝜇𝑖, ̂⃗𝜔𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} at load buses using
the dataset {𝑥⃗, 𝑦}. It has three types of layers, i.e., input, hidden, and
output layers, as highlighted in Fig. 1-A. The input and output layers
correspond to the input features 𝑥⃗ and output labels 𝑦, respectively.
The neurons of the input layer contain active power 𝑝𝑑 = [𝑝1, 𝑝2,… , 𝑝𝑛]
followed by reactive power 𝑞𝑑 = [𝑞1, 𝑞2,… , 𝑞𝑛] at all load buses, and
hence, the input layer has 𝑛 × 2 neurons. Following the input layer,
there is a set of shared hidden layers 𝑓0(⋅) acting as a feature extractor
that projects 𝑥⃗ to a higher-dimensional space, where the two heads,
𝑓1(⋅) and 𝑓2(⋅), separately involve a few hidden layers to respectively
approximate 𝜇 = [𝜇1, 𝜇2,… , 𝜇𝑛] and 𝜔⃗ = [𝜔1, 𝜔2,… , 𝜔𝑛]. Thus, the
output layer of each head has 𝑛 neurons. The shared set of hidden layers
and the two heads each are a chain of functions and can be represented
as:
𝑓0(𝑥⃗) = 𝑙0𝑚◦… ◦𝑙01(𝑥⃗), (3a)

𝑓1(𝑥⃗) = 𝑙1𝑚◦… ◦𝑙11(𝑥⃗), (3b)

𝑓2(𝑥⃗) = 𝑙2𝑚◦… ◦𝑙21(𝑥⃗), (3c)

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
Fig. 1. Schematic diagram of PINN4PF. The model incorporates two key advancements: (A) a double-head feed-forward NN, 𝑓 (⋅) ∈ {𝑓0, 𝑓1, 𝑓2}, utilizing an
adaptive activation function 𝜎′(𝑧) = max(0, 𝛼𝑧) with a trainable slope 𝛼; and (B) a physics-based loss function that combines supervised learning with physical
constraints. The input layer receives a concatenated vector of active (𝑝𝑑) and reactive (𝑞𝑑) power at all 𝑛 load buses, resulting in 2𝑛 input neurons. Shared hidden
layers 𝑓0(⋅) act as a feature extractor, projecting the input to a higher-dimensional latent space. Two separate network heads, 𝑓1(⋅) and 𝑓2(⋅), then predict the real
(𝜇) and imaginary (𝜔⃗) components of the complex bus voltages, each with 𝑛 output neurons. The model is trained by minimizing a composite loss that enforces
both data fidelity (using labels) and physical consistency.
which sequentially process 𝑥⃗ through 𝑚 hidden layers to obtain 𝑓0(⋅),
𝑓1(⋅), and 𝑓2(⋅), respectively. For the shared set of hidden layers and the
two heads, the 𝑘th hidden layer (𝑘 = 1, 2,… , 𝑚) is given by:

𝑙𝑘(𝑥⃗) = 𝜎
(

𝑊 𝑇
𝑘 ⋅ 𝑥⃗ + 𝑏𝑘

)

. (4)

Here, 𝑊 𝑇
𝑘 and 𝑏𝑘 are the weight matrix and bias vector for the

corresponding hidden layer. Each hidden layer applies a linear trans-
formation 𝑊 𝑇

𝑘 ⋅ 𝑥⃗ + 𝑏𝑘, followed by a nonlinear transformation 𝜎(⋅) to
capture complex relationships between 𝑥⃗ and 𝑦. Note that 𝑊𝑘 and 𝑏𝑘
are trainable parameters and are optimized during the training process.

The Rectified Linear Unit (ReLU) activation function 𝜎(⋅) is applied
to the shared set of hidden layers (3a). While an adaptive version of
ReLU 𝜎′(⋅) is developed to apply model-based nonlinear transformations
to the two heads (3b) and (3c). That is, a trainable parameter 𝛼
is introduced to scale the result of the linear transformation while
applying nonlinearity. Hence, 𝛼 serves as a guide to prevent overfitting
and improve the generalization ability of the NN against unseen data.
𝜎(⋅) and 𝜎′(⋅) are represented as:

𝜎 = max(0, 𝑧), (5a)

𝜎′ = max(0, 𝛼𝑧), (5b)

where 𝑧 is equivalent to 𝑊 𝑇
𝑘 ⋅ 𝑥⃗ + 𝑏𝑘. During each iteration of the

training process, the gradients of the loss function concerning the
trainable parameters ∇𝑊𝑘 ,𝑏𝑘 ,𝛼𝑘𝐿 are computed for each hidden layer 𝑘
using the chain rule of differentiation. The resulting gradients are then
backpropagated through NN to update and optimize 𝛼𝑘 along with 𝑊𝑘
and 𝑏𝑘, which collectively improve NN’s performance in approximating
̂⃗𝑦. More detailed information about adaptive activation functions can be
found in [44,45].
4
4.2. Loss function

Prior physical knowledge is integrated with the NN architecture to
make it informed; see Fig. 1-B. A part of the topology information of
the power system, i.e., the diagonal elements of the admittance matrix
𝑌𝑘𝑘, is used to develop the physical model 𝑓 ′(⋅). In addition, the real and
imaginary components of the complex voltage at the reference bus, i.e.,
𝜇0 = 1, 𝜔0 = 0, are imported.

