
A data-driven heuristic
decision strategy for
data-scarce optimization
with an application towards
bio-based composites

Martin van der Schelling

A data­driven heuristic decision
strategy for data­scarce optimization

With an application towards bio­based composites

by

Martin van der Schelling

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday March 9, 2021 at 3:00 PM.

Student number: 4304470
Project duration: March, 2020 – March, 2021
Thesis advisor: Dr. ir. M.A. Bessa, TU Delft, 3ME faculty
Thesis committee: Dr. M.H.F. Sluiter, TU Delft, 3ME faculty

Prof. dr. ir. C. Vuik, TU Delft, EEMCS faculty
Dr. ir. Z. Zarafshani, NPSP B.V.
Ir. W. Böttger, NPSP B.V.

This thesis is confidential and cannot be made public until March 9, 2022.

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

Cover picture: J. Ideami: ”Loss Landscape created with data from the SGD­Adam training
process of a convolutional network.” Retrieved from: https://losslandscape.com/

http://repository.tudelft.nl/
https://losslandscape.com/

Summary

Algorithmic optimization is a viable tool for solving complex materials engineering
issues. In this study, a data­scarce Bayesian optimization model was developed
to research the composition of bio­based composites. The proof­of­concept pro­
gram adjusts the natural materials’ weight ratios to optimize towards user­defined
mechanical properties. Preliminary results show that the bio­composites proposed
by the program had improved properties compared to existing bulk­moulding com­
pounds. However, the algorithm choice is often arbitrary or based on anecdotal
evidence. In parallel, this thesis proposed a data­driven framework for general
data­scarce optimization problems to adapt the meta­heuristic during optimization.
Guided by the ’No Free Lunch’ theorem, we verified that the effectiveness over
a selection of algorithms is dependent on problem­specific features and conver­
gence. This effectiveness was captured in a unique identifier metric by optimizing a
generated training set of optimization problems. The average solution quality was
improved by combining several meta­heuristics in series, based on these problem­
specifics. During the optimization of problems in the testing set, the same unique
identifier was constructed at predefined stages in the optimization process. Sub­
sequently, the problem was classified, and the meta­heuristic was adapted to the
best­performing algorithm based on similar training samples. Experiments with var­
ious classifiers and a different number of predefined assessment stages were per­
formed. Results show that the data­driven heuristic decision strategy outperformed
the individual optimizers on the testing set. Despite the use of binarization tech­
niques, the classification accuracy was heavily influenced by the imbalanced training
set. In terms of computational resources, the various adaptions of the data­driven
heuristic strategy are 2.5 times faster in runtime compared to the best­performing
meta­heuristic Bayesian Optimization. Lastly, the framework was benchmarked
against the ’learning to optimize’ study and shows excellent performance on the
logistic regression problem compared to the autonomous optimizer. In conclusion,
it has been shown that even with the limited information of black­box optimiza­
tion problems, data­driven optimization effectively improves the current standard
of materials engineering processes.

iii

Contents

Summary iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Literature review 5
2.1 Bio­based composites . 5
2.2 Overview of optimization 12
2.3 Selected meta­heuristics 18
2.4 A data­driven heuristic decision strategy. 28

3 Bio­based composite optimization 35
3.1 Methodology. 35
3.2 Design of experiments . 37
3.3 Optimization model . 42
3.4 Results & Discussion . 43
3.5 Recommendations . 46

4 Data­driven optimization 49
4.1 Optimization problems . 50
4.2 Algorithms . 62
4.3 Performance metrics . 66
4.4 Improving the heuristic decision strategy 71
4.5 Data­driven heuristic decision strategy. 75

4.5.1 Heuristic signature. 77
4.5.2 Constructing an optimization database. 80
4.5.3 Classification . 81

4.6 Results & Discussion . 87
4.7 Recommendations . 101

5 Conclusion 107

Acknowledgements 109

References 111

A Support information for literature review 123
A.1 P­type optimization. 123
A.2 Performance of meta­heuristics on benchmark problems 125

A.2.1 Performance of PSO 125

v

vi Contents

A.2.2 Performance of CMAES 127
A.2.3 Performance of Adam 131
A.2.4 Performance of Bayesian Optimization 133

B Support information for BMC optimization model 135
B.1 Documentation for BMC­optimizer 135

B.1.1 Downloading the program. 135
B.1.2 Contents of the repository 136
B.1.3 Database file . 136
B.1.4 Configuration file . 137
B.1.5 Objective file. 138
B.1.6 Available commands 138
B.1.7 Available parameters. 140

B.2 Three­point bending flexural test data 140

C Support information for data­driven optimization 145
C.1 Analytical equations of optimization problems 145

C.1.1 Well­known optimization benchmark functions . . 145
C.1.2 Rönkkönen parametrized multimodal functions . 147
C.1.3 CEC 2013 competition benchmark functions . . . 150

C.2 Implementations of selected algorithms 152
C.2.1 Covariance Matrix Adaptation Evolution Strategy 152
C.2.2 Generational Particle Swarm Optimization. 153
C.2.3 Adaptive Moment Estimate 154
C.2.4 Bayesian Optimization. 155
C.2.5 Random Search. 156

C.3 Experiments from ’learning to optimize’ study. 156
C.3.1 Logistic regression 156
C.3.2 Robust linear regression 157

C.4 Confusion matrices and decision bar graphs. 158
C.4.1 Confusion matrices 158
C.4.2 Decision bar graphs 163

List of Figures

1.1 Applications of bio­based materials 2

2.1 Performance of all selected heuristics on several benchmark functions. 30
2.2 Conceptual illustration of a learned optimizer. 32

3.1 Natural fibre and filler materials . 36
3.2 The premix. 36
3.3 Industrial mixer. 36
3.4 Bio­based composite bulk moulding compound 37
3.5 Bio­based composite plate. 37
3.6 Illustration of 3 continuous parameters of the BMC optimization model. 39
3.7 Diagram of the bio­based composite optimization model. 43

4.1 Adam optimization results for a unimodal and multimodal function . . 52
4.2 Illustration of optimization results with varying area of attraction . . 53
4.3 Comparison on separability for SGA and PSO. 54
4.4 Comparison smooth and noisy Ackley No. 2 function. 55
4.5 Well­known Levy and Styblinski­Tang function response­surfaces . . 57
4.6 Parametrized response­surfaces of tunable test functions 58
4.7 Response­surface of two functions from the CEC 2013 competition. . 59
4.8 Response surface of the noisy Ackley function. 61
4.9 Response surface of the modified Styblinski­Tang function. 61
4.10 Illustration of Latin Hypercube sampling. 62
4.11 Hyper­parameter optimization on Branin and Rosenbrock function. . 64
4.12 Results of hyper­parameter tuning on the noisy Ackley problem. . . . 64
4.13 Illustration of performance metrics for CMAES and various PSO variants 67
4.14 Solution quality metric for the Styblinski problem. 69
4.15 Average solution quality metric for the Styblinski problem. 69
4.16 Margin of victory for the training set. 71
4.17 Constructing the heuristic strategy on the Styblinski­Tang problem. . 74
4.18 Performance of heuristic strategy on two benchmark problems. . . . 74
4.19 Comparison of heuristic strategy on two benchmark problems. 75
4.20 Flowchart of the data­driven heuristic decision strategy 77
4.21 Construction of CMAES signature of noisy Ackley problem. 78
4.22 Construction of the signature metric for several optimizers. 79
4.23 Comparison between offline and online signatures. 80
4.24 Example of the total online signature metric. 80
4.25 One­versus­one and one­versus­all decomposition schemes. 82

vii

viii List of Figures

4.26 Illustration of the data­driven classifier. 84
4.27 Illustration of the 𝑘­nearest­neighbours classifier. 85
4.28 Illustration of the C­Support Vector Classifier. 85
4.29 Illustration of the meta­classifier AdaBoost. 86
4.30 Margin of victory of heuristic strategy. 89
4.31 Margin of victory of random strategies. 91
4.32 Margin of victory for online training set. 92
4.33 Margin of victory for the online testing set with various classifiers. . . 94
4.34 Margin of victory for the online testing set with various window sizes. 96
4.35 Comparison of the data­driven optimizers for logistic regression. . . . 100
4.36 Comparison of the data­driven optimizers for robust linear regression. 100
4.37 Conceptual illustration of reinforcement learned optimizer. 104
4.38 Conceptual illustration of meta­reinforced learning optimizer. 105

A.1 Response­surface of PSO on the Schaffer F6 function. 125
A.2 Optimization results of PSO on the Schaffer F6 function. 126
A.3 Influence of PSO hyper­parameters on Schaffer F6 problem. 127
A.4 Response­surface of CMAES on the Rosenbrock function. 128
A.5 Optimization results of CMAES on the Rosenbrock function. 128
A.6 Influence of CMAES hyper­parameters on the Rosenbrock function . 129
A.7 Performance of PSO and CMAES on two problems. 130
A.8 Response­surface of Adam on the Beale function. 131
A.9 Optimization results of Adam on the Beale function. 132
A.10 Influence of Adam’s hyper­parameters on the Beale function 132
A.11 Response­surface of Bayesian Optimization on the Branin function. . 133
A.12 Optimization results of Bayesian Optimization on the Branin function. 134
A.13 Influence of kernel function on Bayesian Optimization. 134
A.14 Influence of acquisition function on Bayesian Optimization. 134

B.1 Stress­strain curve of the first Recell­Peach composite 141
B.2 Stress­strain curve of the second Recell­Peach composite 142
B.3 Stress­strain curve of the third Recell­Peach composite 143

C.1 2D response surface of several well­known benchmark functions. . . 146
C.2 2D response surfaces of the Rönkkönen test functions 148
C.3 2D response surfaces of several CEC 2013 benchmark functions. . . 151
C.4 Response surface and performance on logistic regression. 157
C.5 Response surface and performance of on linear regression. 158
C.6 Online training confusion matrix with different classifiers. 159
C.7 Online training confusion matrix with different window sizes. 160
C.8 Online testing confusion matrix with different classifiers. 161
C.9 Online testing confusion matrix with different window sizes. 162
C.10 Decision bar graph with varying classifier. 163
C.11 Decision bar graph with varying window size. 164
C.12 Decision bar graph for the logistic regression problem. 165
C.13 Decision bar graph for the robust linear problem. 166

List of Tables

2.1 Properties of natural fibres and conventional synthetic fibres. 6
2.2 Selected research on natural fibres. 7
2.3 Selected research on natural fibre chemical pre­treatment. 8
2.4 Selected research on multi­fibre systems. 9
2.5 Selected research on natural fillers. 11
2.6 Table of various time complexities. 13
2.7 Selected heuristics categorized based on their most prominent feature. 19

3.1 Format of input columns with example data. 40
3.2 Format of output columns with example data. 40
3.3 Mechanical properties of Recell and Peach stone bio­based composites. 44
3.4 Objective function file for the Recell and Peach stone composites. . . 44
3.5 Calculation of the penalty scores for the Recell­Peach stone composites. 44
3.6 Mechanical properties of the generated composites. 45
3.7 Penalty scores of generated bio­based composites recipes. 45

4.1 Information of several well­known optimization functions. 56
4.2 Post­analytical parameters for noisy Ackley problem. 61
4.3 Post­analytical parameters for Styblinski problem. 61
4.4 Summary of implementations of selected algorithms. 65
4.5 Format of the signature database. 81
4.6 Training classification performance with different classifiers. 93
4.7 Testing classification performance with different classifiers. 95
4.8 Testing classification performance with different window sizes. 95
4.9 Overview of computation time for the data­driven optimizer. 97
4.10 Optimized hyper­parameters for SGD and Momentum. 99

B.1 Format of input columns. 137
B.2 Format of output columns. 137
B.3 Overview of customizable parameters in the BMC optimization model 140
B.4 Three­point bending test data of the first composite. 141
B.5 Three­point bending test data of the second composite. 142
B.6 Three­point bending test data of the third composite. 143

C.1 Analytical form of several well­known test functions. 147
C.2 Analytical form of modified Rönkkönen test functions. 147
C.3 Boundaries of the parameters of the Rönkkönen functions. 149
C.4 Summary of the 28 CEC 2013 test functions. 149

ix

1
Introduction

D ue to the ever­increasing capabilities of modern computers, algorithmic opti­
mization has become a viable tool for solving increasingly complex engineering

issues. This has expressed itself in, among others, the field of materials engi­
neering. Recent studies have shown that the morphology and composition can be
optimized using large sets of data or simulation software [1, 2]. These marked
the transition from a conventional trial­and­error approach towards computational
design.

However, many material engineering issues do not comprehend large datasets or
data cannot easily be acquired. These are called data­scarce problems, whether the
data comes from expensive computer simulations or labour intensive experiments.
In these cases, the development of meta­heuristic strategies for data­scarce black­
box optimization problems has recently revealed as an interesting research area.
This thesis focuses on the development of these algorithms and their application to
bio­based reinforced composite design.

Bio­based composites
Since the development of composite materials in the 1940s, climate change and
the energy transition have become the main incentive for sustainable research.
The production of conventional composites has a negative environmental impact
in terms of energy consumption. Replacing conventional petrochemical composites
with bio­based alternatives represents an opportunity to develop more sustainable
materials for building and construction applications as well as for consumer prod­
ucts.

The research and development company NPSP B.V. based in Amsterdam, the Nether­
lands researches the use of natural materials in composites. New biobased compos­
ites are manufactured from natural and abundant materials. These can be residual

1

1

2 1. Introduction

flows from the clothing industry, agriculture and landscape waste streams. By ap­
plying these fibres and a bio­resin instead of a petroleum­based resin, a biobased
composite with a very low CO2­footprint is created. The products range from parts
of trains to benches and traffic signs. Figure 1.1 shows a variety of products by
NPSP B.V. consisting of bio­based composite parts.

(a) Front of a train. (b) Electric scooter body.

(c) Bio­based bench. (d) Navigation sign.

Figure 1.1: A variety of bio­based composite materials from NPSP B.V. used in
mobility, design and automotive applications [3].

However, replacing existing petrochemical­based products with bio­based alterna­
tives involves important challenges. The manufacturing and testing of bio­based
composites are very labour­intensive and time­consuming. Examining all combina­
tions of natural fibres and fillers in different ratios by hand is not viable. There­
fore, this thesis aims to combine data­scarce heuristic optimization with bio­based
composite research, to accelerate the search towards optimal bio­based composite
recipes.

Data­scarce optimization
When looking at a more general case of data­scarce optimization, it is often unclear
which algorithm should be chosen for which type of problem. The ’No Free Lunch’
theorem states that different algorithms excel in solving different types of black­box
optimization problems [4]. In other words, a single meta­heuristic cannot outper­

1

3

form all others for every problem. Consequently, the choice of a meta­heuristic
algorithm is often arbitrary or based on anecdotal evidence.

Besides, by definition, there is no prior information known about black­box opti­
mization problems. Instead, problem­specific features are only discovered during
and after the optimization process. Therefore the heuristic choice can only be eval­
uated after the process ends. In this thesis, we study if information gathered from a
past optimization problem could give insight into new optimization problems.

In an attempt to use the information from previous black­box optimization prob­
lems, an effort is made to generate problem­specific optimization data. By collect­
ing problem­specific information of various optimization benchmark problems and
coupling this information to the best­performing meta­heuristics, we could gain in­
sight into the domain of solvable problems for each heuristic. The prior information
from generated optimization problems is stored in a database and aids us in solving
new optimization problems. The heuristic decision for new optimization problems is
dependent on the most successful heuristic from similar preceding cases. This way,
we develop a data­driven heuristic decision strategy and comply with the message
of the ’No Free Lunch’ theorem.

2
Literature review

This thesis establishes two main objectives. The first goal of this thesis is to develop
a computational model that supports the development of novel bio­based compos­
ites. By varying parameters of the bio­based composite recipes and inputting the
acquired mechanical testing data in the data­driven model, the ambition is to assist
experimentalist in finding biocomposites with tailored properties. The second goal
is to create a data­driven optimization strategy to enhance heuristic­based optimiz­
ers when solving black­box optimization problems. This will be described in section
2.4.

2.1. Bio­based composites
Fibre­reinforced composite materials have been attracting attention for years as a
replacement for conventional materials such as metals. Compared to conventional
materials, composites have a higher density and specific strength, exhibit excel­
lent corrosion protection and are more resistant to fatigue at a lower maintenance
cost. However, composite materials subjected to impact failure are hard to repair
[5].

Recently, environmental incentives have lead researchers to study alternatives to
petrochemical materials in composites. Promising sustainability results were found
among life­cycle­assessment analyses of bio­based alternative feedstock [6]. Waste­
streams from other material processes can be given a new functionality by being
part of a sustainable composite. This leads to higher recyclability of the feedstock
and reduces the high cost of traditional composites [7]. In addition to matching
properties of conventional materials by biomaterials, bio­based materials can also
enhance material properties. For example, natural materials can add self­healing
functionality, tackling one of the weak parts of traditional composite structures
[8].

5

2

6 2. Literature review

Natural reinforcements
Sustainable alternatives to replace these reinforcements have been intensely inves­
tigated. Table 2.1 shows the properties of the most widely used natural reinforce­
ments and conventional glass­fibre and carbon­fibre reinforcements.

Density
(g/cm3)

UTS
(MPa)

E­modulus
(GPa)

Elongation
(%)

Cost
($/kg)

Hemp 1.4 550­900 70 1.6 0.7­0.8
Wood flour 1.5 1000 40 4.4 0.2­0.5
Jute 1.5 400­800 10­30 1.8 0.8­0.9
Flax 1.4 800­1500 60­80 1.2­1.6 0.6­0.8
Sisal 1.3 600­700 38 2­3 0.7­0.8
Kenaf 1.2 295 53 2.7­6.9 0.7­0.8
Bamboo 0.9­1.1 397­713 18­55 1.9 2.4­5.7

Glass 2.6 2000­3500 70 0.5 1.2­1.8
Carbon 1.4 4000 230­240 1.4­1.8 25­38

Table 2.1: Density, Ultimate Tensile Strength (UTS), Young’s modulus
(E­modulus), elongation and cost of commonly used natural fibres (top) and

conventional synthetic fibres (bottom) [9–12].

It is apparent that natural fibres are much lighter than glass­fibre. Since natu­
ral fibres are part of a waste­stream, the cost is drastically lower than synthetic
fibres. However, researchers have observed that bio­based reinforcements have
limited utilization at heavy­load applications [13]. Conventional glass­fibre rein­
forced composites exhibiting far better loading properties than natural fibres [14].
However, the tensile strength and Young’s modulus of natural fibres allow them to
replace materials for moderate­load applications.

Besides, biomaterials are often hydrophilic. Natural fibres do generally have imper­
fect surface adhesion to the hydrophobic matrix material. The interface interaction
between fibre and matrix controls the load transfer to the fibres. Water damage
and bacterial attacks are also added risks to the material [13].

Several studies of composites with cellulosic fibres such as hemp, jute and flax show
that these abundant natural fibres contain the potential to substitute conventional
fibres in composites [15, 16]. One of the advantages of natural fibre composites is
the possibility of using conventional processing equipment of thermoplastic­based
systems with low maintenance costs. This is a consequence of the abrasiveness
nature of cellulosic materials. An additional advantage is that the waste­stream of
cellulosic processes can be given value. However, most natural fibres will degrade
above 200 °C. This limits the choice of available processing techniques, and the
choice of the matrix and filler materials [15].

In a study by Miller [6], various natural materials such as hemp linen, jute and
wood flour were implemented as natural reinforcement fibres for biocomposites.

2.1. Bio­based composites

2

7

These bio­based composites were found to have competitive flexural and thermal
properties compared with short glass fibre reinforced composites. Material selec­
tion and life cycle assessments showed that natural reinforced composites were
comparable in impact resistance to conventional composites. Various review pa­
pers have united the scattered research on the implementation of natural fibres in
composites [15, 16]. A short overview of natural fibre research over the past two
decades is shown in table 2.2. For each natural reinforcement, the compatibility
and performance with different matrices were investigated.

Fibre Matrix Reference Noticeable results

Hemp PHBV [6] High flexural strength, low thermal conductivity,
high tensile strength, high tensile modulusPPE [17]

Wood flour PHBV [6] High specific tensile strength, excellent protection
against weatheringPPE [18, 19]

Jute PHBV [6]
High flexural modulus, low thermal conductivity,
high water uptake

Epoxy [20]
PE [20]
PP [17, 20]

Flax Epoxy [20, 21] High specific tensile modulus,
low tensile and flexural strengthPE [20, 22]

PP [20, 23]
Sisal PP [17, 24] Moderate impact strength,

high water uptakePHBV [25]
PE [26, 27]

Kenaf PP [17, 28] High tensile modulus, high flexural strength,
limited impact strengthPE [28, 29]

Epoxy [28, 30]
Bamboo PE [26, 27] High tensile modulus, high specific

tensile strength, low densityEpoxy [31, 32]

Table 2.2: Selected research of common natural fibres implemented in different
matrices: thermoplastic poly(3­hydroxybutyrate­co­3­hydroxyvalerate) (PHBV),

polyphenyl ether (PPE) and polypropylene (PP), whereas epoxy and polyester (PE)
resins are mainly used as thermosetting resin [15, 16].

Chemical treatment of fibres
The adhesion between fibre and matrix determines the load transfer between fibres.
Natural fibres generally have poor adhesion to the matrix due to their hydrophilic
nature. Research has been conducted to overcome this poor adhesion by having
chemical treatment done to the fibres, reducing their hydrophilic nature, resulting
in better load transfer. However, chemical modification of natural fibres adds to the
overall cost of the biocomposite [15, 33].

Various chemical treatments can be applied to natural fibres. A concise overview
of natural fibres with different chemical treatments is shown in table 2.3. The most
widely used method is to soak the natural fibres in a sodium hydroxide solution
(NaOH): the alkali treatment. The hydroxyl (OH) groups present at the surface

2

8 2. Literature review

of the cellulosic fibres are broken down, which increases the moisture resistance
properties. Additionally, the alkali treatment reduces the fibre diameter and thus
increases the fibre aspect ratio. An increased aspect ratio will enhance the ad­
hesion with the matrix material [33]. Another method involves the use of silane.
Silane molecules will form links between the fibre surface and the matrix material
through a siloxane bridge (Si­O­cellulose). The siloxane bridges develop a mechan­
ically interlocked coating on the fibre [33]. Fibres treated with silane will provide
better tensile strength than similar fibres with alkali treatment [34]. An acetylation
treatment is used to improve the plastic behaviour of the fibres. The acetyl group
(CH3CO) reacts with the hydrophilic groups and takes out existing moisture. As
a result, the dimensional stability is increased as well as the moisture resistance.
Lastly, benzoylation is used to improve the natural fibre’s interfacial adhesion and
enhance the thermal stability [33, 35].

Fibre Matrix Treatment Noticeable results

Hemp PE Alkali Higher flexural modulus and flexural strength [36]
Wood flour PP Alkali Slight increase in tensile modulus and strength [37]
Jute VE Alkali Higher flexural modulus and strength [38]

Epoxy Alkali Higher tensile strength, significant decrease of impact strength [34, 39]
Epoxy Silane Better adhesion, higher flexural modulus and strength [34]
PE Alkali Higher tensile strength, significant decrease of impact strength [34]
PE Silane Better adhesion, higher flexural modulus and strength [34, 40]

Flax Epoxy Alkali Increase of tensile modulus and strength [35]
PP Acetylation Improved moisture resistance, decreased impact strength [41]
PE Benzoylation Increased fibre surface area [42]

Sisal PE Alkali Increased tensile and impact strength [35, 43]
PE Acetylation Increased flexural strength [43]
PE Benzoylation Increased tensile modulus and strength [44]
Epoxy Alkali Higher tensile strength, significant decrease of impact strength [39]
PCL Alkali Decrease in mechanical properties due to incompatibility [45]

Kenaf PE Alkali Higher flexural modulus and strength [36]
Bamboo Epoxy Benzoylation Increased tensile strength and modulus, decreased water absorption [46]

PE Benzoylation Increased tensile strength and modulus, decreased water absorption [46]

Table 2.3: Selected research of chemical pre­treatment on natural fibres
implemented in different matrices [33].

Multi­fibre systems
The variable properties of natural fibres can be combined to yield multi­purpose
systems. An adequate co­fibre can counteract the disadvantages of another fibre
component. Therefore, combining natural fibres to form hybrid systems is being
investigated. Conventional synthetic fibres are often combined with a natural sub­
stitute to balance cost and performance. However, research on natural multi­fibre
systems is also explored. The classes of natural fibres differ significantly in me­
chanical properties, as seen in table 2.1. Finding a compatible match of two or
more natural fibres can lead to high­end natural composites. Nonetheless, com­
patibility between the two fibres and the matrix is crucial to accomplish enhanced
performance [47]. Table 2.4 shows selected studies that manufactured and char­
acterized natural fibre hybrid systems.

As seen in table 2.1, the properties of natural fibres are very distinct. Also, for the

2.1. Bio­based composites

2

9

Fibres Matrix Noticeable results compared to the single­reinforcement composite

Hemp/Glass PP Increase in specific fatigue strength [48]

Wood flour/Glass PVC Significant improvement in impact strength [49]

Jute/Glass PE Increase in specific flexural properties [50]
Epoxy Decreased water uptake [51]

Jute/Cotton PE Decreased water uptake [52]

Flax/Glass PP Increase in recyclability [53]
Flax/Cotton PP Increase in recyclability [53]
Flax/Silk Epoxy Increase in impact strength [54]

Sisal/Glass PE Decrease in cost while maintaining mechanical properties [55]
Sisal/Glass Epoxy Increase in chemical resistance [56]
Sisal/Cotton PE Incompatible due to an increase in water uptake [52]
Sisal/Banana PE Increase in tensile and flexural properties [57]
Sisal/Oil palm NR Increase in compatibility and tensile modulus [58]

Kenaf/Glass Epoxy Similar tensile and flexural properties, but decreased impact strength [59]

Bamboo/Glass PE Increase in specific tensile strength [60]
Epoxy Increase in specific tensile strength [60]
VE Comparable flexural modulus at low natural fibre content [61]
PP Increase in thermal stability and flexural modulus [62]

Table 2.4: Selected research of multi­fibre systems implemented in different
matrices [47].

same fibre, different matrix materials can provide drastically different properties to
natural fibres. Even the processing conditions play a significant role in the quality
of the composite. A study with sisal fibre reinforced composites concluded that the
mechanical properties are greatly dependent on the fibre orientation, length, and
chemical treatment [63].

Moreover, environmental conditions highly determine the properties of natural fi­
bres. Several studies showed a decrease in mechanical properties after a great
extent of moisture uptake [11, 53, 64]. The temperature of the moisture greatly
determined the decay of mechanical properties [65]. Also, natural fibres are af­
fected by UV­light. The mechanical properties of jute fibre­reinforced composites
under the influence of UV­light were tested by Gassan et al. [66]. Results showed
an increase in the polarity of the fibres, gaining in flexural strength. However,
excessive UV­treatment caused degradation of the fibres.

Matrix
As discussed previously, the matrix selection is bound by the maximum tempera­
ture that the natural reinforcement can handle. Due to this constraint, only matrix
materials that soften below this temperature are suitable for bio­based composites
[67].

Several attempts have been made to incorporate both a sustainable matrix and
fibre in a composite, the so­called ’Green composites’. Nowadays, most conven­

2

10 2. Literature review

tional polymer resins from sustainable feedstocks are commercially available with
bio­based content up to 100% [68]. Polylactic Acid (PLA) has been identified as a
promising biopolymer. Its excellent mechanical properties and acceptable thermal
properties make it a sustainable alternative for polyethylene terephthalate (PET)
[69]. Besides, PLA­based biocomposites possess three times more potential for
recyclability [70]. In recent years, PLA­based bio­based composites are devel­
oped and mechanically characterized for all the above mentioned natural fibres
[71].

Attempts to directly use natural resins in composites have been made by Mehta et al.
[72]. Vegetable oils from soybean and cottonseed can be transformed into matrix
resins that will polymerize when heated in the presence of a catalyst. Bio­based
composites have been manufactured by combining vegetable oils with unsaturated
polyester into hemp­fibre reinforced biocomposites. The impact strength of the
polyester blend composite was improved by 90%.

However, bio­based resins are relatively expensive. A bio­based filler can serve as
a cost­reducing agent as well as an extra reinforcement.

Natural filler
Developing a method to use waste­stream materials as fillers is particularly promis­
ing because it tackles both the recyclability and the cost of biocomposites. Besides,
natural fillers play an important role in determining the density and rheological
properties of biocomposites [13].

Replacing the conventional filler calcium carbonate (CaCO3) with a natural equiva­
lent results in a considerable weight loss, as natural fillers are generally far lighter
than calcium carbonate [13, 73]. A challenge when replacing calcium carbonate is
the decrease in viscosity of the unpaved composite mixture. Results have shown an
increase of viscosity with CaCO3 content [74]. In order to mould the composite into
various complex shapes, the composite must flow sufficiently. Research is being
conducted on various plasticizers to increase the viscosity [75].

In the past decade, a lot of different sources of natural fillers have been inves­
tigated. However, comprehensive research on particularly promising fillers and
in­depth characterization is still uncharted territory [13]. Wood pulp, almond and
apricot shell showed an increase in its mechanical properties compared to the bare
polypropylene (PP) matrix [76]. In separate studies, composites with both egg­
shell and shellfish filler material were compared to calcium carbonate composites.
Both biocomposites were comparatively better than their calcium carbonate coun­
terpart. An increase in Young’s modulus but a decrease in tensile strength was
observed for the egg­shell filler, whereas the shellfish filled composites showed an
increase in tensile strength [77–79]. Studies with seaweed, tuff, nanocellulose and
walnut showed an increase in crystallinity with increasing filler concentration. This
results in a better tensile strength. An increase in flame retardancy was noticed for
the seaweed biocomposites [80, 81]. Similar research was conducted with coffee
silverskin filler in bio­based polyethylene (BioPE) composites. However, biocom­

2.1. Bio­based composites

2

11

posites with coffee silverskin demonstrated a decrease in crystallinity and ductility
[82]. Incorporating biochar in a PLA­based composite increased thermal stability
and decreased water absorption [83].

Due to the abundant waste­stream of olive stones in the Mediterranean region, re­
search was conducted using ground olive stone as natural filler [84]. Incorporating
olive stone in unsaturated polyester resin matrix composites enhanced the flexural
modulus, but at the expense of impact strength. Surface modification with mercap­
tosilane (MRPS) helped to reduce the water sensitivity of the composite [85].

Research has been conducted on using pecan nutshell as reinforcement fillers to
manufacture PLA based biocomposites [86]. The result showed a significant in­
crease in the viscoelastic response of PLA by enhancing the flexural strength. How­
ever, a lower resilience concerning a plain PLA composite was measured due to the
lack of chemical adhesion between the PLA and the pecan nutshell filler. Parbhakar
et al. [87] manufactured epoxy bio­based composites with peanut shell filler ma­
terial. The composites’ morphology shows better bonding between the filler and
resin, thus leading to improvement of the mechanical properties. Table 2.5 shows
an overview of recent studies on biofillers.

Filler Matrix Noticable results

Almond shell PP Increase in specific strength and modulus [76]
Apricot shell PP Increase in specific strength and modulus [76]
Biochar PLA Improves the thermal stability and reduces water uptake [83]
Coffee silverskin PE Improves the elastic modulus and reduces strain [82]
Egg­shell Epoxy Improves the tensile modulus but reduces the tensile strength [78]
Nanocellulose PHBV Increase in crystallinity and tensile strength [81]
Olive stone PE Increase in stiffness, but at the cost of impact strength [84, 85]
Peanut shell Epoxy Increase in tensile strength and modulus [87]
Pecan nutshell PLA Increase in thermal resistance, flexural strength and modulus [86, 88]
Seaweed PP Improves the matrix compatibility and introduces flame­retardancy [80]
Shellfish shell PP Increase in tensile strength and modulus [79]
Tuff PHBV Increase in crystallinity, tensile strength and modulus [81]
Walnut shell PHBV Increase in tensile strength and modulus [81]
Wood powder PP Increase in specific strength and modulus [76]

Table 2.5: Selected research of natural fillers implemented in different matrices.

All sorts of abundant waste materials can be implemented as biofillers to serve
as cost­reducing and reinforcement agent in composites. The trend of bio­based
filler researches expresses the opportunities of natural filler reinforcements and
underlines the challenge of compatibility between the natural filler and polymer
matrix. Natural fillers’ performance and properties are governed by conditions like
the size­distribution, shape of the filler, chemical treatment, and interaction with the
matrix [13]. Analogue to natural fibres, natural fillers’ properties are also sensitive
to environmental conditions [89].

2

12 2. Literature review

Bio­based composite optimization
By reflecting on the comprehensive research done on natural materials, we conclude
that abundant waste­streams can provide tailored material solutions to widespread
applications. The choice of recommended materials is not as limited as conventional
composites, where glass, carbon and aramid fibre reinforced composites dominate
the market [14]. However, systematically researching every combination of natural
materials is not a viable approach as the number of natural materials is enormous
and their properties are outspread. This can be derived from the enormous amount
of scattered research on natural fibres and fillers. Therefore, we have to resort
towards pin­pointing specific needs of applications and optimize for that specific
property.

The problem of the unpredictable behaviour of natural materials makes it less intu­
itive to search for an optimal recipe for a specific application. Nevertheless, finding
an optimal combination of natural materials in an early stage of trial­and­error will
significantly reduce the research workload and save enormous money. Here is
where we connect the link with algorithmic optimization. The field of algorithmic
optimization concerns selecting the best input for some set of available alternatives.
Inputting different types and ratios of natural fibres, fillers and resins into an opti­
mization algorithm and optimizing for a specific property could tailor new promising
bio­based composites.

Although several studies try to model the specific behaviour of bio­based com­
posites [90–93], we are not yet able to accurately model the complete behaviour
of biocomposites. However, we can perceive the unpredictable performance as a
black­box function. A black­box function is a function for which the analytical form is
not known. Treating the physical and chemical behaviour of bio­based composites
as a black­box function eliminates the issue of oversimplification in a conventional
macro mechanical model [94]. Using a black­box optimization approach for the
guidance of novel bio­based composite research is still unknown territory. It could
give new insights into the advancement of bio­based composites.

Finding a suitable optimization algorithm that adapts to the bio­based composite
case is a challenge since research in this field is ever­expanding. In the following
section, we will dive deeper into the field of optimization.

2.2. Overview of optimization
An optimization problem consists of several components. First, we outline the ob­
jective function 𝑓 that is desired to be maximized or minimized. If the problem
consists of multiple objectives, a multi­objective optimization approach can be cho­
sen. Alternatively, the objectives can all possess individual weights and be added
together to reduce the multiple objectives to one single objective. [95]. Only single­
objective optimization is assessed to keep the scope of the thesis concise.

The objective function depends on a number of input parameters represented as
the vector 𝑥⃗ = (𝑥1, ..., 𝑥𝑑). These parameters can contain equality or inequality
constraints, which reduce the feasible solution space 𝑋. For each iteration 𝑡, the

2.2. Overview of optimization

2

13

current solution 𝑥⃗𝑡 is altered to acquire a new solution 𝑥⃗𝑡+1. Ultimately, we want
to find an optimal set of parameters 𝑥⃗∗ that will minimize or maximize the objec­
tive function 𝑓(𝑥⃗). We can express a minimization optimization problem with the
following formulation:

𝑓(𝑥⃗∗) ≤ 𝑓(𝑥⃗) ∀ 𝑥⃗ ∈ 𝑋 (2.1)

A minimization in 𝑓(𝑥⃗) is the same as a maximization in −𝑓(𝑥⃗). For the sake of
consistency, we will view the optimization as a minimization problem for 𝑓.

Solution quality and used resources
When solving an optimization problem, we are interested in the quality of the solu­
tion and computational resources used to originate the output. Preferably we want
our optimization solution to be an exact solution. This will eliminate the variability of
solution quality, as all other possible outcomes are considered to come up with the
optimal outcome. However, exact methods are not always readily available for solv­
ing optimization problems. Furthermore, the required resources for any algorithm
increase when the dimensionality of the problem increases. For larger problems,
exact methods tend to demand more resources than is usually available.

In that case, there is a choice to sacrifice some of the solution quality to solve
an optimization problem within the available resources [95]. One solution is to
apply heuristic methods, despite not giving a guarantee of finding the exact solu­
tion of the optimization problem, they aim at returning a reasonably good solution.
These methods assess the trade­off between solution quality and accessible re­
sources.

In this context, evaluating the time complexity 𝒪 of the optimization problem is
important, irrespective of whether an exact or heuristic approach is feasible. The
time complexity denotes the dependency of the problem size concerning the re­
quired resources. Several time complexity functions are shown in table 2.6.

Constant 𝒪(𝑐), 𝑐 > 0
Logarithmic 𝒪(log𝑑)
Linear 𝒪(𝑑)
Quasilinear 𝒪(𝑑 log𝑑)
Quadratic 𝒪(𝑑2)
Polynomial (of order 𝑐) 𝒪(𝑑𝑐), 𝑐 > 1
Exponential 𝒪(𝑐𝑑), 𝑐 > 1
Factorial 𝒪(𝑑!)
Super­exponential 𝒪(𝑑𝑑)

Table 2.6: Table of various time complexities, divided into polynomial time (top)
complexity and exponential (bottom) time complexity [95]. 𝑑 refers to the

dimensionality of the problem.

2

14 2. Literature review

Generally speaking, the time complexity is divided into two classes. The first class
consists of all the time complexity functions that are at most scaled by a polynomial
expression 𝒪(𝑑𝑐) where 𝑐 > 1. When the problem size increases, the additional
resources that are needed are manageable for most solving systems. This class is
called polynomial­time algorithms, P­type for short.

If a polynomial­time algorithm exists for a specific optimization problem, we say
that the problem lies in the P­type problem class. An example of a P­type problem
is sorting a list of integers. Sorting algorithms have different best, worst and aver­
age time complexity expressions. For instance, the merge sort algorithm performs
𝒪(𝑑 log𝑑) as worst­case time complexity. This means that sorting a list can be
done efficiently even with an increasingly large list size [96].

The second class consists of all other time complexities that scale at least expo­
nentially with the problem size, 𝒪(𝑐𝑑). Small problems can be solved exactly using
these algorithms, but the requested resources will skyrocket when the problem
size increases. This class is called non­polynomial time algorithms, NP­type for
short.

A well­known NP­type problem is the Travelling Salesman Problem (TSP). This prob­
lem asks the following question: given a list of cities and the distance between them,
what should be the shortest path to visit all cities? This famous NP­type problem
finds its roots in 1930 and is still used as a benchmark case for heuristic optimiza­
tion algorithms. Adaptations of this problem apply to vehicle routing software and
GPS. Exact approaches to this problem are not able to go below 𝒪(2𝑑) and it has
not been proved whereas an exact algorithm below this bound exists [97]. How­
ever, heuristic algorithms are capable of predicting a tour between millions of cities
within 1% of the optimal solution [98].

Exact P­type optimization
Exact methods for P­type problems are frequently discussed in research and review
articles. These exact optimization methods are effective if the problem meets one of
the following strict specifications: the objective function and constraints are linearly
or quadratically dependent on the input parameters, or the problem’s search­space
is entirely convex. More information on polynomial­time algorithms for optimization
problems in this form can be found in appendix A.1.

However, using an exact optimization algorithm for the bio­based composite case
is not preferable. The objective function can not be expressed linearly, as we do
not know how the individual parameters will influence each other. Similarly, we do
not have any information that suggests that the search space is entirely convex.
Most importantly, evaluating all possible solutions is not viable. The production
and testing of bio­based composite samples are very time­consuming. Evaluat­
ing a few points in the domain will take several days due to the labour­intensive
process.

2.2. Overview of optimization

2

15

Heuristic NP­type optimization
Finding an exact solution for NP­type problems is not feasible, as the number
of computational resources scales exponentially with the problem size. There­
fore, heuristic algorithms, conventionally named heuristics, attempt to find a near­
optimal solution within polynomial time. Although heuristics will not guarantee to
find the optimal solution, they compromise solution quality for computational re­
sources [95].

Due to the intense acceleration of innovation within heuristic optimization, its ter­
minology lacks consistency. Rothlauf’s book [95] tries to form modern heuristic
techniques and distinguishes three forms of heuristics: standard heuristics, ap­
proximation algorithms and meta­heuristics.

• Standard heuristics are heuristic algorithms that are very problem­specific and
can be divided into construction and improvement heuristics. Construction
heuristics try to optimize the individual parameters separately to arrive at
a single solution. In contrast, improvement heuristics start with complete
solutions and adjust the entire solution to arrive at an optimum [95].

• Approximation algorithms are heuristics that guarantee quality bounds on a
solution. As standard heuristics give no information about the obtained solu­
tion, this form attempts to quantify the solution quality.

