
Sample-efficient multi-agent
reinforcement learning using
learned world models
Daniël Willemsen

Te
ch

ni
sc

he
Un

iv
er
si
te
it
De

lft

Sample-efficient
multi-agent

reinforcement
learning using
learned world

models
by

Daniël Willemsen
to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on

Tuesday January 28, 2021 at 13:00.

Project duration: Februay 3, 2020 – January 28, 2021
Thesis committee: prof. dr. G.C.H.E. de Croon, Control and Simulation, TU Delft, supervisor

ir. M. Coppola, Control and Simulation, TU Delft, supervisor
dr. E. van Kampen, Control and Simulation, TU Delft
dr. O.A. Sharpanskykh, Air Transport and Operations, TU Delft

Acknowledgements

I would like to thank Dr. Guido de Croon, for providing guidance and direction throughout the project, whilst
also giving me the freedom to explore ideas I found particularly interesting. I would also like to thank Mario
Coppola, for your valuable insights throughout the project. You were always available to provide me with
your time, support and feedback, even when you were already finished with your PhD at Delft University of
Technology. Finally, I would like to thank my family, friends and roommates for their unconditional support
throughout the project, this thesis would not have been possible without you.

iii

Abstract

Having a group of robots cooperate to achieve certain goals has important benefits compared to designing a
single robot to achieve that same task. These benefits include robustness, scalability, and flexibility. Manually
designing individual behaviours for each robot in such a group is a complex task and gets exceedingly more
difficult when the desired system-level behaviour gets more complex. Multi-agent robotic systems could thus
benefit from teaching themselves how to act. It might be possible to do this through learning in a simulator,
but this results in a problem known as the reality gap: robots learn to exploit inaccuracies in a simulator that
do not exist in the real world, causing diminished real-world performance. A solution to this would be to get
multi-agent robotic systems to learn through interacting in the real world. Learning in the real world, how-
ever, can be expensive both in time as well as money. It is not uncommon for agents to require tens of thou-
sands of trials to learn desirable behaviours through the use of reinforcement learning. This not only takes
an enormous amount of time but also results in a high probability of robots damaging themselves through
selection of poor actions. Multi-agent robotic systems could thus benefit from reinforcement learning algo-
rithms that are able to learn behaviours in a small number of trials, a property known as sample efficiency.

This research investigates if learned world models can help to improve sample efficiency of multi-agent
reinforcement learning. We present a novel multi-agent model-based reinforcement learning algorithm:
Multi-Agent Model-Based Policy Optimization (MAMBPO), utilizing the Centralized Learning for Decentral-
ized Execution (CLDE) framework. The CLDE framework is a framework that allows a group of agents to
act fully decentralized after training, a desirable property for many systems comprising of multiple robots.
Learning happens centralized, which helps to stabilize training in multi-agent environments. Current CLDE
algorithms such as Multi-Agent Soft Actor-Critic (MASAC) suffer from limited sample efficiency, often taking
many thousands of trials before learning desirable behaviours. This makes these algorithms impractical for
learning in real-world robotic tasks. MAMBPO utilizes a learned world model to improve sample efficiency
compared to these model-free alternatives. Model-based reinforcement learning goes through two steps that
form an iterative loop. First, a model of the world dynamics is learned using real-world experience. Then,
this so called dynamics model is used to generate additional data on which the policies of the agents can
be trained. This allows a larger number of gradient steps to be performed without overfitting. Model-free
learning, in contrast, directly trains policies on the data sampled from the real-world experience. In single-
agent domains, model-based learning has shown to result in improvements of up to an order of magnitude
in terms of sample efficiency. In multi-agent learning, however, there is only very limited research on model-
based learning. To the best of our knowledge, our MAMBPO algorithm is the first application of learning with
a generative world model within the CLDE framework.

We empirically demonstrate on a variety of multi-agent domains that our algorithm provides an up to 3.7×
improvement in terms of sample efficiency compared to state-of-the-art model-free approaches. With this,
we demonstrate that model-based learning deserves more attention in multi-agent reinforcement learning
and could prove to be an important technique in making real-life learning for multi-agent robotic systems
possible.

v

Contents

Acknowledgements iii

Abstract v

I Scientific Paper 1

II Preliminary Report 17

1 Introduction 21

2 An Overview of Swarm Robotics 23
2.1 Motivation and Inspiration . 23
2.2 Swarm Robotics within Multi-agent systems . 24

2.2.1 Taxonomies of multi-agent robotics . 24
2.3 Swarm Design. 25

2.3.1 Behavior-based design methods . 25
2.3.2 Automatic design methods. 26

2.4 Experimental Swarm Robotics . 27

3 Reinforcement Learning for Markov Decision Processes 29
3.1 Markov Decision Processes . 29

3.1.1 Policies. 30
3.1.2 Optimality and Value. 30

3.2 Basic learning algorithms for MDPs . 32
3.2.1 Model-Based Dynamic Programming . 32
3.2.2 Model-Free Reinforcement Learning. 34

3.3 Taxonomies for Reinforcement Learning . 34
3.3.1 On-Policy and Off-Policy . 36
3.3.2 Bootstrapping . 36
3.3.3 Sample Backups and Full Backups . 36
3.3.4 Model-Based Planning and Model-Free Learning . 36
3.3.5 Function Approximation . 37
3.3.6 Discrete and Continuous. 37
3.3.7 Actors and Critics . 37

4 Deep Reinforcement Learning 39
4.1 Deep Neural Networks . 39
4.2 Value Function approaches: Deep-Q Networks and Improvements 39
4.3 Policy Gradient Approaches. 41

4.3.1 On-Policy Actor-Critics: A2C, A3C, TRPO and PPO . 43
4.3.2 Policy gradients for continuous action spaces . 44
4.3.3 DPG, DDPG and D4PG: Deterministic Policy Gradients 44
4.3.4 Soft Actor-Critic: Off-Policy Policy Gradient with Entropy Regularization 45

4.4 Policy Optimization without Gradients . 45
4.5 Benchmarking Deep Reinforcement Learning . 46
4.6 What algorithm is the best? . 47

5 Reinforcement Learning with Partial Observability 49
5.1 Partially Observable Markov Decision Processes . 49
5.2 Consequences of partial observability . 50
5.3 Reinforcement Learning with Partial Observability . 50

vii

viii Contents

6 Reinforcement learning with a learned world model 53
6.1 Dyna: planning and learning with real and simulated experience 54
6.2 Planning with continuous action spaces . 55
6.3 Planning with discrete action spaces . 56

7 Multi-Agent Reinforcement Learning 57
7.1 Decentralized Partially Observable Markov Decision Processes 57

7.1.1 Consequences of decentralization . 58
7.2 Reinforcement Learning Algorithms for Multi-Agent Learning 58

7.2.1 Decentralized Learning for Decentralized Execution. 58
7.2.2 Centralized learning for decentralized execution . 59

7.3 Benchmarking Multi-Agent Reinforcement Learning . 60

8 Literature Synthesis 63
8.1 Swarm Robotics . 63
8.2 Reinforcement Learning . 63
8.3 Model-Based Reinforcement Learning . 64
8.4 Multi-Agent Reinforcement Learning . 64
8.5 Model-Based Learning for Decentralized Agents . 64

9 Preliminary Analysis of PageRank for Online Learning in Swarms 67
9.1 An Analysis of PageRank and its relationship to MDPs . 67
9.2 Experiments & Results . 70
9.3 PageRank Discussion & Conclusion . 71

10 Conclusion, Approach, Planning 73
10.1 Conclusion . 73
10.2 General Approach. 74
10.3 Tasks & Nominal Planning . 74

10.3.1 Content Tasks: . 75
10.3.2 Auxiliary Tasks:. 75

10.4 Expected Difficulties and Risks . 76

Bibliography 77

I
Scientific Paper

1

1

Sample-efficient multi-agent reinforcement
learning using learned world models

Daniël Willemsen∗, Mario Coppola†, Guido de Croon†

∗MSc student, Faculty of Aerospace Engineering, Delft University of Technology
†Supervisor, Faculty of Aerospace Engineering, Delft University of Technology

Abstract—Multi-agent robotic systems could benefit from
reinforcement learning algorithms that are able to learn
behaviours in a small number trials, a property known
as sample efficiency. This research investigates the use
of learned world models to create more sample-efficient
algorithms. We present a novel multi-agent model-based re-
inforcement learning algorithm: Multi-Agent Model-Based
Policy Optimization (MAMBPO), utilizing the Centralized
Learning for Decentralized Execution (CLDE) framework,
and demonstrate state-of-the-art performance in terms of
sample efficiency on a number of benchmark domains.
CLDE algorithms allow a group of agents to act in a fully
decentralized manner after training. This is a desirable
property for many systems comprising of multiple robots.
Current CLDE algorithms such as Multi-Agent Soft Actor-
Critic (MASAC) suffer from limited sample efficiency, often
taking many thousands of trials before learning desirable
behaviours. This makes these algorithms impractical for
learning in real-world robotic tasks. MAMBPO utilizes a
learned world model to improve sample efficiency com-
pared to its model-free counterparts. We demonstrate on
two simulated multi-agent robotics tasks that MAMBPO
is able to reach similar performance to MASAC with up
to 3.7 times fewer samples required for learning. Doing
this, we take an important step towards making real-life
learning for multi-agent robotic systems possible.

Keywords—Model-Based, Reinforcement Learning,
Multi-Agent, Decentralized Control, Deep Learning.

I. INTRODUCTION

Reinforcement learning has become a popular tool for
many artificial intelligence tasks and has been applied
in a large variety of domains, including board games
[1, 2, 3], video games [4, 5] and (virtual) robotics
[6, 7]. In most situations, reinforcement learning con-
siders a single agent acting and learning in a non-
changing environment. However, there are several im-
portant potential applications of reinforcement learning
that involve multiple agents acting and cooperating in
a single environment. For example smart electricity
markets [8], drone swarming [9], or general multi-robot
control [10]. Standard reinforcement learning algorithms
are often incapable of handling learning in multi-agent
environments. One cause of this is the non-stationarity of

Centralized
learner

Learned world model

Decentralized execution

Policy updates
Training data

Fig. 1: Visual interpretation of how the proposed sample-
efficient MAMBPO algorithm could be applied in a real-
life scenario. Drones are able to act fully decentralized,
sharing their experiences with a centralized learner when
possible. The centralized learner learns a world model
and uses this world model to imagine additional training
data. This data is then used to train policies for the
robots, that periodically receive updated policies.

the environment from the perspective of each agent [11].
This non-stationarity is especially problematic in deep
reinforcement learning algorithms where replay buffers
are used to learn from older data that is no longer rep-
resentative for the current environment dynamics [12].

When designing deep reinforcement learning algo-
rithms specifically for multi-agent decentralized control,
two main approaches exist: that of Independent Learners
(IL) and that of Centralized Learning for Decentralized
Execution (CLDE). In IL algorithms, each agent learns
independently from the other agents and specialized
techniques are used to reduce the instability caused
by the non-stationarity of the environment. These tech-
niques often reduce the size of the replay buffer or dis-
able the buffer altogether [13], resulting in poor sample
efficiency and stability of neural networks. Recent work
does explicitly address the non-stationarity concerns,
without disabling the replay buffer, but this approach
has not yet been applied in domains with continuous
action spaces, which are common for robotics tasks

2

[12]. The CLDE framework is more mature and has
already resulted in a number of algorithms that are tested
on domains with continuous action spaces [14, 15].
The CLDE framework allows centralized information
to be used during training to improve the stability and
performance of the algorithms. Then, during execution,
no centralized information is required and all agents are
able to act fully decentralized, a desirable characteristic
in many multi-agent systems, such as robotic swarms
[16]. Although these algorithms have been successful at
a variety of tasks, such as cooperative navigation and
predator-prey [17, 18, 19], their sample efficiency is still
limited: they often require over 10 000 trials to solve
relatively simple tasks.

Sample efficiency is an important performance mea-
sure for tasks where agents need to act in a real environ-
ment, such as robotics. Training agents through acting
in the real world can be prohibitively expensive due
to the large amount of time required, as well as the
possibility of breaking hardware from trial and error
of the algorithm [20]. Training in a simulator might
be possible, but introduces the so-called reality-gap: a
phenomenon where performance in a simulator does not
fully translate to performance in the real world, due to
simulator imperfections. Therefore, there is a need for
algorithms that are able to train agents in a sample-
efficient manner.

In single-agent reinforcement learning, model-based
learning has recently shown to yield large improvements
in sample efficiency, for example in virtual robotics tasks
[21, 22]. Rather than directly optimizing the policy of
agents, these algorithms first learn a model of the world
dynamics. This is often easier to do as the world model is
not dependent on an ever-changing policy, in contrast to,
for example, a critic network whose target value depends
on the current policy being followed. This world model
is then used to generate additional training data for the
policy, speeding up the learning process.

This research investigates the possibility of using
model-based learning to improve sample efficiency of
multi-agent reinforcement learning through the CLDE
framework. To do this, we introduce a novel model-based
multi-agent reinforcement learning algorithm: Multi-
Agent Model-Based Policy Optimization (MAMBPO),
which is a multi-agent adaptation of the Model-Based
Policy Optimization (MBPO) algorithm [22]. We demon-
strate on two multi-agent domains that our algorithm
provides an up to 3.7 times improvement in terms of
sample efficiency compared to state-of-the-art model-
free approaches. To the best of our knowledge, this
algorithm is the first application of learning with a
generative world model within the CLDE framework.
A high-level visual interpretation of our algorithm can
be found in Figure 1.

The remainder of this work is structured as follows.
In Section II we discuss related literature and establish
the novelty of our approach. Then, in Section III, we
introduce our proposed MAMBPO algorithm, and show
how it combines the strengths of CLDE learning and
model-based reinforcement learning. In Section IV, we
empirically demonstrate the performance of our algo-
rithm in two benchmark domains: cooperative navigation
and cooperative predator-prey. In Section V, we discuss
our results, and reflect upon the advantages and limita-
tions of the approach. Finally, in Section VI, we conclude
the article with an emphasis on future work to be done to
reach real-life learning for multi-agent robotic systems.

II. RELATED WORK

Literature closely related to our research can be
broadly divided into three categories: research into
CLDE algorithms for continuous action spaces, research
into single-agent model-based reinforcement learning
and research into multi-agent model-based learning. We
briefly discuss recent work in these three categories in
this section.

In the past few years, a significant number of CLDE
algorithms for continuous action spaces have been de-
veloped. Multi-Agent Deep Deterministic Policy Gradi-
ent (MADDPG) is a CLDE adaptation of the single-
agent DDPG algorithm [17]. This adaptation, suitable
for cooperative, competitive, and mixed domains, uti-
lizes centralized critics that take the concatenated joint
observations and actions of all agents as an input and
outputs the estimated value for a single agent. The
actors are decentralized, taking only the agents’ own
observations as an input and outputting a deterministic
action. In another work, researchers propose two alterna-
tives to MADDPG, one of which is called Multi-Actor-
Attention-Critic (MAAC) [18]. They use an attention
mechanism to improve the scalability of CLDE algo-
rithms towards greater numbers of agents. The other
alternative to MADDPG is a maximum entropy variant
called Multi-Agent Soft Actor-Critic (MASAC). In max-
imum entropy reinforcement learning, agents have an
incentive to maximize exploration within the policy. This
can increase both stability as well as sample efficiency
[18, 19]. MASAC serves as our model-free baseline
and is used for policy optimization in our model-based
algorithm.

Model-based learning has recently shown great
sample-efficiency improvements in single-agent do-
mains. Early model-based reinforcement learning ap-
proaches suffer from poor asymptotic performance. This
is caused by a phenomenon known as model bias,
where agents exploit inaccuracies in a model, resulting
in suboptimal policies in the real environment. Recent
work utilizes models that explicitly and simultaneously

3

take into account aleatoric and epistemic uncertainty,
for example through the use of ensembles of stochastic
neural network models [21]. This reduces the impact
of model bias. These types of models have resulted in
algorithms that are comparable to state-of-the-art model-
free algorithms in terms of asymptotic performance, yet
are able to learn with up to an order of magnitude greater
sample efficiency [22].

Even though CLDE learning as well as single-agent
model-based learning have recently been active fields of
study, there is only limited work performed on combin-
ing the two. One work that utilizes model-based learning
within the context of multi-agent learning is that of
Krupnik et al.[23]. Their algorithm, however, performs
Model-Predictive Control based on the learned world
model. This requires the usage of the model during ex-
ecution, which in turn requires centralized information.
Their approach is therefore not suitable for decentralized
execution. Other research investigates the possibility of
utilizing a model to not only predict the environment
but also predict the policies of opposing agents in 2-
agent competitive domains [24]. This approach, however,
is only evaluated on a task where the opponent agent
has a fixed policy, rather than being an opponent that is
learning concurrent to the agent itself. This removes the
problems of non-stationarity from the domain. Hence,
to the best of our knowledge, this work is the first to
investigate model-based CLDE with all agents’ policies
being dynamic and decentrally executable.

III. METHODOLOGY

In this section, we introduce the Multi-Agent Model-
Based Policy Optimization algorithm. First, in Sec-
tion III-A, we introduce the Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) as
a framework that describes the problem of coopera-
tive multi-agent reinforcement learning. Then, in Sec-
tion III-B, we introduce our novel MAMBPO algorithm
and discuss its two main components, policy optimiza-
tion through Multi-Agent Soft Actor-Critic (MASAC)
and model-based learning through Model-Based Policy
Optimization (MBPO) in more details.

A. Problem Description & Notation

In this research, we consider the problem of a group of
agents interacting cooperatively within an environment,
formalized in the Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) framework
[25]. This framework is illustrated in Figure 2. At every
timestep t, every agent i ∈ {1, ..., n} simultaneously
receives an individual observation oit from a joint obser-
vation ot :=

{
oit
}n
i=1

. An action ait is then sampled from
a (stochastic) policy (πi), such that ait ∼ πi(·|oit). We

use the πi(·|oit) notation to indicate the full probability
distribution of πi and we use the notation πi(ait|oit) to
indicate the probability density function at a particular
value ait. The concatenation of the actions from all agents
is the joint action, denoted at :=

{
ait
}n
i=1

. Note that we
use superscripts i to indicate individual observations (oit)
and actions (ait) rather than the joint observation (ot)
and action (at), which are indicated in bold and without
a superscript. Similarly, we use π to indicate the joint
policy of all agents. The environment takes the joint ac-
tion and a hidden environment state st to (stochastically)
produce a new hidden state through sampling from the
state-transition function P , such that st+1 ∼ P (·|st,at).
The environment then produces a joint observation and
reward through the observation function O and reward
function R respectively1: ot+1 ∼ O(st+1), rt+1 ∼
R(st+1). The goal for each agent is to find policy
πi that maximizes the expected return, which is the
expected value of the cumulative reward, discounted with
some factor γ over time until some terminal condition
is reached: E[Gk] = E[

∑t=tterminal

t=k γk−trt+1]. The
state-action value Q is a measure for the expected
return of an agent given a certain starting state s,
joint policy π and initial joint action a: Qπ(s,a) =

Eπ
[∑t=tterminal

t=k γk−trt+1

∣∣∣sk = s,ak = a
]
.

A Dec-POMDP can either have finite sets of states,
actions, and observations, or it can have continuous
state-, action-, and observation-spaces. In this article, we
consider Dec-POMDPs of the continuous type.

Fig. 2: Description of the interaction between the agents
and the environment in a Dec-POMDP.

1We define the reward rt+1 as the reward received after taking
action at and is received by the agents simultaneously with ot+1.
This notation differs from some literature that would denote this reward
with rt as it is the reward that is a direct consequence of the action
taken on time step t.

4

B. Multi-Agent Model-Based Policy Optimization

Our novel MAMBPO algorithm is a combination
of model-based reinforcement learning and Central-
ized Learning for Decentralized Execution (CLDE). For
model-based reinforcement learning, we use MBPO. The
core idea is that it is easier for an agent to learn a
model of the world than it is to optimize a policy.
Therefore, MBPO learns a world model and then uses
this world model to generate additional experience on
which the agent’s policy can be trained. In our case,
we train this policy through MASAC, a Centralized
Learning for Decentralized Execution variant of Soft
Actor-Critic. This two-step process of model learning
and policy optimization allows for improved sample ef-
ficiency compared to directly optimizing a policy. In the
following three paragraphs, we explain the components
in more detail. Section III-Ba introduces MASAC and
Section III-Bb introduces MBPO. Finally, MAMBPO is
then introduced in Section III-Bc.

a) Policy Optimization through MASAC: MASAC
is a CLDE algorithm that uses an Actor-Critic archi-
tecture that includes an entropy maximization term to
ensure sufficient exploration within a policy.

CLDE is an approach to circumvent problems asso-
ciated with learning in multi-agent environments, such
as an Dec-POMDP. In these environments, agents typ-
ically suffer from an apparent non-stationarity of the
environment: from the perspective of a single agent,
the other agents are part of the environment. However,
when multiple agents are updating their policies simul-
taneously, it appears to each agent individually that the
environment they are acting in is changing. The resulting
difficulty can be illustrated intuitively. Reinforcement
learning algorithms often use some estimation of state-
values to improve their policies. When the environment
changes, so should the values/performance measure for
the given policy. As a result, the optimal policy changes.
When the agent adjusts its policy based on this change
in the environment, the environment has changed again,
from the perspective of another agent, resulting in that
other agent having to adapt its policy, resulting in a loop
of changing environments and changing policies. The
way CLDE avoids these problems is through the use of a
centralized learning scheme. The idea behind centralized
learning is to take into account global information from
all agents (and all agents’ policies) during learning,
removing the non-stationarity of the environment, and
thus stabilizing learning. When learning has finished,
the agents themselves are able to act in a decentralized
fashion, removing the need for centralized information
during execution.

One way to achieve CLDE is through the use of an
Actor-Critic architecture. Such an architecture splits up
the agent into two separate components: an actor that

Algorithm 1: Multi-Agent Soft Actor-Critic

1 Initialize actors πφi , critics Qwi , for each agent i
2 Initialize environment replay buffer Benv
3 Initialize environment
4 for every timestep t do
5 Select joint action using πφi for each agent i
6 Apply joint action in environment
7 Add transition to Benv
8 for G gradient updates do
9 for every agent i do

10 Update actor parameters φi using
Benv

11 Update critic parameters wi using
Benv

12 end
13 end
14 end
15 return

performs action selection given an observation and a
critic that serves as an estimator for the return given
a selected joint observation and action. The critic for
an agent i is thus a function of the joint observation
and joint action of all agents and serves as an estimator
for the expected return: Q̂wi (ot,at) ≈ Qπ(st,at). This
critic, through taking the joint action of all agents as an
input, removes the non-stationarity of the environment.
For this approximation to be a good estimator, the joint
observation ot must contain similar information to the
full system state st. The actor of agent i stochastically
selects an action given its individual observation: ait =
πφi(·|oit). In this article, we consider both the actor and
the critic to be neural networks, with weights described
by the parameter vectors φi and wi respectively.

A high level overview of a complete Multi-Agent
Actor-Critic algorithm can be found in Algorithm 1.
When training, the agents repeatedly perform training
episodes in the multi-agent environment using their
policies. During the training episodes, each transition
tuple (ot,at, rt+1,ot+1) is stored in a replay buffer
Benv . After every step in the environment, the actors
and critics are trained through taking one step of gradi-
ent descent using a batch of sampled transitions from
the replay buffer. We use a Multi-Agent Actor-Critic
version called MASAC that maximizes the entropy of
the policy simultaneously to maximizing the expected
return. This encourages exploration, stabilizing training
and improving sample efficiency [19, 18]. The critic is
trained through temporal difference learning, where the

5

target for the critic is set to the following:

y = rt+1 + γ
(
Q̂wi (ot+1,at+1)− α log πφi(ait+1|oit+1)

)
,

at+1 ∼ π(·|ot+1)
(1)

Without the log term, this function is equivalent to stan-
dard temporal difference learning used in reinforcement
learning. The log term is an additional term used in (MA)
Soft Actor-Critic and can be seen as a term that rewards
policies that have a high entropy. Here, α is a weight
that determines the level of entropy regularization. In
our implementation, we automatically tune this weight
during training, through tracking a reference entropy of
the policy. The loss function for the critic is set to be
the mean squared error of this target with the current
Q-value estimator:

LQi

(
wi,B

)
=
(
Q̂wi (ot,at)− y

)2
,

(ot,at, rt+1,ot+1) ∼ B, at+1 ∼ π(·|ot)
(2)

For the actor, the goal is to maximize the expected return
and entropy of the agent’s policy. The policy is thus
updated through the policy gradient with the following
loss function:

Lπi

(
φi,B

)
= −

(
Q̂wi(ot,at)− α log πφi(ait|oit)

)
,

(ot) ∼ B, at ∼ π(·|ot)
(3)

Within CLDE learning, an important distinction that
needs to be made is that between centralization of
networks and parameter sharing of networks. Whereas
we define centralization as the use of global information
when calling the network, we define parameter sharing of
networks as the sharing of network parameters amongst
different agents. In other words, when a network is
shared, each agent has a network that outputs the
same value given the same input. Although CLDE in
MASAC requires the use of a centralized critic and
a decentralized actor, CLDE does not require to have
only one, shared, critic for the whole system and one,
individual, actor for each agent. Rather, the designer is
free to choose whether or not these network parameters
are shared amongst agents. This does, however, have
some important consequences in the types of behaviours
that can be learned. When sharing the critic parameters
between all agents, each agent will have an identical
value estimate given a certain environment state. This
can be a problem when the objectives of every agent
are not fully aligned, i.e. a task that is not fully co-
operative. The benefit of having only a single, shared,
critic is the reduced amount of computation associated
with training the critics. When utilizing an actor whose
parameters are shared amongst all agents, every agent

Algorithm 2: Model-Based Policy Optimization,
adapted from [22].

