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We introduce a physics-informed neural network for power flow (PINN4PF) that effectively captures the
nonlinear dynamics of large-scale modern power systems. The proposed neural network (NN) architecture
consists of two important advancements in the training pipeline: (A) a double-head feed-forward NN that
aligns with power flow (PF), including an activation function that adjusts to the net active and reactive power
injections patterns, and (B) a physics-based loss function that partially incorporates power system topology
information through a novel hidden function. The effectiveness of the proposed architecture is illustrated
through 4-bus, 15-bus, 290-bus, and 2224-bus test systems and is evaluated against two baselines: a linear
regression model (LR) and a black-box NN (MLP). The comparison is based on (i) generalization ability, (ii)
robustness, (iii) impact of training dataset size on generalization ability, (iv) accuracy in approximating derived
PF quantities (specifically line current, line active power, and line reactive power), and (v) scalability. Results
demonstrate that PINN4PF outperforms both baselines across all test systems by up to two orders of magnitude,
not only in terms of direct criteria, e.g., generalization ability, but also in terms of derived physical quantities.

1. Introduction

Power flow (PF) analysis is a foundational computational method
for assessing and determining the steady-state operating conditions of
electrical power systems by computing voltage magnitudes and phase
angles at all buses. This analysis is crucial to ensure the reliability,
stability, and optimal performance of power systems. It also allows
operators to make informed decisions and mitigate potential issues,
such as voltage violations, overloads, and system instability [1,2].

PF analysis can be performed by solving nonlinear and non-convex
algebraic equations derived from the nodal balance of the net active
and reactive power injections per bus in power systems [3]. Exact
analytical solutions for these equations, which also involve impedance
parameters, load characteristics, and generator conditions in power
systems, are not possible. Therefore, iterative numerical methods, such
as Gauss-Seidel and Newton-Raphson (NR) methods, are convention-
ally employed to converge to a solution that satisfies the PF equations
within specified accuracy limits. Eventually, the solutions yield voltage
phasors across the entire power system and provide a comprehensive
understanding of the operational state [4].

Conventional iterative numerical methods, however, face compu-
tational challenges when applied to large-scale modern power sys-
tems [5]. These challenges include poor scalability, numerical instabil-
ity under heavily loaded or ill-conditioned scenarios, and convergence
failures [6]. Such methods also exhibit a considerable increase in com-
putation time with system size and often require accurate initialization,
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which is not always feasible in practice. In addition, they struggle to
account for system uncertainties, such as inaccurate line profiles due
to weather conditions and aging, different types of loads, and missing
data on renewable energy resources [7]. Ineffective PF analysis under
these circumstances can lead to safety threats, including renewable
energy generation curtailment and blackouts, as well as difficulties in
accommodating distributed energy resources [8,9]. Addressing these
challenges necessitates developing new approaches for PF analysis that
are computationally efficient and numerically stable.

Deep learning approaches, and more specifically, neural networks
(NNs), are currently the most powerful set of numerical tools for
providing accurate approximations of nonlinear problems (e.g., [10-
12]). Several studies have demonstrated the superiority of deep learn-
ing approaches in PF analysis in terms of computational time by
orders of magnitude (e.g., [13-15]). At the same time, the accuracy
of the solutions is competitive compared to the conventional iterative
numerical methods (e.g., [16,17]). NNs, therefore, can address the
challenges mentioned above by leveraging the availability of massive
measurements and/or augmented data, learning complex input-output
relationships that are often difficult or even impossible for conventional
iterative numerical methods to comprehend, and achieving the accu-
racy required for real-world applications [18]. Nevertheless, NNs are
subject to overfitting, the lack of generalization, and scalability issues.
They are very unlikely to meet the physical constraints. Moreover, their
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Table 1
List of literature on deep learning-based power flow (PF) and optimal power flow (OPF). Studies are grouped into: (i) pre-training;
(ii) training; (iii) post-training.
Stage Study Application Input* Output* Approach
Pre-training Lei et al. (2021) [22] OPF %, q¢ P, q, |ul, 8 Integrating measurement data into the
pre-trained NN
Training Yang et al. (2020) [23] PF Pis G lv;l, & Adding a penalty term of branch
flows to loss function
Jeddi & Shafieezadeh PF 4p;, Ag;, |v;l, 65 15 [v;l, 8 Using self-attention mechanism and
(2021) [25] adding a penalty term of nodal voltage
to loss function
Hu et al. (2021) [29] PF », q¢, pe, v, lv;l, 6; Adding regularization terms based on
structure of AC PF equations and
topology of power system
De Jongh et al. (2022) PF Pi> 4> |vil, 65 G Pis 4i> |01, 6 Adding a penalty term of nodal active
[26] and reactive power to loss function
Kody et al. (2022) [28] PF lv;l, 6 Pis s Sij Adding a physics-based term to NN
formulation
Yang et al. (2023) [27] PF Pi> 4i» G, A |, 6 Developing a topology-adaptive
graph NN and adding penalty terms
of equality constraints to loss function
Lin et al. (2023) [30] PF 4%, s ol 1y, 6 Pi> 4> 1vil, 6; Combining message passing graph
NNs and high-order graph
convolutional NNs
Liu et al. (2024) [31] PF 4% 1 v; Using a physics-inspired structure
integrating physical laws of PF
Nellikkath & OPF ¢ e Adding a penalty term of active
Chatzivasileiadis (2021) power generation and consumption to
[32] loss function
Nellikkath & OPF 7, q¢ 5, q° Adding a penalty term of active and
Chatzivasileiadis (2022) reactive power generation and voltage
[33] magnitude to loss function
Hu & Zhang (2023) [34] OPF », q¢ lv;l, & Developing an activation function
and a modified loss function to satisfy
physical constraints
Wu et al. (2024) [35] OPF pi vl lv;l, 8 Using a model-agnostic meta-learning
algorithm and enforcing PF equations
as constraints in loss function
Post-training Donti et al. (2021) [24] OPF 4, 4% v, P55 10l Implementing completion idea (hard
constraints)
Pan et al. (2022) [36] OPF %, q¢ 5, 45, vl §; Implementing completion idea (hard
constraints)
Li et al. (2023) [37] OPF ! P, 6 Filtering generated values to ensure