• Meta­heuristics or also entitled modern heuristics are an extension to the im­
provement heuristics from standard heuristics. Improvement heuristics only
try to improve the current solution with each iteration by exploiting the vicinity
of good solutions. However, meta­heuristics differ in the fact that they also
explore less­promising regions within the search space. This exploration char­
acteristic acts as a way to break out of local minima. The duality between ex­
ploration and exploitation behaviour is an essential feature of meta­heuristics.

If no exact algorithm or approximation algorithm is known for a problem, meta­
heuristics are the method of choice to tackle NP­type problems. Since meta­heuristics
are designed to apply to a wide range of problems, it will broaden the chances
of finding proper solutions. Therefore, the overwhelming demand for all­purpose
heuristic solvers has opened up research for new and improved meta­heuristic tech­
niques. Because, at the present time, research is mainly focused on developing
meta­heuristics, we will be focusing on the meta­heuristics and refer to extensive
literature reviews for the other heuristic forms [99].

Categorization of meta­heuristics
Many review papers have come up with different ways of classifying meta­heuristics.
These can be summarized with the following categories:

• Trajectory and discontinuous: The distinction between trajectory and dis­
continuous methods is commonly made. With a trajectory method algorithm,
consecutive solutions follow a search trajectory. A discontinuous method al­
lows large jumps to avoid getting restricted to local minima. This distinction

2

16 2. Literature review

can be viewed as the exploitation and exploration behaviour of the heuris­
tic. A trajectory­based method will exploit a local minimum and iterate more
solutions at a closer distance to further improve the solution quality. Discon­
tinuous methods explore the solution space to increase confidence about the
global optimum being located [100, 101].

• Population and single­point: The separation between population­based or
single­point search methods is made. Population­based algorithms transform
a group of solutions on each iteration. For single­point search methods, one
single solution is altered at each step of the algorithm. Single­point search
enhances the local search exploitation, whereas a population­based strategy
helps the exploration behaviour of the algorithm [100, 101].

• Nature and non­nature based: A third way to classify meta­heuristics is
based on the source of inspiration. Meta­heuristics tend to gain inspiration
from biomimicry. Therefore, algorithms are categorized on nature­inspired
and non­nature­inspired meta­heuristics. Salcedo­Sanz et al. [102] added
the classification of meta­heuristics inspired to non­linear physical processes.
He classified meta­heuristics based on, for instance, ideal gas modelling and
electromagnetic theories.

• Online and offline: Powell [103] discussed in his research that every class of
meta­heuristics is essentially categorized for either achieving the cumulative
(online) or final (offline) reward. Secondly, the objective function should be
considered either state­independent or state­dependent.

’No Free Lunch’ theorem
It could be argued that the class of NP­type problems is so diverse that generalized
algorithms which could solve many different problems should be sought. According
to the ’No Free Lunch’ theorem of Wolpert et al. [4], exceeding both applicability
over a range of problems and maintaining high­quality solutions is not achievable.
The study from 1997 benchmarks the general concept of a heuristic algorithm to
a random search. A random search is a simple naive algorithm where, upon each
iteration, random parameters in the search space are evaluated and compared to
the best­found solution. The random search method behaves independently of the
problem set and does not use problem­specific information. This states that on av­
erage, the algorithm will perform equivalently on every NP­type problem. Heuristic
algorithms strive to perform better than the random search approach.

Wolpert et al. [4] demonstrated that whenever a particular heuristic algorithm gains
in performance on one particular problem, it is bound to perform worse than a ran­
dom search algorithm on other NP­type problems. This means that a heuristic will
never perform better than random search on all NP­type problems simultaneously.
Instead, different heuristics should tackle specific problem classes. Heuristics need
to be designed so that problem­specific information is exploited. Making no use
of problem­specifics will result in random search performance for the majority of
existing problems.

2.2. Overview of optimization

2

17

As the ’No Free Lunch’ theorem describes, a suitable algorithm must be found
based on the problem’s characteristics. However, categorizing meta­heuristics to
their problem­specific traits is not straightforward. There has not yet been a sys­
tematic comparison between the exploited characteristic of a problem and the best
performing algorithms on that particular problem class, to the best of our knowl­
edge.

Currently, decisions about heuristic choices are made based on experience or per­
formance at similar problems. Attempts have been made to optimize the meta­
heuristic decision process itself. This has led to the development of hyper­heuristics.

Hyper­heuristics
Hyper­heuristics choose and alter a suitable meta­heuristic for an optimization prob­
lem and replace human expertise in the meta­heuristic decision process [104].
Hyper­heuristics can combine various meta­heuristics, in hyper­heuristic context re­
ferred to as low­level heuristics, to come up with a new high­level heuristic. In par­
allel, hyper­heuristics can optimize hyper­parameters in standard meta­heuristics to
enhance their performance [105]. Ultimately, the hyper­heuristic algorithm analy­
ses the currently used high­level heuristic every iteration and makes adjustments
if necessary [104].

Roughly speaking, two features of a hyper­heuristic framework play an essential
role in its behaviour and performance: the set of low­level heuristics and the move
acceptance strategy [104].

Low­level heuristics set
The low­level heuristic set consists of several general­purpose heuristics. Each
algorithm within the set can be selected, altered and combined to form a high­level
heuristic. The high­level heuristic is then applied to solve the optimization problem
until the move acceptance strategy requests another high­level heuristic. According
to the ’No Free Lunch Theorem’, the set of low­level heuristics should be diverse so
that it can exploit a wide variety of different problems. The set of low­level heuristics
should represent the main problem­specific categories of meta­heuristics.

Ochoa’s study [106] proposed the hyper­heuristic framework HyFlex that provides
the link between general­purpose meta­heuristics and specific problem domains.
HyFlex is a tool for designing and comparing the performance of move acceptance
policies. It has become the standard benchmark for comparing cross­domain search
methods.

HyFlex does not have particular meta­heuristics implemented but does provide a
framework to import low­level heuristics. Interestingly, HyFlex works with cate­
gories of low­level heuristics based on their underlying principles, unlike any other
categorization paper. The categorization of low­level heuristics that are underlined
are as follows:

1. Mutational: Mutational heuristics are heuristics that will perform a small

2

18 2. Literature review

alteration on the solution by changing or swapping different solution compo­
nents.

2. Ruin­recreate: Ruin­recreate heuristics will destroy some parameters of the
current solution and rebuild them. Constructive heuristics can recreate the
destroyed part of the solution.

3. Hill­climbing: Hill­climbing heuristics will iteratively improve the solution by
making small changes in the direction of the more promising solution space.
It will only accept non­deteriorating solutions until a local optimum is found.

4. Crossover: Crossover heuristics will take the parameters of two solutions
and combine them to form a new solution.

Move acceptance strategy
A decision­making algorithm analyses, after every iteration, whether the current
choice of heuristic has to be adjusted to improve the likelihood of converging to an
optimum. This is executed bearing a ’move acceptance’ strategy in mind. Ac­
cording to the ’No Free Lunch’ theorem, the rule­set of the ’move acceptance’
strategy should be based on problem­specific information gathered from past it­
erations.

Different move acceptance algorithms are proposed and discussed in various stud­
ies. For example, move acceptance methods could be stochastic or deterministic.
The decision algorithm can also accept moves that do not necessarily move closer to
the optimum. ’Improving or Equal’ (IE) is a deterministic move acceptance method
that only accepts moves that will make the next step’s objective value better than
the current solution. Whereas ’Simulated Annealing’ (SA) will also accept moves to
some probabilistic extent that will decrease the solution quality [105].

Generally, the underlying principle of move acceptance algorithms is a black­box
optimization itself [107]. Possible moves are applied to the current state, and the
decision algorithm picks a move based on the objective function outcome of the
move.

2.3. Selected meta­heuristics
As discussed in section 2.2, there has been made much progress within the field
of meta­heuristic. Despite the rapidly evolving innovation of meta­heuristics, this
also brought negative trends in the optimization domain. The research from the
beginning of this millennia contributes to a flood of metaphor­inspired heuristics.
The critical review from Sörensen on these metaphor­inspired trend outlines the
similar build­up of these papers [108]. A new ’revolutionary’ meta­heuristic is pro­
posed based on an inspiring biological phenomenon. After that, the heuristic is
poorly benchmarked against a hand­picked set of problems so that the new heuristic
comes out best. When studying these papers, the heuristics are mainly rebranded
existing approaches that may have slightly altered hyper­parameters. The bench­
marking process selectively displays only successful cases, which does not honour

2.3. Selected meta­heuristics

2

19

the definition of benchmarking. Both the ’GreyWolf Optimizer’ and ’Harmony Search
Algorithm’ have been accused of imitative research [109, 110].

Filtering innovative research out of the trivial copies has become challenging as
the amount of meta­heuristics is rising. Besides, focussing on one particular cat­
egory of meta­heuristics will bias the reader. A meta­heuristic from each of the
four low­level heuristic categories from HyFlex is picked and discussed to give an
overview of relevant meta­heuristics research. These heuristics are selected based
on their innovative principles, frequent citations and distinct features. As most of
the selected algorithms have features of multiple low­level heuristic categories, they
are selected based on their most prominent feature. Bayesian Optimization is in­
cluded in this study because of its promising results in recent studies [111–113] and
unique feature of constructing a surrogate model of the objective function. Due to
this unmatched characteristic, it is not connected with one of the low­level heuristic
categories.

Table 2.7 gives an overview of the heuristics that will be discussed in this section.
After a brief overview and explanation of the update strategy, each heuristic per­
formance on a benchmark problem is demonstrated.

Meta­heuristic Category Reference

Particle Swarm Optimization (PSO) Crossover [114]
Covariance Matrix Adaptation (CMAES) Ruin­recreate [115]
Adaptive Moment Estimation (Adam) Hill­climbing [116]
Bayesian Optimization (BO) [117]

Table 2.7: Selected heuristics categorized based on their most prominent feature.

Particle Swarm Optimization (PSO)
This population­based algorithm was proposed by Kennedy & Eberhart in 1995 and
gained inspiration from the movement of individuals in a school of fish or bird flock
[114]. For each iteration, new improvement solutions are proposed according to
rules that incorporate their previous position.

For the original particle swarm optimization (OPSO), the following update rules are
applied. The new position 𝑥⃗𝑡+1 of each individual particle is determined by the
position of this particle 𝑥⃗𝑡 plus a velocity term 𝑉⃗𝑡+1.

𝑥⃗𝑡+1 = 𝑥⃗𝑡 + 𝑉⃗𝑡+1 (2.2)

This velocity term 𝑉⃗𝑡+1 is composed out of three terms that each serves a different
purpose:

• Particle velocity 𝑉⃗𝑡: this is the velocity vector of the particle in the current
iteration.

2

20 2. Literature review

• Cognition 𝑝⃗𝑡: this term is the influence on the best position that this particle
has visited in its lifetime.

• Social 𝑔⃗𝑡: the social term serves as a memory of the global best position
considering all particles.

After each iteration, the velocity term is updated according to the following for­
mula:

𝑉⃗𝑡+1 = 𝑉⃗𝑡 + 𝜙1𝑅1𝑡(𝑝⃗𝑡 − 𝑥⃗𝑡) + 𝜙2𝑅2𝑡(𝑔⃗𝑡 − 𝑥⃗𝑡) (2.3)

The cognition and social components have two real number weights 𝜙1 and 𝜙2 as
hyper­parameters to tweak their respective behaviour of the optimization. More­
over, both components are multiplied with a factor 𝑅1𝑡 and 𝑅2𝑡. These are vectors
where their elements are random numbers distributed uniformly (∼ 𝑈(0, 1)). Every
iteration, 𝑅1𝑡 and 𝑅2𝑡 are computed again. This randomization acts as a variable
step­size for the cognitive and social components. Particle Swarm Optimization is
heavily subjected to the crossover principle, as the update rule is essentially an
addition of three existing solutions: the momentum of the current position (𝑉⃗𝑡), the
local best particle position (𝑝⃗𝑡) and the global best particle position (𝑔⃗𝑡).
Over the years, many variants of PSO have been proposed. Inertia Particle Swarm
Optimization (IPSO) added an inertia weight 𝜔 that scales the particle velocity term
[118]. Moreover, a widely used standardized and benchmarked version SPSO2011
has been developed [119, 120]. This variant introduced a spherical distribution that
is added to the velocity update term.

Particle Swarm Optimization is vulnerable as a particle approaches the solution
boundary. Several ways to handle this situation are described in the paper of Pad­
hye et al. [121].

In the original paper of Eberhart [114], the particle swarm optimization heuristic
has been benchmarked against the single­objective non­linear Schaffer F6 bench­
mark function. This function contains a lot of local minima in a confined space and
is generally challenging to optimize [122]. Appendix A.2.1 shows a visual repre­
sentation of the 2D Schaffer F6 function and the performance of PSO with altering
hyper­parameters and population size.

Covariance Matrix Adaptation (CMAES)
Covariance Matrix Adaptation­Evolutionary Strategy (CMAES) is an altered version
of the Covariance Matrix Adaptation strategy proposed in 1996, classified as an
evolutionary strategy for derivative­free global optimization [115].

Evolutionary strategy algorithms are a class of optimization methods based on the
evolutionary principles found in nature. The optimization resembles natural selec­
tion, where survival of the fittest is the key principle. Its objective function evalua­
tion value represents the fitness of an individual. We strive for the fittest individual

2.3. Selected meta­heuristics

2

21

for a maximization problem (and the least fit for minimization).

In CMAES, each new population of search points is described by a multi­variate
normal distribution N:

𝑥⃗𝑡+1 ∼ N(𝑚⃗𝑡 ,C𝑡) (2.4)

Here, N is a multi­variate normal search distribution, composed of a mean (𝑚⃗𝑡)
and a covariance matrix C𝑡. These two values describe how the next generation is
sampled.

Firstly, the new mean 𝑚⃗𝑡+1 is calculated by picking the weighted average of the 𝜇
best­performing points from the sampled search distribution 𝑥⃗𝑡.

𝑚⃗𝑡+1 =
𝜇

∑
𝑖=1
𝜔𝑖𝑥⃗𝑖,𝑡

whereas,

𝜇

∑
𝑖=1
𝜔𝑖 = 1,𝜔𝑖 > 0 for 𝑖 = 1, ..., 𝜇 (2.6)

where 𝜔⃗ is calculated by normalizing the Euclidean distances from the new mean
𝑚⃗𝑡+1. The update step for the covariance matrix is as follows:

C𝑡+1 =
𝑖=1

∑
𝜇
𝜔𝑖(𝑥⃗𝑡+1𝑖 − 𝑚⃗𝑡)(𝑥⃗𝑡+1𝑖 − 𝑚⃗𝑡)𝑇 (2.7)

What makes the CMAES algorithm unique is the calculation of the new covariance
matrix C𝑡+1. The covariance of each individual is calculated relative to the true
mean value 𝑚⃗𝑡 from which the current distribution is sampled. Note that this differs
from an empirical approach where the mean value of the sampled points is used
(− 1

𝜆 ∑
𝜆
𝑖=1 𝑥𝑡+1𝑖).

Secondly, we multiply the individual covariance elements by their respective weights
𝜔𝑖, as calculated in equation 2.7.
CMAES incorporates a way to include information from the history of generations by
the so called ’Rank­𝜇­Update’. After a sufficient number of generations, the mean
of the covariance matrices from all generations is used to get a reliable estimate
for the covariance matrix described in 2.7. A full mathematical description of the
Rank­𝜇­Update can be found in the source material [123].

2

22 2. Literature review

However, the sign of the steps derived from the ’Rank­𝜇­Update’ is not used for
calculating the covariance matrix. To incorporate this information, the ’evolutionary
path’ is introduced.

The evolutionary path is expressed as the sum of the true mean values of consecu­
tive generations. The direction of this evolution path (𝑝⃗𝑡𝑐) is exploited by accelerat­
ing in this direction. This enhances the behaviour of CMAES on objective functions
with elongated flat valleys [123].

Combining the CMAES update step of the covariance matrix, the ’Rank­𝜇­update’
and evolutionary path approach gives us the final update strategy of the covariance
matrix:

C𝑡+1 = (1 − 𝑐cov)C𝑡 +
𝑐cov
𝜇cov

𝑝⃗𝑐𝑡+1(𝑝⃗𝑐𝑡+1)𝑇 + 𝑐cov(1 −
1
𝜇cov

) × ∑𝜇𝑖=1𝜔𝑖(
𝑥𝑡+1𝑖 −𝑚⃗𝑡

𝜎𝑡
)(𝑥

𝑡+1
𝑖 −𝑚⃗𝑡
𝜎𝑡

)𝑇
(2.8)

According to the proposed literature, the hyper­parameters 𝜇cov and 𝑐cov are by
default set to 𝜇cov = 𝜇eff, which is the variance effective selection mass, and 𝑐cov ≈
min(𝜇cov, 𝜇eff, 𝑑2)/𝑑2, where 𝑑 is the dimensionality of the optimization problem
[123].

The nature of sampling from a normal distribution makes the ruin­recreate char­
acteristic the main feature of the CMAES update rule. Existing promising solutions
are selected by their objective function value and their mean and covariance matrix
is built before these solutions are ruined. Subsequently, new solutions are created
with the updated normal distribution parameters.

In the original paper of Hansen [115], CMAES is compared to various simple evolu­
tionary strategy algorithms on the single­objective unimodal Rosenbrock function.
This well­known test function is still a relevant benchmark for various algorithms.
Appendix A.2.2 shows a visual representation of the 2D Rosenbrock function and
the performance of the CMAES optimizer with varying population size.

Adaptive Moment Estimation (Adam)
Adam is classified as a stochastic gradient­descent algorithm. Stochastic gradient­
based algorithms are one of the earliest approaches to heuristic optimization. Sup­
pose one has access to the derivatives of the objective. In that case, gradient
descent algorithms are relatively efficient optimization methods if the gradient’s
computation is as expensive as evaluating the objective function itself.

The main principle of gradient descent algorithms can be summarized in three steps.
First, the optimization starts at an initial position in the search space. Then the
derivative 𝜕𝑓(𝑥𝑡)

𝜕𝑥𝑡
on that particular point is evaluated. According to the derivative,

the direction that has the most descending trend is determined as the moving di­
rection. Lastly, the following evaluation is sampled in the descending direction
multiplied by a step­size called the learning rate 𝛼. Stochastic Gradient Descent

2.3. Selected meta­heuristics

2

23

(SGD) is one of the earliest approaches that is still widely used when incorporating
the derivative in the optimization process.

𝑥⃗𝑡+1 = 𝑥⃗𝑡 − 𝛼 ⋅
𝜕𝑓(𝑥𝑡)
𝜕𝑥𝑡

(2.9)

However, SGD becomes impractical when navigating across surface curves where
one direction is much steeper than another. Improvements by adding a momentum
term 𝑚𝑡 and using past iteration in controlling this momentum term are proposed
to overcome this shortcoming [124].

𝑚𝑡 = 𝛽𝑚𝑡−1 + (1 − 𝛽) ⋅
𝜕𝑓(𝑥𝑡)
𝜕𝑥𝑡

(2.10)

𝑥⃗𝑡+1 = 𝑥⃗𝑡 − 𝛼𝑚𝑡 (2.11)

The hyper­parameter 𝛽 controls the influence of momentum to the gradient de­
scent.

A challenge for gradient descent algorithms is the choice of a proper learning rate
𝛼. Using a constant learning rate, the algorithm is restricted to one step­size and
finetuning of this hyper­parameter is required to get useful results. Most of the
time, optimizing for hyper­parameters is not feasible for new problems. Adaptive
learning rate strategies try to adjust the learning rate during optimization. AdaGrad
is a gradient­descent algorithm that changes the default learning rate for each
parameter according to its history of computed derivatives [125]. The adaptive
learning rate 𝑣𝑡 is decreased for frequently changing derivatives and increased for
dimensions that have flat slopes.

𝑣⃗𝑡 = 𝑣⃗𝑡−1 + (
𝜕𝑓(𝑥𝑡)
𝜕𝑥𝑡

)2 (2.12)

𝑥⃗𝑡+1 = 𝑥⃗𝑡 −
𝛼

√𝑣𝑡 + 𝜖
⋅ 𝜕𝑓(𝑥𝑡)𝜕𝑥𝑡

(2.13)

The parameter 𝜖 is a small floating­point value that ensures the fraction is never
divided by zero.

The learning rate update rule 𝑣𝑡 of AdaGrad accumulates squared gradients of past
iterations. Since the inverse of these squared gradients is stored, the learning rate
keeps shrinking during its lifetime. Ultimately, the algorithm does not acquire ad­
ditional information and is put on hold. This addresses the challenge of developing
learning rate update rules that account for this aggressive decay. RMSProp is an
unpublished gradient descent method developed as an extension of AdaGrad [126].
The update rule 𝑥⃗𝑡+1 takes the same form as equation 2.13. However, it restricts

2

24 2. Literature review

the influence of the past squared gradients to a fixed window. RMSProp stores
this sum of squared gradients as a decaying average of all past squared gradi­
ents. Therefore, the average at the current iteration only depends on the previous
average and the current gradient.

𝑣⃗𝑡 = 𝛽𝑣⃗𝑡−1 + (1 − 𝛽)(
𝜕𝑓(𝑥𝑡)
𝜕𝑥𝑡

)2 (2.14)

The hyper­parameter 𝛽 controls the influence of previously acquired derivatives,
similar to the momentum update term.

Adam is a stochastic gradient­based optimization technique designed to combine
the advantages of AdaGrad and RMSProp. Adam is derived from Adaptive Moment
estimation and was proposed in a study by Kingma and Ba in 2015 [116]. Adam uses
individual adaptive learning rates for both the gradients and squared gradients. The
method combines the principle of the momentum 𝑚𝑡 from equation 2.10 and the
fixed window of past squared gradients 𝑣𝑡 from RMSProp (equation 2.14).

𝑥⃗𝑡+1 = 𝑥⃗𝑡 −
𝛼

√𝑣̂𝑡 + 𝜖
⋅ 𝑚̂𝑡 (2.15)

The developers of Adam noticed that by initialization of the gradient descent, the
moving averages𝑚𝑡 and 𝑣𝑡 are starting out as vectors of 0’s. This leads to the same
learning rate shrinkage of AdaGrad. To counteract this behaviour, the exponential
moving averages are bias­corrected by the following expression:

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
, 𝑣̂𝑡 =

𝑣𝑡
1 − 𝛽𝑡2

(2.16)

The exponential moving averages of the gradient (𝑚̂𝑡) and the squared gradient
(𝑣̂𝑡) are controlled by the hyper­parameters 𝛽1 and 𝛽2 respectively. Similar to the
momentum gradient descent and RMSProp, they control the influence on previously
acquired derivatives.

Adam can be classified as a hill­climbing algorithm. Despite having a momentum
term that gives the algorithm the ability to accept a deteriorating solution, the
update rule is bound to improve the solution by making small changes in the more
promising solution space.

The original paper of Kingma [116] demonstrates that Adam can be used to op­
timize different deep learning models, including logistic regression and multi­layer
neural networks. To keep the performance demonstration over the selected heuris­
tics in the same scope, we are looking at Adam’s behaviour at single­objective
functions where the analytical form is known. For example, the Beale function is a
multimodal smooth objective function used for demonstrating the performance of

2.3. Selected meta­heuristics

2

25

various gradient­based algorithms [102, 127]. Appendix A.2.3 shows a visual rep­
resentation of the 2D Beale function as well as its performance and the influence
of the hyper­parameters 𝛼, 𝛽1 and 𝛽2.

Bayesian Optimization (BO)
Bayesian Optimization is a powerful optimization strategy that is most effective if the
objective function is expensive to evaluate [117]. Bayesian Optimization is built on
Bayes’ theorem [128]. This theorem states that the posterior probability of a model
𝑀, given information 𝐸 is proportional to the likelihood of 𝐸 given 𝑀 multiplied by
the prior probability 𝑀.

𝑃(𝑀|𝐸) ∝ 𝑃(𝐸|𝑀)𝑃(𝑀) (2.17)

This translates to the information 𝐸 being the acquired data from function evalua­
tions in terms of an optimization problem. Consider an unknown objective function
𝑓. As we accumulate more information by function evaluations, our prior belief 𝐸
of the objective function could state that the function is, for instance, noise­free
and smooth. Subsequently, the objective function can be estimated by a surrogate
function 𝑀 that captures the prior beliefs. Based on our surrogate model, objective
values that carry out high oscillations are less likely than those close to the mean
value of 𝐸. This posterior probability captures our beliefs about the unknown ob­
jective function given information 𝐸.

Bayesian Optimization consists of three steps:

1. A posterior surrogate model is constructed from prior information.

2. An acquisition function is composed and evaluated within the search space.

3. The acquisition function is optimized to select the next point at which to eval­
uate.

Surrogate model: Gaussian process
Several ways to construct a surrogate model from data can be used for Bayesian
Optimization. A popular surrogate model is a Gaussian process (GP). A Gaussian
Process is an extension to a multivariate Gaussian distribution. A Gaussian distri­
bution is specified by a mean and covariance and addresses a distribution over a
random variable. Analogue to the Gaussian distribution, a Gaussian process char­
acterizes a random function and is specified by a mean function 𝑚 and a kernel 𝑘,
often named the covariance function. The kernel takes two points, 𝑥⃗𝑛 and 𝑥⃗𝑚, as
an input and returns a similarity measure between those points [111, 129].

𝑓(𝑥⃗) ∼ GP(𝑚(𝑥⃗), 𝑘(𝑥⃗𝑛 , 𝑥⃗𝑚)) (2.18)

The Gaussian Process can be customized by choosing an appropriate mean function
and kernel. The covariance function’s choice describes the characteristics and fea­

2

26 2. Literature review

tures of the objective function that we want to predict. Numerous different kernel
functions, such as Radial basis function (RBF) or periodic kernel, can be used to
cover all sorts of function characteristics [130].

When the objective function is not yet evaluated, the prior distribution does not
contain any information. While evaluating more points, the Gaussian Process will
be constrained on the evaluated points. By adding more information to the prior
distribution, the Gaussian Process will evaluate the likelihood of objective values
given the history of evaluations. This will alter the Gaussian Process by constraining
it to the training points.

Acquisition function
For Bayesian Optimization, we are merely interested in finding the optimal param­
eters for minimizing the objective function. The acquisition function will guide the
search for an optimum. The maximum value of the acquisition function will cor­
respond to the next parameters to evaluate. This function needs to be cheap to
maximize.

Several acquisition functions are proposed in the literature. The main trade­off
within different acquisition function is the exploitation and exploration behaviour.
The ’maximum probability of improvement’ (MPI) and ’Lower Confidence Bound’
(LBC) acquisition functions are greedy. It searches for parameters where the sur­
rogate mean value is the highest. This acquisition is purely exploitative. On the
other end of the spectrum, the ’Upper Confidence Bound’ (UCB) acquisition function
favours points where the surrogate covariance is the largest. This acquisition func­
tion behaves entirely explorative. The ’Expectation of Improvement’ (EI) acquisition
function balances this exploitation and exploration behaviour [112].

The Bayesian Optimization procedure is as follows. A acquisition function is con­
structed based on the surrogate model of the acquired information 𝑥⃗𝑡 and 𝑓(𝑥⃗𝑡).
The next sampling point 𝑥⃗𝑡+1 is proposed by optimizing the acquisition function.
Subsequently, an objective value 𝑓(𝑥⃗𝑡+1) is acquired. Lastly, the new point is added
to the acquired information and the surrogate model is updated.

The standard Branin­Hoo function is commonly used to analyze the performance of
Bayesian Optimization on single­objective functions, [130]. This test function has
three local optima. With an implementation of Bayesian Optimization of the Python
library GPyOpt [131], the optimum in figure A.11b is sought. Its response­surface
and performance with different kernel and acquisition functions are illustrated in
appendix A.2.4

Heuristic choice for bio­based composite case
The choice of a suitable heuristic for the bio­based composite case is based on the
information we have gathered before doing iterations on the problem. By perform­
ing iterations on the problem, we gather information about the search space and
the heuristic response. This information may help us make a better heuristic choice,
but it takes up much time due to the time­intensive nature of manufacturing bio­

https://gpyopt.readthedocs.io/en/latest/index.html

2.3. Selected meta­heuristics

2

27

based composites. As a result, there is a trade­off between the heuristic choice’s
accuracy and the time to acquire problem­specific information. Because we could
consider the bio­based composite case as a very expensive objective function, and
due to the time constraints on this project, we choose a suitable heuristic before
the optimization process performed in chapter 3.

Nevertheless, we can consider that the bio­based composite problem is highly noisy
due to the high variability of natural materials described in section 2.1. Therefore,
the choice of using Adam, for which its update strategy is highly dependent on the
gradient information of the response surface, is not justifiable.

In review papers [111–113], Bayesian Optimization is appointed as a promising
novel heuristic, which has been shown to outperform other state­of­the­art global
optimization algorithms on several challenging optimization benchmark problems.
Bayesian Optimization handles noisy objective functions very well and is very information­
efficient. It uses all the gathered information during its search to build a fitting
surrogate model and suggest the next iteration location carefully. Bayesian Op­
timization works well with box­constrained boundaries. For CMAES and Particle
Swarm Optimization, the update rule can force iterations outside of the objective
function’s boundaries. For Bayesian Optimization, no boundary behaviour needs to
be implemented.

Bayesian Optimization has two significant drawbacks. Firstly, the time­complexity
of building a surrogate model scales with the number of iterations 𝑛 with 𝒪(𝑛3) due
to an inversion of an 𝑛×𝑛 matrix [129]. Therefore, the time­efficiency for Bayesian
Optimization reduces with the number of iterations, and generally for more than 104
iterations Bayesian Optimization is not a viable approach. In this thesis’ context,
this is not a problem. Since the manufacturing and testing of the recommended
bio­based composite recipes have to be extended over multiple days, the number
of iterations will not be in the order of 104.

Secondly, handling optimization in higher dimensions is a key challenge for Bayesian
Optimization. Optimizing the kernel parameters requires many evaluations of the
surrogate model and constitutes a computational bottleneck in Bayesian Optimiza­
tion, although studies have been conducted to scale down the curse of dimension­
ality of a Bayesian Optimization problem [132]. Nevertheless, as the algorithmic
implementation towards bio­based materials science has not been conducted ear­
lier, the optimization implementation will start with low dimensionality to develop a
proof­of­concept model.

In conclusion, Bayesian Optimization is chosen as the heuristic for optimizing bio­
based composites so that this challenge could be addressed within an appropriate
timeline for this thesis. However, in parallel, we are also interested in investigating
a strategy to choose among different heuristics.

2

28 2. Literature review

2.4. A data­driven heuristic decision strategy
Shortcomings of present heuristic optimization
When studying heuristic optimization literature, first­hand results show that meta­
heuristic models such as the ones shown in appendix A.2 are impressively successful
optimization tools that can solve a wide variety of problems within a short amount
of time. However, behind the remarkable conclusions lie fundamental shortcom­
ings. Namely, preliminary hyper­parameter tuning, the inconsistent classification
system and the lack of a clear black­box heuristic decision strategy are other ma­
jor complications in the meta­heuristic field that hold back the true capabilities of
stochastic optimization.

Hyper­parameter tuning
The first problem that arises from modern heuristic literature is the choice of hyper­
parameters. Hyper­parameters can drastically alter the behaviour of the algorithm
performance. This has been addressed very early in the case of genetic algorithms
[133]. In the following years, extensive research has been done on optimizing these
hyper­parameters. By parametrizing the hyper­parameters and operating the opti­
mizer repeatedly, the optimization performances are depicted as loss surfaces. Dif­
ferent approaches to optimizing these hyper­parameter loss landscapes have been
proposed, including sequential model­based Bayesian Optimization and gradient­
based optimization [134, 135]. To decrease computational time and improve con­
vergence, even a random search approach on hyper­parameter tuning can be bene­
ficial [136]. Results from several hyper­parameter tuning frameworks show that us­
ing optimal hyper­parameters in contrast to hand­picked hyper­parameters dramat­
ically improves the performance on black­box benchmark problems [137].

When applying well­reported heuristics to new problems, if the hyper­parameters
are not reported, it can be challenging to replicate the articles’ results. Optimizing
the hyper­parameters to specific problems is often done preliminary before report­
ing reasonable solutions. This process is very time­consuming and frustrating for
new users that want to apply meta­heuristics to solve different problems. When
adding the resources used for tweaking hyper­parameters to the algorithm’s overall
performance, general­purpose heuristics generally misrepresent their performance
[95].

Conventional classification
Classifying the meta­heuristic algorithms in chapter 2.2 may be insufficient or im­
practical. For example, a problem arises if we develop a new optimization problem
from which there is no P­type algorithm known. As the ’No Free Lunch Theo­
rem’ describes, different heuristics should solve diverse problem sets. Therefore,
the appropriate use of a meta­heuristic is crucial to satisfy its performance. The
conventional classification also does not guide us towards an appropriate choice
of meta­heuristic. Unlike exact optimization, this heuristic classification system is
based on the aesthetics of the algorithm and not of the problem itself [95].

In contrast, the categorization of low­level heuristics from HyFlex [106] classifies

2.4. A data­driven heuristic decision strategy

2

29

distinct groups of meta­heuristics based on their underlying principles and disallows
any aesthetics in its analysis. These distinct groups of heuristic principles could
serve as a starting base for improved categorization. However, the link between
meta­heuristic principles and problem­specifics is still to be made.

Heuristic decisions
The move acceptance strategy of a hyper­heuristic ensures that we can link the
different meta­heuristics groups to different specific properties of a problem. How­
ever, the known move acceptance algorithms do only use problem­specific infor­
mation in a limited manner. That is, by scaling the quality of the acquired solutions
to the previously­best solutions [107]. When transitioning from one meta­heuristic
to another during the same optimization problem it is also not possible to do it
stochastically or deterministically. However, what is lacking in today’s move ac­
ceptance strategies, is incorporating the entire history of evaluations towards the
heuristic decision. Only then we can comply with the message of the ’No Free
Lunch’ theorem.

Data­driven optimization
Optimization benchmark papers come to contrasting conclusions about the perfor­
mance of different heuristics. In the study of Vesterstrom [138], several evolution­
ary algorithms, particle swarm optimization and differential evolution are compared
on a set of benchmark problems. The author concluded that the performance of
the differential algorithm heuristic is outstanding in comparison with the other algo­
rithms tested. However, in two different studies [139, 140], CMAES was marked for
being the heuristic of choice despite benchmarking on a similar set of optimization
problems. Even if we evaluate the benchmark function from the selected heuristics
for all the other heuristics, the results do not provide us with a clear dominance of
one heuristic. The results are illustrated in figure 2.1.

Sörensen put an important recommendation in his paper about the critique on the
metaphor heuristic trend: ”Perhaps a set of tools is needed, i.e., a collection of
statistical programs or libraries specifically designed to determine the relative quality
of a set of algorithms on a set of problem instances” [108]. This quote guides future
meta­heuristic research towards a systematic data­driven comparison.

2

30 2. Literature review

0 100 200 300 400 500
Iteration

100

101

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

BayesianOpt

PSO

CMAES

Adam

RandomSearch

(a) Branin­Hoo function.

0 100 200 300 400 500
Iteration

10−1

100

101

102

103

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

BayesianOpt

PSO

CMAES

Adam

RandomSearch

(b) Beale function.

0 100 200 300 400 500
Iteration

10−1

100

101

102

103

104

105

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

BayesianOpt

PSO

CMAES

Adam

RandomSearch

(c) Rosenbrock function.

0 100 200 300 400 500
Iteration

10−1

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

BayesianOpt

PSO

CMAES

Adam

RandomSearch

(d) Schaffer F6 function.

Figure 2.1: Performance of all the selected heuristics and a naive random search
on the Branin­Hoo, Beale, Rosenbrock and Schaffer F6 benchmark functions.

Learning to learn
A new emerging branch of science in the direction of algorithmic optimization is
meta­learning or learning to learn. Current meta­heuristics are hand­engineered
algorithms. Researchers learn empirically which kind of optimization problems are
suitable for which meta­heuristics. With the emergence of machine learning ap­
proaches, it is possible to learn an optimization algorithm based on a wide range of
learning tasks.

Automatic algorithm design is a promising development in the field of heuristic

2.4. A data­driven heuristic decision strategy

2

31

optimization. Li and Malik’s paper is one of the leading studies in which the al­
gorithm is designed through automatic execution [141]. The idea of learning the
update step for the optimization algorithm itself in a reinforcement learning envi­
ronment has been independently proposed similarly by Andrychowicz et al. [142].
The model rewards a modification to the update policy if better solutions are found
and penalizes modifications that result in worse solutions. In this way, an optimal
update policy for a particular optimization problem is acquired. As the update pol­
icy is trained by previously acquired optimization results, the ’learning to optimize’
approach is also data­driven.

Figure 2.2 explains the idea of learned optimizers illustratively. The Gradient De­
scent algorithm is vulnerable in parabolical, narrow valley regions where the response­
surface gradient in one dimension is far steeper than in another dimension. This
problem­specific feature is prominent in the response­surface of the Rosenbrock
function (as seen in figure A.4a). Gradient Descent responses oscillate heavily in
one direction and move very slowly towards the optimum direction. The Momen­
tum variant of Gradient Descent proposes to overcome this shortcoming by adding
a momentum term. Hence, the movement in the flat direction is accelerated. The
learned optimizer learns from the algorithmic responses of this problem­specific fea­
ture by penalizing the Gradient Descent’s feedback and promoting the Momentum
approach in a reinforcement learning manner.

The idea of learning to learn has expressed itself in the development of recurring
neural networks (RNN) that are trained by various sets of meta­problems. The
study of Chen et al. [143] trained an RNN to perform black­box global optimization
and compared its performance against Bayesian Optimization. The learned model
has shown to be more efficient in terms of computational resources and could
compete on a wide class of black­box functions. Around the same time, a meta­
learning algorithm that is compatible with any model trained with gradient descent is
proposed [144]. This algorithm aids the training of a meta­learning model towards
finding model parameters that are sensitive to changes.

Wichrowska et al. [145] introduced a similar meta­learning RNN model that is more
focussed on reducing memory and computation overhead. Their study introduces a
meta­training set that consists of an ensemble of diverse loss landscapes for which
an RNN captures the dependency of the gradient­descent hyper­parameters. Sub­
sequently, popular hand­designed gradient­based optimizers are incorporated as
starting points. The learned optimizer matches or outperforms Adam and RMSProp
on problem types from the meta­training set.

Although most learned optimizers are focussed on single­solution derivative­based
optimization, the study of Cao et al. [146] designed an RNN that handles both point­
based and population­based training data. Their results showed that the meta­
learning approach outperforms Particle Swarm Optimization on numerous convex
and non­convex Rastrigin problems.

2

32 2. Literature review

Figure 2.2: Conceptual illustration of the autonomous optimizer. The ladybug
learned optimizer has knowledge of the behaviour of Gradient Descent on this
problem­specific feature and therefore adapts its update strategy [141].

Aside from recurring neural networks, Wang et al. [147] developed a promising
meta­learning approach for deep reinforcement learning (RL) systems. The system
is learned a task by a reinforcement learning model but is tested on a completely
different task. A proof­of­concept meta­learned model is developed and bench­
marked against various navigational and machine learning problems. The results
show that the optimizer learns the exploitable features in each new problem.

Despite the promising conclusions in these meta­learning studies, the excellent
results of hand­crafted meta­heuristics should not be diminished. However, the
performance of these classic meta­heuristics is limited by the ’No Free Lunch’ theo­
rem. By definition, the ’No Free Lunch’ theorem could theoretically be beaten if the
use of each meta­heuristic is regulated to only optimization problems which incor­
porate the algorithm’s exploitable feature. Using a data­driven approach to handle
the choice of meta­heuristic could be promising.

This thesis proposes an adaptive heuristic decision strategy that can alter the heuris­
tic choice during black­box optimization. As the study of Cao et al., [146] population­
based, as well as single solution optimizers, are implemented in the set of selected
meta­heuristics. However, this set is not limited to popular gradient­based optimiz­

2.4. A data­driven heuristic decision strategy

2

33

ers as in the study of Wichrowska et al. [145]. In addition, we introduce other
popular derivative­free algorithms based on the low­level heuristic categorization
of HyFlex, as discussed in section 2.3. The update step of the data­driven heuristic
decision strategy will not be learned as in meta­learning studies [141–143], but
carefully chosen among a set of hand­engineered meta­heuristics.

From the simple comparison of optimizers on benchmark problems in figure 2.1, it
can be seen that different optimizers shine during a more global or local stage of op­
timization. Therefore we assess and, if necessary, adapt the heuristic choice during
different convergence stages of the optimization process. These decisions will be
made based on a data­driven framework of benchmark optimization runs of the var­
ious selected heuristics. By collecting problem­specific information of various opti­
mization benchmark problems and coupling this information to the best­performing
meta­heuristics, we could gain insight into the domain of solvable problems for each
heuristic. The prior information from generated optimization problems is stored in a
database and aids us in solving new optimization problems. The heuristic decision
for new optimization problems is dependent on the most successful heuristic from
similar preceding cases. In this way, we develop a data­driven heuristic decision
strategy and comply with the message of the ’No Free Lunch’ theorem.