1 Initialize actor πφ, critic Qw, world model p̂θ,
environment replay buffer Benv , model replay
buffer Bmodel

2 Initialize environment
3 for every timestep t do
4 Take action in environment using πφ
5 Add transition to Benv
6 if t % model train frequency = 0 then
7 Train model p̂θ on Benv
8 end
9 for M model rollouts do

10 Sample s from Benv
11 Perform k-step rollout starting from s

using πφ and p̂θ
12 Add transitions to Bmodel
13 end
14 for G gradient updates do
15 Update actor parameters φ using Bmodel
16 Update critic parameters w using Bmodel
17 end
18 end
19 return

will act the same given a similar observation. In other
words, all agents will be homogeneous. This will inhibit
agents from learning specializations, which might be a
disadvantage on certain tasks. In most commonly used
implementations of CLDE actor-critics, neither the actor
nor the critic is shared [18, 19]. This results in algorithms
that are suitable for heterogeneous agents and objectives.
To keep as close to the original implementations of
MASAC as possible, we also utilize individual actors
and critics for our implementations.

MASAC can be used as a CLDE algorithm on its
own, and this serves as our model-free baseline in
our experiments. Our model-based MAMBPO algorithm
uses the training targets and exploration of MASAC. The
training data, however, is sampled from a replay buffer
with more diverse data generated through our generative
world model. This world model is trained using MBPO,
as explained in the next paragraph.

b) Model-Based Learning through MBPO: MBPO
is a single-agent model-based reinforcement learning
algorithm for continuous action spaces that utilizes an
ensemble of neural networks that serves as a simulator
to generate additional experience for the actor and critic
[22]. An overview of the algorithm can be found in
Algorithm 2. In our MAMBPO algorithm, we use the
model-learning architecture from MBPO, modified to
suit multi-agent cooperative environments. The modi-

6

Algorithm 3: Multi-Agent Model-Based Policy
Optimization

1 Initialize actors πφi , critics Qwi , for each agent i
2 Initialize world model p̂θ
3 Initialize environment replay buffer Benv , model

replay buffer Bmodel
4 Initialize environment
5 for every timestep t do
6 Select joint action using πφi for each agent i
7 Apply joint action in environment using
8 Add transition to Benv
9 if t % model train frequency = 0 then

10 Train model p̂θ on Benv
11 end
12 for M model rollouts do
13 Sample s from Benv
14 Perform k-step rollout starting from s

using πφi for each agent i and p̂θ
15 Add transitions to Bmodel
16 end
17 for G gradient updates do
18 for every agent i do
19 Update actor parameters φi using

Bmodel
20 Update critic parameters wi using

Bmodel
21 end
22 end
23 end
24 return

fication that we do is that that we use a centralized
model (p̂θ) that predicts the reward and observations
for the next time step given the joint observation of
our current time step and the joint action of all agents:
ot+1, rt+1 ∼ p̂θ(ot,at). The original MBPO imple-
mentation, on the other hand, only uses a single-agent
observation and action as inputs. This is because it is
a single-agent algorithm. The remainder of the model
architecture, learning, and usage is performed similar to
the original implementation, but briefly summarized here
for comprehensiveness. Model bias is the phenomenon
where inaccuracies in the model result in policies that
exploit these inaccuracies, resulting in reduced perfor-
mance of the agent in the real environment. To prevent
model bias, MBPO explicitly incorporates the two types
of uncertainty in the model: aleatoric and epistemic
uncertainty. The aleatoric uncertainty is captured through
the use of networks that predict not only the next ob-
servations and reward but predicts a distribution of these
that can be sampled from. The network has means and
standard deviations for each observation and reward as

an output, together parameterizing a normal distribution
that can be sampled from. The epistemic uncertainty,
or the uncertainty in the parameters of the model, is
captured through the use of an ensemble of models,
from which is uniformly sampled when performing
rollouts. The network is trained on the replay buffer as a
maximum likelihood estimator for the next observations
and reward. To ensure well-behaved neural networks, we
bound the variance outputs to a fixed range, similar to
how this is done in the original MBPO implementation
[22] and its precursor [21].

c) The full algorithm: Combining MASAC and
MBPO results in the MAMBPO algorithm shown in
Algorithm 3. Agents interact with the environment and
a centralized replay buffer (Benv) is used to store the
transitions. Periodically, a centralized world model (p̂θ)
is trained on this replay buffer. This model is then
used to generate additional samples, stored in a sepa-
rate replay buffer (Bmodel). We supplement this second
replay buffer with a small amount (in our case 10%)
of real environment data, similar to the original MBPO
implementation [22]. The model training and usage
through MBPO is visible in line 10 through line 15 of
Algorithm 3. The second replay buffer, Bmodel, is used
to train the actor and critic networks through MASAC,
as shown in line 19 through line 20. The key insight
that allows this algorithm to perform sample-efficient
learning is that the larger diversity in the replay buffer
from generating rollouts through the model makes it
possible to increase the number of gradient updates G,
without overfitting the actors or critics.

IV. EXPERIMENTS & RESULTS

In this section, we empirically demonstrate the effi-
ciency of our algorithm on two benchmark domains:
cooperative navigation and cooperative predator-prey.
We discuss the details of these environments in Sec-
tion IV-A. Then, we discuss the hyperparameter settings
of our algorithms in Section IV-B. Finally, we show the
results on both domains in Section IV-C.

A. Environment Descriptions

We test our algorithms on two benchmark domains
from the multi-agent particle environments benchmark
suite [26, 17]. This suite considers agents that can move
around in a 2-dimensional space. We utilize a modified
version of the suite that allows the use of continuous ac-
tions for each agent: agents output a desired acceleration
in the x- and y-direction. This version is created by de
Witt et al [15] 2. Each episode consists of 25 time steps.

2The specific implementations of the environments can be found at
https://github.com/schroederdewitt/multiagent-particle-envs. Here, co-
operative navigation can be found as simple spread and predator-prey
can be found as simple tag coop

https://github.com/schroederdewitt/multiagent-particle-envs

7

Agent

Target

Trajectory

(a) Cooperative navigation

Predator

Prey

Obstacle

Trajectory

(b) Cooperative predator-prey

Fig. 3: Illustrations of the two benchmark domains.

a) Cooperative navigation: In the cooperative nav-
igation domain, agents need to simultaneously cover
three target locations whilst avoiding collisions with each
other. Both the agents and targets are spawned at random
locations at the start of each episode. The agents receive
a cooperative reward based on the distance between each
target and the closest agent to that target. The agents
perceive the relative locations of all other agents as well
as those of all targets. An illustration of the domain is
shown in Figure 3a. This task is interesting from a multi-
agent perspective as it requires coordination without
communication to determine which agent should cover
which target.

b) Cooperative predator-prey: In the cooperative
predator-prey domain, three collaborating agents need
to catch a single prey. This domain is a modification of
the simple-tag domain of the multi-agent particle envi-
ronments benchmark environment suite. The prey policy
is replaced with a fixed heuristic to move away from
predators when predators are close. The predators receive
a reward for every time step at least one predator is on
top of the prey. An illustration of the domain is shown in
Figure 3b. Catching the prey requires less coordination
amongst agents compared to the cooperative navigation
domain. This domain, however, is of interest because it
contains sparse rewards, which can complicate learning.

B. Hyperparameters and Experiment setup

In each of our experiments, we compare our model-
based learner with its model-free counterpart. Since our
interest lies in determining the benefits of model-based
learning compared to model-free learning, we keep the
hyperparameters constant between both environments
and both algorithms to make the comparison between

both algorithms as fair as possible. In our implementa-
tion, both algorithms are equivalent and utilize the same
code with the exception of a switch that determines
whether or not to train the model p̂θ and whether or
not to use Bmodel for training the actors and critics3.
The only hyperparameter that is varied between the two
algorithms is the number of gradient steps performed per
environment step, as we hypothesize that we can set this
to a higher value to benefit from the larger diversity in
the replay buffer in the case of model-based learning.
For a fair comparison, we perform the experiments of
the model-free learning algorithm using both the higher
number of gradient steps (10) as well as the smaller
number of gradient steps (1). Our low value for gradient
steps is the standard value used in single-agent SAC
algorithms, but it is still significantly higher than the
values used in previous research on these multi-agent
domains, as we found this to improve performance for
both algorithms. In MAMBPO, we set the model rollout
length to 1 time step, as this was found to work reason-
ably well in the original MBPO implementation and does
not require any additional tuning of the parameter. The
full hyperparameter settings can be found, for reference,
in Appendix A.

C. Results

In this subsection we show the performance of our full
algorithm compared to the baseline model-free MASAC
algorithm on the two benchmark domains. We do this
through analysing both the cumulative rewards as well
as a measure of successful task completion. In addition,
we analyse the quality of the learned world model.

3The code used for all experiments is available at https://github.com/
danielwillemsen/mambpo.

https://github.com/danielwillemsen/mambpo
https://github.com/danielwillemsen/mambpo

8

(a) Cooperative navigation. The average cumulative re-
ward per episode of MASAC (1 step) after 5000 train-
ing episodes is reached by MAMBPO after only 2980
episodes. This corresponds to about a 1.7 times improve-
ment in sample efficiency. An upper limit for the maximum
reachable reward is -75, which is reached when all targets
are covered for all 25 time steps without any collisions.
This is not practically reachable as the agents need to travel
to their targets whilst avoiding each other.

(b) Cooperative predator-prey. The average cumulative
reward per episode of MASAC (1 step) after 5000 train-
ing episodes is reached by MAMBPO after only 1340
episodes. This corresponds to about a 3.7 times improve-
ment in sample efficiency. An upper limit for the maximum
reachable reward is 750, which is reached when the prey
is covered by all three agents for all 25 time steps. This is
practically not reachable as the predators need to travel to
a prey that is actively avoiding them.

Fig. 4: Comparison between the performance of MAMBPO and MASAC on the two benchmark tasks. The number
of steps indicates the number of gradient steps performed per real environment step. The results are smoothed using
a moving average filter with a filter size of 200 episodes. The bold lines and shaded areas indicate the mean and
standard error of the mean over 5 independent runs respectively.

Chance of success
Episodes trained for MASAC MAMBPO
1250 0.3% 3.2%
2500 3.8% 20.1%
5000 25.9% 37.1%

TABLE I: Comparison of the chance of covering all three
targets for at least 1 timestep, without any collisions oc-
curring during the episode. Evaluated over 5 independent
runs and 250 evaluation episodes per run.

a) Rewards on benchmark domains: The results
of testing our algorithm on the two test domains and
comparing it against its model-free counterpart can be
seen in Figure 4. We find that the MAMBPO algorithm
results in higher rewards for a given number of episodes,
and requires between 1.7× (cooperative navigation) and
3.7× (predator-prey) fewer episodes to reach a desired
benchmark score compared to the standard (1 step)
MASAC algorithm. Increasing the number of gradient
steps performed in MASAC does not improve perfor-
mance or, in the case of predator-prey, prohibits learning
altogether.

b) Success rates on benchmark domains: For the
cooperative navigation task, we define an episode to be
successful if all three targets are simultaneously covered
for at least 1 time step without any collisions occurring

Chance of catching prey
Episodes trained for MASAC MAMBPO
1250 43.5% 72.1%
2500 55.0% 97.8%
5000 76.3% 98.8%

TABLE II: Comparison of the chance of covering the
prey by at least one predator for at least 1 timestep.
Evaluated over 5 independent runs and 250 evaluation
episodes per run.

during the episode. We show the success rates at different
stages of learning in Table I. Although the success
rates for both algorithms remain relatively modest (at
most 37.1%), we do see improvements of MAMBPO
compared to MASAC of 16.3 percentage points halfway
during training and 11.2 percentage points after finishing
the training. Of the unsuccessful episodes still occur-
ring after 5000 episodes of training, 39% is caused by
collisions, 36% are caused by not covering all three
targets and 25% fail due to both colliding as well as
failing to cover all targets. When agents fail to cover
all three targets, the agents often do come close to all
three targets, but not close enough to fully cover them.
The large amount of collisions might be caused by the
relatively low negative reward (-2) associated with them,
which might result an incentive for agents to go through

9

(a) Cooperative navigation. In this episode, the task perfor-
mance is regarded as a failure as there occurs a collision
in the 4th time step between the agent that ends up at the
top and the one that ends up at the right.

(b) Cooperative predator-prey. In this episode, the agents
manage to succeed in their task as there is at least one
timestep where one predator is in contact with the prey.

Fig. 5: Sample trajectories of learned behaviours of the MAMBPO agents after 5000 episodes of training in the
two benchmark domains.

each other to more quickly reach their targets. For the
predator-prey task, we look at the chance of covering
the prey by at least one predator for at least one time
step during an episode, counting this as “catching the
prey”. These results can be found in Table II. In this
domain, the success rates are higher. The performance
of MAMBPO agents trained for only 1250 episodes
nearly equals the performance of MASAC agents trained
for 5000 episodes, and reach a success rate of 98.8%
when fully trained (compared to 76.3% for the MASAC
agents). Sample trajectories of the learned behaviours
can be found in Figure 5.

c) Model quality: The world models are period-
ically evaluated on their reward- and observation pre-
dictive capabilities. We do this by generating a number
of trajectories in the environment using the current
actor and measure the coefficient of determination (R2)
between the single-step predictions of the model and the
true single-step rewards and observations. These results
are shown in Figure 6. We find that, in both domains,
after approximately 2500 episodes of training the model
does not appear to improve any further. Also, it is visible
that there are still large inaccuracies in the model, even
after training for 5000 episodes. The model performs
worse in predicting observations of velocities compared
to positions. The velocity of the prey in the predator-
prey domain appears to be the most difficult to predict.
This is likely because the actions that the prey takes
are not directly visible to the model. Rather, the prey
uses a fixed heuristic to move around which is a part
of the environment and only the relative velocity of the

prey can be observed by the agents themselves. We also
find that the model has more difficulty in predicting
the reward of the predator-prey domain, compared to
the navigation domain. This might be caused by the
sparseness and highly non-smooth nature of the rewards
in the predator-prey domain.

To see whether the inaccuracies in the models are
hampering the performance of MAMBPO agents, we
overlay the performance of agents with the quality of
the model during training in Figure 7. In the cooperative
navigation domain, agents are able to continue improving
until the end of training. Indicating that the quality of
the model is not bottlenecking the final performance
of the agents. In the predator-prey domain, however, it
appears that agents stop improving at a similar point in
training as when the model quality stops improving. This
might indicate that model-quality is limiting the final
performance of agents. To check what the asymptotic
performance of agents can be without limitations in
model quality, we perform a number of longer training
runs using the model-free MASAC algorithm on the
predator-prey task. In these training runs, we find that
agents are still only able to reach an average cumulative
reward of 115 after 10000 episodes of training. This
might indicate that it is not the model quality that is
limiting performance, but rather the policy optimization
algorithm itself or the difficulty of the task.

Another important aspect to look at with regards to
the model quality is model bias. As mentioned in the
methodology, ensembles of networks are used to reduce
the amount of model bias in our algorithm. When there

10

(a) Cooperative navigation. The model reaches a R2 >
0.95 for all observations with the exception of the 6
observations that correspond to velocities of agents.

(b) Cooperative predator-prey. The model reaches a R2 >
0.95 for all observations with the exception of the 6
observations that correspond to velocities of predators
(R2 ≈ 0.85) and the 6 observations corresponding to
velocity of the prey (R2 ≈ 0.60).

Fig. 6: Analysis of the model quality during training. We compute the R2 value of one-step model predicted
observations and rewards compared to the true observations and rewards received. The model predicts a joint
observation and reward consisting of 54 (navigation) or 48 (predator-prey) observation variables and 1 reward
variable. Each thin line corresponds to a single observation variable. The thick line indicates the mean R2 of all
observations. The results are obtained over 5 independent training runs and 250 evaluation episodes per run.

(a) Cooperative navigation. Even after around 2500
episodes, when the model appears to not improve signifi-
cantly further, the agents still continue to learn. This might
indicate the inaccuracies in the model are not bottlenecking
the training.

(b) Cooperative predator-prey. The agent performance
gains stops at a similar point as when the model quality
stops improving. This might indicate that inaccuracies of
the model are limiting the final performance of agents.

Fig. 7: Overlay of model quality and agent performance. We compare the R2 value of the predicted rewards and
observations, as displayed already in Figure 6, with the performance of the MAMBPO agents, as already seen in
Figure 4.

is a model bias, agents learn to exploit inaccuracies in
the model which results in the agents underperforming in
the real task compared to their performance in the model.
This bias can be made visible through comparison of
the expected rewards of model predictions with real
environment rewards. We show these results in Table III.
We see that the differences in rewards are limited and
we observe no substantial evidence of model bias using
1250 samples.

Average Reward (±2× standard error of the mean)
Environment Real Predicted Bias
Navigation -4.95 (± 0.11) -4.94 (± 0.11) - 0.13%
Predator-prey 5.43 (± 0.34) 5.51 (± 0.29) + 1.39%

TABLE III: Bias of single-step model reward predictions
for models trained for 5000 episodes. Each value was
calculated based on 5 independent training runs and
transitions were sampled from 250 evaluation episodes
per training run.

11

V. DISCUSSION

The primary goal of this research is to contribute
towards making online learning for real-life robotic
swarms possible. We do this through the proposal of a
novel multi-agent reinforcement learning algorithm that
utilizes model-based learning to improve sample effi-
ciency within the centralized learning for decentralized
execution framework. In this section, we reflect upon the
contribution we make towards this primary goal.

Our experiments compared model-based multi-agent
reinforcement learning with its model-free counterpart.
The results indicated that, similar to single-agent rein-
forcement learning, model-based learning is able to im-
prove the sample efficiency. The amount of improvement
in sample efficiency varies per domain. This variance
in performance gain has also been observed in the
single-agent MBPO algorithm and is therefore not a
surprising finding [22]. The improved efficiency was
achieved through benefiting more from an increased
numbers of gradient steps. This benefit is most likely
resulting from the larger diversity in the replay buffer
available to the actor and critic, as performing a similar
number of gradient steps without a model does not
improve performance. It appears that after a limited
amount of training, the world models are unable to
improve in performance further. Although this does not
prevent us from beating model-free algorithms in sample
efficiency, this does leave us with the question of whether
improvements in model learning techniques or model
architecture could result in even greater improvements
in sample efficiency. When training robots in real-life
scenarios, sample efficiency is of utmost importance due
to the costs associated with robots breaking, wear and
tear, and the time of running the robots. Although our
algorithm is able to improve sample efficiency, it only
does so by a factor of between 1.7 and 3.7 in both our
benchmark tasks, still requiring up to 5000 trials to reach
desirable performance. This number of trials can still
be prohibitively expensive, especially when there is a
risk of robots breaking during each trial. Thus, more
improvements in sample efficiency are needed to reach
our goal of real-life learning for robotic swarms.

Although the increased number of gradient steps im-
proves performance, it also significantly reduces the
computational efficiency of the algorithm, especially in
the scenarios when the costs of running the actor- and
critic- networks are high compared to the cost of the
simulator. The simple 2-D domains that we tested our
algorithm on are prime examples of this. This results
in a near linearly proportional relationship between the
number of gradient steps performed and the computing
time required. Whether this is a problem fully depends
on the application. In many robotic scenarios, the cen-

tralized learning could be offloaded towards an external
system that has plenty of computing power available.

At first glance, the chosen framework of centralized
learning for decentralized execution imposes significant
limitations on the applicability towards online learning
in real life, as some centralized infrastructure appears
to be needed to perform the learning. Such infrastruc-
ture might not be available in real-life scenarios where
robotic swarms can be used. One possible way to cir-
cumvent this problem is to only perform learning when
the robotic swarm has returned to some form of base
station where communication is available. The robots
could collect data simultaneously whilst acting in the
real world and only use and share their collected data to
learn when there is a communication link. This could be
done, for example, when the robots are charging. Such
a method would naturally fit within our approach as the
only information that is used during centralized learning
is a concatenation of all observations and actions of each
agent, thus requiring no external observer of the system.

VI. CONCLUSION

The goal of this study is to contribute towards making
real-life online learning for robotic swarms possible,
which requires the availability of sample-efficient multi-
agent reinforcement learning algorithms. To study the
potential benefits of model-based learning to improve
sample efficiency in a multi-agent context, we design
and evaluate a new centralized learning for decentralized
execution algorithm. This algorithm is, according to our
best knowledge, the first in its class to utilize learned
world models to improve sample efficiency. Using this
algorithm we are able to improve the sample efficiency
of a model-free baseline by a factor of 1.7 to 3.7, as
demonstrated on two benchmark domains, highlighting
the potential benefits of model-based learning.

Even though our approach demonstrates a significant
improvement in sample efficiency compared to model-
free approaches, more improvements are needed to
achieve sample efficiencies that make online-learning in
multi-agent real-life scenarios feasible. One way to do
this would be to improve the model learning capabilities
of our algorithm. One could utilize recent advancements
in supervised learning techniques and neural network ar-
chitectures to improve model learning speed and quality
(for example through regularization [27]) or scalabil-
ity (for example through attention [18]). Another way
would be to improve the policy optimization part of our
algorithm. Our research has specifically focused on a
model-based version of Multi-Agent Soft-Actor-Critic;
however, model-based approaches might also be appli-
cable to other model-free algorithms such as Attention-
Actor-Critic [18] or Q-MIX [14].

12

A second direction for future research could be to
perform fully decentralized model-based learning. As
explained in the discussion, the CLDE framework can
be practical in many real-life applications. However, in
situations where robots cannot communicate with each
other or with a base station at all, fully decentralized
algorithms are still needed. Model-based learning could
be investigated as a potential improvement for sample
efficiency in these situations as well.

Finally, further research could investigate how these
algorithms can be scaled up to perform in more com-
plex, real-world tasks. A solution could be to combine
sim-to-real learning[28] with model-based reinforcement
learning, such that the agents do not need to start from
scratch when acting in the real world.

As highlighted in the previous paragraphs, this article
provides a first baseline and starting point for further
research towards model-based learning in multi-agent
systems, which might eventually result in realizing the
end goal of making online real-life learning for multi-
agent robotic systems possible.

REFERENCES

[1] David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, and Marc Lanctot. Mastering the
game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

[2] David Silver, Julian Schrittwieser, Karen Si-
monyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
and Adrian Bolton. Mastering the game of go
without human knowledge. Nature, 550(7676):
354–359, 2017.

[3] David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
and Thore Graepel. Mastering chess and shogi
by self-play with a general reinforcement learning
algorithm. arXiv preprint arXiv:1712.01815, 2017.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with
deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, and Georg Ostrovski. Human-level con-
trol through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[6] David Silver, Guy Lever, Nicolas Heess, Thomas
Degris, Daan Wierstra, and Martin Riedmiller. De-

terministic policy gradient algorithms. In Pro-
ceedings of the 31st International Conference on
Machine Learning, pages 387–395, 2014.

[7] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a
stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

[8] Markus Peters, Wolfgang Ketter, Maytal Saar-
Tsechansky, and John Collins. A reinforcement
learning approach to autonomous decision-making
in smart electricity markets. Machine learning, 92
(1):5–39, 2013.

[9] Mario Coppola, Kimberly Mcguire, Christophe
De Wagter, and Guido Croon. A survey on swarm-
ing with micro air vehicles: fundamental challenges
and constraints. Frontiers in Robotics and AI, 7:18,
2020.

[10] Levent Bayindir. A review of swarm robotics tasks.
Neurocomputing, 172, 2015.

[11] Pablo Hernandez-Leal, Michael Kaisers, Tim
Baarslag, and Enrique Munoz de Cote. A survey of
learning in multiagent environments: Dealing with
non-stationarity. arXiv preprint arXiv:1707.09183,
2017.

[12] Jakob Foerster, Nantas Nardelli, Gregory Farquhar,
Triantafyllos Afouras, Philip HS Torr, Pushmeet
Kohli, and Shimon Whiteson. Stabilising expe-
rience replay for deep multi-agent reinforcement
learning. In Proceedings of the 34th International
Conference on Machine Learning, pages 1146–
1155, 2017.

[13] Jakob Foerster, Ioannis Alexandros Assael, Nando
De Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement
learning. In Advances in neural information pro-
cessing systems, pages 2137–2145, 2016.

[14] Tabish Rashid, Mikayel Samvelyan,
Christian Schroeder De Witt, Gregory Farquhar,
Jakob Foerster, and Shimon Whiteson. QMIX:
monotonic value function factorisation for deep
multi-agent reinforcement learning. arXiv preprint
arXiv:1803.11485, 2018.

[15] Christian Schroeder de Witt, Bei Peng, Pierre-
Alexandre Kamienny, Philip Torr, Wendelin
Böhmer, and Shimon Whiteson. Deep multi-
agent reinforcement learning for decentralized
continuous cooperative control. arXiv preprint
arXiv:2003.06709, 2020.

[16] Erol Sahin, Sertan Girgin, Levent Bayindir, and
Ali Turgut. Swarm Robotics. Swarm Intelligence,
pages 87–100, 2008.

[17] Ryan Lowe, Yi I. Wu, Aviv Tamar, Jean Harb, Ope-
nAI Pieter Abbeel, and Igor Mordatch. Multi-agent

13

actor-critic for mixed cooperative-competitive en-
vironments. In Advances in neural information
processing systems, pages 6379–6390, 2017.