feasibility by comparing with actual
values

*p;=nodal active power, g;=nodal reactive power, s;;=line apparent power, |v|=voltage magnitude, §=voltage angle, G=graph topology, /;;=line physical properties, A=Adjacency
matrix, p*=generator active power, gé=generator reactive power, p?=load active power, g?=load reactive power.

performance relies heavily on the training dataset size and quality. In
contrast, not enough data is always available due to privacy reasons
and the presence of missing data, among others [19].

Several studies in the literature have investigated the impact of
various modifications on the efficacy of deep learning approaches for
PF analysis (e.g., [20,21]). These modifications are categorized into
three main stages: (i) pre-training (e.g., [22]); (ii) training (e.g., [23]);
and (iii) post-training (e.g., [24]), as outlined in Table 1. A majority of
these studies have primarily focused on the training stage. Table 1 also
highlights instances where topology information, such as line physical
properties (e.g., [25]) and graph topology (e.g., [26]), has been inte-
grated into the training stage. The literature review also indicates the
utilization of different prior knowledge for deep learning approaches
for PF analysis and optimal power flow (OPF), including equality and
inequality constraints (e.g., [27]) and PF equations (e.g., [28]). Among
the three presented stages, this work focuses on the training stage.

Measurement data has been used in [22] to enhance deep learning
approaches for OPF. While this modification has demonstrated im-
provements in accuracy, its applicability is confined to the pre-training
stage. Physical properties have been used on a few occasions in the past
to enhance deep learning approaches for PF analysis (e.g., [25,38]),
where the focus was mainly on the training stage. However, the high
dependency on the physical properties of power systems affects the
efficiency of this modification, certainly because physical properties
are not always reliable due to different reasons, including aging and

environmental conditions. In addition, integrating all the physical prop-
erties makes training processes computationally very expensive. The
completion idea and filtering technique have also been employed in a
few studies (e.g., [371), where the focus is mainly on the post-training
stage. Yet, similar to pre-training stage modifications, this approach has
limitations as it is detached from the training stage.

Among various methods, modified loss functions have been widely
used and shown significant promise in enhancing the performance and
reliability of NNs for PF analysis (e.g., [29]) and OPF (e.g., [34]).
Physics-based loss functions have shown significant promise in enhanc-
ing the performance and reliability of NNs for PF and OPF. However,
most existing contributions (e.g., [35]) rely on the full integration of
system topology data and physical parameters into the learning process.
Although this strategy improves physical consistency, it significantly
increases computational complexity, thereby limiting scalability. In
addition, it often assumes complete and accurate system information,
which can be unrealistic in practice due to measurement noise and
topology uncertainties. Consequently, developing a physics-based loss
function that retains the benefits of physical consistency while reducing
dependency on full system topology data and computational overhead
remains an open research challenge in the field.

Therefore, this study introduces a novel hidden function derived
from the power balance equations, which partially encodes line char-
acteristics into a modified loss function as prior physical knowledge. In
contrast to existing approaches that require full system topology data
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and complete line parameters, the proposed approach reduces depen-
dency on such information while preserving physical interpretability.
Building upon this concept, we propose an end-to-end deep learning ar-
chitecture, hereafter called physics-informed neural network for power
flow (PINN4PF). The focus is on the training stage and extends the
existing body of knowledge on physics-informed NNs for PF analysis
(e.g., [23,29]). PINN4PF learns the mapping from net active (p) and
reactive (g) power injections to complex bus voltages. An adaptive
activation function is also employed to enhance the representational
flexibility of the NN. The effectiveness of PINN4PF is demonstrated on
4-bus [39], 15-bus [40], 290-bus [41], and 2224-bus [42] test systems.
The main contributions are:

1. A double-head feed-forward NN architecture for PF analysis,
where the two heads predict the real (4) and imaginary (w)
parts of the complex bus voltages. Each head employs a mod-
ified ReLU activation function with a trainable slope, enabling
adaptive nonlinear feature learning through backpropagation.

2. A physics-based loss function that incorporates a hidden function
encoding partial topology data through the diagonal elements
of the admittance matrix. This design enforces physical con-
sistency while significantly reducing the need for full topology
data and lowering computational cost relative to prior fully
physics-informed learning approaches.

