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Abstract

Security robot SAM can patrol indoor environments, determine whether everything is as it
should be and report disturbances to the authorities. One of the purposes of SAM is to detect
humans and ask for their identification. Currently this human detection is done through
movement detection. This thesis aims to combine visual data and distance measurements
from a Laser Range Finder (LRF) to recognise the presence of humans. The data from
the LRF is used to find regions of interest in order to reduce the load on the visual data
analysis. Deep learning convolutional neural networks have shown incredible results on visual
recognition tasks in recent years and this framework is used to recognise humans in visual
data. A laser-camera calibration is done to be able to use the LRF data for region proposals.
This calibration is done with the aid of checker board patterns, in order to translate the
laser-based distance measurements to pixel coordinates in the visual data. Experiments for
the region proposals are done with clustering the LRF data (passive detection) and deep
learning (active detection). Convolutional Neural Network (CNN) experiments are done with
different solver types (AdaGrad/AdaDelta), data types (RGB/HSV/Grayscale) and network
shapes (ConvPool/ConvConv) and serve to show the feasibility of deep learning for the human
detection task. These experiments are extended by an extra set of experiments with three
datasets from a new location to show the strength of the learned network as well as the
feasibility of using new data to finetune a pre-learned network to a new location.

Master of Science Thesis Yannick Kathmann



Yannick Kathmann Master of Science Thesis



Table of Contents

Preface xi
Introduction XV
1 LRF-Based Detection 1
1-1 Passive LRF Detection . . . . . . . . . ... 1
1-1-1 Point-Distance Based Segmentation (PDBS) . . .. ... ... ... .. 1
1-1-2 Kalman-Filter Based Segmentation (KFBS) . . . .. ... ... ... .. 2
1-1-3  Segmentation Results . . . . . . ... ... oo 3

1-2  Active LRF Detection . . . . . . . . ... 4
1-3 Concluding Remarks . . . . . . . . ... )
2 Convolutional Neural Networks 7
2-1 Neural Networks (NN) . . . . . . .. . 7
2-1-1 Activation Functions . . . . . . . ... 7

2-2  Convolutional Neural Networks (CNN) . . . . . .. .. ... ... ... ..... 8
2-2-1 Convolutional Filtering . . . . . . . . ... .. ... 9
2-2-2  Spatial Pooling . . . . . .. 10
2-2-3  Fully Connected Layers . . . . . . . . .. ... 10

2-3 Loss Functions . . . . . ... 10
2-3-1 Hinge Loss with a Linear SVM . . . . . . ... .. ... L. 10
2-3-2  Cross-Entropy Loss with Softmax . . . . . . ... ... ... ... .... 11

2-4  Optimization Methods . . . . . . . . . . .. .. 11
2-4-1 Gradient-Based Optimization . . . . . . . ... ... ... ... ..... 11
2-4-2  Momentum-Based Optimization . . . . . .. ... .. ... ... .... 12
2-4-3  Adaptive Methods . . . . . . ... 12

2-5 Regularization . . . . . .. 13

Master of Science Thesis Yannick Kathmann



iv Table of Contents
2-5-1 Dropout . . . . . . . 13

2-5-2  Artificial Data Expansion . . . . . .. ... 14

2-5-3 Early Stopping . . . . . . . . 14

2-5-4  Lo-Normalization . . . . . . . . . . . ... 14

2-6 Region Proposals . . . . . . ... 14
2-7 State-of-the-Art . . . . . . . .o 14
2-7-1 AlexNet (2012) . . . . . . . . 15

2-7-2  GoogleNet (2014) . . . . . . . . . 15

2-7-3 ResNet (2015) . . . . . . . . . 16

2-8 Concluding Remarks . . . . . . . . .. 17

3 Experimental Setup 19
3-1 Sensors . . . ... 19
3-1-1 LRF . o 20

3-1-2 Camera . . . ... 20

3-2 Sensor Calibration . . . . . . ... 20
3-2-1 Extrinsic Parameters . . . . . . ..o 20

3-2-2 Intrinsic Parameters . . . . . . . ... Lo 21

3-2-3 LRF Calibration . . . . . . . . ... 21

3-3 Synchronisation . . . . .. .. 23
3-4 Datasets . . . . . . .. 24

4 LRF Experiments 25
4-1 PDBS Clustering Experiments . . . . . . . . .. . ... 25
4-2 KFBS Clustering Experiments . . . . . . . . . . . ... ... L. 27
4-3 Region Proposals . . . . . . . . 30
4-4  Deep Learning LRF Experiments . . . . . . . . . ... ... 30

5 Visual Data Experiments 33
5-1 Experiment Details . . . . . . . . .. 33
5-2 KathNetl Experiments . . . . . . . . . . .. ... 34
5-2-1 RGB . . . . 34

5-2-2 HSV . . . 34

5-2-3 Grayscale . . . . . .. 35

5-3 KathNet2 Experiments . . . . . . . . . ... ... 36
5-3-1 RGB . . . . 36

5-3-2 HSV . . . 37

5-3-3 Grayscale . . . ... 38

5-4 KathNet3 Experiments . . . . . . . . . . 38
5-4-1 RGB . . . . . 39

5-4-2 HSV . . . 39

Yannick Kathmann Master of Science Thesis



Table of Contents v
5-4-3 Grayscale . . . .. .. 40

5-5 AdaGrad vs. AdaDelta . . . . . . ... 40
5-6 Finetuning Experiments . . . . . . .. ... 41
5-6-1 KathNet3RGB Benchmark Performance . . . . . . . .. .. ... ... .. 41

5-6-2 Finetuning on the 3ME Dataset . . . . . . ... .. .. ... ...... 42

5-6-3 Further Finetuning on the IOD Dataset . . . . . .. .. .. ... .... 42

5-7 Sliding Window Experiments . . . . . . . . . . . ... ... ... ... ... 43

6 Discussion and Conclusions 47
6-1 Discussion . . . . . . 47
6-1-1 Assumptions . . . . . . . . ... 47

6-1-2 LRF Experiments . . . . . . . . . .. .. ... 48

6-1-3 Visual Data Experiments . . . . . . . ... ... ... 49

6-2 Conclusions . . . . . . . 50
6-3 Recommendations . . . . . . . ... 51
Bibliography 53
Glossary 55
List of Acronyms . . . . . . . . . L 55

Master of Science Thesis

Yannick Kathmann



Vi Table of Contents

Yannick Kathmann Master of Science Thesis



1-1
1-2
1-3

2-1
2-2
2-3

2-5
2-6
2-7
2-8
2-9
2-10

3-1
32
33
3-4
3.5

4-1
4-2
4-3
4-4

Master of Science Thesis

List of Figures

Results of PDBS [1] . . . . . . . . .
An example laser scan from an office [2] . . . . . .. ... ... ... ...

An example of a feature vector of one segment [2] . . . . . . . .. ... ... ..

A neural network [3] . . . . ...
The sigmoid and the RELU activation functions . . . . . . . .. ... ... ...
The architecture of LeNet-5 [4] . . . . . . . .. ... ... ...
Applying a convolutional kernel [5] . . . . . . .. ... ...
Comparison between the momentum-based algorithms [6] . . . . . . . . ... ..
Dropout [7] . . . . . .
The AlexNet architecture [8] . . . . . . .. .. ... ... L
The inception module [9] . . . . . . .. ...
GoogleNet architecture [9] . . . . . . . . ...
The residual block [10] . . . . . . . ... . .

Robulab, the test robot at Robot Security Systems (RSS) . . . . . ... ... ..

Flowchart of the camera calibration . . . . . . . . . ... ... ... ... ....
The calibration setup with one laser scan point projected on the checkerboard.

First laser projection with errors. . . . . . . . . . . ... ... ...

A projected laserscan after data synchronisation and undistortion. . . . . . . ..

Results of PDBS with distance threshold 10 [mm] . . . . . .. ... .. ... ..
Results of PDBS with distance threshold 50 [mm] . . . . . . ... ... ... ..
Results of PDBS with distance threshold 100 [mm] . . . . . ... ... ... ..

Results of KFBS when closetowall . . . . . . . . . . ... . ... ... . ...

o

O © oo

12
13
15
15
16
16

Yannick Kathmann



viii

List of Figures

45
46
47
4.8
4-9

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13

5-14
5-15
5-16
5-17
5-18
5-19

Yannick Kathmann

Results of KFBS when walking . . . . . . . . ... ... ... ... ... ...

Results of KFBS when obscured. . . . . . . .. .. .. ... ... ...
Region proposals generated by laser segmentation . . . . . . . .. ... ... ..

LaserNet design . . . . . . . . . .

Learning curves of LaserNet on data from the 3ME and IOD datasets, tested on
IOU. . .

The schematic visualization of the KathNetl design . . . . . . . . ... ... ..
Learning curves of the RGB experiments with the KathNetl network . . . . . . .
Learning curves of the HSV experiments with the KathNetl network . . . . . . .
Learning curves of the grayscale experiments with the KathNetl network

The schematic visualization of the KathNet2 design . . . . . . . . ... ... ..
Learning curves of the RGB experiments with the KathNet2 network . . . . . . .
Learning curves of the HSV experiments with the KathNet2 network . . . . . . .
Learning curves of the grayscale experiments with the KathNet2 network

The schematic visualization of the KathNet3 design . . . . . . . .. .. ... ..
Learning curves of the RGB experiments with the KathNet3 network . . . . . . .
Learning curves of the HSV experiments with the KathNet3 network . . . . . . .
Learning curves of the grayscale experiments with the KathNet3 network

Learning curves of the RGB experiments with the KathNetl network and AdaDelta
SOIVEr . . .

Learning curves of the finetuning experiments on the 3ME dataset. . . . . . . . .
Learning curves of the finetuning experiments on the IOD dataset. . . . . . . . .
Human detection results using a sliding window HOG-SVM classifier. . . . . . .
Human detection results using the multi-sensor architecture. . . . . . . . . . ..
More results using the sliding window HOG-SVM classifier. . . . . . .. ... ..