[18] Shariq Iqbal and Fei Sha. Actor-attention-critic
for multi-agent reinforcement learning. In Inter-
national Conference on Machine Learning, pages
2961–2970. PMLR, 2019.

[19] Shubham Gupta and Ambedkar Dukkipati. Proba-
bilistic View of Multi-agent Reinforcement Learn-
ing: A Unified Approach. 2019.

[20] Jens Kober, J. Andrew Bagnell, and Jan Peters.
Reinforcement learning in robotics: A survey. In-
ternational Journal of Robotics Research, 32(11):
1238–1274, 2013.

[21] Kurtland Chua, Roberto Calandra, Rowan McAllis-
ter, and Sergey Levine. Deep Reinforcement Learn-
ing in a Handful of Trials using Probabilistic Dy-
namics Models. arXiv preprint arXiv:1805.12114,
2018.

[22] Michael Janner, Justin Fu, Marvin Zhang, and
Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neu-
ral Information Processing Systems, pages 12498–
12509, 2019.

[23] Orr Krupnik, Igor Mordatch, and Aviv Tamar.
Multi-Agent Reinforcement Learning with
Multi-Step Generative Models. arXiv preprint
arXiv:1901.10251, 2019.

[24] Pararawendy Indarjo, Michael Kaisers, and Peter D.
Grünwald. Deep State-Space Models in Multi-
Agent Systems. Master’s thesis, Leiden University.

[25] Frans A. Oliehoek. Decentralized POMDPs. In
Marco Wiering and Martijn van Otterlo, editors,
Reinforcement Learning: State-of-the-Art, Adapta-
tion, Learning, and Optimization, pages 471–503.
Springer, Berlin, Heidelberg, 2012.

[26] Igor Mordatch and Pieter Abbeel. Emergence of
grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[27] Jan Kukačka, Vladimir Golkov, and Daniel Cre-
mers. Regularization for deep learning: A taxon-
omy. arXiv preprint arXiv:1710.10686, 2017.

[28] J. Tobin, R. Fong, A. Ray, J. Schneider,
W. Zaremba, and P. Abbeel. Domain random-
ization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 23–30, 2017.

14

APPENDIX A
FULL HYPERPARAMETER SETTINGS

The full set of hyperparameters used in the experi-
ments described in Section IV is shown in Table IV.

Hyperparameter Notation Value
Learning rate of model lrmodel 0.01
Learning rate of actor & critic lrac 0.003
L2 normalization of model - 0.001
Hidden layer sizes model - 4×200
Hidden layer sizes actor - 2×128
Hidden layer sizes critic - 2×256
Model training batch size - 512
Model training gradient steps - 500
Model training interval - 250
Number of models in ensemble - 10
Actor-Critic batch size - 256
Actor-Critic gradient steps - 5
Actor-Critic training interval - 1
Actor-Critic target network update rate τ 0.01
Initial exploration constant α 0.1
Discount factor γ 0.95
Target entropy - −2
Min / max log variance of model output - −5/− 2

TABLE IV: Full set of hyperparameters used in the
multi-agent tasks.

APPENDIX B
VERIFICATION ON SINGLE-AGENT CHEETAH TASK

When there exists only one agent in an environment,
our MAMBPO algorithm is equivalent to the MBPO
algorithm described by Janner et al. [22]. Thus, to verify
the correctness of our implementation, we compare the
performance of our MAMBPO algorithm on the MuJoCo
HalfCheetah-v2 task with the performance reached by
Janner et al. In this task, the agent must learn to control
a virtual cheetah to run forward. Each episode consists of
1000 time steps. We use similar hyperparameters to the
ones described in the original MBPO paper. The results
can be seen in Figure 8. The increased level of noise in
our results can be explained by the limited number of
runs we do (3) and the fact that we evaluate our agent
through its training episodes, whereas Janner et al. do not
show the number of runs and or the number of greedy
evaluation episodes.

Fig. 8: Verification of our MAMBPO algorithm on the
MuJoCo HalfCheetah task.

II
Preliminary Report

17

19

Authors remark: this part is a direct copy of the preliminary thesis report as submitted on 17-7-2020. The
contents and direction of the thesis project have significantly changed after that date. The preliminary report
should thus only be viewed as a source of additional information, rather than a direct preliminary study of the
research as presented in Part I.

1
Introduction

Humans can achieve great things through cooperation. Robots can benefit from cooperation as well, but first
they need to learn how to do so. From an early age, humans are social beings and learn to cooperate, achiev-
ing goals that they would not be able to reach on their own. Cooperative behaviour however, is far from
unique to humans. Many animals, big and small, have their own forms of cooperation and social behaviours.
Think of a pack of wolves that work together to hunt down prey much larger than they would be able to on
their own. Or small creatures like ants working together in large colonies to forage for food. It would seem
natural that robots, able to learn all kinds of complex behaviours, should also be able to cooperate with each
other. One especially promising direction would be to have a large group of small and relatively simple robots
cooperate to achieve complex tasks. Doing so can offer great benefits compared to creating a single robot able
to do the task on its own. One example of this being that a single robot would be susceptible to failure. If one
components breaks, the robot could fail in its task entirely. A large group of robots on the other hand, could
be robust to individual failures.

The study of large groups of robots, known as swarm robotics, is motivated by the benefits that these
large groups of robots could offer, and is inspired by swarms of insects [1–3]. To fully achieve the benefits
of large groups, and be able to apply swarms of robots on complex tasks, some key challenges still remain
to be solved. One of which is that of swarm design, which deals with designing the behaviours of the robots
in a swarm. Although manually creating these behaviours is possible for simple tasks, this gets exceedingly
more complex when the tasks get more difficult. To make this process less complicated for the human de-
signer, automatic swarm design methods can be considered; methods that design or learn behaviours for
robot swarms automatically. Being able to create behaviours without any human intervention would relieve
the human designer of its exceedingly difficult task, and allow more complex behaviours to occur. However,
the human is still required to create a swarm simulator which can be used for the automatic swarm design
method to optimize behaviours on. Since reality is always slightly different from simulation, these optimized
behaviours might turn out to perform worse in reality than they did in simulation, a problem known as the
reality gap. Ideally, robots would learn their behaviours whilst acting in the real world, also known as online
learning, and quickly learn desirable behaviours and how to solve tasks without any human intervention.

One promising area of research to look into to solve this challenge is that of reinforcement learning. This
subfield of artifical intelligence studies how an agent can learn desirable behaviours automatically purely
from interacting with an environment, receiving feedback in the form of rewards [4]. In recent years, the
combination of reinforcement learning with deep neural networks, a class of function approximator loosely
inspired by the human brain, has been able to achieve some remarkable feats. Being especially powerful in
games, it has been able to outperform humans in Go, Chess [5–9], Atari games [9–12] and Starcraft-II [13].
Also on virtual robotics tasks such as learning to stand, walk or run as a virtual humanoid [14], reinforcment
learning has made great progress. Learning these complex tasks, however, often takes thousands if not mil-
lions of trials, which is not viable on real robots: not only could failed trials damage the robot or equipment,
it also takes an enormous amount of time. The amount of experience required by a reinforcement learning
algorithm known as sample efficiency, a key aspect to improve to make learning on real robots possible [15].
One approach to do so is model-based reinforcement learning, where robots not only learn their behaviour,

21

22 1. Introduction

but also learn a model of the world which can then be used to improve their behaviours faster. Techniques
like these have allowed algorithms to solve simple robotic tasks in less than 10 trials [16].

In situations where multiple agents are simultaneously learning to cooperate in a single environment,
reinforcement learning is more complex. The agents now not only have to learn about themselves and the
environment, but also need to learn about the other agents. To avoid this increased complexity, one could
design a central all-knowing entity that coordinates the behaviours of all agents. This effectively turns the
problem into one, larger, single-agent problem where the central entity is considered the learning agent. For
swarms of robots though, this would not be a good option. For one, the benefit robustness to individual fail-
ure would no longer exist. Every robot is relying on a single central entity. A more desirable approach would
be for every agent to learn fully decentralized, without any central entity. For reinforcement learning, this is
a complex task, as every agent only has limited information supply, and the environment, from the perspec-
tive of an agent, is not stationary due to changes in behaviour of other agents. Some standard reinforcement
learning algorithms have been adapted to improve their performance in these situations, however; these ap-
proaches suffer from poor sample efficiency, and are thus unsuitable for learning on real robots.

Since model-based reinforcement learning has had such a significant effect on improving the sample-
efficiency of single-agent reinforcement learning algorithms, we investigate if similar techniques can also be
applied to improve sample-efficiency of decentralized multi-agent reinforcement learning. The combination
of these two techniques has remained as a gap in ongoing Multi-Agent Reinforcement Learning Research [17].
Exploiting this combination can bring us one step closer to achieving online learning for robot swarms. Our
main research question therefore is the following:

Can sample efficiency of decentralized, multi-agent reinforcement learning be improved through the use
of a learned world model?

The main aim of this preliminary report is to provide the reader with the motivation, necessary back-
ground information and a clear approach to start answering this question. The core of the motivation part
is Chapter 2, where we give a brief overview of the field of swarm robotics, with special attention to swarm
design. Chapter 3 through Chapter 5 provide a comprehensive overview of a number of topics that can be
considered prerequisite knowledge for the remainder of the report. Readers that are already familiar with
these topics could skim through them or keep them as reference materials. These topics are as follows. In
Chapter 3, we introduce the field of reinforcement learning, some basic reinforcement learning algorithms,
key characteristics of these algorithms and the formal problem reinforcement learning strives to solve. Next,
in Chapter 4, we introduce the combination of deep neural networks with reinforcement learning, also known
as Deep Reinforcement Learning, introducing the reader to modern algorithms that serve as the basis for
later multi-agent reinforcement learning algorithms and model-based reinforcement learning algorithms.
One complicating aspect often occurring in complex and multi-agent tasks is that of partial observability,
this topic is introduced in Chapter 5. The two primary components which the thesis will build upon are in-
troduced in Chapter 6 and Chapter 7. In Chapter 6, we introduce model-based reinforcement learning algo-
rithms. In Chapter 7, multi-agent reinforcement learning algorithms are introduced. The primary approach
for this thesis can be seen as combining these two building blocks into a single algorithm that performs decen-
tralized, multi-agent, model-based reinforcement learning. All the aforementioned topics are combined and
summarized in the literature synthesis that is Chapter 8. This concludes the background part of this report.
Then, in Chapter 9 we do a preliminary analysis on one potential approach towards online, model-based,
learning for swarming that we call the PageRank approach, based on research by Coppola et al. [18] What re-
mains is Chapter 10, the conclusion. Although this chapter is the conclusion, it primarily serves as a preview
of the work to be expected in the final version of this thesis and the description of a practical approach on
how to get there.

2
An Overview of Swarm Robotics

The field of swarm robotics studies the coordination of large groups of relatively simple robots through the
use of local behavioural rules [1]. A key idea in swarming is the contrast between complexity at the individual
level compared to the complexity at the system level (or swarm level). Simple individual robots are designed,
often with simplistic behavioural rules. The system-level behaviour that emerges from these rules, however,
can be complex. Simple agents can work together to achieve difficult and large tasks that are much larger
than any one individual could perform on its own. This chapter gives a broad overview of the field. We start
the chapter with a discussion on the inspiration and motivation of swarming. see that certain properties of
social insects that form the source of inspiration can be highly desirable properties in robotic systems, leading
to a number of advantages compared to standard single- or multi-agent systems. After this, in Section 2.2,
we show how swarm robotics is embedded within the field of multi-agent robotics. Then, in Section 2.3,
we discuss how the behaviour of the robots can be designed. This is known as swarm design. Finally, in
Section 2.4 we discuss some issues that arise when applying swarm robotics to real robots.

2.1. Motivation and Inspiration
In this section, we detail the inspirational source of swarm robotics. In addition, we highlight some key ad-
vantages that a swarming approach to robotics can have compared to conventional (multi-agent) robotics in
certain situations. Swarm robotics can be described as the application of swarm intelligence concepts into
multi-robot systems. Swarm intelligence is the collective intelligence that arises from interactions within a
large group of autonomous individuals [2]. Despite the individuals being relatively simple and lack of central-
ized coordination, the emergent behaviour at the system level can be impressive. Social insects, such as ants,
wasps and termites, also show this type of system level behaviour, as these animals are able to coordinate
their individual behaviours to achieve goals that greater than that which a individual can achieve [19]. The
inspiration for swarm robotics stems from these kinds of insects [3, 20]. Although theses insects are a source
of inspiration for many swarming algorithms and methods, imitation of nature does not have to be the main
motivation for doing swarm robotics. Instead, research can be motivated by the advantages that swarming
offers compared to conventional (multi-agent) robotics. Three properties that social insect swarms have that
are also desirable for certain multi-robot systems are robustness, flexibility and scalability [3]:

• Robustness implies that swarm systems should be robust to failure or loss of any one individual or
outside disturbances. If a single robot fails, the swarm should still be able to perform its task, albeit at
a possibly lower level of performance. Four key factors can be identified that result in this robustness
[3]. First, redundancy in the system: the large number of individuals results in the possibility of com-
pensating the loss of a single individual by the collective group. Second, decentralized coordination;
as the coordination is a shared task between the individuals, there is no central individual or infras-
tructure that could be a single failure point. Third, simplicity of the individuals; in general, complex
robots or individuals have a greater chance of failure since their are more points within the robot that
could cause such a failure. Fourth, multiplicity of sensing; distributed sensing by a large number of
individuals results in a better signal to noise ratio.

• Flexibility implies that swarm systems should be able to perform different tasks, and be able to adapt

23

24 2. An Overview of Swarm Robotics

to changes in the environment. Individuals should also be able to take part in performing different
tasks in contrast to being specialized on a single task only.

• Scalability implies that swarm systems should be able to achieve coordination and be able to perform
tasks across a wide range of group sizes. This requires the coordination system that is in place to be
able to work across different group sizes.

These three properties of social insects could be used as requirements for designing swarm robotics systems.
Barca and Sekercioglu mention five other benefits of swarm robotics, that are highly related to and build upon
the previously mentioned properties of social insects [2]:

• Utilization of sensing of many robots simultaneously allows for quick exploration of large areas. This is
related to the previously described flexibility and scalability properties.

• Utilization of sensing from many robots simultaneously allows for a greater situational awareness of the
swarm as whole. This advantage is also closely related to the previously described flexibility property.

• Robot swarms are more robust to failure of individuals as other individuals can take over unfinished
work from the lost or failed individual. This advantage is very similar to the robustness property of
insects.

• Workload can be distributed amongst individuals, resulting in greater results. This is especially benefi-
cial when tasks need to be performed over a large spatial area. This relates to the scalability property of
insects.

• Tasks can be carried out in parallel, this relates to the scalability property of insects.

In situations where these properties are desired, it might be useful to take a swarm robotics approach.

2.2. Swarm Robotics within Multi-agent systems
In this section, we place swarm robotics within the larger group of multi-agent robotics. To do this, we elab-
orate on two taxonomies of multi-agent systems and explain how swarm robotics fits into these taxonomies.

2.2.1. Taxonomies of multi-agent robotics
A taxonomy that describes multi-agent robotics along seven axes has been described by Dudek [21]. This
taxonomy is also summarized in Table 2.1.

1. Size of the collective. This simply describes the number of robots within the system. Dudek identifies
four categories within this axis. First, SIZE-ALONE implies a single-agent system. Second, SIZE PAIR,
denotes a two-agent system. Third, SIZE-LIM means a system with multiple robots, where the number
of robots is small compared to the size of the task. Fourth, SIZE-INF, where the number of robots is
effectively infinite. The distinction between SIZE-LIM and SIZE-INF is dependent on the size of the
environment or task. SIZE-INF provides a simplification by making the assumption that there is always
a large supply of robots available to perform (part of) a task. SIZE-INF is typically assumed for swarm
robotics [1].

2. Communication range. Dudek splits the communication range in three categories: COM-NONE,
COM-NEAR and COM-INF, where there is no direct communication between robots at all, where robots
can only communicate with other robots that are sufficiently nearby and where robots can communi-
cate with any other robot respectively. Note that in the COM-NONE case, robots can still communicate
indirectly through observing each other behaviour. COM-NEAR is typical for swarm robotics.

3. Communication topology. The communication topology axis categorizes multi-agent systems by struc-
ture in the communication network between the robots. Four categories are discerned here. First, TOP-
BOARD, where agents broadcast their messages to all other agents. Second, TOP-ADD, where agents
can address their messages to specific other agents. Third, TOP-TREE, where a tree structure deter-
mines the possible communication links. An agent can only directly communicate with agents they
share an edge in the tree with. Fourth, TOP-GRAPH, where a graph determines robots available com-
munication lines. This is a generalization of the TOP-TREE structure. Due to its decentralized nature,
TOP-GRAPH is used in swarm robotics [1].

2.3. Swarm Design 25

Figure 2.1: Classification of swarm robotics within multi-agent robotics using the taxonomy from Iocchi et al. [22] Figure taken from
Navarro et al. [1] who in turn adapted it from Iocchi et al. [22]

4. Communication bandwidth. This axis categorizes systems by the cost of communication. BAND-INF
implies that communication is effectively free. BAND-MOTION implies that costs are around the same
order of magnitude as the costs of moving. BAND-LOW implies very high communication costs. Finally,
BAND-ZERO implies no communication at all. Robots are in this case also unable to sense each other.
Navarro states that BAND-MOTION is typical for swarm robots [1].

5. Collective reconfigurability. This axis deals with how quickly robots can reconfigure the group spa-
tially. ARR-STATIC means a fixed topology. ARR-COM implies that rearrangement is only possible
within communicating members. Finally, ARR-DYN implies that the formation can change arbitrar-
ily. The dynamic nature of ARR-DYN is an integral part of swarm robotics [1].

6. Individual processing ability. This axis distinguishes systems between processing capabilities of the
individual agents. Four categories are established. From low to high processing power these are: PROC-
SUM, a non-linear summation unit, PROC-FSA, a finite state machine, PROC-PDA, push down automa-
tion and PROC-TME, Turing machine equivalent. Although processing power of swarm-robots typically
is limited, they still use PROC-TME type processors [1].

7. Collective composition. This axis indicates the similarity between agents. CMP-IDENT implies that
all agents are identical both in hardware and software. CMP-HOM implies that all agents are similar
in physical capabilities. CMP-HET implies that agents can differ physically. Robots in a swarm are
typically similar, they might be both CMP-HOM or even CMP-IDENT [1].

Another way of classifying multi-agent robotics has been introduced by Iocchi et al.[22] A taxonomy is pro-
posed based on four properties, as is shown in Figure 2.1. A cooperative system is one in which multiple
robots work together to achieve one system level goal. Awareness distinguishes whether or not robots are
aware of the existence of the other robots. The level of coordination determines how strongly individuals re-
act based on behaviour of other individuals. Finally, organization determines if the the coordination is done
from a central level or in a distributed fashion.

2.3. Swarm Design
Swarm design deals with creating the algorithms that determine the behaviour for the agents to achieve a cer-
tain system-level goal. As explained in the previous section, coordination of swarm robotics is usually done
in a distributed fashion. This implies that each agent has a set of rules that it follows and that these individual
sets of rules determine the system-level behaviour. Designing these rules can either be done manually (also
known as behaviour-based methods) or in an automatic fashion.

2.3.1. Behavior-based design methods
According to Brambilla et al., the most commonly used design methods are of the manual category [23]. De-
signing individual behaviours manually to result in the desired system-level behaviour is usually a trial and
error process of evaluating and tuning the behavioural rules until the performance is satisfactory, this is also

26 2. An Overview of Swarm Robotics

Characteristic Options Notes
Size of the collective ALONE, PAIR, LIM,

INF
Swarms are typically described by a large
number of agents.

Communication range NONE, NEAR, INF Communication in swarms typically only
happens between agents that are close to
each other.

Communication topology BOARD, ADD, TREE,
GRAPH

Swarms are highly decentralized and there-
fore typically have a graph structure.

Communication bandwidth LOW, MOTION, INF Generally, swarm robots are able to com-
municate, but there do exist limitations to
the amount of communication possible.

Collective reconfigurability STATIC, COM, DYN Reconfigurability is a key benefit of swarms.
Individual processing ability SUM, FSA, PDA, TME This category might be slightly outdated

with the recent increase in computing ca-
pabilities. Although many robots have Tur-
ing Machine Equivalent processors, their
capabilities can still be limited by the
amount of processing power.

Collective composition IDENT, HOM, HET Swarms generally are quite homogeneous,
but behaviours don’t necessarily need to be
identical.

Table 2.1: The position of swarms within the taxonomy introduced by Dudek [21]. Typical characteristics of swarm-robotics are set in
bold font.

known as a bottom-up or a code-and-fix approach [24]. These behaviour-based design methods can be cate-
gorized by the way in which they represent the behavioural rules. The two most popular representations will
be discussed here in further detail. First, there are probabilistic finite state machines (PFSMs). Probabilis-
tic finite state machines keep an internal state stored in the robot and updates these based on observations.
Then, based on this internal state and these observations, actions are selected probabilistically. Second, there
are virtual physics-based representations. These rules mimic physical laws, usually working with potential
fields, resulting in behaviour of repulsion and attraction. These approaches are especially useful for forma-
tion flight[25] or obstacle avoidance [26] and can result in flocking-like behaviour [27]. In addition to these
bottom-up approaches, some research has also been done on top-down approaches, such as property-driven
design. In property-driven design, the starting point is a set of requirements for the system-level behaviour
and the individual behavioural rules are then developed in a similar fashion to test-driven development [24].

2.3.2. Automatic design methods
There exist several approaches for automatic swarm design, the two main categories are both machine learn-
ing approaches: reinforcement learning and evolutionary robotics [23, 27]. The former of which will be dis-
cussed in more detail in the remainder of this literature study. In this section, we discuss some general charac-
teristics, advantages and downsides to the general strategy of automatic swarm design. In general, automatic
swarm design approaches can be categorized as a form of top-down design. The task of the designer here is to
formulate the desired system-level characteristics in such a precise way that the automatic algorithm can op-
timize the individual behaviours to achieve these system-level characteristics. An additional task that needs
to be done however; is creating the optimization algorithms needed to find the behaviour. It is desirable that
these algorithms work across a wide variety of tasks and systems, such that the designer does not need to
adjust the algorithm for every swarm system. Many of the machine learning approaches rely on evaluation of
behavioural rules within simulations. These simulations should be sufficiently accurate that the behaviours
can translate into the real world. A disadvantage of many of these methods is that the learned behaviour is
difficult to interpret manually.

Describing automatic swarm design methods To describe automatic swarm design methods, four key
characteristics of these methods are identified.

• Online or offline learning. Automatic swarm design methods usually perform some form of optimiza-

2.4. Experimental Swarm Robotics 27

tion based on observed local or system behaviours. The difference between online and offline learning
is whether this optimization is done based on simulation of the swarm, called offline, or if the method
is designed to optimize over behaviours observed in the swarm acting in the real world, online. As sim-
ulators usually have a limited level of fidelity, there could occur a gap in performance of the swarm in
the simulator and the performance when it is deployed in the real world. This problem is known as the
reality gap. Online learning could be a solution to this. However, since using real robots to learn can be
expensive to do for prolonged amounts of time[15], sample efficiency (a measure of the amount of real
world experience the swarm needs before it reaches the desired behaviours) becomes an important
characteristic of the algorithm.

• Optimization algorithm. The two primary categories of algorithms that perform behavioural opti-
mization are that of Reinforcement Learning (RL) and Evolutionary Algorithms (EA). They are inspired
by different principles yet tackle the same problem [28]. In recent years, the distinction between these
two fields has become less pronounced as RL algorithms now sometimes incorporate optimization
steps with close similarities to evolution as a non-gradient based optimization step within their policy
optimization [29]. Although this study primarily focuses on standard (gradient-based) RL approaches,
we will briefly discuss the possibility of using non-gradient optimizers such as EA in Chapter 4.

• Level of centralization. Even though swarms are supposed to have decentralized coordination, it is still
possible for swarm systems to perform learning through a centralized agent. When the agent learns of-
fline, this usually is not a problem. However, when online learning is done, this could require additional
learning infrastructure, taking away from the decentralized nature of swarms.

• Level of homogeneity. In general, swarms are large groups of similar robots. However; it might still be
possible for the robots to have different policies resulting in some amount of heterogeneity.

• Policy representation. Many choices are available for representing a policy (a function that determines
behaviour of a robot). Some common methods include neural networks and behavioural trees. An
important factor to consider is whether the representation is a direct mapping from an observation of
the robot to a an action, or if the robot takes into account some form of history or memory.

2.4. Experimental Swarm Robotics
When dealing with real robots instead of simulated ones, there is a significant increase in complexity of the
system to be designed. Design of the swarming behaviour is only possible once the robots are individu-
ally functioning correctly and autonomously, which can be a great challenge for many applications such as
swarming of Micro Air Vehicles (MAVs). Coppola describes how low level characteristics of MAVs can influ-
ence the swarm design process [27]. Coppola depicts that the design of swarming MAVs can be split up into
four levels of which only the highest level directly deals with the swarming behaviour. These four levels are
the following:

1. MAV design

2. Local ego-state estimation and control

3. Intra-swarm sensing and avoidance

4. Swarm behaviour

The MAV characteristics at the lower levels set constraints on the possible behaviours at higher levels and vice
versa: higher level behaviours place requirements on lower level characteristics. These relationships need to
be taken into account when designing for swarm behaviour.