2. Power flow analysis

PF analysis aims to specify the state variables of power systems,
i.e., [60v]”, where & and v denote the voltage phase angle and mag-
nitude, respectively. It is a representation of Kirchhoff’s laws and is
formulated in rectangular coordinates [29] as:

n
pi = Zgij(ﬂiﬂj +wiwj) + bij(wiﬂj - ﬂiwj)a (1a)
j=1

n
q;i = zgij(a)i.uj _Miwj)_bij(ﬂiﬂj +a),-coj), (1b)
j=1
where i and j are the indices of the buses, n the total number of
buses in the power system, p; and g¢; the net active and reactive power
injections at bus i, g;; and b;; the real and imaginary components of the
admittance y;; between buses i and j, y; = v;co0s5; and w; = v;sind; the
real and imaginary components of the voltage phasor at bus i.

There are three types of buses in power systems: (i) reference bus,
(ii) load bus (pq bus), and (iii) generation bus (pv bus). v; and §; are
known, while p; and ¢; are unknown for the reference bus. For load
buses, p; and ¢; are known, while v; and §; are unknown. v; and p; are
known for generation buses, while ¢; and §; are unknown.

This study considers cases with one reference bus and load buses
for simplicity. It should also be noted that while a voltage magnitude
of 1.0 p.u. and a phase angle of 0 degrees are assumed in this study,
PINNA4PF is flexible to accommodate different reference bus settings.

For a power system consisting of a reference bus and load buses, a
set of PF equations with the same number of equations and unknowns
is achieved [43]:

p =pi =0 (2a)
q' -4 =0, (2b)

where p; and ¢; are defined by (1a) and (1b), respectively, and pj’
and q;’ are the net active and reactive power injections at bus i,
respectively. (2) is conventionally solved iteratively to specify [§0]”
until a convergence criterion is met, i.e., the mismatch between p; and
p;’ and also ¢; and q;’ is small enough.
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3. Deep learning approaches for power flow analysis

Deep learning approaches for PF analysis refers to developing NNs
to approximate the state variables of power systems based on given
historical system operation data, hereafter called dataset. The dataset
includes input features X and output labels y. For a power system
with a reference bus and load buses, the input features are known
variables, i.e., the net active and reactive power injections at load buses
X= {(ﬁf,z}f ):i=1,2,...,n}. The output labels are unknown variables,
i.e., the real and imaginary components of complex voltages at load
buses y = {(j;,®;) i = 1,2,...,n}. The dimension of X and y is
therefore n x 2, where n is the number of load buses. Note that the
voltage magnitude and phase angle are known for the reference bus
i = 0, and the net active and reactive power injections are unknown.
Having voltages at all load buses approximated, the net active and
reactive power injections at the reference bus can be calculated.

The training of NNs is an iterative process and involves four steps.
In the first iteration, the set of trainable parameters of the NN, i.e., the
weight matrices and bias vectors 6 = {(W,,b,) : k = 1,2,...,m}, are
initialized in the update step, where m is the number of hidden layers.
NN is developed in the forward step. Detailed information about this
step is provided in Section 4.1. The deviations of the approximated
output obtained by the NN y from the output labels y are computed
in the loss step. Finally, the gradient of the deviations is calculated
with respect to 0 in the backward step. For the next iteration, 0 is fine-
tuned in the update step to reduce the deviations. The process continues
until the maximum number of epochs is reached. In practice, the four
steps can be individually and jointly modified to improve the overall
performance of NNs. For example, this can be achieved by enhancing
the NN architecture in the forward step or by adding a physical penalty
term to the loss function in the loss step.

4. Proposed architecture: PINN4PF

The proposed PINN4PF includes two key modeling innovations in
the forward and loss steps, respectively, denoted as A and B in Fig. 1.
These components together form a double-head architecture enhanced
with an adaptive activation function and a physics-based loss function.
Note that classical PF solvers, e.g., the NR method, and PINN4PF can
be interchangeably used to specify the state of the power system. The
following subsections provide a detailed description of the scientific
modeling and mathematical formulation of PINN4PF.

4.1. Forward pass

A double-head feed-forward NN f(-) € {(f. f;.f2)} is developed
to approximate §' = {(ﬁi,cf),.) i = 1,2,...,n} at load buses using
the dataset {X,y}. It has three types of layers, i.e., input, hidden, and
output layers, as highlighted in Fig. 1-A. The input and output layers
correspond to the input features X and output labels y, respectively.
The neurons of the input layer contain active power 5 = [py, ps, ..., p,]
followed by reactive power ¢ = [q;,4,,...,q,] at all load buses, and
hence, the input layer has n x 2 neurons. Following the input layer,
there is a set of shared hidden layers f,(-) acting as a feature extractor
that projects X to a higher-dimensional space, where the two heads,
f1() and f,(-), separately involve a few hidden layers to respectively
approximate i = [y}, Hy, ..., 4,] and & = [w|,@,,...,w,]. Thus, the
output layer of each head has n neurons. The shared set of hidden layers
and the two heads each are a chain of functions and can be represented
as:

fo® =120 ... ol0), (3a)
fiE =1ko . oll(F), (3b)
[rR) =120 .. olX(F), (3¢0)
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R
FR=5 e -v)

