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 A B S T R A C T

We introduce a physics-informed neural network for power flow (PINN4PF) that effectively captures the 
nonlinear dynamics of large-scale modern power systems. The proposed neural network (NN) architecture 
consists of two important advancements in the training pipeline: (A) a double-head feed-forward NN that 
aligns with power flow (PF), including an activation function that adjusts to the net active and reactive power 
injections patterns, and (B) a physics-based loss function that partially incorporates power system topology 
information through a novel hidden function. The effectiveness of the proposed architecture is illustrated 
through 4-bus, 15-bus, 290-bus, and 2224-bus test systems and is evaluated against two baselines: a linear 
regression model (LR) and a black-box NN (MLP). The comparison is based on (i) generalization ability, (ii) 
robustness, (iii) impact of training dataset size on generalization ability, (iv) accuracy in approximating derived 
PF quantities (specifically line current, line active power, and line reactive power), and (v) scalability. Results 
demonstrate that PINN4PF outperforms both baselines across all test systems by up to two orders of magnitude, 
not only in terms of direct criteria, e.g., generalization ability, but also in terms of derived physical quantities.
1. Introduction

Power flow (PF) analysis is a foundational computational method 
for assessing and determining the steady-state operating conditions of 
electrical power systems by computing voltage magnitudes and phase 
angles at all buses. This analysis is crucial to ensure the reliability, 
stability, and optimal performance of power systems. It also allows 
operators to make informed decisions and mitigate potential issues, 
such as voltage violations, overloads, and system instability [1,2].

PF analysis can be performed by solving nonlinear and non-convex 
algebraic equations derived from the nodal balance of the net active 
and reactive power injections per bus in power systems [3]. Exact 
analytical solutions for these equations, which also involve impedance 
parameters, load characteristics, and generator conditions in power 
systems, are not possible. Therefore, iterative numerical methods, such 
as Gauss–Seidel and Newton–Raphson (NR) methods, are convention-
ally employed to converge to a solution that satisfies the PF equations 
within specified accuracy limits. Eventually, the solutions yield voltage 
phasors across the entire power system and provide a comprehensive 
understanding of the operational state [4].

Conventional iterative numerical methods, however, face compu-
tational challenges when applied to large-scale modern power sys-
tems [5]. These challenges include poor scalability, numerical instabil-
ity under heavily loaded or ill-conditioned scenarios, and convergence 
failures [6]. Such methods also exhibit a considerable increase in com-
putation time with system size and often require accurate initialization, 
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which is not always feasible in practice. In addition, they struggle to 
account for system uncertainties, such as inaccurate line profiles due 
to weather conditions and aging, different types of loads, and missing 
data on renewable energy resources [7]. Ineffective PF analysis under 
these circumstances can lead to safety threats, including renewable 
energy generation curtailment and blackouts, as well as difficulties in 
accommodating distributed energy resources [8,9]. Addressing these 
challenges necessitates developing new approaches for PF analysis that 
are computationally efficient and numerically stable.

Deep learning approaches, and more specifically, neural networks 
(NNs), are currently the most powerful set of numerical tools for 
providing accurate approximations of nonlinear problems (e.g., [10–
12]). Several studies have demonstrated the superiority of deep learn-
ing approaches in PF analysis in terms of computational time by 
orders of magnitude (e.g., [13–15]). At the same time, the accuracy 
of the solutions is competitive compared to the conventional iterative 
numerical methods (e.g., [16,17]). NNs, therefore, can address the 
challenges mentioned above by leveraging the availability of massive 
measurements and/or augmented data, learning complex input–output 
relationships that are often difficult or even impossible for conventional 
iterative numerical methods to comprehend, and achieving the accu-
racy required for real-world applications [18]. Nevertheless, NNs are 
subject to overfitting, the lack of generalization, and scalability issues. 
They are very unlikely to meet the physical constraints. Moreover, their 
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Table 1
List of literature on deep learning-based power flow (PF) and optimal power flow (OPF). Studies are grouped into: (i) pre-training;
(ii) training; (iii) post-training.
 Stage Study Application Input∗ Output∗ Approach  
 Pre-training Lei et al. (2021) [22] OPF 𝑝𝑑 , 𝑞𝑑 𝑝𝑔 , 𝑞𝑔 , |𝑣𝑖|, 𝛿𝑖 Integrating measurement data into the

pre-trained NN
 

 Training Yang et al. (2020) [23] PF 𝑝𝑖, 𝑞𝑖 |𝑣𝑖|, 𝛿𝑖 Adding a penalty term of branch
flows to loss function

 

 Jeddi & Shafieezadeh 
(2021) [25]

PF 𝛥𝑝𝑖, 𝛥𝑞𝑖, |𝑣𝑖|, 𝛿𝑖, 𝑙𝑖𝑗 |𝑣𝑖|, 𝛿𝑖 Using self-attention mechanism and 
adding a penalty term of nodal voltage
to loss function

 

 Hu et al. (2021) [29] PF 𝑝𝑑 , 𝑞𝑑 , 𝑝𝑔 , |𝑣𝑔 | |𝑣𝑖|, 𝛿𝑖 Adding regularization terms based on 
structure of AC PF equations and
topology of power system

 

 De Jongh et al. (2022) 
[26]

PF 𝑝𝑖, 𝑞𝑖, |𝑣𝑖|, 𝛿𝑖,  𝑝𝑖, 𝑞𝑖, |𝑣𝑖|, 𝛿𝑖 Adding a penalty term of nodal active
and reactive power to loss function

 

 Kody et al. (2022) [28] PF |𝑣𝑖|, 𝛿𝑖 𝑝𝑖, 𝑞𝑖, 𝑠𝑖𝑗 Adding a physics-based term to NN
formulation

 

 Yang et al. (2023) [27] PF 𝑝𝑖, 𝑞𝑖, , A |𝑣𝑖|, 𝛿𝑖 Developing a topology-adaptive
graph NN and adding penalty terms
of equality constraints to loss function

 

 Lin et al. (2023) [30] PF 𝑝𝑑 , 𝑞𝑑 , 𝑝𝑔 , |𝑣𝑔 |, 𝑙𝑖𝑗 ,  𝑝𝑖, 𝑞𝑖, |𝑣𝑖|, 𝛿𝑖 Combining message passing graph
NNs and high-order graph
convolutional NNs

 

 Liu et al. (2024) [31] PF 𝑝𝑑 , 𝑞𝑑 , 𝑙𝑖𝑗 𝑣𝑖 Using a physics-inspired structure
integrating physical laws of PF

 

 Nellikkath & 
Chatzivasileiadis (2021) 
[32]