More results using the multi-sensor architecture. . . . . . . . . . . ... ... ..

29

29
30

31

31

34
35
35
36
36
37
37
38
38
39
39
40

41
42

43
44
44
45
45

Master of Science Thesis



List of Tables

3-1 Overview datasets . . . . . . . . . . ... 24
5-1 Benchmark performance KathNet3RGB_iter_1000 . . . . . . .. ... ... .. 41
5-2  Performance after finetuning on 3ME dataset for 120 iterations . . . . . . . . .. 42
5-3 Performance after finetuning on IOD dataset for 180 iterations . . . . . . . . .. 43

Master of Science Thesis Yannick Kathmann



X List of Tables

Yannick Kathmann Master of Science Thesis



Preface
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“A robot may not injure a human being or, through inaction, allow a human being
to come to harm.”

— Isaac Asimov






Introduction

Robots are the future, they are being used in more applications each year. Service robots are
an interesting topic of research and can come in many shapes and sizes. One prerequisite for
a service robot is to be able to understand its environment and plan its actions accordingly.
Many researchers are engaged in this topic of artificial intelligence and in recent years there
have been interesting developments in the field of deep learning.

At Robot Security Systems (RSS), robot SAM is developed, who can map and survey indoor
environments. For this purpose it is necessary for the robot to act intelligently based on the
input that it gets, which means it needs to understand what is happening in the world around
it. To do so, it has four RGB cameras for a 360° view and a 2D Laser Range Finder (LRF). A
key function of this robot is to be able to detect the presence of humans. Currently, the robot
at RSS does so by concluding that any movement detected between two captured images
must be a human, unless its only in the bottom half of the image, which would indicate it is
a smaller animal such as a rodent.

A subset of deep learning, Convolutional Neural Network (CNN), is particularly interesting
for human detection using visual data. The CNN works much like the visual cortex of a human
by first filtering the images and extracting hierarchical features which can then be used to
classify the contents of the image. What makes a CNN strong, is the fact that it learns its own
features instead of using handcrafted features. Although a sufficiently deep CNN can almost
always fit the training data perfectly, this usually does not generalize well to data it has not
seen before. In other words, a CNN is very sensitive to overfitting. Extensive research has
shown that there are many ways to regularize the network to reduce this overfitting problem.

Another problem is that human detection from only visual data can be slow and if the
framework is to be used on a real robot, it needs to be able to operate in real-time. The main
reason of the slow speed is the huge amount of images that need to be analysed if a sliding
window classifier is used. This can be reduced significantly by using data from the LRF to
generate regions of interest in the visual data. On top of that, the distance measurements
from the LRF can also give an estimation of the crop size, should the measurements represent
a human.

This research aims to detect humans based on two data streams from both the RGB camera
and the LRF. The distance measurements from the LRF are used to generate region proposals
in the visual data. These frames are then analysed by the CNN to assess the probability of
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XVi Introduction

containing a human. In this thesis, the robot is assumed to be driving on a flat surface in an
indoor environment, which simplifies the calibration between the LRF and the camera.

The thesis starts with some background theory on LRF-based detection in Chapter 1 and
Convolutional Neural Networks in Chapter 2. Chapter 3 discusses the calibration and syn-
chronisation of the sensors. Chapter 4 discusses the experiments with the LRF data and
Chapter 5 shows the results of deep learning experiments with visual data. The thesis con-
cludes with a discussion in Chapter 6.
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Chapter 1

LRF-Based Detection

The Laser Range Finder (LRF) used for human detection performs 2D distance measurements
in a 270° Field Of View (FOV). This chapter further elaborates on the possible ways the
data from the LRF can be used for the purpose of human detection. The ultimate goal is to
combine the distance measurements from the LRF with visual data from an RGB camera.
The LRF data can be used in two different ways. The first is purely passive, as hypothesis
generator for the visual data. The second possible use is to use the LRF data to actively search
for patterns that would indicate the presence of humans in the observed space. Section 1-1
elaborates on the passive detection and how this can be implemented. In Section 1-2 the
active detection methods are discussed. The chapter concludes with some remarks in Section
1-3.

1-1 Passive LRF Detection

To be able to detect objects from LRF data, the raw point data needs to be processed. Points
that are believed to belong to the same object need to be clustered together and these clusters
or segments can then be used to generate a Region of Interest (ROI) for the camera or perform
LRF detection. Premebida [1] wrote a technical report on different segmentation methods
and concluded there are two categories: Point-Distance Based Segmentation (PDBS) and
Kalman-Filter Based Segmentation (KFBS).

1-1-1 Point-Distance Based Segmentation (PDBS)

The segmentation methods in this category are based on a simple criterion. If the Euclidean
distance between two subsequent points from the laser scan is larger than a certain threshold,
a new segment is started. If not, the point is added to the current segment. This distance
threshold needs to be chosen carefully as a small threshold can lead to a large amount of
small segments, ultimately giving too many region proposals. On the other hand, a too high
threshold might not be able to distinguish human legs when standing against a wall and just
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2 LRF-Based Detection

take the legs within the same segment as the wall. Somewhere in between lies an optimum.
This can be found empirically as is also discussed in Chapter 4.

1-1-2 Kalman-Filter Based Segmentation (KFBS)

The KFBS by Borges [11] assumes the laser scan to be a dynamic process that can be estimated
by a state-space equation as follows:

Xp = Axn—l +wp

(1-1)

zn = Cxp, + vy,

Where the state variable x represents the range measurements (r,,) and its derivatives with
respect to the angle (dr, /d¢), z represents the measurement variable and w and v represent
zero-mean Gaussian white noise with covariance Q,, and R,, respectively. The matrices A
and C are defined as follows:

1 A¢

0 1

c=(1 0

The standard linear discrete Kalman-filter first predicts the current state based on the last
measured state:

b
I

Xnln—1 = Xn-1

. A T

Pn|n71 = AP, A" + Qn
v =7Tn — CXypn_1

Sp = C]-sn|n—ICT + Ry

(1-2)

And then updates the measurement:

K, =P, 1C'S*
)A(n = )A(nln_l + Knvn (1—3)
f)n = ]-Sn|nfl - Kan)n\nfl

The KFBS algorithm is described in Algorithm 1. The algorithm loops through all measured
range data and for each point it checks whether it fits the current segment in a stochastic
sense. If a threshold is reached, the current point is taken to be at the next segment and the
filter is reset.

Yannick Kathmann Master of Science Thesis



1-1 Passive LRF Detection 3

Data: N scanned points
Result: Extracted breakpoints
Initialize filter (zq, Pp).
for k = 1:N do
Calculate filter prediction Equations (1-2).
Test gate-equation (x2-test):
if v2/S,, > Dyq then
Extract breakpoint.
Reset filter (z = xg, P = P).
else
| Update observation using Equations (1-3).
end

end
Algorithm 1: KFBS

1-1-3 Segmentation Results

Premebida analyses the results of several segmentation methods at the end of his technical
report. A segmentation result of PDBS is shown in Figure 1-1 together with the indoor scene
in which it was acquired. KFBS results are not shown in his report, but he concluded that
they process the incoming data in a more on-line nature than PDBS, meaning that the points
are analysed sequentially as they come in.

Figure 1-1: Results of PDBS [1]

Master of Science Thesis Yannick Kathmann



4 LRF-Based Detection

1-2 Active LRF Detection

Where the previous section focussed on passive clustering of the data points, this section
discusses the possibility of using this data for actual detection. Significant progress in this
field was made by Arras [2] in 2007. As can be concluded from Figure 1-2, it is quite difficult
to intuitively distinguish humans from other objects in a 2D LRF scan. However, as is shown
by Arras, it turns out there are certain features from which humans can be detected in these
scans. After using PDBS for segmentation, a 14-dimensional feature vector is computed for
each segment, of which an example is shown in Figure 1-3. The LRF based features can then
be classified using classification algorithms such as Support Vector Machines (SVM).

a

55F [
number of points = &
standard deviation = 0.055436
mad from median = 0.19294
jump dist start = -3.12
jump dist end = -0.45
sl width = 0.56931
linearity = 0.079474
circularity = 0.025282
- radius = 0.26603
boundary length = 0.79191
boundary regularity = 0.061545
a5k mean curvature = 2.5883
mean angular diff = 0.38145
mean speed = -0.026042

1 15 2 25 3

Figure 1-3: An example of a feature vector of one segment [2]
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1-3 Concluding Remarks 5

1-3 Concluding Remarks

This chapter discussed the segmentation and feature extraction from the LRF sensor. Re-
sults from various papers show that LRF-based features can succesfully be applied to detect
humans. However feasible, human detection using a LRF has received less attention than
vision-based approaches. Laser scan data is more useful for mapping applications, but can in
the context of multi-sensor human detection be used to define regions of interest in the visual
data. This is particularly interesting for big data applications such as a Convolutional Neural
Network (CNN), which is discussed in Chapter 2. On top of that, the LRF also makes it easier
to determine the location of detections with respect to the robot. A major downside of using
a 2D LRF is the fact that detectable objects can easily be obscured. For instance, a human
that is supposed to be detected can stand behind a box. Depending on how the segments are
processed, the passive detection can still pass obscured objects as hypothesis to a vision-based
classifier. The active detection, however, will have a hard time finding leg patterns if these
legs are behind another object. Using the LRF as active detector will therefore probably only
work if it is used parallel to a vision-based classifier in combination with an evidence fusion
scheme. This type of framework is beyond the scope of this thesis.

