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Abstract

This paper studies path lengths in random binary search trees under the random
permutation model. It is known that the total path length, when properly normalized,
converges almost surely to a nondegenerate random variable Z. The limit distribution is
commonly referred to as the ‘quicksort distribution’. For the class Am of finite binary
trees with at most m nodes we partition the external nodes of the binary search tree
according to the largest tree that each external node belongs to. Thus, the external path
length is divided into parts, each part associated with a tree in Am. We show that the
vector of these path lengths, after normalization, converges almost surely to a constant
vector times Z.
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1. Introduction

Consider the growth of a binary search tree under the random permutation model, i.e. the
tree is generated from an independent and identically distributed (i.i.d.) sequence of keys from
a continuous distribution; let Tn denote the tree after n keys have been inserted. The candidate
nodes for the next key to be inserted are called the external nodes of Tn. There are n + 1 of
them, each of which has probability 1/(n+ 1) of receiving the next key.

On closer inspection this symmetry disappears: the external nodes can be distinguished by
the nature of their sibling, which may be internal or external. These were called, respectively,
arm nodes and foot nodes in [2]. From an algorithmic point of view, arm nodes are bad and foot
nodes are good: well-balanced trees have very few arm nodes. We recall the close connection
between the process of growing binary search trees by inserting keys and sorting these keys
using the quicksort algorithm [6]. The number of comparisons needed for the sorting is closely
related to the external path length of the corresponding tree. In quicksort, arm nodes mark an
inefficient splitting of the list. For this reason, we would like to know the proportion of arm
nodes, but also the proportion of the total path length that arm nodes contribute. Since it seems
obvious that arm nodes occur closer to the root than foot nodes (see [2] for a proof), we are
inclined to think that their total path length contribution will be (proportionally) smaller than
that of the foot nodes. However, as our main result shows, these distances to the root do not play
a role in the limit: the contribution of the arm nodes to the total path length is solely determined

Received 7 December 2001; revision received 16 January 2003.
∗ Postal address: Department of ITS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
∗∗ Email address: l.e.meester@its.tudelft.nl

363



364 F. M. DEKKINGAND L. E. MEESTER

by their proportion. It turns out that the same phenomenon occurs if we generalize to the case
where the external nodes are characterized by more elaborate local information than just the
status of their sibling node.

The techniquewe use to obtain these results is a bookkeeping of the different types of external
nodes as the tree grows. The way we do this is closely related to the urn process modelling
described byAldous et al. [1]. Since we are not only interested in numbers of external nodes but
also in the associated path lengths, our analysis is somewhat more involved. In particular, we
need more information on the spectrum of the ‘growth matrix’G describing the bookkeeping
than necessary in [1], and also more than in Smythe’s work [13] on the analysis of binary
search trees with extended Pólya urn models. For example, the eigenanalysis as applied to
the generator matrix in Section 1 of [13] does not suffice for our growth matrix G: from the
positive regularity of G+mI and the fact that the maximal eigenvalue of G is 1, it follows that
(the real parts of) the other eigenvalues are less than 1, whereas our proof requires that they be
less than 1

2 .
Other connections to previous work are found in papers on so-called ‘fringe heuristics’,

modifications of the quicksort algorithm aiming at a more balanced tree. An example is the
median-of-three rule and, more generally, the median-of-(2k+1). In [10] and [8], matrices are
encountered which are reminiscent of the growth matrix G, as well as recurrences of the type
found in this paper and their solution. Poblete and Munro [10] use an eigenanalysis to solve a
generating function recurrence similar to (14) below.

2. External node patterns

Let Ck denote the class of (fixed) trees with k nodes for k ≥ 1, and let C0 = {∅}, where ∅

denotes the empty tree, equivalently seen as one external node. Let m be an arbitrary positive
integer. Let Am = ⋃m

k=0 Ck , the class of all trees of at most m internal nodes. For example,
the trees in A2 are depicted in Figure 1. Here, the dots represent (internal) nodes and the boxes
external nodes; a0 is the empty tree. In most of the sequel, m is fixed, so where possible we
omit explicit reference to m, and write A for Am.