The derivation of 𝑓 ′(⋅) begins with Ohm’s law, which relates voltage
𝑉 , current 𝐼 , and resistance 𝑅, that is, 𝑉 = 𝐼 × 𝑅. By extending this
equation to the complex domain, 𝑉 = 𝐼 ×𝑍 relates the voltage phasor,
current phasor, and impedance phasor. From this equation, 𝐼 can be
expressed in terms of 𝑉 and 𝑌 (inverse of the impedance phasor), that
is 𝐼 = 𝑌 ×𝑉 . The system of equations for all buses can then be presented
in matrix form as:
[

𝐼
]

𝑛×1 =
[

𝑌
]

𝑛×𝑛 ×
[

𝑉
]

𝑛×1. (6)

By rearranging (6), the current flowing into bus 𝑘 can be presented
as a linear combination of the voltages at all other buses with weights
given by the corresponding admittance matrix:

𝐼𝑘 =
𝑛
∑

𝑖=1
𝑌𝑘𝑖𝑉𝑖. (7)

Here, the power equation 𝑆 = 𝑉 × 𝐼∗ provides further guides for
subsequent derivations, that is 𝐼 = 𝑆∗

𝑉 ∗ , where 𝑆 is complex apparent
power. The current and voltage phasors are related as:
𝑆∗
𝑘

𝑉 ∗
𝑘

= 𝑌𝑘1𝑉1 + 𝑌𝑘2𝑉2 +⋯ + 𝑌𝑘𝑘𝑉𝑘 +⋯ + 𝑌𝑘𝑛𝑉𝑛, (8)

wherein the right-hand side is an extended form of the right-hand
expression in (7). Finally, the expression for calculating the voltage

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
phasor at bus 𝑘 can be written as:

𝑉𝑘 =
1
𝑌𝑘𝑘

×

(

𝑆∗
𝑘

𝑉 ∗
𝑘

−
𝑛
∑

𝑖=1,𝑖≠𝑘
𝑌𝑘𝑖𝑉𝑖

)

. (9)

In (9), 𝑌𝑘𝑘 = 𝐺𝑘𝑘 + 𝑗𝐵𝑘𝑘 is known from the power system topology.
Considering the input features and output labels needed to develop
PINN4PF, 𝑉𝑘 = 𝜇𝑘 + 𝑗𝜔𝑘 and 𝑉 ∗

𝑘 = 𝜇𝑘 − 𝑗𝜔𝑘 are known from the output
labels, and 𝑆∗

𝑘 = 𝑝𝑑𝑘 + 𝑗𝑞𝑑𝑘 is known from the input features. The only
unknown expression remaining in (9) is:

𝜓𝑘 =
𝑛
∑

𝑖=1,𝑖≠𝑘
𝑌𝑘𝑖𝑉𝑖, (10)

which is called hidden function in this study. Note that 𝜓 is unique for
each data point. Theoretically, 𝜓 is also unique for each bus. During
the training process, PINN4PF first approximates 𝜓 and then uses it to
approximate 𝑉 = 𝜇 + 𝑗𝜔 using:

𝑓 ′(𝑥⃗) = 1
𝑌𝑘𝑘

×
(

𝑝𝑑 − 𝑗𝑞𝑑

𝜇 − 𝑗𝜔
− 𝜓

)

. (11)

This unique relation improves the learning process by following the
underlying physical laws of the power system. Instead of integrating the
full admittance matrix [𝑌]𝑛×𝑛 into the physics-based loss function, only
the diagonal elements 𝑌𝑘𝑘 are needed. This simplification reduces the
wall-clock training time by up to three orders of magnitude compared
to the full admittance matrix integration used in [46]. Note that this
comparison refers to NN training with physics-based loss functions.
While numerical solvers already exploit the sparsity of the admittance
matrix, integrating the full matrix in NN training remains computation-
ally expensive. By using only the diagonal elements, PINN4PF preserves
key physical consistency while drastically reducing computational re-
quirements. It is also important to note that the diagonal entries
represent each bus’s self-admittance, which dominates local voltage-
current coupling and implicitly accounts for the aggregate effect of
connected branches. This allows PINN4PF to retain essential physical
constraints without requiring full system topology information.

Typically, the goal of the training process is to minimize the dif-
ference between ̂⃗𝑦, approximated by NN, and ground-truth output
labels 𝑦, obtained from NR, based on a loss function of choice. In this
study, a modified loss function is developed that combines supervised
and physics-based penalty terms. The supervised term enforces agree-
ment with ground-truth data, while the physics-based term ensures
local compliance with Ohm’s and power balance laws. This hybrid
formulation enhances learning stability and generalization, particularly
under data-limited or uncertain operating conditions (e.g., [47]). The
former term is the mean square of the difference between the output
approximated by the NN 𝑓 (⋅) and 𝑦. Whereas the latter is the mean
square of the difference between the output obtained from the physical
model 𝑓 ′(⋅) and 𝑦, as:

ℒ = 𝛽0 ×
1
𝑁

𝑁
∑

𝑗=1

(

𝑓 (𝑝𝑑𝑗 , 𝑞
𝑑
𝑗 , 𝜃, 𝛼⃗) − 𝑦𝑗

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Supervised penalty term

+𝛽1 ×
1
𝑁

𝑁
∑

𝑗=1

(

𝑓 ′(𝑝𝑑𝑗 , 𝑞
𝑑
𝑗 , 𝑌𝑘𝑘, 𝜓⃗𝑗) − 𝑦𝑗

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Physical penalty term

,

(12)

where 𝑁 is the total number of data points 𝑗. 𝑓 (⋅) ∈ {(𝑓0, 𝑓1, 𝑓2)} and
𝑓 ′(⋅) are the NN architecture (3a)–(3c) and the physical model (11),
respectively. 𝛽0 and 𝛽1 represent the coefficients for the supervised and
physical penalty terms, respectively, with the constraint that 𝛽0 + 𝛽1 =
1. Initially, 𝛽0 = 1 and 𝛽1 = 0. After 100 epochs, the value of 𝛽1
increases at a specified rate, with its maximum value determined from
the sensitivity analysis.
5
5. Results

The performance of PINN4PF is evaluated against LR and MLP.
Experiments are performed on 4-bus [39], 15-bus [40], 290-bus [41],
and 2224-bus [42] test systems containing one reference bus for which
the voltage in complex number form 𝜇0+ 𝑗𝜔0 is known while 𝑝𝑑0 and 𝑞𝑑0
are unknown, and load buses 𝑖 for which 𝑝𝑑𝑖 and 𝑞𝑑𝑖 are known, while
complex voltages 𝜇𝑖 + 𝑗𝜔𝑖 are unknown.