Master of Science Thesis Yannick Kathmann
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Chapter 2

Convolutional Neural Networks

Chapter 1 discussed both active human detection using distance measurements from a Laser
Range Finder (LRF) and using the same data to generate object hypotheses that can then be
further analysed by a vision-based detector. This chapter explores the concept of Convolutional
Neural Network (CNN), which in recent years has shown incredible results on visual recog-
nition tasks. Its major strengths are multi-class detection and the fact that features and
classification are jointly learned. A weakness is that the method is prone to overfitting if
not carefully handled. This chapter elaborates on this principle by first explaining the use
of neural networks (Section 2-1) and then moving on to the extended idea of convolutional
neural networks (Section 2-2). This is followed by explanations on the training of the network
by exploring loss functions (Section 2-3) and optimization methods (Section 2-4). Regular-
ization techniques to deal with overfitting and sparse data are discussed in Section 2-5. The
advantages of region proposals are discussed in Section 2-6 and some state-of-the-art CNN
methods are shown in Section 2-7. The chapter concludes with some remarks in Section 2-8.

2-1 Neural Networks (NN)

A Neural Network (NN) consists of a network of artificial neurons that take as input a linear
combination of weighted inputs and then output something if a certain activation function
is triggered (‘fired’). These inputs can either come from an external source (input layer) or
from a preceding layer of neurons (hidden or output layer). A visual representation is shown
in Figure 2-1.

2-1-1 Activation Functions

The activation function determines whether a given input to the neuron is enough to make
it fire, i.e. give a value as output. Some activation functions have been used throughout the
years, but the most common ones are the sigmoid and the Rectified Non-Linear Activation
Unit (RELU). The latter has been shown by Alex Krizhevsky [8] to significantly decrease
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8 Convolutional Neural Networks

Figure 2-1: A neural network [3]

the training time and is now more commonly used than the sigmoid. A disadvantage of
the sigmoid function is its small gradient close to the edges, which can lead to a significant
slowdown of the already slow learning process. Both functions are shown in Figure 2-2.

Sigmoid : <_l_m__r:, RELIT : max(0, )
0.9 2
-
08r 18y
16
07T
141
0.6 12t
0.5 1 1r
0.4 08¢
06
0.3
0471
0.2r ozt
-
0.1 : * * ]
-2 -1 1] 1 2 -2 1 o 1 2

Figure 2-2: The sigmoid and the RELU activation functions

2-2  Convolutional Neural Networks (CNN)

This idea of a NN, that is based on the functionality of the human brain, can be extended
to the functionality of the visual cortex. Just like we do with our own eyes, the input images
are first filtered, before they are further processed in the brain (or the NN). By use of
convolutional filters a hierarchy of visual features is learned and the local pixel level features
are also scale and translation invariant. By learning several levels of features, the CNN is able
to capture the essence of objects and this turns out to generalize quite well towards different
representations of the same object. Until quite recently, the research on CNNs was minimal,
simply because there was not enough computing power to handle these networks (there are
often millions of parameters to train). Thanks to the ability to do parallel computing on GPUs
and the development of software dedicated to using the GPU for such computations, this big
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2-2 Convolutional Neural Networks (CNN) 9

data problem is not the issue it used to be. Of course there is still a limit to the amount
of data that can be processed, but thanks to these developments, the bar has been raised
significantly. An example of how a complete CNN looks is shown in Figure 2-3, which shows
what is believed to be the classical CNN, designed by Yann Lecun to recognise handwritten
digits.

C1: foah C3: 1 maps 16@10x10
. leature maps oS4 f, 1 Sx5
INPUT 6@26:28 maps 16@

32432 52:1 maps
B@14x14

|
Full cnnrllectinn | Gaussian connections

Coanvolutions Subsampling Corvolutions  Subsampling Full connection

Figure 2-3: The architecture of LeNet-5 [4]

2-2-1 Convolutional Filtering

The first step in a CNN is filtering the image with convolutional kernels. Applying different
kernels gives many different results. The resulting convolved images are called feature maps,
because they represent certain features contained within the image like edges, corners, etc.
Figure 2-4 shows an example of a 3x3 kernel being applied to an image. This kernel contains
the weights that are multiplied with the corresponding pixel intensity. The sum of the 9
multiplications is then the input for the feature map that needs to determine whether this
input is enough for the neuron to be activated. There are some things to keep in mind when
applying this filter, the first of which is called the stride. The stride determines the step size
in which the kernel is applied. A stride of 2 means that the kernel is moved 2 pixels at a
time and will therefore lead to less convolved features than a stride of 1. Another thing is
the choice between wide and narrow convolution. Wide convolution also applies the filter to
the pixels at the edges, where part of the filter falls outside of the image. These parts are
then taken to be zero (zero-padding). Narrow convolution only applies the filter to the sets
of pixels that fall within the image.

1(1{1(0|0
011|110 4134
001,11, 2(4|3
0{0|11,0, 2(3|4
0 1 1x1 Oxﬂ Oxl
Image Convolved
Feature

Figure 2-4: Applying a convolutional kernel [5]
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10 Convolutional Neural Networks

2-2-2 Spatial Pooling

As can also be seen in Figure 2-3, the convolutional layer is followed by a subsampling, also
known as spatial pooling. The intention of this pooling is to reduce the amount of data,
whilst simultaneously keeping the important information. There are several ways to do this,
the most common ones being average and max pooling. Similar to the convolutional kernel
sliding over the image, now a window is sliding over the feature map that either computes
the maximum or the average value. Another example is stochastic pooling proposed by Zeiler
[12] in 2013. Because max pooling is sensitive to overfitting, stochastic pooling introduces a
probability, which means the maximum value is still the most likely to be taken, but this is
not always the case. The disadvantage of average pooling is that really strong activations are
being ignored, therefore max and stochastic pooling seem like the preferred methods.

2-2-3 Fully Connected Layers

At the end of several subsequent steps of convolution and pooling there are usually some
fully connected layers that transform the extracted features into a feature vector. The term
fully connected refers to the fact that all neurons in the preceding layer are connected to all
neurons in the next. Using fully connected layers increases the dimensionality of the problem
exponentially so care needs to be taken with the implementation of these layers.

2-3 Loss Functions

By far the most computationally intensive step of human detection using a CNN is the network
training. The idea of training the network is that it learns the weights in the entire network
such that it can match input to a correct output. This training happens using a technique
called backpropagation. All weights within the network are initialized randomly and then
the input image is pushed through the network to produce a score for each class. These
scores are used to classify the contents of the image. During the training of the network, the
groundtruth of the image contents are known, which can then be used to compute an error
of the current prediction compared to the groundtruth. This error is represented by a loss
function, which can be computed in two different ways: The hinge loss in combination with
a linear Support Vector Machines (SVM) classifier and the cross-entropy loss in combination
with softmax classification. These are discussed in the subsections below.

2-3-1 Hinge Loss with a Linear SVM

Together with a linear Support Vector Machines (SVM) classifier, a hinge loss function [6]
(2-1) can be used to define the error of the predictions. For each wrong class, the maximal
value is determined of either 0 or the difference between the correct class score (s,,) and
its own score (s;j) plus a certain margin A. These results are then summed to a number
representing the loss over all the classes combined.

L; = Z max(0,s; — sy, + A) (2-1)
J#Yi
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2-4 Optimization Methods 11

2-3-2 Cross-Entropy Loss with Softmax

The scores at the end of the network are not in the form of a proper probability distribution
yet, which is why this last layer can have a special kind of activation function that was not
previously described. The softmax function:

S(yi) = S e
J

(2-2)

This will transform the scores at the end of the fully connected layers into a probability
distribution. The softmax classification is combined with the cross-entropy loss [6] (2-3),
where the exponentials of the class scores are summed and the log is taken from the result.
Finally subtracting the class score of the correct class will give the cross-entropy loss.

L= —sy, + logz e’ (2-3)
J

2-4 Optimization Methods

The loss functions describe the accuracy of the predictions of the network. That leaves the
question how these functions are minimized to be as accurate as possible.

2-4-1 Gradient-Based Optimization

The gradient of the loss to the weights serves as a measure of the extent to which the weights
have contributed to this error and this gradient is used to determine where to look for the
minimum. This can be visualized as standing somewhere in a mountain range and wanting
to reach the lowest point. The gradient is then the steepness in a certain direction and
this steepness is used by these optimization methods to decide where to look for the desired
minimum.

Batch Gradient Descent The batch gradient descent algorithm [13] takes a step in the
direction that provides the steepest descent. This gradient is computed over the entire dataset
and is therefore really expensive in terms of computational resources, which means it is only
feasible for relatively small datasets. The step size (or learning rate) is a hyperparameter that
needs to be chosen carefully. Small steps may be more accurate, but can be cumbersome to
compute. Large steps are dangerous, because of the risks of overstepping the minimum. The
equation for one step of the algorithm is described as follows:

0=0—nVJ(0) (2-4)

Where 6 are the parameters within the network, 7 is the learning rate and VyJ(0) is the
gradient of the cost function (or loss function) with respect to the parameters.
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12 Convolutional Neural Networks

Minibatch Gradient Descent The minibatch gradient descent method picks a random subset
of the training data and computes the gradient from this minibatch. Effectively, this is a
similar method to the batch gradient descent, but applied to a smaller batch. This method
is preferable if big datasets are used, because it significantly reduces the amount of data that
needs to be processed per learning iteration.

2-4-2 Momentum-Based Optimization

Gradient-based optimization methods only take into account the gradient of the loss function
and search for a minimum using only that information. However, a momentum term can be
taken into the equation as well. Momentum-based optimization methods are discussed below.