OPF 𝑝𝑑 𝑝𝑔 Adding a penalty term of active 
power generation and consumption to 
loss function

 

 Nellikkath & 
Chatzivasileiadis (2022) 
[33]

OPF 𝑝𝑑 , 𝑞𝑑 𝑝𝑔 , 𝑞𝑔 Adding a penalty term of active and
reactive power generation and voltage
magnitude to loss function

 

 Hu & Zhang (2023) [34] OPF 𝑝𝑑 , 𝑞𝑑 |𝑣𝑖|, 𝛿𝑖 Developing an activation function
and a modified loss function to satisfy
physical constraints

 

 Wu et al. (2024) [35] OPF 𝑝𝑖, |𝑣𝑖| |𝑣𝑖|, 𝛿𝑖 Using a model-agnostic meta-learning
algorithm and enforcing PF equations
as constraints in loss function

 

 Post-training Donti et al. (2021) [24] OPF 𝑝𝑑 , 𝑞𝑑 , |𝑣𝑟| 𝑝𝑔 , |𝑣𝑟,𝑔 | Implementing completion idea (hard
constraints)

 

 Pan et al. (2022) [36] OPF 𝑝𝑑 , 𝑞𝑑 𝑝𝑔 , 𝑞𝑔 , |𝑣𝑖|, 𝛿𝑖 Implementing completion idea (hard
constraints)

 

 Li et al. (2023) [37] OPF 𝑝𝑑 𝑝𝑔 , 𝛿𝑖 Filtering generated values to ensure 
feasibility by comparing with actual
values

 

∗𝑝𝑖=nodal active power, 𝑞𝑖=nodal reactive power, 𝑠𝑖𝑗=line apparent power, |𝑣|=voltage magnitude, 𝛿=voltage angle, =graph topology, 𝑙𝑖𝑗=line physical properties, 𝐴=Adjacency 
matrix, 𝑝𝑔=generator active power, 𝑞𝑔=generator reactive power, 𝑝𝑑=load active power, 𝑞𝑑=load reactive power.
performance relies heavily on the training dataset size and quality. In 
contrast, not enough data is always available due to privacy reasons 
and the presence of missing data, among others [19].

Several studies in the literature have investigated the impact of 
various modifications on the efficacy of deep learning approaches for 
PF analysis (e.g., [20,21]). These modifications are categorized into 
three main stages: (i) pre-training (e.g., [22]); (ii) training (e.g., [23]); 
and (iii) post-training (e.g., [24]), as outlined in Table  1. A majority of 
these studies have primarily focused on the training stage. Table  1 also 
highlights instances where topology information, such as line physical 
properties (e.g., [25]) and graph topology (e.g., [26]), has been inte-
grated into the training stage. The literature review also indicates the 
utilization of different prior knowledge for deep learning approaches 
for PF analysis and optimal power flow (OPF), including equality and 
inequality constraints (e.g., [27]) and PF equations (e.g., [28]). Among 
the three presented stages, this work focuses on the training stage.

Measurement data has been used in [22] to enhance deep learning 
approaches for OPF. While this modification has demonstrated im-
provements in accuracy, its applicability is confined to the pre-training 
stage. Physical properties have been used on a few occasions in the past 
to enhance deep learning approaches for PF analysis (e.g., [25,38]), 
where the focus was mainly on the training stage. However, the high 
dependency on the physical properties of power systems affects the 
efficiency of this modification, certainly because physical properties 
are not always reliable due to different reasons, including aging and 
2 
environmental conditions. In addition, integrating all the physical prop-
erties makes training processes computationally very expensive. The 
completion idea and filtering technique have also been employed in a 
few studies (e.g., [37]), where the focus is mainly on the post-training 
stage. Yet, similar to pre-training stage modifications, this approach has 
limitations as it is detached from the training stage.

Among various methods, modified loss functions have been widely 
used and shown significant promise in enhancing the performance and 
reliability of NNs for PF analysis (e.g., [29]) and OPF (e.g., [34]). 
Physics-based loss functions have shown significant promise in enhanc-
ing the performance and reliability of NNs for PF and OPF. However, 
most existing contributions (e.g., [35]) rely on the full integration of 
system topology data and physical parameters into the learning process. 
Although this strategy improves physical consistency, it significantly 
increases computational complexity, thereby limiting scalability. In 
addition, it often assumes complete and accurate system information, 
which can be unrealistic in practice due to measurement noise and 
topology uncertainties. Consequently, developing a physics-based loss 
function that retains the benefits of physical consistency while reducing 
dependency on full system topology data and computational overhead 
remains an open research challenge in the field.

Therefore, this study introduces a novel hidden function derived 
from the power balance equations, which partially encodes line char-
acteristics into a modified loss function as prior physical knowledge. In 
contrast to existing approaches that require full system topology data 
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and complete line parameters, the proposed approach reduces depen-
dency on such information while preserving physical interpretability. 
Building upon this concept, we propose an end-to-end deep learning ar-
chitecture, hereafter called physics-informed neural network for power 
flow (PINN4PF). The focus is on the training stage and extends the 
existing body of knowledge on physics-informed NNs for PF analysis 
(e.g., [23,29]). PINN4PF learns the mapping from net active (𝑝) and 
reactive (𝑞) power injections to complex bus voltages. An adaptive 
activation function is also employed to enhance the representational 
flexibility of the NN. The effectiveness of PINN4PF is demonstrated on 
4-bus [39], 15-bus [40], 290-bus [41], and 2224-bus [42] test systems. 
The main contributions are:

1. A double-head feed-forward NN architecture for PF analysis, 
where the two heads predict the real (𝜇) and imaginary (𝜔) 
parts of the complex bus voltages. Each head employs a mod-
ified ReLU activation function with a trainable slope, enabling 
adaptive nonlinear feature learning through backpropagation.

2. A physics-based loss function that incorporates a hidden function 
encoding partial topology data through the diagonal elements 
of the admittance matrix. This design enforces physical con-
sistency while significantly reducing the need for full topology 
data and lowering computational cost relative to prior fully 
physics-informed learning approaches.