L= Box LS fP% @ 6, @) -y, P + Bix g X F(B% @ Yoo W) -3 F

Backrward
Ll

Input layer
Shared hidden layer
Separated hidden layer
[ Output layer
[l Prior knowledge

Update
[} [l Physical model

l Physics-based loss function

Fig. 1. Schematic diagram of PINN4PF. The model incorporates two key advancements: (A) a double-head feed-forward NN, f(-) € {f,.f;,f,}, utilizing an
adaptive activation function ¢’(z) = max(0, @z) with a trainable slope a; and (B) a physics-based loss function that combines supervised learning with physical
constraints. The input layer receives a concatenated vector of active (5?) and reactive (§¢) power at all n load buses, resulting in 2 input neurons. Shared hidden
layers f,(-) act as a feature extractor, projecting the input to a higher-dimensional latent space. Two separate network heads, f,(-) and f,(-), then predict the real
(i) and imaginary (@) components of the complex bus voltages, each with n output neurons. The model is trained by minimizing a composite loss that enforces

both data fidelity (using labels) and physical consistency.

which sequentially process X through m hidden layers to obtain fo(-),
f, (), and f2(~), respectively. For the shared set of hidden layers and the
two heads, the kth hidden layer (k = 1,2, ...,m) is given by:

LE =0 (Wl -3+b). 4

Here, WkT and b, are the weight matrix and bias vector for the
corresponding hidden layer. Each hidden layer applies a linear trans-
formation I/VkT - X + by, followed by a nonlinear transformation o(-) to
capture complex relationships between X and y. Note that W, and b,
are trainable parameters and are optimized during the training process.

The Rectified Linear Unit (ReLU) activation function o(-) is applied
to the shared set of hidden layers (3a). While an adaptive version of
ReLU ¢/(-) is developed to apply model-based nonlinear transformations
to the two heads (3b) and (3c). That is, a trainable parameter «
is introduced to scale the result of the linear transformation while
applying nonlinearity. Hence, a serves as a guide to prevent overfitting
and improve the generalization ability of the NN against unseen data.
o(-) and ¢’(-) are represented as:

o = max(0, z), (5a)

o' = max(0, az), (5b)

where z is equivalent to WkT - X + by. During each iteration of the
training process, the gradients of the loss function concerning the
trainable parameters Vy, , , L are computed for each hidden layer k
using the chain rule of differentiation. The resulting gradients are then
backpropagated through NN to update and optimize «, along with W
and by, which collectively improve NN’s performance in approximating
f/. More detailed information about adaptive activation functions can be
found in [44,45].

4.2. Loss function

Prior physical knowledge is integrated with the NN architecture to
make it informed; see Fig. 1-B. A part of the topology information of
the power system, i.e., the diagonal elements of the admittance matrix
Yy, is used to develop the physical model f’(-). In addition, the real and
imaginary components of the complex voltage at the reference bus, i.e.,
Ho = 1,my = 0, are imported.

The derivation of f’(-) begins with Ohm’s law, which relates voltage
V, current I, and resistance R, that is, V = I x R. By extending this
equation to the complex domain, ¥ = T x Z relates the voltage phasor,
current phasor, and impedance phasor. From this equation, 7 can be
expressed in terms of ¥V and Y (inverse of the impedance phasor), that
is T = YxV. The system of equations for all buses can then be presented
in matrix form as:

[I] nx1 = [Y]nxn X [V]nxl' (6)

By rearranging (6), the current flowing into bus k can be presented
as a linear combination of the voltages at all other buses with weights
given by the corresponding admittance matrix:

n
Ie= Y YV %)
i=1

Here, the power equation S = V X I* provides further guides for
subsequent derivations, that is I = %, where S is complex apparent
power. The current and voltage phasors are related as:

*
k

7 = YaVit YoVt 4+ VgVt + YV, ®
k

wherein the right-hand side is an extended form of the right-hand

expression in (7). Finally, the expression for calculating the voltage
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phasor at bus k can be written as:

L (S 5
v, e <V1f i};;% Yk,Vl)‘ )

In (9), Yy, = Gy + j By is known from the power system topology.
Considering the input features and output labels needed to develop
PINN4PF, V;, = y; + jo, and V= —Jjoy are known from the output
labels, and S7 = p¢ + jq! is known from the input features. The only
unknown expression remaining in (9) is:

n
we= ) YV (10)
i=1i#k

which is called hidden function in this study. Note that y is unique for
each data point. Theoretically, y is also unique for each bus. During
the training process, PINN4PF first approximates y and then uses it to
approximate V = u + jw using:

/G = Lx(ﬂ—u/). an
Yy u—jo

This unique relation improves the learning process by following the
underlying physical laws of the power system. Instead of integrating the
full admittance matrix [Y] xn iDto the physics-based loss function, only
the diagonal elements Y, are needed. This simplification reduces the
wall-clock training time by up to three orders of magnitude compared
to the full admittance matrix integration used in [46]. Note that this
comparison refers to NN training with physics-based loss functions.
While numerical solvers already exploit the sparsity of the admittance
matrix, integrating the full matrix in NN training remains computation-
ally expensive. By using only the diagonal elements, PINN4PF preserves
key physical consistency while drastically reducing computational re-
quirements. It is also important to note that the diagonal entries
represent each bus’s self-admittance, which dominates local voltage-
current coupling and implicitly accounts for the aggregate effect of
connected branches. This allows PINN4PF to retain essential physical
constraints without requiring full system topology information.