Input features and output labels of the datasets are represented as
𝑥⃗ and 𝑦, respectively, where 𝑥⃗ includes (𝑝𝑑𝑖 , 𝑞𝑑𝑖) and 𝑦 includes (𝜇𝑖, 𝜔⃗𝑖)
obtained from the NR method for all load buses 𝑖. The PandaPower
Python package [48] is used to perform NR and generate the datasets.
LR, MLP, and PINN4PF are compared in terms of their ability to
approximate NR results efficiently and accurately, which is a common
practice in the literature (e.g., [30]). Note that PandaPower specifies
the state variables of power systems, i.e., [𝛿 𝑣]𝑇 , that is, there is a need
for converting the state variables to 𝜇𝑖 = 𝑣𝑖𝑐𝑜𝑠𝛿𝑖 and 𝜔𝑖 = 𝑣𝑖𝑠𝑖𝑛𝛿𝑖 to
yield the output labels 𝑦 = {(𝜇𝑖, 𝜔⃗𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}.

5.1. Model setup

A systematic approach is employed to generate the datasets. Con-
sidering 𝑝𝑑 and 𝑞𝑑 known for a specific scenario of the test system,
𝑠𝑑𝑖 =

√

(𝑝𝑑𝑖)2 + (𝑞𝑑𝑖)2, and 𝑝𝑓𝑖 = 𝑝𝑑𝑖 ∕𝑠
𝑑
𝑖 are computed for each bus 𝑖.

Here, 𝑠𝑑𝑖 is the mean, and a deviation of 30% from 𝑠𝑑𝑖 is the standard
deviation to develop a normal distribution of size 5000 for each bus 𝑖,
i.e., 𝑆𝑖 ∼  (𝑠𝑑𝑖 , 0.3). For 𝑆𝑖 ∈ {𝑠𝑑𝑖𝑗 ∶ 𝑗 = 1, 2,… , 5000}, 𝑝𝑑𝑖𝑗 = 𝑠𝑑𝑖𝑗 × 𝑝𝑓𝑖 and
𝑞𝑑𝑖𝑗 =

√

(𝑠𝑑𝑖𝑗)2 − (𝑝𝑑𝑖𝑗)2 are then computed for all buses 𝑖 and all samples
𝑗. This approach yields a pool of 5000 scenarios from which the data
points are randomly selected to form the dataset. The datasets contain
different numbers of data points: 256, 512, 1024, and 2048 for the
4-bus, 15-bus, 290-bus, and 2224-bus test systems, respectively. The
selected data points are sent to PandaPower to perform PF analysis.
Each dataset is then split into three subsets: 40% for training, 20% for
validation, and the remaining 40% for testing.

Note that the number of data points is deliberately limited to high-
light the ability of PINN4PF to learn effectively even with a relatively
small training dataset by embedding prior physical knowledge directly
into the training process and leveraging adaptive activation functions.
This approach is consistent with practices reported in the literature,
where physics-informed learning has been employed as a strategy to
reduce the amount of training data required (e.g., [49]).

The proposed end-to-end architecture is developed in Python. All
components, including model definition, training loops, and evaluation
routines, are implemented within the PyTorch environment, leveraging
its built-in automatic differentiation and GPU acceleration capabilities.
The training process ends after 5000 epochs for PINN4PF, MLP, and
LR. The loss function used is (12), with 𝛽0 = 1 and 𝛽1 = 0 for MLP
and LR, indicating a supervised penalty term. However, 𝛽0 and 𝛽1 are
non-zero for PINN4PF, where 𝛽0 + 𝛽1 = 1, indicating a combination of
supervised and physical penalty terms. The activation function is ReLU
(5a) for MLP and the shared hidden layers of PINN4PF. The adaptive
ReLU (5b) is used for the separated hidden layers of PINN4PF. The
Adam optimization algorithm updates the trainable parameters during
the training process for PINN4PF, MLP, and LR.

5.2. Model performance

The performance of PINN4PF, MLP, and LR is systematically evalu-
ated based on (i) generalization ability, (ii) robustness, (iii) impact of
training dataset size on generalization ability, (iv) accuracy in approxi-
mating derived PF quantities, and (v) scalability. Experiments are done
using the 15-bus test system. Additional experiments are also performed
using 4-bus, 290-bus, and 2224-bus test systems for scalability.

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
Fig. 2. Mean and standard deviation of MSE for direct physical quantities:
(a) voltage magnitude [𝑉 2] and (b) voltage phase angle [𝑟𝑎𝑑2]. The results are
obtained by PINN4PF and MLP based on the testing dataset for the 15-bus test
system.

5.2.1. Generalization ability
The mean and standard deviation of the mean squared error (MSE)

for the test dataset obtained by PINN4PF and MLP are compared in Fig.
2. PINN4PF is observed to achieve up to 85% and 65% lower maximum
testing MSE for the voltage magnitude [𝑉 2] and voltage phase angle
[𝑟𝑎𝑑2], respectively, compared to MLP.

5.2.2. Robustness
The robustness of PINN4PF, MLP, and LR is evaluated using the 15-

bus test system under varying noise levels. Controlled uniform random
noise is added to both the input features and output labels of the
training dataset. This approach aligns with the use of bounded or non-
Gaussian noise models commonly adopted in power system studies
(e.g., [50]). The corrupted vectors are defined as 𝑥⃗′ = 𝑥⃗ ± 𝑟𝑥 and 𝑦′ =
𝑦± 𝑟𝑦, where ⃗𝑟𝑥 and ⃗𝑟𝑦 are vectors sampled from uniform distributions
within the ranges [0, 1] and [0, 0.1], respectively. The larger perturbation
range for the input features reflects higher uncertainty typically asso-
ciated with active and reactive power measurements, while a smaller
range is applied to the output labels to maintain physically meaningful
voltage responses.