3
Bio­based composite

optimization

In this chapter, the development of a bio­based composite optimization model is
described utilizing a Bayesian Optimization approach. In collaboration with NPSP
B.V. a Python application is built that recommends bio­based bulk moulding com­
pound (BMC) recipes. We start off with defining a bio­based composite and the
production process of a bulk moulding compound, the hot press moulding and the
mechanical testing of the bio­based composite plates. Subsequently, the input and
output parameters of the optimization model are described using a design of exper­
iments. After that, the optimization model is illustrated. The generated recipes and
the resulting mechanical properties are described in detail in the results section.
Finally, we discuss several recommendations and conclude this chapter.

3.1. Methodology
A bio­based composite recipe consists of the following materials: a natural fibre, a
natural filling material, the co­filling material calcite (CaCO3), a polyester resin ma­
trix, the cross­linking initiator Trigonox C and zinc stearate as a release agent.

The natural fibre is dried for at least 2 hours in an oven at 85­100 °C before starting
the mixing process. The natural filling materials are ground to a powder with a par­
ticle size between 50 and 500 microns. The natural filling material is supplemented
with calcite. Both calcite and the natural filler are also dried for at least 2 hours
before processing. The matrix material consists of unsaturated polyester resin in
styrene. To initiate the thermosetting polymerization process, the initiator Trigonox
C is added. Zinc stearate is used as a release agent; it uses its non­sticking proper­
ties to avoid the bulk moulding compound to stick to the hot press mould surface.
Figure 3.1 shows the natural fibre, the natural filler and the co­filler material.

35

3

36 3. Bio­based composite optimization

(a) Recell fibre. (b) Peach stone (left) and calcite (right).

Figure 3.1: The natural fibre Recell and two different filler materials. The
components are added to the industrial mixer in batches to ensure proper mixing.

The production process of bio­based composite plates through hot press moulding
is described below. First, the polyester resin, zinc stearate and Trigonox C initiator
are mixed separately in a small container, as shown in figure 3.2. The reason for
this is to make sure that the initiator and release agent are well mixed with the
polyester before adding the natural materials. The resulting mixture is defined as
the premix. After the premix has been homogeneously mixed, it is deposited in a
large industrial mixer, shown in figure 3.3.

Figure 3.2: The premix. Figure 3.3: Industrial mixer.

Subsequently, the natural filling material and the calcite are added to the mixer in
three equal parts. In between, everything is mixed until homogeneous paste forms.
Next, the dried natural fibre is added, which is also split into three batches. The
whole fibre is mixed for shorter times: the first batch for 2.5 minutes, the second
batch for 3.5 minutes and last batch for 4.5 minutes. Extra care is taken to avoid
the structure of the fibre to be affected by the mixing process. The entire mixture
is stored in a vacuum­sealed bag so that the styrene does not evaporate. In total,
around 2.5 kg of bulk moulding compound is manufactured for each recipe. Figure
3.4 shows the resulting bulk moulding compound.

3.2. Design of experiments

3

37

Figure 3.4: Bio­based composite bulk moulding compound (BMC) from Recell fibre
and peach stone/calcite fillers.

The second part of the production process is pressing the bulk moulding compounds
into plates using hot press moulding. Under pressure of 100 bar and with an upper
and lower temperature of 152 °C and 148 °C respectively, the plates are pressed
for 5 minutes each. 500g of the bulk moulding compound is used for each plate,
hence a maximum of 5 plates can be produced for one recipe. The resulting plates
have an area of 35x25 cm2 and are depicted in figure 3.5.

(a) Top view. (b) Side view.

Figure 3.5: Bio­based composite plate. The plates have dimensions of
approximately 350x250x7 mm

Finally, the mechanical properties of the BMC specimen are tested. For this study,
only the flexural strength and modulus were investigated with a three­point flexural
bending test. The ’ISO 178 (2010) Plastics ­ Determination of Flexural Properties
(Method B)’ standard is used [148]. The test is performed on an Instron 5969
50kN Dual Column universal testing system. The plates are cut by a waterjet cutter
to smaller test specimen with a size of 4x13x81 mm. For each composite, five
three­point bending tests are performed.

3.2. Design of experiments
A bio­based composite recipe is defined by the weight ratios of these components
and choice of natural materials. By varying the proportions and types of natural

3

38 3. Bio­based composite optimization

materials, different bio­based composite recipes are created. The above­described
process is repeated with different recipes until a bio­based composite has been
manufactured with the desired properties. As mentioned before, the properties of
biomaterials are unpredictable. This makes the mechanical properties for different
ratios of materials in a bulk moulding compound challenging to foresee.

The current conventional way of researching is as follows: a standard recipe is
used, and the weight ratio of one of the components is adjusted. Subsequently, a
series of recipes are created by adjusting the weight ratio in equilateral steps. Then,
another parameter is adjusted, and the process repeats. In terms of algorithmic
optimization, we can speak of a quasi­random search process. Based on mechanical
properties evaluation of these initial recipes for different components, new recipes
are created. The recipe creation is therefore not blind­eyed, however adapting the
recipes by hand is rather complicated.

As mentioned in the literature review, heuristics use the information acquired from
past iterations to converge towards an optimum. By substituting the quasi­random
search strategy with a heuristic, we strive to improve the solution quality with re­
spect to the number of iterations. According to the ’No Free Lunch’ theorem, choos­
ing an efficient algorithm is not arbitrary. However, even a minimal improvement
in the search process can yield significant time savings as the entire production
process from mixing bulk moulding compound to testing the mechanical properties
can take several days.

Input and output parameters and box­constraints need to be defined to adapt the
bio­based composite recipes to an optimization problem.

Input parameters
It is essential to indicate the dimensionality and the search space boundaries to ex­
press the bio­based composite recipes as an optimization problem. The search
space increases exponentially with each added dimension. Because of the ex­
tremely expensive sampling process, optimizing for a huge search space will not
be beneficial. Therefore, several simplifications are considered in the bio­based
composite recipes’ composition to reduce the variable parameters.

We consider a three­dimensional continuous search space.

• The first parameter is the weight ratio of fibre 𝑥fibre. It is decided that the
composite consists of only one type of natural fibre.

• The second parameter is the weight ratio or natural filler 𝑥filler concerning the
total amount of filling material, which consists of natural filler and the co­filler
calcite. Again, a single natural filler system is considered.

• The third parameter is the weight ratio of ’dry material’ 𝑥dry concerning the
entire composite. The weight ratio of dry material is the natural fibre’s weight
ratio, filling material and co­filler calcite together. The wet material is the
premix and is also fixed with this parameter.

3.2. Design of experiments

3

39

The composition of the premix is constant as we do not want to increase the di­
mensionality of the model any further. Out of the premix’s total weight, 92.4% is
considered to be Polyester, 1.4% Trigonox C and 6.2% zinc stearate. Figure 3.6
illustrates the weight ratios and the three continuous parameters 𝑥fibre, 𝑥filler and
𝑥dry.

total weight of bulk moulding compound

trigonox C zinc stearate polyester

fibre natural filler calcite premix

fibre ratio

natural filler ratio

dry matter ratio

xfibre
xfiller
xdry

1.4 % 6.2 % 92.4 %

5-20 %
0-100 %

40-75 %
Figure 3.6: Illustration of the three continuous parameters of the bio­based

composite model. The composition of the components in the premix is constant.

Designating search­space constraints for the three continuous parameters is a dif­
ficult job and is primarily based on experimentalists’ empirical knowledge. The
purpose of the box­constraints is to exclude any bio­based composite recipe from
the search space that will result in untestable pressed plates.

In the optimization model, the search­space boundaries of each input parameter
can be adjusted per optimization. The recommended values are provided below
and are displayed in figure 3.6.

• The natural fibre mostly reinforces the material, and with too small an amount
of fibre, the composite will not be strong enough. However, if the fibre per­
centage is too high, there is poor interaction with the matrix material, and the
composite becomes too brittle. In addition, fibres are usually more expensive
than filler material, so there is a compromise between price and properties.
As a result, the fibre ratio will vary from 0.05 to 0.2.

• The weight ratio of natural filler to calcite will vary from 0 (no natural filler at
all) to 1 (utterly natural filler). Calcite is a strong and inexpensive filling mate­
rial, but often heavier than natural alternatives. For lightweight applications,
the replacement of calcite will be desirable.

• The amount of dry material is highly dependent on the type of fibre used. If a
dry fibre such as Recell1 is used, the resulting bulk moulding compound may
be too dry to press a homogeneous sheet. With flax fibre, the dry material
could be increased more before the bulk moulding compound becomes too

1Recell is a recyclable cellulosic material obtained from production waste­streams [149].

3

40 3. Bio­based composite optimization

dry. The default boundaries for the dry material parameter are set between
0.4 and 0.75.

All bio­based composite recipes are saved in an Excel file as input for the optimiza­
tion model. The Excel file consists of input parameter columns describing the com­
pounds and output columns consisting of their respective mechanical responses.
The optimization model reads the type of natural fibre and filler as well as the fibre,
filler and dry matter ratio for each row. Table 3.1 shows the required format of the
Excel data file.

name type fibre type filler fibre ratio (𝑥fibre) filler ratio (𝑥filler) dry ratio (𝑥dry)
FlaxOli50 Flax Olive stone 0.0995 0.1542 0.6532
ReedPeach50 Reed Peach stone 0.0732 0.1375 0.5592
...

Table 3.1: Format of input columns with example data.

Output
After manufacturing and mechanical testing, the mechanical responses are recorded
in the same Excel data file. Each mechanical response that has been tested is
assigned to a different column. All the numerical values in one column must have
the same unit of measure.

If for some reason the produced plate for a given recipe is in an unsatisfactory state
to be tested, the column ’testable?’ can be set to ’no’. By doing this, the optimization
model will know that that combination of input parameters is not desired. Table 3.2
shows an example of the Excel file’s output columns. Note that the output columns
do not exhibit a strict format. Any property can be added as optimization output as
long as the parameter is numerical and continuous.

testable?
Density
(kg/m3)

Impact toughness
(kJ/m2)

Tensile strength
(MPa)

Flexural strength
(MPa)

Flexural modulus
(MPa)

yes 1.7187 2.1 9.7 28.8 4770
yes 1.4654 2.3 9.5 32.1 5647
...

Table 3.2: Format of output columns with example data.

Single­objective penalty score
As mentioned earlier, the model operates for single­object optimization. However,
materials are often assessed on multiple mechanical properties. A weighted ob­
jective score is constructed to reduce the multiple objectives to a single­objective
optimization.

This weighted objective score is built up as follows. Consider 𝑦⃗𝑖 = (𝑦0, ..., 𝑦𝑑)𝑖 to be
a vector containing the 𝑑 number of mechanical properties of some bio­based com­
posite plate 𝑖. Only the 𝜆 number of recipes known in the database for that specific

3.2. Design of experiments

3

41

combination of fibre and filler are considered. Each element of 𝑦⃗𝑖 is normalized for
the minimum and maximum values 𝑦min

𝑖 and 𝑦max
𝑖 , described in equation 3.1 and

3.2.

𝑦min
𝑖 =min(𝑦0𝑖 , ..., 𝑦𝜆𝑖) (3.1)

𝑦max
𝑖 =max(𝑦0𝑖 , ..., 𝑦𝜆𝑖) (3.2)

It is subsequently examined for each mechanical property, whether a minimum
value or maximum value is desired. For example, the density of a plate is mostly de­
sired to be minimal. However, heavy­load applications require the flexural strength
of a composite to be maximized. The weighted objective score should be able
to adapt to the application needs. This is accomplished by specifying the mini­
mization or maximization for each mechanical output with the polarization vector
𝑎⃗ = (𝑎0, ..., 𝑎𝑑).
The resulting normalized properties are multiplied by a weight vector 𝜔⃗ = (𝜔0, ..., 𝜔𝑑).
Output properties with a greater weight value will have more influence on the to­
tal score than lower weights. In this way, the user can emphasize certain design
criteria.

All individual scores are added together and divided by the sum of weights to form a
penalty score 𝑠𝑖. The purpose of the optimization model is to minimize the penalty
score. Equation 3.3 shows the calculation of the weighted penalty score 𝑠𝑖 for one
composite plate output.

𝑠𝑖 =
∑𝑑𝑗=0𝜔𝑗 |𝑎𝑗 −

𝑦𝑗𝑖−𝑦min
𝑖

𝑦max
𝑖 −𝑦min

𝑖
|

∑𝑑𝑗=0𝜔𝑗
(3.3)

The number of output parameters 𝑑, the polarization vector 𝑎⃗ and weights 𝜔⃗ can
be adjusted before the optimization process. This allows the optimization progress
to fit the requirements of the application. More information on defining these pa­
rameters in the model can be found in appendix B.1.5.

When no mechanical responses can be recorded due to the acquired composite
plate’s poor physical state, the ’testable?’ column can be set to ’no’. Consequently,
a large value will replace the weighted objective calculation. In this way, the op­
timizer will avoid that particular combination of input parameters for future itera­
tions.

The calculation of the penalty score also takes missing data into account. If no data
on an output property is given for a particular composite, this mechanical property
will not be included in the scoring procedure for that particular plate.

3

42 3. Bio­based composite optimization

3.3. Optimization model
The optimization model is written in Python 3.6 and works as follows. Before start­
ing the optimization model, an Excel data file is required with the input and output
columns described in the previous section. It is also necessary to describe the
weights and polarity of the output columns to calculate the single­objective penalty
scores. After this, the user is asked to select a type of natural filler and fibre. Only
the data from which the natural fibre and filler are equal to the specified terms are
used. The single­objective penalty score is calculated from the relevant data using
the weights and the polarity of the output columns.

Now the Bayesian Optimization process starts. A Gaussian Process surrogate model
is constructed with an RBF kernel, including all input data and penalty scores. An
’Expected Improvement’ acquisition function is then drawn up and optimized. With
this, we find the recommended recipe for the next experiment. After manufacturing
and testing the bio­composite, the input and output parameters are appended to the
data file, and the process can be repeated. A flow­chart of the bio­based composite
model is illustrated in figure 3.7. The optimization model is open­source and can
be found on GitHub.

Batches of multiple recipes
With the production capacity at NPSP, it is more efficient to make several bulk­
moulding compounds on the same day. Therefore, multiple recipes can be re­
quested from the optimization model in succession. The prediction accuracy will
suffer from creating these batches since the acquisition function is not updated
correctly until the next batch of tests is conducted. However, data can be gathered
quicker, which will result in more reliable predictions.

The user can specify how many recipes the model generates. If the number of
recipes is more than one, the remaining recipes will be sampled using the par­
allelization ’constant liar’ strategy [150]. The constant liar strategy will duplicate
the surrogate model and record the first recommended recipe with a fake objec­
tive function value equal to the lowest objective value within its 95% confidence
bounds. The updated duplicate model is examined again, and a second recom­
mended recipe is attained by optimizing the acquisition function. This procedure is
repeated until the required number of recipes is obtained.

The generated recipes can be converted from the three weight­ratio parameters
𝑥fibre, 𝑥filler and 𝑥dry to an Excel file with absolute quantities. The total mass of bulk
moulding compound to be made has to be specified. The Excel gives an overview
of each compound’s weight per recipe and can easily be printed and carried out
by the researcher. After the BMC­plates have been manufactured and tested, the
resulting mechanical properties can be appended to the database and new recipes
can be requested. A complete description of all features and parameters of the
application and a getting­started guide are available in appendix B.1.

https://github.com/mpvanderschelling/BMC-optimizer

3.4. Results & Discussion

3

43

Read database

Choose natural fibre and filler to
investigate

Calculate penalty scores of
relevant database entries

Choose how many recipes you
want to create

Build Gaussian Process surrogate
model

Compute and optimize
acquisition function

Append recommendation
and constant liar to

surrogate model

Manufacture and test bio-based
composite plate(s)

Append results to database

for every additional recipe

optimization model

experimental work

Figure 3.7: Diagram of the bio­based composite optimization model.

3.4. Results & Discussion
Due to the measures concerning the COVID­19 pandemic, the model has been
put in practice to a limited extent. After some experiments where recipes were
composed in the traditional quasi­random method, one iteration with three bulk
moulding compound recipes was performed. Due to time limitations, these results
should be regarded as a proof­of­concept and should inspire researchers to use this
model in the near future. A Recell natural fibre [149] with a Peach stone natural
filler material was chosen. This choice was based on the amount of information
from preceding experiments with this particular combination of natural materials.
The available data on Recell and Peach stone composites is given in table 3.3.

3

44 3. Bio­based composite optimization

name type fibre type filler fibre ratio filler ratio dry ratio
Density
(kg/m3)

Flexural strength
(MPa)

Flexural modulus
(MPa)

RecellCal100 Recell Calcite 0.0925 0.0000 0.7141 2.003 42.45 4770
Sto2.2 Recell Calcite 0.1111 0.0000 0.7272 1.9750 42.00
RecellCalGly Recell Calcite 0.0889 0.0000 0.6866 1.9867 39.76 7516
RecellPea50 Recell Peach stone 0.0925 0.5000 0.5671 1.4676
RecellPea75 Recell Peach stone 0.0925 0.7500 0.5674 1.3183
Sto2.1 Recell Calcite 0.0808 0.0000 0.7272 2.0556 44.30
Sto2.15 Recell Calcite 0.0918 0.0000 0.7245 2.0220 40.40 7080

Table 3.3: Mechanical properties of Recell and Peach stone bio­based composites.

Regarding the objective of the optimization, it was decided to make a composite
that is very stiff, strong and light. In terms of polarization, weights and objectives
vectors, the following values have been chosen. The density is minimized with a
weight of 0.3. We want to maximize the flexural strength, which is why the value
of 𝑎 = 1 is chosen. This quantity also has a weight value of 0.3. The choice was
made to give more importance to the composite’s stiffness and therefore the flexural
modulus and heavier weight of 1.0 has been given. This quantity is minimized to
strive for a stiff composite. The objective values are given in table 3.4.

Density Flexural strength Flexural modulus

weight value 𝜔 0.3 0.3 1.0
polarity value 𝑎 0 1 0

Table 3.4: The output properties, weights vector 𝜔⃗ and polarity vector 𝑎⃗ for the
Recell and Peach stone composites.

As the density is proportional to the compounds’ weight ratio in the material, the
density can also be deducted by the input parameters itself. Therefore, the den­
sity could also be considered a constraint on the input parameters. However, it
is decided that the composite’s density will be considered an objective to the ma­
terial. Although a maximum density of a material is often a strict requirement to
the application, it could also be imposed as an objective to strive for a lightweight
material.

Based on the objective formulation in table 3.4 and the available data from table
3.3, the following penalty scores are calculated in table 3.5.

name testable? Density Flexural strength Flexural modulus Total penalty score

RecellCal100 yes 0.1742194 0.0764042 0.0000000 0.2506236
Sto2.2 yes 0.4453433 0.2533040 0.6986473
RecellCalGly yes 0.1653896 0.1875000 0.6250000 0.9778896
RecellPea50 yes 0.2024915 0.2024915
RecellPea75 yes 0.0000000 0.0000000
Sto2.1 yes 0.5000000 0.0000000 0.5000000
Sto2.15 yes 0.1789531 0.1610683 0.5257647 0.8657861

Table 3.5: Calculation of the penalty scores for the Recell­Peach stone composites.

3.4. Results & Discussion

3

45

Subsequently, three recipes have been generated with the intention that three bulk
moulding compounds can be mixed in one working day. With a three­point bending
test, the flexural strength and modulus are obtained. The complete stress­strain
curves can be found in appendix B.2. The compositions and average mechanical
properties of the generated recipes are shown in table 3.6.

name type fibre type filler fibre ratio filler ratio dry ratio
Density
(kg/m3)

Flexural strength
(MPa)

Flexural modulus
(MPa)

RecPea24 Recell Peach stone 0.2411 0.1258 0.6923 1.3178 40.2 4400
RecPea12 Recell Peach stone 0.1236 0.2198 0.4653 1.4511 44.6 4870
RecPea09 Recell Peach stone 0.0925 1.0000 0.5688 1.5897 32.4 5500

Table 3.6: Mechanical properties of the generated Recell and Peach stone
bio­based composites.

Upon calculating the penalty scores after the three generated recipes have been
added to the database, we can see that the new recipes made adequate composites.
The results can be seen in table 3.7. Notice that the normalization boundaries have
changed and thus the absolute values of the penalty scores.

name testable? Density Flexural strength Flexural modulus Total penalty score

RecellCal100 yes 0.1742287 0.0330430 0.0742137 0.2814855
Sto2.2 yes 0.4453818 0.1065574 0.5519392
RecellCalGly yes 0.1654052 0.0743852 0.6250000 0.8647904
RecellPea50 yes 0.2030535 0.2030535
RecellPea75 yes 0.0007047 0.0007047
Sto2.1 yes 0.5000000 0.0122951 0.5122951
Sto2.15 yes 0.1789591 0.0645492 0.5375481 0.7810564

RecPea24 yes 0.0000000 0.0676230 0.0000000 0.0676230
RecPea12 yes 0.0338848 0.0000000 0.0942715 0.1281563
RecPea09 yes 0.0690956 0.1875000 0.2206354 0.4772311

Table 3.7: Calculation of the penalty scores for the Recell­Peach stone composites
after appending the three generated composite plate results.

The penalty scoring system does not penalize the absence of data. This can be seen
because the best scoring recipe is still the ’RecellPea75’, despite only the density
being known for this composite.

3

46 3. Bio­based composite optimization

3.5. Recommendations
The bio­based composite optimization model results described above are just the
beginning of the use of algorithmic optimization for novel materials research. Sev­
eral recommendations are mentioned in this chapter to give the project the right
follow­up direction.

Collecting more data
First, more experimental data should be made available to the model. We only
tested three new recipes, which is insufficient. To make a good recommendation,
relevant data must be available for the specific natural fibre and filler combination
to create a surrogate model. If this data is absent, the model will not perform better
than a random search strategy. Besides, faulty manufactured BMC­plates that are
not up for testing should also be added to the database. This helps the model to
map out areas in which the model should refrain from searching. All this information
will have to be stored centrally in the Excel data file. It is therefore essential that
this data file is regularly updated with all experiments performed.

Controlling the optimization search­space
Manufacturing a well­built composite of natural materials is not trivial. As discussed
earlier in the literature review, the interaction between the natural fibre, filler and
matrix material is the bottleneck in making reinforced natural composites. By im­
proving this interaction, a better load transfer is created, which improves the me­
chanical properties. Research has shown that the chemical modification of these
natural materials could reduce their hydrophilic nature.

When the research results of a chemically modified fibre material are added to the
optimization model, they are seen as a new type of natural fibre. Despite having
the underlying properties of the unmodified natural fibre, no relationship with the
modified fibre is established. In other words, the type of fibre or natural filler in the
model is fixed as a discrete parameter, and there does not exist a relative continuous
scale between different inputs. This choice was made to keep the model simple
and decrease the search­space size but could leave out the influence of chemical
modification on natural fibres and filler. Similarly, multi­fibre systems or different
co­filler combinations induce continuous parameter traits to the discrete variables
fibre and filler selection and are not supported by the optimization model.

In addition to chemical modification, adding additional compounds to the bio­based
composite recipe is also common. Incorporating these so­called additives will help
to increase the compatibility of the composite. Research is conducted in adding
glycerol as a plasticizer to the resin, which increases the interfacial adhesion be­
tween the natural fibre and the matrix [151]. Besides that, the fibre ratio upper
boundary could be raised if previously unsuitable recipes are becoming compatible
with the introduction of glycerol. On the other hand, introducing additives to the
input parameters will drastically increase the optimization search­space. Even if
the glycerol input is added as a discrete parameter (either no glycerol or a constant

3.5. Recommendations

3

47

weight ratio of glycerol added in the recipe), the search­space volume is still dou­
bled. The recurring consideration for the optimization model is, on the other hand,
refining the bio­composite recipe by incorporating appropriate additives with the
drawback of opening up the search­space too much to handle proper exploration
of the search space. Therefore, the search­space should only be extended by in­
troducing additive parameters if the research facility and time­management allow
an increase in research production.

The above­described recommendations will increase the search space of the opti­
mization model. Comprehensive characterization of the natural materials could aid
to reduce the search space. Although the optimization model does not know the
physical and mechanical traits of bio­based materials, the similarity between natural
materials can be induced to combine data. For example, suppose the mechanical
properties, density and particle size of two different natural fillers are alike. In that
case, their recipes and penalty scores could be merged to give a rough estimation
of a promising region within the search­space of either type of filler material. Ex­
tra care should be taken in combining the data­sets of different natural materials.
However, when data about a specific new filler material is missing, the data from
similar filler materials could guide the first iterations.

Implementing measurement uncertainty
Natural materials are more unpredictable than conventional composites. Even
within the same batch of composites, it is possible that the bulk moulding com­
pound is not entirely homogeneously mixed. The resulting bio­based composite
plates could therefore exhibit distinctive mechanical responses. In practice, this
can also be observed within the three­point flexural bending test data in appendix
B.2. Some variation is present in the flexural strength and modulus. The relative
standard deviation of the flexural strength is between 3.5% and 7.5% and between
2.0% and 2.5% for the flexural modulus. The model takes the average response of
the five individual measurements and then the Gaussian process is assumed to be
noiseless. The variance of the measurements is hence not included in the construc­
tion of the single­objective penalty scores. To consider the uncertainty of natural
materials into the optimization model, we can also include this as a hyper­parameter
and learn the noise level. When constructing a Gaussian Process surrogate model,
this standard deviation can be used to fit the regression response surface. Im­
plementing this so­called heteroscedastic Gaussian Process regression will realize
confidence intervals on penalty scores and take uncertainty in mechanical properties
into account.

The variability of mechanical properties for natural composites must be handled
with care. That is why the recipes must be reproducible. The production of specific
adequate recipes will have to be repeated to verify the mechanical properties and
the associated uncertainty measurement.

4
Data­driven optimization

In the previous chapter, we have generated new bio­based composite recipes using
Bayesian Optimization and contributed to the optimization of the mechanical prop­
erties of these novel materials. The idea of implementing data­scarce optimization
in this field of research can be of great value.

The choice to use Bayesian Optimization for this specific case is based on the results
and recommendations discussed in the literature review. Bayesian Optimization is
competent for noisy problems with low dimensionality and where each function
evaluations is expensive.

However, according to the ’No Free Lunch’ theorem, we should base the algorithm
choice on the problem’s characteristics to be optimized. As seen in the literature
review, the performance of optimization algorithms strongly depends on the type of
problem­specific features. The specific response­surface features might be entirely
distinctive between different natural materials. For example, Bayesian Optimization
could work very well on optimizing the flax fibre and almond shell natural composites
search­space. However, perhaps the response surface of Recell fibre and peach
stone is better suited to solve with gradient­based optimization. The ’No Free Lunch’
Theorem also indicates that different heuristics are only better than a random search
for a select group of problems. Therefore, Bayesian Optimization would solve many
problems well if they have low dimensionality, but this does not apply to all low­
dimensional problems.

It is crucial to consider which algorithm is suitable for which problem to increase its
success rate. The difficulty is that the characteristics of response surfaces are not
yet associated with the competence of algorithms. Besides, these problem­specific
features are not known before initiating the optimization, as black­box optimization
is considered. However, we can learn from the performance and behaviour of pre­
ceding optimization instances. This information could enable the optimization pro­

49

4

50 4. Data­driven optimization

cess to adapt to a more promising algorithm during the current optimization.

We develop a heuristic decision strategy based on data from previous optimization
processes for this part of the research. The optimization process is split into an
offline and online process. In the offline process, optimization results are acquired
from a diverse generated problem set. We use the acquired data to identify similar
problems in a database of previous optimization results during the online process.
The currently used heuristic is then adjusted to the best performing heuristic from
similar problems.

This chapter is built up as follows. First, we construct a set of optimization problems
in section 4.1 that are being solved by a selection of meta­heuristics explained in
section 4.2. In section 4.3 we compute a performance metric on the optimization
results and determine a heuristic strategy by combining several algorithms in series
in section 4.4. Next, we develop a heuristic metric that characterizes the problem­
specific behaviour of a heuristic on a particular optimization problem in section
4.5.1. This information is stored in a database, which will be discussed in section
4.5.2 During the online optimization, we build this heuristic metric and compare it to
the previously acquired signatures from the offline process. With classification, we
will extract the best performing heuristic of the optimization problem by comparing
the performance on similar problems in section 4.5.3. For the upcoming iterations,
we will switch to the best performing heuristics and repeat the process. After
optimization with the data­driven heuristic strategy, we will evaluate its performance
in section 4.6 and give recommendations in section 4.7.

4.1. Optimization problems
Only box­constrained single­objective continuous problems will be considered for
this research. As many benchmarking and real­world problems do not adhere to
these criteria, it is decisive to limit the scope of this study. Because the current
research trend lies more in the development of general optimizers, algorithms are
not only used in this field of optimization problems. For instance, the gradient­
based optimizers have been primarily used for training neural networks and ma­
chine learning applications [152]. Genetic algorithms are frequently used to solve
unconstrained discrete spaces [153, 154]. However, both algorithm classes are
also considered viable choices on continuous single­objective problems [155]. This
means that particular conclusions about the algorithms’ performance on this dis­
tinct set of problems are only related to continuous box­constrained single­objective
optimization.

Problem­specific features
The ’No Free Lunch’ theorem declares that algorithms exploit specific features of a
problem in the search for a global optimum. If the exploitable feature of a problem
associated with a specific algorithm is obsolete, this heuristic performance will be
reduced. To study one heuristic performance, we need a collection of optimization
problems that include this exploitable feature and problems where the feature is

4.1. Optimization problems

4

51

not present. In the same way of comparing several heuristics, the collection of
optimization problems requires a selection of benchmark functions that vary signif­
icantly in their problem­specific features. Only then it is meaningful to investigate
the effectiveness of an algorithm objectively. The most used problem­specific char­
acteristics are the presence or absence of local optima, the size of the global opti­
mum area of attraction, the separability of the problem and the stochastic nature
of the output.

Number of optima
The number of local optima in an optimization problem is of great importance for an
algorithm’s effectiveness. If an optimization problem has only one global optimum,
it is called a unimodal function. Gradient­based optimization methods score well
on problems with a low number of optima. The direction with the steepest descent
points in the direction of a local optimum. The global optimum is at once found
when only one minimum is present in the search space. Figure 4.1b shows a suc­
cessful optimization of the unimodal Ackley No. 2 function with the gradient­based
optimizer Adam.

On the other hand, functions with multiple local optima can trap the heuristic into
converging to a local optimum. Figure 4.1d shows the premature convergence to
a local optimum when a gradient­based optimizer is subjected to the multi­modal
Schwefel function. The distribution of the local optima is also relevant. Algorithms
can use the periodicity of local optima to neglect them and focus on the underlying
global optimum trend. As the dimensionality of the search space increases, its size
grows exponentially. The number of optima with respect to the dimensionality is
an important feature of a benchmark function.

Area of attraction
The area of attraction is the area surrounding an optimum where the gradient
is affected by the local minimum’s depth. If a solution is located in the area of
attraction, the minimum will be found by trailing the gradient in this confined space.
A larger area of attraction increases the chances of solutions converging to this
particular optimum. Heuristics that rely on a large area of attraction converge
quickly to the minimum. Figure 4.2b shows the CMAES optimizer tackling a noisy
bowl­function with a large area of attraction. The global optimum is easily found
due to the information gained by the large area of attraction.

Optima with smaller areas of attraction are challenging to locate, as the surrounding
search space gradient hardly gives away the optimum location. Heuristics that do
not converge prematurely and explore the search space thoroughly have a higher
chance to stumble across these small areas of attraction. Figure 4.2d illustrates
how premature convergence of the same CMAES algorithm results in not finding
the global optimum.

4

52 4. Data­driven optimization

X
1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X2

0.0
0.1

0.2
0.3

0.4
0.5

0.6 0.7 0.8 0.9 1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Response surface of the Ackley No. 2
function.

X1

X 2

Starting parameters
Adam optimum
Global optimum

(b) Objective function results of Adam
optimizer.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Response surface of the Schwefel
function.

X1
X 2

Starting parameters
Adam optimum
Global optimum

(d) Objective function results of Adam
optimizer.

0 1
f(X)

Figure 4.1: Optimization results of the Adam optimizer on the unimodal Ackley No.
2 function and the multimodal Schwefel problem. The red encircled markers
indicate the 5 starting input points prior to the optimization process, while the
black encircled markers with shaded green inner filling show the successive

iterations of the optimization (from light green to dark green).

4.1. Optimization problems

4

53

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Response surface of a Bowl­function with
a large area of attraction.

X1

X 2

Starting parameters
CMAES optimum
Global optimum

(b) Objective function results of CMAES
optimizer.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Response surface of a Bowl­function with
a small area of attraction.

X1

X 2
Starting parameters
CMAES optimum
Global optimum

(d) Objective function results of CMAES
optimizer.

0 1
f(X)

Figure 4.2: Optimization results of the CMAES optimizer on a two­dimensional
noisy Bowl problem with both a large and small area of attraction. The red
encircled markers indicate the 5 starting input points prior to the optimization
process, while the black encircled markers with shaded orange inner filling show
the successive iterations of the optimization (from light orange to dark orange).

4

54 4. Data­driven optimization

Separability
Directional bias in optimization problems means that the optima are aligned in
straight lines. If these lines correspond to the axis directions, a problem becomes
separable. For separable functions, the input parameters can be optimized inde­
pendently from each other. Meta­heuristics that cover mostly cross­over operations
such as genetic algorithms are capable of exploiting separability. We can reduce
the separability by rotating the solution space to stop the optima aligning with the
axis direction. Figure 4.3 demonstrates this behaviour on the separable Rastrigin
function. This function has four­fold symmetry. A simple genetic algorithm (SGA)1

shows a decrease in performance in figure 4.3a when the solution space is rotated
around its centre. Rotating the search space does not lead to a significant perfor­
mance deviation for the Particle Swarm Optimizer in figure 4.3b, as this optimizer
combines cross­over operations with other low­level heuristic techniques.

0 200 400 600 800 1000
Iteration

100

101

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

SGA, 0◦ rotation

SGA, 18◦ rotation

SGA, 36◦ rotation

SGA, 54◦ rotation

SGA, 72◦ rotation

SGA, 90◦ rotation

(a) Performance of SGA on the rotated
Rastrigin function.

0 200 400 600 800 1000
Iteration

100

101

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

PSO, 0◦ rotation

PSO, 18◦ rotation

PSO, 36◦ rotation

PSO, 54◦ rotation

PSO, 72◦ rotation

PSO, 90◦ rotation

(b) Performance of PSO on the rotated
Rastrigin function.

Figure 4.3: Performance of SGA and PSO on the separable Rastrigin function. The
performance on 0∘ and 90∘ overlap, as both restore the axes alignment.

Stochasticity
Measurements are often subjected to physical disturbances or missing data. Real­
world optimization problems are related to measurement uncertainties. This stochas­
tic behaviour can be mimicked by adding Gaussian noise to the output signal.
Stochastic optimization problems can cause problems to gradient­based optimiza­
tion algorithms, as the local gradient is subjected to Gaussian noise. Other heuris­
tics are capable of filtering the random fluctuations and focussing on the underlying
objective function.
1The SGA algorithm is an implementation of the ’simple genetic algorithm’ pygmo.sga with default
hyper­parameters and a population size of 30.

https://esa.github.io/pygmo2/algorithms.html#pygmo.sga

4.1. Optimization problems

4

55

This is demonstrated on the convex Ackley No. 2 benchmark function in figure 4.4.
The gradient­based optimizer Adam shows superior performance over PSO in figure
4.4a on the noiseless function. However, when Gaussian noise is added, the per­
formance of the gradient­based optimizer is severely lowered in figure 4.4b.

0 100 200 300 400 500 600
Iteration

−200

−190

−180

−170

−160

−150

−140

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

PSO

Adam

(a) Smooth Ackley No. 2.

0 100 200 300 400 500 600
Iteration

−200

−190

−180

−170

−160

−150

−140

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

PSO

Adam

(b) Noisy Ackley No. 2.

Figure 4.4: Performance of Adam and PSO on a smooth and noisy Ackley No. 2
function.

Set of optimization problems
We have to supply our problem set with analytical equations from a variety of the
above mentioned problem­specific characteristics. The diversity of this set indicates
how many different types of problems can be constructed using the analytical equa­
tion provided. The data­driven decision strategy will be trained by the behaviour of
the algorithms on the generated problem set. If a new problem arises with similar
problem­specifics as an entry in the training set, the data­driven decision strategy
knows which heuristic exploits this feature. However, if a new problem of a com­
pletely different form arises, the data­driven heuristic decision strategy may make
an unfounded decision, as data about this particular exploit is missing.

From the ’No Free Lunch’ theorem, a random search would perform on average
equally well as any other heuristic if all possible problems are considered. How­
ever, constructing such a generated problem set that oversees all optimization
problems is impossible and can not be verified. However, we must strive to de­
velop the most diverse problem set possible. Three sources of analytical equations
have been implemented in the generated problem set. The first one refers to well­
known optimization test functions that are commonly­used in benchmarking heuris­
tics. Secondly, several parametrized family functions are adapted from the study
of Rönkkönen et al. [156]. Lastly, a set of benchmark function from the CEC 2013

4

56 4. Data­driven optimization

competition is implemented [157].

Well­known optimization benchmark functions
In the past decade, many optimization problems have been designed to challenge
the quality of a heuristic. These optimization problems are designed for benchmark­
ing optimization algorithms and are grouped according to their problem­specific fea­
tures as seen in table 4.1. Several optimization benchmark frameworks and studies
use a set from each of these categories of problems in different dimensions to out­
line an optimization problem’s performance. The global optimum input parameters
are analytically known as well as the box constraints.

name dimensionality

Many local minima Ackley any
Levy any
Rastrigin any
Schwefel any

Valley­shaped Rosenbrock any
Bohachevsky 2
Matyas 2
Ackley N. 2 2
Zakharov any
McCormick 2

Steep ridges/drops Easom 2
Schaffer F6 any

Other Beale 2
Branin­Hoo 2
Styblinski­Tang any

Table 4.1: Name, category and dimensionality of several well­known optimization
test functions [158, 159].

These analytic optimization problems often isolate one specific characteristic of an
optimization problem. For example, the Easom function has a deep global optimum,
surrounded by a completely flat solution space. This problem is explicitly designed
to test algorithms on finding a minimum while the area of attraction is low. Subse­
quently, the response surface of the Rastrigin function is highly multimodal, but the
locations of the minima are regularly distributed. Heuristics that use the separability
of an optimization problem will effortlessly find the global optimum.

A variety of these well­known functions is implemented in the problem set. Their
analytical forms are found in table C.1. The two­dimensional response surface of
the Levy and Styblinski­Tang test functions can be seen in figure 4.5.

4.1. Optimization problems

4

57

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Levy function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Styblinski­Tang function.

Figure 4.5: 2­dimensional response surfaces of the Levy and Styblinski­Tang
well­known optimization test functions. The input parameters and response

surface have been normalized.

Parametrized multimodal test functions
To enlarge the set of optimization problems, we introduce a set of parametrized
test functions from the paper of Rönkkönen et al. [156]. Unlike the well­known
optimization benchmark functions, the frequency and positions of local minima can
be altered accordingly, as well as its area of attraction.

The study of Rönkkönen introduced a different family of functions for different
problem­specific features. The cosine family function generates several local optima
periodically by composing two cosine terms. The quadratic family combines several
quadratic equations to create an irregular landscape of different slopes. Similarly,
the plate family joins different linear equations. These landscapes test the ability
of heuristics to find the global minimum with changing gradients. The hump family
generates irregular landscapes with steep minima. The shape and area of attraction
of these pitfalls as well as the positions are parametrized. Table C.2 in the appendix
denotes the parametrized equations of the Rönkkönen tunable test functions.

The tunable test function framework offers more variability on the response surface
landscape than the well­known optimization problems. Randomizing the parame­
ters will repeatedly yield new optimization problems. The two­dimensional response
surfaces for one realization of the cosine and steep family functions are visualized
in figure 4.6.

4

58 4. Data­driven optimization

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Cosine family function.

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Steep family function.

Figure 4.6: 2­dimensional response surfaces of the Rönkkönen cosine family
function and the steep family function. The input parameters and response

surface are normalized.

CEC 2013 competition benchmark functions
For the past years, the Congress on Evolutionary Computation (CEC) has com­
posed a new set of optimization problems each year and hosts a competition to
find the global optimum in the least amount of iterations [157]. These problems
are hard to exploit and are considered challenging to modern heuristics. The CEC
2013 competition benchmark suites are designed to provide a suitable evaluation
platform for testing and compare large­scale global optimization algorithms. The
optimization problems are altered versions of well­known optimization problems.
To resemble more real­world problems, non­linear transformations are applied to
the functions to introduce some irregularity and break the symmetry of the fitness
landscape.