Typically, the goal of the training process is to minimize the dif-
ference between 7, approximated by NN, and ground-truth output
labels y, obtained from NR, based on a loss function of choice. In this
study, a modified loss function is developed that combines supervised
and physics-based penalty terms. The supervised term enforces agree-
ment with ground-truth data, while the physics-based term ensures
local compliance with Ohm’s and power balance laws. This hybrid
formulation enhances learning stability and generalization, particularly
under data-limited or uncertain operating conditions (e.g., [47]). The
former term is the mean square of the difference between the output
approximated by the NN f(-) and y. Whereas the latter is the mean
square of the difference between the output obtained from the physical
model f/(-) and ¥, as:

N
L=hxy 2 (r@.a.0.8-5)

Jj=1

Supervised penalty term
. 12)

1 VN N N 2
+ﬁ1 XﬁZ(f,(P;I’qj,Ykk,Wj)_Yj) B

Jj=1

Physical penalty term

where N is the total number of data points j. f(-) € {(fy, f1. f»)} and
f'(-) are the NN architecture (3a)—(3c) and the physical model (11),
respectively. f, and B, represent the coefficients for the supervised and
physical penalty terms, respectively, with the constraint that §, + g, =
1. Initially, g, = 1 and g, = 0. After 100 epochs, the value of g,
increases at a specified rate, with its maximum value determined from
the sensitivity analysis.
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5. Results

The performance of PINN4PF is evaluated against LR and MLP.
Experiments are performed on 4-bus [39], 15-bus [40], 290-bus [41],
and 2224-bus [42] test systems containing one reference bus for which
the voltage in complex number form y,+ jw, is known while pg and qg
are unknown, and load buses i for which p? and ¢¢ are known, while
complex voltages y; + jow; are unknown.

Input features and output labels of the datasets are represented as
X and , respectively, where X includes (5?,7¢) and y includes (f;, ;)
obtained from the NR method for all load buses i. The PandaPower
Python package [48] is used to perform NR and generate the datasets.
LR, MLP, and PINN4PF are compared in terms of their ability to
approximate NR results efficiently and accurately, which is a common
practice in the literature (e.g., [30]). Note that PandaPower specifies
the state variables of power systems, i.e., [§ v]7, that is, there is a need
for converting the state variables to y; = v;coss; and w; = v;sins; to
yield the output labels y = {(4;,@;) : i =1,2,...,n}.

5.1. Model setup

A systematic approach is employed to generate the datasets. Con-
sidering ¢ and §¢ known for a specific scenario of the test system,

sd = /(2 +(¢¢)?, and pf; = p!/s¢ are computed for each bus i.

1
Here, s,.d is the mean, and a deviation of 30% from s;’ is the standard
deviation to develop a normal distribution of size 5000 for each bus i,
Le., S; ~ N(s{,03). For S; € {s{; : j = 1,2,...,5000}, p{; = 57, x pf; and

q;]j = ,/(s?j)2 - (pl[.’;,)z are then computed for all buses i and all samples
j. This approach yields a pool of 5000 scenarios from which the data
points are randomly selected to form the dataset. The datasets contain
different numbers of data points: 256, 512, 1024, and 2048 for the
4-bus, 15-bus, 290-bus, and 2224-bus test systems, respectively. The
selected data points are sent to PandaPower to perform PF analysis.
Each dataset is then split into three subsets: 40% for training, 20% for
validation, and the remaining 40% for testing.

Note that the number of data points is deliberately limited to high-
light the ability of PINN4PF to learn effectively even with a relatively
small training dataset by embedding prior physical knowledge directly
into the training process and leveraging adaptive activation functions.
This approach is consistent with practices reported in the literature,
where physics-informed learning has been employed as a strategy to
reduce the amount of training data required (e.g., [49]).

The proposed end-to-end architecture is developed in Python. All
components, including model definition, training loops, and evaluation
routines, are implemented within the PyTorch environment, leveraging
its built-in automatic differentiation and GPU acceleration capabilities.
The training process ends after 5000 epochs for PINN4PF, MLP, and
LR. The loss function used is (12), with g, = 1 and g, = 0 for MLP
and LR, indicating a supervised penalty term. However, f, and g, are
non-zero for PINN4PF, where f, + #, = 1, indicating a combination of
supervised and physical penalty terms. The activation function is ReLU
(5a) for MLP and the shared hidden layers of PINN4PF. The adaptive
ReLU (5b) is used for the separated hidden layers of PINN4PF. The
Adam optimization algorithm updates the trainable parameters during
the training process for PINN4PF, MLP, and LR.

5.2. Model performance

The performance of PINN4PF, MLP, and LR is systematically evalu-
ated based on (i) generalization ability, (ii) robustness, (iii) impact of
training dataset size on generalization ability, (iv) accuracy in approxi-
mating derived PF quantities, and (v) scalability. Experiments are done
using the 15-bus test system. Additional experiments are also performed
using 4-bus, 290-bus, and 2224-bus test systems for scalability.
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Fig. 2. Mean and standard deviation of MSE for direct physical quantities:
(a) voltage magnitude [V?] and (b) voltage phase angle [rad?]. The results are
obtained by PINN4PF and MLP based on the testing dataset for the 15-bus test
system.