Fig. 3 illustrates the changes in the MSE for the voltage magnitude
[𝑉 2] based on the testing dataset with varying noise levels obtained
by MLP. The comparison is made relative to a constant curve repre-
senting the MSE obtained by PINN4PF using the highest noise level,
i.e., 10%. At the 0% noise level, MLP outperforms PINN4PF trained
with 10% noisy data by approximately 18%. However, as the noise
level increases, the performance of MLP deteriorates significantly, with
MSE increasing up to six times. LR is excluded from the graph as its
MSE at different noise levels is two orders of magnitude higher than
that of PINN4PF. In addition, LR shows limited improvement with
increasing dataset sizes and consistently underperforms compared to
both PINN4PF and MLP.

5.2.3. Training dataset size
The impact of the size of the training dataset on the performance of

MLP is investigated using the 15-bus test system. Fig. 4 illustrates the
changes in the MSE for the voltage magnitude [𝑉 2] based on the testing
dataset with varying training dataset sizes. The comparison is made
relative to a constant curve representing the MSE obtained for PINN4PF
6
Fig. 3. Illustration of the performance of PINN4PF and MLP based on the
MSE obtained for the voltage magnitude [𝑉 2] under varying noise levels in
the training dataset for the 15-bus test system. The MSE values are normalized
relative to that of PINN4PF at the 10% noise level.

Fig. 4. Illustration of the performance of PINN4PF and MLP based on the
MSE obtained for the voltage magnitude [𝑉 2] for the 15-bus test system under
different training dataset sizes. The MSE values are normalized relative to that
of PINN4PF with 256 training data points.

using 256 training data points. It is observed that MLP requires a
training dataset twice as large as that of PINN4PF to achieve a still
inferior performance. However, the performance of MLP improves with
more training data, reaching a comparable level with a dataset four
times larger than that of PINN4PF. This indicates that PINN4PF is more
data-efficient. LR is not included in the graph as its MSE with different
training dataset sizes is two orders of magnitude larger than that of
PINN4PF. In addition, LR shows limited improvement with increasing
training dataset sizes and consistently performs worse than PINN4PF
and MLP. This indicates that the capacity of LR to capture complex
relationships in PF analysis is significantly lower, and increasing the
amount of training data is insufficient to bridge the performance gap.

5.2.4. Accuracy of derived power flow quantities
For derived physical quantities, i.e., line current, line active power,

and line reactive power, the mean and standard deviation of the testing
MSE obtained by PINN4PF and MLP are computed and compared in
Fig. 5. It is observed that PINN4PF achieves up to 81%, 63%, and
66% lower maximum testing MSE for the line current [A2], line active
power [W2], and line reactive power [VAR2], respectively, compared
to MLP. Note that, while the testing MSE for direct quantities (voltage
magnitude and phase) shows lower differences between PINN4PF and
MLP, PINN4PF achieves substantially better accuracy for derived phys-
ical quantities. This improvement arises because the physics-based loss
function enforces the underlying algebraic and system constraints that
govern how these derived variables are computed from the predicted
voltages. Consequently, error propagation to derived quantities is re-
duced. Such behavior, i.e., enhanced internal consistency and improved
generalization for derived variables under physics-informed learning,
has been observed in recent studies in power systems and related
domains (e.g., [51]).

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
Fig. 5. Mean and standard deviation of MSE for derived physical quantities:
(a) line current [𝐴2], (b) line active power [𝑊 2], and (c) line reactive power
[𝑉 𝐴𝑅2]. The results are obtained by PINN4PF and MLP based on the testing
dataset for the 15-bus test system.

5.2.5. Scalability
The experiments are extended to compare the performance of

PINN4PF, MLP, and LR across different test system sizes: 4-bus, 15-bus,
290-bus, and 2224-bus test systems. The maximum testing MSE for the
direct physical quantities obtained for all test system sizes is presented
in Table 2. Accordingly, PINN4PF significantly outperforms MLP and
LR. To further highlight the performance of PINN4PF under extreme
conditions with limited training data, we consider a large-scale test
system operating near its loadability limits, with a few bus voltages
reaching approximately 0.85 𝑝.𝑢. and exceeding 1.05 𝑝.𝑢.. The direct
physical quantities for the 2224-bus test system are depicted in Fig. 6.
PINN4PF achieves a maximum MSE [V2] 50% lower than MLP for this
test system. This improvement is crucial for power system operations,
particularly during unexpected events that cause deviations in voltages
from the nominal value.

The analysis also considers the performance of PINN4PF, MLP,
and LR in approximating derived physical quantities. The maximum
testing MSE for all test system sizes is presented in Table 3. The table
demonstrates the superiority of PINN4PF over MLP and LR across
all test system sizes. For the 2224-bus test system, for example, the
maximum MSE [𝐴2] obtained by PINN4PF is respectively 92% and 98%
lower than MLP and LR.