3
Reinforcement Learning for Markov

Decision Processes

Reinforcement Learning (RL) is a subfield of artificial intelligence that studies agents acting in an environ-
ment. The agent receives observations and a feedback signal from the environment and needs to learn how
to act based on these signals. This provides a promising research area for automatic swarm design. In this
chapter, we strive to give a brief introduction to the topic and its main concepts. In later chapters, we use this
knowledge to discuss more advanced concepts and techniques in reinforcement learning and show how RL
could be applied to swarm robotics. In Section 3.1, we introduce the framework of Markov Decision Processes
(MDP) which can be seen as a mathematical formulation of the problem studied by reinforcement learning.
We roughly follow the notation used in the textbook by Sutton and Barto [4]. After this, in Section 3.2, we in-
troduce some basic reinforcement learning algorithms used for learning within the MDP framework. Finally,
in Section 3.3, we introduce taxonomies for reinforcement learning algorithms and define some broader con-
cepts that explain design decisions when creating reinforcement learning algorithms.

3.1. Markov Decision Processes
Markov Decision Processes form a framework that is able to describe sequential decision making problems.
The problems that we consider here are that of an agent that resides within a certain environment and needs
to make decisions in order to reach some desired rewards. In this section, we discuss all the components that
make up the Markov Decision Process in detail.

• Agent & Environment The two primary components of a MDP are the agent and the environment. The
agent is the learner and decision maker. This can be a robot, a computer algorithm that plays board
games and many other things. Everything outside the agent is called the environment. The agent and
environment interact with each other at every time-step: the agent selects an action At , after which
the environment provides the agent with a new state St+1 and a reward Rt+1[4]. This interaction is
illustrated in Figure 3.1. The main goal for the agent is to find a policy that maximizes its expected
return (the sum of rewards over all time steps).

• State A state St is a characterization of the environment that fully describes all that is relevant to predict
future rewards and states. In other words, knowledge of state is equally useful for predicting the future
as knowledge of the full state history [4]. This is also known as the Markov Property. In finite MDPs,
there is a finite set of all possible states: S= {

s1, ..., sM
}
. Here, M is the size of the state space.

• Action At every time step, the agent can select an action At from a finite set of possible actions A ={
a1, ..., aK

}
. Here, K is the size of the action space. These actions are the only way in which an agent

can influence the environment. The set of actions that an agent can take can be dependent on the state
that the agent currently is in. We name the set of actions that the agent can take in state s :As ⊆A.

• State transition function When an action is selected in state s, the environment transitions to a new
state s′. This transition can be described by the state transition function P : S×S×A→ [0,1] that returns

29

30 3. Reinforcement Learning for Markov Decision Processes

Agent

Environment

��+1

�
�

�
�

�
�

�
�

��+1

Figure 3.1: Description of the interaction between agent and environment. Figure adapted from Sutton and Barto [4].

the probability of transitioning to state s′ given the previous state s and action a:

P
(
s′, s, a

)= Pr
{
St = s′|St−1 = s, At−1 = a

}
This function can also be represented as an array RM×M×K , where each element in the array contains
the output of function P for a given s′, s and a. We also call this array P , with elements P a

ss′ , but it should
be clear from the context whether we are referring to the function or the array.

• Reward function The reward function R : S×S×A→R describes the reward Rt associated with transi-
tioning to state s′ from state s taking action a:

Rt = R
(
St = s′, At−1 = a,St−1 = s

)
(3.1)

In many problems, this reward function is not conditioned on all three of these variables, instead, a
reward can be conditioned only on the resulting state s′, or on a combination of two of these three
variables.

Given these four elements, we can describe the complete Markov Decision Process as the following tu-
ple12:

Definition 3.1.1. A Markov Decision Process is a tuple 〈S,A,P,R〉 where S is a finite set of states, A is a finite
set of actions, P : S×A×S→ [0,1] is a state transition function and R : S×A×S→R is a reward function.

Now that Markov Decision Processes are formally described, we go into more depth about the agent: how
it selects an action through a policy and what the goal of the agent is.

3.1.1. Policies
The agents chooses actions to perform in the environment. It does this using a (stochastic) policy π : S×A→
[0,1] that maps a state action combination to a probability of choosing that action. As explained by [31], this
policy is applied to the MDP in the following manner. First, an initial state s0 is generated from the initial
state distribution I . Then, an initial action a0 is sampled from policy π(s0). This action is performed, and
the environments generates a new state s1 ∼ P (·, s0, a0) and calculates the reward r1 from R(s1, s0, a0). This
process continues, resulting in the sequence s0, a0, s1,r1, a1, s2,r2, a2, If the process is episodic, this process
continues until a terminal state s ∈ Ster mi nal is reached. If the process is not episodic, this sequence continues
on forever. This process is also illustrated in Algorithm 1. The application of a fixed policy to an MDP results
in a Markov Reward Process 〈S,Pπ,Rπ〉 where Pπ(s′, s) =∑

a P (s′, a, s)π(s, a) and Rπ(s′, s) =∑
a R(s′, a, s)π(s, a)

3.1.2. Optimality and Value
An agent behaving in an environment seeks to gather rewards. However; the agent does not only care about
the immediate reward, but also strives to maximize the rewards gathered in the future. This is represented

1Some descriptions of MDP’s, such as the one by Silver [30], also include the discount factor in the MDP description. We refrain from
doing this, and view the discount factor as part of algorithm design.

2The MDP is actually not fully described by this tuple as the reward array only contains the expected values of the rewards, and does not
contain the full reward distribution. However; any MDP can be modelled in a deterministic reward form by splitting up the state with a
separate state for every reward that can possibly be received.

3.1. Markov Decision Processes 31

Data: S,A,P,R, I ,π
begin

// Sample initial state
s ← I
repeat

// Agent samples action
a ←π(s)
// Environment samples new state, reward
s′ ← P (s, a)
r ← R(s′, s, a)
// Step forward in time
s ← s′

until forever
end

Algorithm 1: Application of a policy in an MDP.

in what is called the return, Gt . The objective of the agent thus is to maximize this return Gt . We describe
three different kinds of returns (or objective criteria) that all describe the relationship of importance between
future rewards and immediate rewards: Finite horizon, Discounted infinite horizon and Average-reward.

• The finite horizon objective strives to maximize the reward over some finite horizon h:

Gt =
h∑

k=0
Rk+t+1

• The discounted infinite horizon objective strives to maximize a discounted reward over an infinite time:

Gt =
∞∑

k=0
γk Rk+t+1

Where γ ∈ [0,1) is a discount factor that determines the relative importance of rewards close in the
future compared to rewards in the distant future. This discount factor also serves the mathematical
purpose of bounding the infinite sum. This objective is perhaps the most used criterion in reinforce-
ment learning research.

• The average-reward criterion strives to maximize the average reward over an infinite duration:

Gt = lim
h→∞

1

h

h∑
k=0

Rk+t+1

From here on, we by default assume usage of the discounted infinite horizon objective, as this is the most
commonly used type of reward criterion.

In the next paragraphs, we will elaborate on some formulations of optimality. When considering the pol-
icy of the agent we denote the optimal policy, that is the policy that maximizes the expected return, with
π∗:

π∗(s) = argmax
π

(Eπ [Gt |St = s]) (3.2)

It can be shown for all three criteria that if there exists an optimal policy, there exists an optimal policy that is
deterministic. In the case of the two infinite-horizon criteria, it has also been shown that this optimal policy
is stationary [32].

We now introduce two additional functions related to optimality that are used extensively in algorithms
for solving MDPs: the state value function and the state-action value function. Starting with the state-value
function, v :

vπ(s) = Eπ [Gt |St = s]

32 3. Reinforcement Learning for Markov Decision Processes

This value of state s can be related to the value of successor states in the following manner:

vπ(s) = Eπ [Gt |St = s]
= Eπ

[
Rt+1 +γGt+1

∣∣St = s
]

=∑
a π(s, a)

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γEπ

[
Gt+1

∣∣St+1 = s′
]]

=∑
a π(s, a)

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γvπ(s′)

] (3.3)

The final line of this equation is what we call the Bellman equation for vπ and expresses the relationship
between the value of the state and the value of its successor states. The state-action value function, also
commonly known as the Q-value, is a similar concept to the state value, except that represents the value of
starting in state s, taking action a and afterwards following policy π:

qπ(s, a) = Eπ [Gt |St = s, At = a]

This representation of value is commonly used in many RL algorithms and allows for selecting an action that
maximizes the return, without requiring explicit knowledge of the state transition function.

3.2. Basic learning algorithms for MDPs
In this section we take a closer look at some standard approaches for solving MDPs. The techniques explained
in this section are applicable to problems where the number of states and actions are limited, and therefore
no function approximation is needed. These methods are also known as tabular solution methods, as the
policies and other functions are usually represented in a tabular form. An important distinction in these ap-
proaches is whether the approach is model-based or model-free. In model-based approaches, full knowledge
of the MDP is needed. In other words the state transition probability function P is directly used within the
algorithms. In model-free approaches, this is not the case. Instead, the agent learns only through interaction
with the environment.

3.2.1. Model-Based Dynamic Programming
In this section, we introduce two basic algorithms of the category dynamic programming that can be used to
find an optimal policy in an MDP: value iteration and policy iteration. We explain the algorithms for the dis-
counted infinite horizon objective. However, with some adjustments, they are also usable for other objective
functions. Dynamic programming provides a structured way to organize the search for the an optimal policy
π∗ through the use of value functions [4]. Using a perfect MDP model of the environment directly within an
algorithm to calculate an optimal policy is often referred to as dynamic programming (DP). Usually, finding
such an optimal policy is done iteratively in a loop of policy evaluation and policy improvement.

Policy Evaluation The goal of policy evaluation is to find the value of a given policy for any given state. The
Bellman equation (see Equation 3.3, repeated here for clarity) gives the relationship between the value of a
state and its successor states:

vπ(s) =∑
a
π(s, a)

∑
s′

P (s′, a, s)
[
R(s′, a, s)+γvπ(s′)

]
In the policy evaluation step, we solve this equation iteratively to find the value for any state as shown in
Algorithm 2.

Policy Improvement Any policy can be improved by selecting greedily actions that result in the highest
value. This step is known as the policy improvement step as shown in Algorithm 3.

Policy Iteration The complete dynamic programming algorithm that performs the policy evaluation and
policy improvement steps iteratively until a converged optimal policy is found is known as the policy iteration
algorithm and shown in Algorithm 4. It can be shown that this algorithm will always converge to an optimal
policy [4].

Value Iteration The Value Iteration (VI) algorithm can be seen as a simpler alternative to Policy Iteration.
Whereas PI consists of two separate iterative steps: Policy Evaluation and Policy Improvement, Value Iteration
combines these two steps into a single iterative step. The value iteration algorithm is shown in Algorithm 5.
In this algorithm, θ is a threshold for convergence.

3.2. Basic learning algorithms for MDPs 33

Data: S,A,P,R,π
begin

// Initialize value array;
Initialize array V (s) = 0, for all s ∈ S;
repeat

∆← 0;
for every s ∈ S do

v ←V (s) ;
V (s) ←∑

a π(s, a)
∑

s′ P (s′, a, s)
[
R(s′, a, s)+γV (s′)

]
;

∆← max(∆, |v −V (s)|);
end

until ∆< ε;
end
return V ≈ vπ

Algorithm 2: Iterative Policy Evaluation algorithm, adapted from [4].

Data: S,A,P,R,V
begin

for every s ∈ S do
π(s) ← argmaxa

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γV (s′)

]
;

end
end
return π

Algorithm 3: Policy Improvement algorithm, adapted from [4].

Data: S,A,P,R
begin

// Initialize policy and value array;
V (s) ∈R,π0(s) ∈A() arbitrarily for all s ∈ S;
i ← 0;
repeat

i ← i +1;
V ← Pol i c yEval uati on(π);
πi ← Pol i c y Impr ovement (V);
if πi ==πi−1 then

return πi ,V
end

until;
end

Algorithm 4: Policy Iteration algorithm, adapted from [4].

Data: S,A,P,R,θ
begin

// Initialize value array;
Initialize array V (s) = 0, for all s ∈ S;
repeat

∆← 0;
for every s ∈ S do

v ←V (s) ;
V (s) ← maxa

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γV (s′)

]
;

∆← max(∆, |v −V (s)|);
end

until ∆< θ;
end
return π(s) = argmaxa

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γV (s′)

]
, for all s ∈ S

Algorithm 5: Value Iteration algorithm, adapted from [4].

34 3. Reinforcement Learning for Markov Decision Processes

3.2.2. Model-Free Reinforcement Learning
The methods discussed in the previous subsection all directly use a model of the environment in their learn-
ing updates. That is, the backups utilize P (s′, a, s). In many cases, these transition dynamics of the environ-
ment are not known to the agent. Instead, the agent can only learn from experiences it gains trough exploring
the environment. When this is the case, we can no longer directly utilize model-based reinforcement learn-
ing. Instead, model-free reinforcement learning can be used, where samples of the transitions are used for
learning. Note that it might be still possible to use model-based reinforcement learning techniques if we first
learn a model of the environment. These approaches, also known as indirect reinforcement learning will be
postponed until Chapter 6. In this section, we will instead focus on three of the simplest model-free reinforce-
ment learning algorithms: Monte-Carlo learning, Q-learning and SARSA. In Section 3.3 we will use these three
algorithms as examples to illustrate some important characteristics of reinforcement learning algorithms that
can help get more insight in the vast amount of reinforcement learning algorithms available. In later chapters,
these more complex and generalized algorithms will be introduced that can improve performance.

A common theme between these three algorithms and a difference with the previously discussed DP ap-
proaches is that these approaches need to actively balance exploration and exploitation. Only exploiting
what currently is thought of as the optimal policy (also known as acting greedily) can result in convergence to
globally suboptimal policies. One aspect to guarantee convergence to a globally optimal policy, every state in
the problem domain needs to be visited in the limit infinitely many times. This is often achieved through us-
ing an ε-greedy exploration strategy. That is: with a chance of ε, the agent selects a random action, and with
a chance of 1− ε, the agent selects an action greedily, thus selecting the action with the highest estimated
action-value. ε is often decreased over time to get a gradually more greedy policy.

Monte-Carlo Learning The simplest way of doing model-free reinforcement learning is that of Monte-Carlo
learning. The idea behind Monte-Carlo learning is to sample episodes using some policy, and update a Q-
Value table based on those samples. This has many similarities to the previously discussed Dynamic Pro-
gramming methods with the key difference being that Monte-Carlo Learning uses samples of the environ-
ment to estimate a value instead of backing up the values through the state-space using the environment
dynamics model. An implementation of a Monte-Carlo learning algorithm can be seen in Algorithm 6.

On-Policy Temporal Difference Learning: SARSA Instead of waiting until an episode has finished to up-
date the value estimates, temporal difference (TD) methods update their value estimates based on the value
estimates of the next occuring state(s). Therefore, TD learning bases estimated values on other estimated
values. This is also known as bootstrapping and will be explained in more detail in the next section. A sim-
ple algorithm that does this is shown in Algorithm 7. Based on a learning rate, α, the the state-action value
of a state action combination is updated towards the discounted state-action value of the state action com-
bination encountered next, with the addition of the instantaneous reward observed. The policy that is used
during the episodes is usually a ε-greedy policy. Therefore, the value that is being estimated is also influenced
by the exploratory moves, resulting in unbiased value estimations for the ε-greedy policy, a key characteristic
of on-policy algorithms that we will discuss in more detail later in this chapter.

Off-Policy Temporal Difference Learning: Q-Learning An off-policy alternative to SARSA known as Q-
learning is shown in Algorithm 8. Instead of updating the action-value of a state based on the action-value of
the next state-action combination, Q-learning updates the value based on the maximum over all policy ac-
tion values for the next state. This implies that the values Q-learning learns are unbiased for a greedy policy,
even though the agent is following a non-greedy policy. This is a key characteristic of off-policy algorithms,
the policy that is being learned about is a different policy than the policy that is used to traverse the world
during training.

3.3. Taxonomies for Reinforcement Learning
In this section, we expand on some important properties that make reinforcement learning algorithms differ
from each other. In later chapters, where we discuss more complex RL algorithms, we will refer back to these
terms to understand their behaviour and suitability for certain problems. These distictions are based on the
dimensions higlighted by Sutton and Barto in their textook [4].

3.3. Taxonomies for Reinforcement Learning 35

Data: S,A,θ
begin

// Initialize state-action value array;
Initialize array Q(s, a) arbitrarily, for all s ∈ S and a ∈A;
Initialize list Retur ns(s, a) empty;
Initialize policy π(a|s) arbitrarily as an ε-greedy policy.;
repeat

Generate an episode using π;
for each pair s, a in episode do

G ← the return that follows the first occurrence of s, a;
Append G to Retur ns(s, a);
Q(s, a) ← average(Retur ns(s, a));

end
for each s in episode do

a∗ ← argmaxa Q(s, a);
for all a ∈A(s) do

if a = a∗ then
π(a|s) ← 1−ε+ε/|A(s)| ;

else
π(a|s) ← ε/|A(s)| ;

end
end

end
until forever;

end
return π(s) = argmaxa

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γV (s′)

]
, for all s ∈ S

Algorithm 6: Monte-Carlo Learning, adapted from [4].

Data: S,A,θ
begin

// Initialize state-action value array;
Initialize array Q(s, a) arbitrarily, for all s ∈ S;
for each episode do

Initialize s;
Choose a from s using policy derived from Q (such as ε-greedy) ;
repeat

Take action a, observe r , s′;
Choose a′ from s′ using policy derived from Q (such as ε-greedy) ;
Q(s, a) ←Q(s, a)+α

[
r +γQ(s′, a′)−Q(s, a)

]
;

s ← s′;
a ← a′

until s is terminal;
end

end
return π(s) = argmaxa

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γV (s′)

]
, for all s ∈ S

Algorithm 7: SARSA Algorithm, adapted from [4].

36 3. Reinforcement Learning for Markov Decision Processes

Data: S,A,θ
begin

// Initialize state-action value array;
Initialize array Q(s, a) arbitrarily, for all s ∈ S;
for each episode do

Initialize s;
repeat

Choose a from s using policy derived from Q (such as ε-greedy) ;
Take action a, observe r , s′;
Q(s, a) ←Q(s, a)+α

[
r +γargmaxa′

[
Q(s′, a′)

]−Q(s, a)
]
;

s ← s′;
until s is terminal;

end
end
return π(s) = argmaxa

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γV (s′)

]
, for all s ∈ S

Algorithm 8: Q-Learning algorithm, adapted from [4].

3.3.1. On-Policy and Off-Policy

The first distinction we investigate is that of on-policy learning and off-policy learning. When an agent is
acting in an environment it is following a certain policy, which we call the behavioural policy. When acting,
the agent is learning, often it is learning values associated with a state. These values are estimations of the
true value associated with following a certain policy from that state. In other words, we are learning values
for a certain policy, which we call the target policy. In some cases, the target policy and the behavioural policy
are the same, for example in SARSA. We are learning the value for the policy we are currently following. This
type of learning is called on-policy learning. When the target policy is not the same as the behavioural policy,
we denote this as off-policy learning. This is the case in for example Q-learning where the agent learns about
a greedy policy.

3.3.2. Bootstrapping

In all discussed reinforcement learning algorithms, the agent updates its policy or value table based on some
possible future states and rewards. This update could be done based on the final outcome of an episode
(Monte-Carlo methods) or could be done based on some estimate of the values that will be encountered.
Basing the estimate on another estimate is known as Bootstrapping. An obvious question that arises is: what
is better and converges faster? There is no full answer to this question yet, although empirically, it has been
found that bootstrapping often converge faster compared to Monte-Carlo methods in stochastic domains
[4]. Therefore, most modern Deep Reinforcement Learning algorithms do perform bootstrapping as will be
shown in Chapter 4.

3.3.3. Sample Backups and Full Backups

A second distinction related to how the values are updated is the differentiation between sample-backups
and full-backups. Full-backups use the distribution of possible next states, actions and rewards to update a
value target. This is the case in dynamic programming. However, when this distribution is not available, the
algorithm has to instead rely on samples.

3.3.4. Model-Based Planning and Model-Free Learning

Learning based on a model of the environment is also known as planning. In dynamic programming, we
assume availability of a full and perfect model of the environment which we use to update our values and
policies. When this is not available, we rely on model-free learning. In some cases it might be valuable,
instead of doing completely model-free updates, to build an imperfect model of the environment and use as
a model for planning. This can improve the efficiency in some reinforcement learning algorithms and will be
discussed in more detail in Chapter 6.

3.3. Taxonomies for Reinforcement Learning 37

3.3.5. Function Approximation
In this chapter, we only discussed RL methods where the policy and/or values are stored in a tabular fashion.
When the state or action space of a problem becomes large however; this is no longer possible, the algorithms
become too slow to converge to their correct values or there is not enough memory available to store the ta-
bles. One approach to deal with this is through the use of function approximation, where instead of storing
every value in a table, we store the values implicitly through the parameters of a model. Many model struc-
tures exist to do this with, two popular ones are a linear model based on hand-crafted features, or a neural
network model which automatically learns the features. Especially the neural network model has become
extremely popular over the last years, which is why we dedicate a chapter to this, Chapter 4.

3.3.6. Discrete and Continuous
The standard MDP formulation is only able to deal with discrete actions, where the actions available to take
are all in a finite set A. This, however, is very limiting, as in many tasks the actions that can be taken are
continuous and therefore an infinite number of actions is possible. When this is the case, two general ap-
proaches are used: either the action space is discretized into bins, reducing the problem to a standard MDP,
or function approximation is used to deal with continuous action spaces. This second approach is discussed
in more detail in Chapter 4.

3.3.7. Actors and Critics
The final differentiation that we discuss here is that of actors, critics and actor-critics. An agent can keep a
representation of a policy, state(-action) values or both. If an agent only contains a representation of a value
function, we call this method a value function method, or a critic-only method. All methods discussed in
this chapter are usually referred to as critic-only methods. These algorithms do not directly optimize for the
actual objective of reinforcement learning (find a policy with the highest expected return), but instead use the
knowledge that a policy that is greedy with respect to the values will be an optimal policy. Another approach
is to only keep track of a policy function, this approach is called a actor-only method and are often known
as direct policy search. These algorithms have not been discussed in this chapter, but some approaches that
could fit in this category are evolutionary methods, genetic algorithms and some gradient based techniques.
These algorithms perform a direct search on the actual objective of reinforcement learning: find a policy that
has the highest return. These algorithms generally have good convergence properties, are easily extendible to
continuous and large action spaces. However, they might be susceptible to local optima. The final possibility
is to use a combination of an actor and critic, where both a value function as well as a policy are being learned.
Such an approach might provide for faster and more stable training compared to actor-only approaches. This
type of learner will also be discussed in more detail in Chapter 4.

4
Deep Reinforcement Learning

In this chapter, we discuss the use of Deep Neural Networks (DNN) as a function approximator in Reinforce-
ment Learning. This is also known as Deep Reinforcement Learning (DRL). In Section 4.1, we give a brief
introduction to Deep Neural Networks, the function approximator used in this type of reinforcement learn-
ing. Please note that this introduction does not strive to give a comprehensive introduction to DNN, but
rather serves a refresher for someone already familiar with the topic. For a more comprehensive introduction
to DNNs the reader is referred to the textbook on deep learning by Goodfellow [33]. After this introduction,
critic-only DRL approaches are introduced in Section 4.2. Then, in Section 4.3, we introduce policy gradi-
ent methods for DRL. These methods, which are actor-only or actor-critic approaches, use a gradient based
approach for policy optimization. We also show how these approaches can be used in domains that have con-
tinuous action spaces. In Section 4.4, we introduce some methods that perform policy optimization without
direct use of the policy gradient. These algorithms include evolutionary approaches. Then, in Section 4.5
describe how DRL algorithms can be benchmarked and compared against each other. Finally, in Section 4.6
a number of insights are introduced that can help a DRL practitioner select a suitable algorithm for its task.

4.1. Deep Neural Networks
Deep Neural Networks (DNN) are a class of nonlinear function approximators loosely inspired by the human
brain [33]. A visualization of DNN can be found in Figure 4.1. Typically, DNN are made up of an input layer,
one or more hidden layers and an output layer. Every hidden layer consists of a number of neurons in which
the following three steps are performed :

1. The output vector of the previous layer is multiplied with a weight matrix.

2. A bias vector is added to the output of this multiplication.

3. A non-linear activation function is applied to the vector.

When learning with DNN, the learning algorithm learns the parameters of the network (the weights and
biases) to minimize some loss function. This minimization is usually done through stochastic gradient de-
scent (SGD). In SGD, a mini-batch of training data is sampled and passed forward through the DNN. The
outcomes of the DNN are compared to the target outputs for this mini-batch and this serves as an estima-
tor for the loss function. The gradients of this loss estimation with respect to the parameters is then used to
update the parameters by multiplying the gradient with some learning rate.

4.2. Value Function approaches: Deep-Q Networks and Improvements
In this section, we discuss the main value function (or critic-only) approaches used in Deep Reinforcement
Learning. In general, these approaches often form the Neural Network based equivalent of Q-Learning. In
the simplest case, one could replace the Q-value lookup table in Q-learning with a neural network. For ex-
ample, you would have a neural network that maps a state to a Q-value for every action in that state. You
could then, after every step in the environment, update the neural network in a similar fashion as is done in
Q-learning. Stochastic Gradient Descent (SGD) for Neural Networks however, performs best if the samples

39

40 4. Deep Reinforcement Learning

Input Layer Hidden Layers Output Layer

Figure 4.1: Visualization of a neural network. Data starts in the input layer, after which it is passed through the hidden layers. This is
done after multiplication with a weight matrix (the arrows). In all nodes in the hidden layers, a bias is added, the inputs are summed and
a nonlinear activation function is applied.

it receives are independent and identically distributed, which is not the case in samples that are received in
order from single trajectories.