As usual, we denote the distribution of Tk by

P(Tk = a) = λ(a) for a ∈ Ck.

In this paper, the vector λ = (λ(a))a∈A plays an important role. This is not a probability vector,
but a simple computation (see also Section 6) shows that π = (π(a))a∈A defined by

π(a) = 2

(m+ 1)(m+ 2)
naλ(a) for a ∈ A

satisfies
∑

a∈A π(a) = 1. Here, na denotes the number of external nodes of a, that is, na = k+1
if a ∈ Ck . We call π the aggregate distribution of the trees in A.

Let Rn be the external path length of Tn, i.e. the sum of the distances of the external nodes
to the root of Tn. It has been known for some time (see [11] and [12]) that Rn satisfies

Rn − ERn
n+ 1

→ Z almost surely as n → ∞, (1)

whereZ has the so-called ‘quicksort distribution’. Our goal is to establish amultivariate version
of this result.
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a0 a1 a2 a3

Figure 1: The trees of the class A2.

Figure 2: Partitioning external nodes using the trees in A2.

Partition the external nodes of the binary search tree according to the largest tree in A that
each node belongs to. Form = 2, this is done for an example in Figure 2, marking the external
nodes of a3 with a +, those of a2 with a ×, those of a1 with a ·, and leaving the remaining
external nodes, instances of a0, unmarked. For example, the bottom right node in Figure 2
belongs to a subtree of type a0 and to a subtree of type a1, but the (unique) largest subtree
of A it belongs to is a subtree of type a3. Thus, the external path length, too, is divided into
parts, each part associated with a tree in A. In the example, total path lengths of 16, 20, 8, and
40 are associated with a0, a1, a2, and a3 respectively. Let Xan be the path length to external
nodes of subtrees of type a. Note that the overall external path length is

∑
a∈AX

a
n = Rn. Let

Xn = (Xan)a∈A, a row vector, and define

Zn = 1

n+ 1
(Xn − EXn).

Theorem 1. Let m be a positive integer and let π be the aggregate distribution of the trees in
Am. Then

Zn → πZ almost surely as n → ∞,

where Z is a random variable with the quicksort distribution.
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While proving this theorem, we derive some results of independent interest. For example,
we prove in Section 7 that the asymptotic formula of Flajolet et al. [5, Theorem 1], on means
of occurrences of subtrees, after multiplication by (n+1)/n, provides the exact value for these
means for n larger than the number of nodes in the subtree. We also provide an exact expression
for EXan (in (21) below), and it turns out that EXan ∼ π(a)2n ln n as n → ∞. Combining
this with the theorem above, we see that the aggregate distribution π plays a double role: Xn

grows like a multiple of π , but also (asymptotically) the variation around the mean EXn is in
the direction of π . The casem = 1 of the theorem was proved in [2], a paper that also contains
results on the distribution of the depths of the two types of trees in A1.

3. Proof of Theorem 1

Let w1 denote a column vector of ones, then Xnw1 = Rn, so Znw1 → Z almost surely as
n → ∞ by (1). We shall show that Znw → 0 almost surely for any w orthogonal to w1. Let
d = #A denote the cardinality of A.

Two lemmas form the heart of the proof. In Sections 4–8 we shall prove the first of these.

Lemma 1. There exist column vectors wi , i = 2, 3, . . . , d, which, along with w1, form a
linearly independent set such that, for i ≥ 2,

var(Znwi ) = O

(
ln2 n

n

)
as n → ∞.

By the first Borel–Cantelli lemma this implies that, for i ≥ 2,

Zn2wi → 0 almost surely as n → ∞.

Define, for i ≥ 2,
M(i)
n := sup

1≤j≤2n
|(Zn2+j − Zn2)wi |.

In Section 9 we shall prove the second lemma.