All 28 optimization CEC 2013 competition problems are implemented in the problem
set. More information on their specifics can be found in table C.4. Figure 4.7 shows
the two­dimensional response surface of two of the competition functions

4.1. Optimization problems

4

59

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Lunacek Bi_Rastrigin function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Composition function 8.

Figure 4.7: 2­dimensional response surfaces of the Lunacek Bi_Rastrigin and
composition function 8 from the CEC 2013 optimization competition problemset.

The input parameters and response surface are normalized.

Post­analytical operations
Besides adding analytical equations to our generated problem set, we can also
bring diversity to the problems in another way. By manipulating the mathemati­
cal equations, subtle changes can be induced to the respective response surfaces.
The purpose of creating different instances of the same analytical benchmark func­
tions is to break regularity and to isolate the true problem­specific characteristics.
The three post­analytical operations performed on the analytical equations are off­
setting the entire response surface with a constant vector, rotating the function by
a certain angle and adding Gaussian noise.

Off­set
The global optimum of many benchmarking problems is often found in the centre
of the box­constrained search space or at the origin. Heuristics based on averaging
tend to have a bias towards the centre of the search space. We want to prevent
algorithms from finding the optimum solely as a result of the centred position.
Therefore, we add a constant off­set vector 𝑜⃗ to the input parameters 𝑥⃗. This vector
has the same dimensionality as the input­vector and all of its elements are randomly
selected within half of the search­space. This displaces the input parameters and
thus, the global optimum. The box constraints remain constant and are not off­
set.

𝑥⃗off−set = 𝑥⃗ + 𝑜⃗ (4.1)

4

60 4. Data­driven optimization

Rotation
Rotating the search­space will alter the separability of the problem. Each test­
function is rotated around the origin by a random angle 𝜃 between 0 and 360
degrees. For two­dimensional and three­dimensional problems, a rotation matrix
𝑅(𝜃) is used to perform a rotation in Euclidean space, as seen in equation 4.2 and
4.3. For problems in higher dimensions, a random orthogonal matrix is created, and
a change of basis operation is performed on the input vector. Doing this operation
will not only rotate the search space but will also stretch or contract it along the
new axis.

𝑥⃗rotation = [
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)] ⋅ 𝑥⃗ (4.2)

𝑥⃗rotation = [
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0
0 0 1

] ⋅ 𝑥⃗ (4.3)

Noise
Gaussian noise is added after calculating the objective function value to investigate
the difference between stochastic and deterministic problems. The mean value 𝜇
of the noise is set to 0. The magnitude of the Gaussian noise is determined by
the value of the standard deviation 𝜎. This is set to 0 for a noiseless determin­
istic problem. No noise is added, and the problem remains deterministic. For a
stochastic version of the problem, the standard deviation 𝜎 is a percentage 𝑠 of the
objective value, to avoid the situation where noise overshadows the fundamental
equation or where noise would be insignificant. Three different levels of noise are
implemented:

• low: random uniform value between 0.5% and 1%

• medium: random uniform value between 5% and 10%

• high: random uniform value between 10% and 20%

The absolute value of 𝜎 is determined by multiplying the noiseless objective value
𝑓(𝑥⃗) with the noise percentage level 𝑠 in equation 4.4:

𝑓(𝑥⃗)noise = 𝑓(𝑥⃗) +𝒩(𝜇, (𝑓(𝑥⃗) ⋅ 𝑠)) (4.4)

To conclude, the analytical objective function is altered according to equation 4.5:

𝑓(𝑥⃗) = 𝑓(𝑅(𝜃) ⋅ 𝑥⃗ + 𝑜⃗) +𝒩(0, (𝑓(𝑥⃗) ⋅ 𝑠)) (4.5)

A quasi­random process determines the post­analytical operational parameters 𝑜⃗,
𝜃 and 𝑠. Therefore, multiple calls to the same analytical equation with different

4.1. Optimization problems

4

61

random seeds lead to different response surfaces. New analytical equations can be
added to the program, as long as they are single­objective and box­constrained.

A set of optimization problems can be constructed by repeatedly selecting an ana­
lytical function and providing a random seed for its post­analytical operational pa­
rameters. Solving this complete set of generated problems with a set of algorithms
will contribute to benchmarking the heuristics.

Twomodified objective functions will act as examples for the upcoming sections to il­
lustrate the benchmarking process. These are a two­dimensional smooth Styblinski­
Tang function and a two­dimensional noisy Ackley function with the post­analytical
hyper­parameters mentioned in table 4.3 and 4.2 respectively. The response­
surfaces of these functions are displayed in figures 4.9 and 4.8.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.8: Response surface of the
noisy Ackley function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.9: Response surface of the
modified Styblinski­Tang function.

parameter symbol value

function 𝑓 Ackley
dimensionality 𝑑 2
off­set 𝑜⃗ [0.2401, 0.1524]
rotation 𝜃 0∘
noise level 𝑠 5.61%

Table 4.2: Post­analytical
hyper­parameters for the noisy Ackley

optimization problem.

parameter symbol value

function 𝑓 Styblinski­Tang
dimensionality 𝑑 2
off­set 𝑜⃗ [0.2348, 0.2241]
rotation 𝜃 0∘
noise level 𝑠 0.00%

Table 4.3: Post­analytical
hyper­parameters for the smooth

Styblinski­Tang optimization problem.

4

62 4. Data­driven optimization

4.2. Algorithms
Now that we have generated a set of optimization problems, it is time to solve these
problems with algorithms.

Before optimization, several initial input points are proposed at the start. The num­
ber of initial solutions is denoted as 𝑖 and dependent on the dimensionality (𝑑) of
the problem via equation 4.6. The reason for using this expression is because it is
desirable not to waste too many iterations on initial solutions and the number of
parameter guesses for the pygmo implementation of CMAES must be greater than
5.

𝑖 = 2𝑑 + 1 (4.6)

The initial guesses 𝑥⃗0...𝑖 and their associated objective values are assigned when
the problem is generated. The initial input parameters are sampled via Latin hy­
percube sampling. Latin hypercube sampling is a statistical method to generate
random samples in a multidimensional space. Each sample from a Latin­hypercube
sampled distribution does not share elements of its axis­aligned hyperplane. This
method ensures that the set of random initial solutions represents the real variabil­
ity [160]. Figure 4.10 shows the difference between Latin Hypercube sampling and
uniform random sampling. The points sampled by the Latin Hypercube principle
are distributed more equally across the search­space.

0.0 0.2 0.4 0.6 0.8 1.0
X1

0.0

0.2

0.4

0.6

0.8

1.0

X
2

Latin Hypercube sampling

0.0 0.2 0.4 0.6 0.8 1.0
X1

0.0

0.2

0.4

0.6

0.8

1.0

X
2

Uniform random sampling

Figure 4.10: Illustration pointing out the space­filling sampling of Latin Hypercube
sampling. 50 points are distributed according to Latin Hypercube (left) and

uniform random sampling distribution (right).

The optimization will continue until a stopping criterion is reached. Three different
stopping criteria are commonly used in benchmarking papers [161]:

4.2. Algorithms

4

63

• The optimization is stopped based on the convergence of the algorithm. The
optimization can be halted if the new solution does not yield a better solution
within some small threshold value 𝜖.

• A fixed computational running time can be allocated to the algorithm. Extra
care should be taken on running the different algorithms on similar program­
ming languages and computer hardware.

• The number of function evaluations could be taken as a standard unit of time.

It was decided for this study that the stopping criterion of optimization is based on a
fixed number of iterations 𝑡max, as this is a crucial criterion for data­scarce optimiza­
tion. The convergence criterion introduces the convergence threshold parameter
𝜖, potentially stopping a slow exploitation optimization process prematurely. Al­
though the raw computational time is important to consider, the results will become
platform­dependent.

For single­solution algorithms, the best initial guess is taken as a starting point, and
an update step will produce one new solution. For the population­based algorithms,
each update step will modify all the initial guesses and requires several iterations.
Hence, the number of update steps will be greater for single­solution algorithms
than their population­based counterparts, as each update step will result in only
one new solution.

Hyper­parameter optimization
Hyper­parameters can drastically alter the algorithm performance behaviour, as
demonstrated in appendix A.2. Results from several hyper­parameter tuning frame­
works show that using optimal hyper­parameters in contrast to hand­picked hyper­
parameters dramatically improves the performance on black­box benchmark prob­
lems [137]. Figure 4.11 shows the Adam optimiser’s performance on the two­
dimensional smooth Branin and Rosenbrock function. By changing the learning­rate
𝛼, the performance is drastically altered. The Branin function’s optimal performance
is achieved with a learning­rate of 𝛼 = 1.29 ⋅ 10−2, whereas the best results for the
Rosenbrock function are obtained with a learning­rate of 𝛼 = 4.64 ⋅ 10−3.
Examining the influence of hyper­parameters corresponds to executing optimiza­
tion of the same algorithm with a different instantiation. As of the ’No Free Lunch’
theorem, an optimal hyper­parameter setting is only beneficial for the problem for
which it has been optimized. The performance gain on investing function evalu­
ations and computational resources on hyper­parameter tuning is limited by that
particular heuristic capabilities. In our view, optimizing for the algorithm instead of
a fixed algorithm’s hyper­parameters provides better performance because it brings
more diversity to explore very different problems.

Figure 4.12 demonstrates this concept for the noisy Ackley function. Three of the
selected meta­heuristics with various hyper­parameters are subjected to this op­
timization problem. The results show that the choice of meta­heuristic influences
the solution quality much more than hyper­parameter optimization.

4

64 4. Data­driven optimization

0 200 400 600 800 1000
Iteration

100

101

Av
er

ag
eb

es
to

bj
ec

tiv
ev

alu
e

α =1.00e-01
α =5.99e-02
α =3.59e-02
α =2.15e-02
α =1.29e-02
α =7.74e-03
α =4.64e-03
α =2.78e-03
α =1.67e-03
α =1.00e-03

(a) Branin function

0 200 400 600 800 1000
Iteration

101

102

103

104

105

Av
er

ag
eb

es
to

bj
ec

tiv
ev

alu
e

α =1.00e-01
α =5.99e-02
α =3.59e-02
α =2.15e-02
α =1.29e-02
α =7.74e-03
α =4.64e-03
α =2.78e-03
α =1.67e-03
α =1.00e-03

(b) Rosenbrock function.

Figure 4.11: Performance of the Adam optimizer on the two­dimensional smooth
Branin and Rosenbrock problem with different values for the learning­rate 𝛼.

0 200 400 600 800 1000
Iteration

0

5

10

15

20

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

Adam

CMAES

PSO

RandomSearch

Figure 4.12: Optimization results for the noisy Ackley function for different
algorithms with various hyper­parameters. The learning­rate 𝛼 for Adam is

logarithmically increased from 10−2 to 10−3. The hyper­parameters 𝜙1 and 𝜙2 are
altered in the same way as in figure A.3a. The population­size of CMAES is a

step­wise increase from 6 to 21.

4.2. Algorithms

4

65

Although the hyper­parameters of algorithms drastically alter the heuristic perfor­
mance behaviour, the default parameters for all the chosen heuristics are selected
in this study. The reason for not optimizing the selected heuristics for their hyper­
parameters is the optimization problem’s data­scarce nature. If we are optimizing
for the hyper­parameters, we are requesting function evaluations from the optimiza­
tion problem itself. These function evaluations are added to the overall iterative cost
of the algorithm. As we want to restrict the number of function evaluations, pre­
mature hyper­parameter optimization is not an option, and the hyper­parameters
stay static for all generated problems. In addition, we want to assess the potential
of using different algorithms without mixing another means of improvement and
keep the dimensionality of the algorithm optimization problem manageable.

Combining both hyper­parameter tuning and algorithm tuning is being researched in
the field of meta­learning [141, 142]. The ’learning to learn’ idea is mostly directed
in learning gradient­based optimizers for recurrent neural networks [143, 145, 146].
The reason is related to the fundamental obstacle of parametrizing the space of
selected algorithms. If the group of usable algorithms is small, it is most likely
that the set does not enclose the best performing algorithm. However, increasing
the number of representing algorithms will result in an extensive search time that
would scale exponentially. In this study, we tried to take a best­of­both­worlds by
taking a small selection of heuristics from very distinct categories.

There has been an enormous growth in the number of meta­heuristics over the
past few decades. A selection of meta­heuristics is briefly explained in the literature
review, namely the population­based Covariance Matrix Adaptation Evolution Strat­
egy (CMAES) and Particle Swarm Optimization (PSO), the gradient­based Adaptive
Moment Estimate (Adam) and the novel surrogate model­based technique called
Bayesian Optimization (BayesianOpt). The details of the used hyper­parameters
and implemented variants can be found in appendix C.2. Table 4.4 summarizes the
source­code library, the used variant, and the implemented meta­heuristics popu­
lation size.

name library variant population size

Covariance Matrix
Adaptation Strategy pygmo.cmaes

Classic interpretation in
Hansen’s review paper [123] 4 + 3 ln(𝑑)

Generation Particle
Swarm Optimization pygmo.pso_gen Generational, canonical variant 30

Adaptive Moment Estimate self­coded
Standard interpretation
from original paper [116] 1 + 2𝑑2

Bayesian Optimization GPyOpt RBF kernel, LCB acquisition function 1
Random Search self­coded Uniform random sampling 1

Table 4.4: Summary of the implemented variants of the selected algorithms, as
documented in appendix C.2. For some implementations, the population size is

dependent on the dimensionality 𝑑 of the optimization problem.

https://esa.github.io/pygmo2/algorithms.html#pygmo.cmaes
https://esa.github.io/pygmo2/algorithms.html#pygmo.pso_gen
https://gpyopt.readthedocs.io/en/latest/index.html

4

66 4. Data­driven optimization

The initial solutions have a significant impact on the outcome and performance of
a heuristic. As mentioned before, the initial guesses 𝑥⃗0...𝑖 are equal between all
algorithms. To truly understand an algorithm’s behaviour on a specific problem,
the heuristic performance should be studied over many different initial conditions.
Therefore, the optimization process is repeatedly solved for different realizations to
counteract the random seed bias.

The optimization problems are optimized for 10 different realization with a set
amount of iterations 𝑡max = 500 for each of the selected meta­heuristics. The en­
tire history of evaluations 𝑥⃗ and their respective objective values 𝑓(𝑥⃗) are recorded,
as well as the total computation time for each meta­heuristic.

4.3. Performance metrics
After the above­described algorithms have optimized a problem, the performance
of the heuristics must be measured.

Constructing meaningful performance metrics is a crucial task for benchmarking var­
ious heuristics. Performance metrics show how optimizers behave when subjected
to various problems and allow a meaningful comparison between similar optimiz­
ers. Carefully constructed performance metrics can have a positive effect on the
credibility of said results. Nevertheless, biased metrics can mislead the reader and
report unfounded conclusions [108].

Many different ways are used to show the performance of algorithms. Measuring
the quality of the algorithmic output can be divided into two categories. If there
is a known solution available, a fixed­target measure can be executed. With this
method, the time required to find a particular target­value is evaluated. When the
heuristic successfully reaches the desired target, the cost to achieve this accuracy
can be used to measure the algorithm’s quality on that test problem. However, if the
algorithm does not reach the desired goal, it is considered unsuccessful. The other
category involves optimization problems where the global optimum solution is not
known beforehand. This is mostly applicable to real­world or randomly parametrized
problems. The fixed­target measure can only be applied if the best­found solution
from one of the benchmarking algorithms is used as fixed­target [161]. Figure 4.13
shows these performance metrics in a study where different instances of PSO and
CMAES are compared [139].

Although these performance benchmarks are widely used, there are two fundamen­
tal shortcomings. First of all, the fixed­target metric only describes the results at
the end of the optimization process and does not show the solution quality progres­
sion during the search process. Additionally, little account is taken of the statistical
nature of initial conditions on the algorithms.

2Extra function evaluations are required per update step as the gradient is numerically estimated.

4.3. Performance metrics

4

67

Figure 4.13: Illustration of the fraction of target pairs that are successfully
reached against the number of function evaluations divided by the dimensionality.
The triangle marker represents a PSO variant where only the local best vectors 𝑝⃗
of nearby particles are used. The diamond marker represents the best results of
various solvers in the COCO 2009 benchmark competition. The circle and square
marker represent the classical CMAES and PSO approaches respectively [139].

In this study, we propose an alternative performance metric that overcomes these
shortcomings. During the optimization process, the following question could be
asked about the optimization progression of an algorithm: how good is the currently
best solution at a particular stage in the optimization process concerning other al­
gorithms exhibiting the same initial conditions? In other words: how quickly does
a meta­heuristic find a solution better than the initially given solutions, and how
does this solution relate to the progression of other algorithms? To revoke the in­
fluence of the initial conditions, we take the average performance over the different
realizations. This metric will be called the solution quality metric of an optimization
process. The results from optimizing the modified Styblinski­Tang function will be
used to construct the solution quality performance metric.

The mean margin of victory metric is consulted to assess the performance over
a set of optimization problems [141]. This metric is explained after the solution
quality metric.

Solution quality metric
To describe the solution­quality performance of the selected heuristic, we consult
all the objective values 𝑓(𝑥⃗) resulted from optimizing a particular problem. For each
iteration 𝑡, we compute the value 𝑦𝑡 with equation 4.7 by comparing the objective

4

68 4. Data­driven optimization

value 𝑓(𝑥⃗𝑡)with the previous iteration 𝑓(𝑥⃗𝑡−1) and appending 𝑓(𝑥⃗𝑡) to 𝑦⃗ = (𝑦0, ..., 𝑦𝑡)
only if the current solution shows improvement.

𝑦𝑡 = {
𝑓(𝑥⃗0) if 𝑡 = 0

min(𝑓(𝑥⃗𝑡), 𝑓(𝑥⃗𝑡−1)) if 𝑡 > 0} (4.7)

To compare the vector 𝑦⃗ between different realizations, we normalize this curve
between the following boundaries:

• the upper­bound 𝑦max will be the best solution from the initial guesses 𝑦0,...,𝑖
before any optimization is performed (equation 4.8). As the starting points
for all the algorithms are equal, the upper bound will be the same for all 𝑦⃗.

𝑦max =min(𝑦0,...,𝑖) (4.8)

• the lower­bound 𝑦min will be the best­found solution among all meta­heuristics
after the optimization reaches its stopping criteria 𝑡max (equation 4.9).

𝑦min =min(𝑦CMAES
𝑡max , 𝑦PSO𝑡max , 𝑦Adam𝑡max , 𝑦BO𝑡max , 𝑦RS𝑡max) (4.9)

Utilizing equation 4.10 will construct the normalized best objective vector 𝑦⃗norm:

𝑦⃗norm = 𝑦⃗ − 𝑦min

𝑦max − 𝑦min (4.10)

Plotting 𝑦⃗norm against the iteration number 𝑡 for every selected heuristic will result
in figure 4.14:

It can be seen that on the first iteration, all heuristics express the performance value
1. Before the problem is being optimized, the initial solutions are all the same. As
the algorithms are starting to explore the search­space, the performance values
start to diverge. At the end of the optimization process, at least one algorithm will
contain the best solution 0. For every iteration, an algorithm’s solution quality can
be perceived with respect to the best­found solution.

The optimization is repeated many times with different initial conditions, and the
average performance is measured. Figure 4.15 denotes the average solution quality
metric.

4.3. Performance metrics

4

69

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
b

es
t

ob
je

ct
iv

e
va

lu
e

BayesianOpt

PSO

CMAES

Adam

RandomSearch

(a) Solution quality metric for one
realization.

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

b
es

t
ob

je
ct

iv
e

va
lu

e

BayesianOpt

PSO

CMAES

Adam

RandomSearch

(b) Solution quality metric for another
realization.

Figure 4.14: Solution quality metric for two different realizations of the modified
Styblinski­Tang problem.

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

re
la

ti
ve

b
es

t
ob

je
ct

iv
e

va
lu

e

BayesianOpt

PSO

CMAES

Adam

RandomSearch

Figure 4.15: Average solution quality metric on the modified Styblinski­Tang
problem, averaged over 10 realizations.

4

70 4. Data­driven optimization

For the smooth Styblinski­Tang function, Bayesian Optimization will outperform its
competitors during the first 100 iterations. However, CMAES will surpass Bayesian
Optimization after around 80 iterations into the optimization process. After that, a
better overall solution quality is found with Random Search between 240 and 320
iterations. The Particle Swarm optimizer is victorious within the region of 320 to 390
iterations. Lastly, Bayesian Optimization is the best­performing optimizer between
400 and 500 iterations.

The solution quality metric provides insight into which algorithm outperforms oth­
ers on a particular problem. As discussed earlier, the ’No Free Lunch’ theorem
indicates that the best­performing algorithm differs for each problem. Besides, it
can be seen that the best­performing algorithm is dependent on the number of
iterations. Some algorithms will perform better on the global search space, while
other algorithms will surpass their contestants in a more local search, closer to the
converged solution.

Performance over a set of optimization problems
To get insight into the meta­heuristic performance over a set of optimization prob­
lems, we construct a second metric named the mean margin of victory [141]. The
margin of victory 𝑚⃗𝑖 = (𝑚0, ..., 𝑚𝑡)𝑖 of algorithm 𝑖 for a single problem is described
as the difference between the solution quality metric 𝑦⃗norm𝑖 of the selected opti­
mizer and the best­performing solution quality metric of the remaining optimizers.
This calculation is denoted in equation 4.11.

𝑚⃗𝑖 =min(𝑦⃗norm𝑗) − 𝑦⃗norm𝑖 , 𝑗 ∈ 𝐴, 𝑖 ≠ 𝑗) (4.11)

The parameter 𝐴 denotes a list of all meta­heuristics subjected to the optimization
problem. A positive margin of victory means that the meta­heuristic succeeds in
finding better solutions than its competitors, averaged over many realizations. A
negative value denotes that algorithm’s failure, and its value gives insight into the
gap between the best meta­heuristic. By taking the average margin of victory over
a collection of optimization problems, the solution quality over multiple problems
can be assessed.

Figure 4.16 denotes the mean margin of victory metric for the selected optimizers
on a training set of 500 objective functions, optimized for 500 iterations with 10
different realizations.

4.4. Improving the heuristic decision strategy

4

71

0 100 200 300 400 500
Iteration

−0.4

−0.3

−0.2

−0.1

0.0

0.1

M
ea

n
M

ar
gi

n
of

V
ic

to
ry

BayesianOpt

PSO

CMAES

Adam

RandomSearch

Figure 4.16: Margin of victory for the five selected algorithms for 500 different
problems.

During the first 100 iterations, Bayesian Optimization shows a positive mean mar­
gin of victory. This means that on average Bayesian Optimization will be the best
performing optimizer in this stage of optimization for the entire training set. As the
bio­based composite case is modelled as a single­objective box­constrained opti­
mization problem, the Bayesian Optimization algorithm is rationalized. However,
even when the mean margin of victory metric averages a meta­heuristic perfor­
mance over many different problem­specific features, it is still dependent on the
distribution of problem­specifics in the training set. Therefore, conclusions on the
mean margin of victory should be taken with care. A more elaborate discussion
on the mean margin of victory results for the training set will be given in section
4.6.

4.4. Improving the heuristic decision strategy
Figure 4.15 has shown that the best­performing meta­heuristic per problem is de­
pendent on the convergence stage during optimization. A combination of differ­
ent heuristics on a problem could theoretically outperform the individual meta­

4

72 4. Data­driven optimization

heuristics. This concept has been extensively studied in the field of hyper­heuristics
[104, 105]. As discussed in the literature review, the underlying principle of the
hyper­heuristic move acceptance algorithms is a black­box optimization itself [107].
Possible meta­heuristic update steps are applied to the current state of optimization,
and the decision algorithm picks a move based on the objective function outcome.
However, adaptive methods that change the used algorithm mid­search if certain
conditions are satisfied are becoming more relevant. A study where the switching
from Adam to Stochastic gradient descent (SGD) has been investigated on training
deep neural networks has shown promising results [162].

Heuristic strategy
An explorative algorithm can start the optimization process, after which an ex­
ploitative algorithm takes over. The combination of heuristics and the associated
amounts of iterations will be called the heuristic strategy. As one strategy will be
beneficial for a single problem, it does not necessarily surpass the single algorithm
strategy in another case. Therefore, the adapted heuristic strategy should be prob­
lem dependent.

Combining different algorithms in series brings up several difficulties such as switch­
ing between algorithms, changing population size and stating the number of algo­
rithms in series.

Switching between algorithms
The data transfer between the switching of the heuristics must go well. This is
reflected in the dynamic hyper­parameters of meta­heuristics and the previously
acquired solutions. Some meta­heuristics exhibit dynamic hyper­parameters that
control the convergence of the optimization i.e. step­size control parameter 𝑝⃗𝜎𝑡 of
CMAES or the 1st moment vector 𝑚⃗𝑡 of Adam. Whenever the optimization process
is halted, these respective hyper­parameters are stored. If at a later stage the same
heuristic is utilized again, the saved hyper­parameters are used instead.

Continuation of the stored dynamic hyper­parameters helps the optimization pro­
cess to avoid an initiated explorative stage. However, suppose the optimization is
at a later exploitative stage, and the heuristic decision strategy demands a change
of algorithm. In that case, the hyper­parameters from an earlier explorative stage
could be raised. Eventually, this could lead to a delay in convergence.

Altering the population size
Switching between meta­heuristics does also imply a possible alteration in popu­
lation size. In order to retain the convergence state, a new starting population is
selected. A probability density function is created from all the previously acquired
solutions where the best solutions have the highest probability to be selected. From
this probability density function, 𝜆 number of samples are drawn to match the new
population size. In the case of Bayesian Optimization, a new surrogate model is
computed with all the previous iterations.

This indicates the advantage of using Bayesian Optimization, as the heuristic switch­

4.4. Improving the heuristic decision strategy

4

73

ing is without loss of information. All other selected heuristics only store information
from previously acquired iterations by their respective dynamic hyper­parameters.
This means that only limited information is passed through to the next algorithm.

Predefined performance assessment stages
To reduce the number of decisions, we will make a heuristic strategy decision dur­
ing predefined stages of the optimization process. We divide the maximum number
of iterations into several equilateral parts named ’windows’. In the first window,
we start iterating with one of the selected algorithms. Before we get into the sec­
ond window, we stop iterating and either continue with the current meta­heuristic
or switch. We will continue this process until we reach the maximum number of
iterations.

A problem­specific heuristic strategy can be acquired in several ways:

• A heuristic strategy could be data­driven. By consulting the solution quality
metric of a particular problem for each iteration window, we determine which
meta­heuristic is the best performing heuristic. If multiple algorithms make a
claim, then the algorithm with the best solutions for the majority in that seg­
ment is chosen. Figure 4.17 illustrates the concept with five decision stages
for the modified Styblinski­Tang problem.

• A heuristic strategy can be obtained by randomly selecting a meta­heuristic
for each iteration window.

• A heuristic strategy could be obtained by integer programming. The solu­
tion quality of the heuristic strategy could be the loss function for the meta­
optimization. Over several iterations, new strategies are depicted by an al­
gorithm. Due to the possibly huge demand of computational resources, this
method will not be carried out in this study and will be further discussed as a
recommendation in section 4.7.

After we have formulated a heuristic decision strategy, we can re­optimize the prob­
lem based on this strategy. Subsequently, the solution quality performance metric
could be recalculated to show how the heuristic strategy compares to the single
algorithm strategies in figure 4.18. From 𝑡 = 220, the proposed heuristic strat­
egy based on the solution quality metric outperforms the selected meta­heuristics
on the modified Styblinski­Tang problem in figure 4.18a. Figure 4.19 shows the
heuristic strategy based on the solution quality metric and 20 different, randomly
constructed strategies.

4

74 4. Data­driven optimization

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
er

ela
tiv

eb
es

to
bj

ec
tiv

ev
alu

e

Re-optimize with heuristic strategyResults from selected optimizers

BayesianOpt
Initial guesses

CMAES
RandomSearch

PSO
BayesianOpt

BayesianOpt CMAES RandomSearch PSO BayesianOpt

BayesianOpt
PSO
CMAES
Adam
RandomSearch

95 iterations

100 iterations

100 iterations

100 iterations

100 iterations

5 guesses

Figure 4.17: Constructing the heuristic strategy on the modified Styblinski­Tang
problem for 5 predefined assessment stages.

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
er

ela
tiv

eb
es

to
bj

ec
tiv

ev
alu

e

BayesianOpt
PSO
CMAES
Adam
RandomSearch

Heuristic strategy

(a) Smooth Styblinski­Tang problem.

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
er

ela
tiv

eb
es

to
bj

ec
tiv

ev
alu

e

BayesianOpt
PSO
CMAES
Adam
RandomSearch

Heuristic strategy

(b) Noisy Ackley problem.

Figure 4.18: Performing the heuristic strategy on the smooth Styblinski­Tang and
noisy Ackley problem for 5 predefined assessment stages. The coloured bar under

the figures denote the used meta­heuristics for each iteration window.

4.5. Data­driven heuristic decision strategy

4

75

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

er
ela

tiv
eb

es
to

bj
ec

tiv
ev

alu
e

Random strategies
Strategy A
Strategy B
Strategy C
Heurist ic st rategy

A
B
C

(a) Smooth Styblinski­Tang problem.

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
er

ela
tiv

eb
es

to
bj

ec
tiv

ev
alu

e

Random strategies
Strategy A
Strategy B
Heurist ic st rategy

A
B

(b) Noisy Ackley problem.

CMAESPSO RandomSearchAdamBayesianOpt
Figure 4.19: Comparison of the heuristic strategy based on the solution quality

metric and 20 randomly decided heuristic strategies on the smooth Styblinski­Tang
and noisy Ackley problem for 5 predefined assessment stages. The performance of
the most successful random strategies (A, B and C) are displayed in fuchsia, cyan
and lime green and their strategies are denoted in colour bars under the figure.

From the results of the most successful random strategies, three insights are ac­
quired. First, implementing a random search window in the middle of the optimiza­
tion process delays premature convergence. It results in better overall performance
for strategy A and B on the Styblinski­Tang problem. Subsequently, combining ran­
dom search and Bayesian Optimization in sequence will quickly improve both prob­
lems’ solution quality. The explorative information from random search helps the
Gaussian process to estimate the response­surface. Lastly, for the noisy Ackley
problem, the CMAES optimizer only shows its effectiveness if applied over multiple
windows, as seen with strategy B. Although the performance of the solution­quality
based heuristic strategy is not necessarily the optimal strategy, it serves as an ed­
ucated guess to improve the solution quality.

4.5. Data­driven heuristic decision strategy
Although the heuristic decision strategy based on the solution quality metric can
find better solutions on average, comparing this method to the single algorithms is
not fair. To determine the solution quality metric, the problem must first be solved
several times through different heuristics. These preparatory function calls should

4

76 4. Data­driven optimization

be included in the total number of iterations. Therefore, using a single promising
heuristic for all new optimization problems may be more efficient in terms of function
calls, even if this heuristic will not appear to be best on every single optimization
problem. The same could be said about hyper­parameter optimization. When the
optimal hyper­parameters for our specific problem are finally found, we have already
been deep into the optimization process. It is not always possible to evaluate the
objective function so often for data­scarce problems.

To avoid the excessive iterative process of finding an optimal heuristic strategy, we
have to develop a strategy before starting the optimization. This is problematic
because the heuristic strategy is problem­dependent. Without the problem­specific
information of the optimization problem, coming up with a heuristic strategy is
arbitrary. However, the performance information from other optimization problems
similar to the current problem could be of value. By continually optimizing different
generated problems discussed in section 4.1, we couple optimization landscapes
to heuristic strategies. By picking the heuristic strategy of a previously optimized
case, we by­pass the need for acquiring additional performance metrics of single
heuristic strategies.

The data­driven heuristic decision strategy splits the optimization into two separate
parts: an offline and online process.

• During the offline process, many different generated optimization problems
are optimized, and suitable heuristic strategies are built. For each meta­
heuristic on every generated problem, the algorithmic response is compressed
into a unique heuristic identifier. Creating this unique identifier named the
’heuristic signature’ is discussed in detail in section 4.5.1. The heuristic sig­
natures, as well as the heuristic strategies, are stored in a database.

• The online process operates on unseen optimization problems. The total num­
ber of iterations is again divided into several iteration windows. First, we start
iterating with a manually chosen algorithm. After the first window of itera­
tions, we stop the optimization process and construct the same heuristic sig­
nature metric mentioned in the offline process. Subsequently, the database
is consulted, and the problem is classified according to the most similar sig­
nature metrics in the database using a classification algorithm. The heuristic
strategy associated with this label is then executed for the upcoming window
of iterations. The classification is more thoroughly explained in section 4.5.3.
This is repeated until we reach the stopping criteria.

An overview of both processes is illustrated in figure 4.20. In the upcoming sections,
all the data­driven heuristic decision strategy features will be discussed in greater
detail.

4.5. Data­driven heuristic decision strategy

4

77

Generate an
optimization problem

Optimize the problem with
selected heuristics

PSO
CMAES
Bayesian Optimization
Adam
Random Search

many
realizations

Compute
performance

metrics

Determine
heuristic strategy

repeat

Construct
heuristic signature

Database

Unseen optimization
problem

manually chosen algorithm

START

Stop
iterating

Construct heuristic
signature

Find similar
signatures in

database

if stopping criteria?

Adapt the algorithm to
the heuristic strategy

of the database

Continue iterating
in next window

FINISH

Online processOffline process

Figure 4.20: Flowchart of the data­driven heuristic decision strategy. On the left,
the offline process of acquiring new database entries is illustrated. On the right,

the online process is displayed.

4.5.1. Heuristic signature
It is necessary to identify a ”fingerprint” of an algorithm’s behaviour on an optimiza­
tion problem to recognize an optimization problem from a database with previous
optimization results. Section 4.1 mentioned that heuristics exploit problem­specific
features. If a problem may or may not contain the correct problem­specific features
for a specific algorithm, this can be seen in the algorithm’s response. This response
will be captured as the unique identifier metric.

Several requirements for the metric can be established:

• This ”fingerprint” should show the influence of the algorithmic iterations only
on the problem­specific features. Therefore, it is important that the initial
conditions and any translations of the search space do not significantly af­
fect the signature, as these operations do not change the problem­specific
features.

• The heuristic signature metric must be constructible during the offline pro­
cess and the online process so that the signature can be compared on equal
grounds.

• The absolute values of the metric should be in the same order of magnitude so
that the meta­heuristics performance over time is independent of the absolute
value of the acquired problem’s objective values.

In this section, we develop such a heuristic identifier metric for both the offline and
the online process.

4

78 4. Data­driven optimization

Offline process
When acquiring optimization results data in the offline process, the heuristic signa­
ture is set up as follows. First, all the objective values 𝑓(𝑥⃗) are retrieved from all
realisations. Only the objective values retrieved as a result of the meta­heuristic
update steps are considered. The initial parameters can be considered a result of a
random process, and therefore do not contain the unique response of the selected
meta­heuristic. Because optimizing with different initial conditions is considered a
stochastic process, a noisy Gaussian process regression model with an RBF ker­
nel is used to fit the objective values. Only the average objective values from all
realization are used as the training points for the Gaussian process fit to reduce
the computational resources required. Figure 4.21 illustrates the process of con­
structing the heuristic signature for the results of the CMAES optimizer on the noisy
Ackley problem. The predicted mean value of the Gaussian process is stored as the
heuristic signature.

0 100 200 300 400 500
Iteration

0

5

10

15

20

25

f
(x

)

Mean of f(x)

GP regression mean

GP regression quantiles

Objective values f(x)

Figure 4.21: Construction of a CMA­ES heuristic signature on the noisy Ackley
problem. The orange scatter represents the objective function values of many
realizations. The dark red line comprehends the mean objective function values
over all realizations. The mean of the Gaussian process regression is displayed in

black. The 95% confidence intervals are further displayed.

For each of the selected meta­heuristics, the noisy Gaussian process fit is con­
structed. Figure 4.22 shows that meta­heuristic signatures for the remaining meta­
heuristics.

4.5. Data­driven heuristic decision strategy

4

79

0 100 200 300 400 500
Iteration

0

5

10

15

20

25
f

(x
)

Mean of f(x)

GP regression mean

GP regression quantiles

Objective values f(x)

(a) Bayesian Optimization signature.

0 100 200 300 400 500
Iteration

0

5

10

15

20

25

f
(x

)

Mean of f(x)

GP regression mean

GP regression quantiles

Objective values f(x)

(b) PSO signature.

0 100 200 300 400 500
Iteration

0

5

10

15

20

25

f
(x

)

Mean of f(x)

GP regression mean

GP regression quantiles

Objective values f(x)

(c) Adam signature.

0 100 200 300 400 500
Iteration

0

5

10

15

20

25

f
(x

)

Mean of f(x)

GP regression mean

GP regression quantiles

Objective values f(x)

(d) Random search signature.

Figure 4.22: Construction of the Bayesian optimization, PSO, Adam and Random
search meta­heuristic signatures for the noisy Ackley problem.

Online process
A similar Gaussian process regression can be constructed during the online opti­
mization process. However, we do not have access to multiple realizations. There­
fore, the RBF kernel is optimized according to the objective values of the current
realization. The predicted mean value of the Gaussian process will be compared to
the entries in the database. Figure 4.23 shows how the online signatures of each
of the 10 realizations compare to the offline signature of the same optimization
problem.

During optimization, a new signature metric is constructed for each window of
iteration. Each signature is normalized to compare the metric between objective
function values within different orders of magnitude. Besides, the information from
previous decisions influences the current decision. The newly constructed signature
is appended to the normalized signature metrics of previous decisions as in figure
4.24. The meta­heuristics and iteration window for each part of the total signature
are noted, and are compared to the same combination for every offline signature
in the database. Every element of the total signature metric is used as a feature in
the classification described in section 4.5.3.

4

80 4. Data­driven optimization

0 100 200 300 400 500
Iteration

0

5

10

15

20

25

f
(x

)

GP online #1

GP online #2

GP online #3

GP online #4

GP online #5

GP online #6

GP online #7

GP online #8

GP online #9

GP online #10

GP offline

Figure 4.23: Comparison between the offline Gaussian process fit and the
individual online Gaussian process fits for the noisy Ackley problem. The objective

values are coloured according to their realization.

0 100 200 300 400 500
Feature

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

si
gn

at
u

re
va

lu
e

CMAES

PSO

Figure 4.24: Example of the total signature metric for 5 iteration windows of 100
iterations each. For each window, the values are normalized.

4.5.2. Constructing an optimization database
After we have gathered optimization data and constructed the identifier metrics, the
offline process information is stored in a pandas data frame. The format of these
data frames is shown in table 4.5. Each function’s name is the seed of the random
number generator preceding with the letter ’f’. The algorithm column denotes the
algorithm for which the signature is constructed. The strategy column denotes the

4.5. Data­driven heuristic decision strategy

4

81

best­performing algorithm for each iteration number, i.e. the strategy is a vector
with its size being equal to the number of iterations. The database can be stored
and imported into the online process.

name algorithm signature strategy

f0349756184 Adam list [CMAES, CMAES, ... , Adam]
f0349756184 CMAES list [CMAES, CMAES, ... , Adam]
f0349756184 BayesianOpt list [CMAES, CMAES, ... , Adam]
f0349756184 PSO list [CMAES, CMAES, ... , Adam]
f0349756184 RandomSearch list [CMAES, CMAES, ... , Adam]
f1468498765 Adam list [BayesianOpt, PSO ... , CMAES]
f1468498765 CMAES list [BayesianOpt, PSO ... , CMAES]
f1468498765 BayesianOpt list [BayesianOpt, PSO ... , CMAES]
...

Table 4.5: Format of the signature database. Each row implies the optimization
results of an algorithm on a particular optimization problem.

4.5.3. Classification
A classifier algorithm is used to predict the heuristic strategy during the online pro­
cess. A classifier predicts the category (label) associated to a given input. New
testing data can subsequently be classified according to previously trained data.
The heuristic signatures are labelled according to their best­performing algorithm
in the next window of iterations. To find the suggested algorithm for an unseen opti­
mization problem, the newly constructed signature label is predicted. The elements
of the unique signature metric will be used as features in the classifier.

It might be possible that some classes in the supervised learning model are over­
represented and others under­represented. This phenomenon is called an imbal­
anced dataset. For our optimization results dataset, each of the database entries is
labelled according to their best­performing heuristic in the upcoming segment of it­
erations. It is safe to say that one of the algorithms prevails as the best­performing
heuristic across the database’s problems. This will create an imbalance in the opti­
mization results and drastically impact the prediction accuracy [163]. Also, handling
multiple classes implies additional difficulty, as the boundaries between classes may
overlap.