2. Power flow analysis

PF analysis aims to specify the state variables of power systems, 
i.e., [𝛿 𝑣]𝑇 , where 𝛿 and 𝑣 denote the voltage phase angle and mag-
nitude, respectively. It is a representation of Kirchhoff’s laws and is 
formulated in rectangular coordinates [29] as: 

𝑝𝑖 =
𝑛
∑

𝑗=1
𝑔𝑖𝑗 (𝜇𝑖𝜇𝑗 + 𝜔𝑖𝜔𝑗 ) + 𝑏𝑖𝑗 (𝜔𝑖𝜇𝑗 − 𝜇𝑖𝜔𝑗 ), (1a)

𝑞𝑖 =
𝑛
∑

𝑗=1
𝑔𝑖𝑗 (𝜔𝑖𝜇𝑗 − 𝜇𝑖𝜔𝑗 ) − 𝑏𝑖𝑗 (𝜇𝑖𝜇𝑗 + 𝜔𝑖𝜔𝑗 ), (1b)

where 𝑖 and 𝑗 are the indices of the buses, 𝑛 the total number of 
buses in the power system, 𝑝𝑖 and 𝑞𝑖 the net active and reactive power 
injections at bus 𝑖, 𝑔𝑖𝑗 and 𝑏𝑖𝑗 the real and imaginary components of the 
admittance 𝑦𝑖𝑗 between buses 𝑖 and 𝑗, 𝜇𝑖 = 𝑣𝑖𝑐𝑜𝑠𝛿𝑖 and 𝜔𝑖 = 𝑣𝑖𝑠𝑖𝑛𝛿𝑖 the 
real and imaginary components of the voltage phasor at bus 𝑖.

There are three types of buses in power systems: (i) reference bus, 
(ii) load bus (pq bus), and (iii) generation bus (pv bus). 𝑣𝑖 and 𝛿𝑖 are 
known, while 𝑝𝑖 and 𝑞𝑖 are unknown for the reference bus. For load 
buses, 𝑝𝑖 and 𝑞𝑖 are known, while 𝑣𝑖 and 𝛿𝑖 are unknown. 𝑣𝑖 and 𝑝𝑖 are 
known for generation buses, while 𝑞𝑖 and 𝛿𝑖 are unknown.

This study considers cases with one reference bus and load buses 
for simplicity. It should also be noted that while a voltage magnitude 
of 1.0 p.u. and a phase angle of 0 degrees are assumed in this study, 
PINN4PF is flexible to accommodate different reference bus settings.

For a power system consisting of a reference bus and load buses, a 
set of PF equations with the same number of equations and unknowns 
is achieved [43]: 

𝑝𝑑𝑖 − 𝑝𝑖 = 0, (2a)

𝑞𝑑𝑖 − 𝑞𝑖 = 0, (2b)

where 𝑝𝑖 and 𝑞𝑖 are defined by (1a) and (1b), respectively, and 𝑝𝑑𝑖
and 𝑞𝑑𝑖  are the net active and reactive power injections at bus 𝑖, 
respectively. (2) is conventionally solved iteratively to specify [𝛿 𝑣]𝑇
until a convergence criterion is met, i.e., the mismatch between 𝑝𝑖 and 
𝑝𝑑 and also 𝑞  and 𝑞𝑑 is small enough.
𝑖 𝑖 𝑖

3 
3. Deep learning approaches for power flow analysis

Deep learning approaches for PF analysis refers to developing NNs 
to approximate the state variables of power systems based on given 
historical system operation data, hereafter called dataset. The dataset 
includes input features 𝑥⃗ and output labels 𝑦. For a power system 
with a reference bus and load buses, the input features are known 
variables, i.e., the net active and reactive power injections at load buses 
𝑥⃗ = {(𝑝𝑑𝑖 , 𝑞

𝑑
𝑖 ) ∶ 𝑖 = 1, 2,… , 𝑛}. The output labels are unknown variables, 

i.e., the real and imaginary components of complex voltages at load 
buses 𝑦 = {(𝜇𝑖, 𝜔⃗𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}. The dimension of 𝑥⃗ and 𝑦 is 
therefore 𝑛 × 2, where 𝑛 is the number of load buses. Note that the 
voltage magnitude and phase angle are known for the reference bus 
𝑖 = 0, and the net active and reactive power injections are unknown. 
Having voltages at all load buses approximated, the net active and 
reactive power injections at the reference bus can be calculated.

The training of NNs is an iterative process and involves four steps. 
In the first iteration, the set of trainable parameters of the NN, i.e., the 
weight matrices and bias vectors 𝜃 = {(𝑊𝑘, 𝑏𝑘) ∶ 𝑘 = 1, 2,… , 𝑚}, are 
initialized in the update step, where 𝑚 is the number of hidden layers. 
NN is developed in the forward step. Detailed information about this 
step is provided in Section 4.1. The deviations of the approximated 
output obtained by the NN ̂⃗𝑦 from the output labels 𝑦 are computed 
in the loss step. Finally, the gradient of the deviations is calculated 
with respect to 𝜃 in the backward step. For the next iteration, 𝜃 is fine-
tuned in the update step to reduce the deviations. The process continues 
until the maximum number of epochs is reached. In practice, the four 
steps can be individually and jointly modified to improve the overall 
performance of NNs. For example, this can be achieved by enhancing 
the NN architecture in the forward step or by adding a physical penalty 
term to the loss function in the loss step.

4. Proposed architecture: PINN4PF

The proposed PINN4PF includes two key modeling innovations in 
the forward and loss steps, respectively, denoted as A and B in Fig.  1. 
These components together form a double-head architecture enhanced 
with an adaptive activation function and a physics-based loss function. 
Note that classical PF solvers, e.g., the NR method, and PINN4PF can 
be interchangeably used to specify the state of the power system. The 
following subsections provide a detailed description of the scientific 
modeling and mathematical formulation of PINN4PF.

4.1. Forward pass

A double-head feed-forward NN 𝑓 (⋅) ∈ {(𝑓0, 𝑓1, 𝑓2)} is developed 
to approximate ̂⃗𝑦 = {( ̂⃗𝜇𝑖, ̂⃗𝜔𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} at load buses using 
the dataset {𝑥⃗, 𝑦}. It has three types of layers, i.e., input, hidden, and 
output layers, as highlighted in Fig.  1-A. The input and output layers 
correspond to the input features 𝑥⃗ and output labels 𝑦, respectively. 
The neurons of the input layer contain active power 𝑝𝑑 = [𝑝1, 𝑝2,… , 𝑝𝑛]
followed by reactive power 𝑞𝑑 = [𝑞1, 𝑞2,… , 𝑞𝑛] at all load buses, and 
hence, the input layer has 𝑛 × 2 neurons. Following the input layer, 
there is a set of shared hidden layers 𝑓0(⋅) acting as a feature extractor 
that projects 𝑥⃗ to a higher-dimensional space, where the two heads, 
𝑓1(⋅) and 𝑓2(⋅), separately involve a few hidden layers to respectively 
approximate 𝜇 = [𝜇1, 𝜇2,… , 𝜇𝑛] and 𝜔⃗ = [𝜔1, 𝜔2,… , 𝜔𝑛]. Thus, the 
output layer of each head has 𝑛 neurons. The shared set of hidden layers 
and the two heads each are a chain of functions and can be represented 
as: 
𝑓0(𝑥⃗) = 𝑙0𝑚◦… ◦𝑙01(𝑥⃗), (3a)