Lemma 2. For i ≥ 2,M(i)
n → 0 almost surely as n → ∞.

So, for i ≥ 2,

|Znwi | ≤ |Z(�√n�)2wi | +M
(i)

�√n� → 0 almost surely as n → ∞.

Combined with (1) this proves that

ZnW → (Z, 0, 0, . . . , 0, 0) almost surely as n → ∞,

where W is a d × d matrix whose ith column is wi . Theorem 1 now follows from the
nonsingularity of W and by checking that the first row of W−1 equals π .

This shows the structure of the proof. It will take several sections to prove Lemma 1.

4. Growing and splitting trees

In our analysis we need to account for the number of subtrees of Tn for each tree in A, as
well as keep track of their average depth. For a ∈ A, therefore, define Na

n,k to be the number
of subtrees of Tn that are of type a and have their root at depth k; let Na

n = ∑n
k=0N

a
n,k and
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define T an = ∑n
k=0 kN

a
n,k , the path length from the root of Tn to (the roots of) these subtrees.

Recall that na denotes the number of external nodes of a; hence∑
a∈A

Na
nna = n+ 1. (2)

For an arbitrary tree t , we denote its external path length by xt . We shall analyseNn = (Na
n )a∈A

and Tn = (T an )a∈A and draw conclusions about Xn via

Xan = T an na +Na
n xa.

As growth from Tn to Tn+1 can be viewed as occurring through an insertion of a new node in
one of the external nodes of Tn, one subtree will grow by one node and possibly, if the size
exceeds m, it will split at its root into two smaller trees.

For an arbitrary tree t , let t0 denote its left subtree, t1 the right subtree, and identify t and
(t0, t1). Note that we obtain all trees of a fixed size recursively in this way:

Ck =
k−1⋃
j=0

Cj × Ck−1−j , (3)

starting fromC0, which contains only the empty tree. It is well known (see e.g. [4, Lemma 2.1])
that the vector λ satisfies

λ(a0)λ(a1) = (na − 1)λ(a). (4)

Let t+ be the set of trees that can arise from t through one insertion; note that #t+ = nt . It
appears to be somewhat less well known that∑

a:b∈a+
λ(a) = (nb − 1)λ(b). (5)

This holds since the trees a in Ck either cannot produce b in Ck+1 or there is a unique external
node which produces b, and this has probability n−1

a of occurring.
Let ea = (ea(b))b∈A denote the unit row vector corresponding to coordinate a: ea(b) =

1[b=a] for b ∈ A. For a uniformly random insertion in a ∈ A, we define an ‘offspring’ vector
Ya : for a ∈ Am−1,

Ya = et with probability
1

na
for t ∈ a+;

and, as the largest trees split, for a ∈ Cm,

Ya = et0 + et1 with probability
1

na
for t = (t0, t1) ∈ a+.

Define Kn by Nn+1 = Nn + Kn and set Fn = σ(T0, . . . ,Tn). Then

[Kn | Fn] D= Ya − ea with probability
naN

a
n

n+ 1
,

where
D= denotes equality in distribution and

E(Kn | Fn) =
∑
a∈A

1

n+ 1
(E Ya − ea)naN

a
n = 1

n+ 1
NnG, (6)

where G = (Gab)a,b∈A has rows ga defined by

ga = na(E Ya − ea). (7)
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This growth model can also be viewed as an urn process belonging to the class described
in [1]: each subtree type corresponds to a ball type, and in the selection process each type has
a weight equal to its number of external nodes. The random vectors Ya, a ∈ A, correspond
to (Z(i)j , 1 ≤ j ≤ m), 1 ≤ i ≤ m in [1], and the matrix G plays the role of R. Theorem 2
in [1] implies that Nn/n → x/b almost surely as n → ∞, where x is a left eigenvector of G

corresponding to eigenvalue 1 and b is a normalizing constant.
We shall refer to G as the ‘growth matrix’ and explicitly determine this main eigenvector in

Section 6. However, we also need a more complete eigenanalysis of G, as this matrix plays a
pivotal role in the recursive equations that are to be solved.