Momentum-Based Gradient Descent The momentum-based gradient descent algorithm
[13] not only takes into account the gradient, but also the momentum at a certain point.
Effectively this brakes the descent in order to prevent overshooting the minimum. Another
beneficial effect of the momentum-based descent is that learning slowdown is dealt with. The
learning slowdown can be a problem with activation functions such as the sigmoid that has
close to zero gradients at the outer bounds. A step in the momentum-based gradient descent
algorithm can be described as follows, where  represents the momentum term:

v = yWi—1 +nVeJ(0)

2-5
0:‘9—7/1‘/ ( )

Nesterov Accelerated Gradient In the momentum-based gradient descent method, both the
momentum and the gradient are computed at the same instance. The Nesterov Accelerated
Gradient algorithm looks ahead to where the momentum would take it and computes the
gradient from that position. A comparison between the regular momentum-based and the
Nesterov algorithm is shown in Figure 2-5.

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum
step
actual step

actual step

gradient
step

Figure 2-5: Comparison between the momentum-based algorithms [6]

2-4-3 Adaptive Methods

The gradient and momentum-based optimization methods use a fixed learning rate. If the
training dataset is very sparse, this can lead to problems. Adaptive optimization methods
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2-5 Regularization 13

aim to improve upon this by adapting the learning rate during training. For the purpose of
this thesis, two of these adaptive methods are analysed: AdaGrad and AdaDelta.

AdaGrad The AdaGrad [14] algorithm adapts the learning rate based on a weighted sum of
squared previous gradients. This essentially means that if a parameter has received a large
update, the next update will be smaller. The downside of this algorithm is that the learning
rate keeps decreasing as more iterations of the learning process are done, ultimately stopping
learning altogether.

AdaDelta The AdaDelta [15] algorithm is based on the same principle as AdaGrad, with
the exception that it does not take all the previous gradients into account when adapting the
learning rate. It only takes gradients from a fixed window size, which means it will not have
the learning stop problem that the AdaGrad algorithm had.

2-5 Regularization

If the training dataset is too small, the network is prone to overfit the data. Because the CNN
has many parameters, a small training set can quite easily be fitted perfectly. The problem
is that this does not generalize well towards other independent validation data, because it
basically memorizes all the input images and it does not learn features that would lead to a
generalized representation of the class. There are some regularization methods to deal with
this overfitting problem and these are discussed below.

2-5-1 Dropout

The ‘dropout’ method proposed by Hinton et al. [16] and visualised in Figure 2-6 deals with
overfitting by deactivating some of the neurons in the hidden layers, such that the network will
not overfit the training data. This deactivating is done at random with a certain probability
(often 0.5) for each pass through the network. This means that the network will try to fit
itself to the correctly labelled output with only a random part of the neurons activated.
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(a) Standard Neural Net (b) After applying dropout.

Figure 2-6: Dropout [7]
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14 Convolutional Neural Networks

2-5-2 Artificial Data Expansion

If the training set is too small, this can artificially be expanded by scaling, rotating, blurring
or cropping images from the training set. This will lead to a larger dataset to train on, but
care needs to be taken, because this artificially created data is often highly correlated to the
existing training data from which it was created.

2-5-3 Early Stopping

Another way to prevent the network from overfitting is to do validation during the training.
If no progress in performance is detected, the training can be stopped prematurely, because
this means that more training will lead to overfitting.

2-5-4 [,-Normalization

The weights between the layers are a linear combination of neural outputs. This linearity
means that a set of weights W that works for classification will not be unique in the sense
that a multiplication of these weights with a parameter A would lead to an equally good
classifier. To deal with this, the cost function can be extended with the Lo-norm of all the
weights in the network combined, which effectively bounds the weights. This regularization
is called Lo-normalization. This method also positively influences the generalization, because
no input can have too much effect.

2-6 Region Proposals

Research has shown that the generation of specific region proposals can significantly improve
performance of a CNN. R-CNN and its faster implementations [17][18] show superior results
over sliding window classifiers in terms of speed, which makes sense, because less visual
data needs to be analysed. This thesis operates under the same assumption, but the region
proposals are generated with the aid of data from LRF instead of the visual data on its own.

2-7 State-of-the-Art

Now the concept has been introduced, it is time to discuss what a CNN looks like these days.
Figure 2-3 already showed the classical LeNet-5 CNN based on an input 28x28 image. Modern
networks take in larger images and therefore need a lot of computational effort. An important
factor in the development of the current state-of-the-art CNNs has been the ImageNET
Largescale Visual Recognition Challenge (ILSVRC) [19]. This challenge, organized annually
since 2010, provides challenges in object detection, tracking and classification in images. A
dataset with roughly 1,000 labelled images for each of the 1,000 possible classes is given and
the contestants need to correctly predict outcomes on another validation dataset without any
groundtruth labels. For each image in the validation dataset, the contestants need to provide
the top-5 results that have the highest probability of being in the given image according to
their method. If the correct output label is within these top-5 results, it will be deemed
correctly predicted for the top-5 prediction results.
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2-7 State-of-the-Art 15

2-7-1 AlexNet (2012)

The biggest upset within the competition came from Krizhevsky et al. [8] in 2012 and was
named AlexNet. They were the first to achieve groundbreaking results by using a CNN as
shown in Figure 2-7. The AlexNet architecture was entered into the ILSVRC-2012 compe-
tition and achieved a winning top-5 error rate of 15.3%, whereas the runner-up achieved a
significantly higher rate of 26.2%.
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R Lo 1000
\i 152 192 128 Max L
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Figure 2-7: The AlexNet architecture [8]

2-7-2 GooglLeNet (2014)

Two years later, Szegedy et al. [9] came up with a CNN that was more accurate than
AlexNet and used twelve times fewer parameters. A top-5 error rate of 6.67% was achieved on
ILSVRC-2012 data. The authors of the GoogleNet architecture argued that deeper networks
would provide better results, but this resulted in two drawbacks: computational effort and
increased sensitivity to overfitting. Their major contribution in dealing with this problem
was a repeatable block that they named inception and it is shown in Figure 2-8.

Filter
concatenation
3x3 convolutions Exb convolutions 1x1 convolutions
1x1 convolutions [ A [

chns 1x1 convolutions 3x3 max pooling
-

Previous layer

Figure 2-8: The inception module [9]
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16 Convolutional Neural Networks

This block performs three types of convolutions (1x1, 3x3 and 5x5) and concatenates the
results together with a 3x3 max pooling operation. GoogLeNet stacks many of these inception
blocks together. Its architecture is shown in Figure 2-9, which shows several inception modules
as well as pooling. What is very interesting about this architecture is the absence of a fully
connected layer at the end.

F#F3X3 F#5%5

‘ type ‘ pa:‘:li;gd ozit;)eut ‘ depth ‘ #1x1 ‘ reduce ‘ #3%3 ‘ reduce #5x%5 g::; ‘ params ‘ ops ‘
convolution Tx7/2 112x112%x64 1 27K 34M
max pool 3x3/2 56x56x64 0
convolution 3x3/1 5656192 2 64 192 112K | 360M
max pool 3x3/2 28x28x192 0
inception (3a) 28x28x 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28x28x480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0
inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (de) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TXTx832 0
inception (5a) TxTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TxTx1024 2 384 192 384 48 128 128 1388K 71IM
avg pool Tx7/1 1x1x1024 0
dropout (40%) 1x1x1024 0
linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0

Figure 2-9: GoogleNet architecture [9]

2-7-3 ResNet (2015)

In 2015, the ResNet [10] architecture emerged victorious with a 3.57% top-5 error rate, which
is arguably even better than human performance. They created the deepest network (151
convolutional layers!) in the contest so far and invented a clever method to prevent overfitting
the network. This residual block is shown in Figure 2-10. By passing the identity and adding
it to the convoluted results, they prevent the network from learning nonsensical features while
delving deeper into the high-level features.

X
identity

Figure 2-10: The residual block [10]
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2-8 Concluding Remarks

The CNN has been discussed as a promising method in image classification and this makes
it interesting for recognizing humans in visual data. The major advantage of CNN over the
traditional methods is the fact that features and classification are jointly learned. The learned
features can include features that are very similar to the handcrafted features in traditional
methods. Initial layers learn raw features like edges and further down the CNN pipeline more
detailed features are learned. The fact that, so far, the progress in the field of deep learning
neural networks has been more empirical than based on theoretical knowledge makes it very
interesting for research purposes.
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Chapter 3

Experimental Setup

This chapter elaborates on the used test setup that was made available by Robot Security
Systems (RSS). Figure 3-1 shows this test robot, henceforth referred to as Robulab. Firstly,
the available sensors are discussed in Section 3-1 followed by their calibration in Section 3-2
and the data synchronisation in Section 3-3. The chapter concludes with an overview of the
recorded datasets in Section 3-4.

Wt iy i

W

Figure 3-1: Robulab, the test robot at RSS

3-1 Sensors

The experiments for this thesis are done with two available sensors. A Laser Range Finder
(LRF) for providing depth information and region proposals and a pinhole camera.
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3-1-1 LRF

The laser range measurements are done by a Hokuyo UTM30LX-EW sensor with a 270° Field
Of View (FOV) and a 0.25° angular resolution. Because this data is used solely for the purpose
of defining region proposals in the visual data, the measurements that do not fall within the
FOV of the camera are not taken into account, because this would only lead to unnecessary
data. The FOV of the pinhole camera at the front of Robulab is 70°, which led to the decision
to only take in laser measurements in the range of -40° to 40°. The laser measurements that
can not be seen within the FOV of the camera are filtered out at a later point.

3-1-2 Camera

Robulab is equipped with four Hikvision pinhole cameras of the type DS-2CD6412FWD for
a 360° view of the surroundings. For the purpose of human detection in this thesis only the
front camera is used. The camera has a 1280x960 resolution and a FOV of 70°.

3-2 Sensor Calibration

To be able to relate 3D world coordinates to 2D image coordinates two steps need to be taken.
First the 3D points in the world frame need to be transformed into the camera frame, these
are the extrinsic parameters and depend on the position and orientation of the camera with
respect to the world. Then the coordinates in the camera frame need to be transformed to
coordinates in the image space, these are the intrinsic parameters and depend on the focal
distance and lens distortion of the camera. The flowchart in Figure 3-2 visualizes this camera
calibration.