There are several methods to tackle an imbalanced dataset. First of all, the dataset
could be preprocessed before building a learning model to restore the balance in the
dataset. Over­sampling the minority class or under­sampling the majority class are
commonly used techniques. Another technique called feature selection is to select
a subset of features from the entire feature space in a way that allows optimal pre­
diction accuracy [163]. Although preprocessing the input data could be beneficial
for the balance of the dataset, it gives additional difficulties in continually keeping
the generated problem set balanced. Besides, if new analytical functions and algo­

4

82 4. Data­driven optimization

rithms are added to the framework, the balance needs to be restored. Therefore
we refrain from altering the arrangement of the dataset.

Transforming the multiple­class problem to binary subsets could resolve the multi­
class difficulty and handle a dataset imbalance [164]. Figure 4.25 illustrates two
commonly used binarization techniques, namely one­versus­one (OVO) and one­
versus­all (OVA) [163].

Figure 4.25: Left: One­versus­one (OVO) decomposition scheme. Right:
One­versus­all (OVA) decomposition scheme. Based on the decomposition of the
imbalanced dataset, the decomposed optimizers 𝑓 predict the class 𝐶3 by [163].

The OVO approach decomposes the multiple­class classification into several pair­
wise binary classification problems, ignoring the samples that do not belong to
either of the two chosen classes [165]. Each of the classifiers 𝑓1−6 predict a class
𝐶𝑖 independently. Based on the predictions’ majority vote, the final result is de­
picted [164]. Similarly, the one­versus­all binarization decomposes the multi­class
classification system into several binary problems. However, for each of the avail­
able classes, a binary classification problem is constructed against all other classes.
Each classifier 𝑓1−4 computes the conditional probability of being labelled to the re­
spective single class. The final result is depicted by the maximum of the conditional
probabilities from all binary classifiers.

Various classification algorithms exist for solving a wide variety of classification prob­
lems. The 𝑘­nearest neighbour classifier will be discussed, including two adapta­
tions that tackle class imbalance. Lastly, two alternative classifiers are briefly dis­
cussed, namely the C­Support Vector Classification (C­SVC) and the meta­estimator

4.5. Data­driven heuristic decision strategy

4

83

AdaBoost [166].

k­Nearest­neighbours
The 𝑘­nearest­neighbours approach is a widely used classifier due to its simplicity
and applicability. It is commonly referred to as a ’lazy learning’, which means that
the training data generalization is delayed until a testing query is made to the
model. If new test data is to be classified, the Euclidean distance concerning the
new sample’s input parameters to all training data is calculated. The new instance
class is equal to the majority vote of the 𝑘 nearest training data, where 𝑘 is an
integer value specified by the user. The value of 𝑘 is data­dependent: a large value
of 𝑘 will suppress the effects of noise, but makes the classification boundaries less
distinct. The output classes are discrete variables, and all testing data is labelled
beforehand. Therefore, it is a supervised learning process.

Figure 4.27 illustrates the 𝑘­nearest­neighbours procedure for a two­dimensional
example ’iris dataset’ retrieved from scikit­learn with two­dimensional features
[167]. The training points are equally divided into one of three classes. Through the
15 nearest neighbours, the entire search­space can be classified according to the
training samples’ distance. Its position in the search­space can label new testing
data.

The data­driven heuristic decision strategy uses 𝑘­nearest­neighbours classifica­
tion to the following extent. First, the heuristic signature is constructed for an
unknown optimization problem during the online process, as discussed in section
4.5.1. Then all heuristic signatures of that specific algorithm are retrieved from the
offline database. Subsequently, the tested signature is classified. The label of the
resulting class will be the meta­heuristic of choice for the next window of iterations.
If the next window of iterations is fulfilled, a new heuristic signature will be con­
structed, and the process repeats. The features and labels of all previous windows
of iterations will be included in the upcoming classifications.

Figure 4.26 illustrates this concept. The noisy Ackley function depicted as ’tested
problem’ is being optimized with the Adam optimizer for 100 iterations. The heuristic
signature shows an increase with the number of iterations. This behaviour could
mean that after a sudden improvement of solution quality, the optimization cannot
find better solutions. With the 𝑘­nearest neighbour classifier, the three most similar
signatures are depicted from the database. These signatures belong to different
optimization problems, and their response­surfaces and solution quality metrics are
displayed. Each neighbour is labelled according to the best performing algorithm in
the window from 100 to 200 iterations. The majority vote of these labels classifies
the tested problem. For the next window of iterations, the CMAES optimizer is
used.

The OVO and OVA binarization implementations for distance­weighted 𝑘­nearest­
neighbours are tested for the data­driven heuristic decision framework. The default
settings from the scikit­learn library are used, with a 𝑘 value of 5.

https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html?highlight=iris%20dataset
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier

4

84 4. Data­driven optimization

BayesianOpt

BayesianOpt

BayesianOpt

Ne
ar

es
t n

eig
hb

ou
r

2n
d

ne
ar

es
t n

eig
hb

ou
r

3r
d

ne
ar

es
t n

eig
hb

ou
r

Tested problem
Heuristic signatures

CMAES

CMAES

CMAES

Adam

Figure 4.26: Illustration of the data­driven classification. The response­surface of
the testing problem is unknown during optimization. After the first window of 100
iterations, the Adam online signature is constructed and the 3 nearest neighbours
are shown. According to the solution quality performance metrics, the neighbours
are classified. The next meta­heuristic is chosen by the majority vote of the

nearest neighbours. In this case, CMAES will be the meta­heuristic for the next
window of iterations.

4.5. Data­driven heuristic decision strategy

4

85

C1 C2

C3

Figure 4.27: Illustration of the 𝑘­Nearest­neighbours classifier. The star­shaped
sample is classified. The value of 𝑘 is equal to 15 and the samples are distance
weighted. The pink lines represent the distance of the neighbours [167].

C­Support Vector Classification
The C­Support Vector Classification method (C­SVC) attempts to construct a set
of hyper­planes that separates individual classes. This is achieved by optimizing
the hyper­parameters of a chosen kernel function. The objective of this kernel
optimization is to maximize the separation margin between the classes. Although
the kernel function strives for an expression that allows perfect separation of the
classes, this is usually impossible. Therefore, samples that are outside a margin
of the separation hyper­plane are penalized. The value of these samples’ penalty
is depicted with the regularization parameter 𝐶, hence the name C­Support vector
classification. Once the separation has been achieved, the tested sample is easily
labelled as the position related to the separation planes depict its class. Figure 4.28
shows C­SVC with both a linear and RBF kernel on the ’iris dataset’.

C1 C1
C2 C2

C3C3

SVC with linear kernelC- SVC with RBF kernelC-

Figure 4.28: Illustration of the C­Support Vector Classifier for a linear kernel and
RBF kernel. The star­shaped sample is classified [167].

The one­versus­one binarization method is used to expand C­SVC to multi­class
problems. The version from the scikit­learn library is used, and the default
value for the regularization parameter is kept at 1.0.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

4

86 4. Data­driven optimization

AdaBoost
The AdaBoost classifier is a meta­estimator that starts by fitting a classifier to the
original data [166]. This is done by splitting the given input features and labels
into a training and testing set. Originally, a weak classifier is used, i.e. a classifier
that only shows a slight improvement over randomly selecting labels. During a
sequence of learning steps, additional classifiers are fitted on modified adaptations
of the input data, where weights are applied to incorrectly classified samples. In
this way, subsequent iterations of the AdaBoost classifiers focus more on difficult
cases as the misclassified samples’ weights are ’boosted’. The majority vote of all
weak classifiers will decide the outcome of the original testing case. Figure 4.29
illustrates the AdaBoost method.

C1 C2 C2

f1

classifiers

predictions

final result

boost
weights

boost
weights

C2

f2 fi

Figure 4.29: Illustration of the meta­classifier AdaBoost for a binary classification
problem. The star­shaped sample is classified. Several instances of the weak

classifier 𝑓𝑖 are built with increasing weights of the mislabelled classes. The weight
is depicted by the radius of the circles. The majority vote of the prediction will

determine the final label.

The AdaBoost­SAMME.R adaptation from Hastie et al. is implemented [168] from
the scikit­learn library to support multi­class classification. This alteration does
not decompose the problem through binarization but adds a multi­class exponential
loss function to the error calculation for each iteration.

The decision tree classifier is used as the weak learner of choice, with a maximum
number of 50 boosting iterations. The learning rate depicts the amount of boosting
and is kept to its default value 1.0.

Classification performance measures
The classification performance for the online process is assessed by optimizing the
unseen problems with the selected heuristic and comparing the actual heuristic

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html?highlight=adaboost#sklearn.ensemble.AdaBoostClassifier

4.6. Results & Discussion

4

87

strategies with the predictions. The effectiveness of multi­class classification is
commonly evaluated by constructing a confusion matrix [169]. A confusion matrix
is a table where each row of the square matrix represents the actual target classes’
labels, while the columns denote the class predictions. The diagonal elements
contain the true positive (tp) and true negative predictions (tn), whereas the upper
and lower triangular parts of the matrix denote the false positives (fp) and false
negatives (fn).

The confusion matrix can be used to calculate the multi­class accuracy with equation
4.13 as well as the F­score. The F­score shows the balance between precision
(what proportion of positive predictions are actually truly positive) and recall (what
proportion of actual true positive is identified correctly) and can be calculated with
equation 4.12.

F− score = tp

tp+ 1
2(fp+ fn)

(4.12)

Accuracy = tp+ tn
tp+ fn+ fp+ tn

(4.13)

4.6. Results & Discussion
The data­driven heuristic decision strategy framework handles three different hyper­
parameters:

• the choice of the classifier. This study investigates 𝑘­nearest neighbour one­
versus­one, 𝑘­nearest neighbour one­versus­all, C­Support Vector Classifica­
tion and AdaBoost.

• the number of predefined decision stages.

• the number of iterations in each window.

Each generated problem is optimized for 500 iterations. Three different instances
with varying window sizes are investigated:

• large: 4 decision windows with 125 iterations each.

• medium: 5 decision windows with 100 iterations each.

• small: 6 decision windows with 75 iterations each. The last window consists
of the remaining 125 iterations.

While evaluating the effectiveness of the data­driven heuristic decision strategy,
it is essential to look at the performance of the solution quality and the accuracy
of the decisions independently. For example, if the data­driven optimizer obtains
an improved solution quality, it is not necessarily true that the classification is also
accurate. The optimizer may make decisions that yield an improved strategy, but
these decisions could well be built on misclassification. On the contrary, an accu­
rate classifier will approach the solution quality of the heuristic strategy. However,

4

88 4. Data­driven optimization

a combination of randomly selected meta­heuristics could well outperform the pro­
posed heuristic strategy. Efforts in improving the heuristic strategy will result in
a more successful optimizer in the offline process. However, if the classification
based on the heuristic signature can not accurately couple the problem­specifics
with previously optimized results, this enhanced performance is not obtained in the
online process.

The mean margin of victory is denoted by the single heuristic optimizers and the
data­driven optimizer to assess the average solution quality. The accuracy and F­
score deducted from the confusion matrix will give insight into the used classifier’s
effectiveness.

The generated problem set results are divided into three parts:

• applying the offline heuristic strategy to the training set.

• applying the online data­driven heuristic strategy to the training set.

• applying the online data­driven heuristic strategy to the testing set.

Offline training set
Training data will first have to be collected in the offline stage. 500 two­dimensional
optimization problems are generated and optimized with 10 different initial condi­
tions by the selected meta­heuristics. The heuristic strategy is based on 5 decision
windows with 100 iterations each. A more detailed explanation of the training set
and the decisions and a distribution of the selected algorithms for each window
can be found in appendix C.4. The margins of victory for these algorithms and the
suggested heuristic strategy are displayed in figure 4.30.

The behaviour of the different optimizers’ performance can be explained by the
composition of the generated problem set. The gradient­based optimizer Adam is
not successful on noisy or highly multimodal functions. A large part of the imple­
mented functions is multimodal. Due to the post­analytical operations’ implementa­
tion, there is a 50% chance that Gaussian noise will be added to the function. The
number of optimization problems that are both unimodal and smooth is 10% in the
training set. Besides, an optimal step­size hyper­parameter 𝛼 is very decisive for
Adam’s performance. Because the default hyper­parameters of each meta­heuristic
are used, this has a significant effect on the performance. Only two­dimensional
objective functions are implemented in the training set. Adam and other gradient­
based algorithms are more effective on highly dimensional surfaces, such as train­
ing neural networks. Lastly, derivative information is not given. Additional function
evaluations are necessary to approximate the gradient numerically, which is not the
standard way of using the Adam optimizer.

4.6. Results & Discussion

4

89

0 100 200 300 400 500
Iteration

−0.4

−0.3

−0.2

−0.1

0.0

M
ea

n
M

ar
gi

n
of

V
ic

to
ry

BayesianOpt

PSO

CMAES

Adam

RandomSearch

Heuristic strategy

Figure 4.30: Margin of victory of selected meta­heuristics and the heuristic
strategy for 500 optimization problems in the training set.

The CMAES and PSO optimizers show their strengths in different stages in the opti­
mization process. Due to the large initial covariance hyper­parameter C0 of CMAES,
significant exploration progress is made at the beginning of the optimization pro­
cess. We see that PSO has difficulty leading up to this explorative phase. The
difference in population size can explain this: the PSO optimizers have five times
fewer update steps. Also, the individual particles’ driving force for PSO is the best
position of one of the particles 𝑔⃗. If no apparent converging factor is known at
the start of the optimization process, the particles will only rely on their local best
position 𝑝⃗ and velocity 𝑣⃗. As the optimization process continues, we see that the
performance of PSO is catching up. We see that CMAES converges faster due to the
emergence of the step­size control parameters. In contrast, the PSO optimizer par­
ticles are circling the global optimum and effectively exploiting the found optimum.
Although the regular variant of PSO performs poorly in noisy objective functions,
the used generational variant is beneficial in these circumstances.

From the start of the optimization process, Bayesian Optimization becomes the
dominant optimizer. The information from all function evaluations is optimally used

4

90 4. Data­driven optimization

to exploit a promising region by constructing a surrogate model. This is regulated
mainly by the greedy nature of the Lower Confidence Bound acquisition function.
This justifies the use of Bayesian Optimization for the bio­based composite case,
as this optimizer is highly effective in the first couple of iterations. However, where
other algorithms further along the optimization process take up a more exploitative
nature, the Lower Confidence Bound acquisition function chooses to investigate
the search space. As a result, we see the mean margin of victory decrease and
eventually levels with CMAES and PSO.

The other meta­heuristics easily surpass the naive random search benchmark ex­
cept for the Adam optimizer. As the optimization progresses, the mean margin
of victory for random search increases slowly, guarding the ’No Free Lunch’ theo­
rem. On average, better solutions are found by lucky guesses of the input param­
eters.

Applying the offline heuristic strategies based on each respective optimization prob­
lem’s performance metrics results in an optimizer that outperforms all other single
heuristic optimizers after 30 iterations. This is reasonable, as the heuristic strate­
gies are extracted from the optimization results and therefore adapted to the best­
performing meta­heuristic on a per problem basis. It should be noted that the
proposed heuristic strategies are not optimized, as this would require numerous
optimization runs with different combinations of meta­heuristics in series. How­
ever, using a simple solution quality metric to guide the optimizer still results in an
improved optimizer.

To indicate that solution quality is not necessarily improved by switching algorithms
halfway through, we test an optimizer that randomly chooses a meta­heuristic for
each iterations window. Figure 4.31 indicates the performance of this random strat­
egy. It can be seen that after every 100 iterations, the mean margin of victory im­
proves. However, ultimately the random switching of algorithm ensures an average
performance surpassed by CMAES, PSO and Bayesian Optimization.

4.6. Results & Discussion

4

91

0 100 200 300 400 500
Iteration

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

M
ea

n
M

ar
gin

of
Vi

ct
or

y

BayesianOpt
PSO
CMAES
Adam
RandomSearch
Random strategy

Figure 4.31: Margin of victory of selected meta­heuristics and a random strategy
for 500 optimization problems in the training set.

Online training set
Now the training set is subjected to the online data­driven heuristic decision strat­
egy, denoted as ’DataOpt’ in the figures. The heuristic strategies are not known
prior to optimization. The heuristic decision has to be made by using the information
in the signature database. Figure 4.32 shows the mean margin of victory results for
the single heuristic optimizers and the data­driven heuristic decision strategy with
various classifiers.

The mean margin of victories for both AdaBoost and 𝑘­nearest neighbour ap­
proaches surpass all other meta­heuristics after 200 iterations. The performance
of the C­Support Vector Classifier is less effective than the other classifiers.

Table 4.6 shows the accuracy and F­scores of the classifiers’ decisions for each
iteration window. The confusion matrices and more details about the decisions can
be found in appendix C.4.

4

92 4. Data­driven optimization

0 100 200 300 400 500
Iteration

−0.4

−0.3

−0.2

−0.1

0.0
M

ea
n

M
ar

gin
of

Vi
ct

or
y

BayesianOpt
PSO
CMAES
Adam
RandomSearch
DataOpt knn-OVO
DataOpt knn-OVA
DataOpt SVC
DataOpt AdaBoost

Figure 4.32: Margin of victory of selected meta­heuristics and the data­driven
heuristic decision strategy with 4 different classifiers for 500 optimization

problems from the training set.

4.6. Results & Discussion

4

93

window 1 2 3 4 5 overall

k­NN: OVO Accuracy 0.3843 0.7986 0.7825 0.7740 0.7647 0.7433
F­score 0.6479 0.5620 0.5389 0.5281 0.5161 0.4832

k­NN: OVA Accuracy 0.3843 0.7945 0.7757 0.7663 0.7572 0.7335
F­score 0.6479 0.5570 0.5300 0.5195 0.5085 0.4737

C­SVC Accuracy 0.3843 0.6963 0.6441 0.6276 0.6192 0.5444
F­score 0.6479 0.4551 0.4026 0.3875 0.3791 0.3119

AdaBoost Accuracy 0.3843 0.7862 0.7326 0.7252 0.7115 0.6731
F­score 0.6479 0.5261 0.4687 0.4579 0.4423 0.3909

Table 4.6: Accuracy and F­score for the online training set with different
classifiers. The overall scores are determined by taking all the decisions excluding

the first window.

The accuracy and F­scores are similar in the first window. As for every problem, the
first window is entirely dedicated to Bayesian Optimization. After the first window,
the classifier’s accuracy sets at a maximum of 0.7986 for the 𝑘­nearest neighbours
one­versus­one approach.

All classifiers show a decrease in accuracy for every additional iteration window.
Every decision window gives the data­driven optimizer a possibility to change meta­
heuristic. The information from the previous window dilutes the signature metric
at the current window by repetitive switching algorithms. This is also caused by
changing population size and switching hyper­parameters. The diluted signatures
differ from the pure signatures in the offline database. As we introduce more pos­
sibilities to switch algorithm, the signature gets more diluted.

The C­Support Vector Classifier demonstrates both the worst accuracy and mean
margin of victory among the other classifiers. Although the AdaBoost classifier
shows the second to worst overall accuracy score, it shows the best mean margin
of victory performance. Both the 𝑘­nearest neighbour approaches show great ac­
curacy scores and outperform all the single heuristic optimizers. However, the F
scores of all the classifiers do not surpass a value of 0.50. It could be argued that
most of the classification is still biased due to the imbalance of the dataset.

Online testing set
The testing set consists of 500 unseen generated problems. For the data­driven
heuristic decision strategy, the heuristic signature database from the training set is
used. Figure 4.33 shows the margin­of­victory results of the single heuristic opti­
mizers and the data­driven optimization with the different classifiers for 5 windows
of 100 iterations.

4

94 4. Data­driven optimization

0 100 200 300 400 500
Iteration

−0.4

−0.3

−0.2

−0.1

0.0
M

ea
n

M
ar

gin
of

Vi
ct

or
y

BayesianOpt
Adam
CMAES
PSO
RandomSearch
DataOpt knn-OVO
DataOpt knn-OVA
DataOpt SVC
DataOpt AdaBoost

Figure 4.33: Margin of victory of selected meta­heuristics and the data­driven
heuristic decision strategy with 4 different classifiers for 500 unseen optimization

problems.

The performances of the various classifiers are not significantly different from the
testing set to the training set. Due to the binarization methods used, classification
is based on the results of several decomposed classification problems. Therefore,
the advantage of optimizing the exact training set vanishes, as the decision is not
based on one instance of the training data. Table 4.7 shows the accuracy and F­
scores for the testing set. The accuracies and F­scores are similar within an error
margin of the training set.

4.6. Results & Discussion

4

95

window 1 2 3 4 5 overall

kNN: OVO Accuracy 0.4234 0.7992 0.7806 0.7682 0.7603 0.7429
F­score 0.6118 0.5631 0.5322 0.5140 0.5050 0.4783

kNN: OVA Accuracy 0.4234 0.7936 0.7745 0.7613 0.7529 0.7326
F­score 0.6118 0.5561 0.5255 0.5079 0.4971 0.4685

C­SVC Accuracy 0.4234 0.6892 0.6446 0.6338 0.6322 0.5719
F­score 0.6118 0.4433 0.4009 0.3917 0.3904 0.3351

AdaBoost Accuracy 0.4234 0.7787 0.7253 0.7242 0.7107 0.6782
F­score 0.6118 0.5148 0.4565 0.4546 0.4388 0.3955

Table 4.7: Accuracy and F­score for the online testing set with different classifiers.
The overall scores are determined by taking all the decisions excluding the first

window.

Next, the data­driven heuristic decision strategy is tested for a small, medium and
large window size. The 𝑘­nearest neighbour OVA binarization is used. Figure
4.34 shows the mean margin of victory results and table 4.8 the accuracy and
F­scores.

window 1 2 3 4 5 6 overall

4 windows Accuracy 0.3809 0.7906 0.7698 0.7534 0.7217
F­score 0.6358 0.5505 0.5204 0.4993 0.4539

5 windows Accuracy 0.3746 0.8000 0.7792 0.7633 0.7514 0.7230
F­score 0.6640 0.5696 0.5373 0.5150 0.4991 0.4579

6 windows Accuracy 0.4003 0.8147 0.7874 0.7703 0.7596 0.7505 0.7235
F­score 0.7042 0.5414 0.5470 0.5249 0.5091 0.4966 0.4551

Table 4.8: Accuracy and F­score for the online testing set with different window
sizes. The overall scores are determined by taking all the decision excluding the

first window.

As shown, the size of the predefined assessment stages does not have significant
influence on the mean margin of victory metric. Although the overall accuracy
and F score are within an error margin, the accuracy of the smaller windows is
higher.

4

96 4. Data­driven optimization

0 100 200 300 400 500
Iteration

−0.4

−0.3

−0.2

−0.1

0.0
M

ea
n

M
ar

gin
of

Vi
ct

or
y

BayesianOpt
Adam
CMAES
PSO
RandomSearch
DataOpt small
DataOpt medium
DataOpt large

Figure 4.34: Margin of victory of selected meta­heuristics and the data­driven
heuristic decision strategy with 3 different window sizes for 500 unseen

optimization problems.

Computation time
Table 4.9 compares the average computation time between the selected meta­
heuristics and various adaptation of the data­driven heuristic decision strategy. It
can be seen that the standard deviation of the average times is approximately 25%
of the average values. The parallelization of the optimization process can explain
this wide distribution. The results are obtained by running the program on different
machines via a computer cluster network. This resulted in a large deviation of
computation time.

Bayesian Optimization’s kernel optimization is an expensive mathematical opera­

4.6. Results & Discussion

4

97

tion and scales with the number of training points 𝑛. The time­complexity for this
algorithm is non­polynomial 𝒪(𝑛3). The remaining meta­heuristics require only
their current population to iterate. Hence they show a constant time­complexity
𝒪(𝑐).
As the PSO and CMAES optimizer handle relatively simple mathematical operations,
the average computation time is significantly lower than its competitors. Due to the
absence of derivative information, the Adam optimizer numerically approximates the
gradient. These mathematical approximations increase the average computation
time of this optimizer. The implementation of a random search shows a surprisingly
high average computation time. It is expected that some expressions in the source
code are extremely inefficient.

optimizer average computation time (s)

Bayesian Optimization 3410.62 ± 823.68
PSO 1.25 ± 0.47
CMAES 8.08 ± 2.59
Adam 21.13 ± 6.03
Random search 100.82 ± 22.18
DataOpt knn­OVA 1224.70 ± 613.15
DataOpt knn­OVO 1251.98 ± 605.48
DataOpt SVC 968.34 ± 520.57
DataOpt AdaBoost 1323.14 ± 559.42
DataOpt small 1326.93 ± 586.09
DataOpt medium 1265.67 ± 618.79
DataOpt large 1328.79 ± 619.79

Table 4.9: Comparison of average total computation time and standard deviation
in seconds for 500 iterations for the selected meta­heuristics (top) and the various

implementations of classifiers (middle) and window sizes (bottom) of the
data­driven heuristic decision strategy.

Secondly, the average computation time between the selected meta­heuristics and
various adaptation of the data­driven heuristic decision strategy is compared. Since
the computational resources difference between the expensive Bayesian Optimiza­
tion and the other algorithms is very significant, the average computation time is
primarily determined by the meta­heuristic choice and not so much by the data­
driven framework’s operations. This is supported by the even larger standard devia­
tion of approximately 50%. We can see that the C­Support Vector Classifier has the
lowest computation time and AdaBoost requires the most computational resources.
Figure C.10c shows that on average Bayesian Optimization is selected less frequent
than the other classifiers.

The data­driven strategy with small and large windows are significantly slower than

4

98 4. Data­driven optimization

the standard adaptation. If more predefined assessment stages are assigned to the
optimization process, a signature metric must be constructed more often. As the
Gaussian process kernel’s optimization is computationally expensive, the average
computation time is higher. In contrast, if the number of windows is reduced,
the first window of iterations where Bayesian Optimization is performed will be
bigger, resulting in longer runtime. Overall, the various adaptions of the data­driven
heuristic strategy are 2.5 times faster in runtime compared to the best­performing
meta­heuristic Bayesian Optimization.

Comparison with the ’learning to optimize’ study
In this section, the data­driven heuristic decision strategy is benchmarked against
the reinforcement learned optimizer in the ’learning to optimize’ paper from Li and
Malek [141].

The autonomous optimizer is designed from a reinforcement learning perspective.
The learned optimizer is given a choice of actions in each time step, which changes
the state of the environment and receives feedback based on the consequences
(reward) of the depicted action. The objective is to learn an optimization update
policy given the current state’s feedback such that the expected reward is maxi­
mized. The actions in the reinforcement setting are changes to the update policy
of the autonomous optimizer. The update policy is some function of the objective
values and gradients evaluated at the current and past locations. By taking the
action of subjecting a particular update policy to a training problem (environment),
a reward is calculated by evaluating the speed of convergence and the objective
value at the current location. Changes to the update step are promoted if the re­
ward is positive and neglected if the reward is negative. Over many iterations, an
update policy is learned to tackle new optimization problems [141].

In the paper, the autonomous optimization algorithm is subjected to three ex­
periments: a logistic regression problem, a robust linear regression model and
a two­layer neural net classifier. The data­driven heuristic decision strategy is
benchmarked against the logistic and linear regression model to compare its perfor­
mance. The specifications of these optimization problems can be found in appendix
C.3.

• Both optimizers are trained on 90 different logistic regression loss­functions.
Subsequently, the performance is measured on a test set of 100 objective
functions.

• For the robust linear regression problem, a training set of 120 objective func­
tions is used, and its performance is tested on 100 randomly generated ob­
jective functions.

An identical set of selected heuristics is used to match the same experimental con­
ditions of the autonomous algorithm. The set of algorithms3 consists of Gradient

3Gradient Descent and Momentum Gradient Descent are self­coded, whereas the Conjugate Gradient
algorithm and L­BFGS are adapted from scipy.optimize.minimize

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

4.6. Results & Discussion

4

99

Descent, Momentum Gradient Descent, the Conjugate Gradient algorithm and L­
BFGS. The autonomous optimizer is optimized for 100 iterations. The selected
meta­heuristics require first derivative information for their update steps. As the
gradient is numerically approximated in this framework, these algorithms demand
9 function evaluations per update step. Therefore, the total number of iterations
for the data­driven heuristic decision strategy is scaled from 100 to 900 to compare
the optimizers equally.

The starting algorithm for the data­driven strategy will be Gradient Descent. After
that, a decision is made 7 times, each after a window of 100 iterations. The learning­
rates (𝛼) of Gradient Descent and Momentum Gradient Descent are optimized by
a simple parameter sweep for both regression problems and are displayed in table
4.10.

learning­rate 𝛼 Gradient Descent Momentum Gradient Descent

Logistic regression 1 ⋅ 10−2 5 ⋅ 10−2
Robust linear regression 1 ⋅ 10−2 5 ⋅ 10−2

Table 4.10: Values of optimized learning rate 𝛼 for Gradient Descent and
Momentum Gradient Descent for the two benchmarking problems.

Figure 4.35a shows the results Logistic regression of the single heuristic optimizers
and the autonomous optimizers of the ’Learning to optimize’ paper and figure 4.35b
the outcome of the data­driven heuristic decision strategy.

It can be seen that for the results in the ’Learning to optimize’ paper, the perfor­
mance difference is substantial for the first few iterations. Such a trend is excluded
from the data­driven heuristic decision strategy (’DataOpt’ in the figures). This be­
haviour could be the fact that in this study, the initial solutions are equal for all
algorithms. In this way, there is no margin of victory difference for the individ­
ual algorithms. Information about the fairness of initial conditions is not present
in the paper of Li and Malik. Both experiments report a performance drop of the
data­driven algorithm in the first set of iterations. For the data­driven heuristic
decision strategy, a considerable performance increase can be seen after the first
data­driven decision at 𝑡 = 100. The C­Support Vector Classifier improves its mean
margin of victory after every new assessment stage, eventually reaching a signifi­
cant difference between the Conjugate Gradient optimizer.

Figure 4.36a shows the robust linear regression results of the single heuristic op­
timizers and the autonomous optimizers of the ’Learning to optimize’ paper and
figure 4.36b the outcome of the data­driven heuristic decision strategy.

4

100 4. Data­driven optimization

0 20 40 60 80 100
Iteration

0.20

0.15

0.10

0.05

0.00

0.05

0.10

M
e
a
n
 M

a
rg

in
 o

f
V

ic
to

ry

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Autonomous Optimizer

(a) Logistic regression results with the
autonomous optimizer [141].

0 100 200 300 400 500 600 700 800 900
Iteration

−0.4

−0.3

−0.2

−0.1

0.0

M
ea

n
M

ar
gin

of
Vi

ct
or

y

L-BFGS
Conjugate Gradient

Gradient Descent
Momentum

DataOpt kNN-OVO
DataOpt kNN-OVA
DataOpt SVC
DataOpt AdaBoost

(b) Logistic regression results with the
data­driven heuristic decision strategy.

Figure 4.35: Mean margin of victory comparison of the data­driven optimizers for
the logistic regression problem.

0 20 40 60 80 100
Iteration

0.20

0.15

0.10

0.05

0.00

0.05

0.10

M
e
a
n
 M

a
rg

in
 o

f
V

ic
to

ry

Gradient Descent
Momentum
Conjugate Gradient
L-BFGS
Autonomous Optimizer

(a) Robust linear regression results with the
autonomous optimizer [141].

0 100 200 300 400 500 600 700 800 900
Iteration

−0.8

−0.6

−0.4

−0.2

0.0

M
ea

n
M

ar
gin

of
Vi

ct
or

y

L-BFGS
Conjugate Gradient

Gradient Descent
Momentum

DataOpt kNN-OVO
DataOpt kNN-OVA
DataOpt SVC
DataOpt AdaBoost

(b) Robust linear regression results with the
data­driven heuristic decision strategy.

Figure 4.36: Comparison of the data­driven optimizers for the robust linear
regression problem.

The results from the robust linear regression are very different from each other.
First of all, the L­BFGS and Conjugate Gradient optimizer performance suffer from

4.7. Recommendations

4

101

the multimodal landscape in Li and Malek paper’s experiment. However, both op­
timizers are the best­performing algorithms in the experiment in this study. There
could be discrepancies between the two experiments, which influences the per­
formance of these two optimizers. Secondly, the data­driven heuristic decision
strategy lacks performance and finds, on average, a lower solution quality than
Momentum Gradient Descent, L­BFGS and Conjugate Gradient.

4.7. Recommendations
This study’s results have shown that a significant improvement of solution qual­
ity can be acquired for data­scarce optimization when incorporating a data­driven
strategy. The continuation of this project can either lead to improving the current
state of the framework or creating a new framework that introduces a reinforcement
learning approach.

Improving the current state of the framework
Improvements in the current state of the framework can be sought in expanding
the generated problem set, including hyper­parameter optimization, improving the
heuristic strategy, changing the heuristic signature and assessing the classifica­
tion.

Expand generated problem set
The generated problem set was applicable as a proof­of­concept, but only accompa­
nies a restricted spectrum of optimization problems. Problems of different dimen­
sionality can be implemented, which will open up new problem­specific features
that benefit algorithms that incorporate dimensionality reduction. These problems
can already be generated and optimized by the current framework. New analytical
equations can easily be added to the framework, as long as they are single­objective
and box­constrained. Data sets of real­world problems can also be added to include
non­artificially generated problems.

Besides, the framework is restricted to single­objective box constrained problems
only. Therefore, the performance of the selected meta­heuristics is only relevant
for these types of problems. This can be seen in the performance of the Adam
algorithm. Despite being state­of­the­art on optimizing neural networks, the well­
known optimizer has limited effectiveness on the generated problem set in this
study. In order to strive for justice for the Adam optimizer, it is essential to expand
the set to other domains. The framework requires to be more flexible to handle
these optimization forms.

Include variation in hyper­parameters
The set of selected meta­heuristics was restricted in consideration with the com­
putational resources required for the offline process. This restriction of algorithms
has also resulted in no hyper­parameter optimization before optimization. It was
decided to look for diversity in the set of meta­heuristics, in exchange for the
absence of different instances of the same optimizer. For some meta­heuristics,

4

102 4. Data­driven optimization

hyper­parameter optimization is crucial to achieving the desired performance. In a
follow­up study, the set of meta­heuristics can be expanded with multiple instances
of the same optimizers with different hyper­parameter settings. This idea can be
extended by changing the decision strategy to a discrete choice of one default
meta­heuristic, followed by a continuous choice of hyper­parameters.

The increase of computational resources to study the alteration of the various hyper­
parameters per algorithm must be taken into account. Only the most influential
hyper­parameters could be parametrized with dimensionality reduction according
to the findings in appendix A.2.

Improvements on the heuristic strategy
After the offline optimization for the selected heuristic, the heuristic strategy is
defined by consulting the solution quality performance metric. However, informa­
tion about the convergence of the algorithms during optimization is not taken into
account. A second performance metric could measure when the selected meta­
heuristics are converged to recommend switching to another algorithm. Switching
an otherwise suspended algorithm allows the optimization process to explore other
regions in the search space. Considering both the solution quality and the con­
vergence of the algorithms’ performance may improve the data­driven heuristic
strategy’s design.

The number of decisions and the length of the iteration window was kept fixed for
the heuristic strategy. However, each meta­heuristic converges at a different rate
at various stages in the optimization process. For example, the Adam optimizer
will result in immediate improvement in its first iterations. However, as optimiza­
tion continues, the optimizer will settle in a local optimum and is retained from
improving the solution quality. On the other hand, the PSO optimizer exhibits slow
convergence in its initial phase, but when a promising minimum has been located
the exploitative behaviour is significantly effective. Introducing a variable window
size and an assessment on every update step allows the optimizer to adapt the
heuristic strategy to the algorithm’s convergence needs. This will drastically in­
crease the number of possibilities, but opens up more variability of the combination
of meta­heuristics.

The initial conditions of an algorithm play a major role in its performance. The
heuristic strategy is based on the average performance of the selected meta­heuristics.
However, the variability of the performance should also be taken into account. As
discussed earlier, a change of algorithm requires a transfer of problem­specific in­
formation and hyper­parameters. This transition is far from perfect and will affect
the convergence of the optimization process. As a result, repeatedly switching af­
fects the promised solution quality gain. Therefore, a trade­off between expected
performance gain and the cost of switching should be considered before changing
the optimizer.

In the current state’s heuristic strategy framework, no feedback on the heuristic
strategy’s performance is assessed. Instead of using performance metrics to sug­
gest a suitable heuristic strategy, the heuristic strategy could also be optimized.

4.7. Recommendations

4

103

Even the most successful random strategies are able to outperform the solution
quality metric strategy. A loss function describing the solution quality difference
between the best performing algorithm and the currently used heuristic strategy
could be optimized by integer programming. This meta­optimization for the heuris­
tic strategy is a data­scarce, noisy optimization process itself. Therefore, Bayesian
Optimization could be a useful optimizer for this meta­process.

Assessing the heuristic signature and classification
The heuristic signature serves the purpose to linking the problem­specifics of the
optimization to the algorithms’ behaviour. As such metric did not yet exist, it was
chosen to construct this metric based on the resulting objective functions and by
Gaussian process regression. The classification during the online process builds
on the signature features and does not have access to the underlying optimization
data. Therefore, the classification relies on the effectiveness of this metric. An
alteration of the heuristic signature requires the construction of an entirely new
signature database. To limit this project’s computational resources, it was decided
to investigate different classifiers and keep the signature metric the same. Further
study could be addressed by trying alternative identifier metrics.

An improvement to our strategy could be to use the standard deviation of the
objective function results as the noise term for a heteroscedastic Gaussian process
regression. The heteroscedasticity of the resulting objective values can only be
assessed if data from multiple realizations is present. Hence, this would mean that
this modification can only be implemented for the offline signature construction.
However, the heteroscedasticity could contain valuable information to improve the
Gaussian process regression fit.

Similar to meta­heuristics, the used classification algorithms are also heavily influ­
enced by their hyper­parameters. The number of neighbours 𝑘 can be adjusted
to suppress noisy observations or make the classification boundaries more distinct,
the regularization term for 𝐶 C­Support Vector Classification is usually lowered from
its default value when more noisy labels are present, and the learning rate for
AdaBoost could be adjusted to increase the boosting of misclassified labels. Addi­
tionally, new classifiers and meta­classifiers from the scikit­learn library are
easily implemented in the framework. A classifier analysis study can give insights
into the effectiveness of the classification selection.

Improving both the effectiveness of the signature metric and the classifier’s accu­
racy will bring the performance of testing the data­driven heuristic decision strategy
more towards the performance of the offline training set’s heuristic strategy.

Introducing a reinforcement learning approach
The changes described above are primarily aimed at increasing the applicable prob­
lems and possible update steps. By scaling up the number of possibilities, the
applicable search space of decisions exponentially increases as the curse of dimen­
sionality states. Besides, an additional option, such as adding an optimizer, cannot
be applied until the entire training set has been analyzed with this implementation.

4

104 4. Data­driven optimization

Finally, the data­driven heuristic decision strategy’s performance can only be ana­
lyzed after the test set’s margin of victory has been computed. In a more practical
case, we want to have feedback on the data­driven decisions during optimization.
Similar to Li and Malek’s paper [141], a reinforcement learning approach could be
solving the current shortcomings of the data­driven model. The idea of designing
learned optimizers brings us back to the field of meta­learning. However, instead
of learning the update policy, the meta­heuristic strategy could be learned.

A reinforcement learning model can be described as an agent performing actions
in an unknown environment. Based on the state of the environment, a reaction is
given. By repetitively gaining feedback on these actions, the agent learns a profile
of actions that will maximize the reward of its actions.

Reinforcement learning model for one optimization problem.
Regarding the data­driven heuristic decision strategy for one particular problem,
the environment is the unknown response­surface of the optimization problem.
The action that the agent performs on the optimization problem will be the choice
of meta­heuristic and hyper­parameters. The environment responds with a series
of objective function values, which can be converted to a reward such as the margin
of victory metric. By penalizing the weights of certain heuristic decisions with a low
reward and favouring those with a high reward, the model learns which decisions
will result in the best optimization results. Figure 4.37 illustrates this concept.

0 100 200 300 400 500
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ob
jec

tiv
e f

un
cti

on
 va

lu
es

BayesianOpt
PSO
CMAES
Adam
RandomSearch
RL

w5

w4
w3

w2w1

Reinforcement learning optimizer
(agent)

Feedback
weights

X
1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(
X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Environment

Action

Reward

Figure 4.37: Conceptual illustration of reinforcement learned optimizer. At each
update step, the ladybug learned optimizer can suggest a new meta­heuristic

based on the weights 𝑤𝑖. The optimizer depicts its meta­heuristic choice on every
update step according to the feedback of its actions.