Deep Q-Networks (DQN) is a modification of the standard Q-learning with neural networks that solves
this problem of receiving more independent samples. It has shown remarkable performance on the set of
Atari games [12, 34]. DQN modifies the standard Q-learning with neural networks in two key ways. First,
DQN uses a replay buffer. Once a step is taken in the environment, the transition and associated reward is
stored in a replay buffer instead of directly performing SGD on this sample. Then, random sampling from
the replay buffer is done, and stochastic gradient descent is performed on these samples instead. The replay
buffer allows a single sample to potentially be used for multiple gradient descent steps, reducing the correla-
tion between samples. The update is always based on the most recent Q-value estimate, as the target Q-value
is calculated on the spot through the Neural Network. This last benefit could also be a disadvantage how-
ever, as unwanted feedback loops can start to occur between the value targets and the network parameters.
The second modification strives to solve this problem of unwanted feedback loops through use of a target
network. Instead of basing the target Q-value on the current neural network evaluation, the target values are
based on target network evaluations, which is a network that is cloned from the Q-network and is then kept
constant for a number of steps. These modifications have allowed DQN to achieve human-level performance
on many Atari games.

In the next paragraphs, we will show how the DQN algorithm has been improved further through a series
of modifications. An overview of how these modifications relate to and historically build upon each other is
shown in Figure 4.2.

Double Deep Q-Networks In DQN, the action that is used as a training target is selected through a max op-
erator over the Neural Network outputs, and the same Neural Network is used to evaluate the value. This can
result in overestimation of the value. Double DQN reduces this through using the target network for evaua-
tion, and the current network for action selection [35]. This resulted in significantly improved performance
in Atari.

Prioritized Experience Replay DQN samples uniformly from the replay buffer. Prioritized Experience Re-
play [10] changes this and instead samples frequently from samples where the last seen error was highest. In
other words: sample experiences where there still is much to learn [11].

Dueling Deep Q-Networks DQN estimates the Q-value for every state-action combination. The Dueling
Deep Q-Networks [36] architecture splits the Q-network into two streams with a separate head for Advantage
and Value, where the advantage is improvement in value by selecting an action compared to the value of the
state itself.

C51: Distributional Reinforcement Learning Standard reinforcement learning algorithms learn to predict
the expected value of a state-action combination. Distributional Reinforcement learning instead learns a

4.3. Policy Gradient Approaches 41

begin
Initialize value parameter w ;
Initialize target network parameters w ′ ← w ;
Initialize replay buffer R;
for each episode do

initialize s;
while s not terminal do

With probability ε select random action a;

Otherwise a = argmaxa(Q̂w (s, a));
Take action a, observe s′, r ;
Store transition (s, a,r, s′) in R;
Sample minibatch of |B | transitions (si , ai ,ri , si+1) from R ;

Set yi = ri +γmaxa′
(
Q̂w ′ (si+1, a′)

)
;

Update critic by minimizing loss: L = 1
|B |

∑
i (yi −Q̂w (si , ai))2;

// Update target network;
Every C steps: w ′ ← w ;

end
end

end
return π

Algorithm 9: Deep Q-Networks

distribution of values. An algorithm that does this, known as C51 [37], has improved state-of-the-art perfor-
mance on Atari. C51 learns the distribution represented as a fixed set of bins. Later research has improved
this technique roughly through allowing the bin locations to adapt during learning (Quantile Regression or
QR-DQN [38]) or through approximating the inverse cumulative distribution function, known as the quantile
function, directly (Implicit Quantile Networks or IQN [39]).

Noisy Nets Performance on Atari has shown to improve through replacing ε-greedy action selection, with
exploration by adding noise to network weights in a linear layer [40].

Rainbow: Combining Improvements The techniques mentioned in the previous sections, all improve the
training of DQN in a different way. These five modifications have been combined in a single algorithm called
Rainbow [11].

Ape-X: Distributed Learning Ape-X is a DQN-based algorithm, using many of the same components that
Rainbow does, that explicitly seperates training the neural network from acting in the environment [41]. This
allows multiple agents interacting with separate instances of the environment at the same time, all storing
their experiences in a shared replay buffer and using a shared neural network. This allows faster training in
terms of time elapsed during training, however, not necessarily in terms of sample efficiency.

R2D2: Recurrent Networks Recurrent Replay Distributed DQN (R2D2 [42]) improves the state-of-the-art
on Atari in terms of maximum performance through the use of recurrent neural networks (RNN).

4.3. Policy Gradient Approaches
In contrast to the previously mentioned approaches that only keep track of a value network, policy gradient
approaches use an explicit policy, either without any value network at all (REINFORCE), or in addition to
a value network (Actor-Critic approaches). In this section, we give a brief overview of some important ap-
proaches within this category and show how they relate to each other. In contrast to DQN-like approaches,
these algorithms are often are on-policy. Similarly to value function approaches, policy gradient approaches
strive to find the optimal policy π(s)∗ (Equation 3.2, repeated here for clarity):

π(s)∗ = argmax
π

(Eπ [Gt |St = s])

42 4. Deep Reinforcement Learning

DQN [34]

Double [35]

Prioritized [10]

Dueling [36] Rainbow [11] Ape-X [41] R2D2 [42]

Noisy
Nets [40]

C51
(Distributional) [37]

QR-DQN [38] IQN [39]

Figure 4.2: Historical relationship between different modifications of the DQN algorithm.

Policy gradient directly tries to find the optimal parameters (θ) of a policy (πθ) for some representation
through gradient ascent on a objective function based on the return:

J (θ) = ∑
s∈S

ρπ(s)V π(s) = ∑
s∈S

ρπ(s)
∑

a∈A
πθ(a|s)Qπ(s, a) (4.1)

Where V and Q are the true value for a state given policy π. ρπ is the stationary distribution over the states,
following policy π. In other words, how likely it is for our agent to be in a certain state. The goal for policy
gradient algorithms is thus to find the values for parameters θ that maximize Jθ. Policy gradient algorithms do
this through estimating the gradient of this objective function with respect to the parameters and performing
gradient ascent on it:

∆θ =α∇θ J (θ) (4.2)

Calculating this gradient directly is difficult, however; thanks to the policy-gradient theorem, the gradient can
be simplified to the following form [4]:

∇θ J (θ) ∝ ∑
s∈S

ρπ(s)
∑

a∈A
Qπ(s, a)∇θπθ(a|s)

= ∑
s∈S

dπ(s)
∑

a∈A
πθ(a|s)Qπ(s, a)

∇θπθ(a|s)

πθ(a|s)

= Eπ[Qπ(s, a)∇θ lnπθ(a|s)]

(4.3)

Where the expectancy over π is the expectancy both over states and actions following policy π.

REINFORCE One of the most basic policy-gradient algorithm is that of REINFORCE. Using the knowledge
that Eπ [Gt |St , At] =Qπ (St , At), Equation 4.3 can be rewritten to:

∇θ J (θ) = Eπ[Gt∇θ lnπθ(a|s)] (4.4)

REINFORCE performs updates based on Monte-Carlo samples of this expectation:

θt+1 = θt +αGt∇θ lnπθ(a|s) (4.5)

The full algorithm can be seen in Algorithm 10

REINFORCE with Baselines The Monte-Carlo REINFORCE algorithm suffers from high variance and thus
slow learning. One method to reduce this variance is through the use of baselines. A baseline b is an action in-
dependent value that is subtracted from the Q-value estimate, modifying the policy gradient in the following
way:

4.3. Policy Gradient Approaches 43

Data: S,A,θ
begin

Initialize policy parameter θ;
for each episode do

Generate an episode s0, a0,r1, ..., sT−1, aT−1,rT , following π(·|·,θ);
for t = 0,1, ...,T −1 do

G ←∑T
k=t+1γ

k−t−1rk ;
θ← θ+α+αγt G∇θ lnπθ(at |st) ;

end
end

end
return π

Algorithm 10: REINFORCE algorithm, adapted from [4]

∇θ J (θ) ∝ ∑
s∈S

ρπ(s)
∑

a∈A

(
Qπ(s, a)−b(s)

)∇θπθ(a|s)

= ∑
s∈S

dπ(s)
∑

a∈A
πθ(a|s)

(
Qπ(s, a)−b(s)

) ∇θπθ(a|s)

πθ(a|s)

= Eπ[
(
Qπ(s, a)−b(s)

)∇θ lnπθ(a|s)]

(4.6)

This does not modify the policy gradient itself, as shown below [4]:∑
a

b(s)∇πθ(a|s) = b(s)∇∑
a
πθ(a|s) = b(s)∇1 = 0

Adding such a baseline, however, can help reduce the variance of the Monte-Carlo updates, improving ef-
ficiency of REINFORCE. One suitable choice for the baseline would be an estimate of the state value V̂w (s),
where w are the parameters of this state value estimator.

Data: S,A,θ
begin

Initialize policy parameter θ;
Initialize value parameter w ;
for each episode do

Generate an episode s0, a0,r1, ..., sT−1, aT−1,rT , following π(·|·,θ);
for t = 0,1, ...,T −1 do

δ←∑T
k=t+1γ

k−t−1rk − V̂w (st) ;
θ← θ+αθγ

tδ∇θ lnπθ(at |st) ;

w ← w +αwδ∇w V̂w (st);
end

end
end
return π

Algorithm 11: REINFORCE algorithm with baselines, adapted from [4]

4.3.1. On-Policy Actor-Critics: A2C, A3C, TRPO and PPO
In this subsection, we introduce some standard on-policy actor-critic algorithms. Although REINFORCE
with baselines does have an explicit value representation, it is generally not considered to be an actor-critic
method, as it does not use the value representation to bootstrap from. If we instead do bootstrap from the
value representation, we achieve the standard one-step actor-critic algorithm, shown in Algorithm 12. This
algorithm can be seen as the baseline for most actor-critic algorithms. Two famous algorithms of this kind
are Asynchronous Advantage Actor Critic (A3C) and Advantage Actor Critic (A2C). These algorithms are mod-
ifications to the standard one-step actor-critic algorithm to be more suitable for parrallelized learning using
multiple CPU’s, GPU’s and instances of an environment [43]. Trust-Region Policy Optimization (TRPO) and

44 4. Deep Reinforcement Learning

Proximal Policy Optimization (PPO) are improvements to the actor updates of actor-critics that both strive to
answer the question: what is the greatest possible step that an actor can take as an update, without collapse of
the policy performance? These techniques improve stability and efficiency of actor-critic approaches[44, 45].

Data: S,A,θ
begin

Initialize policy parameter θ;
Initialize value parameter w ;
for each episode do

initialize s;
I ← 1;
while s not terminal do

a ∼πθ(·, s);
Take action a, observe s′, r ;

δ← r +γV̂w (s′)− V̂w (s);

w ← w +αwδ∇w V̂w (s);
θ← θ+αθ Iδ∇θ lnπθ(a|s) ;
I ← γI ;
s ← s′;

end
end

end
return π

Algorithm 12: One-step actor-critic, adapted from [4]

4.3.2. Policy gradients for continuous action spaces
In this chapter, we have not discussed adjustments to the policy to make these algorithms suitable for con-
tinuous action spaces. In the case of DQN-based algorithms, this is non-trivial to do, since DQN involves
computing an argmax of the state-action values over all actions. Policy gradient techniques however, do not
contain such an argmax. Therefore, these algorithms can simply be extended to continuous action spaces.
This is done by making the policy output a continuous distribution. One common way to do this is to have
the policy output a mean vector µθ and a standard deviation vector σθ of a normal distribution, and sample
from this normal distribution to select an action.

4.3.3. DPG, DDPG and D4PG: Deterministic Policy Gradients
In this section, we discuss Deterministic Policy Gradients. These algorithms use a deterministic policy rep-
resentation, in contrast to the previously discussed algorithms which represent the policy as a probability
distribution over all possible actions. To do this, we first rewrite the policy gradient in its continuous form
[46, 47]:

∇θ J (πθ) =
∫
S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s, a)dads

= Es∼ρπ,a∼πθ
[∇θ logπθ(a|s)Qπ(s, a)

] (4.7)

Now consider a deterministic policy µθ that maps a state to an action deterministically, a similar policy gra-
dient can be written down. Instead of integrating both over states as well as over actions however, this policy
gradient only integrates over states since the actions are deterministic [47]:

∇θ J
(
µθ

)= ∫
S
ρµ(s)∇θµθ(s)∇aQµ(s, a)

∣∣∣∣
a=µθ(s)

ds

= Es∼ρµ
[
∇θµθ(s)∇aQµ(s, a)

∣∣
a=µθ(s)

] (4.8)

In some cases, this approach can be directly applied in an on-policy learner. Often however, exploration
is needed to discover the optimal policy. Therefore; an off-policy variant is needed, where a stochastic be-
haviour policy is followed whilst learning about the deterministic target policy. We name this behavioural
policy β and the resulting policy gradient is the following [47]:

4.4. Policy Optimization without Gradients 45

∇θ Jβ
(
µθ

)≈ ∫
S
ρβ(s)∇θµθ(a|s)Qµ(s, a)ds

= Es∼ρβ
[
∇θµθ(s)∇aQµ(s, a)

∣∣
a=µθ(s)

] (4.9)

This can be incorporated into the one-step actor critic algorithm by adapting the updates to form the algo-
rithm also known as DPG [47] and is shown in Algorithm 13.

Deep Deterministic Policy Gradient (DDPG) is an extension of DPG specifically tailored to the use of Neu-
ral Networks as function approximators [14]. This is shown in Algorithm 14. The main alterations are sim-
ilar to the changes made to create DQN: it adds a replay buffer and target networks to aid in the stability
of training. An extension to DDPG is Distributed Distributional DDPG (D4PG) [48] which adds multi-step
returns, distributional RL and prioritized experience replay to the DDPG algorithm. In addition, multiple en-
vironment instances are used to act in simultaneously, reducing training time (but not necessarily improving
computational efficiency).

begin
Initialize policy parameter θ;
Initialize value parameter w ;
for each episode do

initialize s;
I ← 1;
while s not terminal do

a ∼πθ(·, s);
Take action a, observe s′, r ;

δ← r +γQ̂w (s′,µθ(s′))−Q̂w (s, a);

w ← w +αwδ∇wQ̂w (s, a);

θ← θ+ αθ∇θµθ (s)∇aQ̂w (s, a)
∣∣

a=µθ(s);

s ← s′;
end

end
end
return π

Algorithm 13: Off-policy Deterministic Policy Gradient

4.3.4. Soft Actor-Critic: Off-Policy Policy Gradient with Entropy Regularization
Soft Actor-Critic (SAC) is an algorithm that combines the off-policy learning of DDPG with the stochastic
policy representation of on-policy actor critics [49]. Many on-policy actor-critic algorithms such as the pre-
viously discussed TRPO, PPO and A3C cannot utilize a replay buffer, requiring new samples from the en-
vironment in every time-step. This makes these algorithms perform poorly in terms of sample-efficiency.
Off-policy actor critics such as DDPG are able to reuse samples through the use of a replay buffer, but can be
brittle and sensitive to hyperparameter tuning [50]. The Soft-Actor Critic algorithm is in many regards simi-
lar to DDPG, with the main change being that it uses a stochastic policy of which the entropy is maximized
through a regularization term. This removes the need for explicitly adding exploration noise to the policy,
as the noise is already present in the policy itself and can be reduced or increased based in certain states by
the learner itself. The authors of the article on SAC argue that this entropy regularization makes for a more
sample-efficient algorithm that, in contrast to DDPG, is also very stable [49].

4.4. Policy Optimization without Gradients
The previously discussed policy gradient methods use gradient based optimization methods to find a (local)
optimum for the policy, given a certain parameterization. It is also possible to do this optimization without
direct use of this gradient. The core concept of these approaches is to perform some form of stochastic opti-
mization directly on the policy parameters. These parameter settings are then evaluated on the task to assign
a fitness score. In the simplest setting, random search can be used as an optimization algorithms [51]. Per-
haps surprisingly, this approach has yielded competitive results on some benchmark reinforcement learning

46 4. Deep Reinforcement Learning

begin
Initialize policy parameter θ;
Initialize value parameter w ;
Initialize target network parameters θ′ ← θ, w ′ ← w ;
Initialize replay buffer R;
for each episode do

initialize s;
while s not terminal do

a =µθ(s)+N;
Take action a, observe s′, r ;
Store transition (s, a,r, s′) in R;
Sample minibatch of |B | transitions (si , ai ,ri , si+1) from R ;

Set yi = ri +γQ̂w ′ (si+1,µθ′ (si+1));

Update critic using: ∇w
1
|B |

∑
i (yi −Q̂w (si , ai))2;

Update actor using policy gradient: ∇θ J ≈ 1
|B |

∑
i ∇aQ̂w (s,µθ(si));

// Update target networks;
θ′ ← τθ+ (1−τ)θ′;
w ′ ← τw + (1−τ)w ′;

end
end

end
return π

Algorithm 14: Deep Deterministic Policy Gradient

tasks. Many optimization algorithms commonly used in these approaches belong to the class of Evolutionary
Algorithms (EA), algorithms inspired by the biological process of evolution [52, 53].

4.5. Benchmarking Deep Reinforcement Learning
Two popular benchmark suites for Deep Reinforcement Learning are a set of Atari games known as the Arcade
Learning Environment (ALE) [54], and a set of continuous control tasks implemented in the MuJoCo physics
simulator [55, 56]. ALE provides a set of 55 games, based on the Atari 2600 game computer system. Agents are
usually trained based on the high-dimensional visual inputs. The games have a broad range in difficulty and
since they were designed for human players, there exists a large variety in their goals and play-style. Continu-
ous control algorithms are often benchmarked on virtual robotics tasks inmplemented in the MuJoCo physics
simulator. Two popular implementations are those from the OpenAI Gym [55] and those from the Deepmind
Control Suite [56]. An example environment can be seen in Figure 4.3. The goal in this environment is to
move run forward by controlling the joints of the Cheetah. The input can be based on pixel observations or
based on joint angle observations.

Figure 4.3: Cheetah environment from the Deepmind Control Suite [56].

Even though these benchmark suites exist, objectively comparing algorithms can still be difficult. Changes
in hyperparameter tuning, stochasticity in the environments and performance evaluation can all have a sig-
nificant effect on the apparent performance of an algorithm making reproducability a prevailing issue in deep

4.6. What algorithm is the best? 47

reinforcement learning research [57, 58].

4.6. What algorithm is the best?
In this chapter, a large number of Deep Reinforcement Learning algorithms have been introduced, in a vary-
ing degree of detail. The question that arises is then: what algorithm should one use when trying to solve a
reinforcement learning problem? Sadly, it seems that this question is not straightforward to answer. In the
previous section, we already discussed the difficulty of comparing reinforcement learning algorithms and
their general sensitivity to hyperparameter tuning. In this section, we identify three insights that can help an
user to select a suitable algorithm.

Critic-only approaches are most popular for discrete action domains, Actor-Critic approaches are most
popular for continuous actions spaces. It seems that for most discrete action domains such as Atari, Critic-
only approaches based on DQN are the most popular choices. The core principle that makes these ap-
proaches suitable for discrete action domains is the possibility to perform an argmax operator over the Q-
values of all actions possible from a certain state. In domains with continuous action spaces, this argmax
is in general impossible to perform1. For this reason, actors are introduced that form an estimator of this
argmax operator.

Off-policy learning is efficient, on-policy learning is robust. On-policy learning can only utilize samples
from the environment that are found using the current behavioural policy. This makes use of a replay buffer
impossible and significantly limits the amount of gradient updates one can do based on a single episode in
the environment. Off-policy algorithms are able to use a replay buffer. When off-policy learning, function-
approximation and bootstrapping are combined, as is done in these off-policy DRL algorithms, it is known
that learning can diverge [60]. In practice however; these algorithms can still perform very well, but are known
to be brittle and sensitive to hyperparameter tuning. Recent attempts at combining the strengths of on- and
off-policy learning have resulted in algorithms that are arguably more stable and sample efficient [49].

Improved performance often comes at the cost of complexity. Both for critic-only methods, as well as for
actor-critic methods, we see that many improvements to the baseline algorithms come from adding addi-
tional networks or hyperaparameters. For example: target networks, a second critic network, a delay hyper-
parameter for selecting how often to update the actor compared to the critic, etc. In some cases, such as a
second critic network, this comes at the computational cost of having to do additional backpropagation. In
most other cases, the improvements come at the cost of additional hyperparameters that need to be tuned.
Even though the final performance of an "improved" algorithm can be an improvement compared to the
original algorithm, the additional effort required to perform the hyperparameter tuning to extract this extra
performance should not be neglected. Perhaps in some cases it might be better to select a "worse" algo-
rithm that has less hyperparameters to tune or might be more robust to its hyperparameters. Apart from
hyperparameters, the time to implement and debug algorithms also becomes greater as the complexity of an
algorithm increases. Recently, some efforts are being made to make algorithms more robust to hyperparam-
eters [49], or to create simpler algorithms altogether [61].

In the case where we want to apply model-based learning to improve sample efficiency of reinforcement
learning for swarming, one might choose a sample-efficient algorithm as a baseline, and improve this through
learning with a model. Since ideally, one would describe the swarming task as a continuous action task,
sample-efficient off-policy algorithms such as DDPG or SAC might be suitable for their simplicity or robust-
ness respectively. On the other hand, when a model is available to use for learning, it is possible that the
sample-effiency of the RL algorithm itself is not an important characteristic anymore, due to the availabil-
ity of a model that can provide a large amount of samples to the learner. From this perspective, a robust
on-policy algorithm such as PPO might be the better choice.

1There are some exceptions to this, such as Normalized Advantage Functions that uses a special Q-network structure that makes the
Q-value estimator quadratic in the selected action [59].

5
Reinforcement Learning with Partial

Observability

In the previous chapters, we have considered reinforcement learning mostly for Markov Decision Processes,
where the future states and rewards are only a function of the current state observed by the agent and the
future actions taken by the agent. This is a property known as Markovianness of the environment. In many
applications however, the agent is unable to observe the full state and only receives partial information about
the state known as observations. This results in, from the perspective of the agent, the state transitions not
only being dependent on the current observation and action, but also on earlier observations and actions.
In this chapter, we first discuss the framework known as Partially Observable Markov Decision Processes
(POMDPs) that describes these types of environments. We then discuss the consequences of this partial
observability for reinforcement learning algorithms. Finally, in Section 5.3 some methodologies to deal with
the consequences of partial observability are introduced.

5.1. Partially Observable Markov Decision Processes
Partially Observable Markov Decision Processes are an extension to the MDP framework. The framework is
illustrated in Figure 5.1. In MDPs, the agent receives the full system state with all information that contributes
to prediction of the future rewards and states. In selecting an optimal action, the state history can be ignored
as the current state on its own already contains all relevant information. In other words, the Agent receives
a Markovian signal for future rewards and states. In POMDPs this assumption is not valid any more. Instead
of the full state, the agent now receives an observation. This observation contains some information about
the state, but does no longer have to be a Markovian signal for future rewards and observations. Instead,
the environment has a hidden Markov state. We denote the observation an agent receives at time t : Ot ∈O.
Where O is the set of possible observations. This observation is generated from the observation function
O :O×S×A→ [0,1]:

O(o, s′, a) = Pr{Ot+1 = o|St = s, At = a}

A full definition of a POMDP is given in Definition 5.1.1.

Agent

Environment
��+1

�
�

�
�

�
�

��+1

��+1

�
�

Figure 5.1: Description of the interaction between agent and environment in a POMDP.

49

50 5. Reinforcement Learning with Partial Observability

Definition 5.1.1. A Partially Observable Markov Decision Process is a tuple 〈S,A,O,P,R,O〉 where S is a
finite set of states, A is a finite set of actions, P : S×A×S→ [0,1] is a state transition function, R : S×A×S→R

is a reward function and O :O×S×A→ [0,1] is an observation function.

5.2. Consequences of partial observability
Partial observability usually originates from two sources: noisy sensors and multiple states resulting in the
same sensor reading [31]. This second source can occur, for example, when a robot can only observe a small
area of a larger environment. Partial observability can lead to perceptual aliasing: different parts of the envi-
ronment look similar to the agent, but require different actions.

The fact that the environment no longer gives a Markovian signal to the agent has significant conse-
quences on the algorithms available to solve the problems. Many standard reinforcement learning algorithm
use a value function, which is a function of the current state, to which the agent no longer has access. Directly
applying these algorithms to a partially observable problem is therefore usually not possible. Of course, there
is a scale in how much observability the agent has, some problems are technically partially observable, but
close to all state information can still be reconstructed from a single observation. In these cases, it might be
possible to apply a standard RL algorithm, even though its performance might be slightly hampered. On the
other end of the spectrum, observations can be extremely noise and contain only a very limited amount of
information. This obviously determines what approaches are suitable for any given problem.

5.3. Reinforcement Learning with Partial Observability
A number of approaches have been developed of dealing with partial observability. In this section, we will
elaborate upon some of the most important ones.