In addition, as the size of the test system increases, the performance
gap between PINN4PF, MLP, and LR becomes more pronounced. Fig.
7 compares the performance of PINN4PF and MLP under extreme
conditions in the 2224-bus test system for the derived physical quantity.
It should be noted that while the testing MSE for the direct quantities,
i.e., voltage magnitude and phase angle, shows marginal differences
between PINN4PF and MLP, PINN4PF significantly outperforms MLP
in terms of the derived physical quantities, such as line current.
7
Table 2
Performance comparison of power flow solvers based on MSE obtained
for direct physical quantities.
 Case Model MSE [𝑉 2] MSE [𝑟𝑎𝑑2]
 4-bus PINN4PF 4.85 × 10−4 3.81 × 10−8
 MLP 5.70 × 10−3 3.72 × 10−7
 LR 2.52 × 10−2 4.70 × 10−6
 15-bus PINN4PF 5.73 × 10−6 1.06 × 10−7
 MLP 3.96 × 10−5 3.09 × 10−7
 LR 6.32 × 10−4 1.57 × 10−5
 290-bus PINN4PF 9.54 × 10−10 1.65 × 10−8
 MLP 3.03 × 10−9 1.78 × 10−8
 LR 1.03 × 10−7 2.49 × 10−8
 2224-bus PINN4PF 1.03 × 10−4 8.15 × 10−5
 MLP 2.07 × 10−4 7.66 × 10−5
 LR 3.62 × 100 2.93 × 10−4

Fig. 6. Comparison of (a) voltage magnitude 𝑣 and (b) voltage phase angle
𝛿 obtained from NR, PINN4PF, and MLP for the 2224-bus test system. The
bus indices are positioned along the outer circle, while the corresponding
quantities are plotted along the radial direction.

5.3. Model sensitivity analysis

The architecture of PINN4PF and MLP, including the number of hid-
den layers and neurons per hidden layer, as well as hyperparameters,
including the learning rate, the weight decay rate, and the percentage
of dropout, are determined by sensitivity analysis to ensure a fair
comparison1. The maximum weight for the share of the supervised
penalty term (𝛽0) in (12) is also fine-tuned. It should be noted that for
MLP, 𝛽0 = 1 and 𝛽1 = 0. Sensitivity analysis is not performed for LR
since it involves linear combinations. The optimal configurations are
identified based on minimizing both training and testing MSE, while

1 An exhaustive search across 2000 unique hyperparameter combinations
is conducted using the Optuna Python package [52].

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
Table 3
Performance comparison of power flow solvers based on MSE obtained
for derived physical quantities.
 Case Model MSE [𝐴2] MSE [𝑊 2] MSE [𝑉 𝐴𝑅2]
 4-bus PINN4PF 2.43 × 10−6 4.25 × 10−4 1.06 × 10−4
 MLP 2.80 × 10−5 8.27 × 10−3 2.06 × 10−3
 LR 4.04 × 10−5 1.34 × 10−2 3.36 × 10−2
 15-bus PINN4PF 4.35 × 10−6 2.09 × 10−7 2.17 × 10−7
 MLP 2.39 × 10−5 5.77 × 10−7 6.42 × 10−7
 LR 1.10 × 10−2 8.70 × 10−4 1.74 × 10−3
 290-bus PINN4PF 3.84 × 10−7 2.01 × 10−13 4.77 × 10−14
 MLP 2.85 × 10−6 1.10 × 10−12 2.44 × 10−13
 LR 1.36 × 10−5 8.20 × 10−12 1.84 × 10−12
 2224-bus PINN4PF 1.15 × 10−6 1.13 × 10−8 9.45 × 10−7
 MLP 3.69 × 10−5 7.22 × 10−8 5.12 × 10−5
 LR 7.85 × 10−1 3.55 × 10−1 2.44 × 102

Table 4
Performance comparison of different configurations of PINN4PF based on
MSE obtained for direct physical quantities and the 15-bus test system.
 Model MSE [𝑉 2] MSE [𝑟𝑎𝑑2]
 ReLU&Supervised 4.05 × 10−5 3.24 × 10−7
 AdaptiveReLU&Supervised 1.42 × 10−5 3.73 × 10−7
 ReLU&Physical 6.31 × 10−6 4.70 × 10−7
 AdaptiveReLU&Physical 5.73 × 10−6 1.06 × 10−7

also ensuring that they remain close enough to indicate generalization
ability. All experiments use the 15-bus test system and a noisy dataset
comprising 512 data points.

5.3.1. Sensitivity analysis for MLP
We explore eight configurations, intentionally avoiding deeper NNs

with more than eight hidden layers due to the limited size of both the
dataset and the test system. Each configuration comprises input and
output layers defined by 𝑛×2 neurons in the first and last hidden layers,
respectively, while intermediate layers are structured with 𝑛 × 4∕3
neurons. We observe that when the number of hidden layers is fewer
than seven, a reduction in layer count correlates with a decrease in
generalization ability. We examine learning rates ranging from 1×10−1

to 1×10−10 and weight decay rates within the same span. Dropout rates
are tested between 0% and 2%. Sensitivity analysis results indicate
that the selected configuration for MLP involves seven hidden layers
and is trained with a learning rate of 2.3 × 10−4, a weight decay of
1.8×10−5, a dropout percentage of 0.2%, and a batch size of 16. For this
configuration, the training and testing MSE achieved are 3.74×10−5[𝑉 2]
and 3.96 × 10−5[𝑉 2], respectively.

5.3.2. Sensitivity analysis for PINN4PF
We systematically assess the influence of the number of hidden

layers, ranging from one to four, within the shared set of hidden layers
and the individual heads. We evaluate distinct configurations where the
shared hidden layers contain 𝑛 × 2 neurons, and each head comprises
𝑛 neurons. Learning and weight decay rates are varied from 1 × 10−1

to 1 × 10−10, and dropout rates are varied from 0% to 2%. Sensitivity
analysis reveals that the selected configuration for PINN4PF consists
of two shared hidden layers alongside four hidden layers per head. In
addition, PINN4PF is trained with a learning rate of 1.3×10−4, a weight
decay of 1.1 × 10−5, a dropout rate of 0.1%, and a batch size of 16.
The maximum weight for the share of the supervised penalty term is
𝛽1 = 0.71. For this configuration, the achieved training and testing MSE
are 5.64 × 10−6[𝑉 2] and 5.73 × 10−6[𝑉 2], respectively.