Reinforcement learn to reinforcement learn.
To scale the reinforcement learning approach to a set of optimization problems, one
can introduce a meta­learning approach. The meta­learning method consists of a

4.7. Recommendations

4

105

lower­level system that learns on one particular optimization problem, illustrated in
figure 4.37, and a higher­level system that oversees how rapidly the lower­level sys­
tem is learned. This can be described as reinforcement learning for a reinforcement
learning model and is described in the paper of Wang et al. [147].

The meta­learning model is trained on a set of optimization problems. When the
model encounters a new testing problem, rewards from the actions of the optimizer
will trigger the decision weights of the reinforcement learned optimizer. On a global
scale, the learning behaviour of the reinforcement learning model itself can be
evaluated. The higher­level system tries to optimize the reinforcement model to
adapt to new optimization problems quickly.

Reinforcement learned optimizer
(agent)

Feedback
weights

X
1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(
X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Environment

Action

Reward

meta-reinforcement
learned optimizer

Action

Reward

Feedback
weights

meta-environment

Figure 4.38: Conceptual illustration of meta­reinforced learning optimizer. The
spider meta­reinforcement learned optimizer controls the learning process by
handling the learning improvement of the single­problem ladybug reinforcement

learned optimizer.

5
Conclusion

In conclusion, this study looked at combining algorithmic optimization with novel
research in bio­based composites. The experimental research process of the bulk
moulding compound has been described in terms of an optimization problem, and
a Bayesian Optimization model has been constructed to generate new recipes. Em­
ploying a weighted single­objective penalty score, we combine the optimization of
multiple output parameters to a single objective.

Given the limited capabilities throughout the COVID­19 pandemic to conduct exper­
iments, we could only provide a proof­of­concept optimization model which gen­
erates recipes that can be produced and which have been shown to have good
mechanical properties through a three­point bending test. For the development of
the model, when implementing fibre modification or additives it is recommended to
consider the increase in the search space and the speed at which bio­based com­
posite could be produced. Finally, it is recommended to include the composites’
measurement uncertainty in the optimization model.

Although collecting experimental data was challenging, a proof­of­concept model
with a user­friendly interface was presented. More analysis on the effectiveness of
the optimization model has to be done when sufficient data is captured.

Despite promising reviews and confident recommendations, the choice of meta­
heuristic for optimization problems in general should be based on a per problem ba­
sis. By collecting optimization results from a select group of distinct meta­heuristics,
we verified that a meta­heuristic choice depends on the number of iterations and
the problem­specific features.

By concatenating different algorithms based on the solution quality metric, we cre­
ate a heuristic decision optimizer that performs better on average than the individ­
ual optimizers. This so­called heuristic strategy is problem­dependent, as the No
Free Lunch theorem withholds one algorithm to be successful on all data­scarce

107

5

108 5. Conclusion

problems.

To apply this method to unseen data­scarce optimization problems, we split the
process into an offline stage, where a set of generated optimization problems is
optimized and analyzed and an online stage, where the choice of meta­heuristic is
assessed during the optimization process based on the information from the offline
process.

This optimization data is captured in a unique heuristic identifier, named the heuris­
tic signature, and captures an algorithm’s behaviour on various problem­specific
features. A classification algorithm depicts the choice of meta­heuristic during the
online process.

The data­driven heuristic decision strategy was trained and tested on 500 objective
functions. Applying a suitable heuristic strategy in the offline phase results in an
optimizer that shows dominating performance, in contrast to making unfounded
random decisions. The data­driven heuristic decision strategy shows excellent op­
timizer performance during the online phase, outperforming the individual optimiz­
ers. However, the classifier’s F score for all implemented classification algorithms is
at most 50%. It could be argued that most of the classification is due to the accuracy
paradox of imbalanced datasets, despite the used binarization techniques. In terms
of computational resources, the various adaptions of the data­driven heuristic strat­
egy are 2.5 times faster in runtime compared to the best­performing meta­heuristic
Bayesian Optimization.

Both the optimizer and classifier performance are comparable for the training and
testing set. Due to the binarization methods used, classification is based on the
results of several decomposed classification problems. Therefore, the advantage
of optimizing the same training set vanishes, as the decision is not based on one
instance of the training data.

Lastly, the data­driven heuristic decision strategy is benchmarked against the au­
tonomous optimizer in the ’learning to optimize’ paper from Li and Malek. The
data­driven heuristic decision strategy shows excellent performance compared to
the autonomous optimizer on the logistic regression testing set. Despite having
the worst performance on the general generated problem set, the C­Support Vec­
tor Classifier is very effective. The results of the robust linear regression prob­
lem show discrepancies between the single meta­heuristic optimizers. Besides, the
data­driven heuristic decision strategy is not outperforming the individual optimiz­
ers.

State­of­the­art computational optimization has found its way into solving complex
engineering problems. With this study, it has been shown that even with the lim­
ited information of data­scarce and black­box situations, data­driven optimization
is an effective means of improving the current standard. Future studies are rec­
ommended to improve the proposed data­driven heuristic strategy framework or
implement a meta­reinforced learning approach.

Acknowledgements

As much as I wanted to predict this masters thesis’s problem­specifics, the COVID­
19 pandemic has had his signature written all over. I would like to thank the
people of NPSP, especially Zoya and Willem, for believing in this project despite the
challenging circumstances. During my time in Amsterdam, I’ve learned a lot and
developed a great interest in bio­based composites’ fascinating world.

I would also like to thank Miguel Bessa for his contributions to this project as the
main supervisor. During the many meetings, we had long­lasting discussions that
significantly contributed to the quality of this research. His involvement and support
have led to pushing this thesis to a higher level. I have great admiration for his
critical thinking and inspiring ideas. Miguel, many thanks for your endless support
on this project!

Next, I would like to thanks the remaining committee members, Marcel and Kees, for
their time in assessing this masters thesis. Marcel’s computational materials science
courses were part of the inspiration for a computational specialization during my
master’s degree.

I thank the entire Bessa research group for listening to my presentations and giving
useful feedback. In particular, Taylan for his help on coding related questions.

Lastly, despite the strange times of social distancing, it is important to keep your
friends close. I want to thank Sophia and the (ex­)inhabitants of Huize Wolf for the
past year’s joyful moment! Ahoe!

109

References

[1] M. A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson, W. Chen, and W. K. Liu,
A framework for data­driven analysis of materials under uncertainty: Countering the curse of
dimensionality, Computer Methods in Applied Mechanics and Engineering 320, 633 (2017).

[2] M. A. Bessa, P. Glowacki, and M. Houlder, Bayesian Machine Learning in Metamaterial Design:
Fragile Becomes Supercompressible, Advanced Materials 31, 1 (2019).

[3] W. Böttger, M. Lepelaar, and R. Groot, NPSP Composieten, http://www.npsp.nl/ (2009),
Accessed: 2020­09­21.

[4] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions
on Evolutionary Computation 1, 67 (1997).

[5] I. M. Daniel and O. Ishai, Materials & Design, Vol. 17 (Elsevier BV, 1996) pp. 1–42.

[6] S. A. Miller, M. D. Lepech, and S. L. Billington, Application of multi­criteria material selection
techniques to constituent refinement in bio­based composites, Materials and Design 52, 1043
(2013).

[7] J. Beigbeder, L. Soccalingame, D. Perrin, J. C. Bénézet, and A. Bergeret, How to manage bio­
composites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene
(PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites, Waste Management 83, 184
(2019).

[8] R. S. Trask, H. R. Williams, and I. P. Bond, Self­healing polymer composites: mimicking nature
to enhance performance, Bioinspiration & Biomimetics 2, P1 (2007).

[9] H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, A review on the tensile properties of natural
fiber reinforced polymer composites, Composites Part B: Engineering 42, 856 (2011).

[10] L. Osorio, E. Trujillo, A. W. Van Vuure, and I. Verpoest, Morphological aspects and mechanical
properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites,
Journal of Reinforced Plastics and Composites 30, 396 (2011).

[11] R. Dunne, D. Desai, R. Sadiku, and J. Jayaramudu, A review of natural fibres, their sustainability
and automotive applications, Journal of Reinforced Plastics and Composites 35, 1041 (2016).

[12] C. Unterweger, O. Brüggemann, and C. Fürst, Synthetic fibers and thermoplastic short­fiber­
reinforced polymers: Properties and characterization, Polymer Composites 35, 227 (2014).

[13] A. Vinod, M. R. Sanjay, S. Suchart, and P. Jyotishkumar, Renewable and sustainable bio­based
materials: An assessment on biofibers, biofilms, biopolymers and biocomposites, Journal of
Cleaner Production 258, 120978 (2020).

[14] P. K. Mallick, Fiber­Reinforced Composites: Materials, Manufacturing, and Design, Third Edition
(CRC Press, 2007).

[15] D. Puglia, J. Biagiotti, and J. M. Kenny, A Review on Natural Fibre­Based Composites—Part II,
Journal of Natural Fibers 1, 23 (2005).

111

http://dx.doi.org/10.1016/j.cma.2017.03.037
http://dx.doi.org/ 10.1002/adma.201904845
http://www.npsp.nl/
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/s0261-3069(97)87195-6
http://dx.doi.org/10.1016/j.matdes.2013.06.046
http://dx.doi.org/10.1016/j.matdes.2013.06.046
http://dx.doi.org/ 10.1016/j.wasman.2018.11.012
http://dx.doi.org/ 10.1016/j.wasman.2018.11.012
http://dx.doi.org/10.1088/1748-3182/2/1/P01
http://dx.doi.org/10.1016/j.compositesb.2011.01.010
http://dx.doi.org/ 10.1177/0731684410397683
http://dx.doi.org/ 10.1177/0731684416633898
http://dx.doi.org/10.1002/pc.22654
http://dx.doi.org/10.1016/j.jclepro.2020.120978
http://dx.doi.org/10.1016/j.jclepro.2020.120978
http://dx.doi.org/10.1201/9781420005981
http://dx.doi.org/ 10.1300/J395v01n03_03

5

112 References

[16] L. Kerni, S. Singh, A. Patnaik, and N. Kumar, A review on natural fiber reinforced composites,
Materials Today: Proceedings International Conference on Aspects of Materials Science and En­
gineering, 28, 1616 (2020).

[17] P. Wambua, J. Ivens, and I. Verpoest, Natural fibres: can they replace glass in fibre reinforced
plastics? Composites Science and Technology Eco­Composites, 63, 1259 (2003).

[18] S. C. Jana and A. Prieto, On the development of natural fiber composites of high­temperature
thermoplastic polymers, Journal of Applied Polymer Science 86, 2159 (2002).

[19] V. Kumar, L. Tyagi, and S. Sinha, Wood flour–reinforced plastic composites: a review, Reviews in
Chemical Engineering 27 (2011), 10.1515/revce.2011.006.

[20] J. Gassan, A study of fibre and interface parameters affecting the fatigue behaviour of natural
fibre composites, Composites Part A: Applied Science and Manufacturing 33, 369 (2002).

[21] D. G. Hepworth, J. F. V. Vincent, G. Jeronimidis, and D. M. Bruce, The penetration of epoxy resin
into plant fibre cell walls increases the stiffness of plant fibre composites, Composites Part A:
Applied Science and Manufacturing 31, 599 (2000).

[22] K. Van de Velde and P. Kiekens, Development of a Flax/Polypropylene Composite with Optimal
Mechanical Characteristics by Fiber and Matrix Modification, Journal of Thermoplastic Composite
Materials 15, 281 (2002).

[23] K. Van de Velde and P. Kiekens, Thermoplastic polymers: overview of several properties and their
consequences in flax fibre reinforced composites, Polymer Testing 20, 885 (2001).

[24] M. A. López­Manchado, J. Biagiotti, and J. M. Kenny, Comparative Study of the Effects of Dif­
ferent Fibers on the Processing and Properties of Polypropylene Matrix Composites, Journal of
Thermoplastic Composite Materials 15, 337 (2002).

[25] J. D. Badia, T. Kittikorn, E. Strömberg, L. Santonja­Blasco, A. Martínez­Felipe, A. Ribes­Greus,
M. Ek, and S. Karlsson, Water absorption and hydrothermal performance of PHBV/sisal biocom­
posites, Polymer Degradation and Stability 108, 166 (2014).

[26] K. Murali Mohan Rao, K. Mohana Rao, and A. V. Ratna Prasad, Fabrication and testing of natural
fibre composites: Vakka, sisal, bamboo and banana, Materials & Design 31, 508 (2010).

[27] A. V. Ratna Prasad and K. Mohana Rao, Mechanical properties of natural fibre reinforced polyester
composites: Jowar, sisal and bamboo, Materials & Design 32, 4658 (2011).

[28] N. Saba, M. T. Paridah, and M. Jawaid, Mechanical properties of kenaf fibre reinforced polymer
composite: A review, (2015).

[29] M. A. A. Ghani, Z. Salleh, K. M. Hyie, M. N. Berhan, Y. M. D. Taib, and M. A. I. Bakri, Mechanical
Properties of Kenaf/Fiberglass Polyester Hybrid Composite, Procedia Engineering International
Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012), 41, 1654 (2012).

[30] C. W. Chin and B. F. Yousif, Potential of kenaf fibres as reinforcement for tribological applications,
Wear 267, 1550 (2009).

[31] A. Gupta, A. Kumar, A. Patnaik, and S. Biswas, Effect of Different Parameters on Mechanical and
Erosion Wear Behavior of Bamboo Fiber Reinforced Epoxy Composites, (2011).

[32] U. Nirmal, J. Hashim, and K. O. Low, Adhesive wear and frictional performance of bamboo fibres
reinforced epoxy composite, Tribology International 47, 122 (2012).

[33] M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Chemical treatments on plant­based natural
fibre reinforced polymer composites: An overview | Elsevier Enhanced Reader, (2012).

http://dx.doi.org/ 10.1016/j.matpr.2020.04.851
http://dx.doi.org/ 10.1016/j.matpr.2020.04.851
http://dx.doi.org/10.1016/S0266-3538(03)00096-4
http://dx.doi.org/10.1002/app.11073
http://dx.doi.org/10.1515/revce.2011.006
http://dx.doi.org/10.1515/revce.2011.006
http://dx.doi.org/ 10.1016/S1359-835X(01)00116-6
http://dx.doi.org/ 10.1016/S1359-835X(99)00097-4
http://dx.doi.org/ 10.1016/S1359-835X(99)00097-4
http://dx.doi.org/10.1177/0892705702015004444
http://dx.doi.org/10.1177/0892705702015004444
http://dx.doi.org/ 10.1016/S0142-9418(01)00017-4
http://dx.doi.org/10.1177/0892705702015004457
http://dx.doi.org/10.1177/0892705702015004457
http://dx.doi.org/ 10.1016/j.polymdegradstab.2014.04.012
http://dx.doi.org/10.1016/j.matdes.2009.06.023
http://dx.doi.org/ 10.1016/j.matdes.2011.03.015
http://dx.doi.org/10.1016/j.conbuildmat.2014.11.043
http://dx.doi.org/10.1016/j.conbuildmat.2014.11.043
http://dx.doi.org/10.1016/j.proeng.2012.07.364
http://dx.doi.org/10.1016/j.proeng.2012.07.364
http://dx.doi.org/10.1016/j.wear.2009.06.002
http://dx.doi.org/https://doi.org/10.1155/2011/592906
http://dx.doi.org/https://doi.org/10.1155/2011/592906
http://dx.doi.org/10.1016/j.triboint.2011.10.012
http://dx.doi.org/10.1016/j.compositesb.2012.04.053
http://dx.doi.org/10.1016/j.compositesb.2012.04.053

References

5

113

[34] Y. Seki, Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the
mechanical properties of jute/thermoset composites, Materials Science and Engineering: A 508,
247 (2009).

[35] X. Li, L. G. Tabil, and S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber­
reinforced composites: A review, Journal of Polymers and the Environment 15, 25 (2007).

[36] S. H. Aziz and M. P. Ansell, The effect of alkalization and fibre alignment on the mechanical and
thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix,
Composites Science and Technology 64, 1219 (2004).

[37] M. N. Ichazo, C. Albano, J. González, R. Perera, and M. V. Candal, Polypropylene/wood flour
composites: treatments and properties, Composite Structures Third International Conference on
Composite Science and Technology, 54, 207 (2001).

[38] D. Ray, B. K. Sarkar, A. K. Rana, and N. R. Bose, Effect of alkali treated jute fibres on composite
properties, Bulletin of Materials Science 24, 129 (2001).

[39] J. I. Preet Singh, V. Dhawan, S. Singh, and K. Jangid, Study of Effect of Surface Treatment on
Mechanical Properties of Natural Fiber Reinforced Composites, Materials Today: Proceedings 4,
2793 (2017).

[40] K. Sever, M. Sarikanat, Y. Seki, G. Erkan, and Ü. H. Erdogan, The Mechanical Properties of
𝛾­Methacryloxypropyltrimethoxy silane­treated Jute/Polyester Composites, Journal of Composite
Materials 44, 1913 (2010).

[41] A. K. Bledzki, A. A. Mamun, M. Lucka­Gabor, and V. S. Gutowski, The effects of acetylation on
properties of flax fibre and its polypropylene composites, Express Polymer Letters 2, 413 (2008).

[42] B. Wang, S. Panigrahi, L. Tabil, and W. Crerar, Pre­treatment of Flax Fibers for use in Rotationally
Molded Biocomposites, Journal of Reinforced Plastics and Composites 26, 447 (2007).

[43] S. Mishra, A. K. Mohanty, L. T. Drzal, M. Misra, S. Parija, S. K. Nayak, and S. S. Tripathy, Studies
on mechanical performance of biofibre/glass reinforced polyester hybrid composites, Composites
Science and Technology 63, 1377 (2003).

[44] K. Joseph, S. Thomas, and C. Pavithran, Effect of chemical treatment on the tensile properties
of short sisal fibre­reinforced polyethylene composites, Polymer 37, 5139 (1996).

[45] C. Vallo, J. M. Kenny, A. Vazquez, and V. P. Cyras, Effect of Chemical Treatment on the Mechanical
Properties of Starch­Based Blends Reinforced with Sisal Fibre, Journal of Composite Materials 38,
1387 (2004).

[46] P. K. Kushwaha and R. Kumar, Influence of chemical treatments on the mechanical and water
absorption properties of bamboo fiber composites, Journal of Reinforced Plastics and Composites
30, 73 (2011).

[47] M. Jawaid and H. P. S. Abdul Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid compos­
ites: A review, Carbohydrate Polymers 86, 1 (2011).

[48] P. Reis, J. Ferreira, F. Antunes, and J. Costa, Flexural behaviour of hybrid laminated composites,
Composites Part A: Applied Science and Manufacturing 38, 1612 (2007).

[49] H. Jiang, D. P. Kamdem, B. Bezubic, and P. Ruede, Mechanical properties of poly(vinyl chlo­
ride)/wood flour/glass fiber hybrid composites, Journal of Vinyl and Additive Technology 9, 138
(2003).

[50] H. M. Akil, I. M. D. Rosa, C. Santulli, and F. Sarasini, Flexural behaviour of pultruded jute/glass
and kenaf/glass hybrid composites monitored using acoustic emission, Materials Science and
Engineering: A 527, 2942 (2010).

http://dx.doi.org/10.1016/j.msea.2009.01.043
http://dx.doi.org/10.1016/j.msea.2009.01.043
http://dx.doi.org/10.1007/s10924-006-0042-3
http://dx.doi.org/ 10.1016/j.compscitech.2003.10.001
http://dx.doi.org/ 10.1016/S0263-8223(01)00089-7
http://dx.doi.org/ 10.1016/S0263-8223(01)00089-7
http://dx.doi.org/10.1007/bf02710089
http://dx.doi.org/10.1016/j.matpr.2017.02.158
http://dx.doi.org/10.1016/j.matpr.2017.02.158
http://dx.doi.org/ 10.1177/0021998309360939
http://dx.doi.org/ 10.1177/0021998309360939
http://dx.doi.org/10.3144/expresspolymlett.2008.50
http://dx.doi.org/10.1177/0731684406072526
http://dx.doi.org/ 10.1016/S0266-3538(03)00084-8
http://dx.doi.org/ 10.1016/S0266-3538(03)00084-8
http://dx.doi.org/10.1016/0032-3861(96)00144-9
http://dx.doi.org/ 10.1177/0021998304042738
http://dx.doi.org/ 10.1177/0021998304042738
http://dx.doi.org/ 10.1177/0731684410383064
http://dx.doi.org/ 10.1177/0731684410383064
http://dx.doi.org/10.1016/j.carbpol.2011.04.043
http://dx.doi.org/10.1016/j.compositesa.2006.11.010
http://dx.doi.org/10.1002/vnl.10075
http://dx.doi.org/10.1002/vnl.10075
http://dx.doi.org/10.1016/j.msea.2010.01.028
http://dx.doi.org/10.1016/j.msea.2010.01.028

5

114 References

[51] S. B. Koradiya, J. P. Patel, and P. H. Parsania, The Preparation and PhysicoChemical Study of
Glass, Jute and Hybrid Glass­Jute Bisphenol­C­Based Epoxy Resin Composites, Polymer­Plastics
Technology and Engineering 49, 1445 (2010).

[52] O. L. S. Alsina, L. H. d. Carvalho, F. G. R. Filho, and J. R. M. d’Almeida, Immersion Temperature
Effects on the Water Absorption Behavior of Hybrid Lignocellulosic Fiber Reinforced­Polyester
Matrix Composites, Polymer­Plastics Technology and Engineering 46, 515 (2007).

[53] A. Arbelaiz, B. Fernández, J. Ramos, A. Retegi, R. Llano­Ponte, and I. Mondragon, Mechanical
properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modifi­
cation, fibre content, water uptake and recycling, Composites Science and Technology 65, 1582
(2005).

[54] C. Wu, K. Yang, Y. Gu, J. Xu, R. O. Ritchie, and J. Guan, Mechanical properties and impact
performance of silk­epoxy resin composites modulated by flax fibres, Composites Part A: Applied
Science and Manufacturing 117, 357 (2019).

[55] S. Amico, C. Angrizani, and M. Drummond, Influence of the Stacking Sequence on the Mechanical
Properties of Glass/Sisal Hybrid Composites, Journal of Reinforced Plastics and Composites 29,
179 (2010).

[56] M. Ashok Kumar, G. Ramachandra Reddy, Y. Siva Bharathi, S. Venkata Naidu, and V. Naga
Prasad Naidu, Frictional Coefficient, Hardness, Impact Strength, and Chemical Resistance of Re­
inforced Sisal­Glass Fiber Epoxy Hybrid Composites, Journal of Composite Materials 44, 3195
(2010).

[57] M. Idicula, K. Joseph, and S. Thomas,Mechanical Performance of Short Banana/Sisal Hybrid Fiber
Reinforced Polyester Composites, Journal of Reinforced Plastics and Composites 29, 12 (2010).

[58] M. Jacob, B. Francis, S. Thomas, and K. T. Varughese, Dynamical mechanical analysis of sisal/oil
palm hybrid fiber­reinforced natural rubber composites, Polymer Composites 27, 671 (2006).

[59] M. M. Davoodi, S. M. Sapuan, D. Ahmad, A. Ali, A. Khalina, and M. Jonoobi,Mechanical properties
of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam, Materials &
Design 31, 4927 (2010).

[60] P. K. Kushwaha and R. Kumar, Effect of Silanes on Mechanical Properties of Bamboo Fiber­epoxy
Composites, Journal of Reinforced Plastics and Composites 29, 718 (2010).

[61] S. Mandal, S. Alam, I. Varma, and S. Maiti, Studies on Bamboo/Glass Fiber Reinforced USP and
VE Resin, Journal of Reinforced Plastics and Composites 29, 43 (2010).

[62] S. K. Samal, S. Mohanty, and S. K. Nayak, Polypropylene—Bamboo/Glass Fiber Hybrid Compos­
ites: Fabrication and Analysis of Mechanical, Morphological, Thermal, and Dynamic Mechanical
Behavior, Journal of Reinforced Plastics and Composites 28, 2729 (2009).

[63] P. V. Joseph, K. Joseph, and S. Thomas, Effect of processing variables on the mechanical proper­
ties of sisal­fiber­reinforced polypropylene composites, Composites Science and Technology 59,
1625 (1999).

[64] J. George, S. S. Bhagawan, and S. Thomas, Effects of environment on the properties of low­
density polyethylene composites reinforced with pineapple­leaf fibre, Composites Science and
Technology 58, 1471 (1998).

[65] M. M. Thwe and K. Liao, Durability of bamboo­glass fiber reinforced polymer matrix hybrid com­
posites, Composites Science and Technology 63, 375 (2003).

[66] J. Gassan and V. S. Gutowski, Effects of corona discharge and UV treatment on the properties of
jute­fibre epoxy composites, Composites Science and Technology 60, 2857 (2000).

http://dx.doi.org/ 10.1080/03602559.2010.496409
http://dx.doi.org/ 10.1080/03602559.2010.496409
http://dx.doi.org/10.1080/03602550701297244
http://dx.doi.org/ 10.1016/j.compscitech.2005.01.008
http://dx.doi.org/ 10.1016/j.compscitech.2005.01.008
http://dx.doi.org/ 10.1016/j.compositesa.2018.12.003
http://dx.doi.org/ 10.1016/j.compositesa.2018.12.003
http://dx.doi.org/ 10.1177/0731684408096430
http://dx.doi.org/ 10.1177/0731684408096430
http://dx.doi.org/10.1177/0021998310371551
http://dx.doi.org/10.1177/0021998310371551
http://dx.doi.org/ 10.1177/0731684408095033
http://dx.doi.org/10.1002/pc.20250
http://dx.doi.org/ 10.1016/j.matdes.2010.05.021
http://dx.doi.org/ 10.1016/j.matdes.2010.05.021
http://dx.doi.org/10.1177/0731684408100691
http://dx.doi.org/ 10.1177/0731684408095048
http://dx.doi.org/ 10.1177/0731684408093451
http://dx.doi.org/ 10.1016/S0266-3538(99)00024-X
http://dx.doi.org/ 10.1016/S0266-3538(99)00024-X
http://dx.doi.org/ 10.1016/S0266-3538(97)00161-9
http://dx.doi.org/ 10.1016/S0266-3538(97)00161-9
http://dx.doi.org/10.1016/S0266-3538(02)00225-7
http://dx.doi.org/ 10.1016/S0266-3538(00)00168-8

References

5

115

[67] K. L. Pickering, M. G. A. Efendy, and T. M. Le, A review of recent developments in natural
fibre composites and their mechanical performance, Composites Part A: Applied Science and
Manufacturing 83, 98 (2016).

[68] E. Zini and M. Scandola, Green composites: An overview, Polymer Composites 32, 1905 (2011).

[69] M. Barletta, E. Pizzi, M. Puopolo, and S. Vesco, Design and manufacture of degradable polymers:
Biocomposites of micro­lamellar talc and poly(lactic acid), Materials Chemistry and Physics 196,
62 (2017).

[70] S. Chaitanya, I. Singh, and J. I. Song, Recyclability analysis of PLA/Sisal fiber biocomposites,
Composites Part B: Engineering 173, 106895 (2019).

[71] T. Mukherjee and N. Kao, PLA based biopolymer reinforced with natural fibre: A review, Journal
of Polymers and the Environment 19, 714 (2011).

[72] G. Mehta, A. K. Mohanty, M. Misra, and L. T. Drzal, Bio­based resin as a toughening agent for
biocomposites, Green Chemistry 6, 254 (2004).

[73] Y. W. Leong, M. B. A. Bakar, Z. A. M. Ishak, A. Ariffin, and B. Pukanszky, Comparison of the
mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate
filled polypropylene composites, Journal of Applied Polymer Science 91, 3315 (2004).

[74] J. Kiehl, J. Huser, S. Bistac, and C. Delaite, Influence of fillers content on the viscosity of un­
saturated polyester resin/calcium carbonate blends:, Journal of Composite Materials (2012),
10.1177/0021998311427780.

[75] S. Wong, R. Shanks, and A. Hodzic, Properties of Poly(3­hydroxybutyric acid) Composites with
Flax Fibres Modified by Plasticiser Absorption, Macromolecular Materials and Engineering 287,
647 (2002).

[76] A. Qaiss, R. Bouhfid, and H. Essabir, Characterization and Use of Coir, Almond, Apricot, Argan,
Shells, and Wood as Reinforcement in the Polymeric Matrix in Order to Valorize These Products,
(Springer International Publishing, Cham, 2015) pp. 305–339.

[77] N. A. N. Azman, M. R. Islam, M. Parimalam, N. M. Rashidi, and M. Mupit, Mechanical, struc­
tural, thermal and morphological properties of epoxy composites filled with chicken eggshell and
inorganic CaCO3 particles, Polymer Bulletin 77, 805 (2020).

[78] R. Kumar, J. S. Dhaliwal, G. S. Kapur, and Shashikant, Mechanical properties of modified biofiller­
polypropylene composites, Polymer Composites 35, 708 (2014).

[79] H.­Y. Li, Y.­Q. Tan, L. Zhang, Y.­X. Zhang, Y.­H. Song, Y. Ye, and M.­S. Xia, Bio­filler from waste
shellfish shell: Preparation, characterization, and its effect on the mechanical properties on
polypropylene composites, Journal of Hazardous Materials 217­218, 256 (2012).

[80] L. Luan, W. Wu, M. H. Wagner, and M. Mueller, Seaweed as novel biofiller in polypropylene
composites, Journal of Applied Polymer Science 118, 997 (2010).

[81] S. Kuciel, K. Mazur, and P. Jakubowska, Novel Biorenewable Composites Based on Poly (3­
hydroxybutyrate­co­3­hydroxyvalerate) with Natural Fillers, Journal of Polymers and the Environ­
ment 27, 803 (2019).

[82] F. Dominici, D. G. García, V. Fombuena, F. Luzi, D. Puglia, L. Torre, and R. Balart, Bio­polyethylene­
based composites reinforced with alkali and palmitoyl chloride­treated coffee silverskin, Molecules
24 (2019), 10.3390/molecules24173113.

[83] D. S. Bajwa, S. Adhikari, J. Shojaeiarani, S. G. Bajwa, P. Pandey, and S. R. Shanmugam, Char­
acterization of bio­carbon and ligno­cellulosic fiber reinforced bio­composites with compatibilizer,
Construction and Building Materials 204, 193 (2019).

http://dx.doi.org/10.1016/j.compositesa.2015.08.038
http://dx.doi.org/10.1016/j.compositesa.2015.08.038
http://dx.doi.org/ 10.1002/pc.21224
http://dx.doi.org/10.1016/j.matchemphys.2017.04.036
http://dx.doi.org/10.1016/j.matchemphys.2017.04.036
http://dx.doi.org/ 10.1016/j.compositesb.2019.05.106
http://dx.doi.org/ 10.1007/s10924-011-0320-6
http://dx.doi.org/ 10.1007/s10924-011-0320-6
http://dx.doi.org/10.1039/B316658A
http://dx.doi.org/ 10.1002/app.13542
http://dx.doi.org/10.1177/0021998311427780
http://dx.doi.org/10.1177/0021998311427780
http://dx.doi.org/ 10.1002/1439-2054(200210)287:10<647::AID-MAME647>3.0.CO;2-7
http://dx.doi.org/ 10.1002/1439-2054(200210)287:10<647::AID-MAME647>3.0.CO;2-7
http://dx.doi.org/10.1007/s00289-019-02779-y
http://dx.doi.org/ 10.1002/pc.22714
http://dx.doi.org/ 10.1016/j.jhazmat.2012.03.028
http://dx.doi.org/10.1002/app.32462
http://dx.doi.org/10.1007/s10924-019-01392-4
http://dx.doi.org/10.1007/s10924-019-01392-4
http://dx.doi.org/ 10.3390/molecules24173113
http://dx.doi.org/ 10.3390/molecules24173113
http://dx.doi.org/10.1016/j.conbuildmat.2019.01.068

5

116 References

[84] S. Boufi, 18 ­ Biocomposites from olive­stone flour: A step forward in the valorization of the solid
waste from the olive­oil industry, in Lignocellulosic Fibre and Biomass­Based Composite Materi­
als, Woodhead Publishing Series in Composites Science and Engineering, edited by M. Jawaid,
P. Md Tahir, and N. Saba (Woodhead Publishing, 2017) pp. 387–408.

[85] A. Gharbi, R. B. Hassen, and S. Boufi, Composite materials from unsaturated polyester resin and
olive nuts residue: The effect of silane treatment, Industrial Crops and Products 62, 491 (2014).

[86] S. Agustin­Salazar, P. Cerruti, L. Á. Medina­Juárez, G. Scarinzi, M. Malinconico, H. Soto­Valdez,
and N. Gamez­Meza, Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly
(lactic acid) biocomposites, International Journal of Biological Macromolecules 115, 727 (2018).

[87] M. N. Prabhakar, A. U. R. Shah, K. C. Rao, and J.­I. Song, Mechanical and thermal properties of
epoxy composites reinforced with waste peanut shell powder as a bio­filler, Fibers and Polymers
16, 1119 (2015).

[88] D. Sánchez­Acosta, A. Rodriguez­Uribe, C. R. Álvarez­Chávez, A. K. Mohanty, M. Misra, J. López­
Cervantes, and T. J. Madera­Santana, Physicochemical characterization and evaluation of pecan
nutshell as biofiller in a matrix of poly(lactic acid), Journal of Polymers and the Environment 27,
521 (2019).

[89] N. F. Zaaba and H. Ismail, Thermoplastic/natural filler composites: A short review, Journal of
Physical Science 30, 81 (2019).

[90] J. Sliseris, L. Yan, and B. Kasal, Numerical modelling of flax short fibre reinforced and flax fibre
fabric reinforced polymer composites, Composites Part B: Engineering 89, 143 (2016).

[91] L. Puech, K. R. Ramakrishnan, N. Le Moigne, S. Corn, P. R. Slangen, A. L. Duc, H. Boudhani, and
A. Bergeret, Investigating the impact behaviour of short hemp fibres reinforced polypropylene
biocomposites through high speed imaging and finite element modelling, Composites Part A:
Applied Science and Manufacturing 109, 428 (2018).

[92] D. S. Chethan and G. S. Venkatesh, Experimental and Numerical Modeling of Hemp­Polyester
Composites,Wood is Good: Current Trends and Future Prospects in Wood Utilization , 333 (2017).

[93] C. A. Wallace, G. C. Saha, M. T. Afzal, and A. Lloyd, Experimental and computational modeling of
effective flexural/tensile properties of microwave pyrolysis biochar reinforced GFRP biocompos­
ites, Composites Part B: Engineering 175, 107180 (2019).

[94] J.­B. Grill, M. Valko, and R. Munos, Black­box optimization of noisy functions with unknown
smoothness, Advances in Neural Information Processing Systems , 667 (2015).

[95] F. Rothlauf, Design of modern heuristics: principles and application (Springer­Verlag, 2011).

[96] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (MIT Press,
2009).

[97] G. J. Woeginger, Exact algorithms for NP­hard problems: A survey, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor­
matics) 2570, 185 (2003).

[98] J. Scholz, Genetic Algorithms and the Traveling Salesman Problem a historical Review,
arXiv:1901.05737 [cs, stat] (2018), 10.13140/RG.2.2.22632.78088/1, arXiv: 1901.05737.

[99] V. V. Vazirani, Approximation Algorithms (Springer Berlin Heidelberg, 2003).

[100] C. Blum and A. Roli, Metaheuristics in Combinatorial Optimization: Overview and Conceptual
Comparison, ACM Computing Surveys 35, 268 (2003).

http://dx.doi.org/10.1016/B978-0-08-100959-8.00018-4
http://dx.doi.org/10.1016/B978-0-08-100959-8.00018-4
http://dx.doi.org/ 10.1016/j.indcrop.2014.09.012
http://dx.doi.org/10.1016/j.ijbiomac.2018.04.120
http://dx.doi.org/ 10.1007/s12221-015-1119-1
http://dx.doi.org/ 10.1007/s12221-015-1119-1
http://dx.doi.org/ 10.1007/s10924-019-01374-6
http://dx.doi.org/ 10.1007/s10924-019-01374-6
http://dx.doi.org/10.21315/jps2019.30.s1.5
http://dx.doi.org/10.21315/jps2019.30.s1.5
http://dx.doi.org/10.1016/j.compositesb.2015.11.038
http://dx.doi.org/10.1016/j.compositesa.2018.03.013
http://dx.doi.org/10.1016/j.compositesa.2018.03.013
http://dx.doi.org/ 10.1007/978-981-10-3115-1
http://dx.doi.org/ 10.1016/j.compositesb.2019.107180
http://dx.doi.org/10.1007/978-3-540-72962-4
http://dx.doi.org/ 10.1007/3-540-36478-1_17
http://dx.doi.org/ 10.1007/3-540-36478-1_17
http://dx.doi.org/ 10.1007/3-540-36478-1_17
http://dx.doi.org/10.13140/RG.2.2.22632.78088/1
http://dx.doi.org/10.1007/978-3-662-04565-7
http://dx.doi.org/10.1145/937503.937505

References

5

117

[101] M. Birattari, L. Paquete, T. Stützle, and K. Varrentrapp, Classification of Metaheuristics and Design
of Experiments for the Analysis of Components, Tech. Rep. (2001).

[102] S. Salcedo­Sanz, Modern meta­heuristics based on nonlinear physics processes : A review of
models and design procedures, Physics Reports 655, 1 (2016).

[103] W. B. Powell, A unified framework for stochastic optimization, European Journal of Operational
Research 275, 795 (2019).

[104] E. Özcan, B. Bilgin, E. E. Korkmaz, and I. Cad, A Comprehensive Analysis of Hyper­heuristics,
Intelligent Data Analysis 12, 3 (2008).

[105] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, Recent advances in selection hyper­heuristics,
European Journal of Operational Research 285, 405 (2020).

[106] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez­rodriguez, J. Walker, M. Gendreau, G. Kendall,
B. Mccollum, A. J. Parkes, S. Petrovic, and E. K. Burke, HyFlex : A Benchmark Framework for
Cross­Domain Heuristic Search, European Conference on Evolutionary Computation in Combina­
torial Optimization , 136 (2012).

[107] W. G. Jackson, E. Özcan, and R. I. John, Move acceptance in local search metaheuristics for
cross­domain search, Expert Systems With Applications 109, 131 (2018).

[108] K. Sörensen, Metaheuristics—the metaphor exposed, International Transactions in Operational
Research 22, 3 (2015).

[109] Z. W. Geem, J. H. Kim, and G. Loganathan, A New Heuristic Optimization Algorithm: Harmony
Search, SIMULATION 76, 60 (2001).

[110] S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software
69, 46 (2014).

[111] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, Taking the human out of the
loop: A review of Bayesian optimization, Proceedings of the IEEE 104, 148 (2016).

[112] E. Brochu, V. M. Cora, and N. de Freitas, A Tutorial on Bayesian Optimization of Expensive Cost
Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning,
(2010), arXiv:1012.2599 .

[113] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, Algorithms for hyper­parameter optimization,
Advances in neural information processing systems 24, 2546 (2011).

[114] R. Eberhart and J. Kennedy, New optimizer using particle swarm theory, Proceedings of the In­
ternational Symposium on Micro Machine and Human Science , 39 (1995).

[115] N. Hansen and A. Ostermeier, Proceedings of IEEE International Conference on Evolutionary
Computation (IEEE, 1996) pp. 312–317.

[116] D. P. Kingma and J. L. Ba, Adam: A method for stochastic optimization, 3rd International Con­
ference on Learning Representations, ICLR 2015 ­ Conference Track Proceedings , 1 (2015),
arXiv:1412.6980 .

[117] J. Mockus, V. Tiesis, and A. Zilinskas, The application of Bayesian methods for seeking the
extremum, Towards Global Optimization 2, 117 (1978).

[118] Y. Shi and R. Eberhart, A modified particle swarm optimizer, in 1998 IEEE International Conference
on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
(Cat. No.98TH8360) (1998) pp. 69–73.

http://dx.doi.org/10.1016/j.physrep.2016.08.001
http://dx.doi.org/ 10.1016/j.ejor.2018.07.014
http://dx.doi.org/ 10.1016/j.ejor.2018.07.014
http://dx.doi.org/10.3233/ida-2008-12102
http://dx.doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/ 10.1007/978-3-642-29124-1_12
http://dx.doi.org/ 10.1007/978-3-642-29124-1_12
http://dx.doi.org/ 10.1016/j.eswa.2018.05.006
http://dx.doi.org/ 10.1111/itor.12001
http://dx.doi.org/ 10.1111/itor.12001
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/ 10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/ 10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
http://dx.doi.org/10.1109/mhs.1995.494215
http://dx.doi.org/10.1109/mhs.1995.494215
http://dx.doi.org/10.1109/ICEC.1996.542381
http://dx.doi.org/10.1109/ICEC.1996.542381
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/ICEC.1998.699146
http://dx.doi.org/10.1109/ICEC.1998.699146
http://dx.doi.org/10.1109/ICEC.1998.699146

5

118 References

[119] M. Zambrano­Bigiarini, M. Clerc, and R. Rojas, Standard Particle Swarm Optimisation 2011 at
CEC­2013: A baseline for future PSO improvements, in 2013 IEEE Congress on Evolutionary
Computation (2013) pp. 2337–2344, iSSN: 1941­0026.