First, it is possible to simply ignore the partial observability and treat the observations as states. In this
case, the agents policy will be a mapping π :O×A→ [0,1]. Such a policy is also known as a memoryless policy.
In general, these policies are suboptimal. The amount of performance loss, however, depends on the amount
of observability. Also, the specific algorithm used for optimization of this memoryless policy can influence
the converged performance of these policies. There exists some evidence that directly searching for the policy
using a metaheuristic such as Evolutionary Algorithms can be better than value function based reinforcement
learning algorithms [62]. An interesting question that remains is how gradient based policy search methods
such as REINFORCE would perform in comparison. An additional aspect to take into account is that finding
the optimal memoryless policy in a POMDP is no longer a convex linear optimization problem as it is for
regular MDPs, instead generally being non-convex [63].

A second approach is to utilize memory, in the simplest case, the agent might not take only the current
observation (ot) into account, but also the previous observation (ot−1) and the previously selected action
(at−1) to select the current action at . One could increase the amount of previous observations taken into
account further, creating a finite-memory policy, taking into account the last l observations and actions. One
consequence of doing this would be that the dimensionality of the policy mapping increases rapidly: π :
Ol ×Al−1 ×A→ [0,1]. In addition, this combination of multiple observations could provide a signal that is
closer to Markovian, but there are no guarantees about it. The hidden system state could be dependent on
actions performed much earlier. To always be able to select the optimal action, the agent must take into
account the full history: ht = 〈o0, a0,o1, a1, ...ot 〉. For an infinite-horizon MDP this implies that the agent
must have an infinite memory and the policy will be a mapping of: π : Ot ×At−1 ×A→ [0,1]. Directly using
the full history can have significant practical drawbacks due to the scaling of the problem and the possible
infinite growth of the policy.

The final approach is to compress the entire history into one fixed size variable, either perfectly or ap-
proximately. One approach to perform this compression is through the transforming the POMDP into a belief
MDP. Such a belief MDP stores the history into what is known as a belief: b(s) [31]. This belief represents the
probability distribution over the states S. This belief then serves as a Markovian state signal. Although this
restores the Markov property of the system, the size of the belief space is infinite, as the belief of a state can
take any value between 0 and 1. For this reason, standard dynamic programming approaches as described in
Subsection 3.2.1 cannot be applied directly. The value function now needs to be computed over an continu-
ous set of beliefs in contrast to the finite sets of states in a standard MDP. Fortunately, the value function can
be parameterized by a finite number of vectors and has a convex shape [31]. This results in modified versions
of dynamic programming algorithms being able to find the optimal policies for POMDP’s. However, these

5.3. Reinforcement Learning with Partial Observability 51

techniques are only computationally feasible for small domains. In addition, maintaining a belief requires a
full model of the underlying POMDP, which in many applications is not available. If such a model is not avail-
able, and usage of memory is desirable, the agent can use learned hidden states as an alternative to beliefs.
These hidden states can either be used to reconstruct a model of the underlying POMDP, on which a policy
is learned, or these hidden states can directly be used in a policy representation. The indirect method of first
reconstructing the POMDP has been used less extensively due to the complexity of both reconstructing such
a model as well as the complexity of solving the resulting POMDP [31]. Of course, it is also possible to learn a
value function in contrast to using only a policy or a full model. Recent work has investigated the use of re-
current neural networks (RNN) as a method for learning hidden states [64, 65]. RNNs are a type of NN that are
able to handle an input of variable size, usually a time sequence [66]. At any point in the time sequence, these
networks have a set of hidden nodes that contain some representation of all previous inputs. This naturally
translates to the use of RNN in POMDPs, where a sequence of observations and actions could be compressed
into a hidden state. This is done in a framework called recurrent policy gradient (RPG) [64]. Another, similar,
approach is that of Deep Recurrent Q-Networks (DRQN) which is an adaption of DQN using RNN [67].

6
Reinforcement learning with a learned

world model

This chapter focusses on how a world model can be learned to combine the benefits of model-based learning
and model-free learning, increasing the sample-efficiency of learning algorithms. In Chapter 3, we saw that
dynamic programming approaches can be used for training when a full model of the environment is available.
For learning in an environment where this knowledge is not available, we showed in Chapter 3 and Chapter 4
that model-free reinforcement learning can be used. One issue that remains with model-free reinforcement
learning is that, in general, a large number of trajectories of the environment need to be sampled during
the learning process. This leads to poor sample efficiency. One promising direction for improving sample
efficiency of model-free reinforcement learning is through the use of a learned world model [68]. We still
denote this approach as model-based reinforcement learning. This strategy of learning a model and then
using this model to plan actions has been shown to be more sample efficient than direct model-free learning
[69]. In this work, we use the term planning to denote the use of a model to improve or generate a policy,
similar to the usage of the term in Sutton and Barto’s textbook [4]. Frameworks that use this approach often
follow a structure similar to Figure 6.1. Any experience generated from the envionment can be used to learn
a model and can be used to learn the policy or value estimations directly as well. The model-based part of
learning is also known as indirect-RL whereas the model-free part is known as direct-RL. Two key aspects of
any indirect-RL method are as follows [70]:

1. Model learning & representation When a model is learned, one of the most important questions to
answer is how this model can be learned and how this model is represented. Of course, many differ-
ent representations are possible, from simple tabular representations that directly try to estimate the
state-transition array to neural network representations of all different forms. The word model can be
ambiguous, one could argue that utilizing a replay buffer and re-sampling from this replay buffer as
done by for example DQN is a form of model-based reinforcement learning, where the model is the
replay buffer. In this chapter though, we will usually consider parametrized models that estimate the
dynamics and rewards of the system. That is, we have a model Mη with parameters η that is an estima-
tion of the forward dynamics of the systems, p̂η ≈ p :

Rt+1,St+1 ∼ p̂η(r, s′|St , At) (6.1)

Within this category of parametrized models, three main types of model can be identified: expectation
models, stochastic models (also known as generative models) and full models. Expectation models
model the expected state outcome. When the state transitions are nondeterministic, this might lead to
problems. For example, take an agent in a grid world that can select an action "up". When taking this
action, the agent has a 50% chance of moving diagonally up to the left and a 50% chance of moving
diagonally up to the right. Depending on the features used, or the parametrization of the model, the
model might learn that the expected next location would be one grid straight up, a state that would be
impossible to achieve in the real environment. Or the model might learn that the agent exists in two
locations at once, another state that would not be achievable in the real environment, and that the value
function could have difficulty estimating a value for. Therefore, in stochastic environments, a stochastic

53

54 6. Reinforcement learning with a learned world model

model can be used. These models take some form of random noise as an additional input and generate
samples of the state transitions from that. In the aforementioned example, it should learn to generate
a left-up sample 50% of the time, and a right-up sample 50% of the time. The final type of model, full
models, directly try to learn the full distribution function of state transitions. However; when the state
space is large, this might be difficult to do. When dealing with any kind of model representation, it is
unlikely that our model is a perfect representation of the environment. It is important to distinguish
uncertainty in the model (epistemic uncertainty) from uncertainty associated with the stochasticity of
the environment (aleatoric uncertainty). Using knowledge of the epistemic uncertainty can help to
know how much trust can put into the model in certain parts of the state-space.

2. Planning & Learning Integration The second key aspect is the way in which learning and planning is
integrated. One distinction that can be made here is the distinction between planning methods that
plan only for the current state or trajectory (also known as planning over a learned model [70]), or
planning methods that do planning to improve the policy over the entire state-space irrespective of the
current state (also known as Model-Based RL with a learned model [70]). Both approaches have their
own advantages and disadvantages. Planning only for the current state requires real-time computing
power, whereas planning for all states allows the agent to learn at any moment it has excess compu-
tational power available. On the other hand, planning for all states might waste computing power on
states that are not directly useful for the agent. In addition, it is not yet evident which of the two results
in the greatest improvements in performance. Another distinction that can be made lies in the fact that
algorithms for planning in continuous action spaces compared to planning in discrete action spaces
often work differently.

Dynamics
Model

Policy / ValueExperience

Model-Based RL

Model-Free
RL

Learning

Le
arn

ing
Planning

Acting

Figure 6.1: Comparison between model-free and model-based learning when there is no full system model available. Adapted from [71]

In the following sections, we will highlight some key approaches in indirect-RL and elaborate how they
relate to the previous two questions. The first approach that will be discussed is that of Dyna. This is an
early framework for the combination of model-based and model-free learning that serves as a basis for many
contemporary model-based reinforcement learning algorithms. In the sections following this, modern ap-
proaches for model-based RL with continuous and discrete action spaces will be discussed.

6.1. Dyna: planning and learning with real and simulated experience
An early framework that utilizes the combination of model-free and model-based reinforcement learning is
Dyna [72]. The core idea behind Dyna is to use a model as a simulator to generate additional experience
for the policy/value learner. One implementation of this is the Dyna-Q algorithm [4] which is shown in Al-
gorithm 15. This algorithm is an adaptation of the Q-learning algorithm that adds additional experience
generated through the model as additional Q-learning updates. The model is represented as the P array for
stochastic transitions or directly as state-action-state transition pairs for deterministic environments

The Dyna-framework itself, of which Dyna-Q is a specific implementation, does not specify what kind of
learning algorithm or what kind of model representation has to be used. The key idea behind the framework is
to both use simulated as well as real experience in a similar fashion to learn/plan a value function or a policy.
It thus performs planning over the entire state-space. Other approaches close in nature to Dyna have been
developed later, using localized features [73], linear function approximation [74, 75], deep neural networks

6.2. Planning with continuous action spaces 55

Data: S,A,θ
begin

// Initialize state-action value array;
Initialize array Q(s, a) arbitrarily, for all s ∈ S;
Initialize Model (s, a) for all s ∈ S and a ∈A;
for each episode do

Initialize s;
repeat

Choose a from s using policy derived from Q (such as ε-greedy) ;
// Direct-RL;
Take action a, observe r , s′;
Q(s, a) ←Q(s, a)+α

[
r +γargmaxa′

[
Q(s′, a′)

]−Q(s, a)
]
;

Model (s, a) ← r, s′;
s ← s′;
// Indirect-RL / Planning;
for n times do

ssi m ← random previously observed state;
asi m ← random action previously taken in ssi m ;
rsi m , s′si m ← Model (ssi m , asi m);
Q(ssi m , asi m) ←←Q(ssi m , asi m)+α

[
rsi m +γargmaxa′

[
Q(s′si m , a′)

]−Q(ssi m , asi m)
]
;

end
until s is terminal;

end
end
return π(s) = argmaxa

∑
s′ P (s′, a, s)

[
R(s′, a, s)+γV (s′)

]
, for all s ∈ S

Algorithm 15: Dyna-Q algorithm, adapted from [4]

[76] and deep-belief networks [77]. When a neural network is used, it is possible not to model the full state or
observation, but instead predict some encoded version of the state, known as a hidden or latent state, which
has shown to be beneficial in stochastic environments [78].

6.2. Planning with continuous action spaces
Planning with a learned model in continuous action spaces has had significant attention over the years. A
key motivation for this is that robotics, a possible application of reinforcement learning, could significantly
benefit from sample efficient learning as doing trials on real robots can be expensive [15]. One approach
for model-based reinforcement learning is probabilistic inference for learning control (PILCO) [16]. In this
algorithm, Gaussian processes are used to model the dynamics, which allow for quantification of the epis-
temic uncertainties in the model. These Gaussian processes can be described as and are used as a full model.
The controller is represented as a radial basis function network, and is optimized purely based on the model.
This approach allowed to learn a cart-pole swing-up in less than 10 trials, or approximately 20 seconds of
real world interaction. In later work, a similar general approach has been used. However, instead of using
Gaussian processes as the dynamics model, this approach used Bayesian Neural Networks [79]. This model
was used as a stochastic model, and used for sampling trajectories. Another approach is to use locally fitted
linear models, as is done in Guided Policy Seach (GPS) [59, 80].

Recently, neural networks have become a popular method of representing a world model. One approach
that does this uses a NN to predict a change in state based on an action [81]. This approach does not take
into account uncertainties and only uses model-based learning as pre-training before model-free finetuning
is performed to improve performance. Model Assisted DDPG (MA-DDPG) uses the neural model during the
entirity of training, but only in situations when there is a large amount of uncertainty in the value estimates,
limiting the usage of the model [82]. The model itself is a deterministic model. Chua et al. recognized the im-
portance of modelling uncertainties in an approach called Probablistic Ensembles with Trajectory Sampling
(PETS) [83]. Their neural networks output a Gaussian distribution of states which can be used to sample tra-
jectories from. This deals with aleatoric uncertainty. Their model therefore is a full model of the environment.

56 6. Reinforcement learning with a learned world model

To incorporate epistemic uncertainty into the model, they train an ensemble of models, sampling from each
one when planning. In contrast to Dyna, planning in PETS is performed only for the current state and uses a
Cross Entropy Method (CEM) planner as a form of Model Predictive Control (MPC). A later approach called
Model Based Policy Optimization (MBPO) has a similar approach to PETS but instead performs planning for
all states and combining it with a SAC learner, resulting in improved performance [84].

Another line of work has focussed on model-based learning for high dimensional observations. Two of
these approaches are known as Embed to Control (E2C) [85] and Robust Controllable Embeddings (RCE) [86],
where a low-dimensional latent dynamics representation is learned from high-dimensional image data. This
dynamics model is then linearized locally to perform locally optimal control. An encoder-decoder network is
used to learn this low-dimensional latent space. To perform better in more complex domains, Deep Planning
Network (PlaNet) similarly uses an encoder to compress the high dimensional observation into a latent space
[87]. Planning is then performed in this latent space, without linearization. This approach was suitable for
POMDPs through the use of RNNs. In their dynamics model, both probabilistic and deterministic paths are
incorporated, which was found to be beneficial for planning over longer horizons. Similar to PETS, planning
is performed only for the current state. Another approach, called Dreamer, also performs planning in a latent
space [88]. However; instead of using the learned model to plan using CEM for a single state, this approach
performs simulated roll-outs to generate updates for a policy gradient actor, bearing similarities to the Dyna
architecture. This resulted in improved performance compared to PlaNet, for similar tasks.

6.3. Planning with discrete action spaces
Model-based learning in complex discrete domains such as Atari has has limited success for a long time.
Only recently, model-based approaches have been able to compete with their model-free counterparts. Value
Prediction Network (VPN) learns a deterministic neural network model to predict latent states, values and
rewards, conditioned on observations and actions [78]. A tree-like search is performed using the network to
select actions during learning. In two algorithms called TreeQN and ATreeC, a tree-search planning method
with a learned model is incorporated into DQN and an actor-critic approach respectively, outperforming
these baselines [89]. These approaches are close in methodology to VPN. Muzero[9], another algorithm that
performs tree search based on a learned, deterministic latent-space NN model, uses the search algorithm
called Monte-Carlo Tree Search . In addition, this algorithm also uses a network that approximates both
policy as well as value. The policy head of the neural network is then used to bias the tree search. This
algorithm has been able to achieve state-of-the-art performance in Chess, Go, Shogi and Atari.

7
Multi-Agent Reinforcement Learning

In this chapter, we take a closer look into reinforcement learning with multiple agents. More specifically,
we investigate cooperative Multi-Agent Reinforcement Learning (MARL). These cooperative reinforcement
learning problems are often formulated in the form of a Decentralized (Partially Observable) Markov Decision
Process. This type of process will be introduced in Section 7.1. In this section, we also briefly mention some
complicating effects that make reinforcement learning in a decentralized setting more complex compared to
single-agent reinforcement learning. After this, in Section 7.2, we elaborate upon a number of approaches for
performing multi-agent reinforcement learning.

7.1. Decentralized Partially Observable Markov Decision Processes
Decentralized POMDPs (Dec-POMDPs) are an extension of POMDPs where there exist multiple agents that
need to take actions, each having their individual observation. This is illustrated in Figure 7.1. Combining
all individual observations together results in what is called the joint observation. Since every agent takes an
action, the environment transition is no longer a function of the state and the action of one agent, instead it
is a function of the state and the joint action. Dec-POMDPs are usually defined to be cooperative. That is,
every agent receives the same, global, reward.

Figure 7.1: Description of the interaction between agent and environment in a Dec-POMDP.

Definition 7.1.1. A Decentralized Partially Observable Markov Decision Process is a tuple
〈
D,S,AAA,OOO,P,R,O

〉
where D = {1, ..., N } is a finite set of N agents, S is a finite set of system states, AAA = ×i∈DAi is a finite set of
joint actions, where Ai is the set of actions available to agent i . OOO = ×i∈DOi is a finite set of joint observa-
tions, where Oi is the set of possible observations available to agent i . P : S×AAA×S→ [0,1] is a state transition
function, R : S×AAA×S→R is a reward function and O :OOO×S×A→ [0,1] is an observation function.

A variation on Dec-POMDPs are Swarm Markov Decision Processes (Swarm-MDP), where every agent has
the same characteristics and policy [90].

57

58 7. Multi-Agent Reinforcement Learning

7.1.1. Consequences of decentralization
The assumption that an agent receives or is able to reconstruct a Markovian state signal does not hold for
Dec-POMDPs. Since many RL algorithms are built upon this assumption, convergence problems can arise
when applying standard RL to decentralized domains. In MDPs, the agent directly observes a Markovian
state. In POMDPs, the agent is able to reconstruct a Markovian state through the use of beliefs or through
taking into account the entire observation and action history. An agent acting in a Dec-POMDP is no longer
able to reconstruct a Markovian state signal. This happens due to the fact that the state transitions depend
not only on your own action, but also on (unobservable) actions of other agents. These actions are depen-
dent on their policies which might change over time. This makes it impossible for the agent to construct a
Markovian signal, unless the policies of all other agents are stationary, at which point the problem reduces
to a POMDP. This problem is also known as non-stationarity of the environment [91]. The resulting difficulty
can be illustrated intuitively. RL algorithms use some estimation of state-values or some other performance
measure of a policy to improve their policies. When the environment changes, so should the values / per-
formance measure for the given policy. As a result, the optimal policy changes. When the agent adjusts its
policy based on this change in the environment, the environment has changed again, from the perspective
of another agent, resulting in that other agent having to adapt its policy, resulting in a loop of changing envi-
ronments and changing policies.

Two specific problems that arise with non-stationarity and a decentralized nature of an environment are
action shadowing and the equilibrium selection problem[92]. Action shadowing is the phenomenon that oc-
curs when one action appears better from the agents perspective, whereas another action could potentially
be stronger if all agents select that action cooperatively. This issue is caused by the reward of an agent being
dependent on the joint action selection, whereas the Q-value update is performed based on individual action
selection. The equilibrium selection problem describes situations when coordination is required to select
one of multiple global optimal solutions. This creates potential for agents to mis-coordinate resulting in poor
performance.

7.2. Reinforcement Learning Algorithms for Multi-Agent Learning
Reinforcement learning for Dec-POMDPs is more complex than it is for POMDPs or MDPs, due to the afore-
mentioned problems. Algorithms have been designed to specifically be able to deal with these problems.
Often, these algorithms are adaptations from standard (deep) reinforcement learning algorithms. Two key
directions can be identified in which reinforcement learning has been applied to Dec-POMDPs. The first
approach is centralized learning for decentralized execution (CLDE) approach. In this approach, the assump-
tion is made that some form of global information is available during learning, which would often be the
case when learning is performed in simulations. CLDE approaches exploit this information to speed up and
improve training. The final policies that are embedded into the agents, however, will only be conditioned
on local observations, which allow them to perform decentralized execution. The second approach is de-
centralized learning for decentralized execution (DLDE), also known as independent learners. Following this
approach, no additional information is exploited during training that would not be present during execution.
This complicates learning. For example, how would an agent know if the reward he receives is due to an-
other agent taking a good action or due to the agent itself taking a good action? Although learning is more
difficult, this approach is the only approach completely suitable for online learning on real robots in a real en-
vironment. In the following subsections, we explain how both of these approaches work, and review modern
algorithms for each of those approaches.

7.2.1. Decentralized Learning for Decentralized Execution
We now discuss algorithms that belong to the DLDE approach. The simplest, but also naive, technique is
to a standard reinforcement learning algorithm to the decentralized problem, where every agent learns on
its own and the other agents are simply treated as part of the environment. As previously discussed, from
the agent’s perspective, the ennvironment is no longer stationary, as the behaviour of the other agents can
change over time. This could result in convergence issues [93]. However, this does not necessarily results in
worse practical performance of Q-learning-like algorithms in multi-agent settings when compared to algo-
rithms that utilize deeper insights about multi-agent systems [94]. One example of this is the use of DQN to
learn in two-player, cooperative Atari games [95]. This approach is also known as Indepenent DQN (IDQN).
For problems with partial observability, recurrent nerworks have been used, resulting in an approach that
has been called Reinforced Inter-Agent Learning (RIAL) [93], also known as Decentralized Recurrent Deep

7.2. Reinforcement Learning Algorithms for Multi-Agent Learning 59

Q-Networks (Dec-RDQN)[96]. In the same work, Differentiable Inter-Agent Learning (DIAL) is proposed, in-
stead of agents purely sending discrete messages, these messages are also used as a way to propagate gradient
from one agent to another, providing richer feedback for the agents. All these techniques, are based on DQN,
which in the single-agent setting utilized replay buffers to stabilize training. In multi-agent learning how-
ever, replay buffers have been found to be detrimental to training due to the non-stationarity of the problem
from the agents perspective [97]. Disabling replay buffers altogether can be done successfully as is shown by
Foerster et al.[93].

A second way to deal with non-stationarity is through the insight that a sequence of actions resulting in a
bad return could, in the multi-agent case, also be caused by exploratory moves of other agents, rather than by
bad actions performed by the individual agent itself. This has been used to improve the convergence quali-
ties of Q-learning in the multi-agent case. These approaches use optimism to remove (or reduce) the impact
of these exploratory moves on estimated Q-values, whilst still being fully decentralized, such techniques are
called optimistic approaches, as they assume decreases in value estimates are caused by exploratory moves
of other agents. One approach that does this is known as distributed Q-learning and is (provable) able to find
optimal policies in deterministic environments [98]. This (tabular) approach only updates the Q-values in the
Q-table if the update results in an increase in value. In stochastic environments however, these algorithms are
not able to differentiate between poor rewards from environment stochasticity and poor rewards from bad
actions by cooperating agents, resulting in only the most rewarding state transition to be taken into account,
instead of the expected value over all possible state transitions. Hysteretic Q-learning attempts to improve on
this this through use of two separate learning rates, where one smaller learning rate is used for updating Q-
values in the negative direction and a larger Q-value is used for positive updates [99]. Although this approach
no longer guarantees optimal policies in deterministic domains, it can result in improved practical perfor-
mance, especially in stochastic domains. The power of hysteric Q-learning and Dec-RDQN are combined
in an algorithm known as Decentralized Hysteretic Recurrent Q-Networks (Dec-HDRQNs) [96]. Leniency
is a similar technique to hysteretic learning. In this technique, the amount of "mistakes" accepted by the
learner is reduced over time. This has demonstrated even better performance in some stochastic domains
[100, 101]. This has also been used in a DQN adaptation known as Lenient Deep Q-Networkss (LDQN) [102].
Still however, these techniques are not able to explicitly differentiate between environment stochasticity and
multi-agent exploration.

Distributional Reinforcement Learning, discussed in Chapter 4, has recently been investigated as an al-
ternative to Hysteresis and Leniency and has shown improved performance in stochastic domains [91]. This
approach, called Likelihood Hysteretic IQN (LH-IQN) uses two core techniques: Time Difference Likelihood
(TDL) and Dynamic Risk Distortion (DRD). TDL measures the likelihood of a return distribution produced by
the target Q-network given a distribution of the main Q-network. In other words, it is a measure of similarity
between these two distributions. If the TDL is small, it is likely that this is caused by non-stationarity and
teammate exploration. In this case, the learning rate is reduced. DRD is a separate technique to control risk
sensitivity in distributional reinforcement learning. LH-IQN uses this to increase risk aversion over time.

The previously mentioned algorithms all build upon DQN and are therefore suitable for discrete action
spaces, only limited research has been performed on decentralized learning in continuous action spaces. One
work compared the performance of DDPG, TRPO and REINFORCE in a DLDE fashion with an adaptation
of DDPG for CLDE [103]. This adaptation will be discussed in more depth in the next section. The CLDE
algorithm unsurprisingly outperformed all DLDE algorithms as it was able to exploit more information and
the DLDE algorithms were not adjusted to deal with non-stationarity.

7.2.2. Centralized learning for decentralized execution
The CLDE paradigm is a popular approach for automatic swarm design through reinforcement learning. In
this approach, a policy is learned centrally, either using the global state, joint observations or through expe-
rience sharing. The policy that is learned, however, can be executed decentralized as it is only dependent on
the localized observations.

One simple way to use global information is to share parameters of a neural network. This is done in a
modification of the previously discussed RIAL algorithm, where the parameters of a Q-network are shared,
and is applied in a communication task[93]. Value Decomposition Networks (VDN) [104] and QMIX [105]
are two DQN based approaches that factorize the centralized Q-Network into Q-networks conditioned on
individual observations. In VDN, this is done by composing the global Q-value to be the sum of individual
Q-values. In QMIX, this is done through a mixing network that guarantees monotonically increasing global
Q-values with respect to the individual Q-values.