World Coordinates . Camera coordinates . Image coordinates
X,Y, 2] Extrinsic—»] IXc, Ye, Zc] Intrinsic—» U, V]

Figure 3-2: Flowchart of the camera calibration

3-2-1 Extrinsic Parameters

The extrinsic parameters relate the world coordinates to the camera coordinates, i.e. the
camera centre. This can be done by a rotation and translation, where the translation gives
the location of the world coordinate origin within the camera coordinate frame. The rotation
describes a possible rotation of the world coordinate frame to the orientation of the camera
coordinate frame.

R T
He (0 1) (3-1)
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3-2 Sensor Calibration 21

3-2-2 Intrinsic Parameters

The intrinsic parameters relate the camera coordinate frame to the image coordinates or pixel
locations. This is done by pre-multiplying the camera coordinates with the intrinsic matrix
K [20]:

fz s @
K=10 fy Yo (3-2)
0O 0 1

Where f represent the focal lengths of the camera and x¢ and yg represent the principal point
offset, i.e. the offset, measured in pixels, from the intersection with the line perpendicular
to the image through the camera pinhole to the origin of the image. The symbol s is the
axis skew, which is mostly zero, but can sometimes be non-zero due to skewness caused by
digitization processes.

Calibration Methods Camera calibration methods aim to estimate the extrinsic and intrinsic
parameters that map the real world to the image coordinates as discussed in the previous
paragraphs. The classical method to do this was proposed by Zhang [21] in 1998. For this
calibration a planar pattern, such as a checkerboard, needs to be observed from at least two
different positions and orientations. The method proposed by Zhang can then, by observing
the same corners on the checkerboard in different positions, estimate the intrinsic and extrinsic
parameters of the camera. For the purpose of estimating the intrinsic parameters of the
camera, a MATLAB toolbox is available [22], which was used for the calibration of the front
pinhole camera. After this calibration, the 3D world coordinates of the checkerboard could
be estimated, accurate within 1 [cm]. The resulting intrinsic matrix was computed to be:

946.1115 0 681.2535
0 706.8499 297.5400 (3-3)
0 0 1

K

3-2-3 LRF Calibration

The extrinsic parameters then relate the world coordinates to camera coordinates and these
are different for every position of the checkerboard pattern. For the calibration between the
LRF and the camera the specific extrinsic parameters that relate the laser coordinates to
the camera coordinates need to be known, which is needed if detected objects in the laser
range data will be used to generate a region proposals in the visual data. For this purpose it
is necessary to find one or more points that can be seen by both the LRF and the camera,
which will make it possible to relate the data from the laser scan to the camera position and
therefore the image coordinates. For this purpose the checkerboard pattern is again used.
The calibration setup can be seen in Figure 3-3.

Using the camera calibration toolbox, the coordinates of this point on the checkerboard,
expressed in the camera coordinate system, can be estimated. The same can be done for
the laser scan data, which will give a distance measurement. This data can then be used

Master of Science Thesis Yannick Kathmann



22 Experimental Setup
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Figure 3-3: The calibration setup with one laser scan point projected on the checkerboard.

to compute the transformation matrix that transforms the laser coordinates into camera
coordinates. This can be done by a rotation (different coordinate frame) and a translation
(sensors located at different points in space). With this transformation known, the rest of the
laser points can be projected as well. The first result of projection is shown in Figure 3-4.

Figure 3-4: First laser projection with errors.
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From this figure it is clear that this projection can not be used for the creation of region
proposals, because the projected points are still off. There are two reasons for this, the first
of which is that the image on which the points are projected is still distorted. The intrinsic
parameters that were estimated during the calibration can be used to undistort the image
and this will already lead to a more accurate projection. The second problem is that the data
measurements from the laser range finder and the camera are not yet synchronised. The next
section will delve further into this matter.

3-3 Synchronisation

If two separate datastreams are to be used to capture data at the same time, synchronisation
of the datastreams is key. Sensors usually do not operate at the same frequencies and one
can imagine that writing data from the camera takes a little bit longer than writing distance
measurements from the LRF. This can be approached in either two ways: let both sensors
acquire data at their own rate and then match the correct pairs or tune the rate at which
they acquire data, such that both sensors take measurements at the same time instances. In
the datatool that was used to read and write data from the sensors on Robulab, the first
method was chosen, because it is simply easier to implement. After the synchronisation, the
laser scan is once more projected and the results can be seen in Figure 3-5.
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Figure 3-5: A projected laserscan after data synchronisation and undistortion.

The improvements from Figure 3-4 to Figure 3-5 are clearly visible and the projected laserscan
is now accurate enough to be used for the generation of region proposals in the visual data.
The transformation matrix that relates the laser coordinates to the camera coordinates was
computed to be:
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—0.0721 —-0.9973 0.0065 —65.6234
0.0861 —0.0128 —0.9962 —138.7402
0.9937 —0.0713 0.0868 8.4264

0 0 0 1

Where the rotation matrix has been corrected for a slight tilt of the camera.

3-4 Datasets

With the calibration and synchronisation running, all that remained before starting the ex-
periments was acquiring data. For the experiments four datasets are used:

e RSS - Dataset recorded at RSS in the Hague.

e 3ME - Dataset recorded at the Mechanical, Maritime and Materials Engineering (3ME)
faculty.

e 10D - Dataset recorded downstairs at the Industrial Design (ID) faculty.

e [IOU - Dataset recorded in the hallway between 3ME and ID and upstairs at the ID
faculty.

Table 3-1 shows an overview of the contents of the datasets. This table elaborates on only
the generated datasets for the visual experiments. Sometimes multiple crops are taken from
one image. The datasets are separated into test sets (only used for testing the accuracy of the
learned network) and training sets (used for training the network). The table shows the total
number of images in that specific dataset with additional information on the ratio between
true (i.e. human) and false (i.e. background) crops. The RSS dataset is the largest and serves
to train a Convolutional Neural Network (CNN) from scratch for human detection. The other
three datasets are smaller and serve to show the feasibility of finetuning a pre-learned network
on a specific location. The visual data experiments are discussed in detail in Chapter 5.

Table 3-1: Overview datasets

Dataset | Test (True/False) | Train (True/False)
RSS 696 (169/527) 2782 (676,/2106)
3ME 200 (90,/110) 813 (304/500)
10D 150 (70/80) 641 (269/372)
10U 180 (60/120) 739 (265/474)
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Chapter 4

LRF Experiments

The experiments are split up in two parts: Laser Range Finder (LRF) experiments and
visual data experiments. The LRF experiments discussed in this chapter aim to implement
the various methods of detection, that were explained in Chapter 1 and analyse the results.
First and foremost, the goal of incorporating depth information from a LRF is to be able to
look for interesting segments within the visual data more easily. The simplest way to this
is to use the Point-Distance Based Segmentation (PDBS) that was discussed in Chapter 1,
which clusters the data points from the laser range measurements based on a simple distance
criterion. Experiments with PDBS are discussed in Section 4-1. Chapter 1 also discussed
Kalman-Filter Based Segmentation (KFBS), of which experiments are discussed in Section
4-2. Section 4-3 elaborates on the region proposals that are generated with the aid of these
clustering methods. On top of that experiments are done with a neural network in an attempt
to train the network to recognize leg patterns, these are discussed in Section 4-4.

4-1 PDBS Clustering Experiments

PDBS clusters data from the LRF into segments based on a simple distance threshold cri-
terion. These segments can then easily be used to generate crops with the aid of the sensor
calibration that was discussed in Chapter 3. Experiments were done with different distance
thresholds ranging from 10-100 [mm]. Some pre-filtering of the segments has also been done
by excluding segments shorter than 5 points, because that would never represent anything
useful and just lead to an unnecessary amount of region proposals. Segments of more than 50
points are also excluded from the analysis, for really long segments generally only represent
long objects such as walls and closets. This pre-filtering makes sure that not all segments are
proposed, because that would mean a lot of crops that need analysis. The drawback here is
that humans that stand behind a counter are not visible for the LRF, but these segments
are also not proposed for further analysis using a vision-based classifier. The results from the
experiments are visualized in the figures below.
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Figure 4-1: Results of PDBS with distance threshold 10 [mm]

Figure 4-2: Results of PDBS with distance threshold 50 [mm]
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Figure 4-3: Results of PDBS with distance threshold 100 [mm]

From these figures it becomes clear that a distance threshold of 10 [mm] leads to a very
small amount of segments due to all the short segments being filtered. More importantly,
the measurements on the legs of the human in the image are not being proposed as Region
of Interest (ROI). On the other hand a distance threshold of 100 [mm] does include the
measurements on the legs, but ultimately leads to problems when people stand close to walls.
This leads to the legs 'blending in’ the background and this means that the leg segments
are sometimes not proposed. The optimal distance threshold was empirically found to be 50
[mm], because this means leg measurements are reliably proposed without blending in with
the background.

4-2 KFBS Clustering Experiments

In Chapter 1, not only PDBS was discussed, but also KFBS. PDBS clusters the laser data
based on a simple distance criterion, which naively assumes that measurements are perfect
and there is no noise. KFBS aims to see whether points belong to the same segment in a
stochastic sense, accounting for noise. The algorithm as proposed by Borges [11] and discussed
in Chapter 1 is used as guideline for these experiments, with some alterations. Borges worked
with a LRF with an angular resolution of 0.6°. The LRF used for the experiments in this
thesis works with an angular resolution of 0.25°. This has an effect on the A used in the
algorithm. Instead of the 10° used in the Borges experiments, this thesis operates with a
A of 4°. The standard deviation o of the LRF is 0.03[m], which is taken from the sensor
documentation. The covariance matrices and state are initialized as proposed by Borges:

2o = (T(;L) (4-1)
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1 ((cot(N)r,A¢p)? 0
P = 9 < 0 (cot()\)rn)> (4-2)
0.01 0
@n = ( 0 0.01) (4-3)
R, = 0% =0.009 (4-4)

The results of KFBS are shown in the figures below. From these figures it becomes clear that
KFBS manages to filter out nearly everything but the leg segments, which means the region
proposals based on these segments will be limited and therefore make a detection algorithm
faster. On the other hand, Figure 4-6 shows that, when the target is obscured, the human is
completely missed. PDBS seems to have more reliable proposals in this sense, but at the cost
of having more. The results of KFBS and their naive counterpart PDBS and their possible
uses are further discussed in Chapter 6.