5. Eigenanalysis of the growth matrix

In this section, we use the convenient, but somewhat abusive notation

ea+ =
∑
t∈a+

et .

Evaluating (7) leads to the following expression for the rows of G:

ga =
{

ea+ − naea if a ∈ Am−1,

na1ea0 + na0ea1 + ea+
0

+ ea+
1

− naea if a = (a0, a1) ∈ Cm.
(8)

We will determine the spectrum of G by finding appropriate left and right eigenvectors of G.
We start with the eigenvalue −m− 1.

Lemma 3. Let G be the growth matrix of A and let t = (t0, t1) ∈ Cm. Then

u = et0 + et1 − et

is a left eigenvector for the eigenvalue µ = −m− 1.

Proof. We have

uG = gt0 + gt1 − gt

= et+0
− nt0et0 + et+1

− nt1et1 − [nt1et0 + nt0et1 + et+0
+ et+1

− ntet ]
= −(nt0 + nt1)et0 − (nt0 + nt1)et1 + ntet

= −nt (et0 + et1 − et )

= (−m− 1)u.

Theorem 2. LetG be the growth matrix ofAm. ThenG hasm+1 real eigenvalues, spec(G) =
{1,−2,−3, . . . ,−m− 1}, with multiplicities equal to #C0, #C1, . . . , #Cm.

Proof. Let µ1 = 1 and µk = −k for k = 2, . . . , m+ 1. We shall show that the dimension
of the right eigenspace corresponding toµk is at least #Ck−1. Together with #C0 +#C1+· · ·+
#Cm = d this proves the theorem. As the proof is by induction, we write G(m) for the growth
matrix of Am.

For m = 1,

G(1) =
(−1 1

2 0

)
has right eigenvectors v1 = (1 2) and v2 = (−1 1), with eigenvalues µ1 = 1 and µ2 = −2.
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Suppose that the assertion of the theorem holds for G(m). We first note that, by Lemma 3,
there exists a collection of #Cm+1 left eigenvectors ofG(m+1), clearly independent, correspond-
ing to the eigenvalue µm+2 = −m − 2. Since left and right eigenspaces of a matrix have the
same dimension, the right eigenspace corresponding toµm+2 = −m−2 has dimension at least
#Cm+1. For the other eigenvalues, we use the right eigenvectors of G(m) to construct those
of G(m+1). We claim that, if vm is a right eigenvector of G(m), then vm+1 = (vm+1(a))a∈A

defined by

vm+1(a) =
{
vm(a) if a ∈ Am,

vm(a0)+ vm(a1) if a = (a0, a1) ∈ Cm+1,
(9)

is an eigenvector ofG(m+1) with the same eigenvalue. Since this extension operation obviously
preserves independence of the eigenvectors, this claim establishes the theorem.

Note that G(m)vm = µvm implies that∑
b∈a+

vm(b) = (µ+ na)vm(a) if a ∈ Am−1. (10)

We split the proof that G(m+1)vm+1 = µvm+1 into three cases.

Case 1: a ∈ Am−1. In this case, it follows directly from (10) that

g(m+1)
a vm+1 = ea+vm+1 − naeavm+1

=
∑
b∈a+

vm+1(b)− navm+1(a)

=
∑
b∈a+

vm(b)− navm(a)

= µvm(a) = µvm+1(a).