60 7. Multi-Agent Reinforcement Learning

A popular domain for continuous action CLDE algorithms is that of multi-agent collision avoidance and
has spawned some algorithms designed specifically for this task. In this setting, two or more robots encounter
each other whilst trying to reach their individual destinations. In general, the goal is to prevent collisions
whilst minimizing the time to reach the destinations. Often, this path finding is performed through real-time
planning, but reinforcement learning has been investigated as a method to reduce the online computational
costs of collision avoidance associated with this real-time planning. The approaches differ in the exact type of
RL algorithm used, the input of the centralized learner (global state, joint observations or shared experiences),
and the type of observation data. Usually, these approaches learn a homogeneous policy over all agents. One
work investigates the problem for a fixed number of agents in the observation [106]. The full system state is
described by the combined individual states of a number of robots. The individual states of each robot is split
up into two parts: an observable part that can be observed by every robot and a hidden part that can only
be observed by the robot itself. The observable part contains information about the robots location, speed
and size. The hidden part contains information about the robots intended goal position, preferred speed
and heading angle. The RL method used is a model-free critic only method, sharing similarities with DQN.
To make the method usable for continuous action spaces, the Q-network is replaced with a V-network. The
learned value network is based on shared experiences of the agents and only has local observations as an
input. Therefore, the value network can directly be used for action selection in a decentralized fashion. To
do this, the other agent’s state is propagated through using its filtered velocity. The reward signal consists of
a local part based on collision avoidance and time to reach the target, and a global part based on the total
time to reach the target for both agents. A core limitation of this work is that the state representation used
in the value network requires a fixed number of agents. Later work has removed this constraint through the
use of Long Short-Term Memory Networks (LSTMs), which are a type of NN able to handle inputs of variable
size [107]. Another approach used raw (simulated) lidar data instead of the higher level features such as
agent speed and location. This inherently made the observation space flexible to the amount of agents in the
environment [108]. In this work, PPO is used and trained with shared experience.

Outside of the specific multi-agent collission avoidance approaches, the CLDE paradigm has also been
used to find policies in more general (continuous action) swarming tasks. Hüttenrauch has investigated the
use of reinforcement learning in a swarm-MDP. An actor-critic approach is used, where the full system state
is available to the critic [109]. The agents have an actor that selects actions based on local history. However,
this actor is updated centralized and therefore all agents will have the same policy. Huttenrauch has also
investigated usage of TRPO for learning swarm behaviours. In this research, emphasis was placed on methods
for representations of local observations, either through the use of histograms [110] or through the use of
mean feature embeddings [111].

A CLDE version of DDPG called Multi-Agent DDPG (MADDPG) also uses a centralized critic and decen-
tralized actor. This has been compared against standard decentralized DDPG in a suite of mixed competitive
and cooperative games, showing improved performance compared to standard DDPG. COMIX is a DQN-
based approach for continuous action CLDE. A centralized Q-Network is factorized into separate Q-networks
for each agent that are only conditioned on their local observations [112]. DQN is made suitable for contin-
uous action spaces through use of a Monte-Carlo sampling technique known as the Cross-Entropy Method
(CEM).

7.3. Benchmarking Multi-Agent Reinforcement Learning
Whereas for single agent RL a number of domains exist that are extensively used for benchmarking RL al-
gorithms, this is not the case in multi-agent reinforcement learning. This makes comparison of MARL algo-
rithms even more difficult than is the case for single agent RL. Many researchers or research groups use their
own benchmarks and domains. One reason for this might be that multi-agent algorithms are more commonly
specialist algorithms designed to solve a specific set problems such as multi-agent navigation. It would be
unfair to judge the performance of such an algorithm on its performance on some generic benchmark that
has nothing to do with multi-agent navigation. In addition, there exist many different types and formulations
of Multi-Agent problems (cooperative, competitive, etc.) and each of those has had significantly less atten-
tion than the standard single-agent MDP formulation, reducing the amount of comparison that can be done
between algorithms. Even though it is therefore understandable that creating and conforming to generic
benchmarks is difficult in multi-agent reinforcement learning, it is still good aspiration to utilize common
benchmarks as much as possible. It is for this purpose, that we still show some domains that have been used
in multiple articles. Similar to the rest of the chapter, we solely focus on cooperative domains, or domains

7.3. Benchmarking Multi-Agent Reinforcement Learning 61

that can be made cooperative trivially.
One recently proposed benchmark domain is that of the Starcraft Multi-Agent Challenge (SMAC) [113]

which provides scenarios of various difficulties for control of multiple agents in the strategy game Starcraft.
These scenarios all feature discrete action space. Another recently proposed benchmark domain are robotics
domains in MuJoCo, similar to the Deepmind Control Suite, modified for decentralized control, where sep-
arate agents control parts of a single robot [112]. Another continuous control set of environments is that of
the Multi-Agent Particle Environments [103, 114]. In this set of environments, a number of tasks involving
communication, cooperation and competition are implemented where the agents control a particle in a 2D
continuous environment.

Specifically for swarming, few, if any, open sourced benchmark domains exists. Many works perform tasks
such as formation forming [18], aggregation and pursuit [111], but implementations of these environments
are often made for a single article and algorithm, providing limited, if any, comparison with other algorithms.

8
Literature Synthesis

This report has given a broad overview of topics, all related to online learning for swarm robotics. In this
chapter, we discuss in more detail how each of those topics will contribute to the remainder of this thesis.

8.1. Swarm Robotics
Swarm robotics is a subfield of robotics characterized by the use of a large number of relatively simple robots,
cooperating to achieve more complex goals than any individual robot could achieve. Usage of a larger num-
ber of robots in contrast to one or a few can improve robustness, flexibility and scalability of the system
[1–3]. Typically, individual robots in a swarm are only able to observe the environment locally, only have local
communication capabilities and are controlled in a decentralized fashion, that is: there is no single entity
controlling the swarm. Instead, every robot makes decisions purely based on its own observations. Thus to
achieve a global goal for the swarm, local behavioural rules need to be designed that contribute to this goal.
Designing individual behaviours for these swarm-robots is a complex task. To achieve more capable swarms,
automatic swarm design methods must be considered. Automatic swarm design strives to create algorithms
that automatically optimize local behavioural rules. The two primary techniques that are used for this are
Reinforcement Learning and Evolutionary Algorithms. Due to the existence of the so called reality gap, a de-
crease in performance noticed when deploying a swarm that was optimized in a simulator but deployed in
the real world, it might be desirable to optimize the behaviours through real-world experience. This is known
as online learning. However, online learning can be expensive due to the need to use real robots for prolonged
amounts of time and the risk of damaging the robots [15]. To mitigate this as much as possible, it is impor-
tant to use algorithms that can learn desirable behaviours with a limited amount of real-world experience, a
property that is known as sample-efficiency.

8.2. Reinforcement Learning
Reinforcement Learning studies an agent that needs to make sequential decisions in an environment to max-
imize some expected average reward, also known as the return [4]. Markov Decision Processes (MDP) formal-
ize the interface between the agent and its environment. At every time step, the agent observes a state and
receives a reward from the environment, upon which the agent selects an action. Based on this action, the en-
vironment provides the agent with a new observation and reward, in a continuing cycle until some terminal
state is reached. Usually, the agent internally keeps track of a value function (an estimate for the expected re-
turn) or a policy (a function that determines what action to select given a certain state). Based on experience,
the value function and/or policy are improved over time, resulting in ever improving performance.

How to represent the policy or value function and how to adapt them based on experience is a primary
factor discerning different reinforcement learning algorithms. In small domains where only a limited number
of distinct states can be visited and a limited number of actions can be selected in any state, these functions
might be stored in tabular form. In larger domains, some form of function approximation is needed. Recently,
Deep Neural Networks have become a popular tool for this function approximation in a field that is known
as Deep Reinforcement Learning. Function approximation also makes it possible to perform learning in con-
tinuous environments, where the actions or states are continuous instead of discrete. This is more realistic
for many applications including swarm robotics.

63

64 8. Literature Synthesis

The MDP framework assumes an environment that is fully observable: the agent receives an observation
that is Markovian. Future states and rewards are only dependent on the current and future actions and the
current state, not on past states. If this is not the case, the problem is a Partially Observable MDP (POMDP).
This means the agent needs to take into account the full observation history in order to select the optimal
action, which is non-trivial to do. In some cases, it is possible to ignore the partial-observability at minimal
expense of some performance. Otherwise, one needs to explicitly deal with the partial observability. This
could be done optimally through the use of belief states for small domains, or through the use of function
approximators such as Recurrent Neural Networks (RNN) that are able to take sequential data as an input.

Although (Deep) Reinforcement Learning has already proven to be a powerful approach for single agent-
tasks [11, 12, 34, 43], multi-agent tasks [93] and swarming tasks[109–111], it is usually reliant on the avail-
ability of a large amount of training data to achieve strong performance, especially in large and complex do-
mains that deal with continuous action spaces, partial observability or multiple agents, all typical properties
of swarm systems. Therefore, significant improvements in sample efficiency are necessary to make online
learning for swarm robotics viable in anything but the simplest domains.

8.3. Model-Based Reinforcement Learning
One way to improve the sample efficiency of reinforcement learning is through the use of a learned world
model. It might be easier to learn a model of the world than it is to learn a full policy or a value function. If this
is the case, it can be beneficial to first learn a model of the world and then learn a policy and/or value function
based on this world model. Although these methods do improve sample efficiency, this often comes at a cost
of additional computation. Robotics, including swarm robotics, with it’s high cost of real-world samples,
could be a promising application for these techniques. Two key design choices are particularly important
in this class of algorithms. The first is model-representation and architecture. Most recently, ensembles of
DNN that incorporate both epistemic and aleatoric uncertainty have shown to be a powerful representation
[83, 84]. The second is planning-learning integration: how can the model be used to learn to select better
actions. The two primary methods for doing this are planning only for the current state (such as PETS [83]),
or planning for the entire state-space (such as MBPO [84]). Both approaches have their own advantages and
disadvantages. Planning only for the current state requires real-time computing power, whereas planning for
all states allows the agent to learn at any moment it has has computational power available. On the other
hand, planning for all states might waste computing power on states that are not directly useful for the agent.

8.4. Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning (MARL) studies Reinforcement Learning when multiple agents are act-
ing and interacting within a single environment. One specific instance of this is when agents need to cooper-
ate to achieve certain goals. Two primary ways exists in which reinforcement learning is performed in these
situations. The first, centralized learning for decentralized execution, uses a central entity to guide the learn-
ing process. During deployment, the agents then act in a decentralized fashion. This approach is generally
not suitable for online learning for swarming, as it is undesirable to have a central entity whilst learning in the
real world for a swarm of robots. The second approach, decentralized learning for decentralized execution, is
a fully decentralized appraoch. Here, no central entity is used during learning. Instead, each robot learns on
its own through local interactions. Such an approach, however, can create problems for standard reinforce-
ment learning algorithms. Most standard reinforcement learning algorithms are based on the assumption
that the environment is stationary. In decentralized multi-agent reinforcement learning, this assumption is
no longer directly satisfied: from the perspective of a single agent, all other agents are part of the environ-
ment. As the learning progresses, the policies of all agents change and thus also the environment changes
from the perspective of a single agents. This can result in convergency problems for reinforcement learning
[93]. Even so, in some practical settings, direct application of standard RL algorithms in decentralized envi-
ronments have had decent results [94, 95]. If this does not provide satisfactory results, specialized techniques
such as hysteresis and leniency can be used to make algorithms more robust to the non-stationarity of the
environment [98, 99, 102].

8.5. Model-Based Learning for Decentralized Agents
Although both Multi-Agent Reinforcement Learning as well as Model-Based Reinforcement Learning are pop-
ular topics of research in their own regards, the combination of these two techniques for decentralized agents

8.5. Model-Based Learning for Decentralized Agents 65

has largely remained a gap in the current literature [17]. Given this gap in recent literature and the fact that
improving the sample efficiency is a crucial ingredient towards making online learning for swarm robotics
possible, this thesis strives to answer the following research question:

Can sample efficiency of decentralized, multi-agent reinforcement learning be improved through the use
of a learned world model?

Direct application of a model-based reinforcement technique such as MBPO [84] or PETS [83] in a de-
centralized fashion is one way to approach this. These approaches could theoretically suffer from the same
convergency problems as when applying standard model-free algorithms to decentralized environments, yet
standard model-free algorithms do not always worse practical performance compared to more complex ap-
proaches of dealing with decentrality [94]. Similarly, direct application of model-based techniques on swarm-
ing problems might be a succesfull approach. Possibly, these algorithms could be adapted to be made more
suitable for decentralized domains similar to how techniques such as hysteresis have made Q-learning more
suitable for decentralized environments [99, 102].

A more specialized method for decentralized reinforcement learning would be to explicitly embed infor-
mation about the decentralized nature of the environment within the model architecture. Such an approach
could be desirable as opens up the possibility for an agent to reason differently about the non-stationary col-
laborating agents compared to the stationary environment. On the other hand, such an approach does em-
bed more specific prior information on the model structure, possibly making the approach less generalizable.

9
Preliminary Analysis of PageRank for

Online Learning in Swarms

PageRank, an algorithm originally used to rank websites based on the hyperlinks referring to those websites
has recently been used in a novel approach to perform automatic swarm design[18]. In this chapter, we per-
form a preliminary analysis of this technique and its application to online learning for swarm-robotics. In
Section 9.1 we perform a thorough analysis of the PageRank approach for swarming. We give an analysis on
how the PageRank terminology relates to standard MDP terminology, we describe how the problem can be
reformulated as a Linear Programming problem and give an example how the approach could be modified
to make online learning possible. In Section 9.2, we experimentally demonstrate that the performance of
the linear programming formulation is similar to the original PageRank method, with much less computa-
tional demand. Also, we show the practical implications of a discrepancy between the objective function of
the PageRank optimization and the performance of the swarm. Finally, we demonstrate the effects of on-
line learning with the Linear Programming formulation. In Section 9.3, we conclude this chapter from the
perspective of usability of the PageRank method for the remainder of this thesis.

9.1. An Analysis of PageRank and its relationship to MDPs
A persisting problem that exists in (automatic) swarm design is that of the micro-macro link. The goal for
a swarm system is usually defined on the swarm-level, comprising of a large number of robots, whereas the
behavioural design is performed on the individual swarm-robot level. Investigating the system level per-
formance is usually done through a global simulation of the system, which can be expensive. When doing
automatic optimization of the individual behaviours, a large number of these global simulations are needed.
Research by Coppola et al. [18] has used the PageRank as a method to link system-level behaviour with local
behavioural rules, removing the need for any global simulation to find satisfactory behaviours.

The PageRank method for automatic swarm design implicitly models the swarming problem for any in-
dividual in the swarm as a fully observable, stochastic MDP. In the next four paragraphs, we show how the
terminology introduced in the paper translates to standard MDP terminology. This translation makes it clear
that the problem can be transformed into a linear programming problem that is efficiently solvable without
the need for an Evolutionary Algorithm, which is done in the original research.

PageRank model for swarming The PageRank model to evaluate a given policy for swarming behaviour
considers a graph GS = (V ,E) [18]. This graph models the local behaviour of a robot in a swarm. Every node
in the graph is a state the robot can be in: V = S. The edges contain all transitions that the robot can make
in the local state-space. If the edges of this graph contain all transition probabilities, it describes a Markov
Chain. Coppola splits these transitions up into two parts: active and passive.

• Ga
S

, the active part of the graph, contains the transitions that happen due to actions by the robot itself.
This is the only part of the graph that is influenced by the stochastic policy π.

• Gp
S

, the passive part contains the transitions that happen due to changes in the environment [18]. That

67

68 9. Preliminary Analysis of PageRank for Online Learning in Swarms

is, changes that occur due to other agents in the swarm. In the method, it is assumed that this is inde-
pendent from π.

Formally, the full graph can be described as the union of these two sub-graphs: GS = Ga
S

⋃
Gp
S

. Effectively,
these definitions transform the problem that the policy is being optimized for into a single-agent fully-observable
stochastic MDP, as all transition probabilities are only dependent on the local state and the current action
only.

The paper then introduces matrices Hπ, E and D, which form matrix representations of the graph GS.
Hπ = adj(Ga

S
) models the local state transitions of the robot through its own actions and has therefore the

policy as a parameter. adj(G) denotes the weighted adjacency matrix of graph G . E = adj(Gp
S

) models the
environment: the state transitions that can happen due to other robots taking actions. Finally, D models
the environment when the robot itself cannot or will not take any actions. States in which this happens are
named static sates: Sst ati c . Therefore: D = adj(Gp

S
(Sst ati c)). To complete the PageRank model, an expansion

factor α is introduced, which represents the relative chance of the robot taking an action compared to the
environment causing a state transition. The so-called "Google matrix" is then constructed:

Gπ =α (Hπ+D)+ (1−α)E (9.1)

To calculated the PageRank centrality of all states, vector R, the following procedures is performed iteratively
until some convergence criterion is met:

RT
k+1 = RT

k G (9.2)

A set of desired local states is defined, Sdes , which are problem specific. Finally, the fitness F of a policy is
then calculated based on the average PageRank centrality of these desired states1. Note that in this chapter,
we use R to denote the PageRank centrality and r to denote rewards in an MDP.

F = ∑
s∈Sdes

R(s) (9.3)

The Google Matrix is the transition matrix of the original graph As explained by Coppola [18], the Google
Matrix is a stochastic matrix, which holds the probabilities of transitioning between nodes (or states) as it
would be described by Markov chains. We argue that the original graph GS is in fact the Markov Chain that
is described by this Google Matrix. Therefore, Equation 9.2 describes the distribution propagation of state
Rk to Rk+1, where k indicates the timestep. Thus, given an initial state probability distribution R0, Rk (s)
describes the probability of being at state s at time k, and the final PageRank centrality simply approximates
the probability of being in that state in the limit as time goes to infinity.

Fitness function as an average-reward Markov Chain At every time step in a Markov chain, the current
state s transitions to a new state s′. It is possible that s′ = s. Therefore, in the limit as time goes to infinity,
probability of being in a state is equal to the probability of transitioning to that state: every time step that
is spent in a state, has been preceded by transitioning to that state. The fitness function can therefore be
transformed into a reward signal following the notation:

r (s′) = r (s′, s, a) =
{

1, if s′ ∈ Sdes

0, otherwise
(9.4)

We can then define a return for this infinite horizon MDP:

Gt = lim
T→∞

∑T
k=0 r (sk+t+1, sk+t , ak+t)

T
(9.5)

Intuitively, Gt = F . Therefore; finding a policy that maximizes the return Gt will also maximize the fitness of
this policy.

1In the original paper, this contained some more terms, however; we argue that this can be simply reduced to multiplication with a
constant since the sum of all PageRank centralities should be equal to 1.

9.1. An Analysis of PageRank and its relationship to MDPs 69

The effect of the environment In the original problem description by Coppola et al. [18], the problem is
formulated in such a way that there is an chance of α that the robot itself takes an action and there is a 1−α

chance that the environment takes, causes a state change instead. At first sight, this is not suitable for usage
in an MDP, as it makes the definition of the state transition array P ambiguous: there are transitions that can
happen without any action taking place. This, however; does not have to be a problem if we say that the agent
always selects an action, but there is a chance of 1−α that the state transition associated with this action does
not get executed, but instead a state transition from the environment is executed. This is something that can
modeled directly in the state transition array of a standard MDP.

Formulating PageRank as a linear programming problem As previously explained the PageRank centrality
of state s, R(s) is the steady state probability of being in this state. The fitness function can therefore be
described as:

F =∑
s

R(s)r (s) (9.6)

Which is equal to the total PageRank centrality of all states. We now call the steady state probability of being
in a state s and taking action a to be R(s, a). Then our policy becomes:

π(s, a) = R(s, a)

R(s)
= R(s, a)∑

a′ R(s, a′)
(9.7)

As explained in the previous paragraph, we should be able to construct a state-transition array P with the
following elements:

P a
ss′ = p

(
s′, s, a

)= Pr
{
St = s′|St−1 = s, At−1 = a

}
Finally, we can formulate this entire problem as a linear programming problem, removing the need of an
evolutionary algorithm:

F = max
∑

s
∑

a r (s)R(s, a)
s.t.

∑
s
∑

a R(s, a) = 1∑
a R(s′, a) =∑

s
∑

a R(s, a)p(s′, s, a) ∀s′
R(s, a) ≥ 0 ∀s,∀a

(9.8)

Once R(s, a) is found, the optimal policy can easily be obtained through Equation 9.7. Note that finding
this optimal policy is exactly the same as globally maximizing the fitness function. The benefit of this notation
as a Linear Programming problem is that an exact optimal policy can be found quickly compared to finding
a near optimal policy through an evolutionary algorithm.

Effect of determinism There exist optimal solutions to the previously described linear programming prob-
lem that are deterministic. One of the assumptions that is made by the MDP model described by the PageR-
ank approach is that the passive part of the system graph is independent of the used policy. This is not true
when all agents utilize the same policy. Especially when a deterministic optimal policy is used, there can be a
significant discrepancy between the expected performance based on the fitness function in the MDP and the
true performance in a real swarming task. One workaround that can be used to reduce this effect is to add a
source of stochasticity to policies, for example through using a policy that uses a weighted average between
a uniform policy and the found optimal policy. This is the approach we follow in our experiments. Although
this does reduce the fitness value of the policy, this can improve the performance of the real swarm. This indi-
cates a discrepancy between the fitness function and the real swarm performance and will be demonstrated
in the experiments in the next section.

Online Learning using Linear Programming The state transition array P used in the linear programming
approach described in the previous section can be derived based on the assumptions on passive and active
parts of the system graph. This is done in the offline version of PageRank as well as the linear programming
approach. It is also possible to adjust this array based on experience gained whilst performing the swarming
task. When this adapted array is then used to determine a new optimal policy, either through an EA or through
LP, this creates an online learning version of the algorithm.

70 9. Preliminary Analysis of PageRank for Online Learning in Swarms

9.2. Experiments & Results
We evaluate the PageRank approach and linear programming approaches in the consensus task described by
[18]. A number of agents are placed on a grid. Each agent starts with a randomly selected opinion from a set
of possible opinions. At every time step, a random agent is selected that can decide to change its opinion to
one of the other possible opinions or keep its opinion as it was. The goal is for all agents on the grid to get to
the same opinion, a consensus, in the least amount of time steps. The difficulty lies in the fact that an agent
can only observe the opinions of itself and its direct neighbours, not the opinions of all agents on the grid.
Once full consensus is reached, an episode is considered finished. The environment is reset and the number
of time steps it took to reach consensus is stored.

Experimental Comparison between PageRank and Linear Programming The first experiment is a com-
parison between the PageRank approach as described in [18] and a modified approach in which the Evolu-
tionary Algorithm of the PageRank approach is replaced with a linear programming solver, as described in
the previous subsection. As the optimal solution determined by the linear programming solver will largely be
deterministic, an additional uniform policy is added to the optimal policy. The effect of this uniform policy
and a comparison to the solution found through the standard PageRank approach are shown in Figure 9.1.
The computing time needed to find the policy was 0.067 seconds for the LP approach and 83.8 seconds for
the PageRank with EA approach. It is found that the Linear Programming approach reaches similar perfor-
mance to the PageRank with EA approach. In addition, it is found that increasing the amount of stochasticity
of the policy up to a certain degree improves the performance of the swarm. From this, it can be noticed that
the local fitness in terms of PageRank centrality of desired states is not necessarily a good measure for real
swarming performance. This indicates that there exists a discrepancy between the real swarming problem
and the problem that is solved through the local MDP optimization.

Figure 9.1: Comparison between the optimal solution found through Linear Programming and the solution found through PageRank
with an Evolutionary Algorithm. For the Linear Programming solution, the used policy was a weighted average between the optimal
policy and a uniform policy. The task is a consensus task of 10 robots with 2 possible opinions, more details on the task can be found in
[18]. The performance is averaged over 250 random environment initializations.

Experimental Investigation of Online Learning with Linear Programming The second experiment serves
as an investigation for the potential of online learning using a MDP representation as a model for a swarming
task. We perform the previously described online LP approach where the P array is adjusted based on expe-

9.3. PageRank Discussion & Conclusion 71

rience. Adaptation of the policy is performed once after every 100 episodes. This adaptation is done through
solving the new LP problem described by the new P array. The results of this can be seen in Figure 9.2. The
first few hundreds episodes experience a decrease in performance compared to the initial offline-learned
policy. After this however, the number of steps needed to reach consensus decreased considerably.

Figure 9.2: Comparison between the optimal solution found through Linear Programming and an approach that performs online learn-
ing in combination with Linear Programming. The task is a consensus task of 10 robots with 2 possible opinions, more details on the
task can be found in [18].

9.3. PageRank Discussion & Conclusion
The PageRank approach described by Coppola seems to combine two key contributions:

1. Learning swarm behaviours purely based on a local MDP model of the environment. This requires a
transformation of global rewards to local rewards, which is done through use of desired states.

2. Using an Evolutionary Algorithm to optimize the behaviour for the swarm.

Through analysis and experiments, we have shown that the Evolutionary Algorithm in the PageRank ap-
proach can be replaced with a Linear Programming solver for the MDP. In addition, we have demonstrated
that online learning can improve the performance of the resulting policy compared to a fully offline-learned
policy. The usage of local rewards in contrast to global rewards is a powerful idea that could aid in improv-
ing decentralization of RL. Through these experiments however; some limitations were also identified with
the PageRank approach. The most prominent of which is the discrepancy between the local fitness and the
real swarm performance. Even though online learning did improve the real swarm performance, perhaps
decreasing this discrepancy, there still exist inherent limitations due to the usage of a tabular MDP model.
The problem size that is solvable by such a model is limited. In addition, there is not a direct way to deal with
partial observability or the effects of decentralization. Therefore; the remainder of this thesis will not directly
pursue this model structure. Instead, we will investigate in more depth what model representations could be
used in decentralized reinforcement learning and how these models can be used to learn policies in a more
sample efficient manner. More specifically, we will focus on other contemporary model-based reinforcement
learning algorithms and investigate how to modify them to make them applicable in decentralized domains.