5.2.1. Generalization ability

The mean and standard deviation of the mean squared error (MSE)
for the test dataset obtained by PINN4PF and MLP are compared in Fig.
2. PINNA4PF is observed to achieve up to 85% and 65% lower maximum
testing MSE for the voltage magnitude [V2] and voltage phase angle
[rad?], respectively, compared to MLP.

5.2.2. Robustness

The robustness of PINN4PF, MLP, and LR is evaluated using the 15-
bus test system under varying noise levels. Controlled uniform random
noise is added to both the input features and output labels of the
training dataset. This approach aligns with the use of bounded or non-
Gaussian noise models commonly adopted in power system studies
(e.g., [501). The corrupted vectors are defined as X’ =X +7, and ' =
y+TF,, where ¥, and 7, are vectors sampled from uniform distributions
within the ranges [0, 1] and [0, 0.1], respectively. The larger perturbation
range for the input features reflects higher uncertainty typically asso-
ciated with active and reactive power measurements, while a smaller
range is applied to the output labels to maintain physically meaningful
voltage responses.

Fig. 3 illustrates the changes in the MSE for the voltage magnitude
[V?] based on the testing dataset with varying noise levels obtained
by MLP. The comparison is made relative to a constant curve repre-
senting the MSE obtained by PINN4PF using the highest noise level,
i.e., 10%. At the 0% noise level, MLP outperforms PINN4PF trained
with 10% noisy data by approximately 18%. However, as the noise
level increases, the performance of MLP deteriorates significantly, with
MSE increasing up to six times. LR is excluded from the graph as its
MSE at different noise levels is two orders of magnitude higher than
that of PINN4PF. In addition, LR shows limited improvement with
increasing dataset sizes and consistently underperforms compared to
both PINN4PF and MLP.

5.2.3. Training dataset size

The impact of the size of the training dataset on the performance of
MLP is investigated using the 15-bus test system. Fig. 4 illustrates the
changes in the MSE for the voltage magnitude [VV?] based on the testing
dataset with varying training dataset sizes. The comparison is made
relative to a constant curve representing the MSE obtained for PINN4PF
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Fig. 3. Illustration of the performance of PINN4PF and MLP based on the
MSE obtained for the voltage magnitude [V?] under varying noise levels in
the training dataset for the 15-bus test system. The MSE values are normalized
relative to that of PINN4PF at the 10% noise level.
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Fig. 4. Illustration of the performance of PINN4PF and MLP based on the
MSE obtained for the voltage magnitude [V'?] for the 15-bus test system under
different training dataset sizes. The MSE values are normalized relative to that
of PINN4PF with 256 training data points.

using 256 training data points. It is observed that MLP requires a
training dataset twice as large as that of PINN4PF to achieve a still
inferior performance. However, the performance of MLP improves with
more training data, reaching a comparable level with a dataset four
times larger than that of PINN4PF. This indicates that PINN4PF is more
data-efficient. LR is not included in the graph as its MSE with different
training dataset sizes is two orders of magnitude larger than that of
PINNA4PF. In addition, LR shows limited improvement with increasing
training dataset sizes and consistently performs worse than PINN4PF
and MLP. This indicates that the capacity of LR to capture complex
relationships in PF analysis is significantly lower, and increasing the
amount of training data is insufficient to bridge the performance gap.

5.2.4. Accuracy of derived power flow quantities

For derived physical quantities, i.e., line current, line active power,
and line reactive power, the mean and standard deviation of the testing
MSE obtained by PINN4PF and MLP are computed and compared in
Fig. 5. It is observed that PINN4PF achieves up to 81%, 63%, and
66% lower maximum testing MSE for the line current [A?], line active
power [W2], and line reactive power [VAR?], respectively, compared
to MLP. Note that, while the testing MSE for direct quantities (voltage
magnitude and phase) shows lower differences between PINN4PF and
MLP, PINN4PF achieves substantially better accuracy for derived phys-
ical quantities. This improvement arises because the physics-based loss
function enforces the underlying algebraic and system constraints that
govern how these derived variables are computed from the predicted
voltages. Consequently, error propagation to derived quantities is re-
duced. Such behavior, i.e., enhanced internal consistency and improved
generalization for derived variables under physics-informed learning,
has been observed in recent studies in power systems and related
domains (e.g., [51]).
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Fig. 5. Mean and standard deviation of MSE for derived physical quantities:
(a) line current [A?], (b) line active power [W?], and (c) line reactive power
[V AR?]. The results are obtained by PINN4PF and MLP based on the testing
dataset for the 15-bus test system.

5.2.5. Scalability

The experiments are extended to compare the performance of
PINN4PF, MLP, and LR across different test system sizes: 4-bus, 15-bus,
290-bus, and 2224-bus test systems. The maximum testing MSE for the
direct physical quantities obtained for all test system sizes is presented
in Table 2. Accordingly, PINN4PF significantly outperforms MLP and
LR. To further highlight the performance of PINN4PF under extreme
conditions with limited training data, we consider a large-scale test
system operating near its loadability limits, with a few bus voltages
reaching approximately 0.85 p.u. and exceeding 1.05 p.u.. The direct
physical quantities for the 2224-bus test system are depicted in Fig. 6.
PINN4PF achieves a maximum MSE [VZ] 50% lower than MLP for this
test system. This improvement is crucial for power system operations,
particularly during unexpected events that cause deviations in voltages
from the nominal value.