Figure 4-4: Results of KFBS when close to wall
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Figure 4-5: Results of KFBS when walking

Figure 4-6: Results of KFBS when obscured.
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4-3 Region Proposals

The clustering experiments show a reliable segmentation of leg patterns with minimal redun-
dant proposals, which makes it valid as region proposal generator for a vision-based classifier.
The proposals are generated by estimating the size of a human, should the detected segment
be a human and creating a crop around it based on that size. For this purpose the bound-
ing box of a human is taken to be 2x1 [m]. Figure 4-7 shows some of the region proposals
generated by the segmentation methods discussed before.

Figure 4-7: Region proposals generated by laser segmentation

4-4 Deep Learning LRF Experiments

Experiments with clustering methods such as PDBS and KFBS showed that they are viable as
region proposal generators for a vision-based classifier. The experiments with a Convolutional
Neural Network (CNN) based on these region proposals are discussed in Chapter 5. Because
the core of this research focusses on using CNN for pattern recognition, experiments are
done with using this concept on the LRF measurements. The network design is shown in
Figure 4-8. In order to make sense from the data, the raw distance measurement vector
needs to be transformed to a vector containing the differences between subsequent distance
measurements in the vector, essentially creating a gradient vector. The distance measurements
from the LRF are recorded as 321x1 vectors, which means the gradient vector is 320x1. This
vector is then pushed through 4 convolutional layers, transforming the 320x1x1 vector to a
300x1x1 vector that will have class scores. The classes all represent a certain area within the
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LRF measurements and this will be compared to a groundtruth label vector that contains
ones in the areas that contain humans and zeroes for regions that do not. These labels were
created while labelling visual data, where positive crops were used to see which of the LRF
measurements would receive a positive label.

Data
i
{Distance Change 3xl sl 5x1_s1 7xl_s1 9x1 sl
321x1x1 320x1x1 318x1x60 314x1x120 308x1x240 300x1x1

Figure 4-8: LaserNet design

Figure 4-9 shows the learning curves of the neural network experiments with the distance
measurements from the LRF. The network was trained with a sigmoid cross-entropy loss
function and the learning curves show some convergence with the loss stabilizing at a value
between 100 and 200.
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Figure 4-9: Learning curves of LaserNet on data from the 3ME and IOD datasets, tested on
I0U.

However, the resulting network after 2,000 iterations turns out to not be able to make reli-
able predictions. Although parts of the labels are predicted correctly, it is not sufficient to
extract regions of interest from these predictions. For that purpose the segmentation meth-
ods discussed previously are not only much simpler to implement, but also more reliable.
Conclusions from all LRF experiments are further discussed in Chapter 6.
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Chapter 5

Visual Data Experiments

The experiments with the Laser Range Finder (LRF) data aimed to reduce the computational
load on the human detection algorithm. This section will elaborate on the deep learning
experiments that aim to classify the region proposals. For the experiments several network
designs were made. There are many parameters that can be tuned for the neural networks,
which makes it somewhat empirical based to find out which of these parameters are optimal.
The goal of these network designs is to change just specific aspects to see whether they
influence the learning process in a positive way. The first network is named KathNetl and
KathNet2 and 3 are network designs that evolved from KathNetl with specifically changed
aspects. Data was recorded in the RGB colorspace, but for each network experiments are
done with HSV and grayscale data as well. Section 5-1 elaborates on these experiments
and how they are set up. Section 5-2 discusses the experiments with the first Convolutional
Neural Network (CNN) design, followed by experiments with KathNet2 in Section 5-3 and
experiments with KathNet3 in Section 5-4. Section 5-5 elaborates on the two different solver
types AdaGrad and AdaDelta. Experiments with finetuning a pre-learned CNN on data from
a specific location are discussed in Section 5-6. This chapter concludes in Section 5-7 with a
comparison between the proposed multi-sensor architecture in this thesis and a pre-defined
HOG-SVM sliding window human detection algorithm.

5-1 Experiment Details

All initial experiments (discussed in Sections 5-2 through 5-4) are done on the Robot Security
Systems (RSS) dataset. Details on the different datasets can be found in Chapter 3. The
data in the datasets is recorded in the RGB colorspace, but these datasets are also converted
to grayscale and HSV colorspaces for the initial deep learning experiments. All experiments
run 1,000 iterations with batches of 50 crops and the accuracy on the test set is measured
after every 20 iterations to keep track of the quality of the learning process and all results
are saved in log files. A snapshot of the current network is saved after each 20 iterations,
such that a choice can be made, based on the logs, which of the networks during the entire
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experiment performed best. The experiments run with a base learning rate of 0.01 and use
Lo-normalization as regularization method. To artificially expand the datasets, the crops are
mirrored. Experiments with dropout as regularization method did not lead to mentionable
performance improvements.

5-2 KathNetl Experiments

The first network consists of three convolutional layers combined with max-pooling layers to
downsample the data. All pooling layers discussed in this chapter use max-pooling. The
design of this network is inspired by the AlexNet [8] architecture discussed in Chapter 2.
Eventually the input image of 200x400 pixels is reduced to a size of 4x9 before applying the
last convolutional filter to create the feature vector. This feature vector is then connected to
one more fully connected layer before reducing the size to a 2x1 score vector that is used to
predict the probabilities for both possible classes (human or not). A softmax classification
with cross-entropy loss function is used for the learning process. The design is visualized in
Figure 5-1.

5x5_s1

FC1 FC2
4x9_s1
1x1x2
196x396x15 96x196x15 93%193x30 23x48x30 20x45%60 4x9x60 1x1x120 1x1x120

Figure 5-1: The schematic visualization of the KathNetl design

Image

200x400x3

5-2-1 RGB

The learning curves of the RGB experiments done with the KathNetl network are shown in
Figure 5-2. The blue curve represents the training loss, which is measured every 5 iterations
during the learning process. Barring the fluctuations due to the small batch size, it does seem
to slowly converge to zero. After 1,000 iterations the training loss has been reduced to less
than 0.1. The loss on the test set, which is measured every 20 iterations, also converges to a
value close to 0.2. In terms of accuracy of the predictions, the network performs well with an
accuracy of close to 90%.

5-2-2 HSV

The KathNetl learning curves for the HSV experiments are shown in Figure 5-3. The learn-
ing process seems similar to the RGB experiments, however the overfitting of the test data
occurs sooner. The loss on the test set also never drops below 0.35, which indicates inferior
performance to the RGB network. The accuracy never rises above 90%, which supports the
statement that the RGB network performs better.
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Learning curves KathNetl (RGB)
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Figure 5-2: Learning curves of the RGB experiments with the KathNetl network
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Figure 5-3: Learning curves of the HSV experiments with the KathNetl network

5-2-3 Grayscale

The learning curves for the grayscale experiments with the KathNetl network are shown
in Figure 5-4. In terms of performance it achieves similar results compared to the RGB
experiments with test losses close to 0.2 and an accuracy of more than 90%. Furthermore
the training loss converges faster than both the RGB and the HSV experiments, which makes
sense, because there is less data to learn from with one channel instead of the three for HSV
and RGB colorspaces.
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Learning curves KathNetl (Gray)
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Figure 5-4: Learning curves of the grayscale experiments with the KathNetl network
5-3 KathNet2 Experiments

The second network also reduces the input image to a size of 4x9, but instead of using pooling
layers in between the convolutional layers to downsample the data, a bigger stride is used on
the convolutional layers to do so. This design serves to show if the conventional convolution-
pooling combinations work better than just convolutions or the other way around. The design
is visualized in Figure 5-5.

Pooll FC1 FC2
——
x4 _s4 6x6_s2 4x4_s1 5x5_s5 4x9_s1 1
] | ] ] ]
Image I
1x1x2
200x400%3
50x100x15 23x48x60 20%45x120 Ax9x120 1x1x240 1x1x480
— St

Figure 5-5: The schematic visualization of the KathNet2 design

5-3-1 RGB

The KathNet2 RGB learning curves are shown in Figure 5-6. Beside the two dips at 200
and 980 iterations, the performance is similar to the KathNetl network with the same data.
Accuracy and loss are at approximately the same level and from this number of iterations it
can not be concluded yet if the network has started overfitting.
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Learning curves KathNet2 (RGB)
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Figure 5-6: Learning curves of the RGB experiments with the KathNet2 network

5-3-2 HSV

The learning curves of the HSV experiments with the KathNet2 network are shown in Fig-
ure 5-7. Where the RGB experiments showed different results with this network, the HSV
experiments perform worse than their KathNetl counterpart. The network starts overfitting
rather quickly after 500 iterations, having the test loss rising from a minimum 0.35 to 0.5.
Accuracy of the HSV experiments also does not reach the 90% mark.
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Figure 5-7: Learning curves of the HSV experiments with the KathNet2 network
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5-3-3 Grayscale

The KathNet2 grayscale learning curves are shown in Figure 5-8. This shows the same
behaviour as the HSV experiments in the sense that it starts overfitting after 500 iterations
and test loss never drops below 0.3. Also for these grayscale experiments the accuracy never
gets to the 90% mark as it did for the KathNetl experiments.
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Figure 5-8: Learning curves of the grayscale experiments with the KathNet2 network

5-4 KathNet3 Experiments

The third network goes back to the conventional convolution-pooling combinations, but in-
stead of reducing the image to a size of 4x9, it is now reduced to a size of 3x7. This network
aims to show the difference between combining features from a 4x9 grid and a 3x7 grid. A
3x7 grid is chosen, because in the learned crops, faces from humans are usually centred. This
could mean that a 3x7 grid can more easily distinguish face features. The network is shown
in Figure 5-9.