𝑓1(𝑥⃗) = 𝑙1𝑚◦… ◦𝑙11(𝑥⃗), (3b)

𝑓2(𝑥⃗) = 𝑙2𝑚◦… ◦𝑙21(𝑥⃗), (3c)
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Fig. 1. Schematic diagram of PINN4PF. The model incorporates two key advancements: (A) a double-head feed-forward NN, 𝑓 (⋅) ∈ {𝑓0, 𝑓1, 𝑓2}, utilizing an 
adaptive activation function 𝜎′(𝑧) = max(0, 𝛼𝑧) with a trainable slope 𝛼; and (B) a physics-based loss function that combines supervised learning with physical 
constraints. The input layer receives a concatenated vector of active (𝑝𝑑) and reactive (𝑞𝑑) power at all 𝑛 load buses, resulting in 2𝑛 input neurons. Shared hidden 
layers 𝑓0(⋅) act as a feature extractor, projecting the input to a higher-dimensional latent space. Two separate network heads, 𝑓1(⋅) and 𝑓2(⋅), then predict the real 
(𝜇) and imaginary (𝜔⃗) components of the complex bus voltages, each with 𝑛 output neurons. The model is trained by minimizing a composite loss that enforces 
both data fidelity (using labels) and physical consistency.
which sequentially process 𝑥⃗ through 𝑚 hidden layers to obtain 𝑓0(⋅), 
𝑓1(⋅), and 𝑓2(⋅), respectively. For the shared set of hidden layers and the 
two heads, the 𝑘th hidden layer (𝑘 = 1, 2,… , 𝑚) is given by: 

𝑙𝑘(𝑥⃗) = 𝜎
(

𝑊 𝑇
𝑘 ⋅ 𝑥⃗ + 𝑏𝑘

)

. (4)

Here, 𝑊 𝑇
𝑘  and 𝑏𝑘 are the weight matrix and bias vector for the 

corresponding hidden layer. Each hidden layer applies a linear trans-
formation 𝑊 𝑇

𝑘 ⋅ 𝑥⃗ + 𝑏𝑘, followed by a nonlinear transformation 𝜎(⋅) to 
capture complex relationships between 𝑥⃗ and 𝑦. Note that 𝑊𝑘 and 𝑏𝑘
are trainable parameters and are optimized during the training process.

The Rectified Linear Unit (ReLU) activation function 𝜎(⋅) is applied 
to the shared set of hidden layers (3a). While an adaptive version of 
ReLU 𝜎′(⋅) is developed to apply model-based nonlinear transformations 
to the two heads (3b) and (3c). That is, a trainable parameter 𝛼
is introduced to scale the result of the linear transformation while 
applying nonlinearity. Hence, 𝛼 serves as a guide to prevent overfitting 
and improve the generalization ability of the NN against unseen data. 
𝜎(⋅) and 𝜎′(⋅) are represented as: 

𝜎 = max(0, 𝑧), (5a)

𝜎′ = max(0, 𝛼𝑧), (5b)

where 𝑧 is equivalent to 𝑊 𝑇
𝑘 ⋅ 𝑥⃗ + 𝑏𝑘. During each iteration of the 

training process, the gradients of the loss function concerning the 
trainable parameters ∇𝑊𝑘 ,𝑏𝑘 ,𝛼𝑘𝐿 are computed for each hidden layer 𝑘
using the chain rule of differentiation. The resulting gradients are then 
backpropagated through NN to update and optimize 𝛼𝑘 along with 𝑊𝑘
and 𝑏𝑘, which collectively improve NN’s performance in approximating 
̂⃗𝑦. More detailed information about adaptive activation functions can be 
found in [44,45].
4 
4.2. Loss function

Prior physical knowledge is integrated with the NN architecture to 
make it informed; see Fig.  1-B. A part of the topology information of 
the power system, i.e., the diagonal elements of the admittance matrix 
𝑌𝑘𝑘, is used to develop the physical model 𝑓 ′(⋅). In addition, the real and 
imaginary components of the complex voltage at the reference bus, i.e., 
𝜇0 = 1, 𝜔0 = 0, are imported.

The derivation of 𝑓 ′(⋅) begins with Ohm’s law, which relates voltage 
𝑉 , current 𝐼 , and resistance 𝑅, that is, 𝑉 = 𝐼 × 𝑅. By extending this 
equation to the complex domain, 𝑉 = 𝐼 ×𝑍 relates the voltage phasor, 
current phasor, and impedance phasor. From this equation, 𝐼 can be 
expressed in terms of 𝑉  and 𝑌  (inverse of the impedance phasor), that 
is 𝐼 = 𝑌 ×𝑉 . The system of equations for all buses can then be presented 
in matrix form as: 
[

𝐼
]

𝑛×1 =
[

𝑌
]

𝑛×𝑛 ×
[

𝑉
]

𝑛×1. (6)

By rearranging (6), the current flowing into bus 𝑘 can be presented 
as a linear combination of the voltages at all other buses with weights 
given by the corresponding admittance matrix: 

𝐼𝑘 =
𝑛
∑

𝑖=1
𝑌𝑘𝑖𝑉𝑖. (7)

Here, the power equation 𝑆 = 𝑉 × 𝐼∗ provides further guides for 
subsequent derivations, that is 𝐼 = 𝑆∗

𝑉 ∗ , where 𝑆 is complex apparent 
power. The current and voltage phasors are related as: 
𝑆∗
𝑘

𝑉 ∗
𝑘

= 𝑌𝑘1𝑉1 + 𝑌𝑘2𝑉2 +⋯ + 𝑌𝑘𝑘𝑉𝑘 +⋯ + 𝑌𝑘𝑛𝑉𝑛, (8)

wherein the right-hand side is an extended form of the right-hand 
expression in (7). Finally, the expression for calculating the voltage 



Z. Kaseb et al. International Journal of Electrical Power and Energy Systems 174 (2026) 111525 
phasor at bus 𝑘 can be written as: 

𝑉𝑘 =
1
𝑌𝑘𝑘

×

(

𝑆∗
𝑘

𝑉 ∗
𝑘

−
𝑛
∑

𝑖=1,𝑖≠𝑘
𝑌𝑘𝑖𝑉𝑖

)

. (9)