5.3.3. Impact of modifications on the performance of PINN4PF
We evaluate the following configurations: (i) a double-head feed-

forward NN with ReLU (5a) and supervised penalty term (ReLU&Sup-
ervised), (ii) a double-head feed-forward NN with adaptive ReLU
8
Fig. 7. Comparison of (a) line current 𝑖⃗, (b) line active power 𝑝𝑙, and (c)
line reactive power 𝑞𝑙 obtained from NR, PINN4PF, and MLP for the 2224-bus
test system. The bus indices are positioned along the outer circle, while the
corresponding quantities are plotted along the radial direction.

(5b) and supervised penalty term (AdaptiveReLU&Supervised), (iii) a
double-head feed-forward NN with ReLU (5a) and physical penalty
term (ReLU&Physical), and (iv) a double-head feed-forward NN with
adaptive ReLU (5b) and physical penalty term (AdaptiveReLU&Phys-
ical). Table 4 presents a comparative analysis of their performance
in terms of direct physical quantities. The results show that Adap-
tiveReLU&Physical yields superior performance for PINN4PF compared
to the other combinations.

6. Discussion

Several key points and observations arise from the findings:

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
- The optimization algorithm suggests that for larger test systems,
the share of the supervised penalty term (𝛽0) in the loss func-
tion should be significantly smaller than the physical penalty
term (𝛽1), which indicates the increasing importance of physical
constraints in larger test systems.

- Although only the diagonal elements of the admittance ma-
trix are used to develop the loss function, including a physical
penalty term imposes additional calculations during training,
which makes PINN4PF computationally more expensive than
black-box NNs and highlights a trade-off between accuracy and
computational cost.

- The datasets are simulated rather than derived from field mea-
surements, which aligns with standard practice in power system
studies (e.g., [30,32]), given the limited availability of large-scale,
labeled operational data. Future work can focus on validating
PINN4PF using real-world data.

- PINN4PF is trained on different operating conditions, and po-
tentially can generalize to provide approximate solutions in ill-
conditioned scenarios, where traditional methods fail to converge.
Future work can explore the use of these solutions as warm
starts for traditional methods and assess their potential to enhance
convergence in challenging cases.

- In modern power systems, missing or noisy measurements and in-
complete topology data are common, often causing traditional PF
solvers to fail. PINN4PF addresses these challenges by integrating
partial topology information, specifically, the diagonal elements
of the admittance matrix. This design enables PINN4PF to learn
complex system dynamics from limited data and enhances robust-
ness against noise or incompleteness in both training samples and
topology information.

- While PINN4PF demonstrates strong performance under fixed
network topology, it requires retraining if the system topology
changes. Future research can explore the potential of transfer
learning to adapt trained models to new topologies with minimum
additional training.

- The physics-based loss function acts as a training penalty to
enforce power balance consistency and enhance the accuracy of
bus voltage predictions, whereas actual power system losses are
computed exactly from the predicted/calculated voltages using
standard electrical formulations.

7. Conclusion

An end-to-end architecture called PINN4PF is introduced. It includes
two important advancements in the training pipeline: (A) a double-head
feed-forward NN that aligns with PF, including an activation function
that adjusts to the net active and reactive power injection patterns, and
(B) a physics-based loss function that partially incorporates power sys-
tem topology information through a novel hidden function. PINN4PF,
therefore, offers a straightforward yet effective approach to capturing
the complexities inherent in large-scale modern power systems. The
application of PINN4PF to four test power systems, including 4-bus, 15-
bus, 290-bus, and 2224-bus systems, evaluates its performance against
LR and MLP.

The results highlight PINN4PF’s generalization ability, robustness
against noise, data efficiency, and scalability to large-scale power sys-
tems. Specifically, PINN4PF consistently achieves lower MSE for direct
and derived physical quantities, including line current, line active
power, and line reactive power. In addition, as the test system size in-
creases, the performance gap between PINN4PF, MLP, and LR becomes
more pronounced. This advancement is crucial for enhancing power
system operations, especially under extreme conditions and unexpected
deviations, making PINN4PF a promising solution for future PF analysis
and optimization tasks.
9
CRediT authorship contribution statement

Zeynab Kaseb: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Stavros Orfanoudakis: Writing – review & edit-
ing, Validation, Software, Investigation. Pedro P. Vergara: Writing –
review & editing, Validation, Supervision, Resources, Project admin-
istration, Conceptualization. Peter Palensky: Validation, Supervision,
Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is part of the DATALESs project (project no. 482.20.602),
which is jointly financed by Netherlands Organization for Scientific
Research (NWO), and National Natural Science Foundation of China
(NSFC). The work used the Dutch national e-infrastructure with the
support of the SURF Cooperative (grant no. EINF-6569).

Data availability

Data will be made available on request.

References

[1] Li B, Wu Q, Cao Y, Li C. Search direction optimization of power flow analysis
based on physics-informed deep learning. Int J Electr Power Energy Syst
2025;167:110602.

[2] Buason P, Misra S, Watson J-P, Molzahn DK. Adaptive power flow ap-
proximations with second-order sensitivity insights. IEEE Trans Power Syst
2024;1–12.

[3] Bugosen SI, Parker RB, Coffrin C. Applications of lifted nonlinear cuts to convex
relaxations of the ac power flow equations. IEEE Trans Power Syst 2024;1–4.

[4] Wang Y, Qi D, Zhang J, Mei J. Novel optimal load control for power
system frequency and voltage regulation. J Mod Power Syst Clean Energy
2023;11(4):1746–55.

[5] Swirydowicz K, Koukpaizan N, Ribizel T, Göbel F, Abhyankar S, Anzt H, Peleš S.
GPU-resident sparse direct linear solvers for alternating current optimal power
flow analysis. Int J Electr Power Energy Syst 2024;155:109517.

[6] Dorto M, Sjoblom S, Chien LS, Axner L, Gong J. Comparing different approaches
for solving large scale power-flow problems with the Newton-Raphson method.
IEEE Access 2021;9:56604–15.

[7] Kaseb Z, Möller M, Vergara PP, Palensky P. Power flow analysis using quantum
and digital annealers: a discrete combinatorial optimization approach. Sci Rep
2024;14(1):23216.