[120] M. R. Bonyadi and Z. Michalewicz, SPSO2011 ­ Analysis of stability, local convergence, and ro­
tation sensitivity, GECCO 2014 ­ Proceedings of the 2014 Genetic and Evolutionary Computation
Conference , 9 (2014).

[121] N. Padhye, K. Deb, and P. Mittal, Boundary Handling Approaches in Particle Swarm Optimization,
in Advances in Intelligent Systems and Computing (Springer India, 2012) pp. 287–298.

[122] M. El­Abd and M. S. Kamel, Black­box optimization benchmarking for noiseless function testbed
using particle swarm optimization, in Proceedings of the 11th annual conference companion on
Genetic and evolutionary computation conference ­ GECCO '09 (ACM Press, 2009).

[123] N. Hansen, The CMA evolution strategy: A comparing review, Studies in Fuzziness and Soft
Computing 192, 75 (2006).

[124] N. Qian, On the momentum term in gradient descent learning algorithms, Neural Networks 12,
145 (1999).

[125] J. Duchi, E. Hazan, and Y. Singer, Adaptive Subgradient Methods for Online Learning and Stochas­
tic Optimization, Journal of Machine Learning Research 12, 2121 (2011).

[126] G. Hinton and T. Tieleman, Lecture 6.5 ­ RMSProp: Divide the gradient by a running average of
its recent magnitude, (2012).

[127] L. Shi, Y. Zhang, W. Wang, J. Cheng, and H. Lu, Rethinking The Pid Optimizer For Stochastic
Optimization Of Deep Networks, in 2020 IEEE International Conference on Multimedia and Expo
(ICME) (2020) pp. 1–6, iSSN: 1945­788X.

[128] F. R. S. Bayes, An essay towards solving a problem in the doctrine of chances, Biometrika 45,
296 (1958).

[129] C. E. Rasmussen and C. K. I. Williams, The MIT Press, Cambridge, MA, USA, Vol. 38 (2006) pp.
715–719.

[130] J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian optimization of machine learning
algorithms, in Advances in Neural Information Processing Systems (2012) arXiv:1206.2944 .

[131] The GPyOpt authors, GPyOpt: A Bayesian Optimization framework in Python, http://github.
com/SheffieldML/GPyOpt (2016).

[132] R. Moriconi, K. S. Kumar, and M. P. Deisenroth, High­dimensional Bayesian optimization with
projections using quantile Gaussian processes, Optimization Letters 14, 51 (2020).

[133] R. Leardi, Genetic algorithms, Comprehensive Chemometrics 1, 631 (1986).

[134] F. Hutter, H. H. Hoos, and K. Leyton­Brown, Sequential model­based optimization for general al­
gorithm configuration, International conference on learning and intelligent optimization, Springer
, 507 (2011).

[135] Y. Bengio, Gradient­based optimization of hyperparameters, Neural computation 12, 1889 (2000).

[136] J. Bergstra and Y. Bengio, Random search for hyper­parameter optimization, The Journal of Ma­
chine Learning Research 13, 281 (2012).

[137] B. Doerr and C. Doerr, Theory of parameter control for discrete black­box optimization: Provable
performance gains through dynamic parameter choices, Theory of Evolutionary Computation, ,
271 (2020), 1804.05650 .

http://dx.doi.org/10.1109/CEC.2013.6557848
http://dx.doi.org/10.1109/CEC.2013.6557848
http://dx.doi.org/10.1145/2576768.2598263
http://dx.doi.org/10.1145/2576768.2598263
http://dx.doi.org/10.1007/978-81-322-1038-2_25
http://dx.doi.org/10.1145/1570256.1570316
http://dx.doi.org/10.1145/1570256.1570316
http://dx.doi.org/ 10.1007/11007937_4
http://dx.doi.org/ 10.1007/11007937_4
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://jmlr.org/papers/v12/duchi11a.html
http://dx.doi.org/ 10.1109/ICME46284.2020.9102970
http://dx.doi.org/ 10.1109/ICME46284.2020.9102970
http://dx.doi.org/10.1093/biomet/45.3-4.296
http://dx.doi.org/10.1093/biomet/45.3-4.296
http://arxiv.org/abs/1206.2944
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
http://dx.doi.org/10.1016/b978-044452701-1.00039-9
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/ 10.1162/089976600300015187
http://arxiv.org/abs/1804.05650

References

5

119

[138] J. Vesterstrom and R. Thomsen, A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithms on numerical benchmark problems, Proceedings of the
2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), 2, 1980 (2004).

[139] P. Szynkiewicz, Comparative Study of PSO and CMA­ES Algorithms on Black­box Opti­
mization Benchmarks, Journal of Telecommunications and Information Technology (2018),
10.26636/jtit.2018.127418.

[140] S. P. Lim and H. Haron, Performance comparison of genetic algorithm, differential evolution and
particle swarm optimization towards benchmark functions, 2013 IEEE Conference on Open Sys­
tems (ICOS), , 41 (2013).

[141] K. Li and J. Malik, Learning to Optimize, (2016), 1606.01885 .

[142] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,
and N. De Freitas, Learning to learn by gradient descent by gradient descent, Advances in Neural
Information Processing Systems , 3988 (2016), arXiv:1606.04474 .

[143] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, and N. Freitas,
Learning to Learn without Gradient Descent by Gradient Descent, in International Conference on
Machine Learning (PMLR, 2017) pp. 748–756.

[144] C. Finn, P. Abbeel, and S. Levine, Model­agnostic meta­learning for fast adaptation of deep
networks, in Proceedings of the 34th International Conference on Machine Learning, Proceedings
of Machine Learning Research, Vol. 70, edited by D. Precup and Y. W. Teh (PMLR, International
Convention Centre, Sydney, Australia, 2017) pp. 1126–1135.

[145] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo, M. Denil, N. Freitas,
and J. Sohl­Dickstein, Learned Optimizers that Scale and Generalize, in International Conference
on Machine Learning (PMLR, 2017) pp. 3751–3760.

[146] Y. Cao, T. Chen, Z. Wang, and Y. Shen, Learning to Optimize in Swarms, arXiv:1911.03787 [cs,
q­bio, stat] (2019), arXiv: 1911.03787.

[147] J. X. Wang, Z. Kurth­Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D. Kumaran,
and M. Botvinick, Learning to reinforcement learn, arXiv:1611.05763 [cs, stat] (2017), arXiv:
1611.05763.

[148] International Organization for Standardization, Plastics­Determination of Flexural Properties (ISO
178:2010), (2010).

[149] KNN Cellulose BV, Recell, https://www.recell.eu/ (2020), Accessed: 2020­12­24.

[150] C. Chevalier and D. Ginsbourger, Fast computation of the multi­points expected improvement with
applications in batch selection, International Conference on Learning and Intelligent Optimization
(2013), 10.1007/978­3­642­44973­47.

[151] K. S. Siddharthan, M. Sasikumar, and A. Elayaperumal, Mechanical and thermal properties of
glass/polyester composite with glycerol as additive, International Journal of Engineering Trends
and Technology 7, 61 (2014).

[152] L. Bottou, Large­scale machine learning with stochastic gradient descent, Proceedings of COMP­
STAT’2010, , 177 (2010).

[153] S. Rajeev and C. Krishnamoorthy, Discrete optimization of structures using genetic algorithms,
Journal of structural engineering 118, 1233 (1992).

[154] A. P. Piotrowski, Regarding the rankings of optimization heuristics based on artificially­constructed
benchmark functions, Information Sciences 297, 191 (2015).

http://dx.doi.org/10.26636/jtit.2018.127418
http://dx.doi.org/10.26636/jtit.2018.127418
http://dx.doi.org/ 10.1109/icos.2013.6735045
https://arxiv.org/abs/1606.01885
http://arxiv.org/abs/1606.01885
http://arxiv.org/abs/1606.04474
http://proceedings.mlr.press/v70/chen17e.html
http://proceedings.mlr.press/v70/chen17e.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/wichrowska17a.html
http://proceedings.mlr.press/v70/wichrowska17a.html
http://arxiv.org/abs/1911.03787
http://arxiv.org/abs/1911.03787
http://arxiv.org/abs/1611.05763
http://dx.doi.org/10.5555/iso178:2010
http://dx.doi.org/10.5555/iso178:2010
https://www.recell.eu/
http://dx.doi.org/10.1007/978-3-642-44973-4_7
http://dx.doi.org/10.1007/978-3-642-44973-4_7
http://dx.doi.org/10.14445/22315381/IJETT-V7P258
http://dx.doi.org/10.14445/22315381/IJETT-V7P258
http://dx.doi.org/10.1007/978-3-7908-2604-3_16
http://dx.doi.org/ 10.1061/(asce)0733-9445(1992)118:5(1233)
http://dx.doi.org/10.1016/j.ins.2014.11.023

5

120 References

[155] I. Loshchilov, CMA­ES with restarts for solving CEC 2013 benchmark problems, in 2013 IEEE
Congress on Evolutionary Computation (IEEE, 2013).

[156] J. Rönkkönen, X. Li, V. Kyrki, and J. Lampinen, A generator for multimodal test functions with
multiple global optima, in Lecture Notes in Computer Science (Springer Berlin Heidelberg, 2008)
pp. 239–248.

[157] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, and H. China, Functions for the CEC 2013 special
session, Benchmark and competition on large­scale global optimization, Congress on Evolutionary
Computation 7, 8 (2013).

[158] S. Surjanovic and D. Bingham, Virtual Library of Simulation Experiments: Test Functions
and Datasets, https://www.sfu.ca/~ssurjano/optimization.html (2013), Accessed:
2020­09­21.

[159] M. A. Ardeh, BenchmarkFcns Toolbox, http://benchmarkfcns.xyz/ (2020), Accessed:
2021­02­03.

[160] M. D. McKay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code, Technometrics 42, 55
(2000).

[161] V. Beiranvand, W. Hare, and Y. Lucet, Best practices for comparing optimization algorithms,
Optimization and Engineering 18, 815 (2017), arXiv:1709.08242 .

[162] N. S. Keskar and R. Socher, Improving Generalization Performance by Switching from Adam to
SGD, arXiv preprint arXiv:1712.07628 (2017), 1712.07628 .

[163] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, Learning from class­
imbalanced data: Review of methods and applications, Expert Systems with Applications 73, 220
(2017).

[164] A. Fernández, V. López, M. Galar, M. J. del Jesus, and F. Herrera, Analysing the classification
of imbalanced data­sets with multiple classes: Binarization techniques and ad­hoc approaches,
Knowledge­Based Systems 42, 97 (2013).

[165] T. Hastie and R. Tibshirani, Classification by pairwise coupling, Annals of Statistics 26, 451 (1998).

[166] Y. Freund and R. E. Schapire, A Decision­Theoretic Generalization of On­Line Learning and an
Application to Boosting, Journal of Computer and System Sciences 55, 119 (1997).

[167] G. Kumar and T. Head, Scikit­optimize, Tim Head and contributors (2017).

[168] T. Hastie, S. Rosset, J. Zhu, and H. Zou, Multi­class AdaBoost, Statistics and Its Interface 2, 349
(2009).

[169] M. Sokolova and G. Lapalme, A systematic analysis of performance measures for classification
tasks, Information Processing & Management 45, 427 (2009).

[170] G. B. Dantzig, Programming of Interdependent Activities: II Mathematical Model, Econometrica
17, 200 (1949).

[171] S. Boyd and L. Vandenberghe, Undergraduate Convexity (Cambridge University Press, 2013) pp.
223–251.

[172] Y. Nesterov and A. Nemirovskii, Interior­Point Polynomial Algorithms in Convex Programming
(Society for Industrial and Applied Mathematics, 1994).

[173] F. Biscani and D. Izzo, A parallel global multiobjective framework for optimization: pagmo, Journal
of Open Source Software 5, 2338 (2020).

http://dx.doi.org/10.1109/cec.2013.6557593
http://dx.doi.org/10.1109/cec.2013.6557593
http://dx.doi.org/ 10.1007/978-3-540-89694-4_25
https://www.sfu.ca/~ssurjano/optimization.html
http://benchmarkfcns.xyz/
http://dx.doi.org/10.1080/00401706.2000.10485979
http://dx.doi.org/10.1080/00401706.2000.10485979
http://dx.doi.org/10.1007/s11081-017-9366-1
http://arxiv.org/abs/1709.08242
http://arxiv.org/abs/1712.07628
http://dx.doi.org/10.1016/j.eswa.2016.12.035
http://dx.doi.org/10.1016/j.eswa.2016.12.035
http://dx.doi.org/10.1016/j.knosys.2013.01.018
http://dx.doi.org/ 10.1214/aos/1028144844
http://dx.doi.org/ 10.1006/jcss.1997.1504
http://dx.doi.org/10.4310/SII.2009.v2.n3.a8
http://dx.doi.org/10.4310/SII.2009.v2.n3.a8
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.2307/1905523
http://dx.doi.org/10.2307/1905523
http://dx.doi.org/10.1142/9789814412520_0010
http://dx.doi.org/10.1137/1.9781611970791
http://dx.doi.org/ 10.21105/joss.02338
http://dx.doi.org/ 10.21105/joss.02338

References

5

121

[174] Y. Shi and R. Eberhart, Empirical study of particle swarm optimization, in Proceedings of the
1999 Congress on Evolutionary Computation­CEC99 (Cat. No. 99TH8406), Vol. 3 (IEEE, 1999)
pp. 1945–1950.

[175] Z. Li­Ping, Y. Huan­Jun, and H. Shang­Xu, Optimal choice of parameters for particle swarm
optimization, Journal of Zhejiang University­Science A 6, 528 (2005).

[176] S. Chen, J. Montgomery, and A. Bolufé­Röhler, Measuring the curse of dimensionality and its
effects on particle swarm optimization and differential evolution, Applied Intelligence 42, 514
(2015).

[177] N. Hansen and S. Kern, Evaluating the CMA Evolution Strategy on Multimodal Test Functions, in
Parallel Problem Solving from Nature ­ PPSN VIII, Lecture Notes in Computer Science, edited by
X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo­Guervós, J. A. Bullinaria, J. E. Rowe,
P. Tino, A. Kabán, and H.­P. Schwefel (Springer, Berlin, Heidelberg, 2004) pp. 282–291.

[178] H.­G. Beyer and B. Sendhoff, Simplify your covariance matrix adaptation evolution strategy, IEEE
Transactions on Evolutionary Computation 21, 746 (2017).

[179] M. C. J. Kennedy, The particle swarm ­ explosion, stability, and convergence in a multidimensional
complex space, IEEE (2002), 10.1109/4235.985692.

http://dx.doi.org/10.1109/CEC.1999.785511
http://dx.doi.org/10.1109/CEC.1999.785511
http://dx.doi.org/10.1631/jzus.2005.a0528
http://dx.doi.org/10.1007/978-3-540-30217-9_29
http://dx.doi.org/ 10.1109/tevc.2017.2680320
http://dx.doi.org/ 10.1109/tevc.2017.2680320
http://dx.doi.org/10.1109/4235.985692

A
Support information for

literature review

A.1. P­type optimization
If an algorithm has a time­complexity at most polynomial that manages to solve an
optimization problem exactly, we speak of P­type optimization. P­type algorithms
operate on problems with specific characteristics. Both linear programming and
convex problems will be briefly discussed in the upcoming sections.

Linear programming
The first group of problems are linear and quadratic optimization problems. Linear
optimization, also known as linear programming, is a category of P­type problems
where the objective function and constraints are linearly dependent on the input
parameters. In practice, linear programming is widely used to solve planning and
transportation issues. The linear problem is defined in equation A.1:

𝑓(𝑥⃗) = 𝑐1𝑥1 + 𝑐2𝑥2 + ... + 𝑐𝑑𝑥𝑑 =
𝑑

∑
𝑗=1
𝑐𝑗𝑥𝑗 (A.1)

The simplex algorithm solves linear optimization problems for continuous input pa­
rameters. This algorithm establishes a simplex on the boundaries of the search
space. Because of the linear constraints, one of the corners of the simplex must be
the optimal solution. Since the number of the simplex vertices is finite, the optimum
can be found by checking all vertices of the simplex [170].

Although the simplex method finds an exact solution, it has a worst­case time com­

123

A

124 A. Support information for literature review

plexity that is near­exponential. The ellipsoid algorithm has a worst­case time com­
plexity that is better than the simplex method. However, the average time com­
plexity is worse than the simplex method. Today, linear programming is widely
understood, and numerous solvers can be chosen that can yield polynomial time
complexity [95].

Convex problems
The second category of P­type problems is convex problems. A problem is convex
when for every two points in the solution space, the straight line between those
points always has a larger objective value than the respective function values. Con­
vex optimization has its applications in various disciplines, such as signal processing
and electronic circuit design. For two­dimensional problems, this can be expressed
with the following statement:

𝑓(𝑎𝑥1 + (1 − 𝑎)𝑥2) ≤ 𝑎𝑓(𝑥1) + (1 − 𝑎)𝑓(𝑥2) (A.2)

For 𝑎 ∈ [0, 1] and 𝑥1, 𝑥2 ∈ R. In a convex set, a local optimum is also directly the
global minimum. If we can formulate a problem as a convex problem, we can solve
it exactly within polynomial time with the interior­point method [171].

The interior­point method is suitable for tackling convex problems exactly within
polynomial time [172]. This algorithm first converts a convex non­linear function
and its constraints into a barrier function. A barrier function is a function that
approaches infinity as the function value comes closer to the barrier. For simplicity,
consider the minimization of the function 𝑓(𝑥⃗) with an inequality constraint 𝑐𝑖(𝑥⃗) >
0. The logarithmic barrier function 𝐵(𝑥⃗, 𝜇) will be:

𝐵(𝑥⃗, 𝜇) = 𝑓(𝑥⃗) − 𝜇
𝑚

∑
𝑖=1

log(𝑐𝑖(𝑥⃗)) 𝜇 > 0 (A.3)

The second part of this equation indicates the behaviour of the barrier of the solution
space. This is scaled with a small positive scalar 𝜇, the barrier parameter. As 𝜇
converges to zero, we will approach to the exact solution of 𝑓(𝑥⃗) [171, 172].

A.2. Performance of meta­heuristics on benchmark problems

A

125

A.2. Performance of meta­heuristics on benchmark
problems

The following sections demonstrate the performance of the selected meta­heuristics
on several benchmark problems. The influence of the hyper­parameters and the
population size are investigated.

A.2.1. Performance of PSO
In the original paper of Eberhart [114], the particle swarm optimization heuristic has
been benchmarked against the single­objective non­linear Schaffer F6 benchmark
function. This function contains a lot of local minima in a confined space and is
generally difficult to optimize. Figure A.1a shows a visual representation of the
2D Schaffer F6 function. Nowadays, more extensive benchmarking frameworks are
being used to characterize this heuristic, but the Schaffer F6 function is still relevant
for today’s performance tests [122].

Figure A.1b shows the solutions, indicated with purple dots, generated with the
Particle Swarm Optimization implementation of the Python pygmo library [173]. The
hyper­parameters 𝜙1 and 𝜙2 are both set to 2.05. A swarm­population of 30 is used.
The white cross represents the position of the global optimum. The experiment is
repeated 20 times with different initial populations to counteract the influence of
the initial population on the heuristic performance. The average performance with
respect to the number of iterations is presented in figure A.2.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Normalized 2­dimensional Schaffer F6
function

X1

X 2

PSO
Global optimum

(b) Response surface of Schaffer F6
function. The white cross indicates the

global optimum.

Figure A.1: Visualization of the Schaffer F6 function and the results of a Particle
Swarm Optimization with random initial conditions.

A

126 A. Support information for literature review

0 100 200 300 400 500
Iteration

10−1

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

PSO

Figure A.2: The best objective value found with respect to the number of
iterations, averaged over 20 runs with a different initial population each.

According to the results of Eberhart, Particle Swarm Optimization successfully found
the global optimum for each run.

Due to the heavy influence of the global best particle position (𝑔⃗𝑡), the solutions
of Particle Swarm Optimization quickly converge towards a promising region within
the search space. However, PSO drastically slows down its convergence when ex­
ploiting this region. The influence of the local best position (𝑝⃗𝑡) of each particle
contributes to the characteristic spiral motion. Computational experiments have
shown that the influence of the hyper­parameters 𝜙1 and 𝜙2 can drastically alter
the performance of PSO. In contrast, research has concluded that the size of the
population has significantly less impact on the performance of the algorithm [174].
Figure A.3a shows the optimization performance on the Schaffer F6 function with
different values for 𝜙1 and 𝜙2 and figure A.3b with altering population size. Chang­
ing the weights on the cognition and social term drastically changes the optimizer’s
performance.

A.2. Performance of meta­heuristics on benchmark problems

A

127

0 200 400 600 800 1000
Iteration

10−2

10−1

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

φ1 =0.5, φ2 =3.0

φ1 =1.0, φ2 =2.5

φ1 =1.5, φ2 =2.0

φ1 =2.0, φ2 =1.5

φ1 =2.5, φ2 =1.0

φ1 =3.0, φ2 =0.5

(a) Changing 𝜙1 and 𝜙2.

0 200 400 600 800 1000
Iteration

10−1

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

population size = 12.0

population size = 18.0

population size = 24.0

population size = 30.0

population size = 36.0

population size = 42.0

(b) Changing population size.

Figure A.3: Performance of the PSO optimizer on the Schaffer F6 problem with
different values for the hyper­parameters 𝜙1 and 𝜙2 and population size.

Changing the weights on the cognition and social term drastically changes the
optimizers performance.

Another study on the optimal choice of hyper­parameters of PSO concluded that for
lower dimensional problems (𝑑 < 10), a swarm size of 𝜆 = 30 is appropriate. For
higher dimensional problems (𝑑 > 30), increasing the population size above 𝜆 = 50
will not lead to better performance [175, 176].

A.2.2. Performance of CMAES
In the original paper of Hansen [115], CMAES is compared to various simple evolu­
tionary strategy algorithms on the single­objective unimodal Rosenbrock function.
This well­known test function is still a relevant benchmark for various algorithms.
Figure A.4a shows a visual representation of the 2D Rosenbrock function. An opti­
mization run of a CMAES implementation of the Python pygmo library [173] on the
2D Rosenbrock problem is visualized in figure A.4b. The hyper­parameters are set
to their default values as described earlier, and the population size is 6. Analogous
to the experiment with particle swarm optimization, the optimization is repeated 20
times, and the average performance is plotted in figure A.5.

A

128 A. Support information for literature review

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Normalized 2­dimensional Rosenbrock
function

X1

X 2

CMAES
Global optimum

(b) Response surface of Rosenbrock
function. The white cross indicates the

global optimum.

Figure A.4: Visualization of the Rosenbrock function and the results of CMAES
Optimization with random initial conditions.

0 100 200 300 400 500
Iteration

10−1

100

101

102

103

104

105

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

CMAES

Figure A.5: Performance of the CMAES algorithm on the Rosenbrock problem. The
axes represent the best objective value found with respect to the number of

iterations, averaged over 20 runs with a different initial population for each run.

A.2. Performance of meta­heuristics on benchmark problems

A

129

In contrast to particle swarm optimization, the size of the population drastically
influences the algorithm’s performance. Smaller populations lead to faster conver­
gence. However, an increase in the population helps avoid the algorithm getting
stuck at local minima [123]. Figure A.6 shows the optimization results of the Rosen­
brock problem with different population sizes.

0 200 400 600 800 1000
Iteration

10−3

10−1

101

103

105

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

population size = 6.0

population size = 18.0

population size = 30.0

population size = 42.0

population size = 54.0

population size = 66.0

Figure A.6: Performance of the CMAES optimizer on the Rosenbrock problem with
different population sizes.

If the population size is significantly large, CMAES can overcome these local minima
if they can be interpreted as smaller oscillating regions of an underlying global
unimodal function. The ’Rank­𝜇­update’ and the evolutionary path keep the mean
and covariance matrix from varying too much each generation so that the underlying
global optimum overshadows the smaller local fluctuations. This is demonstrated in
the case of the multimodal Rastrigin function in figure A.7a. The local minima are
regularly distributed over the search­space. The Particle Swarm Optimizer is easily
outperformed by increasing the population size, as seen in figure A.7b.

On the other hand, CMAES is easily outperformed if the objective function lacks
global unimodal behaviour [177]. This is demonstrated in the case of the Compo­
sition function 4 in figure A.7c and A.7d. Despite increasing the population size,
the performance of CMAES is not significantly increased in contrast to the PSO
optimizer.

A

130 A. Support information for literature review

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Rastrigin function response­surface.

0 200 400 600 800 1000
Iteration

100

101

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

PSO

CMAES, population size = 6

CMAES, population size = 9

CMAES, population size = 12

CMAES, population size = 15

CMAES, population size = 18

(b) Rastrigin performance of CMAES and
PSO.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Composition function 4 response­surface.

0 200 400 600 800 1000
Iteration

1025

1050

1075

1100

1125

1150

1175

1200

1225
A

ve
ra

ge
b

es
t

ob
je

ct
iv

e
va

lu
e

PSO

CMAES, population size = 6

CMAES, population size = 9

CMAES, population size = 12

CMAES, population size = 15

CMAES, population size = 18

(d) Composition function 4 performance of
CMAES and PSO.

Figure A.7: Response­surface and performance of the CMAES and PSO optimizer
on the Rastrigin and Composition function 4. Due to the lack of global unimodal
behaviour, CMAES is easily outperformed by PSO on the composition function.

The high variability in performance with respect to the population size has lead to
the development of CMAES variants such as ’BiPop­CMAES’ where optimization is
done multiple times in succession with increasing population size [178].

A.2. Performance of meta­heuristics on benchmark problems

A

131

A.2.3. Performance of Adam
The original paper of Kingma [116] demonstrates that Adam can be used to op­
timize different deep learning models, including logistic regression and multi­layer
neural networks. To keep the performance demonstration over the selected heuris­
tics in the same scope, we are looking at Adam’s behaviour at single­objective
functions where the analytical form is known. For example, the Beale function is a
multimodal smooth objective function used for demonstrating the performance of
various gradient­based algorithms [102, 127].

Figure A.8a shows a visual representation of the 2D Beale function. A learning rate 𝛼
of 10−2 is used and 𝛽1 and 𝛽2 are set to 0.9 and 0.999 respectively. The optimization
of the 2D Rosenbrock problem is represented in figure A.8b. The optimization is
repeated 20 times and the average performance is plotted in figure A.9.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Normalized 2­dimensional Beale function

X1

X 2

Adam
Global optimum

(b) Response surface of Beale function. The
white cross indicates the global optimum.

Figure A.8: Visualization of the Beale function and the results of Adam
Optimization with random initial conditions.

A

132 A. Support information for literature review

0 100 200 300 400 500
Iteration

100

101

102

103

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

Adam

Figure A.9: Performance of the Adam algorithm on the Beale problem. The axes
represent the best objective value found with respect to the number of iterations,

averaged over 20 runs, each with a different initial population.

0 200 400 600 800 1000
Iteration

100

101

102

103

104

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

α =1.00e-02

α =6.31e-03

α =3.98e-03

α =2.51e-03

α =1.58e-03

α =1.00e-03

(a) Changing learning rate 𝛼.

0 200 400 600 800 1000
Iteration

100

101

102

103

104

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

β1 =0.5, β2 =0.999

β1 =0.6, β2 =0.899

β1 =0.7, β2 =0.799

β1 =0.799, β2 =0.7

β1 =0.899, β2 =0.6

β1 =0.999, β2 =0.5

(b) Changing hyper­parameters 𝛽1 and 𝛽2.

Figure A.10: Performance of the Adam optimizer on the Beale problem with
different values for the learning rate 𝛼 and hyper­parameters 𝛽1 and 𝛽2. Changing

the learning rate 𝛼 drastically changes the optimizers performance.

A.2. Performance of meta­heuristics on benchmark problems

A

133

Adam converges on average after 300 iterations. Figure A.10 shows the influence
of the learning rate 𝛼 and the hyper­parameters 𝛽1 and 𝛽2. Changing the learning
rate 𝛼 drastically changes the optimizers performance.

A.2.4. Performance of Bayesian Optimization
The standard Branin­Hoo function is commonly used to analyze Bayesian Optimiza­
tion’s performance on single­objective functions, [130]. This test function has three
local optima and is shown in figure A.11a. With an implementation of Bayesian Opti­
mization of the Python library GPyOpt [131], the optimum in figure A.11b is sought.
The ”Lower Confidence Bound” acquisition function, an RBF kernel and a Gaussian
process surrogate model were used to generate these results. The optimizations
of 20 different initial conditions were combined to yield the average performance
with respect to the number of iterations in figure A.12.

The choice for the kernel functions drastically influences the Gaussian Process sur­
rogate model and the Bayesian Optimization outcome. Figure A.13 shows optimiza­
tion results on the Branin­Hoo function with three different kernel functions. The
same could be said about the acquisition function. Figure A.14 demonstrates the
behaviour of Bayesian Optimization for a ’maximum probability of improvement’,
’lower confidence bound’ and ’expected improvement’ acquisition function.

For the two­dimensional Branin­Hoo function, altering the acquisition function does
not lead to a significant improvement deviation. However, the use of the linear
kernel results in a significant performance drop.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Normalized 2­dimensional Branin­Hoo
function

X1

X 2

BayesianOpt
Global optimum

(b) Response surface of Branin­Hoo
function. The white cross indicates the

global optimum.

Figure A.11: Visualization of the Branin­Hoo function and the results of Bayesian
Optimization with random initial conditions.

A

134 A. Support information for literature review

0 100 200 300 400 500
Iteration

100

101

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

BayesianOpt

Figure A.12: Performance of the Bayesian Optimization algorithm on the
Branin­Hoo problem. The axes represent the normalized best objective value

found with respect to the number of iterations, averaged over 20 runs each with a
different initial population.

0 100 200 300 400 500
Iteration

100

101

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

RBF

Linear

Periodic

Figure A.13: Bayesian Optimization
performances on the Branin­Hoo

function with RBF, Linear and Periodic
kernel functions.

0 100 200 300 400 500
Iteration

100

101

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

LCB

EI

MPI

Figure A.14: Bayesian Optimization
performances on the Branin­Hoo
function with MPI, LCB and EI

acquisition functions.

B
Support information for BMC

optimization model

Appendix B.1 describes the Bayesian Optimization Python program to suggest new
bulk moulding compound recipes for bio­based composites. This program is de­
signed in collaboration with NPSP B.V. Subsequently, several new recipes are pro­
posed within the search space boundaries. The Python script builds a Gaussian
process surrogate model given the data provided.

Appendix B.2 show the three­point bending flexural testing data or the proposed
recipes.

B.1. Documentation for BMC­optimizer
The program is open­source and available on GitHub. The following guidelines will
help you get started with using the optimization model.

B.1.1. Downloading the program
Linux command line
1. Clone the repository.

2. Put a database excel file in the /files/ folder.

3. Navigate to the /Linux/ folder within the repository.

4. Run the model by executing ./model.

Windows
1. Download the repository as ZIP­file.

2. Unzip the file somewhere locally.

135

https://github.com/mpvanderschelling/BMC-optimizer

B

136 B. Support information for BMC optimization model

3. Put a database excel file in the /files/ folder.

4. Run the model by double­clicking model_windows.exe

Edit the source­code
You need to have a Python interpreter installed like Anaconda for this method.

1. Clone the repository.

2. Make sure you are using Python 3.6+.

3. Navigate to the /Python/ folder.

4. Install the required packages: pip install ­r bmc_requirements.txt.
Alternatively, you can install the required packages yourself: scikit­optimize,
pandas, datetime, xlrd.

5. Put a database Excel file in the /files/ folder.

6. Open, edit and run the model /Python/model.py in any Python interpreter.

B.1.2. Contents of the repository
Upon downloading the repository, the following files are present:

• bmc_requirements.txt: Pip requirements file. No need to change this.

• config.txt: Configuration file with model parameters. Parameters are
loaded up at the start of the program.

• help.txt: File for which the contents are displayed if you are executing
‘help‘ within the python program.

• input_fake.xlsx: Artificially generated data used as a placeholder for the
bio­based composite database.

• objective.txt: File that states the different objectives, their weights and
if they are to be minimized or maximized

• model.py: The python model to execute.

• calculator_for_model.xlsx: Microsoft Excel tool that converts mass­
based recipes to the 3 parameter­based format and vice­versa.

B.1.3. Database file
The user has to provide its own database file. The database file should con­
sist of predefined input parameter columns. Each row contains a new compos­
ite. The required input columns can be seen in table B.1. The database file in­
put_fake.xlsx is artificially generated data to serve as a placeholder and tem­
plate. This data should not be used for experiments.

B.1. Documentation for BMC­optimizer

B

137

name type fiber type filler fiber ratio filler ratio dry ratio

FlaxOli50 Flax Olive stone 0.0995 0.1542 0.6532
ReedPeach50 Reed Peach stone 0.0732 0.1375 0.5592
...

Table B.1: Format of input columns.

Any other columns are read as output columns. as can be seen in table B.2. The
’testable?’ column is optional; if a plate has failed and is not up for testing,
the output columns can be left blank and the ’testable?’ cell is filled with ’no’.
Subsequently, a huge penalty is given to the plate’s total score, making it unlikely
that the model will explore in that region. The value of the huge penalty can be set
with the badplatepenalty parameter.

testable? density impact stiffness flex. strength E­modulus

yes 1.7187 2.1 9.7 28.8 4770
yes 1.4654 2.3 9.5 32.1 5647
...

Table B.2: Format of output columns.

B.1.4. Configuration file
The config.txt file contains the parameters that are used in the model. For
each line, the parameter is specified, followed by a space and end the value of
that parameter. Lines proceeding a # are interpreted as comments and will not be
imported by the program.

search space boundaries
fiber_lb 0.05
fiber_ub 0.25
filler_lb 0.0
filler_ub 1.0
dry_lb 0.4
dry_ub 0.75

Optimization model parameters
acq_func EI
strategy cl_min

Recipe parameters
max_recipes 6
total_mass 2800.0

B

138 B. Support information for BMC optimization model

Score parameters
badplatepenalty 2.0

author Martin van der Schelling

You can alter the configuration file and save it locally to quickly load up custom
parameters. All available parameters can be seen in section B.1.7.

B.1.5. Objective file
This model uses a single­objective optimization method. However, by combining
multiple output parameters in a single objective, several bio­based composite’s me­
chanical properties can be considered in the search.

For every output element, a normalized value relative to the fibre­natural filler com­
bination’s best and worst properties is taken. The values are multiplied by a weight
𝜔 and added together to form a bio­based composite penalty score. The objective
is to find the recipe with the smallest penalty.

Every line in the objective.txt file starts with the output parameter (same
as one of the columns in the database file). Lines preceding with a # are ig­
nored.

The second element defines the polarization vector 𝑎 and is either min or max.
• min: the requested parameter has to be minimized.

• max: the requested parameter has to be maximized.

Next, a weight is added. If no weight is given, the normalized value is multiplied
by 1.0. The final objective file looks like the following:
density min 0.3
stiffness max
impact max 0.6
flex. strength max 0.3
E­modulus min

Currently, it is not possible to edit the objective values within the program. They
have to be altered and saved in the objective.txt file before running the model.
If output data is missing for specific recipes, that parameter’s influence will not be
influencing the final score of the recipe.

B.1.6. Available commands
Instructions can be executed by typing certain keywords in the command line in­
terface. The commands are split into 4 categories:

• show for showing parameters and data on the screen.

• set for setting parameters to a certain value.

• ask for asking the surrogate model for recipes.

B.1. Documentation for BMC­optimizer

B

139

• print for writing the configuration parameters to a file or exporting the sug­
gested recipes.

SHOW

show show the config parameters
show config show the config parameters

show data
show the entire database.
If no data is important, it will ask to set data.

show <parameter> show the requested parameter

SET

set config import the config parameters from the config file again
set now set the variable now to the current time
set data import an Excel database and set to variable data
set materials specify the materials you want to investigate (fibre, natural filler)
set output calculate the weighted single­objective penalty score
set batch specify the amount of BMC doughs you want to make
set <parameter> set the requested parameter to the requested value

ASK

ask model ask the optimization model for new recipes

PRINT

print config save the altered config parameters to the config.txt file
print model print the suggested recipes to a .csv file
print scores print the penalty scores for each output column per row to a .csv file

Other commands

help/? show the available commands
exit exit program

B

140 B. Support information for BMC optimization model

B.1.7. Available parameters
The parameters in table B.3 can be altered and viewed by executing the set and
show commands:

name type description
acq_func string Type of acquisition function used.
author string Name that will be printed on the recipes

badplatepenalty float
Penalty that is given to plates that

cannot be tested (>= 1.0)
batch integer Number of recipes to be generated
config list Copy of the imported config.txt file
data DataFrame Imported BMC database
databasename string Filename of the imported database
dry_lb float Lower bound of the dry materials parameter
dry_ub float Upper bound of the dry materials parameter
fiber_lb float Lower bound of the fibre parameter
fiber_ub float Upper bound of the fibre parameter
fiber_t string Name of the fibre to investigate
filler_lb float Lower bound of the natural filler parameter
filler_ub float Upper bound of the natural filler parameter
filler_t string Name of the natural filler to investigate
max_recipes integer Maximum number of recipes to request
now datetime Current time at start of program

output Series
Calculated total penalty score of each

selected entry in the database

scores DataFrame
Calculated penalty score for each individual

output of each selected entry in the database
strategy string Parallel Bayesian Optimization strategy
total_mass float Total mass of each BMC dough

Table B.3: Overview of customizable parameters in the BMC optimization model

B.2. Three­point bending flexural test data
Five specimens are cut by a water­jet cutter for each bio­based composite recipe
and subjected to the three­point bending flexural test. The ’ISO 178 (2010) Plastics
­ Determination of Flexural Properties (Method B)’ standard is used [148]. The test
is performed on an Instron 5969 50kN Dual Column universal testing system. The
tests are performed at room temperature and with a relative humidity of 64%. For
each testing result, the mean values of the flexural modulus and strength are used
as an output variable in the optimization model.

B.2. Three­point bending flexural test data

B

141

0.0 0.2 0.4 0.6 0.8
Flexural strain (Displacement) [%]

0

10

20

30

Fl
ex

ur
al

str
es

s [
M

Pa
]

RecPea24 three-point bending test
1
2
3
4
5

Figure B.1: Stress­strain curve of the Recell­Peach composite with 𝑥fibre = 0.2411,
𝑥filler = 0.1258 and 𝑥dry = 0.6923

Sample
Flexural
Strength
(MPa)

Flexural
Strain
(%)

Flexural
Modulus
(MPa)

Force at maximum
Flexure load
(N)

Displacement
at Break
(mm)

1 41.5 0.95 4410 169.15 1.58
2 39.2 0.92 4260 170.71 1.29
3 40 0.91 4460 166.21 1.51
4 37.8 0.88 4370 164.74 1.25
5 42.7 0.97 4510 178.51 1.55

Minimum 37.8 0.88 4260 164.74 1.25
Maximum 42.7 0.97 4510 178.51 1.58
Mean 40.2 0.93 4400 169.86 1.44
S.D. 1.95 0.04 96.02 5.37 0.15

Table B.4: Three­point bending test data of the Recell­Peach composite with
𝑥fibre = 0.2411, 𝑥filler = 0.1258 and 𝑥dry = 0.6923

B

142 B. Support information for BMC optimization model

0.0 0.2 0.4 0.6 0.8
Flexural strain (Displacement) [%]

0

10

20

30

40
Fl

ex
ur

al
str

es
s [

M
Pa

]
RecPea12 three-point bending test

1
2
3
4
5

Figure B.2: Stress­strain curve of the Recell­Peach composite with 𝑥fibre = 0.1236,
𝑥filler = 0.2198 and 𝑥dry = 0.4653

Sample
Flexural
Strength
(MPa)

Flexural
Strain
(%)

Flexural
Modulus
(MPa)

Force at maximum
Flexure load
(N)

Displacement
at Break
(mm)

1 43.8 0.98 4880 144.34 1.57
2 46.6 1 5020 152.51 1.7
3 47 1 4960 147.79 1.79
4 38.9 0.85 4680 125.12 1.51
5 46.8 1.1 4810 150.48 1.85

Minimum 38.9 0.85 4680 125.12 1.51
Maximum 47 1.1 5020 152.51 1.85
Mean 44.6 0.99 4870 144.05 1.68
S.D. 3.43 0.08 131.38 11.02 0.14

Table B.5: Three­point bending test data of the Recell­Peach composite with
𝑥fibre = 0.1236, 𝑥filler = 0.2198 and 𝑥dry = 0.4653

B.2. Three­point bending flexural test data

B

143

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Flexural strain (Displacement) [%]

0

5

10

15

20

25

30

Fl
ex

ur
al

str
es

s [
M

Pa
]

RecPea12 three-point bending test
1
2
3
4
5

Figure B.3: Stress­strain curve of the Recell­Peach composite with 𝑥fibre = 0.0925,
𝑥filler = 1.0000 and 𝑥dry = 0.5688

Sample
Flexural
Strength
(MPa)

Flexural
Strain
(%)

Flexural
Modulus
(MPa)

Force at maximum
Flexure load
(N)

Displacement
at Break
(mm)

1 33.2 0.69 5500 108.05 1.78
2 33.4 0.7 5480 109.31 1.92
3 30.9 0.64 5610 101.77 1.76
4 33.1 0.65 5620 101.2 1.86
5 31.4 0.64 5300 95.21 2.14

Minimum 30.9 0.64 5300 95.21 1.76
Maximum 33.4 0.7 5620 109.31 2.14
Mean 32.4 0.66 5500 103.11 1.89
S.D. 1.15 0.03 130.09 5.72 0.15

Table B.6: Three­point bending test data of the Recell­Peach composite with
𝑥fibre = 0.0925, 𝑥filler = 1.0000 and 𝑥dry = 0.5688

C
Support information for
data­driven optimization

C.1. Analytical equations of optimization problems
The analytical equations for the three sources of optimization benchmark problems
mentioned in section 4.1 are discussed in greater detail.