In (9), 𝑌𝑘𝑘 = 𝐺𝑘𝑘 + 𝑗𝐵𝑘𝑘 is known from the power system topology. 
Considering the input features and output labels needed to develop 
PINN4PF, 𝑉𝑘 = 𝜇𝑘 + 𝑗𝜔𝑘 and 𝑉 ∗

𝑘 = 𝜇𝑘 − 𝑗𝜔𝑘 are known from the output 
labels, and 𝑆∗

𝑘 = 𝑝𝑑𝑘 + 𝑗𝑞𝑑𝑘  is known from the input features. The only 
unknown expression remaining in (9) is: 

𝜓𝑘 =
𝑛
∑

𝑖=1,𝑖≠𝑘
𝑌𝑘𝑖𝑉𝑖, (10)

which is called hidden function in this study. Note that 𝜓 is unique for 
each data point. Theoretically, 𝜓 is also unique for each bus. During 
the training process, PINN4PF first approximates 𝜓 and then uses it to 
approximate 𝑉 = 𝜇 + 𝑗𝜔 using: 

𝑓 ′(𝑥⃗) = 1
𝑌𝑘𝑘

×
(

𝑝𝑑 − 𝑗𝑞𝑑

𝜇 − 𝑗𝜔
− 𝜓

)

. (11)

This unique relation improves the learning process by following the 
underlying physical laws of the power system. Instead of integrating the 
full admittance matrix [𝑌 ]𝑛×𝑛 into the physics-based loss function, only 
the diagonal elements 𝑌𝑘𝑘 are needed. This simplification reduces the 
wall-clock training time by up to three orders of magnitude compared 
to the full admittance matrix integration used in [46]. Note that this 
comparison refers to NN training with physics-based loss functions. 
While numerical solvers already exploit the sparsity of the admittance 
matrix, integrating the full matrix in NN training remains computation-
ally expensive. By using only the diagonal elements, PINN4PF preserves 
key physical consistency while drastically reducing computational re-
quirements. It is also important to note that the diagonal entries 
represent each bus’s self-admittance, which dominates local voltage-
current coupling and implicitly accounts for the aggregate effect of 
connected branches. This allows PINN4PF to retain essential physical 
constraints without requiring full system topology information.

Typically, the goal of the training process is to minimize the dif-
ference between ̂⃗𝑦, approximated by NN, and ground-truth output 
labels 𝑦, obtained from NR, based on a loss function of choice. In this 
study, a modified loss function is developed that combines supervised 
and physics-based penalty terms. The supervised term enforces agree-
ment with ground-truth data, while the physics-based term ensures 
local compliance with Ohm’s and power balance laws. This hybrid 
formulation enhances learning stability and generalization, particularly 
under data-limited or uncertain operating conditions (e.g., [47]). The 
former term is the mean square of the difference between the output 
approximated by the NN 𝑓 (⋅) and 𝑦. Whereas the latter is the mean 
square of the difference between the output obtained from the physical 
model 𝑓 ′(⋅) and 𝑦, as: 

ℒ = 𝛽0 ×
1
𝑁

𝑁
∑

𝑗=1

(

𝑓 (𝑝𝑑𝑗 , 𝑞
𝑑
𝑗 , 𝜃, 𝛼⃗) − 𝑦𝑗

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Supervised penalty term

+𝛽1 ×
1
𝑁

𝑁
∑

𝑗=1

(

𝑓 ′(𝑝𝑑𝑗 , 𝑞
𝑑
𝑗 , 𝑌𝑘𝑘, 𝜓⃗𝑗 ) − 𝑦𝑗

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Physical penalty term

,

(12)

where 𝑁 is the total number of data points 𝑗. 𝑓 (⋅) ∈ {(𝑓0, 𝑓1, 𝑓2)} and 
𝑓 ′(⋅) are the NN architecture (3a)–(3c) and the physical model (11), 
respectively. 𝛽0 and 𝛽1 represent the coefficients for the supervised and 
physical penalty terms, respectively, with the constraint that 𝛽0 + 𝛽1 =
1. Initially, 𝛽0 = 1 and 𝛽1 = 0. After 100 epochs, the value of 𝛽1
increases at a specified rate, with its maximum value determined from 
the sensitivity analysis.
5 
5. Results

The performance of PINN4PF is evaluated against LR and MLP. 
Experiments are performed on 4-bus [39], 15-bus [40], 290-bus [41], 
and 2224-bus [42] test systems containing one reference bus for which 
the voltage in complex number form 𝜇0+ 𝑗𝜔0 is known while 𝑝𝑑0  and 𝑞𝑑0
are unknown, and load buses 𝑖 for which 𝑝𝑑𝑖  and 𝑞𝑑𝑖  are known, while 
complex voltages 𝜇𝑖 + 𝑗𝜔𝑖 are unknown.

Input features and output labels of the datasets are represented as 
𝑥⃗ and 𝑦, respectively, where 𝑥⃗ includes (𝑝𝑑𝑖 , 𝑞𝑑𝑖 ) and 𝑦 includes (𝜇𝑖, 𝜔⃗𝑖)
obtained from the NR method for all load buses 𝑖. The PandaPower 
Python package [48] is used to perform NR and generate the datasets. 
LR, MLP, and PINN4PF are compared in terms of their ability to 
approximate NR results efficiently and accurately, which is a common 
practice in the literature (e.g., [30]). Note that PandaPower specifies 
the state variables of power systems, i.e., [𝛿 𝑣]𝑇 , that is, there is a need 
for converting the state variables to 𝜇𝑖 = 𝑣𝑖𝑐𝑜𝑠𝛿𝑖 and 𝜔𝑖 = 𝑣𝑖𝑠𝑖𝑛𝛿𝑖 to 
yield the output labels 𝑦 = {(𝜇𝑖, 𝜔⃗𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}.

5.1. Model setup

A systematic approach is employed to generate the datasets. Con-
sidering 𝑝𝑑 and 𝑞𝑑 known for a specific scenario of the test system, 
𝑠𝑑𝑖 =

√

(𝑝𝑑𝑖 )2 + (𝑞𝑑𝑖 )2, and 𝑝𝑓𝑖 = 𝑝𝑑𝑖 ∕𝑠
𝑑
𝑖  are computed for each bus 𝑖. 