FC1 FC2

5x5_s1 3x7 s1

Image

1x1x2

200x400%3

196x396x15 96x196X15 90x190%30 18x38x30 15x35x60 3X7%60 1x1x120 1x1x120

Figure 5-9: The schematic visualization of the KathNet3 design
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5-4-1 RGB

Figure 5-10 shows the learning curves for the RGB experiments with KathNet3. Both the
training error and test error converge to zero rather smoothly and towards the end no over-
fitting can be seen yet, although the test loss seems to flatten at a little less than 0.2. The
accuracy of the network approaches 95% and this is the best performance of all experiments
considered so far. This is also the network that is used for the finetuning experiments dis-
cussed in Section 5-6.
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Figure 5-10: Learning curves of the RGB experiments with the KathNet3 network

5-4-2 HSV

The learning curves for the HSV experiments with KathNet3 are shown in Figure 5-11. Al-
though both training loss and test loss converge, the HSV experiments once again show
inferior performance compared to the RGB experiments. The accuracy never reaches 85%
and the loss never drops below 0.3.
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Figure 5-11: Learning curves of the HSV experiments with the KathNet3 network
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5-4-3 Grayscale

Figure 5-12 shows the results of the grayscale experiments with the KathNet3 network. Where
the grayscale experiments seemed to perform similar to the RGB experiments for the Kath-
Netl experiments, KathNet3 clearly has a winner with the RGB network. The grayscale
network has an accuracy of at best 90% and the test loss never drops below 0.25.
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Figure 5-12: Learning curves of the grayscale experiments with the KathNet3 network

5-5 AdaGrad vs. AdaDelta

All above experiments have been done with the AdaGrad [14] solver algorithm. The choice
to do so has been based on an initial experiment with both solver types, that showed the
AdaDelta [15] solver to perform significantly worse than the AdaGrad solver. Figure 5-13
shows the results of learning experiments with RGB data on the KathNetl network with the
AdaDelta solver. These results are curious, because AdaDelta is supposed to be an improved
version of AdaGrad as was discussed in Chapter 2. AdaDelta improves upon AdaGrad by not
monotonically decreasing the learning rate based on previous iterations, but by only decreas-
ing it by a subset of those previous iterations. This should help by never having a learning
rate converge to zero, essentially being able to keep learning indefinitely. An explanation for
the better performance of AdaGrad can be that these improvements are more focussed on
multi-classification problems and are too extensive for the binary classification problem of hu-
man detection. The real reason behind this is not known, but based on the conclusions from
this experiment, the AdaGrad solver was chosen for all the network experiments discussed
and for the finetuning experiments to follow.
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AdabDelta learning curves KathNetl (RGB)
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Figure 5-13: Learning curves of the RGB experiments with the KathNetl network and AdaDelta
solver

5-6 Finetuning Experiments

The previous subsection focussed on finding an optimal network. This subsection will aim to
provide an insight in the performance of that network with data it has never seen before. For
this purpose, the 3ME, IOD and IOU datasets are used as discussed in Chapter 3. From all
three datasets the initial 20% is used as test set to have an independent set of data to compare
the results. For the purpose of these experiments the KathNet3RGB after 1,000 iterations
is used, because this was the network that showed the least errors in its predictions during
the initial deep learning experiments discussed in Section 5-4. Initially the performance is
measured on all three datasets without changing anything about the parameters to have a
benchmark for the effectiveness of the finetuning experiments. This is done by verifying the
percentage of false positives (FP), false negatives (FN) and the overall error (OE). As opposed
to the initial deep learning experiments on the RSS dataset, the finetuning experiments only
run for 500 iterations. All other settings are kept constant.

5-6-1 KathNet3RGB Benchmark Performance

To have a benchmark performance to evaluate the strength of the finetuning experiments,
the KathNet3RGB model after 1,000 iterations is used. Table 5-1 shows this benchmark
performance. It can be seen that the network has a hard time classifying data it has never
seen before, but still manages a reasonable 12.45% overall error rate. The purpose of the
finetuning experiments is to show that a little extra data can make this performance better.

Table 5-1: Benchmark performance KathNet3RGB_iter_1000

FN | FP | OE
11.36% | 13.22% || 12.45%

Master of Science Thesis Yannick Kathmann



42 Visual Data Experiments

5-6-2 Finetuning on the 3ME Dataset

The KathNet3RGB__iter 1000 model was used to define a benchmark. The learned network
is then finetuned to the 3ME training dataset. The learning process can be seen in Figure 5-
14. As can be concluded from this plot, the minimum loss on the test set was established
after 120 iterations. After that the network starts overfitting, which led to the decision to
use the network as it was after 120 iterations for further finetuning. The performance of the
finetuned network is shown in Table 5-2. In comparison to the benchmark performance from
Table 5-1 an increase in performance can be seen. False negatives have decreased by 8.63%,
false positives by 2.25%. Overall, the errors have decreased by 4.90%.
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Figure 5-14: Learning curves of the finetuning experiments on the 3ME dataset.

Table 5-2: Performance after finetuning on 3ME dataset for 120 iterations

FN | FP | OE
2.73% | 10.97% | 7.55%

5-6-3 Further Finetuning on the IOD Dataset

The finetuning experiments on the 3ME datasets have shown an improvement in performance.
Further finetuning experiments are conducted on the IOD dataset to find out whether the
performance can be enhanced even further. The results of the learning experiments are shown
as learning curves in Figure 5-15. Although the training loss converges to zero there is not
that much improvement to be seen in terms of test loss. The best results are achieved after 180
iterations after which it starts overfitting. This led to the decision to use the learned network
after 180 iterations for the further finetuning experiments. The performance of this network
is shown in Table 5-3. Clearly the finetuning experiments work as intended as a small overall
error rate of 4.53% is achieved, a 3.02% decrease compared to the 3ME finetuned model in
Subsection 5-6-2. False positives are reduced by 5.49%. Interestingly enough, compared to
the 3ME finetuned model, there is one extra false negative.
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Figure 5-15: Learning curves of the finetuning experiments on the 10D dataset.
Table 5-3: Performance after finetuning on 10D dataset for 180 iterations

FN | FP || OE
3.18% | 5.48% || 4.53%

5-7 Sliding Window Experiments

The research in this thesis is focussed on a multi-sensor approach to the task of human
detection. In order to compare this framework to a vision-based approach, a sliding window
Support Vector Machines (SVM) classifier with HOG feature descriptors is used. This detector
comes from the MATLAB computer vision toolbox (vision.PeopleDetector) and can be used
for detecting humans in upright position without occlusion. For the multi-sensor architecture,
Kalman-Filter Based Segmentation (KFBS) is used to create the region proposals together
with the finetuned network discussed in Subsection 5-6-3. Results of human detection on a
datapair from the 3ME dataset can be seen in Figure 5-16 for the sliding window classifier
and in Figure 5-17 for the multi-sensor architecture. These figures show the regions where
the algorithms have detected humans with their respective class scores. At the bottom of
these figures the computation time is shown. The sliding window classifier misses a detection
and finds a false positive in a wall. The multi-sensor architecture does detect the only human
present in the image, but takes longer (0.92 [s] instead of 0.36 [s]). The forward pass through
the CNN takes roughly 0.2 [s] and four region proposals are analysed in the multi-sensor
architecture. Figure 5-18 shows results of human detection from the IOU dataset with the
sliding window classifier. The algorithm takes 0.47 [s], but also misses one of the two humans
present. Interestingly enough, the algorithm does detect a human in the shadow on the wall.
Figure 5-17 shows results of the multi-sensor human detection on the same datapair. Both
humans are detected, but the algorithm takes 1.07 [s] to complete, because it received five
region proposals to analyse. Although the multi-sensor architecture seems to be generally
slower than the sliding window classifier used in this experiments, it should be clear that it
still outperforms a sliding window classifier that would use the same CNN for classification (i.e.
analysing 100 region proposals is slower than analysing 5). Conclusions from the experiments
are further discussed in Chapter 6.
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Computation time: 0.35505 [s]

Figure 5-16: Human detection results using a sliding window HOG-SVM classifier.

Computation time: 0.92182 [s]

Figure 5-17: Human detection results using the multi-sensor architecture.
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Computation time: 0.47144 [s]

Figure 5-18: More results using the sliding window HOG-SVM classifier.

Computation time: 1.0677 [s]

Figure 5-19: More results using the multi-sensor architecture.
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Chapter 6

Discussion and Conclusions

This chapter elaborates on the results that were obtained with the experiments discussed
in Chapters 4 and 5. Section 6-1 contains a critical evaluation of the obtained results and
their validity. Section 6-2 discusses conclusions drawn from the experiments and this chapter
concludes with recommendations in Section 6-3.

6-1 Discussion

This section discusses the assumptions that were made to do the experiments discussed in
Chapter 4 and Chapter 5 as well as the results from these experiments. The assumptions are
discussed in Subsection 6-1-1. This is followed by a detailed discussion of the experimental
results in Subsection 6-1-2 and Subsection 6-1-3.

6-1-1 Assumptions

The concept of this thesis was built around the assumption that the robot drives on a flat
surface. In the surroundings of the office in The Hague and even the data recorded at Delft
University of Technology (TU Delft) this assumption holds true and in fact it will for most
of the indoor applications of Robot Security Systems (RSS). If, however, the same framework
were to be applied in autonomous cars, this assumption can not be made. This will lead
to a much more tedious camera calibration with laser sensors, because of the pitch and roll
caused by rough terrain. For the purpose of this thesis, the laser-camera calibration, as was
discussed in Chapter 3, could be done with the assumption that the sensors were fixed in the
vertical z-direction.