10
Conclusion, Approach, Planning

This chapter serves two main purposes: summarizing what has been done and introducing what will be done.
First, in Section 10.1 we take a look back at the work done in this preliminary study and briefly summarize
the conclusions found both in the literature review as well as in the preliminary experiments. Second, in
Section 10.2, Section 10.3 and Section 10.4, we translate these conclusions into an approach and planning
that will be followed for the remainder of this thesis.

10.1. Conclusion
Swarm robotics is an important field of study, since swarms of robots offer inherent advantages compared to
their single-robot counterparts: robustness, flexibility and scalability [1–3]. Designing individual behaviours
for these swarm-robots is a complex task. To achieve more capable swarms, automatic swarm design meth-
ods must be considered. Reinforcement learning [4] is a promising technique to use and is already sucessfull
for single agent-tasks [11, 12, 34, 43], multi-agent tasks [93] and swarming tasks[109–111]. To fully exploit
the benefits of swarming, robots should be able to learn online, whilst acting in a real environment. Most
reinforcement learning techniques however, take thousands of trials before the agent learns desiraopvragen-
ble behaviours, rendering them unfeasible for learning on real robots [15]. Partial Observability and non-
stationarity of the environment, typical phenomena encountered in multi-agent swarming tasks, complicate
learning even further. One way to improve this so called sample-efficiency is through the use of learned world
models, and has become increasingly popular in recent years [9, 59, 77, 79–83, 85–89]. Especially for tasks
with continuous action spaces, typical for robots, these techniques have resulted in dramatic increases in
sample efficiency. Although these model-based techniques have been applied in settings with partial observ-
ability, their applicability to decentralized multi-agent reinforcement learning has, according to the authors’
best knowledge, not yet been investigated. As improving the sample efficiency is a crucial ingredient towards
making online learning for swarm robotics possible, this thesis strives to answer the following research ques-
tion:

Can sample efficiency of decentralized, multi-agent reinforcement learning be improved through the use
of a learned world model?

One model-based swarming technique was investigated in more detail. This algorithm used PageRank
and relied on formulation of the swarming problem from the perspective of a single agent as a tabular Markov
Decision Process and optimized a policy within this MDP. It was found that there exists a discrepancy between
the optimal solutions to the MDP and good solutions to the actual swarming problem. This raises the ques-
tion whether a Tabular MDP is actually the best representation for a world model in a swarming problem. Not
only due to the limitations on size of the problem when using a tabular representation, but also due to the
inherent limitations of using a fully-observable MDP to represent a Decentralized, Partially Observable MDP.

The question what a suitable model structure and model usage to tackle decentralized model-based rein-
forcement learning with is a more fundamental question than how to adapt PageRank towards online learn-
ing and approaches could be found that do not suffer from the same limitations as the PageRank approach
does. One key building block for this would be contemporary single agent deep model-based reinforcement

73

74 10. Conclusion, Approach, Planning

learning techniques. In these techniques, usage of an ensemble of neural networks to represent a world
model has recently become more popular. These algorithms, such as MBPO [84] or PETS [83], allow for solv-
ing larger model-based reinforcement learning tasks. Yet, in a decentralized setting they might still suffer
from the same convergency problems as when applying standard model-free algorithms or a tabular MDP
approach. Interestingly, standard model-free algorithms do not always have worse practical performance in
large decentralized tasks compared to more complex approaches of dealing with decentrality [94]. Similarly,
direct application of model-based techniques on swarming problems might be a succesfull approach. Pos-
sibly, these algorithms could be adapted to be made more suitable for decentralized domains similar to how
techniques such as hysteresis have made Q-learning more suitable for decentralized environments [99, 102].
A more specialized method for decentralized reinforcement learning would be to explicitly embed informa-
tion about the decentralized nature of the environment within the model architecture. Such an approach
could be desirable as this opens up the possibility for an agent to reason differently about the non-stationary
collaborating agents compared to the stationary environment. On the other hand, such an approach does
embed more specific priors on the model structure, possibly making the approach less generalizable. Both
these approaches are worthy of further investigation and how this will be done is elaborated upon in the next
sections.

10.2. General Approach
To answer the core research question, this thesis will design and evaluate model-based reinforcement learn-
ing algorithms for decentralized reinforcement learning. These decentralized techniques will be based on
the model-based algorithms discussed in Chapter 6. Two primary model architectures are identified to make
these algorithms suitable for decentralized learning:

1. World models that implicitly take into account the existence of other agents. In these world models,
other agents are purely seen as part of the environment. Although this approach could be as simple
as directly applying single-agent model based RL to a decentralized domain, it makes the environment
that the world model needs to learn non-stationary. This might have negative consequences on the
performance of these types of world models, similar to the issues discussed in Chapter 7.

2. World models that explicitly take into account the existence of other agents. Instead of modelling the
other agents implicitly as part of the environment, it might also be possible to model them as an ex-
plicit part of the environment. One way to do this through splitting up the world model into two parts:
an individual agents model that models the action selection of agents, and a model that represents the
consequences of these actions on the environment. The action selection part will be the only non-
stationary aspect of the model, and the effect of these actions on the environment will remain station-
ary. Such a world model places some additional constraints on the problem; the action selection of
other agents should somehow be able to be derived from the observations. In addition, this model
structure is more complex and deviates more from the methods describe in previous works.

Both approaches rely on modification of existing model-based reinforcement learning algorithms. There-
fore; the first identified step is to implement these algorithms and evaluate the benefits of model-based rein-
forcement learning in single-agent domains. After this, the focus will shift towards adapting the algorithms
for decentralized domains following the approaches explained above. A third topic of investigation can also
be identified that focuses more on the learning process rather than the model structure:

3. Hybrid models that utilize both model-based and model-free reinforcement learning.

Although the first two topics could already provide opportunity for an interesting and novel investigation,
this third topic might be able to improve performance. For this reason it will, for now, remain within the
scope of this thesis.

10.3. Tasks & Nominal Planning
To be able to reach the desired goals of the thesis, designing and evaluating model-based decentralized RL
algorithms, concrete tasks have been specified. These tasks are split up into two major categories. First,
content tasks, which are the tasks that contribute to new insights and will form the majority of the actual
contribution of this thesis. Second, auxiliary tasks, these tasks deal with the communication, organizatorial
and writing tasks of the thesis. In addition, every subtask has been labelled according to the type of work that

10.3. Tasks & Nominal Planning 75

it is: I(mplementation and design), E(xperimental) and W(riting). All these tasks have been scheduled over
the remaining thesis period as shown in Figure 10.1. In the subsections below, the tasks corresponding to the
numbering in the planning diagram are elaborated upon.

10.3.1. Content Tasks:
C1. Create Necessary Infrastructure to perform analysis and evaluation of RL Algorithms

C1.1. I: Create single interface for single-agent and multi-agent algorithms.

C1.2. I: Create infrastructure to quickly run experiments with different configurations.

C1.3. I: Create suitable decentralized environments.

C2. Analysis of Model-Based RL in single agent domains. Desired outcome: a comparison between model-
based and model-free RL that shows the benefit of model-based RL for sample efficiency in single agent
reinforcement learning.

C2.1. I: Implement single agent RL algorithm (DDPG or SAC).
Potential difficulty: debugging can take a significant amount of time due to computing time re-
quired for running the algorithms and their tendency to fail silently.

C2.2. I: Implement model-based version of single-agent RL algorithm. Potential difficulty: debugging
can take a significant amount of time due to computing time required for running the algorithms
and their tendency to fail silently.

C2.3. E: Create comparison between the model-based and model-free algorithms. Potential difficulty:
hyperparameter tuning can influence performance greatly. Tuning them can take significant time
due to resource intensity of running the algorithms.

C3. Design and Evaluation of Decentralized Model-Based RL using world models that implicitly take into
account the existence of other agents.

C3.1. I: Design detailed algorithm

C3.2. E: Evaluate performance on decentralized environments.

C4. Design and Evaluation of Decentralized Model-Based RL using world models that explicitly take into
account the existence of other agents.

C4.1. I: Design detailed algorithm

C4.2. E: Evaluate performance on decentralized environments.

C5. If no major delays in other tasks: Design and Evaluation of Hybrid Model-Based RL - Model-Free
Algorithm that utilizes both simulated experience as well as real experience to learn.

C5.1. D: Design detailed algorithm

C5.2. E: Evaluate performance on decentralized environments.

10.3.2. Auxiliary Tasks:
A1. Prepare Preliminary

A1.1. W: Revise Planning & Approach

A1.2. W: Finalize results section.

A1.3. W: Proofreading & Formatting.

A1.4. W: Prepare Preliminary Presentation.

A2. Prepare Midterm

A3. Prepare Draft Thesis

A4. Prepare Final Thesis

A5. Prepare Defence

76 10. Conclusion, Approach, Planning

 A3.

 A1.

Finalize Preliminary Midterm

06-07 20-07 03-08 17-08 31-08

Midterm

31-08 14-09 28-09 12-10 26-10

C1.1
C2.1
C2.2

C2.3 (E)

C1.3 (I)

C3.1 (I) C4.1 (I)

C3.2 (E)

C4.2 (E)

Draft

09-11 23-11 07-12 21-12

Final Thesis

Greenlight
26-10

Defence

Midterm

Final
Experiments

Draft

Final
Experiments

Final

C2.1 (I)
(finalize)

C2.2 (I)
(finalize)

C2.3 (E)
(finalize)

C1.2 (I)

C3.2 (E)

C4.1 (I)

Draft

C4.2 (E)

C5.1 (I) C5.2 (E)

Preliminary
Presentation

Schedule Padding

Schedule
Padding

A4.

Holiday

A3.

A3.A2.

A1.

 A5.

A2.

Defence

Final
Thesis

Draft
Thesis

Schedule
Padding

Figure 10.1: Planning for the remainder of this thesis

10.4. Expected Difficulties and Risks
A number of potential difficulties and risks have been identified with the previously described approach:

1. Some task takes much longer than expected.
Risk mitigation: 1. Schedule some additional time in each phase of the thesis.

2. Benefit of model-based RL is smaller than expected.

3. Computation time. Doing experimentation can take a significant amount of time due to the running
time of code. This is exacerbated by the potential need for extensive hyperparameter analysis.
Risk mitigation: 1. Reduce computation time through finding small environments that are still an ef-
fective test-bed. 2. Schedule tasks that can be performed in parallel to computation of experiments. 3.
Utilize machines with more computing power.

4. Dependency on the right implementation details. The performance of RL algorithms in general can
be highly dependent on implementation details. Investigating these details and experimenting what
works best can take a significant amount of time.
Risk mitigation: 1. Create modular code in which implementation details can easily be swapped out.

5. Debugging in combination with computation time. Reinforcement learning is prone to failing silently.
It could seem that the code works, and an agent learns very slowly, when in fact their are errors present
in the code that reduce performance dramatically. These errors can be difficult to find due to their
limited visibility.
Risk mitigation: 1. Same risk mitigation as for the computation time risk. 2. Re-use code as much as
possible. 3. Utilize git effectively.

Bibliography

[1] Iñaki Navarro and Fernando Matía. An Introduction to Swarm Robotics. ISRN Robotics, 2013.

[2] Jan Carlo Barca and Y. Ahmet Sekercioglu. Swarm robotics reviewed. Robotica, 31(3):345–359, 2013.

[3] Erol Şahin. Swarm Robotics: From Sources of Inspiration to Domains of Application. In Erol Şahin and
William M. Spears, editors, Swarm Robotics, Lecture Notes in Computer Science, pages 10–20, Berlin,
Heidelberg, 2005. Springer.

[4] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Adaptive computa-
tion and machine learning series. The MIT Press, Cambridge, Massachusetts, second edition edition,
2018.

[5] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, and Adrian Bolton. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

[6] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, and Thore Graepel. Mastering chess and shogi by
self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[7] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and Marc Lanctot. Mastering the game
of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[8] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, and Thore Graepel. A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

[9] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, and Thore Graepel. Mastering atari, go, chess
and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

[10] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay. arXiv
preprint arXiv:1511.05952, 2016.

[11] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining Improvements in Deep
Reinforcement Learning. arXiv preprint arXiv:1710.02298, 2017.

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[13] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel
Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Mol-
loy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent re-
inforcement learning. Nature, 575(7782):350–354, 2019.

[14] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

77

78 Bibliography

[15] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. Interna-
tional Journal of Robotics Research, 32(11):1238–1274, 2013.

[16] Marc Deisenroth and Carl E. Rasmussen. PILCO: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pages 465–
472, 2011.

[17] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep Reinforcement Learning for Multi-
agent Systems: A Review of Challenges, Solutions, and Applications. IEEE Transactions on Cybernetics,
pages 1–14, 2020.

[18] M. Coppola, J. Guo, E. Gill, and G. C. H. E. de Croon. The PageRank algorithm as a method to optimize
swarm behavior through local analysis. Swarm Intelligence, 13(3):277–319, 2019.

[19] Erol Sahin, Sertan Girgin, Levent Bayindir, and Ali Turgut. Swarm Robotics. Swarm Intelligence, pages
87–100, 2008.

[20] Vito Trianni, Stefano Nolfi, and Marco Dorigo. Evolution, Self-organization and Swarm Robotics. In
Christian Blum and Daniel Merkle, editors, Swarm Intelligence: Introduction and Applications, Natural
Computing Series, pages 163–191. Springer, Berlin, Heidelberg, 2008.

[21] Gregory Dudek, Michael R. M. Jenkin, Evangelos Milios, and David Wilkes. A taxonomy for multi-agent
robotics. Autonomous Robots, 3(4):375–397, 1996.

[22] Luca Iocchi, Daniele Nardi, and Massimiliano Salerno. Reactivity and Deliberation: A Survey on Multi-
Robot Systems. In Markus Hannebauer, Jan Wendler, and Enrico Pagello, editors, Balancing Reactivity
and Social Deliberation in Multi-Agent Systems, Lecture Notes in Computer Science, pages 9–32, Berlin,
Heidelberg, 2001. Springer.

[23] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a review from
the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

[24] Manuele Brambilla, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo. Property-driven design for
swarm robotics. In Proceedings of the 11th International Conference on Autonomous Agents and Multi-
agent Systems, pages 139–146. 2012.

[25] William M. Spears, Diana F. Spears, Jerry C. Hamann, and Rodney Heil. Distributed, Physics-Based
Control of Swarms of Vehicles. Autonomous Robots, 17(2):137–162, 2004.

[26] Martin Saska, Jan Vakula, and Libor Preucil. Swarms of micro aerial vehicles stabilized under a visual
relative localization. pages 3570–3575, 2014.

[27] Mario Coppola, Kimberly Mcguire, Christophe De Wagter, and Guido Croon. A survey on swarming
with micro air vehicles: fundamental challenges and constraints. Frontiers in Robotics and AI, 7:18,
2020.

[28] Stephane Doncieux, Nicolas Bredeche, Jean-Baptiste Mouret, and Agoston E. (Gusz) Eiben. Evolution-
ary Robotics: What, Why, and Where to. Frontiers in Robotics and AI, 2, 2015.

[29] Freek Stulp and Olivier Sigaud. Robot skill learning: From reinforcement learning to evolution strate-
gies. Paladyn, Journal of Behavioral Robotics, 4(1):49–61, 2013.

[30] David Silver. Lecture 2: Markov Decision Processes. UCL. Retrieved from www0. cs. ucl. ac. uk/staff/d.
silver/web/Teaching_files/MDP. pdf, 2015.

[31] Marco Wiering and Martijn van Otterlo, editors. Reinforcement Learning: State-of-the-Art. Adaptation,
Learning, and Optimization. Springer-Verlag, Berlin Heidelberg, 2012.

[32] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
& Sons, Inc., USA, 1st edition, 1994.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Bibliography 79

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, and Georg Ostrovski. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[35] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double Q-
learning. arXiv preprint arXiv:1509.06461, 2015.

[36] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas. Dueling
Network Architectures for Deep Reinforcement Learning. arXiv preprint arXiv:1511.06581, 2016.

[37] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learn-
ing. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 449–
458. JMLR. org, 2017.

[38] Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforcement learn-
ing with quantile regression. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[39] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit Quantile Networks for Distribu-
tional Reinforcement Learning. arXiv preprint arXiv:1806.06923, 2018.

[40] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad
Mnih, Remi Munos, Demis Hassabis, and Olivier Pietquin. Noisy networks for exploration. arXiv
preprint arXiv:1706.10295, 2017.

[41] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt, and
David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933, 2018.

[42] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent experience
replay in distributed reinforcement learning. 2018.

[43] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937, 2016.

[44] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Region Policy
Optimization. In International Conference on Machine Learning, pages 1889–1897, 2015.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[46] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Advances in neural information processing
systems, pages 1057–1063, 2000.

[47] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In Proceedings of the 31st International Conference on Machine
Learning, pages 387–395, 2014.

[48] Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb, Al-
istair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy gra-
dients. arXiv preprint arXiv:1804.08617, 2018.

[49] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

[50] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep rein-
forcement learning for continuous control. In International Conference on Machine Learning, pages
1329–1338, 2016.

[51] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive ap-
proach to reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

80 Bibliography

[52] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural
networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

[53] Verena Heidrich-Meisner and Christian Igel. Neuroevolution strategies for episodic reinforcement
learning. Journal of Algorithms, 64(4):152–168, 2009.

[54] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

[55] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wo-
jciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[56] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, and Andrew Lefrancq. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

[57] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for
general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[58] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[59] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with
model-based acceleration. In International Conference on Machine Learning, pages 2829–2838, 2016.

[60] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

[61] Rasool Fakoor, Pratik Chaudhari, and Alexander J. Smola. DDPG++: Striving for Simplicity in
Continuous-control Off-Policy Reinforcement Learning. arXiv preprint arXiv:2006.15199, 2020.

[62] G de Croon, M F van Dartel, and E O Postma. Evolutionary Learning Outperforms Reinforcement
Learning on Non-Markovian Tasks. page 12.

[63] Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Open Problem: Approxi-
mate Planning of POMDPs in the class of Memoryless Policies. arXiv preprint arXiv:1608.04996, 2016.

[64] D. Wierstra, A. Forster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic Journal of IGPL,
18(5):620–634, 2010.

[65] Xiujun Li, Lihong Li, Jianfeng Gao, Xiaodong He, Jianshu Chen, Li Deng, and Ji He. Recurrent Rein-
forcement Learning: A Hybrid Approach. arXiv:1509.03044, 2015.

[66] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural networks
for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[67] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
2015 AAAI Fall Symposium Series, 2015.

[68] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A Survey of Deep Reinforce-
ment Learning in Video Games. arXiv preprint arXiv:1912.10944, 2019.

[69] C.G. Atkeson and J.C. Santamaria. A comparison of direct and model-based reinforcement learning. In
Proceedings of International Conference on Robotics and Automation, volume 4, pages 3557–3564 vol.4,
1997.

[70] Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Model-based Reinforcement Learning:
A Survey. arXiv preprint arXiv:2006.16712, 2020.

[71] Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Learning Multimodal Transition Dy-
namics for Model-Based Reinforcement Learning. arXiv preprint arXiv:1705.00470, 2017.

Bibliography 81

[72] Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. 1991.

[73] David Silver, Richard S. Sutton, and Martin Müller. Sample-based learning and search with permanent
and transient memories. In Proceedings of the 25th international conference on Machine learning -
ICML ’08, pages 968–975, Helsinki, Finland, 2008. ACM Press.

[74] Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael P. Bowling. Dyna-style planning
with linear function approximation and prioritized sweeping. arXiv preprint arXiv:1206.3285, 2012.

[75] Kavosh Asadi Atui. Strengths, Weaknesses, and Combinations of Model-based and Model-free Rein-
forcement Learning. page 59.

[76] Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam-Fai Wong, and Shang-Yu Su. Deep Dyna-Q:
Integrating Planning for Task-Completion Dialogue Policy Learning. arXiv preprint arXiv:1801.06176,
2018.

[77] Ryan Faulkner and Doina Precup. Dyna planning using a feature based generative model. arXiv
preprint arXiv:1805.10129, 2018.

[78] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in Neural Infor-
mation Processing Systems, pages 6118–6128, 2017.

[79] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving PILCO with Bayesian neural net-
work dynamics models. In Data-Efficient Machine Learning workshop, ICML, volume 4, page 34, 2016.

[80] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, pages 1071–1079, 2014.

[81] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural Network Dynamics for
Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 7559–7566, 2018.

[82] Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep rein-
forcement learning. In Conference on Robot Learning, pages 195–206, 2017.

[83] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep Reinforcement Learning
in a Handful of Trials using Probabilistic Dynamics Models. arXiv preprint arXiv:1805.12114, 2018.

[84] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, pages 12498–12509, 2019.

[85] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. In Advances in neural information
processing systems, pages 2746–2754, 2015.

[86] Ershad Banijamali, Rui Shu, Mohammad Ghavamzadeh, Hung Bui, and Ali Ghodsi. Robust locally-
linear controllable embedding. arXiv preprint arXiv:1710.05373, 2017.

[87] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551, 2018.

[88] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

[89] Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec: Dif-
ferentiable tree-structured models for deep reinforcement learning. arXiv preprint arXiv:1710.11417,
2017.

[90] Adrian Šošić, Wasiur R. KhudaBukhsh, Abdelhak M. Zoubir, and Heinz Koeppl. Inverse Reinforcement
Learning in Swarm Systems. In Proceedings of the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems, AAMAS ’17, pages 1413–1421, São Paulo, Brazil, 2017. International Foundation for
Autonomous Agents and Multiagent Systems.

82 Bibliography

[91] Xueguang Lu and Christopher Amato. Decentralized Likelihood Quantile Networks for Improving Per-
formance in Deep Multi-Agent Reinforcement Learning. arXiv preprint arXiv:1812.06319, 2019.

[92] Nancy Fulda and Dan Ventura. Predicting and Preventing Coordination Problems in Cooperative Q-
learning Systems. In IJCAI, volume 2007, pages 780–785, 2007.

[93] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning to com-
municate with deep multi-agent reinforcement learning. In Advances in neural information processing
systems, pages 2137–2145, 2016.

[94] Erik Zawadzki, Asher Lipson, and Kevin Leyton-Brown. Empirically evaluating multiagent learning
algorithms. arXiv preprint arXiv:1401.8074, 2014.

[95] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan Aru,
and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning. PloS
one, 12(4), 2017.

[96] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep decen-
tralized multi-task multi-agent reinforcement learning under partial observability. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70, ICML’17, pages 2681–2690, Syd-
ney, NSW, Australia, 2017. JMLR.org.

[97] Afshin OroojlooyJadid and Davood Hajinezhad. A Review of Cooperative Multi-Agent Deep Reinforce-
ment Learning. arXiv preprint arXiv:1908.03963, 2019.

[98] Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learning in cooper-
ative multi-agent systems. In In Proceedings of the Seventeenth International Conference on Machine
Learning. Citeseer, 2000.

[99] Laetitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. Hysteretic Q-learning : an algorithm
for Decentralized Reinforcement Learning in Cooperative Multi-Agent Teams. In 2007 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 64–69, 2007.

[100] Liviu Panait, Keith Sullivan, and Sean Luke. Lenient learners in cooperative multiagent systems. In
Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems -
AAMAS ’06, page 801, Hakodate, Japan, 2006. ACM Press.

[101] Ermo Wei and Sean Luke. Lenient Learning in Independent-Learner Stochastic Cooperative Games.
Journal of Machine Learning Research, 17(84):1–42, 2016.

[102] Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient Multi-Agent Deep Rein-
forcement Learning. In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’18, pages 443–451, Stockholm, Sweden, 2018. International Foundation
for Autonomous Agents and Multiagent Systems.

[103] Ryan Lowe, Yi I. Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in neural information pro-
cessing systems, pages 6379–6390, 2017.

[104] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, and Karl Tuyls. Value-decomposition net-
works for cooperative multi-agent learning based on team reward. In Proceedings of the 17th interna-
tional conference on autonomous agents and multiagent systems, pages 2085–2087. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2018.

[105] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: monotonic value function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1803.11485, 2018.

[106] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P. How. Decentralized non-communicating mul-
tiagent collision avoidance with deep reinforcement learning. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 285–292, 2017.

Bibliography 83

[107] Michael Everett, Yu Fan Chen, and Jonathan P. How. Motion Planning Among Dynamic, Decision-
Making Agents with Deep Reinforcement Learning. arXiv preprint arXiv:1805.01956, 2018.

[108] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. Towards Optimally Decen-
tralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 6252–6259, 2018.

[109] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Guided Deep Reinforcement Learning
for Swarm Systems. arXiv preprint arXiv:1709.06011, 2017.

[110] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Local Communication Protocols for
Learning Complex Swarm Behaviors with Deep Reinforcement Learning. In Marco Dorigo, Mauro Bi-
rattari, Christian Blum, Anders L. Christensen, Andreagiovanni Reina, and Vito Trianni, editors, Swarm
Intelligence, Lecture Notes in Computer Science, pages 71–83, Cham, 2018. Springer International Pub-
lishing.

[111] Maximilian Hüttenrauch, Sosic Adrian, Gerhard Neumann, et al. Deep reinforcement learning for
swarm systems. Journal of Machine Learning Research, 20(54):1–31, 2019.

[112] Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer, and
Shimon Whiteson. Deep multi-agent reinforcement learning for decentralized continuous cooperative
control. arXiv preprint arXiv:2003.06709, 2020.

[113] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft
multi-agent challenge. In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, pages 2186–2188. International Foundation for Autonomous Agents and Multia-
gent Systems, 2019.

[114] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent pop-
ulations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