Here, 𝑠𝑑𝑖  is the mean, and a deviation of 30% from 𝑠𝑑𝑖  is the standard 
deviation to develop a normal distribution of size 5000 for each bus 𝑖, 
i.e., 𝑆𝑖 ∼  (𝑠𝑑𝑖 , 0.3). For 𝑆𝑖 ∈ {𝑠𝑑𝑖𝑗 ∶ 𝑗 = 1, 2,… , 5000}, 𝑝𝑑𝑖𝑗 = 𝑠𝑑𝑖𝑗 × 𝑝𝑓𝑖 and 
𝑞𝑑𝑖𝑗 =

√

(𝑠𝑑𝑖𝑗 )2 − (𝑝𝑑𝑖𝑗 )2 are then computed for all buses 𝑖 and all samples 
𝑗. This approach yields a pool of 5000 scenarios from which the data 
points are randomly selected to form the dataset. The datasets contain 
different numbers of data points: 256, 512, 1024, and 2048 for the 
4-bus, 15-bus, 290-bus, and 2224-bus test systems, respectively. The 
selected data points are sent to PandaPower to perform PF analysis. 
Each dataset is then split into three subsets: 40% for training, 20% for 
validation, and the remaining 40% for testing.

Note that the number of data points is deliberately limited to high-
light the ability of PINN4PF to learn effectively even with a relatively 
small training dataset by embedding prior physical knowledge directly 
into the training process and leveraging adaptive activation functions. 
This approach is consistent with practices reported in the literature, 
where physics-informed learning has been employed as a strategy to 
reduce the amount of training data required (e.g., [49]).

The proposed end-to-end architecture is developed in Python. All 
components, including model definition, training loops, and evaluation 
routines, are implemented within the PyTorch environment, leveraging 
its built-in automatic differentiation and GPU acceleration capabilities. 
The training process ends after 5000 epochs for PINN4PF, MLP, and 
LR. The loss function used is (12), with 𝛽0 = 1 and 𝛽1 = 0 for MLP 
and LR, indicating a supervised penalty term. However, 𝛽0 and 𝛽1 are 
non-zero for PINN4PF, where 𝛽0 + 𝛽1 = 1, indicating a combination of 
supervised and physical penalty terms. The activation function is ReLU 
(5a) for MLP and the shared hidden layers of PINN4PF. The adaptive 
ReLU (5b) is used for the separated hidden layers of PINN4PF. The 
Adam optimization algorithm updates the trainable parameters during 
the training process for PINN4PF, MLP, and LR.

5.2. Model performance

The performance of PINN4PF, MLP, and LR is systematically evalu-
ated based on (i) generalization ability, (ii) robustness, (iii) impact of 
training dataset size on generalization ability, (iv) accuracy in approxi-
mating derived PF quantities, and (v) scalability. Experiments are done 
using the 15-bus test system. Additional experiments are also performed 
using 4-bus, 290-bus, and 2224-bus test systems for scalability.
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Fig. 2. Mean and standard deviation of MSE for direct physical quantities: 
(a) voltage magnitude [𝑉 2] and (b) voltage phase angle [𝑟𝑎𝑑2]. The results are 
obtained by PINN4PF and MLP based on the testing dataset for the 15-bus test 
system.

5.2.1. Generalization ability
The mean and standard deviation of the mean squared error (MSE) 

for the test dataset obtained by PINN4PF and MLP are compared in Fig. 
2. PINN4PF is observed to achieve up to 85% and 65% lower maximum 
testing MSE for the voltage magnitude [𝑉 2] and voltage phase angle 
[𝑟𝑎𝑑2], respectively, compared to MLP.

5.2.2. Robustness
The robustness of PINN4PF, MLP, and LR is evaluated using the 15-

bus test system under varying noise levels. Controlled uniform random 
noise is added to both the input features and output labels of the 
training dataset. This approach aligns with the use of bounded or non-
Gaussian noise models commonly adopted in power system studies 
(e.g., [50]). The corrupted vectors are defined as 𝑥⃗′ = 𝑥⃗ ± 𝑟𝑥 and 𝑦′ =
𝑦± 𝑟𝑦, where ⃗𝑟𝑥 and ⃗𝑟𝑦 are vectors sampled from uniform distributions 
within the ranges [0, 1] and [0, 0.1], respectively. The larger perturbation 
range for the input features reflects higher uncertainty typically asso-
ciated with active and reactive power measurements, while a smaller 
range is applied to the output labels to maintain physically meaningful 
voltage responses.

Fig.  3 illustrates the changes in the MSE for the voltage magnitude 
[𝑉 2] based on the testing dataset with varying noise levels obtained 
by MLP. The comparison is made relative to a constant curve repre-
senting the MSE obtained by PINN4PF using the highest noise level, 
i.e., 10%. At the 0% noise level, MLP outperforms PINN4PF trained 
with 10% noisy data by approximately 18%. However, as the noise 
level increases, the performance of MLP deteriorates significantly, with 
MSE increasing up to six times. LR is excluded from the graph as its 
MSE at different noise levels is two orders of magnitude higher than 
that of PINN4PF. In addition, LR shows limited improvement with 
increasing dataset sizes and consistently underperforms compared to 
both PINN4PF and MLP.

5.2.3. Training dataset size
The impact of the size of the training dataset on the performance of 

MLP is investigated using the 15-bus test system. Fig.  4 illustrates the 
changes in the MSE for the voltage magnitude [𝑉 2] based on the testing 
dataset with varying training dataset sizes. The comparison is made 
relative to a constant curve representing the MSE obtained for PINN4PF 
6 
Fig. 3. Illustration of the performance of PINN4PF and MLP based on the 
MSE obtained for the voltage magnitude [𝑉 2] under varying noise levels in 
the training dataset for the 15-bus test system. The MSE values are normalized 
relative to that of PINN4PF at the 10% noise level.

Fig. 4. Illustration of the performance of PINN4PF and MLP based on the 
MSE obtained for the voltage magnitude [𝑉 2] for the 15-bus test system under 
different training dataset sizes. The MSE values are normalized relative to that 
of PINN4PF with 256 training data points.

using 256 training data points. It is observed that MLP requires a 
training dataset twice as large as that of PINN4PF to achieve a still 
inferior performance. However, the performance of MLP improves with 
more training data, reaching a comparable level with a dataset four 
times larger than that of PINN4PF. This indicates that PINN4PF is more 
data-efficient. LR is not included in the graph as its MSE with different 
training dataset sizes is two orders of magnitude larger than that of 
PINN4PF. In addition, LR shows limited improvement with increasing 
training dataset sizes and consistently performs worse than PINN4PF 
and MLP. This indicates that the capacity of LR to capture complex 
relationships in PF analysis is significantly lower, and increasing the 
amount of training data is insufficient to bridge the performance gap.