[8] Sharma N, Acharya A, Jacob I, Yamujala S, Gupta V, Bhakar R. Major blackouts
of the decade: Underlying causes, recommendations and arising challenges. In:
2021 9th IEEE international conference on power systems. IEEE; 2021, p. 1–6.

[9] Huo Y, Chen Z, Li Q, Li Q, Yin M. Graph neural network based column generation
for energy management in networked microgrid. J Mod Power Syst Clean Energy
2024;12(5):1506–19.

[10] Dziugaite GK, Roy DM. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data.
2017.

[11] Wolgast T, Nieße A. Learning the optimal power flow: Environment design
matters. Energy AI 2024;17:100410.

[12] Cibaku E, Gama F, Park S. Boosting efficiency in state estimation of power
systems by leveraging attention mechanism. Energy AI 2024;16:100369.

[13] Beinert D, Holzhüter C, Thomas JM, Vogt S. Power flow forecasts at transmission
grid nodes using graph neural networks. Energy AI 2023;14:100262.

[14] Wang Z, Menke J-H, Schäfer F, Braun M, Scheidler A. Approximating multi-
purpose AC optimal power flow with reinforcement trained artificial neural
network. Energy AI 2022;7:100133.

[15] Ahshan R, Abid MS, Al-Abri M. Geospatial mapping of large-scale electric power
grids: A residual graph convolutional network-based approach with attention
mechanism. Energy AI 2025;20:100486.

[16] Huang B, Wang J. Applications of physics-informed neural networks in power
systems - a review. IEEE Trans Power Syst 2023;38(1):572–88.

http://refhub.elsevier.com/S0142-0615(25)01073-7/sb1
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb1
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb1
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb1
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb1
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb2
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb2
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb2
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb2
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb2
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb3
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb3
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb3
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb4
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb4
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb4
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb4
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb4
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb5
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb5
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb5
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb5
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb5
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb6
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb6
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb6
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb6
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb6
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb7
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb7
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb7
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb7
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb7
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb8
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb8
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb8
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb8
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb8
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb9
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb9
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb9
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb9
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb9
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb10
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb10
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb10
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb10
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb10
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb11
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb11
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb11
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb12
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb12
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb12
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb13
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb13
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb13
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb14
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb14
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb14
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb14
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb14
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb15
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb15
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb15
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb15
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb15
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb16
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb16
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb16

Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525
[17] Kaseb Z, Möller M, Balducci GT, Palensky P, Vergara PP. Quantum neural
networks for power flow analysis. Electr Power Syst Res 2024;235:110677.

[18] Oliveira RAd, Bollen MH. Deep learning for power quality. Electr Power Syst
Res 2023;214:108887.

[19] von Rueden L, Mayer S, Beckh K, Georgiev B, Giesselbach S, Heese R, Kirsch B,
Pfrommer J, Pick A, Ramamurthy R, Walczak M, Garcke J, Bauckhage C,
Schuecker J. Informed machine learning – a taxonomy and survey of integrating
knowledge into learning systems. 2019.

[20] Li H, Liu L, Yu S, He Q, Wu Q, Zhang J, Lu Q. Graph attention convolution
network for power flow calculation considering grid uncertainty. Int J Electr
Power Energy Syst 2025;165:110513.

[21] Liang D, Li G, Liu X, Zeng L, Chiang H-D, Wang S. Bayesian state estimation
for partially observable distribution networks via power flow-informed neural
networks. Int J Electr Power Energy Syst 2025;170:110886.

[22] Lei X, Yang Z, Yu J, Zhao J, Gao Q, Yu H. Data-driven optimal power
flow: A physics-informed machine learning approach. IEEE Trans Power Syst
2021;36(1):346–54.

[23] Yang Y, Yang Z, Yu J, Zhang B, Zhang Y, Yu H. Fast calculation of probabilistic
power flow: A model-based deep learning approach. IEEE Trans Smart Grid
2020;11(3):2235–44.

[24] Donti PL, Rolnick D, Kolter JZ. DC3: A learning method for optimization with
hard constraints. 2021.

[25] Jeddi AB, Shafieezadeh A. A physics-informed graph attention-based approach
for power flow analysis. In: 2021 20th IEEE international conference on machine
learning and applications. IEEE; 2021, p. 1634–40.

[26] De Jongh S, Gielnik F, Mueller F, Schmit L, Suriyah M, Leibfried T. Physics-
informed geometric deep learning for inference tasks in power systems. In: 22nd
power systems computation conference. Porto, Portugal; 2022.

[27] Yang M, Qiu G, Wu Y, Liu J, Dai N, Shui Y, Liu K, Ding L. Physics-guided graph
neural networks for real-time AC/DC power flow analysis. 2023.

[28] Kody A, Chevalier S, Chatzivasileiadis S, Molzahn D. Modeling the AC power
flow equations with optimally compact neural networks: Application to unit
commitment. In: 22nd power systems computation conference. 2022.

[29] Hu X, Hu H, Verma S, Zhang Z-L. Physics-guided deep neural networks for power
flow analysis. IEEE Trans Power Syst 2021;36(3):2082–92.

[30] Lin N, Orfanoudakis S, Cardenas NO, Giraldo JS, Vergara PP. PowerFlowNet:
Power flow approximation using message passing graph neural networks. Int J
Electr Power Energy Syst 2024;160:110112.

[31] Liu L, Shi N, Wang D, Ma Z, Wang Z, Reno MJ, Azzolini JA. Voltage calculations
in secondary distribution networks via physics-inspired neural network using
smart meter data. IEEE Trans Smart Grid 2024. 1–1.

[32] Nellikkath R, Chatzivasileiadis S. Physics-informed neural networks for
minimising worst-case violations in DC optimal power flow. 2021.

[33] Nellikkath R, Chatzivasileiadis S. Physics-informed neural networks for AC
optimal power flow. Electr Power Syst Res 2022;212:108412.