Case 2: a ∈ Cm. Then a0, a1 ∈ Am−1 and, by twice applying (9) with m− 1 instead of m,

vm(a) = vm−1(a0)+ vm−1(a1) = vm(a0)+ vm(a1). (11)

As in Case 1, we have

g(m+1)
a vm+1 =

∑
b∈a+

vm+1(b)− navm+1(a). (12)

Now
a+ = {(a0, b) : b ∈ a+

1 } ∪ {(b, a1) : b ∈ a+
0 } ⊂ Cm+1,

so ∑
b∈a+

vm+1(b) =
∑
b∈a+

[vm(b0)+ vm(b1)]

=
∑
b1∈a+

1

[vm(a0)+ vm(b1)] +
∑
b0∈a+

0

[vm(b0)+ vm(a1)]

= na1vm(a0)+ (µ+ na1)vm(a1)+ na0vm(a1)+ (µ+ na0)vm(a0)

= (µ+ na)vm(a0)+ (µ+ na)vm(a1)

= (µ+ na)vm(a).
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Here we used (10) with a0 and a1 instead of a, and (11) in the last step. Substituting this result
into (12), we obtain

g(m+1)
a vm+1 = (µ+ na)vm(a)− navm+1(a) = µvm+1(a).

Case 3: a ∈ Cm+1. This case is different from the first two because ga is different, but also
because it is now possible that a0 ∈ Cm. But note that, in fact, we always have

ea+
0
vm+1 = (µ+ na0)vm(a0),

either by (10) if a0 ∈ Am−1 or by the computation in Case 2 if a0 ∈ Cm. The same applies to
a1, and therefore

g(m+1)
a vm+1 = [na1ea0 + na0ea1 + ea+

0
+ ea+

1
− naea]vm+1

= na1vm(a0)+ na0vm(a1)+ (µ+ na0)vm(a0)+ (µ+ na1)vm(a1)− navm+1(a)

= (µ+ na)vm(a0)+ (µ+ na)vm(a1)− navm+1(a)

= (µ+ na)vm+1(a)− navm+1(a)

= µvm+1(a).

6. The eigenvalue µ = 1

In the analysis of Section 7, the eigenvalue µ = 1 is the dominant one, so, in order to obtain
explicit solutions, we now determine the corresponding eigenvector.

Theorem 3. Let λ = (λ(a))a∈Am be the aggregate distribution vector of the trees inAm. Then
λ is a left eigenvector of the growth matrix G with eigenvalue 1.

Proof. We decompose the eigenvalue equation as follows:∑
a∈Am

λ(a)Gab =
∑

a∈Am−1

λ(a)Gab +
∑
a∈Cm

λ(a)Gab

=: �(m−1) +�(m).

Here, �(m−1) is the easier to evaluate. First we consider the case b ∈ Am−1. To make the
following work for b = ∅, we define C−1 = ∅. From (8) and (5) we find that

�(m−1) =
∑

a∈Am−1

λ(a)Gab =
m−1∑
k=0

∑
a∈Ck

λ(a)[ea+(b)− naea(b)]

=
∑
a:b∈a+

λ(a)− nbλ(b)

= (nb − 1)λ(b)− nbλ(b)

= −λ(b).
In the case b ∈ Cm, necessarily ea(b) = 0 for all a ∈ Am−1, so then

�(m−1) =
∑

a∈Am−1

λ(a)Gab = (nb − 1)λ(b) = mλ(b).
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We now turn to the second sum �(m), starting again with the case b ∈ Cj for some j with
0 ≤ j ≤ m− 1. Then ea(b) = 0 for all a ∈ Cm, so using (3) and (5) we find that

�(m) =
∑
a∈Cm

λ(a)Gab

=
m−1∑
k=0

∑
a0∈Ck

∑
a1∈Cm−1−k

λ(a0)λ(a1)

m

[
na1ea0(b)+ na0ea1(b)+ ea+

0
(b)+ ea+

1
(b)

]

= 1

m

[ ∑
a1∈Cm−1−j

λ(b)λ(a1)na1 +
∑

a0∈Cm−1−j
λ(a0)λ(b)na0

+
∑

a0∈Cj−1

∑
a1∈Cm−j

λ(a0)λ(a1)ea+
0
(b)+

∑
a0∈Cm−j

∑
a1∈Cj−1

λ(a0)λ(a1)ea+
1
(b)

]

= 1

m
[2λ(b)(m− j)+ 2jλ(b)]

= 2λ(b),

where, in the last step but one, we used the fact that
∑

a∈Ck
λ(a) = 1 four times and the fact

that
∑

a:b∈a+ λ(a) = jλ(b) twice.
Finally, we consider �(m) in the case b ∈ Cm. Now ea(b) = 1 for some a; thus, relative to

the previous case, this adds a term

−nbλ(b) = −(m+ 1)λ(b)

to
∑

a∈Cm
λ(a)Gab, so here

�(m) = 2λ(b)− (m+ 1)λ(b) = (−m+ 1)λ(b).