5.2.4. Accuracy of derived power flow quantities
For derived physical quantities, i.e., line current, line active power, 

and line reactive power, the mean and standard deviation of the testing 
MSE obtained by PINN4PF and MLP are computed and compared in 
Fig.  5. It is observed that PINN4PF achieves up to 81%, 63%, and 
66% lower maximum testing MSE for the line current [A2], line active 
power [W2], and line reactive power [VAR2], respectively, compared 
to MLP. Note that, while the testing MSE for direct quantities (voltage 
magnitude and phase) shows lower differences between PINN4PF and 
MLP, PINN4PF achieves substantially better accuracy for derived phys-
ical quantities. This improvement arises because the physics-based loss 
function enforces the underlying algebraic and system constraints that 
govern how these derived variables are computed from the predicted 
voltages. Consequently, error propagation to derived quantities is re-
duced. Such behavior, i.e., enhanced internal consistency and improved 
generalization for derived variables under physics-informed learning, 
has been observed in recent studies in power systems and related 
domains (e.g., [51]).
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Fig. 5. Mean and standard deviation of MSE for derived physical quantities: 
(a) line current [𝐴2], (b) line active power [𝑊 2], and (c) line reactive power 
[𝑉 𝐴𝑅2]. The results are obtained by PINN4PF and MLP based on the testing 
dataset for the 15-bus test system.

5.2.5. Scalability
The experiments are extended to compare the performance of 

PINN4PF, MLP, and LR across different test system sizes: 4-bus, 15-bus, 
290-bus, and 2224-bus test systems. The maximum testing MSE for the 
direct physical quantities obtained for all test system sizes is presented 
in Table  2. Accordingly, PINN4PF significantly outperforms MLP and 
LR. To further highlight the performance of PINN4PF under extreme 
conditions with limited training data, we consider a large-scale test 
system operating near its loadability limits, with a few bus voltages 
reaching approximately 0.85 𝑝.𝑢. and exceeding 1.05 𝑝.𝑢.. The direct 
physical quantities for the 2224-bus test system are depicted in Fig.  6. 
PINN4PF achieves a maximum MSE [V2] 50% lower than MLP for this 
test system. This improvement is crucial for power system operations, 
particularly during unexpected events that cause deviations in voltages 
from the nominal value.

The analysis also considers the performance of PINN4PF, MLP, 
and LR in approximating derived physical quantities. The maximum 
testing MSE for all test system sizes is presented in Table  3. The table 
demonstrates the superiority of PINN4PF over MLP and LR across 
all test system sizes. For the 2224-bus test system, for example, the 
maximum MSE [𝐴2] obtained by PINN4PF is respectively 92% and 98% 
lower than MLP and LR.

In addition, as the size of the test system increases, the performance 
gap between PINN4PF, MLP, and LR becomes more pronounced. Fig. 
7 compares the performance of PINN4PF and MLP under extreme 
conditions in the 2224-bus test system for the derived physical quantity. 
It should be noted that while the testing MSE for the direct quantities, 
i.e., voltage magnitude and phase angle, shows marginal differences 
between PINN4PF and MLP, PINN4PF significantly outperforms MLP 
in terms of the derived physical quantities, such as line current.
7 
Table 2
Performance comparison of power flow solvers based on MSE obtained 
for direct physical quantities.
 Case Model MSE [𝑉 2] MSE [𝑟𝑎𝑑2] 
 4-bus PINN4PF 4.85 × 10−4 3.81 × 10−8  
 MLP 5.70 × 10−3 3.72 × 10−7  
 LR 2.52 × 10−2 4.70 × 10−6  
 15-bus PINN4PF 5.73 × 10−6 1.06 × 10−7  
 MLP 3.96 × 10−5 3.09 × 10−7  
 LR 6.32 × 10−4 1.57 × 10−5  
 290-bus PINN4PF 9.54 × 10−10 1.65 × 10−8  
 MLP 3.03 × 10−9 1.78 × 10−8  
 LR 1.03 × 10−7 2.49 × 10−8  
 2224-bus PINN4PF 1.03 × 10−4 8.15 × 10−5  
 MLP 2.07 × 10−4 7.66 × 10−5  
 LR 3.62 × 100 2.93 × 10−4  

Fig. 6. Comparison of (a) voltage magnitude 𝑣 and (b) voltage phase angle 
𝛿 obtained from NR, PINN4PF, and MLP for the 2224-bus test system. The 
bus indices are positioned along the outer circle, while the corresponding 
quantities are plotted along the radial direction.

5.3. Model sensitivity analysis

The architecture of PINN4PF and MLP, including the number of hid-
den layers and neurons per hidden layer, as well as hyperparameters, 
including the learning rate, the weight decay rate, and the percentage 
of dropout, are determined by sensitivity analysis to ensure a fair 
comparison1. The maximum weight for the share of the supervised 
penalty term (𝛽0) in (12) is also fine-tuned. It should be noted that for 
MLP, 𝛽0 = 1 and 𝛽1 = 0. Sensitivity analysis is not performed for LR 
since it involves linear combinations. The optimal configurations are 
identified based on minimizing both training and testing MSE, while 

1 An exhaustive search across 2000 unique hyperparameter combinations 
is conducted using the Optuna Python package [52].
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Table 3
Performance comparison of power flow solvers based on MSE obtained 
for derived physical quantities.
 Case Model MSE [𝐴2] MSE [𝑊 2] MSE [𝑉 𝐴𝑅2] 
 4-bus PINN4PF 2.43 × 10−6 4.25 × 10−4 1.06 × 10−4  
 MLP 2.80 × 10−5 8.27 × 10−3 2.06 × 10−3  
 LR 4.04 × 10−5 1.34 × 10−2 3.36 × 10−2  
 15-bus PINN4PF 4.35 × 10−6 2.09 × 10−7 2.17 × 10−7  
 MLP 2.39 × 10−5 5.77 × 10−7 6.42 × 10−7  
 LR 1.10 × 10−2 8.70 × 10−4 1.74 × 10−3  
 290-bus PINN4PF 3.84 × 10−7 2.01 × 10−13 4.77 × 10−14  
 MLP 2.85 × 10−6 1.10 × 10−12 2.44 × 10−13  
 LR 1.36 × 10−5 8.20 × 10−12 1.84 × 10−12  
 2224-bus PINN4PF 1.15 × 10−6 1.13 × 10−8 9.45 × 10−7  
 MLP 3.69 × 10−5 7.22 × 10−8 5.12 × 10−5  
 LR 7.85 × 10−1 3.55 × 10−1 2.44 × 102  

Table 4
Performance comparison of different configurations of PINN4PF based on 
MSE obtained for direct physical quantities and the 15-bus test system.
 Model MSE [𝑉 2] MSE [𝑟𝑎𝑑2] 
 ReLU&Supervised 4.05 × 10−5 3.24 × 10−7  
 AdaptiveReLU&Supervised 1.42 × 10−5 3.73 × 10−7  
 ReLU&Physical 6.31 × 10−6 4.70 × 10−7  
 AdaptiveReLU&Physical 5.73 × 10−6 1.06 × 10−7  

also ensuring that they remain close enough to indicate generalization 
ability. All experiments use the 15-bus test system and a noisy dataset 
comprising 512 data points.