The positive crops in the learning experiments (i.e. the ones containing a human) generally
capture these humans in upright and walking position. This means that the network will
have a significantly harder time classifying humans that are sitting or lying on the floor. For
the size of the crops, a human detection at a distance of approximately 5 [m] was chosen as
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baseline. Assuming that humans fit within a bounding box of 1x2 [m] this ultimately led to
the decision of a crop size of 200x400 pixels. Because a Convolutional Neural Network (CNN)
only takes in fixed size images, crops that are larger (detections closer than 5[m]) or smaller
(detections further than 5[m]) are resized to the 200x400 image size.

6-1-2 LRF Experiments

Chapter 4 discussed several experiments with the data acquired from the Laser Range Finder
(LRF) sensor. Two different methods of segmentation showed the feasibility of using passive
detection to create region proposals in the visual data. These methods show great strength in
distinguishing objects from the distance measurements. Through the sensor calibration these
proposals can then be transformed to image crops that can actually be used in a vision-based
classifier.

Clustering Experiments

Experiments with two different clustering methods were discussed in Chapter 4. Point-
Distance Based Segmentation (PDBS) naively assumes perfect noiseless measurements and
separates the clusters solely based on a distance criterion. Kalman-Filter Based Segmen-
tation (KFBS) accounts for measurement noise and verifies whether points belong to the
segment in a stochastic sense. Figure 4-4 and Figure 4-5 show that KFBS works really well
when the legs are visible, because the segments on the legs are the only ones not being filtered
out. On the other hand Figure 4-6 shows that, when the legs are obscured by other objects,
there are no segments being proposed from which a human can be detected. PDBS results in
Figure 4-2 show that the leg segments are only a part of the proposed segments and there are
some other segments proposed as well. Essentially, the experiments show that there will be
less missed detections using PDBS at the cost of extra region proposals that need analysing.
A choice for either of the two is then based on application and user preference.

Deep Learning Experiments

Extra experiments aimed to show the feasibility of using the same data for actual pattern
recognition, by creating a neural network. Section 1-2 discussed that 2D distance measure-
ments from a LRF sensor contain features that can be used for classification of legs and
therefore humans. In the context of this research work it was interesting to see if the concept
of neural networks could also be used for this purpose, because this would mean the entire
human detection framework could be captured in one advanced neural network. Even though
the learning curves showed convergence up to a certain point, the resulting network can not
reliably be used for any detection, because its predictions are still too far off. However, this
does not necessarily mean the concept itself can not be used. First of all, the amount of data
is underwhelming, compared to the amount of labels that need to be predicted (300 labels).
Secondly, the data that was used for these experiments was created simultaneously with the
visual data. Which means that a crop was selected and manually labelled to contain a human
or not. If the crop received a positive label, the laser points that were in that specific crop
after projection were labelled as such. Where the ground truth vector would then contain
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zeroes for parts of the laserdata outside of the crop and ones for the parts within. The prob-
lem with the labelling of this data was that there is not always only one person visible within
the data. This means that sometimes part of the ground truth vector contained zeroes where
it actually contained humans. The same problem can occur the other way around as well,
where an image crop is labelled to contain a human, but the legs are blocked from the LRF
point of view. All and all combined, since the experiments do show a certain convergence,
the concept of leg pattern recognition using a neural network can still be viable, but a more
thorough investigation of the labelling process will be needed for this to have any chance of
success.

6-1-3 Visual Data Experiments

This subsection discusses the results from the visual data experiments in Chapter 5. Firstly,
the initial deep learning experiments are discussed that aimed to find a CNN design suitable
for the purpose of human detection. This is followed by an elaboration on the finetuning
experiments that aimed to finetune a pre-learned CNN to a small set of new data to show the
strength of the network as well as its capability to adjust to a new location. This subsection
concludes with the sliding window experiments that aimed to provide insight in how the multi-
sensor framework discussed in this thesis compares to a sliding window detection algorithm.

Initial Deep Learning Experiments

The first set of experiments with visual data aimed to find out the best design of a CNN
to be used for classifying the content of images as human or not. For this purpose three
different designs were made, three different datatypes and two different solver types were
used. The base network KathNetl transformed the 400x200 image crops to a 4x9 feature
map before applying two sets of fully connected layers to eventually end up with a class score.
KathNet2 did the same, but not by using combinations of convolutional and pooling layers,
but by only using convolutional layers with a bigger stride to reduce the dimensionality to
a 4x9 feature map. KathNet3 went back to the convolution and pooling combinations, but
instead of working towards a 4x9 feature map, a 3x7 feature map was applied. From these
experiments three things became clear. First of all, convolution and pooling combinations
tend to produce better results than convolutions with bigger strides. Secondly, KathNet3
tends to perform a little better than KathNetl. This can be caused by the fact that in
general, the positive crops contained human faces in the middle. A 3x7 feature map would
be able to distinguish this better than a 4x9 feature map, where the faces would be split.
Thirdly, the RGB experiments generally showed better results than HSV. Apparently the
RGB colorspace does contain some valuable information as to images containing humans or
not. Eventually the KathNet3 network after 1,000 iterations on the RGB dataset recorded
at RSS was chosen as winner.

Finetuning Experiments

The second set of experiments with visual data served to show the feasibility of using a pre-
trained network on a new location. Initial experiments showed an accuracy of 87.55% on
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data that was never seen before. This means that the network that was trained on the RSS
data generalized quite well to different environments, even though there was not much data
to work with. An explanation could be that a part of the data recorded at TU Delft look
really similar to the environment at the RSS building. The hallway between the Mechanical,
Maritime and Materials Engineering (3ME) faculty and the Industrial Design faculty looks
quite similar to the hallways in the RSS building. After finetuning on two more datasets,
the accuracy on the test data had already raised to 95.47%. This serves to show that it
is feasible to start with a base network and finetune it to work well on a specific location.
Especially with the practical use for RSS in mind, this part is interesting, because the robots
are deployed on a specific location.

Sliding Window Experiments

A third set of experiments compared the multi-sensor architecture from this thesis to a sliding
window classifier meant for pedestrian detection. Interestingly enough, the sliding window
classifier is faster than the multi-sensor architecture even though there is more visual data to
analyse. In terms of performance the multi-sensor architecture seems more reliable, because
the sliding window classifier often misses detections. However, the multi-sensor architecture
in its current state is not viable yet for a real-time implementation. A forward pass through
the learned network takes approximately 0.2 [s], which means that per second only five region
proposals can be analysed. If KFBS is used, generally there will not be that many region
proposals and the framework would still run reasonably fast at the cost of missed detections. If
PDBS is used, there will be more region proposals and less missed detections, but at the cost of
a significant increase in execution time. A more permanent solution to the apparent problem of
slow execution time with the multi-sensor architecture, would be to train a network for smaller
crop sizes than 200x400. This would significantly reduce the time it takes for a forward pass
through the trained network, but smaller crop sizes might contain less information, making
it harder to train a network to properly classify the contents of the crops.

6-2 Conclusions

The goal of this research was to thoroughly investigate the combination of LRF and camera
sensors for the purpose of human detection. Through the experiments it has become clear
that both sensors have their strengths and weaknesses. The distance measurements from the
2D LRF can, after segmentation, be used to generate region proposals in the visual data.
For actual detection, the 2D measurements provide a weak base. Not because it is hard to
distinguish leg patterns from 2D measurements, but mostly because these measurements are
easily obscured by other objects. For this purpose a passive detector such as the PDBS is
more reliable, because it passes all segments that possibly contain a human to the visual-based
classifier, even if the segment itself does not seem to look like it is. KFBS does the same, but
turns out to filter a lot more than PDBS. Essentially this means that using PDBS for the
region proposals will lead to less missed detections, but with the disadvantage of having more
region proposals to work with. The KFBS turns out to basically function as leg detector,
because hardly any other region proposals are suggested. This can be very reliable if the legs
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are visible in the LRF measurements, but if the legs are obscured this will lead to missed
detections.

In line with conclusions from Chapter 2, the deep learning experiments show great results
on classifying visual content as human or background. A CNN that was trained on a large
dataset and reached roughly 95% accuracy on that set, turns out to generalize well towards
data from a different location, reaching an initial accuracy of 87.55%. Furthermore, finetuning
experiments show that a pre-learned network can, by using a small dataset recorded at a
specific location, be finetuned to achieve high accuracy (95.47%). This is interesting for
applications where the detection algorithm will be deployed on a specific location.

6-3 Recommendations

How the algorithms discussed in this thesis can be used for actual applications depends
on the intended application. If the user wants to detect humans that do not want to be
seen, like burglars and unauthorized people, the results from this thesis are not sufficient
yet. An addition that would make detections more robust, would be to include a thermal
camera in the framework, making detections at night feasible. For the purpose of detecting
(hidden) humans, region proposals generated by PDBS will provide a more stable base than
the proposals by KFBS.

If the application requires detection of humans that do not mind to be seen, the algorithms
in this thesis can be sufficient, granted the environment and humans are similar to the data
used in the experiments. For a reliable use, however, more data needs to be acquired from as
many locations/persons as possible to make the representation of humans as generalized as
possible.

The sliding window experiments showed another problem with the multi-sensor architecture as
proposed in this thesis. Its execution time is slower compared to a HOG-SVM sliding window
classifier and this is caused by the forward pass through the CNN taking approximately 0.2
[s]. This can be reduced by training a network with smaller crops, but this might then lead to
a CNN that is less accurate. Looking into GPU implementations could help for this purpose
as well, but the higher cost of the GPU needs to be justifiable for the intended application.
Further research and iterations upon this research should aim to increase efficiency of the
multi-sensor architecture, because in terms of human detection the results look very promising.
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