C.1.1. Well­known optimization benchmark functions
Table C.1 displays the analytical equations and search domain of several well­known
optimization benchmark functions. Figure C.1 shows a smooth two­dimensional
response surface for six of the functions mentioned in table C.1.

145

C

146 C. Support information for data­driven optimization

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Levy function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Rosenbrock function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Schwefel function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Rastrigin function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) Styblinski function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) Schaffer’s F6 function.

Figure C.1: 2­dimensional response surfaces of several well­known benchmark
functions. The input parameters and response surface have been normalized.

C.1. Analytical equations of optimization problems

C

147

name function domain

Ackley 𝑓2 = −𝑎 exp(−𝑏√
1
𝑑 ∑

𝑑
𝑖=1 𝑥2𝑖) − exp(−𝑏√ 1

𝑑 ∑
𝑑
𝑖=1 cos(𝑐𝑥𝑖)) + 𝑎 + exp(1) [−40, 40]𝑑

Rosenbrock 𝑓3 = ∑
𝑑−1
𝑖=1 [100(𝑥𝑖+1 − 𝑥2𝑖)2 + (𝑥𝑖 − 1)2] [−5, 10]𝑑

Schwefel 𝑓4 = 418.9829𝑑 − ∑
𝑑
𝑖=1 𝑥𝑖 sin(√|𝑥𝑖|) [−500, 500]𝑑

Rastrigin 𝑓5 = 10𝑑 + ∑
𝑑
𝑖=1[𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖)] [−5.12, 5.12]𝑑

Easom 𝑓6 = − cos(𝑥1) cos(𝑥2) exp(−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2) [−100, 100]2
Styblinski 𝑓7 =

1
2 ∑

𝑑
𝑖=1(𝑥4𝑖 − 16𝑥2𝑖 + 5𝑥𝑖) [−5, 5]𝑑

Branin 𝑓8 = (𝑥2 − 5.1𝑥21 +
5
𝜋𝑥1 − 6)

2 + 10(1 − 1
8𝜋) cos(𝑥1) + 10 [−5, 10], [0, 15]

Schaffer F6 𝑓9 = 0.5 +
sin2(√𝑥2+𝑦2)−0.5
[1+0.001(𝑥2+𝑦2)]2 [−100, 100]𝑑

Beale 𝑓10 = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥22)2 + (2.625 − 𝑥1 + 𝑥1𝑥32)2 [−4.5, 4.5]2
Leon 𝑓11 = 100(𝑥2 − 𝑥31)2 + (1 − 𝑥1)2 [−5, 5]2
Ackley N. 2 𝑓12 = −200 exp(−0.2√𝑥21 + 𝑥22) [−4, 4]2
Bohachevsky 𝑓13 = 𝑥21 + 2𝑥22 − 0.3 cos(3𝜋𝑥1) − 0.4 cos(4𝜋𝑥2) + 0.7 [−100, 100]2
Matyas 𝑓14 = 0.26(𝑥21 + 𝑥22) − 0.48𝑥1𝑥2 [−10, 10]2
Zakharov 𝑓15 = ∑

𝑑
𝑖=1 𝑥2𝑖 + (∑

𝑑
𝑖=1 0.5𝑖𝑥𝑖)2 + (∑

𝑑
𝑖=1 0.5𝑖𝑥𝑖)4 [−5, 10]𝑑

McCormick 𝑓16 = sin(𝑥1 + 𝑥2) + (𝑥1 − 𝑥2)2 − 1.5𝑥1 + 2.5𝑥2 + 1 [−3, 4]2

Table C.1: Analytical form of several well­known test functions. The
dimensionality is given by the variable 𝑑.

C.1.2. Rönkkönen parametrized multimodal functions
Table C.2 displays the analytical equations and search domain of the Rönkkönen
parametrized multimodal functions.

The parameters 𝐺⃗, 𝐿⃗, 𝛼, 𝑝⃗, 𝑣⃗, ℎ⃗, 𝑟 and the number of minima 𝑞 for the quadratic
and plate family functions 𝑞 are defined according to the random seed of the opti­
mization problem. The range of each parameter is given in table C.3.

Figure C.2 shows a smooth two­dimensional response surface for each of the six
family functions.

name function domain

Cosine family 𝑓cos =
∑𝑑𝑖=1 − cos((𝐺𝑖−1)2𝜋𝑥𝑖)−𝛼×cos((𝐺𝑖−1)2𝜋𝐿𝑖𝑥𝑖)

2𝑑 [0, 1]𝑑
Bowl family 𝑓bowl = ∑

𝑑
𝑖=0 20𝑥2𝑖 [0, 1]𝑑

Cosine­bowl family 𝑓cosbowl = 5𝑓𝑐𝑜𝑠 + 𝑓𝑏𝑜𝑤𝑙 [0, 1]𝑑
Quadratic family 𝑓quad =min((𝑥⃗ − 𝑝⃗𝑖)𝛼 + 𝑣⃗𝑖) [0, 1]𝑑
Plate family 𝑓plate =min((𝑥⃗ − 𝑝⃗𝑖) + 𝑣⃗𝑖) [0, 1]𝑑

Steep family 𝑓steep =
⎧

⎨
⎩

ℎ𝑖 [1 − (
𝑑(𝑥⃗,𝑖)
𝑟𝑖
)
𝛼
] , if 𝑑(𝑥⃗, 𝑖) ≤ 𝑟𝑖

0, otherwise

⎫

⎬
⎭

[0, 1]𝑑

Table C.2: Analytical form of modified Rönkkönen test functions [156].

C

148 C. Support information for data­driven optimization

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Cosine family function.

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Bowl family function.

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Cosine­bowl family function.

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Quadratic family function.

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) Plate family function.

X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) Steep family function.

Figure C.2: 2­dimensional response surfaces of the Rönkkönen test functions. The
input parameters and response surface have been normalized.

C.1. Analytical equations of optimization problems

C

149

parameter symbol form lower bound upper bound

Amount of global optima (cosine family) 𝐺⃗ discrete 1 5
Amount of local optima (cosine family) 𝐿⃗ discrete 0 7
Shape­factor of minima 𝛼 continuous 0.0 1.0
Positions of minima 𝑝⃗ continuous 0.0 1.0
Depths of minima 𝑣⃗ continuous ­5.0 ­3.0
Depths of minima (steep family) ℎ⃗ continuous ­100 ­3
Area of attraction (steep family) 𝑟 continuous 0.05 0.3
Number of minima (quadratic family) 𝑞 discrete 3 10

Table C.3: Boundaries of the parameters of the Rönkkönen parametrized
multimodal functions.

No. Functions

Unimodal functions 1 Sphere Function
2 Rotated High Conditioned Elliptic Function
3 Rotated Bent Cigar Function
4 Rotated Discus Function
5 Different Powers Function

Basic multimodal functions 6 Rotated Rosenbrock’s Function
7 Rotated Schaffers F7 Function
8 Rotated Ackley’s Function
9 Rotated Weierstrass Function
10 Rotated Griewank’s Function
11 Rastrigin’s Function
12 Rotated Rastrigin’s Function
13 Non­Continuous Rotated Rastrigin’s
14 Schwefel’s Function
15 Rotated Schwefel’s Function
16 Rotated Katsuura Function
17 Lunacek Bi_Rastrigin Function
18 Rotated Lunacek Bi_Rastrigin
19 Expanded Griewank’s plus Rosenbrock’s
20 Expanded Schaffer’s F6

Composition functions 21 Composition Function 1
22 Composition Function 2
23 Composition Function 3
24 Composition Function 4
25 Composition Function 5
26 Composition Function 6
27 Composition Function 7
28 Composition Function 8

Table C.4: Summary of the 28 CEC’13 test functions. The functions are
categorized as unimodal, basic multimodal or composition functions [157].

C

150 C. Support information for data­driven optimization

C.1.3. CEC 2013 competition benchmark functions
The 28 single­objective benchmark functions present in the CEC 2013 benchmark
competition are categorized as unimodal, basic multimodal or composition functions
[157]. The search range of all the functions is defined between [−100, 100]𝑑 for
each dimension 𝑑.
Figure C.3 shows a smooth two­dimensional response surface for six of the functions
mentioned in table C.4. The analytical equations of these benchmark functions can
be found in the original paper [157].

C.1. Analytical equations of optimization problems

C

151

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Rotated bent cigar function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Different powers function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Rotated Weierstrass function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Lunacek Bi_Rastrigin function.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) Composition function 4.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) Composition function 8.

Figure C.3: 2­dimensional response surfaces of several CEC 2013 benchmark
functions. The input parameters and response surface have been normalized.

C

152 C. Support information for data­driven optimization

C.2. Implementations of selected algorithms
The set of selected meta­heuristics implemented in the data­driven heuristic deci­
sion strategy are written in Python. The variants used and the hyper­parameters
will be presented in greater detail in the upcoming sections.

C.2.1. Covariance Matrix Adaptation Evolution Strategy
The Covariance Matrix Adaptation Evolution Strategy used is the pygmo.cmaes
implementation of the scientific Python library pygmo [173]. The CMAES variant
used is the classic interpretation described in Hansen’s review paper [123]. The
hyper­parameters are equal to the default strategy parameters. The initial step
size 𝜎0 is equal to 0.5. Because a normal distribution determines the position of
new solutions, solutions may be sampled outside the box­constrained boundaries.
A restriction is set, so only solutions within the box­constrained boundaries are
proposed to narrow our search for an optimum within the given limits.

Algorithm C.1 Covariance Matrix Adaptation Evolution Strategy (CMAES)
Require: 𝜆 ← 4 + 3 ln(𝑑): Population size
Require: 𝜇,𝑤𝑖=1...𝜇 , 𝑐𝜎 , 𝑑𝜎 , 𝑐𝑐 , 𝜇cov, 𝑐cov: Hyper­parameters
Require: 𝜎0 = 0.5: Initial step size
Require: 𝑓(𝑥⃗): Objective function with parameters 𝑥⃗
Require: 𝑥⃗0...𝑖: Initial parameter guesses
𝑡 ← 0 (Initialize time­step)
𝑚⃗0 ∈ R𝑑: Initialize distribution mean
𝑝⃗𝜎0 ← 0: Initialize step­size control
𝑝⃗𝑐0 ← 0: Initialize covariance matrix adaptation
C0 ← I: Covariance matrix initialization
while 𝑡 < 𝑡max do

𝑡 ← 𝑡 + 1
for all candidates do

𝑥⃗𝑡+1 ∼ N(𝑚⃗𝑡 , (𝜎𝑡)2C𝑡) (Sample new population of search points)
end for
𝑚⃗𝑡+1 = ∑

𝜇
𝑖=1𝜔𝑖𝑥⃗𝑖𝑡 , ∑

𝜇
𝑖=1𝜔𝑖 = 1,𝜔𝑖 > 0 (Selection of best candidates)

𝑝⃗𝜎𝑡+1 = (1 − 𝑐𝑐)𝑝⃗𝜎𝑡 +√𝑐𝜎(2 − 𝑐𝜎)𝜇effC𝑡
−0.5𝑚⃗𝑡+1−𝑚⃗𝑡

𝜎𝑡
(Step­size control)

𝜎⃗𝑡+1 = 𝜎⃗𝑡 exp(
𝑐𝜎
𝑑𝜎
(|𝑝⃗𝜎𝑡+1|

E|N(𝑂,I)| − 1)) (Step­size control)
𝑝⃗𝑐𝑡+1 = (1 − 𝑐𝑐)𝑝⃗𝑐𝑡 + ℎ𝜎𝑡+1 + √𝑐𝑐(2 − 𝑐𝑐)𝜇eff

𝑚⃗𝑡+1−𝑚⃗𝑡
𝜎𝑡

(Covariance matrix adap­
tation)

C𝑡+1 = (1 − 𝑐cov)C𝑡 + 𝑐cov
𝜇cov

𝑝⃗𝑐𝑡+1(𝑝⃗𝑐𝑡+1)𝑇 + 𝑐cov(1 − 1
𝜇cov

) ×

∑𝜇𝑖=1𝜔𝑖(
𝑥𝑖𝑡+1−𝑚⃗𝑡

𝜎𝑡
)(𝑥

𝑖
𝑡+1−𝑚⃗𝑡
𝜎𝑡

)𝑇 (Covariance matrix adaptation [123])
end while
return 𝑥⃗𝑡 (Resulting parameters)

https://esa.github.io/pygmo2/algorithms.html#pygmo.cmaes

C.2. Implementations of selected algorithms

C

153

The classical variant is chosen with a static population size of 𝜆 = 4+3 ln(𝑑).

C.2.2. Generational Particle Swarm Optimization
Particle Swarm Optimization is also extracted from the scientific library pygmo [173],
explicitly the pygmo.pso_gen implementation. This variant is mostly identical to
the conventional version in the original paper [114]. However, it utilizes a con­
striction coefficient, introduced in Clerc’s 2002 study [179]. This coefficient 𝜔 re­
stricts the particles’ velocity to increase indefinitely, assures convergence and thus
eliminates the need to limit the velocity with an additional hyper­parameter 𝑣max
manually. The values of 𝜔, 𝜙1 and 𝜙2 are 0.7298, 2.05 and 2.05, respectively.
These are the default hyper­parameters used in pygmo. The canonical variant is
selected, in which the random vectors 𝑅1𝑡 and 𝑅2𝑡 have random elements for all its
components.

Algorithm C.2 Generational Particle Swarm Optimization (PSO­Gen)
Require: 𝜆 ← 30: Population size
Require: 𝜙1 = 2.05, 𝜙1 = 2.05: Social and cognitive components
Require: 𝜔 = 0.7298: Constriction coefficient
Require: 𝑓(𝑥⃗): Objective function with parameters 𝑥⃗
Require: 𝑥⃗0...𝑖: Initial parameter guesses
𝑣⃗0 ← 0 (Initialize all particle velocities)
𝑡 ← 0 (Initialize time­step)
𝑝⃗ ← 𝑥⃗0 (Initialize local best positions)
𝑔⃗ ←min(𝑥⃗0) (Initialize global best position)
while 𝑡 < 𝑡max do

𝑡 ← 𝑡 + 1
𝑅1𝑡 ← random[0, 1]𝑑
𝑅2𝑡 ← random[0, 1]𝑑
for all particles do

if 𝑓(𝑥⃗𝑖𝑡) < 𝑓(𝑝⃗𝑖) then
𝑝⃗𝑖 ← 𝑥⃗𝑖𝑡 (Update local best position)

end if
if 𝑓(𝑥⃗𝑖𝑡) < 𝑓(𝑔⃗) then

𝑔⃗ ← 𝑥𝑖𝑡 (Update global best position)
end if

end for
for all particles do

𝑣⃗𝑖𝑡+1 ← 𝜔(𝑣⃗𝑖𝑡 + 𝜙1𝑅1𝑡 ⋅ (𝑥⃗𝑖𝑡 − 𝑝⃗𝑖) + 𝜙2𝑅2𝑡 ⋅ (𝑥⃗𝑖𝑡 − 𝑔⃗)) (Update velocity)
end for
for all particles do

𝑥⃗𝑖𝑡+1 ← 𝑥⃗𝑖𝑡 + 𝑣⃗𝑖𝑡 (Update particle position)
end for

end while
return 𝑥⃗𝑡 (Resulting parameters)

https://esa.github.io/pygmo2/algorithms.html#pygmo.pso_gen

C

154 C. Support information for data­driven optimization

Because our problem set also contains stochastic and deterministic problems, PSO
must be resistant to noisy objective function values. The Generational Particle
Swarm Optimization variant is identical to PSO, but updates each particle’s velocities
before new particle positions are computed (taking into consideration all updated
particle velocities).

Several studies on the choice of population size of PSO concluded that for lower
dimensional problems (𝑑 < 10), a swarm size of 𝜆 = 30 is appropriate. For higher
dimensional problems (𝑑 > 30), increasing the population size above 𝜆 = 50 will
not lead to better performance [174–176].

C.2.3. Adaptive Moment Estimate
The implementation of Adam’s gradient­based algorithm is a self­implemented ver­
sion based on the pseudo­code in the original paper of Kingma [116]. The step size
is set to 𝛼 = 10−2. The exponential moving average hyper­parameters 𝛽1 and 𝛽2
are 0.9 and 0.999, respectively. The small floating­point 𝜖 = 10−8 is introduced to
counter a division by zero while updating the parameters.

As we assume that information about the derivative of the objective function is not
known, the gradient 𝑑𝑓𝑑𝑥 must be estimated. The numerical approximation of each
derivative is made by central difference, according to equation C.1:

𝑑𝑓
𝑑𝑥 ≈

𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥 − 𝑑𝑥)
2𝑑𝑥 + 𝑂(𝑑𝑥2) (C.1)

For estimating the gradient by central difference, the objective value at 𝑓(𝑥 + 𝑑𝑥)
and 𝑓(𝑥 − 𝑑𝑥) has to be obtained for each search­space dimension 𝑑. Hence, the
overall cost of estimating the gradient results in 2𝑑.
As Adam is proposed as a single­solution optimizer in its original paper. However,
for each update step, 2𝑑 additional function evaluations are required. Therefore,
the population size will be set to 𝜆 = 1+2𝑑, of which the population’s first solution
denotes the Adam iterative step and the remaining of the population the parameters
requested from the gradient estimation.

C.2. Implementations of selected algorithms

C

155

Algorithm C.3 Adaptive Moment Estimate (Adam) [116]
Require: 𝛼 = 10−2: Learning rate
Require: 𝛽1 = 0.9, 𝛽2 = 0.999: Exponential decay rates for the moment estimates
Require: 𝜖 = 10−8: Floating­point to counter division by zero
Require: 𝑓(𝑥⃗): Objective function with parameters 𝑥⃗
Require: 𝑥⃗0: Initial parameter guess
𝑚0 ← 0 (Initialize 1st moment vector)
𝑣0 ← 0 (Initialize 2nd moment vector)
𝑡 ← 0 (Initialize time­step)
while 𝑡 < 𝑡max do

𝑡 ← 𝑡 + 1
for all candidates do

𝑔𝑖𝑡 ← ∇𝑥⃗𝑓𝑡(𝑥⃗𝑖𝑡−1) (Estimate gradient at time­step 𝑡)
𝑚𝑖𝑡 ← 𝛽1 ⋅ 𝑚𝑖𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑖𝑡 (Update biased first moment estimate)
𝑣𝑖𝑡 ← 𝛽2 ⋅𝑣𝑖𝑡−1+(1−𝛽2)⋅(𝑔𝑖𝑡)2 (Update biased second raw moment estimate)
𝑚̂𝑖𝑡 ← 𝑚𝑖𝑡/(1 − 𝛽𝑡1) (Compute bias­corrected first moment estimate)
𝑣̂𝑖𝑡 ← 𝑣𝑖𝑡/(1 − 𝛽𝑡2) (Compute bias­corrected second raw moment estimate)
𝑥⃗𝑖𝑡+1 ← 𝑥⃗𝑖𝑡 − 𝛼 ⋅ 𝑚̂𝑖𝑡/√𝑣̂𝑖𝑡 + 𝜖) (Update parameters)

end for
end while
return 𝑥⃗𝑡 (Resulting parameters)

C.2.4. Bayesian Optimization
The sequential model­based optimization library GPyOpt is used for constructing
a Bayesian Optimization algorithm [131]. A surrogate model is created from a
Gaussian Process with an RBF kernel. Subsequently, an ’Lower confidence bound’
acquisition function is optimized with an ’L­BFGS’ optimizer to propose the next
iteration location.

Algorithm C.4 Bayesian Optimization
Require: 𝜆 = 1: Population size
Require: 𝑓(𝑥⃗): Objective function with parameters 𝑥⃗
Require: 𝑥⃗0: Initial parameter guess
Require: 𝑀 ← 20: Number of inducing points
𝑡 ← 0 (Initialize time­step)
while 𝑡 < 𝑡max do

𝑡 ← 𝑡 + 1
Construct GP prior surrogate model with RBF kernel from 𝑥⃗0...𝑡
Construct Lower confidence bound acquisition function LCB(𝑥⃗)
𝑥⃗𝑡+1 ←max𝑥⃗LCB(𝑥⃗) (Maximize acquisition function with ’L­BFGS’ optimizer)

end while
return 𝑥⃗𝑡 (Resulting parameters)

C

156 C. Support information for data­driven optimization

Unlike the bio­based composite optimization model, no parallelization technique
such as the ’constant liar’ method discussed in section 3.3 will be used, as this is
not the standard method of implementing Bayesian Optimization. Bayesian Opti­
mization will therefore be implemented as a single­solution optimizer.

C.2.5. Random Search
The random search algorithm is intended as a baseline for other heuristics. The
individual elements of a new input vector are sampled through a naive random
number generator.

Algorithm C.5 Random Search
Require: 𝑓(𝑥⃗): Objective function with parameters 𝑥⃗
Require: 𝑥⃗0...𝑖: Initial parameter guesses
𝑡 ← 0 (Initialize time­step)
while 𝑡 < 𝑡max do

𝑡 ← 𝑡 + 1
for all candidates do

𝑥⃗𝑖𝑡 ← random[0, 1]𝑑
end for

end while
return 𝑥⃗𝑡 (Resulting parameters)

C.3. Experiments from ’learning to optimize’ study
The logistic regression and robust linear regression problems are part of the bench­
marking problems depicted in the ’Learning to optimize’ paper from Li et al. [141].
In the following sections, their attributes and implementation in the data­driven
heuristic framework are discussed.

C.3.1. Logistic regression
A logistic regression estimates the curve of a binary logistic model with a dependent
variable 𝑦𝑖 that has one of two possible values (0 or 1). The quality of fitting is
determined by minimizing equation C.2:

min
𝑤⃗,𝑏

− 1𝑛

𝑛

∑
𝑖=1
𝑦𝑖 log𝜎(𝑤⃗𝑇𝑥⃗𝑖 + 𝑏) + (1 − 𝑦𝑖) log(1 − 𝜎(𝑤⃗𝑇𝑥⃗𝑖 + 𝑏)) +

𝜆
2 ‖𝑤⃗‖

2
2 (C.2)

A dimensionality of 𝑑 = 4 is selected, and equation C.2 is minimized by altering the
parameters 𝑤⃗ and 𝑏⃗. The vector 𝑤⃗ ∈ R𝑑−1 and 𝑏 ∈ R denote the weight vector
and bias respectively and are considered the input parameters. The parameter
𝜎(𝑧) is described in equation C.3 and the coefficient on the regularizer 𝜆 = 0.0005
[141].

C.3. Experiments from ’learning to optimize’ study

C

157

𝜎(𝑧) = 1
1 + 𝑒−𝑧 (C.3)

For each instance of the objective function, a dataset of 100 points 𝑥⃗0...100 is ran­
domly sampled from two multivariate Gaussians with random means and covari­
ances. Exactly half of the points are sampled from each multivariate Gaussian. The
data­points sampled from the same Gaussian are labelled 𝑦𝑖 ∈ {0, 1} likewise, and
instances from different Gaussians are assigned different labels [141].

As the framework presented in section 4.1 needs box­constraint boundaries, we
have altered the logistic regression experiment by constraining 𝑤⃗ and 𝑏 between
[−5.0, 5.0]𝑑 for every dimension. These boundaries are selected so that the underly­
ing calculations are not subjected to overflow. Figure C.4a shows a two­dimensional
slice of the four­dimensional logistic regression problem. The results from one logis­
tic regression problem for various local optimizers are plotted in figure C.4b.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Response surface of a two­dimensional
slice.

0 200 400 600 800 1000
Iteration

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

Gradient Descent

Momentum

Conjugate Gradient

L-BFGS

(b) Performance from various optimizers.

Figure C.4: Response surface and performance of various local optimizers on the
logistic regression problem. The input parameters boundaries are normalized.

C.3.2. Robust linear regression
A linear regression is a linear approach to model the relationship of a scalar output
𝑦𝑖 to a number of variables. A robust loss function is used to assess the quality of
the fit. The Geman­McClure M­estimator is used for the parameter estimation. The
objective is to minimize equation C.4:

min
𝑤⃗,𝑏

1
𝑛

𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑤⃗𝑇𝑥⃗𝑖 − 𝑏)2
𝑐2 + (𝑦𝑖 − 𝑤⃗𝑇𝑥⃗𝑖 − 𝑏)2

(C.4)

C

158 C. Support information for data­driven optimization

Again, a dimensionality of 𝑑 = 4 is selected, and equation C.4 is minimized by
altering the parameters 𝑤⃗ and 𝑏⃗. The vector 𝑤⃗ ∈ R𝑑−1 and 𝑏 ∈ R denote the
weight vector and bias respectively and are considered the input parameters. The
value 𝑐 = 1 is used for this experiment. 25 random samples 𝑥⃗0...25 are drawn
from one of four multivariate Gaussian, each with a randomized mean and identity
covariance matrix. The labels 𝑦0...25 are generated by projecting the samples along
the corresponding random mean vector. Subsequently, a random bias and Gaussian
noise (∼ N(0, 1)) is added [141].
Likewise, box­constrained boundaries are added to the input parameters 𝑤⃗ and 𝑏
equal to [−10.0, 10.0]𝑑. Figure C.5a shows a two­dimensional slice of the four­
dimensional robust linear regression problem. The results from one linear regres­
sion problem for various local optimizers are plotted in figure C.5b.

X1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

X 2

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

f(X
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Response surface of a two­dimensional
slice.

0 200 400 600 800 1000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

b
es

t
ob

je
ct

iv
e

va
lu

e

Gradient Descent

Momentum

Conjugate Gradient

L-BFGS

(b) Performance from various optimizers.

Figure C.5: Response surface and performance of various local optimizers on the
robust linear regression problem. The input parameters boundaries are

normalized.

C.4. Confusionmatrices and decision bar graphs.
C.4.1. Confusion matrices
A confusion matrix is a table the allows the visualization of multi­class classifica­
tion. Each row of the square matrix represents the actual target classes’ labels,
while the columns denote the class predictions. The diagonal elements contain the
true positive (tp) and true negative predictions (tn), whereas the upper and lower
triangular parts of the matrix denote the false positive (fp) and false negative (fn)
predictions.

Each element of the confusion matrix is occupied by a number between 0 and 1,

C.4. Confusion matrices and decision bar graphs.

C

159

which denotes the fraction of predictions of the total number of target labels. The
smaller number under this normalized accuracy denotes the number of samples
that are predicted in this manner.

Online training set

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.05
3

0.53
35

0.2
13

0.2
13

0.03
2

0.04
352

0.48
4099

0.33
2834

0.13
1103

0.02
143

0.02
256

0.32
3482

0.53
5753

0.11
1161

0.01
147

0.08
149

0.36
695

0.29
551

0.24
466

0.04
68

0.0
0

0.54
19

0.26
9

0.2
7

0.0
0

0.0

0.2

0.4

0.6

0.8

1.0

(a) 𝑘­NN one­versus­one.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.05
8

0.51
87

0.25
42

0.16
28

0.04
6

0.04
331

0.48
3810

0.33
2608

0.13
1042

0.02
126

0.03
273

0.32
3426

0.54
5780

0.11
1135

0.01
138

0.05
119

0.4
917

0.3
678

0.22
491

0.03
61

0.11
29

0.35
90

0.2
52

0.21
54

0.11
29

0.0

0.2

0.4

0.6

0.8

1.0

(b) 𝑘­NN one­versus­all.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.06
261

0.46
2185

0.35
1642

0.13
595

0.01
55

0.03
94

0.5
1672

0.34
1121

0.12
384

0.02
54

0.01
48

0.28
1732

0.61
3789

0.1
598

0.01
33

0.04
181

0.34
1408

0.4
1631

0.2
801

0.02
78

0.06
176

0.44
1333

0.33
977

0.12
372

0.05
140

0.0

0.2

0.4

0.6

0.8

1.0

(c) C­Support Vector Classification.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.06
9

0.42
62

0.22
32

0.28
41

0.03
4

0.05
370

0.42
3097

0.35
2591

0.15
1076

0.02
166

0.03
276

0.38
3815

0.47
4740

0.11
1084

0.01
121

0.03
95

0.36
1252

0.45
1530

0.14
497

0.02
63

0.02
10

0.24
104

0.61
267

0.12
52

0.01
6

0.0

0.2

0.4

0.6

0.8

1.0

(d) AdaBoost

Figure C.6: Online training confusion matrices for the data­driven heuristic
decision strategies with varying classifier. The horizontal axis denotes the
predicted labels and the vertical axis denotes the actual heuristic decision.

C

160 C. Support information for data­driven optimization

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.05
13

0.46
121

0.23
60

0.2
53

0.06
17

0.04
472

0.49
5221

0.33
3559

0.12
1227

0.02
177

0.03
348

0.34
4438

0.53
6857

0.09
1185

0.01
179

0.06
154

0.42
1075

0.32
815

0.17
420

0.03
69

0.07
23

0.43
145

0.26
89

0.16
55

0.08
28

0.0

0.2

0.4

0.6

0.8

1.0

(a) 4 windows with 125 iterations each.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.05
8

0.51
86

0.24
40

0.17
28

0.04
6

0.04
331

0.49
3882

0.33
2600

0.13
999

0.02
126

0.03
273

0.33
3517

0.54
5800

0.1
1090

0.01
138

0.05
119

0.44
994

0.28
641

0.2
449

0.03
61

0.12
29

0.36
91

0.19
49

0.21
54

0.12
29

0.0

0.2

0.4

0.6

0.8

1.0

(b) 5 windows with 100 iterations each.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.09
18

0.52
105

0.23
46

0.14
28

0.03
6

0.04
245

0.49
3084

0.32
2011

0.13
809

0.01
83

0.03
199

0.32
2409

0.55
4192

0.1
755

0.01
91

0.08
146

0.39
757

0.28
544

0.22
417

0.04
69

0.03
2

0.38
25

0.41
27

0.17
11

0.02
1

0.0

0.2

0.4

0.6

0.8

1.0

(c) 6 windows with 75 iterations each.

Figure C.7: Online training confusion matrices for the data­driven heuristic
decision strategies with varying window sizes. The horizontal axis denotes the
predicted labels and the vertical axis denotes the actual heuristic decision.

C.4. Confusion matrices and decision bar graphs.

C

161

Online testing set

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.15
15

0.5
50

0.15
15

0.16
16

0.05
5

0.04
378

0.4
3954

0.42
4183

0.13
1274

0.02
188

0.02
354

0.3
4636

0.57
8812

0.1
1615

0.01
140

0.12
263

0.27
611

0.35
791

0.25
574

0.01
27

0.0
0

0.47
9

0.47
9

0.05
1

0.0
0

0.0

0.2

0.4

0.6

0.8

1.0

(a) 𝑘­NN one­versus­one.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.14
32

0.4
90

0.25
55

0.18
41

0.03
6

0.04
340

0.4
3720

0.42
3895

0.13
1209

0.02
171

0.02
364

0.3
4562

0.57
8741

0.1
1594

0.01
136

0.08
208

0.29
794

0.4
1072

0.22
583

0.02
43

0.25
66

0.36
94

0.18
47

0.2
53

0.02
4

0.0

0.2

0.4

0.6

0.8

1.0

(b) 𝑘­NN one­versus­all.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.06
344

0.42
2517

0.38
2318

0.12
745

0.02
125

0.02
78

0.47
1884

0.39
1553

0.12
500

0.0
17

0.01
71

0.25
2372

0.65
6061

0.09
879

0.0
8

0.05
250

0.26
1305

0.49
2418

0.19
924

0.01
67

0.08
267

0.34
1182

0.42
1460

0.12
432

0.04
143

0.0

0.2

0.4

0.6

0.8

1.0

(c) C­Support Vector Classification.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.13
21

0.47
75

0.17
27

0.23
36

0.0
0

0.06
501

0.34
2999

0.44
3872

0.14
1234

0.02
199

0.03
354

0.33
4667

0.53
7419

0.11
1538

0.01
129

0.03
131

0.32
1335

0.5
2137

0.14
603

0.01
32

0.0
3

0.3
184

0.58
355

0.11
69

0.0
0

0.0

0.2

0.4

0.6

0.8

1.0

(d) AdaBoost

Figure C.8: Online testing confusion matrices for the data­driven heuristic decision
strategies with varying classifier. The horizontal axis denotes the predicted labels

and the vertical axis denotes the actual heuristic decision.

C

162 C. Support information for data­driven optimization

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.11
30

0.47
125

0.32
84

0.08
20

0.02
6

0.05
446

0.47
4660

0.38
3759

0.1
947

0.01
71

0.02
292

0.34
4127

0.52
6215

0.11
1331

0.01
81

0.12
287

0.36
854

0.35
833

0.16
393

0.01
31

0.33
85

0.44
114

0.11
29

0.07
19

0.04
11

0.0

0.2

0.4

0.6

0.8

1.0

(a) 4 windows with 125 iterations each.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.08
15

0.5
93

0.3
56

0.11
20

0.01
1

0.04
268

0.47
3333

0.37
2637

0.11
757

0.01
58

0.03
314

0.32
3298

0.53
5389

0.11
1174

0.01
68

0.1
223

0.38
806

0.34
725

0.17
364

0.01
11

0.33
90

0.41
110

0.12
33

0.13
35

0.01
2

0.0

0.2

0.4

0.6

0.8

1.0

(b) 5 windows with 100 iterations each.

Adam

Baye
sia

nO
pt

CMAES
PSO

Rand
om

Sear
ch

Predicted

Adam

BayesianOpt

CMAES

PSO

RandomSearch

Ac
tu

al

0.09
17

0.43
79

0.38
69

0.1
19

0.0
0

0.05
292

0.45
2558

0.38
2156

0.11
639

0.01
37

0.02
166

0.31
2308

0.54
3944

0.12
907

0.01
38

0.14
232

0.36
589

0.33
535

0.15
248

0.02
25

0.06
3

0.31
16

0.5
26

0.13
7

0.0
0

0.0

0.2

0.4

0.6

0.8

1.0

(c) 6 windows with 75 iterations each.

Figure C.9: Online testing confusion matrices for the data­driven heuristic decision
strategies with varying window sizes. The horizontal axis denotes the predicted

labels and the vertical axis denotes the actual heuristic decision.

C.4. Confusion matrices and decision bar graphs.

C

163

C.4.2. Decision bar graphs
Figures C.10 and C.11 show the number of occurrences of each meta­heuristic in the
heuristic strategy for each iteration window for the generated problem set.

1 2 3 4 5
Iteration window

0

1000

2000

3000

4000

5000

6000

N
u

m
b

er
of

d
ec

is
io

n
s

(a) 𝑘­NN one­versus­one.

1 2 3 4 5
Iteration window

0

1000

2000

3000

4000

5000

6000

N
u

m
b

er
of

d
ec

is
io

n
s

(b) 𝑘­NN one­versus­all.

1 2 3 4 5
Iteration window

0

1000

2000

3000

4000

5000

6000

N
u

m
b

er
of

d
ec

is
io

n
s

(c) C­Support Vector Classification.

1 2 3 4 5
Iteration window

0

1000

2000

3000

4000

5000

6000

N
u

m
b

er
of

d
ec

is
io

n
s

(d) AdaBoost

BayesianOpt CMAESPSO RandomSearchAdam
Figure C.10: Number of occurrences for each meta­heuristic in each iteration

window. The decisions are displayed for the four different classifiers.

C

164 C. Support information for data­driven optimization

1 2 3 4
Iteration window

0

1000

2000

3000

4000

N
u

m
b

er
of

d
ec

is
io

n
s

(a) 4 windows with 125 iterations each.

1 2 3 4 5
Iteration window

0

1000

2000

3000

4000

N
u

m
b

er
of

d
ec

is
io

n
s

(b) 5 windows with 100 iterations each.

1 2 3 4 5 6
Iteration window

0

1000

2000

3000

4000

N
u

m
b

er
of

d
ec

is
io

n
s

(c) 6 windows with 75 iterations each.

BayesianOpt CMAESPSO RandomSearchAdam
Figure C.11: Number of occurrences for each meta­heuristic in each iteration

window. The decisions are displayed for 4, 5 and 6 iteration windows.

Figures C.12 and C.13 show the number of occurrences of each meta­heuristic in
the heuristic strategy for each iteration window for the logistic regression and the
robust linear regression problem respectively.

C.4. Confusion matrices and decision bar graphs.

C

165

1 2 3 4 5 6 7
Iteration window

0

200

400

600

800

1000
N

u
m

b
er

of
d

ec
is

io
n

s

(a) 𝑘­NN one­versus­one.

1 2 3 4 5 6 7
Iteration window

0

200

400

600

800

1000

N
u

m
b

er
of

d
ec

is
io

n
s

(b) 𝑘­NN one­versus­all.

1 2 3 4 5 6 7
Iteration window

0

200

400

600

800

1000

N
u

m
b

er
of

d
ec

is
io

n
s

(c) C­Support Vector Classification.

1 2 3 4 5 6 7
Iteration window

0

200

400

600

800

1000

N
u

m
b

er
of

d
ec

is
io

n
s

(d) AdaBoost

L-BFGSMomentumGradient Descent Conjugate Gradient

Figure C.12: Number of occurrences for each meta­heuristic in each iteration
window for the logistic regression problem.

C

166 C. Support information for data­driven optimization

1 2 3 4 5 6 7
Iteration window

0

200

400

600

800

1000

N
u

m
b

er
of

d
ec

is
io

n
s

(a) 𝑘­NN one­versus­one.

1 2 3 4 5 6 7
Iteration window

0

200

400

600

800

1000

N
u

m
b

er
of

d
ec

is
io

n
s

(b) 𝑘­NN one­versus­all.

1 2 3 4 5 6 7
Iteration window

0

200

400

600

800

1000

N
u

m
b

er
of

d
ec

is
io

n
s

(c) C­Support Vector Classification.

1 2 3 4 5 6 7
Iteration window

0

200

400

600

800

1000

N
u

m
b

er
of

d
ec

is
io

n
s

(d) AdaBoost

L-BFGSMomentumGradient Descent Conjugate Gradient

Figure C.13: Number of occurrences for each meta­heuristic in each iteration
window for the robust linear regression problem.

	Summary
	List of Figures
	List of Tables
	Introduction
	Literature review
	Bio-based composites
	Overview of optimization
	Selected meta-heuristics
	A data-driven heuristic decision strategy

	Bio-based composite optimization
	Methodology
	Design of experiments
	Optimization model
	Results & Discussion
	Recommendations

	Data-driven optimization
	Optimization problems
	Algorithms
	Performance metrics
	Improving the heuristic decision strategy
	Data-driven heuristic decision strategy
	Heuristic signature
	Constructing an optimization database
	Classification

	Results & Discussion
	Recommendations

	Conclusion
	Acknowledgements
	titleReferences
	Support information for literature review
	P-type optimization
	Performance of meta-heuristics on benchmark problems
	Performance of PSO
	Performance of CMAES
	Performance of Adam
	Performance of Bayesian Optimization

	Support information for BMC optimization model
	Documentation for BMC-optimizer
	Downloading the program
	Contents of the repository
	Database file
	Configuration file
	Objective file
	Available commands
	Available parameters

	Three-point bending flexural test data

	Support information for data-driven optimization
	Analytical equations of optimization problems
	Well-known optimization benchmark functions
	Rönkkönen parametrized multimodal functions
	CEC 2013 competition benchmark functions

	Implementations of selected algorithms
	Covariance Matrix Adaptation Evolution Strategy
	Generational Particle Swarm Optimization
	Adaptive Moment Estimate
	Bayesian Optimization
	Random Search

	Experiments from 'learning to optimize' study
	Logistic regression
	Robust linear regression

	Confusion matrices and decision bar graphs.
	Confusion matrices
	Decision bar graphs