5.3.1. Sensitivity analysis for MLP
We explore eight configurations, intentionally avoiding deeper NNs 

with more than eight hidden layers due to the limited size of both the 
dataset and the test system. Each configuration comprises input and 
output layers defined by 𝑛×2 neurons in the first and last hidden layers, 
respectively, while intermediate layers are structured with 𝑛 × 4∕3
neurons. We observe that when the number of hidden layers is fewer 
than seven, a reduction in layer count correlates with a decrease in 
generalization ability. We examine learning rates ranging from 1×10−1

to 1×10−10 and weight decay rates within the same span. Dropout rates 
are tested between 0% and 2%. Sensitivity analysis results indicate 
that the selected configuration for MLP involves seven hidden layers 
and is trained with a learning rate of 2.3 × 10−4, a weight decay of 
1.8×10−5, a dropout percentage of 0.2%, and a batch size of 16. For this 
configuration, the training and testing MSE achieved are 3.74×10−5[𝑉 2]
and 3.96 × 10−5[𝑉 2], respectively.

5.3.2. Sensitivity analysis for PINN4PF
We systematically assess the influence of the number of hidden 

layers, ranging from one to four, within the shared set of hidden layers 
and the individual heads. We evaluate distinct configurations where the 
shared hidden layers contain 𝑛 × 2 neurons, and each head comprises 
𝑛 neurons. Learning and weight decay rates are varied from 1 × 10−1

to 1 × 10−10, and dropout rates are varied from 0% to 2%. Sensitivity 
analysis reveals that the selected configuration for PINN4PF consists 
of two shared hidden layers alongside four hidden layers per head. In 
addition, PINN4PF is trained with a learning rate of 1.3×10−4, a weight 
decay of 1.1 × 10−5, a dropout rate of 0.1%, and a batch size of 16. 
The maximum weight for the share of the supervised penalty term is 
𝛽1 = 0.71. For this configuration, the achieved training and testing MSE 
are 5.64 × 10−6[𝑉 2] and 5.73 × 10−6[𝑉 2], respectively.

5.3.3. Impact of modifications on the performance of PINN4PF
We evaluate the following configurations: (i) a double-head feed-

forward NN with ReLU (5a) and supervised penalty term (ReLU&Sup-
ervised), (ii) a double-head feed-forward NN with adaptive ReLU 
8 
Fig. 7. Comparison of (a) line current 𝑖⃗, (b) line active power 𝑝𝑙, and (c) 
line reactive power 𝑞𝑙 obtained from NR, PINN4PF, and MLP for the 2224-bus 
test system. The bus indices are positioned along the outer circle, while the 
corresponding quantities are plotted along the radial direction.

(5b) and supervised penalty term (AdaptiveReLU&Supervised), (iii) a 
double-head feed-forward NN with ReLU (5a) and physical penalty 
term (ReLU&Physical), and (iv) a double-head feed-forward NN with 
adaptive ReLU (5b) and physical penalty term (AdaptiveReLU&Phys-
ical). Table  4 presents a comparative analysis of their performance 
in terms of direct physical quantities. The results show that Adap-
tiveReLU&Physical yields superior performance for PINN4PF compared 
to the other combinations.

6. Discussion

Several key points and observations arise from the findings:
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- The optimization algorithm suggests that for larger test systems, 
the share of the supervised penalty term (𝛽0) in the loss func-
tion should be significantly smaller than the physical penalty 
term (𝛽1), which indicates the increasing importance of physical 
constraints in larger test systems.

- Although only the diagonal elements of the admittance ma-
trix are used to develop the loss function, including a physical 
penalty term imposes additional calculations during training, 
which makes PINN4PF computationally more expensive than 
black-box NNs and highlights a trade-off between accuracy and 
computational cost.

- The datasets are simulated rather than derived from field mea-
surements, which aligns with standard practice in power system 
studies (e.g., [30,32]), given the limited availability of large-scale, 
labeled operational data. Future work can focus on validating 
PINN4PF using real-world data.

- PINN4PF is trained on different operating conditions, and po-
tentially can generalize to provide approximate solutions in ill-
conditioned scenarios, where traditional methods fail to converge. 
Future work can explore the use of these solutions as warm 
starts for traditional methods and assess their potential to enhance 
convergence in challenging cases.

- In modern power systems, missing or noisy measurements and in-
complete topology data are common, often causing traditional PF 
solvers to fail. PINN4PF addresses these challenges by integrating 
partial topology information, specifically, the diagonal elements 
of the admittance matrix. This design enables PINN4PF to learn 
complex system dynamics from limited data and enhances robust-
ness against noise or incompleteness in both training samples and 
topology information.

- While PINN4PF demonstrates strong performance under fixed 
network topology, it requires retraining if the system topology 
changes. Future research can explore the potential of transfer 
learning to adapt trained models to new topologies with minimum 
additional training.

- The physics-based loss function acts as a training penalty to 
enforce power balance consistency and enhance the accuracy of 
bus voltage predictions, whereas actual power system losses are 
computed exactly from the predicted/calculated voltages using 
standard electrical formulations.

7. Conclusion

An end-to-end architecture called PINN4PF is introduced. It includes 
two important advancements in the training pipeline: (A) a double-head 
feed-forward NN that aligns with PF, including an activation function 
that adjusts to the net active and reactive power injection patterns, and 
(B) a physics-based loss function that partially incorporates power sys-
tem topology information through a novel hidden function. PINN4PF, 
therefore, offers a straightforward yet effective approach to capturing 
the complexities inherent in large-scale modern power systems. The 
application of PINN4PF to four test power systems, including 4-bus, 15-
bus, 290-bus, and 2224-bus systems, evaluates its performance against 
LR and MLP.

The results highlight PINN4PF’s generalization ability, robustness 
against noise, data efficiency, and scalability to large-scale power sys-
tems. Specifically, PINN4PF consistently achieves lower MSE for direct 
and derived physical quantities, including line current, line active 
power, and line reactive power. In addition, as the test system size in-
creases, the performance gap between PINN4PF, MLP, and LR becomes 
more pronounced. This advancement is crucial for enhancing power 
system operations, especially under extreme conditions and unexpected 
deviations, making PINN4PF a promising solution for future PF analysis 
and optimization tasks.
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