The analysis also considers the performance of PINN4PF, MLP,
and LR in approximating derived physical quantities. The maximum
testing MSE for all test system sizes is presented in Table 3. The table
demonstrates the superiority of PINN4PF over MLP and LR across
all test system sizes. For the 2224-bus test system, for example, the
maximum MSE [A?] obtained by PINN4PF is respectively 92% and 98%
lower than MLP and LR.

In addition, as the size of the test system increases, the performance
gap between PINN4PF, MLP, and LR becomes more pronounced. Fig.
7 compares the performance of PINN4PF and MLP under extreme
conditions in the 2224-bus test system for the derived physical quantity.
It should be noted that while the testing MSE for the direct quantities,
i.e., voltage magnitude and phase angle, shows marginal differences
between PINN4PF and MLP, PINN4PF significantly outperforms MLP
in terms of the derived physical quantities, such as line current.
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Table 2
Performance comparison of power flow solvers based on MSE obtained
for direct physical quantities.

Case Model MSE [V?] MSE [rad?]
4-bus PINN4PF 4.85% 107 3.81% 1078
MLP 570 % 1073 372% 1077
LR 2.52% 1072 470 % 1076
15-bus PINN4PF 5.73x 107° 1.06 x 1077
MLP 3.96 x 1075 3.09% 107
LR 6.32% 1074 1.57x 1075
290-bus PINN4PF 9.54 % 10710 1.65% 1078
MLP 3.03x 1070 1.78 x 1078
LR 1.03% 1077 249 %1078
2224-bus PINN4PF 1.03x 107 8.15 % 1075
MLP 2.07% 1074 7.66 % 1075
LR 3.62 % 10° 2.93% 1074
a
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Fig. 6. Comparison of (a) voltage magnitude & and (b) voltage phase angle
& obtained from NR, PINN4PF, and MLP for the 2224-bus test system. The
bus indices are positioned along the outer circle, while the corresponding
quantities are plotted along the radial direction.

5.3. Model sensitivity analysis

The architecture of PINN4PF and MLP, including the number of hid-
den layers and neurons per hidden layer, as well as hyperparameters,
including the learning rate, the weight decay rate, and the percentage
of dropout, are determined by sensitivity analysis to ensure a fair
comparison'. The maximum weight for the share of the supervised
penalty term (f;) in (12) is also fine-tuned. It should be noted that for
MLP, f, = 1 and g, = 0. Sensitivity analysis is not performed for LR
since it involves linear combinations. The optimal configurations are
identified based on minimizing both training and testing MSE, while

1 An exhaustive search across 2000 unique hyperparameter combinations
is conducted using the Optuna Python package [52].
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Table 3
Performance comparison of power flow solvers based on MSE obtained
for derived physical quantities.

Case Model MSE [A?] MSE [W?] MSE [V AR?]
4-bus PINN4PF 2.43x107° 4.25x 107 1.06 x 10™*
MLP 2.80 x 1073 8.27x 1073 2.06 x 1073
LR 4.04 x 107 1.34x 1072 3.36 x 1072
15-bus PINN4PF 435x107°¢ 2.09 % 1077 2.17 %1077
MLP 2.39x 107 5.77x 1077 6.42x 1077
LR 1.10 x 1072 8.70 x 10~* 1.74x 1073
290-bus PINNA4PF 3.84 x 1077 2.01x 1071 477 x 10714
MLP 2.85%x 107° 1.10 x 10712 244 %1071
LR 1.36 x 1073 8.20 x 10712 1.84 x 10712
2224-bus PINNA4PF 1.15%x 107 1.13x 1078 9.45x 1077
MLP 3.69 x 1075 7.22% 1078 5.12x 1073
LR 7.85%x 107! 3.55%x 107! 2.44 x 10%
Table 4

Performance comparison of different configurations of PINN4PF based on
MSE obtained for direct physical quantities and the 15-bus test system.

Model MSE [V?] MSE [rad?]
ReLU&Supervised 4.05x 1073 3.24x 1077
AdaptiveReLU&Supervised 1.42x 1073 3.73x 1077
ReLU&Physical 6.31 x 107 470 x 1077
AdaptiveReLU&Physical 5.73x10°° 1.06 x 1077

also ensuring that they remain close enough to indicate generalization
ability. All experiments use the 15-bus test system and a noisy dataset
comprising 512 data points.

5.3.1. Sensitivity analysis for MLP

We explore eight configurations, intentionally avoiding deeper NNs
with more than eight hidden layers due to the limited size of both the
dataset and the test system. Each configuration comprises input and
output layers defined by nx2 neurons in the first and last hidden layers,
respectively, while intermediate layers are structured with n x 4/3
neurons. We observe that when the number of hidden layers is fewer
than seven, a reduction in layer count correlates with a decrease in
generalization ability. We examine learning rates ranging from 1x 10~!
to 1x1071% and weight decay rates within the same span. Dropout rates
are tested between 0% and 2%. Sensitivity analysis results indicate
that the selected configuration for MLP involves seven hidden layers
and is trained with a learning rate of 2.3 x 107, a weight decay of
1.8x107>, a dropout percentage of 0.2%, and a batch size of 16. For this
configuration, the training and testing MSE achieved are 3.74x 10~5[V'2]
and 3.96 x 10~5[V'2], respectively.