[34] Hu Z, Zhang H. Optimal power flow based on physical-model-integrated neural
network with worth-learning data generation. 2023.
10
[35] Wu Z, Zhang M, Gao S, Wu Z-G, Guan X. Physics-informed reinforcement learning
for real-time optimal power flow with renewable energy resources. IEEE Trans
Sustain Energy 2024;1–11.

[36] Pan X, Chen M, Zhao T, Low SH. DeepOPF: A feasibility-optimized deep neural
network approach for ac optimal power flow problems. IEEE Syst J 2022;1–11.

[37] Li Y, Zhao C, Liu C. Model-informed generative adversarial network for learning
optimal power flow. IISE Trans 2023;1–14.

[38] Liao W, Yang D, Liu Q, Jia Y, Wang C, Yang Z. Data-driven reactive power
optimization of distribution networks via graph attention networks. J Mod Power
Syst Clean Energy 2024;12(3):874–85.

[39] Grainger JJ, Stevenson Jr. WD. Power system analysis. McGraw-Hill, Inc.; 1994.
[40] Farhangi H, Joos G. Microgrid benchmarks. In: Microgrid planning and design.

Wiley; 2019, p. 25–36.
[41] Kerber G. aufnahmefähigkeit von niederspannungsverteilnetzen für die ein-

speisung aus photovoltaikkleinanlagen [Ph.D. thesis], TECHNISCHE UNIVER-
SITÄT MÜNCHEN; 2011.

[42] Bukhsh WA, McKinnon K. Network data of real transmission networks. 2013.
[43] Andersson G. Modelling and Analysis of Electric Power Systems Power. EEH

Power System Laboratory ETH Zürich; 2008.
[44] Kaseb Z, Xiang Yu, Palensky P, Vergara PP. Adaptive activation functions for

deep learning-based power flow analysis. In: IEEE PES ISGT EUROPE. 2023.
[45] Jagtap AD, Kawaguchi K, Karniadakis GE. Adaptive activation functions acceler-

ate convergence in deep and physics-informed neural networks. J Comput Phys
2020;404:109136.

[46] Yan S, Vazinram F, Kaseb Z, Spoor L, Stiasny J, Mamudi B, Ardakani AH,
Orji U, Vergara PP, Xiang Y, Guo J. Data driven approach towards more efficient
Newton-raphson power flow calculation for distribution grids. 2025.

[47] Ngo Q-H, Nguyen BL, Vu TV, Zhang J, Ngo T. Physics-informed graphical neural
network for power system state estimation. Appl Energy 2024;358:122602.

[48] Thurner L, Scheidler A, Schafer F, Menke J-H, Dollichon J, Meier F, Meinecke S,
Braun M. Pandapower—An open-source python tool for convenient modeling,
analysis, and optimization of electric power systems. IEEE Trans Power Syst
2018;33(6):6510–21.

[49] Safonova A, Ghazaryan G, Stiller S, Main-Knorn M, Nendel C, Ryo M. Ten deep
learning techniques to address small data problems with remote sensing. Int J
Appl Earth Obs Geoinf 2023;125:103569.

[50] Cubonovic S, Cetenovic D, Rankovic A. Impact of the non-Gaussian measurement
noise on the performance of state-of-the-art state estimators for distribution
systems. Serbian J Electr Eng 2024;21:113–33.

[51] Falas S, Asprou M, Konstantinou C, Michael MK. Physics-informed neural
networks for accelerating power system state estimation. In: 2023 IEEE PES
innovative smart grid technologies Europe. IEEE; 2023, p. 1–5.

[52] Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A next-generation hy-
perparameter optimization framework. In: The 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 2019, p. 2623–31.

http://refhub.elsevier.com/S0142-0615(25)01073-7/sb17
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb17
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb17
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb18
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb18
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb18
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb19
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb19
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb19
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb19
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb19
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb19
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb19
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb20
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb20
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb20
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb20
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb20
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb21
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb21
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb21
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb21
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb21
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb22
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb22
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb22
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb22
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb22
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb23
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb23
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb23
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb23
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb23
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb24
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb24
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb24
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb25
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb25
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb25
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb25
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb25
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb26
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb26
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb26
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb26
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb26
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb27
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb27
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb27
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb28
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb28
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb28
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb28
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb28
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb29
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb29
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb29
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb30
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb30
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb30
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb30
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb30
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb31
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb31
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb31
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb31
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb31
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb32
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb32
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb32
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb33
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb33
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb33
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb34
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb34
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb34
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb35
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb35
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb35
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb35
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb35
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb36
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb36
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb36
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb37
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb37
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb37
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb38
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb38
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb38
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb38
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb38
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb39
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb40
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb40
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb40
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb41
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb41
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb41
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb41
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb41
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb42
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb43
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb43
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb43
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb44
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb44
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb44
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb45
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb45
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb45
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb45
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb45
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb46
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb46
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb46
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb46
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb46
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb47
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb47
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb47
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb48
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb48
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb48
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb48
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb48
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb48
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb48
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb49
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb49
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb49
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb49
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb49
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb50
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb50
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb50
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb50
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb50
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb51
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb51
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb51
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb51
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb51
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb52
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb52
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb52
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb52
http://refhub.elsevier.com/S0142-0615(25)01073-7/sb52

	Physics-informed neural network with adaptive activation for power flow
	Introduction
	Power Flow Analysis
	Deep Learning Approaches for Power Flow Analysis
	Proposed architecture: PINN4PF
	Forward Pass
	Loss Function

	Results
	Model Setup
	Model Performance
	Generalization ability
	Robustness
	Training dataset size
	Accuracy of derived power flow quantities
	Scalability

	Model Sensitivity Analysis
	Sensitivity analysis for MLP
	Sensitivity analysis for PINN4PF
	Impact of modifications on the performance of PINN4PF

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