In conclusion,

∑
a∈Am

λ(a)Gab = �(m−1) +�(m) =
{

−λ(b)+ 2λ(b) = λ(b) if b ∈ Am−1,

mλ(b)+ (−m+ 1)λ(b) = λ(b) if b ∈ Cm,

and we have obtained that λG = λ.

A right eigenvector is more easily found: Gv = v holds for the column vector v defined by
v(b) = nb. This can be verified directly from (8), but it is quicker to apply induction as in the
proof of Theorem 2: using na0 + na1 = na in (9) immediately shows that v is an eigenvector
with eigenvalue 1.

From now on, we denote this eigenvector by v1. We look for the left eigenvector u1 such
that u1v1 = 1. Note that

λv1 =
∑
a∈Am

λ(a)na =
m∑
k=0

(k + 1)
∑
a∈Ck

λ(a) =
m∑
k=0

(k + 1)

= (m+ 1)(m+ 2)

2
.
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We therefore define u1 by

u1 = 2

(m+ 1)(m+ 2)
λ.

By Theorem 2, we can add eigenvectors u2, . . . ,ud to u1 and obtain a basis. Let U be the
matrix with these vectors as rows and let V = U−1. The columns of V form a basis of right
eigenvectors. Note that the first column equals v1 (since u1v1 = 1 and the eigenspace ofµ = 1
is one dimensional).

7. Means and variances of subtree occurrences

These means and variances are needed because they appear in the recursive equations for
means and variances of the path lengths.

From (6), we have

E(Nn+1 | Fn) = Nn

(
I + 1

n+ 1
G

)
, (13)

where I is the identity matrix, and so

ENn+1 = ENn

(
I + 1

n+ 1
G

)
. (14)

To solve for ENn, change basis to the one given by the rows of U . The ith coordinate of
ENn with respect to this basis is ENnvi . Define ϕn = ENnvi , then

ϕn+1 =
(
1 + µ

n+ 1

)
ϕn,

where µ is the eigenvalue corresponding to vi . The solution to this recursion is, for µ = 1,

ϕn = (n+ 1)ϕ0 for n ≥ 0;
and for µ = −k, where k is a positive integer,

ϕn =



(n− k) · · · (1 − k)

n! ϕ0 for 0 ≤ n < k,

0 for n ≥ k.

As general solution, taking initial conditions into account, we find that

ENn = (n+ 1)u1 for n ≥ m+ 1. (15)

This gives an exact expression for the first moments of occurrences of subtrees (cf. Theorem 1
in [5], where an asymptotic expression is given): for a ∈ Cm and n ≥ m+ 1,

ENa
n = 2

(m+ 1)(m+ 2)
λ(a)(n+ 1). (16)

Since, by conditioning on Fn and using (6),

cov(Nn,Kn) = EE((Nn − ENn)(Kn − EKn) | Fn)

= E((Nn − ENn)E((Kn − EKn) | Fn))

= 1

n+ 1
var(Nn)G
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and
var(Nn+1) = var(Nn)+ cov(Nn,Kn)+ cov(Kn,Nn)+ var(Kn),

we find, for σn = var(Nnv),

σn+1 =
(
1 + 2µ

n+ 1

)
σn + var(Knv).