5.3.2. Sensitivity analysis for PINN4PF

We systematically assess the influence of the number of hidden
layers, ranging from one to four, within the shared set of hidden layers
and the individual heads. We evaluate distinct configurations where the
shared hidden layers contain n X 2 neurons, and each head comprises
n neurons. Learning and weight decay rates are varied from 1 x 107!
to 1 x 1071%, and dropout rates are varied from 0% to 2%. Sensitivity
analysis reveals that the selected configuration for PINN4PF consists
of two shared hidden layers alongside four hidden layers per head. In
addition, PINN4PF is trained with a learning rate of 1.3x 1074, a weight
decay of 1.1 x 1073, a dropout rate of 0.1%, and a batch size of 16.
The maximum weight for the share of the supervised penalty term is
B, = 0.71. For this configuration, the achieved training and testing MSE
are 5.64 x 10~°[V2] and 5.73 x 107%[V"?], respectively.

5.3.3. Impact of modifications on the performance of PINN4PF

We evaluate the following configurations: (i) a double-head feed-
forward NN with ReLU (5a) and supervised penalty term (ReLU&Sup-
ervised), (ii) a double-head feed-forward NN with adaptive ReLU
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Fig. 7. Comparison of (a) line current 7, (b) line active power p;, and (c)
line reactive power g, obtained from NR, PINN4PF, and MLP for the 2224-bus
test system. The bus indices are positioned along the outer circle, while the
corresponding quantities are plotted along the radial direction.

(5b) and supervised penalty term (AdaptiveReLU&Supervised), (iii) a
double-head feed-forward NN with ReLU (5a) and physical penalty
term (ReLU&Physical), and (iv) a double-head feed-forward NN with
adaptive ReLU (5b) and physical penalty term (AdaptiveReLU&Phys-
ical). Table 4 presents a comparative analysis of their performance
in terms of direct physical quantities. The results show that Adap-
tiveReLU&Physical yields superior performance for PINN4PF compared
to the other combinations.

6. Discussion

Several key points and observations arise from the findings:
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The optimization algorithm suggests that for larger test systems,
the share of the supervised penalty term (f,) in the loss func-
tion should be significantly smaller than the physical penalty
term (f,), which indicates the increasing importance of physical
constraints in larger test systems.

Although only the diagonal elements of the admittance ma-
trix are used to develop the loss function, including a physical
penalty term imposes additional calculations during training,
which makes PINN4PF computationally more expensive than
black-box NNs and highlights a trade-off between accuracy and
computational cost.

The datasets are simulated rather than derived from field mea-
surements, which aligns with standard practice in power system
studies (e.g., [30,32]), given the limited availability of large-scale,
labeled operational data. Future work can focus on validating
PINNA4PF using real-world data.

- PINN4PF is trained on different operating conditions, and po-
tentially can generalize to provide approximate solutions in ill-
conditioned scenarios, where traditional methods fail to converge.
Future work can explore the use of these solutions as warm
starts for traditional methods and assess their potential to enhance
convergence in challenging cases.

In modern power systems, missing or noisy measurements and in-
complete topology data are common, often causing traditional PF
solvers to fail. PINN4PF addresses these challenges by integrating
partial topology information, specifically, the diagonal elements
of the admittance matrix. This design enables PINN4PF to learn
complex system dynamics from limited data and enhances robust-
ness against noise or incompleteness in both training samples and
topology information.

While PINN4PF demonstrates strong performance under fixed
network topology, it requires retraining if the system topology
changes. Future research can explore the potential of transfer
learning to adapt trained models to new topologies with minimum
additional training.

The physics-based loss function acts as a training penalty to
enforce power balance consistency and enhance the accuracy of
bus voltage predictions, whereas actual power system losses are
computed exactly from the predicted/calculated voltages using
standard electrical formulations.

7. Conclusion

An end-to-end architecture called PINN4PF is introduced. It includes
two important advancements in the training pipeline: (A) a double-head
feed-forward NN that aligns with PF, including an activation function
that adjusts to the net active and reactive power injection patterns, and
(B) a physics-based loss function that partially incorporates power sys-
tem topology information through a novel hidden function. PINN4PF,
therefore, offers a straightforward yet effective approach to capturing
the complexities inherent in large-scale modern power systems. The
application of PINN4PF to four test power systems, including 4-bus, 15-
bus, 290-bus, and 2224-bus systems, evaluates its performance against
LR and MLP.

The results highlight PINN4PF’s generalization ability, robustness
against noise, data efficiency, and scalability to large-scale power sys-
tems. Specifically, PINN4PF consistently achieves lower MSE for direct
and derived physical quantities, including line current, line active
power, and line reactive power. In addition, as the test system size in-
creases, the performance gap between PINN4PF, MLP, and LR becomes
more pronounced. This advancement is crucial for enhancing power
system operations, especially under extreme conditions and unexpected
deviations, making PINN4PF a promising solution for future PF analysis
and optimization tasks.
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