For µ = 1 we have Nnv1 = n+ 1 by (2), and var(Nnv1) = 0 for all n. Since the components
of Kn are bounded by 2, the variance var(Knv) is bounded as well (in fact, it is constant for
n ≥ m+ 1). Hence, as the other eigenvalues satisfy µ < 1

2 , for any other eigenvector v,

var(Nnv) = O(n). (17)

See Theorem 1 of [5] for an asymptotic expression for var(Na
n ).

8. Means and variances of subtree path lengths

We follow a scheme similar to that in the previous section. Set Tn+1 = Tn + Wn. Then, for
a ∈ A,

[Wn | Fn] D= k(Ya − ea)+ 1[a∈Cm]Ya with probability
naN

a
n,k

n+ 1
,

where the second term is for the case a ∈ Cm: the new subtrees have their roots one level
deeper in the tree than their ‘parent’. So

E(Wn | Fn) = 1

n+ 1

∑
a∈A

na

n∑
k=1

{k(E Ya − ea)+ 1[a∈Cm] E Ya}Na
n,k

= 1

n+ 1

∑
a∈A

na{T an (E Ya − ea)+Na
n 1[a∈Cm] E Ya}

= 1

n+ 1
(TnG + NnB), (18)

where B = (Bab)a,b∈A, with rows

na1[a∈Cm] E Ya =
{
0 if a ∈ Am−1,

na1ea0 + na0ea1 + ea+
0

+ ea+
1

if a ∈ Cm.

Hence,

E(Tn+1 | Fn) = Tn

(
I + 1

n+ 1
G

)
+ Nn

1

n+ 1
B

and

E Tn+1 = E Tn

(
I + 1

n+ 1
G

)
+ ENn

1

n+ 1
B. (19)

Consider the second term on the right-hand side. For n ≤ m− 1, it is zero: Na
n = 0 if a ∈ Cm

and Bab = 0 if a ∈ Am−1. For n = m,

ENa
n =

{
0 if a ∈ Am−1,

λ(a) if a ∈ Cm,
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and therefore, for b ∈ Am,

(ENnB)b =
∑
a∈Cm

λ(a)Bab

=
∑
a∈Cm

λ(a)(Gab + naea(b))

= �(m) + (m+ 1)λ(b)1[b∈Cm]
= 2λ(b).

For n ≥ m + 1, we find that ENnB = (n + 1)u1B = 2(n + 1)u1 by a similar derivation.
Putting these results together,

ENn

1

n+ 1
B =



0 if n ≤ m− 1,

(m+ 2)u1 if n = m,

2u1 if n ≥ m+ 1.

(20)

Therefore, for a right eigenvector v ofG corresponding to eigenvalue µ �= 1, we find from (19)
that

E Tn+1v = E Tnv

(
1 + µ

n+ 1

)
,

since u1v = 0. As before, for these v we find that E Tnv = 0 for n ≥ m + 1. For µ = 1, an
explicit solution is found, using (20) and noting that u1v1 = 1. Hence,

E Tn = (2Hn+1 − 2Hm+2 + 1)(n+ 1)u1 for n ≥ m+ 1,

where Hk = ∑k
i=1 1/i. Combining this with (15), the total expected path length to external

nodes of subtrees of type a is

EXan =
(
2Hn+1 − 2Hm+2 + 1 + xa

na

)
(n+ 1)π(a) for n ≥ m+ 1. (21)

Turning to variances again, via (18) we find that

cov(Tn,Wn) = 1

n+ 1
[var(Tn)G + cov(Tn,Nn)B]

and, for τn = var(Tnv),

τn+1 =
(
1 + 2µ

n+ 1

)
τn + 2

n+ 1
cov(Tnv,NnBv)+ var(Wnv).

By the Cauchy–Schwarz inequality, and since the entries in var(Nn) are of order n, the
covariance term is bounded by C1

√
nτn for some positive constant C1.

As the change in the total number of subtrees of a certain type is less than 2, and the depth of
roots of subtrees is less than the insertion depth Un of the new node, we have |Wa

n | ≤ 2Un for
all n and a ∈ A. Since EUn ∼ 2 ln n and var(Un) ∼ 2 ln n (see [7]), var(Wnv) ≤ C2(ln n)2

for some positive C2. Hence, for every n,

τn+1 ≤ τn

(
1 + 2µ

n+ 1

)
+ 2

n+ 1
C1

√
nτn + C2 ln

2 n.
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For µ < 1
2 , we shall prove that this inequality implies that τn = O(n ln2 n) by setting τn =

ρn(n+ 1) ln2 n and showing that ρn is bounded. Set α = 1 − 2µ and use

√
nτn ≤ (n+ 1)(1 + ρn) ln n

to obtain that

ρn+1 ≤ ρn
(n+ 1) ln2 n

(n+ 2) ln2(n+ 1)

(
1 − α

n+ 2

)

+ 2C1 ln n

(n+ 2) ln2(n+ 1)
(1 + ρn)+ C2 ln2 n

(n+ 2) ln2(n+ 1)

≤ ρn

(
1 − α

n+ 2
+ 2C1

(n+ 2) ln(n+ 1)

)
+ 2C1 + C2 ln n

(n+ 2) ln(n+ 1)
.

We can find an N0 such that, for n ≥ N0, the last inequality may be replaced by

ρn+1 ≤ ρn

(
1 − α/2

n+ 2

)
+ 2C2

n+ 2
.

Now, setK = max(ρN0 , 4C2/α). The inequality implies that ρn ≤ K for n ≥ N0, and we may
conclude that

var(Tnv) = O(n ln2 n). (22)

Collecting results, denoting by D and F diagonal matrices with diagonal entries Daa = na
and Faa = xa , and letting w = D−1v, where v is a right eigenvector of G not corresponding
to µ = 1, we find that

var(Xnw) = var((TnD + NnF )w)

= var(TnDw)+ 2 cov(TnDw,NnFw)+ var(NnFw).

By (22), the first term is O(n ln2 n); by the Cauchy–Schwarz inequality, (22), and (17), the
second term is O(n ln n); and the third is O(n), by (17). Therefore, var(Znw) = O(ln2 n/n),
and as this is the case no matter the choice of v, provided that µ �= 1, this proves the assertion
of Lemma 1. (Note that w1 = D−1v1 is the vector of ones.)

9. Proof of Lemma 2

From the definition,

M(i)
n ≤ sup

a∈A

(
sup

1≤j≤2n
|Za
n2+j − Za

n2
|
)
sup
a∈A

|wi(a)|

and

sup
1≤j≤2n

|Za
n2+j − Za

n2
| ≤

n2+2n∑
k=n2+1

|Zak − Zak−1|

≤
n2+2n∑
k=n2+1

(∣∣∣∣ Xakk + 1
− Xak−1

k

∣∣∣∣ +
∣∣∣∣ EXakk + 1

− EXak−1

k

∣∣∣∣
)
.
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These terms can be bounded by considering the largest change in the number of subtrees (2),
using the upper bound for the number of external nodes and the maximum path length Dk , as
follows: ∣∣∣∣ Xakk + 1

− Xak−1

k

∣∣∣∣ ≤ |Xak −Xak−1|
k + 1

+ |Xak−1|
k(k + 1)

≤ 2(m+ 1)Dk
k + 1

+ Dk−1

k + 1

≤ 2(m+ 2)
Dk

k + 1
.

The bound for the second term in the sum follows immediately from the first, by pulling the
expectation through the absolute value:∣∣∣∣ EXakk + 1

− EXak−1

k

∣∣∣∣ ≤ 2(m+ 2)
EDk
k + 1

.

Therefore,

sup
1≤j≤2n

|Za
n2+j − Za

n2
| ≤ 4(m+ 2)

Dn2+2n + EDn2+2n

n
→ 0

almost surely as n → ∞, since Dn/ ln n → γ almost surely and in L1 as n → ∞ for some
constant γ (see [9] and [3]).
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